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ABSTRACT
Highway Authorities in the UK use Surface Condition Assessment for the
National Network of Roads (SCANNER) in assessing and managing their
road networks. This survey vehicle utilises laser measurements to detect
and quantify most of the distress on the road surface, such as rutting,
cracking and texture depth. It is however a data intensive and expen-
sive approach since it is conducted annually. This study presents a simple
method to predict pavement distress using previous SCANNER measure-
ments. The previousmeasurements are used to develop Distress Deteriora-
tion Master Curves (DDMC) that relate distress deterioration rate with the
severity of the distress. These curves can be used to predict future distress
severity based on the current statewithout the need to provide further data
such as pavement age or pavement material properties. To demonstrate
the application of this method, a significant amount of SCANNER data cov-
ering around400 kmof class A roads inNottinghamshire collectedbetween
2014 and 2020 were analysed, and rutting, crack intensity, and texture
depthweremodelled in this study. DDMRs of these distress typeswere built
based on data collected between 2014-2018, then 2020 data were used to
validate the predictions. The results show that the developed method can
be implemented in predicting surface distress of roads using previousmea-
surements, which makes it a valuable addition tool for highway authorities
subject to underfunding.
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1. Introduction

Pavement structures exhibit different types of distress due to traffic loading and environmental con-
ditions, such as rutting (Kim et al., 2000; Perraton et al., 2010; Wang et al., 2022), fatigue cracking (Di
Benedetto et al., 2004; Luo et al., 2018; Mbarki et al., 2012), thermal cracking (Alavi et al., 2015; Dave
& Buttlar, 2010; Epps, 2000), or surface texture deterioration (Mansura et al., 2018; Xiao et al., 2020).
These distress types have multiple effects on road networks; they increase the pavement roughness
(Múčka, 2016; Sandra & Sarkar, 2013), reduce road user comfort (Ahlin & Granlund, 2011; Guha & Hos-
sain, 2022), increase vehicle fuel consumption (Perrotta et al., 2019; Svenson & Fjeld, 2015) which
increases CO2 emissions, raise the number of road user compensation claims (Asphalt Industry Ala-
iance, 2022), and increase the risks of traffic accidents (Chan et al., 2010; Tamakloe et al., 2021). It is
therefore of paramount importance to monitor pavement surface condition and assess the extent of
the distress to minimise these effects and manage road networks efficiently.
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Different methods have been developed to monitor and assess the surface condition of roads. In
general, thesemethods can be categorised into two types, manual visual surveys, and automated sur-
veys. In the UK, two visual survey methods are frequently used, Coarse Visual Inspection (CVI) and
Detailed Visual Inspection (DVI) (Department for Transport, 2021). These methods are mainly applied
nowadays to assess the condition of the unclassified road networks in the UK, the difference being
that a CVI can be performed from a slow-moving vehicle whereas a DVI is a walked survey but more
comprehensive and detailed than the CVI. On the other hand, automated surveys rely on laser sensor
measurements and road surface images to assess road condition. Two automated Traffic Speed Survey
(TTS) methods are implemented in the UK, Traffics Speed Condition Surveys (TRACS), which is mostly
used on the trunk road network, and SCANNER, which is used by local highway authorities to scan
class A, B and C roads (Department for Transport, 2021; Mcrobbie et al., 2007); A roads are major roads
designed to link major areas, B roads feed traffic onto A roads from adjacent areas, and C roads are
smaller links between villages, towns, or other housing or industrial areas (Department for Transport,
2012).

Apart from these two survey methods, there are numerous studies in the literature on road sur-
vey methods and the key issues with each method such as the accuracy of the measurements, survey
speed, repeatability and reproducibility of the results (Chu et al., 2022; Ragnoli et al., 2018; Shtayat
et al., 2020). Since this study is concerned with modelling pavement performance using SCANNER
then this survey method is given more attention. Figure 1 shows the main components of a typical
SCANNER vehicle; it has: two digital laser sensors that are used to capture surface distress, transverse
profile, longitudinal profile, and edge condition of roads (UK Roads Board, 2011b). Some SCANNER
vehicles implement artificial intelligence and image processing technologies to better identify the
cracks (PTS, 2022). Over 40 indicators are extracted from the laser measurements, these include rut-
ting, cracking, longitudinal profile variance, texturedepth, andedge condition; theother indicators are
basically different forms of reporting these distress types (UK Roads Board, 2011a). Highway author-
ities process these data to calculate one indicator, namely Road Condition Index using the following
equation:

