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Predicting ‘Brainage’ in late 
childhood to adolescence (6‑17yrs) 
using structural MRI, morphometric 
similarity, and machine learning
Daniel Griffiths‑King 1, Amanda G. Wood 1,2,3,4 & Jan Novak 1,4*

Brain development is regularly studied using structural MRI. Recently, studies have used a 
combination of statistical learning and large‑scale imaging databases of healthy children to predict 
an individual’s age from structural MRI. This data‑driven, predicted ‘Brainage’ typically differs from 
the subjects chronological age, with this difference a potential measure of individual difference. Few 
studies have leveraged higher‑order or connectomic representations of structural MRI data for this 
Brainage approach. We leveraged morphometric similarity as a network‑level approach to structural 
MRI to generate predictive models of age. We benchmarked these novel Brainage approaches using 
morphometric similarity against more typical, single feature (i.e., cortical thickness) approaches. 
We showed that these novel methods did not outperform cortical thickness or cortical volume 
measures. All models were significantly biased by age, but robust to motion confounds. The main 
results show that, whilst morphometric similarity mapping may be a novel way to leverage additional 
information from a T1‑weighted structural MRI beyond individual features, in the context of a 
Brainage framework, morphometric similarity does not provide more accurate predictions of age. 
Morphometric similarity as a network‑level approach to structural MRI may be poorly positioned to 
study individual differences in brain development in healthy participants in this way.

Developmental neuroscience has embraced neuroimaging studies of brain structure to characterize brain matura-
tion and to understand how this gives rise to cognitive development. Developmental neuroimaging studies have 
highlighted distinct developmental trajectories of specific cortical tissues such as white matter (WM) and grey 
matter (GM), across different regions of the  cortex1. The volume of cortical GM specifically shows an ‘inverted 
U’, nonlinear  trajectory1–4, with pre-pubertal expansion of the cortical  GM5 followed by a post-pubertal sus-
tained loss of GM volume (despite synaptic density plateauing after puberty according to molecular and cellular 
 evidence5). Brain maturation has specific regional trajectories; peak GM density and reductions in GM volume 
occur earliest in primary function areas, somatosensory and primary motor cortices, and latest in higher-order 
association areas, dorsolateral prefrontal cortex and superior temporal gyrus for  instance1. Cortical thickness 
maturation also shows a similar trajectory, with generalized reductions over  time6–8, in line with what would 
be expected from models of synaptic pruning and  myelination8. These longstanding findings show, given these 
measures vary as a function of age,  that an individual’s chronological age may be deduced from an MRI scan 
of their brain.

This is the premise of the Brainage framework, the idea that multivariate patterns of brain structure in 
large samples of MRI from healthy children are related to age and, by using data-driven or machine learning 
approaches, that association can be learnt. By applying these learnt patterns to new data, we can predict the age of 
an individual based on their MRI  (see9, 10 for review). This apparent age, or more commonly termed “Brainage”, is 
akin to a reading age; it reflects the current observed status of the brain in terms of morphometry in comparison 
to ‘typical’ norms of brain structural development.

The Brainage of any individual is unlikely to be perfectly aligned to their chronological (actual) age. Differ-
ences between Brainage and chronological age may reflect normal-variation or individual differences between 
children. This metric of difference and/or perturbation is typically referred to as BrainageΔ (delta), the calculated 
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difference between chronological age and apparent/predicted  Brainage9, 11. In the case of diseased populations, 
this measure allows us to estimate the perturbation that the disease state has upon brain development and aging 
(i.e.,11). For instance, a BrainageΔ of zero would be indicative of an individual following a normative developmen-
tal trajectory, whilst a higher or greater BrainageΔ would represent advanced brain (and possibly cognitive) aging, 
a state of perturbation from the typical developmental  trajectory12. Brain development (specifically grey matter 
change) follows highly ‘programmed’  trajectories5, 13–15 (driven in part by  genetics16–19). Therefore, neurologi-
cal disruption to the ongoing development of the brain during this period is likely to potentially symptomatic, 
impacting on future brain and cognitive maturation. Therefore, an approach for quantifying typical brain matura-
tion will likely hold benefit in understanding atypical developmental patterns that hold clinical  implication20, 21.

In recent years, data-driven estimations of the brain’s apparent age have been calculated using machine-
learning approaches to detect latent patterns associated with age across several neuroimaging modalities (includ-
ing structural (sMRI), diffusion (dMRI) and functional MRI (fMRI)). Utilising machine learning approaches in 
this way, can consider the multivariate complexities of the neurodevelopmental trajectories of these meso-scale 
measures. However, using regional-level data as independent features to predict age may ignore potentially 
relevant, higher-order multicollinearities between regions. Connectomic  approaches22, that consider the brains’ 
network-level organisation, may therefore hold greater potential in predicting Brainage. Typically, connectomic 
approaches would utilise diffusion and functional MRI data, but these can suffer from quality issues associated 
with EPI  sequences23, and also have long acquisition times and may therefore be less tolerable in clinical popula-
tions and  paediatrics24.

This study proposes connectomic approaches to sMRI data as a potential method to use in the Brainage frame-
work. Previous approaches utilising individual morphometric measurements from sMRI in Brainage prediction 
in  paediatrics20, 25, 26 have achieved comparable prediction accuracies to those multimodal studies incorporating 
additional modalities with  sMRI27, 28 (although, methodological differences preclude meaningful direct com-
parison across these paediatric studies). However, relatively few studies leverage connectomics-level analyses of 
sMRI data for Brainage prediction. Corps and  Rekik23 utilised morphometric data (curvature, cortical thickness, 
sulcal depth) to produce multi-view morphological brain networks. Briefly, they investigated multiple feature-
networks where ‘connections’ are the dissimilarity (absolute difference) between regions in terms of absolute fea-
ture values. This produced multiple feature networks as predictive variables. No previous studies have leveraged 
network-level approaches to sMRI to generate single morphometric networks as variables in predictive models 
of Brainage. Given the abundance of available sMRI data (T1w MRI is more readily acquired across clinical and 
research contexts compared to other MRI modalities and therefore may find greater translatability and applica-
tion), and the effective Brainage prediction previously achieved using this  data27, 28, there is strong rationale in 
trying to leverage additional predictive information from this modality of MRI, using a connectomic approach.

