
JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1

Impact of Zero-Dispersion Wavelength Fluctuations
in a Coupled Dual-Core Fiber Optical Parametric

Amplifier
Vitor Ribeiro, Minji Shi and Auro M. Perego

Abstract—We have studied the impact of zero-dispersion wave-
length (ZDW) fluctuations in coupled dual-core fiber optical
parametric amplifiers (FOPAs) and compared it to the single-
core single-pump FOPA. We have designed a Monte Carlo model,
that simulates a multidimensional Ornstein–Uhlenbeck process,
describing accurately ZDW fluctuations in single and multicore
fibers. In order to validate our results we have developed an
analytical model, based on Taylor expansion of the average gain
and successfully compared both models, with experimental results
published in the literature. We have found that a significant
reduction of the impact of ZDW fluctuations can be obtained in
dual-core FOPAs compared to single-core ones.

Index Terms—Fiber optical parametric amplifiers, Coupled-
core fibers, fiber supermodes, Zero-dispersion wavelength fluctu-
ations.

I. INTRODUCTION

Fiber optical parametric amplifiers (FOPAs) offer some
attractive features, such as potential for wide-bandwidth, low
noise figures below 3 dB, when operated in phase-sensitive
mode [1] and fast nonlinear response suitable for burst-mode
amplification [2], [3]. However some physical effects deter-
mined by either the physics of third-order nonlinear response
of the fiber, such as stimulated Brillouin scattering (SBS)
that prevents the launch of strong pump power, or by fiber
imperfections introduced during its manufacturing, limit the
noise figure, the maximum attainable gain and the bandwidth
(BW) of the FOPA.

The impact of zero-dispersion wavelength (ZDW) fluctu-
ations has been mostly treated at the theoretical level [4]–
[8]. However few works address their impact experimentally.
Nonetheless ZDW fluctuations profile were already measured
in a lab environment and models were devised in order to
compare and assess their impact on the gain spectrum of the
FOPA device [9], [10].

The study of parameter fluctuations in multicore fibers
indicate that the amplitude of fluctuations of the core radius
is approximately 2 % of the nominal core radius and that
fluctuations in different cores are not independent [11], i.e.
they have some level of correlation. These core radius fluc-
tuations are a result of fiber imperfections and come as a
result of the manufacturing process, leading to fluctuations of
propagation constants along the longitudinal dimension of the
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fiber. ZDW fluctuations have been modeled as exponentially
correlated along the longitudinal dimension of the fiber [4],
which has been verified experimentally too [12]. In the case
of the single-core single-pump FOPA, Karlsson [4] assumed
that the statistics of ZDW fluctuations along the longitudinal
dimension of the fiber is an Ornstein–Uhlenbeck (OU) process.
We will show in this paper that this also applies to the scenario
of a dual-core (DC)-FOPA by applying a multidimensional
OU process. In [8] the one dimensional OU process, was
implemented numerically, however Model I of [8] is just
usable if ZDW fluctuations in every interacting mode of the
fiber, no matter if the interacting mode is in space or frequency,
are perfectly correlated. This is true for single-core single-
pump FOPA, i.e. for signal and idler modes, but may not be
true for coupled DC-FOPA, where the spatial modes may not
have the same ZDW fluctuations. This is because model I of
[8], requires that the distinct matrices that model each segment
dz of the fiber commute, i.e, if A and B, are two of those
matrices, the following equality eA+B = eAeB , is true, if and
only if, A and B commute which in the case studied in this
paper is only true, when ZDW fluctuations in both cores are
perfectly correlated. Model I of [8] overestimates performance
when ZDW fluctuations are not perfectly correlated and may
mislead into incorrect results. Therefore in this paper we use
model II of [8] and extend it to the case of coupled DC-FOPA,
using a multidimensional OU process.

Therefore in this paper we model and study ZDW fluctu-
ations impact on recently proposed coupled DC-FOPA [13]–
[20]. Coupled DC-FOPAs present a set of features that can
make them attractive for future fiber optical communication
networks, such as exponential and flat gain profile [13],
potential to provide 0 dB noise figure [14], without the
requirement to generate frequency converted copies of the
signal, by nonlinear frequency translation techniques (usually
mentioned as copier stage). In this paper we have used an
extension of the one dimensional case to the multidimensional
case of model II of [8] in order to study the impact of
ZDW fluctuations on coupled DC-FOPA using Monte Carlo
simulations. We also developed a theoretical model, using a
Taylor expansion of the average gain to compare with Monte
Carlo simulations and experiments available in the literature
and performed for single-core single-pump FOPA [9]. We have
furthermore compared performances against ZDW fluctuations
of DC-FOPA and single-core single-pump FOPA.

This paper is organized as follows. In section II we develop
the theoretical formalism to describe the DC-FOPA and we
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introduce the Monte Carlo simulation model and the analytical
model. In section III we experimentally validate the models
developed in Section II. In section IV we assess the perfor-
mance of DC-FOPA against ZDW fluctuations and compare it
with single-core single-pump FOPA. In Section IV we present
the conclusions.

II. THEORETICAL AND ANALYTICAL BACKGROUND

A. General theoretical formalism

We consider a DC fiber, where the electric fields slowly
varying envelope evolution along the two evanescently coupled
cores is described by two coupled nonlinear Schrödinger
equations (NLSEs) [21]

∂U1

∂z
= i

∞∑
n=0

in
βn1(z)

n!