RCI = max(RLW , RRW) × RWR × IWR + T × RWT × IWT

+ CI × RWC × IWC

+ max(LPV3 × RWLPV3 × IWLPV3 , LPV10 × RWLPV10 × IWLPV10)

where RLW , RRW are rutting scores in the left and right wheel paths, T is the texture depth score, CI
crack intensity score, LPV is the longitudinal profile variance score over 3 or 10 metres, RW and IW
are reliability and importance weightings that depend on the class of the road and can be found in
(UK Roads Board, 2011a). The RCI is calculated for every 10 metres of the surveyed roads and based
on its value the condition of the sections is ranked into three levels: green for RCI ≤ 40, orange for
40 < RCI ≤ 100, and red for RCI > 100; these ranks are used to manage the road network and plan
maintenance activities.

On the other hand, various different methods have been developed tomodel pavement deteriora-
tion. Mechanistic models (Abu Al-Rub et al., 2012; Dinegdae & Birgisson, 2016) rely on methods such
as fracturemechanics and constitutivemodelling to predict pavement distress. Mechanistic-empirical
models (ARA, 2004; Luo et al., 2017) combine the mechanistic response of pavement structures (i.e.
stresses and strains) with empirical regression models to predict pavement performance. Empirical
models use methods such as machine leaning or statistical regression to predict pavement perfor-
mance (Kargah-Ostadi & Stoffels, 2015; Marcelino et al., 2019; Yu et al., 2007). Further, due to the
stochastic nature of pavement performance (Darter &Hudson, 1973), researchers have also developed
probabilistic methods to model pavement deterioration, such as Monte Carlo simulation (Abed et al.,
2019; Wang et al., 2010), and Markov Chains (Abaza, 2015; Alimoradi et al., 2020); Artificial Neural Net-
works have also been widely applied in predicting pavement performance (Wang et al., 2022; Zhou
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Figure 1. A typical SCANNER system.

et al., 2021). Most of these methods however require various inputs such as material properties, pave-
ment structural data, pavement age, climate data, or traffic data (Ziari et al., 2015), which may limit
their implementation.

Highway authorities in the UK conduct annual road distress surveys to assess the condition of the
road network, calculate RCI, and plan maintenance activities. This process however is expensive and
time consuming, which exerts an additional economic burden on the already underfunded budget
allocated for the maintenance of the roads. Therefore, the aim of this study is to develop a simple
model capable of predicting the future condition of a pavement surface based on its current condi-
tion using a new approach called Distress Deterioration Rate (DDR). By this approach, the DDRs are
calculated using previous SCANNER measurements depending on the severity of each distress, these
are used to construct deterioration curves that can be used to predict the future level of the distress
depending on its current level only. A similar approach has been suggested in literature to predict
pavement deterioration rate expressed by a drop in Pavement Condition Index (PCI) by Kargah-Ostadi
et al. (2019). In that study, the authors built a PCI deterioration curve in which the average drop in the
PCI is dependent on the current PCI value. The PCI deterioration curve was built using the previous
two measurements where the deterioration rate was calculated as the drop in the PCI divided by the
time lag between the measurements. This study demonstrated that the PCI deterioration rate is low
when the pavement condition is good (PCI > 90) and also when it is bad (PCI < 40). This is probably
because the PCI score is scaled to be between 0–100 rather than because of a change in the deteri-
oration rate of the distress types included in the PCI calculations. Accordingly, this method has been
implemented in this study but with some modifications. Firstly, using two measurements to deter-
mine a deterioration ratemay not be sufficient; the deterioration ratemay vary considerably from one
year to another, therefore obtaining the deterioration rate as an average of a longer period is more
accurate. Secondly, the PCI is a function of various distress types, with each having a certain weight
and reliability factors, and distress deteriorationmay increase, decrease, or remain constant over time.
Accordingly, every distress should bemodelled individually to exclude the effects of the other distress
types, weighting and reliability factors on the Distress Deterioration Rate (DDR). Furthermore, based
on the data collected in this study, we find that DDRs are functions of the current condition or dete-
rioration level of the pavement. This means that a few deterioration models rather than one might
be required to predict a distress type, where every model is required to fit certain distress severity
data. Despite this approach being applicable, it is not practical as the number ofmodelsmight be very
high. To this end, we introduce in this study a novel method to construct a distress deterioration mas-
ter curve from the individual DDR models. The distress deterioration master curve can then be used
to predict the future level of the distress based on its current level. By implementing the suggested
approach and the stated modifications, rutting, cracking, and texture depth have been selected to
demonstrate the application of the suggested method. The results show that this approach has a rea-
sonable accuracy and could be a valuable additional tool for highway authorities, allowing them to
reduce their spending on pavement condition assessment.