In the current paper, we employed a morphometric similarity mapping  approach29 to combine multiple 
features into a single network, capturing higher-order morphometric organisation across the cortex. Previously 
these networks have been shown to be sensitive to neurodevelopmental  abnormalities30.

Specifically, this paper generated normative Brainage models using connectomic approaches to sMRI, as out-
lined in King and  Wood24, leveraging both network-level approaches whilst restricting necessary MRI sequences 
to a T1w sMRI. This approach may better account for absolute dissimilarity due to scaling (as in Corps and 
 Rekik23) and instead capture those relationships that are indicative of coordinated cortical development and 
 maturation29.

The current study evaluates the use of T1w morphometric similarity mapping, as a novel approach in predict-
ing Brainage in a cohort of typically developing children. This study investigates whether Brainage prediction 
methods are more accurate when using morphometric similarity measures of the developing cortex, compared 
to individual morphometric measures. No previous study has benchmarked these novel Brainage approaches 
(using morphometric similarity) against more typical, single morphometric feature approaches.

Results
Dataset. This study employed data from healthy controls from the open-access Autism Brain Imaging Data 
Exchange cohort (ABIDE, Di Martino,  Yan31) data from the Pre-processed Connectome Project (PCP, Bellec, 
 Yan32, for full details see Pre-processed Connectome Project website http:// prepr ocess ed- conne ctomes- proje ct. 
org/). Healthy controls were included that were < 17 years old and met strict quality control criteria (outlined 
below). After applying these criteria, the remaining cases from the ABIDE dataset used in the current analyses 
consisted of 327 healthy controls, with a mean age of 12.4 ± 2.5 years. (see Table 1). We utilized the  Freesurfer33 
processed outputs supplied by the PCP. This provides cortical morphometry measures across regions of the 
Desikan-Killiany  atlas34.

Model evaluation. To evaluate the Brainage models derived from different morphometric feature sets, 
specifically morphometric similarity, compared to individual morphometric features, the ABIDE cohort were 
divided into training and independent test cohorts in the ratio of 3:1 (n = 245 & n = 82 respectively). The training 
cohort was further subdivided into an internal training and validation cohort at a ratio of 5:1 (n = 204 & n = 41). 
Selection of the training-set was pseudo-random to enable under sampling based on age (see Fig. 1).

Prediction utilized 10 different feature-sets (See Table 2); i–vii) each of the individual morphometric features, 
viii) all features, ix) nodal-level strength of morphometric similarity and x) edge-level weights of the morphomet-
ric similarity, with each model having chronological age at scanning as the dependent variable. Across models, 
performance was evaluated based upon reducing mean absolute error (MAE) and maximizing predictive  R2.

http://preprocessed-connectomes-project.org/
http://preprocessed-connectomes-project.org/
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Table 1.  Demographic information from entire cohort (n = 327 from ABIDE dataset) and the internal training 
and validation cohorts and the independent test cohort. a Available for n = 308, bavailable for n = 192, cavailable 
for n = 40, davailable for n = 76.

Entire cohort Internal training cohort Internal validation cohort Test cohort

n 327 204 41 82

Mean age (yrs. ± SD) 12.4 ± 2.5 12.7 ± 2.5 12.3 ± 2.6 11.8 ± 2.4

Min.  age (yrs.) 6.5 6.5 7.3 7.3

Max.  age (yrs.) 16.9 16.9 16.9 16.6

Sex (M:F) 259:68 164:40 31:10 64:18

Mean IQ (IQ ± SD) 110 ±  15a 110 ±  13b 111 ±  11c 109 ±  14d

Figure 1.  Age of participants in the entire cohort versus those in the training cohort. This graph highlights 
the under sampling of the training set based on age. It was important to ensure that the training cohort did 
not disproportionately represent any one specific age group, just because of the greater frequency of that age 
group in the full dataset. A ‘flatter’ distribution of age was selected in the training set by under sampling age 
bands that are ‘overrepresented’ in the overall dataset. This was less successful at the extreme ‘tails’ of childhood 
(approximately less than 8 years and greater than 16.5 years) where less data was available to sample from. N.B 
for visualization purposes, this graph is re-binned to bins of width 1 year.

Table 2.  Features sets used to produce Brainage models. N.B. a Number of regions in the Desikan Killiany 
atlas, b Number of regions time number of individual morphometric features, c Number of off-diagonal 
elements of the connectivity matrix.

Feature set n features

Individual morphometric features

 1. Surface area 68a

 2. Curvature index 68

 3. Folding index 68

 4. Gaussian curvature 68

 5. Mean curvature 68

 6. Cortical thickness 68

 7. Cortical volume 68

 8. All individual features 476b

Morphometric similarity

 9. Morphometric similarity nodal strength 68

 10. Morphometric similarity edge weight 2278c
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ML algorithm and kernel selection. Brainage prediction was conducted across two, kernel-based regres-
sion approaches; a) Gaussian Processes Regression (GPR) and b) Relevance Vector Regression (RVR).These 
were selected as both are commonly used in the  literature9, 10, 35, and non-linear and/or kernel-based algorithms 
typically outperform linear approaches (likely due to the multicollinearity in morphometric  measures36, 37. 
Two different kernels were tested for each algorithm: a) laplacedot (Laplace radial basis kernel) and b) RBFDot 
(Gaussian radial basis function). Internal training and validation were conducted to select the machine learning 
algorithm and kernel, based upon performance when trained on the internal training cohort and evaluated on 
the internal validation set. The hold out test cohort was not included in this process. Figure 2 details this further.