∂nU1

∂tn
+ iγU1|U1|2−

α

2
U1 + iCU2

∂U2

∂z
= i

∞∑
n=0

in
βn2

(z)

n!

∂nU2

∂tn
+ iγU2|U2|2−

α

2
U2 + iCU1.

(1)

Here U1,2 are the two field amplitudes defined in a temporal
reference in the lab frame of coordinate t and evolving
along spatial coordinate z. γ and α are nonlinearity and loss
coefficient respectively. βn1,2(z) =

∂nβ1,2

∂ωn |ω=ω0
are the n-

th order derivatives of the z-dependent propagation constants
β1,2, with respect to frequency ω and evaluated at the carrier
frequency ω0. In this paper we assume C to be constant and
independent of wavelength and α = 0, which holds for fibers
but not for integrated waveguides. To note that in this paper
we will restrict our analysis to n <= 4, neglecting all the
other higher order terms of the dispersion. Recently a first
description of a parametric amplifier based on coupled core
fibers has been developed obtaining an analytical solution for
the gain [13], [14].

Starting from Eqs.1 it is possible to derive the coupled
evolution equations for the pump (up1

, up2
), signal (us1 , us2 ),

and idler (ui1 , ui2 ) wave amplitudes, where the subscripts 1, 2
refer to the two cores respectively and the subscripts p, s, i
refer to quantities connected to pump, signal and idler waves:

∂up1

∂z
= iup1

(
βp1(z) + γ(2P1 − |up1 |2)

)
+ iγ2u∗

p1
us1ui1

+iCup2

∂us1

∂z
= ius1

(
βs1(z) + γ(2P1 − |us1 |2)

)
+ iγu2

p1
u∗
i1

+iCus2

∂ui1

∂z
= iui1

(
βi1(z) + γ(2P1 − |ui1 |2)

)
+ iγu2

p1
u∗
s1 (2)

+iCui2

where the equations for the second core can be obtained by ex-
changing subscripts 1 and 2. Here P1 = |up1

|2+|us1 |2+|ui1 |2,
P2 = |up2

|2+|us2 |2+|ui2 |2 and the βw1,2
(z)|w=s,i coeffi-

cients describe the propagation constants for cores 1 and 2,
respectively. We now assume that both cores are pumped with
the same input pump power such that Pp1 + Pp2 = Pp and
consider that Pp/2 >> |us,i|2, corresponding to the fact that

signals and idlers do not deplete the pump waves. Under
this approximation the pump amplitudes admit the following
solutions [13], [14]:

up1,2
(z) =

√
Pp

2
eiϕ0+i

∫ z
0

βp1,2
(z′)dz′+i

Ppγ

2 z+iCz

where ϕ0 is a locked phase factor for the pumps. We
furthermore write the sidebands amplitudes in the two cores as
a function of the new amplitudes es1(z), ei1(z), es2(z), ei2(z)
[13], [14]

es1,i1,s2,i2(z) = us1,i1,s2,i2(z)× (3)

×e−i
∫ z
0

βs1,i1,s2,i2 (z
′)dz′−i

Ppγ

2 z × ei
∫ z
0

∆β1,2(z′)
2 dz′−iCz

where ∆β1,2(z) = βs1,2(z) + βi1,2(z) − 2βp1,2
(z) is the

linear mismatch. Using the above mentioned approxima-
tions and definitions we can write the set of linear cou-
pled differential equations ruling the evolution of E⃗(z) =(
es1(z), e

∗
i1
(z), es2(z), e

∗
i2
(z)

)T
in matrix form as:

∂E⃗(z)

∂z
= M(z)E⃗(z) (4)

where T is the transpose operator and

M(z) =


ik1(z) i

γPp

2 iC 0

−i
γPp

2 −ik1(z) 0 −iC

iC 0 ik2(z) i
γPp

2

0 −iC −i
γPp

2 −ik2(z)

 =

=

(
M1 Mc

Mc M2

)
. (5)

Here k1,2(z) =
Ppγ
2 +

∆β1,2(z)
2 − C is the total mismatch

parameter for cores 1,2 accounting for nonlinear, linear and
coupling contribution. M1,2 and Mc are the 2 × 2 diagonal
and off-diagonal sub-matrices of M(z), respectively. We can
write k1,2(z) as a function of the ZDW fluctuations in the
following manner, k1(z) =

Ppγ
2 + (2πc)3β3

2λ6
p1

∆λ1λ
2+ (2πc)4β4

24λ8
p1

λ4

and k2(z) =
Ppγ
2 + (2πc)3β3

2λ6
p2

∆λ2λ
2 + (2πc)4β4

24λ8
p2

λ4. The pa-
rameter c is the speed of light, λ is the wavelength shift of
the signal with respect to the pump wavelengths λp1,2

, β3,4

are the third and fourth order dispersion parameter at the
pump wavelengths, ∆λ1,2(z) = ⟨λ01,2⟩ − λp1,2

+ δλ01,2(z)
is the difference between the average ⟨λ01,2⟩ of the ZDW,
the wavelength of the pump and the longitudinal fluctuations
of the ZDW in cores 1 and 2 δλ01,2(z), respectively. For
the sake of simplicity we will restrict our cases of study to
λp1

= λp2
= λp and ⟨λ01⟩ = ⟨λ02⟩ = ⟨λ0⟩. However (4) can

be solved to account when this does not occur. We can rewrite
k1,2(z) = ⟨k1,2⟩+∆k1,2(z), which is the result of the sum of
an average and independent of z phase-mismatch parameter,
i.e., ⟨k1,2⟩ and a varying part which is a function of the ZDW
fluctuations, i.e. ∆k1,2

(z).