4 A. ABED ET AL.

Figure 2. A map showing the study area and the road sections used in this study (The shown points represent the scanned road
sections; bridges, roundabouts, and intersections were not included in the survey).

Table 1. Sample of the raw SCANNER data used in this study.

Section ID Type Start End
Rutting in left
wheel path mm

Rutting in right
wheel path mm

Texture depth
mm

Longitudinal profile
variance over 3mmm2

3055A6005201 A 0 10 2.5 3 0.85 0
3055A6005201 A 10 20 2.9 5.8 0.19 0
3055A6005201 A 20 30 3.3 7.6 0.54 0.7

2. Materials andmethods

2.1. Data description and pre-processing

In this study, a significant amount of SCANNER data from around 400 km of class A roads in Notting-
hamshire were collected; Figure 2 presents a map showing a sample of these data. The data were
supplied in a text file format as used in the UK Pavement Management System (UKPMS) software. The
data are structured to report 44 data points that include distress measurements, different forms to
express the distress, section geometries, and section coordinates of every 10 metres of the scanned
network. The data cover the inner lane of one direction of the roads, which had been scanned every
two years between 2014 and 2020, and they amount to about 40 thousand sections. A sample of the
raw data is presented in Table 1.

These data howevermay contain inherent issues such as error inmeasurements, missing data, spa-
tial variability, inaccurate section boundaries, or even outliers which may happen due to localised
issues such as drainage problems (Kargah-Ostadi et al., 2019), or even updating data analysis algo-
rithms or SCANNER laser sensors over time. Another issue with the data is maintenance and rehabil-
itation activities which are manifested as improvements in the pavement condition or a reduction in
distress levels. These issues can lead to a large bias in the calculations of DDRs and should be treated
before attempting to build deterioration models.

Many methods to reduce the effects of these issues on the quality of data have been suggested in
literature (Kargah-Ostadi et al., 2019), as shown inTable 2. Everyoneof thesemethods is suited to a spe-
cific issue in the data. For instance, if a set of data ismissing, then an averaging or interpolation process
canbe followed to estimate themissingdata. Likewise, if a dataset is suspected tohave ameasurement
error or maintenance was provided, then the outlier removal method can fix this situation.
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Table 2. Data pre-processing methods (Kargah-Ostadi et al., 2019).

Data issue Pre-processing technique

Spatial Variability Dynamic Segmentation for Model Development; Probabilistic Model
Development; Smaller Segments for Model Development

Controlling Standard Deviation in Segmentation
Inaccurate Section Boundaries Combining Sections and Averaging
Temporal Variability Smoothing / Moving Average; Benchmarking
Noise Smoothing / Moving Average
Outliers (Unreasonable Data) Outlier Removal
Missing Data Averaging / Interpolation; Bootstrapping; Imputation
Scale Differences Normalization
Inter-Correlation of Input Data Principal Components Analysis; Stepwise Regression; Variable Multiplication
Measurement Errors/ Subjectivity Outlier Removal; Averaging; Benchmarking

In this study, twomethods were followed to pre-process the data. Firstly, the sections that showed
a reduction in distress level were filtered from the data using the outlier removal method. This is to
exclude sections that might have received maintenance or might contain an error. Secondly, when
joining sections from different years, some sections presented error at the boundaries. In other words,
there was some distance difference in these sections from one year to another. This could be due to
an error in identifying the start stations of roads, the temporal separation between the surveys which
may affect sensor accuracy or analysis algorithmof sensor data, or survey staff change fromone survey
to another. To solve this issue, an outlier removal based on the distance was applied; basically, the
sections that showed a difference in the distance of more than a threshold value of 5m measured
centre to centre,which is 50%of a section length,were excluded from thedata; this is to assure that the
same section is beingmonitored over time. Lastly, therewas no concern about spatial variability in the
data since themaximumsection lengthwas 10m, and it is quite unlikely in this length that a significant
change in pavement condition occurs. Following these techniques, the data was pre-processed and
used in building deterioration models as explained in the following section.