Table 3 highlights the performance of each model in both the internal training and validation sets. For all 
feature sets, Gaussian processes regression (paired with either the laplacedot or RBFdot) seemed to perform 
best on the validation set. The model (algorithm + kernel) which performed best on the internal validation set 
for each feature set was evaluated on the independent test cohort to estimate performance for each feature set.

Model evaluation on independent test cohort. Models were trained on the training cohort (n = 245) 
and then evaluated on the independent test cohort (n = 82). Table 4 highlights the results of this model testing, 
with data plotted in Fig. 3. Evaluations suggest that Gaussian and mean curvature performed poorest, with pre-
diction worse than a model of just the mean  (R2 = − 0.05 & − 0.09 respectively). Morphometric Similarity edge 
weights, cortical volume, thickness and all individual features performed strongest  (R2 = 0.19, 0.29, 0.37 & 0.39 
respectively). Based on random resampling of the data (training/testing cohorts), we calculated mean predicted 
 R2 of models and 95% confidence intervals (CI) of these values. Only models based upon Morphometric Similar-
ity edge weights, cortical volume, thickness and all individual features had 95% CI that did not cross predictive 
 R2 = 0. Performance across the resampling for these models was variable, as can be seen in the 95% CI.

Null models were produced by permuting age in the training cohort and evaluating on actual testing data. 
The mean predictive  R2 values of the resampled models, and the distribution of  R2 values from the permuted 
‘null’ cases allowed calculation of p-values, where models performed above random noise in the data. Again, 
only models based upon Morphometric Similarity edge weights, cortical volume, thickness and all individual 
features produced models which performed significantly above null models.

Prediction using density thresholded morphometric similarity. Given that correlation-derived 
networks may represent both ‘real’ statistical associations and potential noisy/spurious  associations38 we also 
tested prediction based upon edge-level Morphometric Similarity, thresholded at an individual-level, at multiple 
network densities; from top 5% edges to 50% in steps of 5%. For all densities, in terms of both predicted  R2 and 
MAE, GuassPrc outperformed the RVM algorithm in internal validation procedures. Irrespective of kernel, 
prediction performed equally well (to 2dp) for all densities tested (All models 5–50% density: MAE = 1.73 yrs, 
Pred.  R2 = 0.32) on the internal validation. Given the predictive accuracy remains constant even when the net-
work is thresholded to enforce greater sparsity, this suggests that the top 5% of edges in terms of weight are those 
that are most sensitive to individual differences due to age. As the performance did not change compared to the 
original, unthresholded network, we used the unthresholded network for the presented analyses here, including 
performance evaluation on the hold out testing cohort.

Potential biases in BrainageΔ. BrainageΔ was calculated as the absolute difference between chronologi-
cal (actual) actual and predicted Brainage, in the testing cohort. This indexes the degree to which an individual 
diverges from age-expected, brain development (combined with model error). As expected, due to the ‘healthy’ 
nature of the participants, many of these values were close to zero, although there was large variability (across 

Figure 2.  Flowchart detailing the use of data in the current study for internal validation, training, and testing. 
Figure created with BioRender.com.
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Table 3.  Performance of Brainage models trained on different feature sets and assessed on Internal Training 
and Validation cohorts. Performance on internal validation cohort informed the selection of ML algorithm 
and kernel. Pred.  R2, Predicted  R2; GuassPrc, Gaussian processes regression; RVM, Relevance Vector Machine; 
laplacedot, Laplace radial basis kerne; rbfdot , Gaussian radial basis function. Negative Pred.  R2 values (in red) 
represent where performance was poorer than prediction using only the mean. Bold indicates for each feature 
set the combination of algorithm and kernel which produced the most favourable results in the validation set 
(based on predicted  R2 as the evaluation metric).

Feature Algorithm Kernel

Internal training 
(n = 204)

Internal validation 
(n = 41)

Feature Algorithm Kernel

Internal training 
(n = 204)

Internal validation 
(n = 41)

MAE (yrs.) Pred.  R2 MAE (yrs.) Pred.  R2 MAE (yrs.) Pred.  R2 MAE (yrs.) Pred.  R2