B. Monte Carlo simulation model

The numerical model uses a 4th order Runge-Kutta (RK4)
solver to calculate the solution of (4). To note that an imple-
mentation of a one dimensional exponentially correlated OU
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process was performed in [8] and the general description can
be found in [22]. For 2 dimensions, we generally have to define
a multivariate OU process, with δλ0 = (δλ01 , δλ02)

T , where
[23, Eq. 7],

Θ(z − z′) = ⟨δλ0(z)δλ0(z
′)T ⟩ = Θ(0)Λ (6)

is the z dependent correlation function, with the normal
bivariate covariance matrix given by

Θ(0) =

(
σ2
λ1

ρσλ1σλ2

ρσλ1
σλ2

σ2
λ2

)
(7)

and Λ = e−θ|∆z|, where ∆z = z − z′ and ρ =
E[(δλ01

−E[δλ01
])(δλ02

−E[δλ02
])]

σλ1
σλ2

, is the Pearson correlation co-
efficient, where E is the average operator, σλ1

and σλ2
are the

standard deviations of δλ01 and δλ02 , over the full length of
the fiber, respectively, and

θ =

(
1/Lc1 0
0 1/Lc2

)
. (8)

Here we assume the off-diagonal terms of θ are zero. In this
study, we restrict to the cases, where Lc1 = Lc2 . This has
been followed in other models using exponentially correlated
fluctuations in multicore fibers with the aim of estimating
crosstalk impact too [24]–[26]. The matrix θ is the regression
rate matrix of an OU process [23]. The algorithm has the
following steps for each of the N = 1000 realizations of the
fiber,

1) initialize

δλ0(z = 0) =

(
N (0, 1)
N (0, 1)

)
, (9)

where N (0, 1) is a normally distributed value with
mean 0 and standard deviation equal to 1. Set ∆z =
min [Lc1/250, Lc2/250, L/1000], where L is the total
length of the fiber, in order that ∆z/min (Lc1 , Lc2) ≪ 1
[23].

2) for the whole length of the fiber simulate the expo-
nentially correlated ZDW fluctuations in the following
recursive way [8], [22], [27], [23, Eq. 21],

δλ0(z+∆z) = Λδλ0(z)+
√

I − Λ2

(
N (0, 1)
N (0, 1)

)
, (10)

where I is the identity matrix. The interpretation of this
equation is quite simple. If ZDW fluctuation at length z
is decorrelated with fluctuation at length z+∆z, then in
order to correlate them we need to have the exponential
correlation factor Λ. This is similar to what is done in
order to correlate two decorrelated random processes by
a Pearson correlation coefficient.

3) a check need to be done to guarantee that fluctuations
in core 1 are not ρ correlated with fluctuations in core
2 and guarantee that both become N (0, 1), i.e.,δλ0 =(
δλ0 −

(
µ

′

λ1
, µ

′

λ2

)T
)

�
(
σ

′

λ1
, σ

′

λ2

)T

, where µ
′

λ1,2
and

σ
′

1,2 are the means and standard deviations of δλ01,2

,respectively, resultant from the calculation of (10) and
� is the element-wise vector/matrix Hadamard division
[28].

4) decompose Θ(0), using Cholesky decomposition, i.e.,
Θ(0) = ΓΓT , where

Γ =

(
σλ1

0

ρσλ2

√
1− ρ2σλ2

)
(11)

and for all the length of the vector we calculate
Dδλ0

(z) = δλ0(z +∆z)− δλ0(z), generating 2 decor-
related Wiener processes increments [29].

5) Finally in order to correlate in amplitude the fluctuations
of the ZDW in cores 1 and 2 by the Pearson coefficient
ρ, we use matrix Γ [29].

δλ0(z +∆z) = δλ0(z) + ΓDδλ0
(z). (12)

To note that we split [23, Eq. 21] in two steps. First, we
make the longitudinal correlation along z accordingly to
matrix Λ (step 2) and then we correlate the amplitude
of the fluctuations (step 5).While (10) could include in
a single step the targeted value of the standard deviation
of ZDW fluctuations, correlation length and Pearson
correlation coefficient as it is suggested by [23, Eq. 21],
it is hard to generate these in one single step and with
the desired accuracy simultaneously. In order to have the
targeted Pearson correlation coefficient with (12), it is
strictly necessary to guarantee that the ZDW fluctuations
of core 1 and 2, obtained with (10), are completely
amplitude decorrelated, i.e. ρ = 0. Moreover, Dδλ0

reverses the integration operation started by (10), gener-
ating noise with Gaussian statistics. This noise when
integrated back generates two amplitude decorrelated
processes, with the longitudinal correlation set in (10).
This integration is therefore reinstated by (12), but this
time with the targeted standard deviation and Pearson
correlation coefficient, while preserving the previously
set correlation length. This was indeed validated and
tested thoroughly during this work.