2.2. DDRmodel development

Pavement distress increases over time due to traffic loading and environmental conditions such as
ageing and thermal stresses. If the distress is surveyed repeatedly over a period of time, and in the
absence of intrinsic pavement modelling inputs such as material properties and pavement design,
then one can adopt a mathematical approach to model the rate of distress deterioration, as follows:

DDRi = (Di − Di−1)/((Ti − Ti−1) (1)

whereDDR is distress deterioration rate, D is the distressmagnitude, i is the survey number, and T is the
timeof the survey. The data in this study however show thatDDR is not linear; rather it is dependent on
the magnitude or severity of the distress, or pavement structural condition in general (Abaza, 2014).
Therefore, the previous equation can be rewritten as follows:

DDRi,s = (Di,s − Di−1,s)/((Ti − Ti−1) (2)

where s is the severity of the distress in question. This equation can be used to calculate the DDR con-
sidering the current structural condition or the distress severity, which in turn can be used to predict
the distress magnitude as follows:

Di+1 = Di + DDRi,s × PP (3)

where PP is the required prediction period in years. The application of this equation seems straight-
forward but relying on two surveys to estimate the DDRmay not reflect the actual deterioration; also,
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Figure 3. Flow chart explaining the methodology of the study.

it will not reflect the variability in the DDR from one section to another due to the variation of material
properties for instance. Accordingly, it is suggested in this study to determine the DDR of a distress
as an average of more than two previous measurements, which then can be utilised in predicting the
future magnitude of that distress using the last survey results and the required prediction period by
applying Equation (3). Figure 3 presents a flowchart explaining the developedmethodology and how
it can be implemented to determine DDRs and utilise these in predicting future distress levels. It must
be stated here that the deterioration curvesmight be linear or nonlinear. This depends on theway the
individual DDRs collapse onto each other to form a master curve; if the trend of the master curve is
linear then a linear model should be fitted; if the trend is not linear then a suitable model should be
fitted based on expert judgment.

3. Results and discussion

3.1. Distress deterioration rates

Following the methodology explained in the previous section the average DDRs of the three selected
distress types, rutting in the left and right wheel paths, crack intensity over the whole carriageway,
and texture depth, were determined as shown in Figures 4–7. Figure 4 and Figure 5 show the DDRs
of rutting in the left and right wheel paths respectively. Interestingly, these figures show an approxi-
mately linear relationship between the average rutting of the sections of every group. They also show
that the deterioration rate, which is expressed by the slope of the fitted lines, increases slightly with
the increase of rutting severity. This can be explained by the fact that severe distress reduces the struc-
tural capacity of pavements, which leads to larger strain levels and eventually larger distress. It must
bementioned here that the rutting in the left wheel path did not correlate well with the rutting in the
right wheel path, with a coefficient of correlation (R2) less than 0.2. This can probably be explained by
factors affecting rutting on roads such as effects of the cross slope on the distribution of traffic loading
on the pavement, and on drainage where the lower side of a lane may become more saturated and
eventually weaker than the higher side. Accordingly, two ruttingmodels for the twowheel paths have
been developed in this study as explained in later sections.

Figure 6 shows the deterioration trends of crack intensity over time. This figure demonstrates that
cracking does not increase linearly but tends to take an exponential form. This means that cracking
DDRs can bemore progressive than other distress types such as rutting especially at high crack sever-
ities. The reasons behind this can be factors such as ageing which reduces strain tolerance of asphalt,
pavement water damage once cracks are initiated, or general deterioration in the structural capacity
of a pavement over its service life.

Lastly, Figure 7presents thedeterioration trends for texture depth; it canbe seen that texture depth
generally decreases over time. This is a normal trend for texture depth as it decreases due to abrasion
of the pavement surface caused by vehicle tyres (Athiappan et al., 2022). The decrease rate, however, is
dependent on the texture depth; the figure shows that sections with large initial texture exhibit faster
reduction in texture depth than those with low texture. This is mostly like due to the larger the texture
depth the bigger the frictional forces with vehicle tyres.

The above analysis is based on averageDDRs. The variability amongst deterioration rates, however,
could be large. This could be due to several factors including variability in traffic loading, pavement
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Figure 4. DDRs for rutting in the left wheel path.

Figure 5. DDRs for rutting in the right wheel path.