Surface 
area

GuassPrc
laplacedot 1.40 0.55 1.96 0.06

Cortical 
thickness

GuassPrc
laplacedot 1.07 0.72 1.44 0.53

rbfdot 1.40 0.55 1.96 0.06 rbfdot 1.07 0.72 1.44 0.53

RVM
laplacedot 1.51 0.45 2.28 − 0.19

RVM
laplacedot 1.24 0.64 1.96 0.09

rbfdot 1.47 0.48 2.23 − 0.17 rbfdot 1.20 0.65 1.95 0.10

Curvature 
index

GuassPrc
laplacedot 1.40 0.57 2.06 0.02

Cortical 
volume

GuassPrc
laplacedot 1.23 0.64 1.56 0.37

rbfdot 1.41 0.56 2.06 0.02 rbfdot 1.24 0.63 1.56 0.37

RVM
laplacedot 1.41 0.49 2.54 − 1.20

RVM
laplacedot 1.42 0.52 1.68 0.27

rbfdot 1.28 0.57 2.59 − 1.22 rbfdot 1.44 0.50 1.66 0.28

Folding 
index

GuassPrc
laplacedot 1.32 0.62 1.97 0.09

All 
individual 
features

GuassPrc
laplacedot 1.05 0.74 1.37 0.49

rbfdot 1.29 0.63 1.97 0.09 rbfdot 1.06 0.73 1.37 0.49

RVM
laplacedot 1.32 0.52 3.22 − 2.05

RVM
laplacedot 1.26 0.60 1.43 0.51

rbfdot 1.39 0.48 3.02 − 1.72 rbfdot 1.24 0.62 1.40 0.53

Gaussian 
curvature

GuassPrc
laplacedot 1.36 0.60 1.82 0.23 Morpho-

metric 
similarity: 
nodal 
strength

GuassPrc
laplacedot 1.40 0.56 1.77 0.31

rbfdot 1.34 0.61 1.82 0.23 rbfdot 1.39 0.56 1.77 0.31

RVM
laplacedot 1.23 0.59 3.85 − 3.41

RVM
laplacedot 1.32 0.57 2.01 0.05

rbfdot 1.25 0.58 3.53 − 3.01 rbfdot 1.18 0.64 2.03 0.03

Mean 
curvature

GuassPrc
laplacedot 1.40 0.56 1.91 0.19 Morpho-

metric 
similar-
ity: edge 
weights

GuassPrc
laplacedot 1.20 0.69 1.73 0.32

rbfdot 1.42 0.55 1.91 0.19 rbfdot 1.20 0.68 1.73 0.32

RVM
laplacedot 1.44 0.49 2.20 − 0.10

RVM
laplacedot 0.36 0.96 1.82 0.31

rbfdot 1.62 0.37 2.14 − 0.04 rbfdot 0.33 0.97 1.82 0.31

Table 4.  Performance of Brainage models trained on different feature sets and assessed on Training and Test 
samples. Pred.  R2, Predicted  R2, CI, Confidence Interval. Training sample represents the combination of both 
training and validation samples. Negative predicted  R2 values (in red) represent where performance was poorer 
than prediction using only the mean. aMean and bConfidence intervals of predictive  R2 values are based upon 
100 random partitions (training/ testing cohorts) of the data. cp-value derived from 1000 permutations of age 
at scanning in the full training sample (see methods below, bold = significant at α < 0.05/10).

Feature

Training cohort 
(n = 245) Test cohort (n = 82)

MAE (yrs.) Pred.  R2 MAE (yrs.) Pred.  R2 Meana pred.  R2
Pred.  R2

(95%  CIb) p-valuec

Surface area 1.41 0.54 1.93 0.04 0.04 (− 0.06 to 0.15) 0.029

Curvature index 1.39 0.57 1.91 0.02 − 0.03 (− 0.16 to 0.08) 0.233

Folding index 1.35 0.60 1.92 0.06 0.04 (− 0.11 to 0.15) 0.025

Gaussian curvature 1.36 0.59 2.03 − 0.05 0.02 (− 0.09 to 0.13) 0.067

Mean curvature 1.38 0.57 1.99 − 0.09 0.01 (− 0.10 to 0.12) 0.076

Cortical thickness 1.07 0.72 1.48 0.37 0.41 (0.28 to 0.52)  < 0.001

Cortical volume 1.21 0.65 1.62 0.29 0.26 (0.13 to 0.38)  < 0.001

All individual features 1.03 0.74 1.48 0.39 0.38 (0.27 to 0.47)  < 0.001

Morphometric similarity: nodal 
strength 1.35 0.58 1.94 0.02 0.10 (− 0.02 to 0.23) 0.005

Morphometric similarity: edge 
weights 1.16 0.70 1.73 0.19 0.23 (0.12 to 0.31)  < 0.001
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all feature sets; mean (SD) = 0.62(2.11), median = 0.44). Whilst the variation in BrainageΔ at the group-level 
was similar across models, Fig. 4 also shows that, at an individual participant level there was large variability in 

Figure 3.  Performance of Brainage prediction on independent testing cohort, for each of the feature sets, 
including (a) individual morphometric features and (b) network features based on Morphometric Similarity. 
Chronological age is plotted against the age predicted by the model. Plotted line is where actual age = predicted 
age (x = y), which would represent perfect prediction.
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BrainageΔ between models. That is to say, a participant with a high BrainageΔ for cortical thickness, could have 
a smaller or close-to-zero BrainageΔ for another morphometric measure. Visual inspection of performance 
on test data highlighted that across many of the feature sets there was a flatter gradient in the data (actual vs 
predicted age) compared to the line of x = y (perfect prediction) suggesting an overestimation of age in younger 
children and an under estimation of age in the older adolescent participants. This was further seen in Fig. 4 when 
individual BrainageΔ profiles (across models) when divided by age group (childhood, early adolescence, middle 
adolescence). Given age-related bias in previous  studies12, 39, 40, we controlled for age in the remaining analyses 
of BrainageΔ using partial correlations, a correction approach which has been identified to be as effective as cor-
recting the predicted values or correcting the model for these  biases41.

(A) Potential Biases in BrainageΔ: Sex.

Potential sex differences in BrainageΔ estimation were investigated using linear models controlling for actual 
age. Across all models, the effect of sex did not meet significance.

(B) Potential Biases in BrainageΔ: Motion.

To evaluate potential bias in the models from motion we used the Entropy Focus Criterion  (EFC42) as a proxy 
for motion derivable from T1w images. EFC uses the Shannon entropy of voxel intensities to typically quantify 
the amount of motion  present43, specifically through the sensitivity to motion-induced artifacts (e.g., ghosting 
and blurring induced by head motion). MRI autofocusing techniques based on EFC optimisation have been 
shown to reduce motion artifacts  effectively42.

Average correlation between BrainageΔ and EFC across the models was close to zero ( r = − 0.03), with no 
correlation reaching statistical significance (Table 5).

Exploratory relationship with cognition. To evaluate BrainageΔ as a putative measure of meaning-
ful variation due to individual differences, we investigated relationships between BrainageΔ and individual IQ 
using partial correlations (using actual age as a confound to address age-bias in the BrainageΔ measure). A 
limited number (n = 56) of children in the test sample had valid measures of IQ. Neither morphometric similar-
ity derived BrainageΔ or that calculated from models of individual features correlated with IQ. Whilst still non-
significant, the greatest effect was found with surface area.

Combining models for Brainage prediction. Exploratory analyses were conducted to combine the 
feature sets from the best performing Brainage models to investigate whether models provided incremental 
increase in Brainage prediction by predicting unique variance in age. Combining cortical thickness, cortical 
volume and morphometric similarity edge weights, as the best performing individual features using Gaussian 
processes regression (with rbfdot kernel), training on the training cohort resulted in comparable performance 
to the best performing models seen in Table 4 (MAE = 1.06 yrs., Pred  R2 = 0.74). On the independent testing 
cohort, performance dropped significantly (MAE = 1.59 yrs, Pred.  R2 = 0.31), performing better than the Corti-
cal volume and morphometric similarity weight models but still outperformed by the cortical thickness model. 
The BrainageΔ estimates from this model (thickness + volume + morphometric similarity edge weights) were 
still biased by age (Pearson’s r = − 0.93, p =  < 0.00001), with no discernible relationship to individual differences 
in cognition (Pearson’s r = − 0.17, p = 0.23).