6) The gain of the system is obtained by solving (4) with

a RK4 method and by using Gain =
|es1 (z)−es2 (z)|2
|es1 (0)−es2 (0)|2

[15].
Fig. 1 provides some examples of ZDW fluctuations, obtained
using the algorithm above. One can see that the longer the
correlation length the smoother the evolution of the ZDW
fluctuations becomes, and we show it for several values of
the Pearson coefficient ρ. For exponentially correlated random
variables, the spectrum of the auto-correlation function is a
Lorentzian function which is narrower for larger correlation
lengths and therefore will have an impact on the BW of the
fiber.

C. Theoretical model
In order to develop an analytical model for the av-

erage gain, M(z) is more conveniently written consid-
ering super-modes i.e, E⃗±(z) =

(
es±(z), u

∗
i±(z)

)T
=

(es1(z)± es2(z), e
∗
i1(z)± e∗i2(z))

T in that way a super-mode
equivalent of (4) and (5) reads as

∂E⃗±(z)
∂z =

(
M+(z) M12(z)
M12(z) M−(z)

)
E⃗±(z) = MSM (z)E⃗±(z)

(13)
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Fig. 1. ZDW fluctuations patterns obtained for different parameters: a) Lc1 =
Lc2 = 1 m, σλ1

= σλ2
= 0.5 nm and ρ = 0.8, b) Lc1 = Lc2 = 10 m,

σλ1
= σλ2

= 0.5 nm and ρ = 0, c) Lc1 = Lc2 = 40 m, σλ1
= σλ2

=
0.5 nm and ρ = −1.

where M± = M1+M2

2 ±Mc and M12 = M1−M2

2 resulting in
the following matrices

M+ =

[
ik1(z)+k2(z)

2 i
Pp γ
2

−i
Pp γ
2 −ik1(z)+k2(z)

2

]
(14)

M− =

[
−i2C + ik1(z)+k2(z)

2 i
Pp γ
2

−i
Pp γ
2 i2C − ik1(z)+k2(z)

2

]

M12 =

[
ik1(z)−k2(z)

2 0

0 −ik1(z)−k2(z)
2

]

we note that M12 provides the coupling between the super-
modes E⃗+ and E⃗−. In order to reduce the dimensional
complexity of the problem, we restrict this study to the input
initial conditions proposed in [14] for best noise performance,
i.e. es1 = −es2 = es and ei1 = ei2 = 0. We stress that as first
demonstrated by Mecozzi [30], this configuration leads to E⃗+

being attenuated or squeezed while E⃗− is amplified. There-
fore this setup is the spatial analogous of a phase-sensitive
frequency degenerate/non-degenerate parametric amplifier [31]
and therefore of most interest for this study. This results in the
following input vector E⃗+(0) = (0, 0) and E⃗−(0) = (2es, 0).
A schematic implementation of this super-mode system is
shown in [15, Fig. 8]. In order to get the solution of the
problem we approximate the solution of (13) by using the
following procedure [32]:

E⃗±(z) ≈ e
∫ z
0

MSM (z′)dz′
E⃗±(0) = NE⃗±(0). (15)

Here the integral reads∫ z

0

MSM (z′)dz′ =

=


iK+(z) i

Pp γ
2 iK−(z) 0

−i
Pp γ
2 −iK+(z) 0 −iK−(z)

iK−(z) 0 −i2C + iK+(z) i
Pp γ
2

0 −iK−(z) −i
Pp γ
2 i2C − iK+(z)

 z,

(16)

where K±(z) =
∫ z
0

k1(z′)±k2(z′)
2 dz′

z and ∆λ
′

1,2 =∫ z

0
∆λ1,2(z

′)dz′ =
∫ z

0

(
⟨λ01,2⟩ − λp1,2

+ δλ01,2(z
′)
)
dz′ is a

bivariate OU process with variance, [23, Eq. 4], [33, After
Eq. 1.3],

Σ(L, θ
′
) =

∫ L

0

e−θ
′
uΓΓT e−θ

′
uT du

=
1

2θ′

(
Θ(0)− e−θ

′
LΘ(0)

(
e−θ

′
L
)T

)
.(17)

For the particular process of ZDW fluctuations in dual core
fibers, the set of parameters

(
Σ

′
, θ

′
)

needs to be estimated
[23], [33], [34]. We will make a trial solution and further
compare it with numerical and experimental results. Therefore
we substitute, Σ

′
= Σ

m2 and θ
′
= θm2, where m is the number

of dimensions being considered by the problem (m = 2 as we
have a bivariate OU process).

The gain of the FOPA can be derived from∣∣∣∣∣ E⃗−(z)

E⃗−(0)

∣∣∣∣∣
2

= |N33|2 (18)

and
G(∆λ′

1,∆λ′
2) = N33. (19)

Here N33 is the element of matrix N at 3rd row and 3rd
column and reads

N33 =
1

2ε

[
cosh (ξ1z)η1 +

i sinh (ξ1z)

ξ1
(µ+ ν)

+ cosh (ξ2z)η2 +
i sinh (ξ2z)

ξ2
(µ− ν)

]
, (20)

where

ε =
√
(K+ − C)2(K2

− + C2), µ = (K+ − 2C)ε,

ν = K2
+C + 2C3 + CK2

− −K+K
2
− − 3K+C

2,

ξ1,2 =
√
γ2P 2

p /4± ε− (K+ − C)2 −K2
− − C2,

η1,2 = ε± (K+C − C2).