Figure 6. DDRs of the crack intensity over the whole carriageway.
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Figure 7. DDRs of the texture depth in the case of increasing texture over time.

structure, properties of pavement layers, environmental conditions, or even pavement geometry such
as longitudinal and transverse profiles. The work presented in reference (Kargah-Ostadi et al., 2019) is
based on the average deterioration in the PCI. The data collected in this study, however, shows that
there is a large variability in deterioration rates. For instance, Table 3 indicates that the level of rutting
variation in both wheel paths is from 6.7% to 61.3%. This means there is significant variability in the
DDRs, and therefore this should be considered in the prediction process. To achieve that, three DDRs
were developed for every distress type; the first represents the average deterioration, the second fits
the 10th percentile of each severity group, the third represents the 90th percentile. The 10th and 90th

percentiles were calculated by fitting a lognormal distribution and determining the distress values
that match these reliability levels. Accordingly, three deterioration models are developed for every
distress type, one at the average deterioration rate, one below the average which can be considered
an optimistic prediction, and one above the average which accounts for a high level of deterioration
around the worst-case scenario.

3.2. Distress deteriorationmaster curves

The deterioration curves shown above can be applied directly to predict the future level of a particular
distress type using Equation 3. Basically, one can use a suitable deterioration rate based on the current
level of distress and the required prediction period. This means however that several deterioration
curves should be used in the prediction process. Although this is achievable, a newmethod has been
developed in this study to generate a single Distress Deterioration Master Curve (DDMC) that can be
used in the prediction process.

By analysing the results in Figures 4–7 it can be seen that the distress results of individual groups
can be collapsed onto one master curve. This can be achieved by shifting the x axis data to the right
until all data form a smooth curve. The concept behind this idea is that the models of the individual
groups can be represented by a single master model in which the slope of the master model matches
the slopes of the individual models. In this case the deterioration rate of the individual groups, which
is the slope of the individual lines, will match the deterioration rate of the fittedmaster curve. Caution
should be taken when constructing master curves of this type as data shifting should be performed
without changing the slope of the data. This has been accomplished by manually shifting the survey
data to the right relative to the first group (lowest distress level) until a smooth curve is achieved. For
example, the 2-4mmgroup in Figure 4 was shifted to the right until this dataset formed a smooth line
with the 0-2mmgroup; all other groupswere similarly shifted to the right until all of thegroups formed
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Table 3. Rutting data in the left and right wheel paths collected between 2014 and 2018.

Distress Rutting in the right side Rutting in the left side

Severity Year 2014 2016 2018 2014 2016 2018

0–2mm Mean 1.03 2.20 3.02 1.18 1.87 2.68
Std 0.58 1.35 1.76 0.59 0.85 1.19

CoV % 56.2 61.3 58.1 49.8 45.3 44.3
10% 0.29 0.47 0.77 1.94 2.96 4.21
90% 1.78 3.92 5.27 0.43 0.79 1.16

2–4mm Mean 2.83 3.96 4.83 2.69 3.57 4.49
Std 0.58 1.28 1.59 0.54 1.11 1.39

CoV % 20.4 32.4 32.9 20.0 31.1 31.0
10% 2.09 2.32 2.80 3.38 4.99 6.27
90% 3.57 5.61 6.86 2.00 2.15 2.70

4–6mm Mean 4.83 6.01 6.91 4.80 5.58 6.46
Std 0.61 1.23 1.51 0.63 0.92 1.24

CoV % 12.6 20.5 21.9 13.1 16.5 19.2
10% 4.05 4.43 4.97 5.61 6.77 8.05
90% 5.61 7.59 8.85 3.99 4.40 4.87

6–8mm Mean 6.86 8.02 8.93 6.90 7.82 8.88
Std 0.61 1.21 1.48 0.69 0.97 1.79

CoV % 8.9 15.1 16.5 10.0 12.4 20.2
10% 6.08 6.47 7.04 7.79 9.06 11.18
90% 7.64 9.57 10.82 6.01 6.58 6.59

8–10mm Mean 8.86 10.04 11.06 8.50 10.15 10.90
Std 0.63 1.02 1.25 0.57 1.92 2.05

CoV % 7.1 10.2 11.3 6.7 18.9 18.8
10% 9.66 11.34 12.66 9.22 12.61 13.53
90% 8.05 8.73 9.46 7.78 7.69 8.27

> 10mm Mean 10.83 11.82 13.14 11.34 11.97 13.62
Std 0.88 0.92 1.28 1.90 1.75 1.70