Figure 4.  Plots showing BrainageΔ for the testing cohort; across each model based on different feature sets 
(left) and when divided into developmental periods of childhood (5–11 years), early adolescence (11–14 yrs) 
and middle adolescence (14–17 years).
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Discussion
To our knowledge, this is the first study to construct Brainage models derived from network-level descriptions 
of neuroanatomical organization across the cortex. These models using morphometric similarity as a basis for 
predicting chronological age did not outperform non-network models, using ‘standard’ morphometric features.

Specifically, the morphometric similarity model was outperformed (in terms of lowest MAE and highest 
predicted  R2) by models which included all individual structural features, followed by cortical thickness and 
volumetric models. The morphometric similarity edge weight model did, however, perform significantly better 
than null models on testing data, suggesting that these Brainage models are capturing ‘real’ patterns of variation 
indicative of age. The fact it was outperformed by a model where all individual features were entered separately 
indicated that the morphometric similarity model does not necessarily capture additional variation. One could 
argue that the morphometric similarity nodal-level model represents a more efficient model compared to the 
all-features model (given the smaller size of the feature set)—but given the 68-feature cortical thickness model 
also outperformed the morphometric similarity model, it would not be a more effective data reduction approach 
either.

The best performing (individual) structural feature for age prediction in this study was cortical thickness. 
Conversely, in a previous report of lifespan (8–96 yrs) Brainage prediction, in the 8–18 yr old group, across all 
approaches using either cortical area, thickness or volume, the greatest performance (i.e. lowest mean prediction 
error) was actually seen using brain volume  model44. However, across the six prediction techniques investigated 
 in44, cortical thickness models outperformed cortical volume models in 3/6 methods. This similar performance 
is maybe unsurprising given that cortical thickness and surface area both independently contribute to volume 
 measurements45 and that volume measurements can be estimated from the product of cortical thickness and 
surface area measurements at all locations across the cortical mantle (in surface-based approaches)46. The findings 

Table 5.  Statistical associations between BrainageΔ and covariates for each feature set. a Controlling for actual 
age, b derived from unthresholded Morphometric Similarity, Bold indicates those tests significant at Bonferroni 
corrected α-level = .000833.

Covariate n Feature set

Pearson
Spearman 
Rho

R p r p

Motiona 82

Surface area − 0.05 0.65 − 0.16 0.16

Curvature index − 0.04 0.74 0.01 0.93

Folding index 0.06 0.57 0.04 0.71

Gaussian curvature 0.03 0.76 0.05 0.67

Mean curvature 0.01 0.94 0.04 0.75

Cortical thickness − 0.06 0.62 − 0.08 0.48

Cortical volume − 0.23 0.04 − 0.06 0.61

All individual features − 0.07 0.51 − 0.11 0.31

Morphometric similarity: nodal  strengthb 0.04 0.73 − 0.08 0.47

morphometric similarity: edge  weightsb − 0.03 0.77 − 0.06 0.61

IQa 56

Surface area 0.23 0.08 0.24 0.08

Curvature index 0.10 0.47 0.09 0.50

Folding index − 0.05 0.72 − 0.06 0.66

Gaussian curvature 0.03 0.83 − 0.07 0.60

Mean curvature − 0.04 0.76 0.02 0.89

Cortical thickness − 0.04 0.77 0.00 0.99

Cortical volume 0.00 0.99 0.08 0.57

All Individual features − 0.14 0.30 − 0.17 0.23

Morphometric similarity: nodal  strengthb 0.05 0.69 0.07 0.62

Morphometric similarity: edge  weightsb − 0.06 0.65 0.05 0.71

Covariate n Feature set Statistic P

Sexa 82

Surface area − 1.46 0.15

Curvature index 1.53 0.13

Folding index 0.33 0.74

Gaussian curvature 0.14 0.89

Mean curvature 1.25 0.22

Cortical thickness − 0.56 0.57

Cortical volume 1.64 0.10

All individual features − 0.16 0.88

Morphometric similarity: nodal  strengthb − 0.39 0.70

Morphometric similarity: edge  weightsb − 0.32 0.75
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of this analysis, alongside previous  reports20, 21, 25, highlight the sensitivity and importance of cortical thickness 
in late childhood to adolescent development compared to surface area and curvature-based cortical measures 
or even novel methods of morphometric similarity.

All other tested structural features (Surface Area, Curvature Index, Folding Index, Gaussian Curvature, Mean 
Curvature) did not significantly outperform null models. This suggests that these measures are less sensitive to 
developmental changes within the window of late childhood to adolescence (6–17 yrs). For example, surface 
area and gyrification index measures may be more relevant to the developmental changes found from the third 
trimester to the early post-natal period as evidenced in imaging of term and preterm  infants47. Certainly gross 
(rather than ROI) structural measures highlight that differing rates of change (and peak velocity of change) 
vary across developmental periods, with different measures being potentially more discriminatory over these 
 periods48. Therefore, current results would highlight that these additional features are less important during this 
developmental window.

We also found that combining best performing models (cortical thickness, volume, and morphometric simi-
larity edge weights) resulted in a drop in performance compared to the cortical thickness model. Whilst not a 
direct statistical comparison, this suggests that these models do not capture independent variance in relation to 
age. This seems to disagree with previous  work20 which found that joint covariation across multiple structural 
features predicted variance in age independently from variance in individual features. It is unclear to the degree 
that the joint and distinct variation features used  in20 are directly comparable to representations learnt by the 
machine learning techniques in this study, or even how they relate to the morphometric similarity approach 
outlined here and  in29. Comparison of these different approaches to data ‘fusion’ across morphometric measures 
will be required to reconcile the potential differences between these study findings.