In order to estimate theoretically the mean of G(∆λ
′

1,∆λ
′

2),
over different random realizations of the fiber i.e.,
E[G(∆λ

′

1,∆λ
′

2)] we expand E[G(∆λ
′

1,∆λ
′

2)] in a Taylor
series [35, Eq. 4.30]

E[G(∆λ
′

1,∆λ
′

2)] ≈ G(⟨∆λ
′

1⟩, ⟨∆λ
′

2⟩)

+
1

2!

2∑
j=1

2∑
i=1

∂2G(∆λ
′

1,∆λ
′

2)

∂∆λ
′
i∂∆λ

′
j

Cov
(
∆λ

′

i,∆λ
′

j

)∣∣∣∣
∆λ

′
1 = ⟨∆λ

′
1⟩

∆λ
′
2 = ⟨∆λ

′
2⟩

+ · · · (21)
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To note that the odd terms of the Taylor expansion of E[f(x)]
are zero [35, Eq. 4.30], for any function of random variables

f(x). Cov
(
∆λ

′

i,∆λ
′

j

)
=

Σ
′
(
z, θ

′

L

)
L

∣∣∣∣
i,j

, where i and j are

the row and column index of Σ
′
(z, θ

′
). This indicates that the

vector of estimated parameters
(
Σ

′
, θ′

)
is normalized by the

length L of the fiber in order to account for the impact of
the correlation length on the gain spectrum of the FOPA. As

an example Cov
(
∆λ

′

n,∆λ
′

n

)
=

Lcnσλn

2m2

(
1− e

− 2m2

Lcn

)
σλn

m2 .

Caution needs to be taken in terms of the units of the variables
involved in an OU process. The differential equation of an OU
process [23, Eq. 1], in the case δλ0 is given in nm, then the
Wiener process increments by definition must have units of√
m and Γ, must be given in units of nm/

√
m. In (12) Γ is

given in units of nm. Therefore the scaling by the length of
the fibre L in Σ

′
is plausible.

A more compact way of writing (21), is to define the
operator H,

H[f(x1, x2)] =

Cov
(
∆λ

′

1,∆λ
′

1

)
σλ1

m2

,
Cov

(
∆λ

′

2,∆λ
′

2

)
σλ2

m2


×

 ∂2f(x1,x2)
∂x2

1
ρ∂2f(x1,x2)

∂x1∂x2

ρ∂2f(x1,x2)
∂x1∂x2

∂2f(x1,x2)
∂x2

2

 σλ1

m2

σλ2

m2

 .

(22)

Therefore the Taylor expansion of E[G(∆λ
′

1,∆λ
′

2)], can be
written as,

E[G(∆λ
′

1,∆λ
′

2)] ≈ G(⟨∆λ
′

1⟩, ⟨∆λ
′

2⟩)+

+
1

2!
H

[
G(∆λ

′

1,∆λ
′

2)
] ∣∣∣∣

∆λ
′
1 = ⟨∆λ

′
1⟩

∆λ
′
2 = ⟨∆λ

′
2⟩

+

+
1

4!
H

[
H

[
G(∆λ

′

1,∆λ
′

2)
]] ∣∣∣∣

∆λ
′
1 = ⟨∆λ

′
1⟩

∆λ
′
2 = ⟨∆λ

′
2⟩

+

+
1

6!
H

[
H

[
H

[
G(∆λ

′

1,∆λ
′

2)
]]] ∣∣∣∣

∆λ
′
1 = ⟨∆λ

′
1⟩

∆λ
′
2 = ⟨∆λ

′
2⟩

+ · · · . (23)

III. EXPERIMENTAL VALIDATION

For the experimental validation of the Monte Carlo and
theoretical model discussed in subsections II-B and II-C,
respectively, we will use the experimentally measured ZDW
fluctuations profile obtained by Mussot et al in Fig. 2 a) of
[9] for a single-core single-pump FOPA. We set the correlation
length to be Lc1 = Lc2 = Lc. We recall that for single-core
single-pump FOPA the auto-correlation function is given by
R(ζ) = ⟨δλ0(z)δλ0(z + ζ)⟩ [4] and

Lc =

∫ L

0

R(ζ)

R(0)
dζ ≈

N∑
m=N−1

2 +1

R(ζm)

R(0)
∆ζm, (24)

where N is the number of points digitally obtained from the
auto-correlation function. N was obtained by spline interpo-
lation of the obtained curve of [9, Fig. 2 a)] in steps of
∆z = 0.1 m and the auto-correlation function is estimated
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From experiment [9]
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Fig. 2. Estimation of auto-correlation function. Blue and red curves are the
experimentally obtained and fit of the exponential auto-correlation function
with Lc = 45 m
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Fig. 3. Matched curves between RK4 algorithm (red) discussed in subsection
II-B, average gain (blue) for ZDW fluctuations with Lc1 = Lc2 = 39.2
m, σλ1