CoV % 8.1 7.8 9.8 16.8 14.6 12.5
10% 9.71 10.63 11.50 13.78 14.21 15.80
90% 11.96 13.00 14.78 8.90 9.72 11.44

a smooth line. It must be stated here that when shifting a data group to the right, the whole group is
shifted to the right while maintaining a time difference of two years between the data points of that
group, as the frequency of the surveys is one every two years. The y axis data on the other hand is kept
the same when shifting the data, as shown in Figures 8–11. The exact same procedure is followed
when constructing DDMCs at any selected reliability level. For example, to construct a deterioration
master curve at 90% reliability level 90th percentiles of the data are used rather than averages, and
these are grouped based on severity. The data of every severity group are then shifted to the right
until a smooth curve is obtained as explained above, and lastly a suitable DDMC is fitted.

Figure 8 and Figure 9 show the DDMCs for rutting in the two-wheel paths. These figures show the
average deterioration rates as well as the 10th and 90th percentiles. The main point to observe here is
the closeness between the individual data sets and the master curves. If these two match each other,
then the master curve will give good results. It must be mentioned here that despite Figure 4 and
Figure 5 showing that ruttingDDRsmay increase over time, the largest increase is about 0.08mm/year
for rutting in the leftwheel path and0.2mm/year for rutting in the rightwheel path. Accordingly, linear
models were fitted to the shifted data to model rutting deterioration behaviour, as shown in Figure
8 and Figure 9. Based on these figures, the DDRs in the left wheel path are 0.19, 0.52, and 0.95mm at
10%, average and 90% reliabilities respectively, and 0.21, 0.46, and 0.79mm in the right wheel path.

Following the same approach, DDMCs of crack intensity have been developed, as shown in Figure
10. In this figure, exponential models of the form (a × exp(b × x) − c) have been found to best fit the
cracking data, with a coefficient of regression (R2) greater than 0.95. This means that the deteriora-
tion rate for crack intensity is not linear but exponential related to the current intensity of the cracks.
Lastly, Figure 11 presents the texture depth DDMCs, which shows that an exponential model provides
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Figure 8. Deterioration curve for rutting in the left wheel path.

Figure 9. Deterioration curve for rutting in the right wheel path.

Figure 10. Deterioration curve for cracking over the whole carriageway.
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Figure 11. Deterioration curve for texture depth.

a very good fit with an R2 of 0.98, except at 90% where the R2 drops to 0.888, which still acceptably
good. It must be stated here that the x-axis of the figures represents an ‘imaginary’ time with no abso-
lute meaning; distress rate should be calculated based on the current distress level by inverting the
deterioration models, as explained below.

Themaster curves can nowbe applied to predict the future level of distress by using the current dis-
tressmeasurements.With respect to ruttingpredictiononbothwheel paths, Equation3 canbeapplied
directly using rutting DDRs at the selected reliability levels. With respect to crack intensity and texture
depth the prediction process is less straightforward, because the deterioration rate is dependent on
the level of distress. This can be calculated from the deterioration curves as follows:

(1) Fit a curve to best match the behaviour of the data on the master curve; for the average crack
intensity, the model below has been fitted:

CIi = 3.396 × exp(0.1006 × Ti) − 2.93 (4)

where CIi is the crack intensity at the current state.
(2) By inverting Equation (4), the imaginary time associated with the current distress state can be

calculated using the current distress measurement, as shown below:

Ti = ln(5 × (100 × CIi + 293)/1698)/0.1006 (5)

(3) By adding the required prediction period to the results of Equation (5) and substituting the
outcome to Equation (4), we obtain the following equation:

CIi+1 = 3.396 × exp
(
0.1006 ×

[
ln

(
5 × 100 × CIi

1698

)
/0.1006 + PP

])
− 2.93 (6)

Following the above steps, the crack intensity deteriorationmodel at 10% and 90%, as well as the tex-
ture depth deteriorationmodels at 10%, average, and 90%have been derived as shown in Table 4. The
following section discusses the implementation of the developed deterioration curves in predicting
pavement performance and any limitations associated with this method.

3.3. Distress prediction results

To demonstrate the application of the developed DDMCs and analyse their predictive accuracy, rut-
ting in both wheel paths, crack intensity, and texture depth in 2020 were predicted based on the data
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Table 4. Crack intensity and texture depth deterioration models at 10%, average, 90% reliability levels.