As well as feature sets affecting Brainage estimation, the machine learning or prediction workflow is also a key 
factor. This study found GPR to outperform the RVR approach. These methods were selected as they have been 
shown to outperform other linear  approaches36, including in  paediatrics37. On the surface, our finding seems to 
contradict other, comparative analyses of machine learning models in predicting Brainage using morphometric 
data who found RVR to systematically outperform  GPR49. However, the one scenario in which GPR did outper-
form RVR  in49, was in the test case with the smallest number of participants, closer to that of the sample size used 
here. Therefore, machine learning model will be an important consideration for future use cases.

Currently, only two other study predicted Brainage from sMRI in the ABIDE  cohort23, 50. Using a complex 
network approach to T1w MRI, in 7–20 yr olds, Bellantuono et al.50 achieved a MAE of 1.53 years using deep 
learning models. The slightly larger age range means that the MAE are not entirely comparable with the current 
study, although the present study has outperformed this. It is important to note that the network approach to 
T1w MRI in this study modelled correlation grey-levels of the image rather than structural metrics.

When BrainageΔ was calculated for the test cohort, there was great variability in of an individual’s delta values 
for each of the feature sets; there appeared to be little consistency in these values between models. The vary-
ing individual profiles of BrainageΔ has two possible explanations. Firstly, BrainageΔ represents the combined 
measure of individual variance from the expected developmental trajectory plus the error in the normative 
age model. It therefore may be the case that the random error in each of the models is resulting in variance in 
BrainageΔ, across feature sets, at the individual level. This could have potential implications for the comparison 
of studies utilizing the Brainage measure if there is limited consistency in these measures within an individual 
participant. Alternatively, a potentially more interesting explanation, is that each Brainage model is indexing 
relevant divergences/individual differences in different aspects of cortical architecture, resulting in between 
model variance in BrainageΔ. This could prove to be useful in neurological conditions that influence difference 
aspects of brain development/organization in the paediatric brain, for instance a Brainage model based upon 
MRI measure of white matter may be more sensitive to differences from normative brain development in acute 
demyelinating disorders such as multiple sclerosis. In this scenario, multiple BrainageΔ’s from different features, 
or even imaging modalities could be used, as potential biomarkers of clinically relevant outcomes.

However, it is difficult to statistically test each of these explanations (model error vs meaningfully different 
divergences) because there are a limited number of models used in any one study. Future meta-analytic research 
could compare within-participant BrainageΔ values across feature sets, whilst controlling for the MAE of the 
model themselves, in order to isolate ‘real’ within-individual variation in the BrainageΔ measure. Future studies 
could also use multiple (even multi-modal) Brainage models and use the feature specific BrainageΔ’s as individual 
predictors in regression models, to assess unique predictive variance offered by each feature.

A strength of the current study was the extensive assessments of the morphometric similarity model, in the 
context of the Brainage framework across multiple analyses;

(a) we tested against individual structural features, in a held-out testing cohort,
(b) we assessed robustness of performance in terms of sampling (assessing the 95% CI of performance) and 

against meaningful null models and,
(c) we investigated correlations between BrainageΔ and biases/cognition in the independent testing sample.

As noted  by50, ABIDE is also a particularly challenging dataset for the estimation of Brainage, due to the 
number of different sites and acquisition protocols. For future Brainage studies of development, this high bar 
should at least be maintained, with future improvements seen by validating on an entirely independent dataset 
(for example as seen  in20).

An outstanding question for future research is whether there is need for models such as morphometric simi-
larity as the popularity for deep learning/machine learning approaches become more prevalent. Fisch et al.51 
report the results of the Predictive Analytic Competition (2019) for predicting chronological age from structural 
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neuroimaging. They highlight the high-performing nature of neural networks for deep machine learning within 
the Brainage framework. Morphometric Similarity models the covariance structure of anatomical MRI features in 
a way which is constrained by anatomy (either using ROIs or voxels for instance) typically using a very specific, 
linear approach to these covariances/similarity (Pearson’s correlation coefficients). The morphometric similar-
ity model has been shown to capture biologically meaningful  information29 however, imposing such a model as 
an anatomical-prior may be redundant in analysing larger sample sizes with machine learning approaches. The 
machine learning/deep learning approaches that are becoming more popular in the neuroimaging literature, 
when fed all the individual features which are used to construct the morphometric similarity network (as we have 
done here), should be able to recover any covariance between structural features (even beyond linear relation-
ships) that is captured by the morphometric similarity network approach. This may be supported by the results 
reported here, with greater performance seen for a model using all features compared to the morphometric 
similarity models.

One way in which studies have tried to identify the functional relevance of BrainageΔ is through associa-
tions with outcomes such as cognition. However, we found no relationship between Brainage as a measure of 
individual-difference and cognition in this typically developing cohort. Interestingly, more accurate Brainage 
models did not hold any greater associations with cognition. These results suggest that, when these models are 
generalized to ‘novel’ cases (in this situation the testing cohort), the resultant BrainageΔ measures do not hold 
information pertinent to individual differences in cognition. Ball et al.52  also reported no significant relationship 
between individual-level BrainageΔ (derived from voxel-based cortical thickness, volume and surface area) and 
cognitive abilities (as measured by the NIH Toolbox Cognition Battery). They hypothesized that this may be due 
to the methods they utilised which maximized the captured age-related variance in neuroanatomical measures, 
and that cognition-related variance (non-age related) may be captured by a different, orthogonal pattern of neu-
roanatomical correlates. However other studies have also found no convincing relationship between Brainage 
and cognition in typical developing  children25, 53. Of those that did find a relationship in developing  cohorts54, 55, 
these associations were small to moderate in size and thus likely require large sample sizes to reliably  detect53. 
Finding neurodevelopmental outcomes for which this approach offers meaningful insight is key in providing 
functional utility of this approach as a relevant biomarker, but it seems that cognition is an unlikely candidate for 
this. It is perhaps unsurprising though, given that these models have been optimized for more accurate predic-
tions of age, rather than optimized to capture phenotypes of  interest56. A more appropriate approach for future 
studies, may be to establish models that directly capture variance in cognitive ability, rather than capturing an 
indirect  biomarker52, 56.