= σλ2
= σ = 0.33 nm, γ = 11.2 W−1 km−1, L = 500 m

and ρ = 1, obtained for 4th order Taylor expansion of E[G(∆λ
′
1,∆λ

′
2)],

discussed in subsection II-C and light dashed blue curve obtained for
N = 1000 realizations of the fibre ZDW fluctuations using Monte-Carlo
simulations algorithm discussed in subsection II-B. Black curve provides the
spectrum for which there is no ZDW fluctuations and green curve provides
the experimentally obtained spectrum of [9, Fig. 2 b)], resultant from ZDW
fluctuations obtained in [9, Fig. 2 a)]. The gain spectra are provided for a
pump wavelength of a) 1555 nm and Pp = 1.24 W, b) 1553.3 nm and
Pp = 1.29 W, c) 1553.2 nm and Pp = 1.27 W and d) 1553 nm and
Pp = 1.27 W. To note that gain is given as the absolute value squared of G,
i.e., |G(∆λ1,∆λ2)|2. To note as well that in order to emulate single-core
cases with the expression for G(∆λ1,∆λ2) given by (19), the pump power
per core in a dual-core model presented in section II must be identical to
the single-core model presented in the literature related with frequency non-
degenerated FOPA.

given the above-mentioned equation. Using (24) we estimate
the correlation length to be Lc ≈ 39 m. Since One can
also estimate Lc, by plotting the normalized auto-correlation
function R(ζ)

R(0) , and observe the length for which R(ζ)
R(0) = e−1

as it is shown in Fig. 2. In that case Lc ≈ 45 m and a
good agreement is obtained between the experimental auto-
correlation function and fit. This shows that an OU process
describes reasonably well the effect of ZDW fluctuations in an
optical fiber, and that ZDW fluctuations can be approximately
considered to be exponentially correlated. Nonetheless we
will use the value obtained with (24) for the experimental
validation of the models presented in subsections II-B and
II-C. This choice is justified because (24) is a more accurate
approximation than just trying to fit the curve, despite no
dramatic changes will be noticed if one uses the value obtained
by the fit.

Fig. 3 shows the gain spectrum for a pump wavelengths
1555 nm, 1553.3 nm, 1553.2 nm and 1553 nm. In Fig. 3
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E[G(∆λ
′

1,∆λ
′

2)], resulting from (23), provides the average
assuming several realizations of the fiber (blue curve) and
it is compared with its numerical analogue, i.e., a Monte
Carlo simulation model (light dashed blue curve) discussed
in subsection II-B, while the other curves are simulated or
experimentally obtained for one fiber sample investigated in [9,
Fig. 2 a) and Fig. 2 b]. To note that in order to use the models
discussed in subsections II-B and II-C to emulate single-core
cases, we have to assume the cores are identical, i.e., ρ = 1,
σλ1

= σλ2
= σλ = 0.33 nm, Lc1 = Lc2 = Lc = 39.2

m. It is required the use of the expression given by (19) to
calculate the average of the gain, i.e., E[G(∆λ

′

1,∆λ
′

2)] and
make C = 0. The value of the standard deviation of ZDW
fluctuations σ = 0.33 nm is obtained from Fig. 2 a) of [9].
To note that in this experimental validation, we exceptionally
included loss by substituting in (19) Ppz = PpLeff [32] and
multiply G(∆λ

′

1,∆λ
′

2) by e
−αz

2 , where Leff = 1−e−αz

α , and
α = 0.56 dB/km is the loss parameter. All the parameters
are the same as the ones used in [9], i.e., β4 = −3.6× 10−56

s4/m and β3 = 4.41×10−41 s3/m. The only exception is that
we found that the average ZDW must be ≈ 1553.1 nm, while
in [9] is mentioned it is ≈ 1553 nm. What makes us think
that our assumption is right, is that in Fig 3 d) the gain drops
immediately after a few nm after the wavelength of the pump,
indicating that when the pump is at 1553 nm, the pump is
indeed in the normal dispersion regime. This cannot be a result
of ZDW fluctuations since close to the pump wavelength, the
effect of ZDW fluctuations is negligible.

Our theoretical model discussed in section II-C given by
(23) is accurate in the scenarios where the phase-mismatch
is relatively small or the approximated gain function is well-
behaved (avoiding large derivatives), which happens normally
within the gain spectrum of the FOPA. It provides a fairly
accurate prediction of what the average gain will be, while
the solution of (4), using RK4 algorithm and ZDW fluctuations
shown in [9] discussed in section II-B, provides a much accu-
rate prediction of the experimentally obtained gain spectrum.
We can see that for all the pump wavelengths discussed previ-
ously an accurate estimation of the most likely average gain is
given, compared to the experimentally obtained gain spectrum.
Finally increasing the order of the Taylor expansion will
increase the accuracy of the estimation of E[G(∆λ

′

1,∆λ
′

2)] at
higher values of λ, especially for the cases the pump is near
the ZDW, such as in Figs. 3 c) and d). The phase-mismatch
fluctuation resulting from ZDW fluctuations increase with λ,
increasing the error of the Taylor series for higher values of λ.
The derivative of the gain in order to the ZDW flutuations of
core 1 and 2 will also increase with λ. Note that the remainder
of a Taylor expansion is also proportional to this derivative
[36]. The computation time, increases almost exponentially
with the order of the Taylor expansion used and therefore we
have truncated it to a 4th order Taylor expansion (about 30
minutes in a desktop personal computer). Nevertheless, a 4th

or even a 6th order Taylor expansion is likely to require much
less computation time than performing Monte Carlo simulation
and this is more evident for shorter correlation lengths.