CIi+1 = 2.548 × exp
(
0.0815 ×

[
ln

(
10 × 25×CIi+62

637

)
/0.0815 + PP

])
− 2.48 10% Equation 7

CIi+1 = 3.396 × exp
(
0.1006 ×

[
ln

(
5 × 100×CIi

1698

)
/0.1006 + PP

])
− 2.93 Average Equation 8

CIi+1 = 5.14 × exp
(
0.1345 ×

[
ln

(
500×CIi+2557

2570

)
/0.1345 + PP

])
− 5.114 90% Equation 9

TD∗
i+1 = 2.4552 × e−0.056×(−Ln(TDi/2.4552)/0.056+PP) 10% Equation 10

TDi+1 = 2.0262 × e−0.094×(−Ln(TDi/2.0262)/0.094+PP) Average Equation 11

TDi+1 = 1.6471 × e−0.199×(−Ln(TDi/1.64711)/0.199+PP) 90% Equation 12
∗TD stands for texture depth

collected in 2018. With respect to rutting prediction Equation (3) was applied directly by using the
deterioration rates shown in Figure 8 and Figure 9, whereas for crack intensity and texture depth,
Equations (7–12) were used. The prediction results are presented in Figure 12. This figure presents
themeasured distress from SCANNER in 2020 comparedwith the predicted distress using the deterio-
rationmodels. It must be stated here that the 2018 SCANNER datawas pre-processed using the outlier
removal method to remove the sections that were maintained between 2018 and 2020, and also to
remove sections that exhibited extreme deterioration, which may have been due to localised issues
on the roads (Kargah-Ostadi et al., 2019). In this study, any deteriorationmore than two standard devi-
ations above the mean was considered an outlier and excluded in the validation process. In practical
applications of this work, pavement managers should have a record of any maintenance works that
have taken place and any localised issues on their road network that can cause excessive deterioration
in certain sections. These data will allowmanagers to remove these sections in the prediction process,
and this will allow for a better implementation of the models.

Following these rules, the DDMCs were applied to predict the distress in 2020 at the selected relia-
bility levels. Figure 12A to F show rutting prediction results in bothwheel paths at the selected reliabil-
ity levels. The results in subfigureAwere calculatedby applying adeterioration rate of 0.1818mm/year
(as shown in Figure 8) in Equation (3), whereas a deterioration rate of 0.5158mm/yearwas used in sub-
figure B, and a deterioration rate of 0.9462mm/year was used in subfigure C. The deterioration rates
applied in subfigures D, E and F are shown in Figure 9. Generally, these figures indicate that the larger
the reliability level, the more the data shifted above the equality line. This is explained by the fact
that at the 10th percentile, the deterioration rate will be below the average, which means the models
will underestimate distress deterioration, whereas at the 90th percentile, the deterioration rate will be
above the average, which means the models will overestimate the deterioration rates. Similar trends
can be seen for crack intensity in Figure 12 G to I, and for the texture depth in Figure 12 J to L. The
difference between rutting prediction and crack intensity/texture depth prediction is that the deteri-
oration rate in rutting is constant at a given reliability level, whereas it is variable and dependent on
the current distress state in the case of crack intensity and texture depth. Furthermore, to assess the
statistical significance of the results, the Root Mean Square Error (RMSE) and R2 were calculated, as
shown in Table 5, which also presents the number of road sections used in the validation process. It
can be seen that there is a generally good correlation between the measured and predicted data.

To further understand the accuracy of the predictions, it is necessary to set up somemeasures that
can describe the accuracy in a more informative way. R2 and RMSE are statistical measures that show
how aligned and close the predictions are to the actual measurements in amacro sense. But to under-
standmore about the accuracy of the predictions and analyse towhat extent themodels performed in
an acceptable or unacceptableway, it is necessary to consider furthermeasures that can give a deeper
sense of the data. To achieve that, four descriptivemeasures have been considered in this study, these
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Figure 12. Distress predictions for year 2020 based on data collected in year 2018

Table 5. Number of sections used in the validation process with, MSE, and R2 results.