Whilst the current study investigated morphometric similarity in the Brainage framework as an indirect 
marker of cognition, the current finding also adds to an increasing literature which questions the direct asso-
ciation between the meso-scale organization of morphometry across the cortex (as captured by morphometric 
similarity) and measures of cognitive ability. Outside of the Brainage framework, we also found no relationship 
between these measures and cognitive  abilities24, failing to replicate the findings  of29. However, a recent study 
of adolescence has highlighted the predictive validity of morphometric similarity across cognition/intelligence 
and psychiatric  symptoms57, and so this is still very much an open area of research.

Conclusion
Overall, whilst these network models of sMRI, using morphometric similarity, seem to mature as a function 
of age in typical  neurodevelopment29, and capture meaningful variation indicative of chronological age in the 
Brainage framework, these networks are not most sensitive to the changes across childhood compared to other, 
more simplistic features, for instance cortical thickness measures.

Methods
Materials and data availability. The data used in this research was acquired through the public Autism 
Brain Imaging Data Exchange (ABIDE, Di Martino,  Yan31) database. Specifically, we used the ABIDE data 
release as shared by the Preprocessed Connectome Project (PCP, Bellec,  Yan32. For full details and access see 
Pre-processed Connectome Project website http:// prepr ocess ed- conne ctomes- proje ct. org/). Results and meta-
data of the current study are available on request from Dr Griffiths-King. The R code is also available from the 
authors upon request, however all open-source packages used in the study are listed here: data.table, scales, 
psych, ggplot2, neuroCombat, ggseg, dplyr, ggpubr, ggExtra, kernlab, ppcor, PupillometryR, tidyr.

Ethics statement. The database has de-identified all the patient health information associated with the 
data. A favourable ethical opinion was granted by Aston University Research Ethics Committee (UREC) for the 
secondary analysis of the ABIDE datasets (no. 1309).

Participants. The ABIDE dataset consists of a large sample of 532 individuals with autism spectrum dis-
orders and 573 typical controls, composed of MRI (functional and structural) and phenotypic information for 
each subject, accumulated across 17 independent neuroimaging sites. The scan procedures and parameters are 
described in more detail on the ABIDE website (http:// fcon- 1000. proje cts. nitrc. org/ indi/ abide/). We applied 
four inclusion criteria to this dataset, only including subjects who; a) passed a strict MRI quality control of raw 
structural MRI (see below), b) were recorded as controls within the ABIDE database, c) at time of scan were 
aged < 17  years old and d) had pre-processed Freesurfer data available as part of the PCP data release. This 
resulted in a total cohort of n = 327. Group demographics can be seen in Table 1. The ABIDE cohort had a mean 
IQ of approximately 110, as measured across multiple age-appropriate IQ tests (See ABIDE documentation for 
details).

http://preprocessed-connectomes-project.org/
http://fcon-1000.projects.nitrc.org/indi/abide/
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Data quality check. The PCP data release includes image quality metrics (IQMs) which provide quanti-
tative ratings of the quality of the raw T1-weighted (T1w) MR images. These are calculated using the Quality 
Assessment Protocol software (QAP, Shehzad,  Giavasis58). The ABIDE dataset includes data from 17 recruit-
ment sites, and such there is potential for ‘batch effects’ on QA  metrics43. We used the six spatial anatomical QA 
measures. Hence, all QA metrics were centred (mean subtracted) and scaled (divided by standard deviation) 
within sites, then recoded to increased values representing greater quality. This results in metrics which can 
be compared between sites. For each subject, QA metrics were coded as failed if they had a Z score below − 1.5 
(indicating quality which was 1.5SD below the mean). We included subjects if they had zero or one QA metric 
that fell below this quality metric. Of the ABIDE cases who were recorded as a) controls and b) being younger 
than 17 years of age at scanning (n = 361), 14 subjects were removed due to having greater than one QA metric 
fall below the 1.5SD cut off (20 participants also had no Freesurfer data available, resulting in the final ABIDE 
dataset of n = 327). Further details of the automated QA measures which are included can be found here: http:// 
prepr ocess ed- conne ctomes- proje ct. org/ abide/ quali ty_ asses sment. html and http:// prepr ocess ed- conne ctomes- 
proje ct. org/ quali ty- asses sment- proto col.

Structural MRI processing with freesurfer. 3D tissue segmentation and estimation of morphometric 
features from T1w MR images was conducted using an established pipeline (Freesurfer version 5.1; details are 
published elsewhere Fischl, van der  Kouwe59, see  Fischl33 for review). Briefly, T1w images were stripped of non-
brain  tissues60, GM/WM boundaries were tessellated and topology was automatically  corrected61, 62. Finally, 
deformation of this surface was performed, to optimally define the pial (Cerebro-spinal fluid/GM) and white 
(GM/WM) surfaces using maximum shifts in intensity gradients to define boundaries of these tissue  classes63–65. 
Morphometric measures were derived from these surface-based models using standard methods from the Free-
surfer recon-all  pipeline33.

Data harmonization. Multi-site imaging data harmonization was conducted using the neuroComBat 
 package66, 67, an R implementation of the ComBat  method68 for removing batch-effects (i.e. site-effects) in neu-
roimaging data. This was applied to the participant by ROI matrix for each morphometric feature individually, 
to remove site effects found in the ABIDE data, whilst protecting biological variation due to age. Fortin and col-
leagues have shown this approach to be effective in removing site effects in multi-site imaging data even when 
the biological covariate of interest (in this case age) is not balanced across  sites66, 67. These site-corrected mor-
phometric measures were used for a) estimation of morphometric similarity networks and b) for the individual 
feature models.