One side conclusion of this section is that typical highly
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Fig. 4. a) Average gain spectrum over 1000 realizations of the fiber and b)
related -3 dB BW for several values of correlation length where Lc1 = Lc2 .
In a) dashed curves as a result of 6th order Taylor expansion described by
(23), solid curves provides the average gain spectrum as a result of the Monte-
Carlo simulation model discussed in subsection II-B and solving (4). For all
the cases plotted C = 0.0133 m−1, σλ1

= σλ2
= 0.5 nm, ρ = 1,

Pp = 3.8 W, β3 = 4.41×10−41 s3/m, L = 125 m, γ = 14 W−1 km−1

and β4 = 0 s4/m. The pump is located in the average ZDW, thus λp1 =
λp2 = ⟨λ01 ⟩ = ⟨λ02 ⟩
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Fig. 5. a) and b) Average gain spectrum over 1000 realizations of the fiber
for several values of standard deviation σλ1,2

, where we assume σλ1
= σλ2

.
In a) C = 0.0133 m−1 Pp = 3.8 W, ρ = 0 , b) C = 0 m−1, L = 125 m,
γ = 14W−1 km−1 and Pp = 7.6W and ρ = 1 (connected with single-core
case). In a) dashed curves as a result of 6th order Taylor expansion described
by (23), solid curves provides the average gain spectrum as a result of the
Monte-Carlo simulation model by simulating 1000 fiber samples, discussed in
subsection II-B and solving (4). For all the cases plotted , Lc1 = Lc2 = 10
m, β3 = 4.41×10−41 s3/m and β4 = 0 s4/m. The pump is located in the
average of the ZDW and therefore λp1 = λp2 = ⟨λ01 ⟩ = ⟨λ02 ⟩. We omit
the dash lines in b) since while the theoretical model can predict well the
region where the gain is flat, it diverges for very large λ outside this region
for the reasons discussed already in section III.

nonlinear fiber cores are very likely to have standard deviation
of ZDW fluctuations in the order of sub-nm and longitudinal
correlation lengths in the order of tenths of meters.
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as a result of 6th order Taylor expansion described by (23), solid curves
provides the average gain spectrum as a result of the Monte-Carlo simulation
model discussed in subsection II-B and solving (4). For all the cases plotted
C = 0.0133 m−1, σλ1

= σλ2
= 0.5 nm, Lc1 = Lc2 = 40 m,

Pp = 3.8 W, β3 = 4.41×10−41 s3/m, L = 125 m, γ = 14 W−1 km−1

and β4 = 0 s4/m. The pump is located in the average of the ZDW, thus
λp1 = λp2 = ⟨λ01 ⟩ = ⟨λ02 ⟩ .

IV. THE COUPLED DUAL-CORE FIBER OPTICAL
PARAMETRIC AMPLIFIER CASE

In this section we demonstrate and discuss the results for a
coupled DC-FOPA, showing in Fig. 4 the evolution of the gain
spectrum and BW as a function of the correlation length. In
Fig. 5 we show the evolution of the gain spectrum as a function
of the standard deviation of ZDW fluctuations and in Fig. 7 the
evolution as a function of the Pearson correlation coefficient.
An example is provided in order to forecast the typical gain
spectrum of DC-FOPA with realistic ZDW fluctuations. All the
plots are computed using the models discussed in subsections
II-B and II-C, using a Monte Carlo RK4 solution of (4) and
(23), respectively. The Monte-Carlo model discussed in II-B,
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Fig. 8. Coupled DC-FOPA gain spectrum assuming ZDW fluctuations of
Fig 2 a) of [9] in both cores, i.e. ρ = 1. For blue curve C = 0.0034
m−1, σλ1

= σλ2
= 0.33 nm, Lc1 = Lc2 = 39.2 m, Pp = 1.24 W,

β3 = 4.41× 10−41 s3/m, L = 500 m, γ = 11.2 W−1 km−1, α = 0.56
dB/km and β4 = 0 s4/m. The pump is located in 1553 nm.

comprises simulation of 1000 different fibers each with its
own ZDW fluctuations and required standard deviation and
correlation length.

From Fig. 4 a) a good agreement can be appreciated
between the Monte Carlo simulation model discussed in sub-
section II-B and theoretical model discussed in subsection II-C
given by (23), for each value of correlation length. For a better
agreement a higher order Taylor expansion would be required
which can become computationally very expensive for large
values of λ, where large values of phase-mismatch occur. In
Fig. 5 a) with C = 0.0133 m−1 and b) with C = 0 m−1, it
is shown the variation of the gain spectrum with the standard
deviation of fluctuations σλ1,2

. In Fig. 5 a) good agreement
between the model of subsection II-B and II-C is shown. In
Fig. 5 b) the case where we have used C = 0 and ρ = 1 has
been presented too. As discussed in section III, this is closely
related with the case of a single-core single-pump FOPA. The
model developed in (23) is not suitable or it is computationally
demanding if one wants to approximate accurately, for large λ
and large phase-mismatch or where the approximated function
E[G(∆λ