Distress
Number of validation

sections
RMSE at the

average prediction R2

Rutting in left wheel path 28205 1.27 0.856
Rutting in right wheel path 34092 1.72 0.815
Crack intensity 2549 0.88 0.83
Texture depth 21931 0.15 0.916

are Excellent, Good, Poor, and Unsatisfactory. Every category of these measures has a predetermined
absolute error; if the absolute error in the prediction data is smaller than the predetermined error,
then that data set will be assigned to that specified category. In this case the results will be expressed
as the percentages of the data matching the selected descriptive measures. The only issue with this
approach is the values of the predetermined absolute errors. These error thresholds can significantly
affect the interpretation of the results; therefore, they should be selected carefully. If they are too tight,
then the results will be entirely unacceptable and vice versa; and unfortunately, no thresholds have
been reported in the literature. Accordingly, the thresholds shown in Table 6 were selected based on
expert judgement after careful consideration. Rutting prediction with an error up to 1mm or crack
intensity prediction with an error up to 0.25% or texture depth prediction with an error up to 0.15mm
are considered excellent predictions. Rutting prediction with an error more than 3mm, crack intensity
predictionwith anerrormore than0.75%or texturedepthpredictionwith anerrormore than1mmare
considered unsatisfactory predictions. Acceptable and poor prediction thresholds are between these
extremes.



14 A. ABED ET AL.

Table 6. Criteria considered to rank the accuracy of the distress predictions.

Distress Excellent Good Poor Unsatisfactory

Rutting mm ±1.0 ±2.0 ±3.0 > ±3.0
Crack intensity % ±0.25 ±0.5 ±0.75 > ±0.75
Texture depth mm ±0.35 ±0.7 ±1.0 > ±1.0

Figure 13. Pie chart illustrating the ranking of the predicted distress accuracy.

Following this approach, the micro accuracy of the predictions, which is here defined as the accu-
racy of the individual predictions rather than the model as a whole, was analysed, as shown in
Figure 13; this figure presents the percentages of the road sections that fall under the four descrip-
tive measures. With respect to rutting, in general about 85-83% of the predictions fall under excellent
to good predictions in both wheel paths. The texture depth showed the best prediction accuracy with
93% falling under excellent. Crack intensity, however, shows that 61% of the predictions fall in the
poor or unsatisfactory categories. This is most likely due to the quality of the distress measurement
data which has been reported as the most difficult one to quantify due to the similarity between this
distress and other features on the road surface such as patches, fretting, ironwork, and high friction
surfaces (McRobbie & Wright, 2006), which makes the quality of the crack intensity data less than the
quality of other distress types.

4. Conclusions

In this study, an innovative practical method to model pavement deterioration using SCANNER data
has been developed. This method utilises previous distress measurement data to estimate distress
deterioration rates (DDRs) as a function of distress severity and use these to predict pavement perfor-
mance. DDRs were determined by analysing SCANNER measurement data and grouping the distress
into different levels based on their severity, modelling each group individually, combining the devel-
oped individual models into one deteriorationmodel. To demonstrate the application of this method,
a significant amount of SCANNER data for A roads in Nottinghamshire were employed in this study.
The data were used to determine the DDRs of three main distress types: rutting, cracking, and texture
depth. The DDRs were then used to predict distress in 2020 based on data collected in 2018. Based on
the results of this study, the following conclusions can be drawn:

1. The developed method requires previous distress measurements to predict future condition; no
data about pavement type, age or material properties are required, which makes it practical and
easy to implement. But the prediction accuracy of this method relies significantly on the quality
of the collected data.

2. Thedistress prediction results showeddifferent levels of accuracy fromexcellent to unsatisfactory.
This can probably be explained by factors such as: variability of pavement response from one
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place to another, variability of pavement properties, effects of pavementmaintenance on distress
measurements, the accuracy of distress quantification and the uncertainty of the overall process.

3. Unlike Markov Chain methods, this method can be used to model pavement performance at
both network level and project level, and it can be used to predict the performance of individual
sections and locate those requiring maintenance or further investigation.

4. Three distress predictions have beenmodelled in this study, at 10th percentile, average, and 90th
percentile deterioration rates. The first is an optimistic prediction, the second is realistic and may
produce the lowest error in the prediction process, the last may overestimate the deterioration
rate, but this may be desirable when making pavement management and maintenance plans, to
be on the safe side.

5. Although thismethodwasdevelopedbasedonA roads inNottinghamshire, UK, themethodology
to extract distress deterioration curves is valid for all road classes and for all distress types. This
means that a tailored set of deterioration curves can be developed for every authority reflecting
the environmental conditions of their region, material properties, their pavement structures and
traffic volumes.

The current work has been conducted based on a static prediction of distress deterioration; thus, a
certain deterministic deterioration is assigned to the current distress state to predict the future. Future
work will focus on developing a dynamic deterioration prediction model, in which the deterioration
rate will not be a constant value but a dynamic one estimated based on the distress deterioration
probability distribution function and past SCANNER data.
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