Estimating morphometric similarity. Previously morphometric similarity was estimated from morpho-
metric features measured in-vivo by both structural and diffusion  MRI29. However, we highlighted significant 
correspondence between this multimodal morphometric similarity and that estimated with only features obtain-
able from a T1w  MRI24 and recent papers have similarly adopted this T1w-only  approach69, as does the current 
study.

To estimate morphometric similarity, the nodes for network construction were the ROIs from the Desikan-
Killiany  atlas34. At an individual-level, the seven morphometric features estimated for each node can be expressed 
as a set of n vectors of length 7, with each vector as a different anatomical region (n = 68), and each element of the 
vector a different morphometric measure. To normalize measures within this length 7 vector, each morphometric 
feature is demeaned, and SD scaled across the 68 regions, using Z-scores. A correlation matrix was generated for 
each participant, where each element of the matrix is the correlation between the feature vectors for every pos-
sible pairwise combination of regions. This correlation matrix represents the morphometric similarity derived 
meso-scale cortical organisation for each participant. This was an unthresholded matrix.

For each node/ROI, we calculated both nodal degree and nodal strength. Nodal degree was the number of 
edges that had survived thresholding for each node. Normalised nodal strength was calculated as the ‘magnitude’ 
of morphometric similarity for each node. This is defined as the sum of the morphometric similarity weights of 
all of the edges of node i70, normalised by the degree of the node (nodes with a higher number of edges will by 
definition have a greater magnitude of morphometric similarity). We also calculated the average nodal strength 
across the network to provide a global measure of the magnitude of morphometric similarity.

In subsequent exploratory analyses we investigated the thresholded matrix across multiple network densities 
(threshold x = 5–40 in increments of 5), retaining only x% strongest absolute values of morphometric similar-
ity across the graph. This has the effect of removing potential false-positive ‘edges’ of morphometric similarity. 
Metrics were calculated as per the unthresholded matrix.

Sampling for training, validation and testing samples. The ABIDE cohort were divided into train-
ing, and test samples in the ratio of 6:2 (n = 245, & n = 82 respectively). Sampling for the training sample was 
selected pseudo-randomly, via stratified under sampling based upon age. The entire sample was binned into 
0.5 yr bins dependent on age at scanning, up to the cut-off criteria of 17 years. Bins for ages 6–9 yrs were col-
lapsed due to the much lower participant numbers in this lower tail of the distribution. Participants were equally 
sampled from each bin to derive the final training sample size. The training cohort was further subdivided into 
an internal training and validation cohort at a ratio of 5:1 (n = 204 & n = 41).

Brainage prediction models. Brainage prediction was conducted across two, kernel-based regression 
approaches using the Kernlab package in  R71; a) Gaussian Processes Regression (GPR) and b) Relevance Vector 

http://preprocessed-connectomes-project.org/abide/quality_assessment.html
http://preprocessed-connectomes-project.org/abide/quality_assessment.html
http://preprocessed-connectomes-project.org/quality-assessment-protocol
http://preprocessed-connectomes-project.org/quality-assessment-protocol
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Regression (RVR). These were selected as these are both commonly used in the Brainage  literature9, 10. Two dif-
ferent kernels were tested for each algorithm: a) laplacedot (Laplace radial basis kernel) and b) RBFDot (Gauss-
ian radial basis function). Algorithm and kernel selection was conducted based upon performance on the inter-
nal validation set.

A GPR/RVR model was defined, with chronological age as the dependent variable and the morphometric 
data (for each of the feature sets) as the independent variables, to build a model of ‘healthy’ structural brain 
development. Prediction utilized 10 different feature-sets; i–vii) each of the individual morphometric features, 
viii) all features, ix) nodal-level strength of the morphometric similarity graph and x) edge-level weights of the 
morphometric similarity graph. Final model evaluation was conducted based upon performance on the inde-
pendent test cohort.

In all cases, performance was evaluated based upon reducing mean absolute error (MAE) and maximiz-
ing predictive  R2. Standard linear regression  R2 is a biased estimate of model performance especially at lower 
 performances72, whereas predicted  R2 is more appropriate for quantifying regression  accuracy73, calculated as;

where the normalised MSE (Mean Squared Error) can be expanded to;

Robustness of brainage models
Robustness to sampling. To assess robustness of models to the sampling partitions of the data, mean and 
confidence intervals of predictive  R2 values are calculated. We carried out 100 random partitions (training /test-
ing cohort) of the data and repeated analyses to generate a vector of 100 predictive  R2 values for the testing set 
from which we can take a mean metric and assess the 95% confidence interval (see Table 4).

NHST of models. To assess the ‘real effect’ of models in comparison to ‘null’ models, we used permuta-
tion testing to conduct null hypothesis significance testing (NHST). We established the null hypothesis as no 
meaningful patterns in the data between age and feature sets in training, and thus poor performance on the test 
cohort. To derive such models, we permuted (n = 1000) the dependent variable of age in the training cohort and 
reran the models. These were then evaluated on the testing cohort where the true actual age was used and the 
‘null’  R2 was calculated. The mean predictive  R2 values of the resampled models (above), and the distribution of 
 R2 values from the permuted ‘null’ cases allowed calculation of p-values where the frequency of instances in the 
distribution where the mean predictive  R2 was greater than that of the null models. Significance of p-values was 
assessed at the level of Bonferroni corrected α < 0.005, corrected over the 10 models.

Data availability
The data used in this research was acquired through the public Autism Brain Imaging Data Exchange (ABIDE, 
Di Martino,  Yan31) database. Specifically, we used the ABIDE data release as shared by the Preprocessed Con-
nectome Project (PCP, Bellec,  Yan32. For full details see Pre-processed Connectome Project website http:// prepr 
ocess ed- conne ctomes- proje ct. org/). The R code is also available from the authors upon request, however all 
open-source packages used in the study are listed here: data.table, scales, psych, ggplot2, neuroCombat, ggseg, 
dplyr, ggpubr, ggExtra, kernlab, ppcor, PupillometryR, tidyr.
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