′

1,∆λ
′

2)] is not smooth (large derivatives). The Taylor
expansion does not seem to predict correctly in this situation.
However it is possible to obtain from it, qualitative information
and as it can be seen in section III, it provides accurate
quantitative information as well. Nonetheless, we note that
the Monte Carlo simulations in Fig. 5 b) provide the typical
experimental spectrum obtained in the literature [37, Fig. 6 b)]
for significantly high quadratic gains, i.e., > 10 dB, which is
the case of Fig. 5 b). Fig. 6 shows the −3 dB BW comparison
obtained from Monte Carlo simulations comparing the BW
obtained in Fig. 5 a) and b). The cases of Fig. 5 a) and b)
provide a fair comparison between a coupled DC-FOPA in a)
and single-core single-pump FOPA in b) where the total power
used in just one core in b) is equal to the total power used and
required in a) for both cores, i.e., Pp = 3.8 W. The case of
Fig. 5 a) still has ≈ 20% more BW, within the spectral region
where the spectral response of the DC-FOPA is flat, than the
case depicted in Fig. 5 b). Moreover, within that BW the case
shown in a), has ≈ 4 times more average gain than the case
depicted in b). Moreover, the variation, or standard deviation,
of the spectral BW where the spectral response of the FOPA is
flat, i.e., σBw, is much higher in the single-core single-pump
FOPA than in the case of the coupled DC-FOPA. Therefore
the spectral response of the single-core single-pump FOPA is
much more sensitive to ZDW fluctuations than the DC-FOPA.

In Fig. 7, we show the gain variation, with the Pearson
correlation coefficient ρ. No significant changes occur in the
gain spectrum when ρ varies. The case where the ZDW
fluctuations are anti-correlated do not change this conclusion
and therefore are omitted. In Fig. 8 we predict how it would be
the gain spectrum of a coupled DC-FOPA if both cores have
the same ZDW fluctuations given by Fig. 2 a) of [9]. This
will lead to about 50 nm BW, which is impressive if we take
into account the large length of the fiber , i.e, L = 500 m. We
can compare it with the average −3 dB BW, obtained through
the Monte Carlo simulation model for an identical correlation
length, maximum gain and standard deviation shown in Fig. 4
b), but with L = 125 m. In that case we have obtained ≈ 70
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nm with more than 20 dB flat spectral gain. This is expected
since shorter FOPAS are likely to provide wider gain spectrum.

Notably in coupled DC-FOPA, ZDW fluctuations do not
change the gain profile or damage the gain spectral flatness.
For instance ZDW fluctuations damage the gain spectral
flatness in single-core dual pump FOPAs [6] and in single-
core single-pump FOPAs, this damage has also been observed
for reasonably high quadratic gain (gain close to the pump
wavelength) [37, Fig. 6 b)]. Moreover comparatively to single-
core dual pump FOPA, the gain flatness is kept even in the
most demanding statistical conditions, limiting BW only. The
physical interpretation for this is that the maximum gain of
single-core dual pump FOPA is dependent on the phase-
matching condition being equal to zero. This condition is
perturbed by the ZDW fluctuations leading to ripples in the
gain spectrum, and eventually to a net/average phase-mismatch
different than 0, on distinct wavelengths. In DC-FOPA the
phase matching condition that gives the maximum gain is
ruled, especially as small detuning from the pump where the
gain is flat, by the balancing between the nonlinear phase-
mismatch given by γPp/2 and 2C, (see for example [13, Eq.
25]). Since the coupling does not fluctuate (in theory), the
gain flatness is kept. On the other hand dispersion limits the
amplifier BW at larger detuning from the pump which may
explain why ZDW fluctuations affect mostly BW in our study.

The impact of other phenomena such as randomness of
coupling parameter needs to be studied, but since the coupling
parameter depends on the core radius, fluctuations in the core
radius will impact the coupling parameter and will generate
induced ZDW fluctuations and coupling phase fluctuations that
are likely to be partially correlated. It is not clear if coupling
fluctuations will be beneficial or detrimental, since the cou-
pling is wavelength dependent and higher order terms of the
coupling dispersion can be used to compensate waveguide/core
dispersion. This problem will be the subject of future studies.

V. CONCLUSIONS

We conclude that ZDW fluctuations in single-/multi-
core fibers is a unidimensional/multidimensional Orn-
stein–Uhlenbeck (OU) process, respectively. We have devel-
oped a Monte Carlo simulation model that implements a
multidimensional OU process. We have also developed a
theoretical model based on a Taylor approximation of the
average of the gain,that is capable to accurately describe the
OU process and matches the Monte Carlo simulation model
results. The experimental data analysed was collected from
[9] and demonstrates a correlation length of about 39 m and
a standard deviation of about 0.33 nm. Thus it is expected
that current highly-nonlinear fiber cores, have correlation
lengths and standard deviations of that order of magnitude.
Coupled DC-FOPAs present spectral gain flatness even in the
most demanding statistical conditions. Compared to single-
core single-pump and dual pump FOPAs they show superior
resilience to fiber imperfections and unlike the former, only
−3 dB BW and not maximum gain is affected by ZDW
fluctuations. We conclude that coupled DC-FOPA is a serious
candidate for future broadband amplification, with its unique

noise properties that can deliver a broadband flat gain amplifier
with potential for very low noise figures and with its stronger
immunity to ZDW fluctuations as demonstrated in this work.
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