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Abstract

Parkinson’s disease (PD) is a progressive neurological disorder of the central nervous sys-

tem that deteriorates motor functions, while it is also accompanied by a large diversity of

non-motor symptoms such as cognitive impairment and mood changes, hallucinations, and

sleep disturbance. Parkinsonism is evaluated during clinical examinations and appropriate

medical treatments are directed towards alleviating symptoms. Tri-axial accelerometers,

gyroscopes, and magnetometers could be adopted to support clinicians in the decision-

making process by objectively quantifying the patient’s condition. In this context, at-home

data collections aim to capture motor function during daily living and unobstructedly assess

the patients’ status and the disease’s symptoms for prolonged time periods. This review

aims to collate existing literature on PD monitoring using inertial sensors while it focuses on

papers with at least one free-living data capture unsupervised either directly or via video-

tapes. Twenty-four papers were selected at the end of the process: fourteen investigated

gait impairments, eight of which focused on walking, three on turning, two on falls, and one

on physical activity; ten articles on the other hand examined symptoms, including bradykine-

sia, tremor, dyskinesia, and motor state fluctuations in the on/off phenomenon. In summary,

inertial sensors are capable of gathering data over a long period of time and have the poten-

tial to facilitate the monitoring of people with Parkinson’s, providing relevant information

about their motor status. Concerning gait impairments, kinematic parameters (such as dura-

tion of gait cycle, step length, and velocity) were typically used to discern PD from healthy

subjects, whereas for symptoms’ assessment, researchers were capable of achieving accu-

racies of over 90% in a free-living environment. Further investigations should be focused on

the development of ad-hoc hardware and software capable of providing real-time feedback

to clinicians and patients. In addition, features such as the wearability of the system and

user comfort, set-up process, and instructions for use, need to be strongly considered in the

development of wearable sensors for PD monitoring.
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Introduction

Parkinson’s disease (PD) is a chronic neurological disorder of the central nervous system. Its

incidence rises dramatically with age, affecting approximately 6.2 million people worldwide in

2015 [1]. The symptoms of PD are multiple, with the most identifiable being related to motor

degeneration. In general, they appear gradually and become more evident with the worsening

of the disease, varying from person to person. The diagnosis of PD can be challenging, espe-

cially at an early stage, due to the lack of specific tests [2]. The most recognizable symptoms

include tremor, rigidity, bradykinesia, and postural instability [3].

Tremor typically appears at the distal part of the limbs, affecting a single arm or leg; it is

more pronounced in the upper extremities and it progresses bilaterally with the degeneration

of the disease. Rigidity refers to an immoderate, continuous contraction of muscles, and an

increased resistance to joint movements. Bradykinesia, as a general term, can be differentiated

into akinesia, bradykinesia and hypokinesia, indicating absence, slow or decreased bodily

movements, respectively. Akinesia may also include the freezing-of-gait (FoG) phenomenon,

which causes sudden and temporary episodes of inability to move forward despite the inten-

tion to walk. Postural instability is related to loss of balance and the inability to maintain the

upright position, often causing falls or a fear of falling [3].

Despite PD being an irreversible neurodegenerative disorder, medications, such as Levo-

dopa can provide symptomatic relief, particularly in earlier stages [4]. The “on” and “off” phe-

nomenon in Levodopa-treated patients, describes motor fluctuations that occur as the levels of

dopamine in the brain drop, followed by a worsening of the motor function: during the "on"

state the symptoms are well managed, while in the "off" state they deteriorate. In newly diag-

nosed people with Parkinson’s (PwP), the response to a single drug intake may last for several

hours, whereas with the progression of the disease the drug’s effect is shortened (4 hours or

less), and patients need to decrease intervals between doses and/or increase the dosages [5, 6].

Drug-induced dyskinesia (i.e. involuntary abnormal muscle movements [7]) can appear dur-

ing the “on” state in some patients who have been taking Levodopa for a prolonged period of

time.

To ensure the appropriate medical treatment and correct dose of medication for an individ-

ual, PwP are infrequently evaluated with qualitative clinical assessments that are based on the

subjective judgment of specialists, such as the Movement Disorder Society—Unified Parkin-

son’s Disease Rating Scale (MDS-UPDRS), or specifically for dyskinesia, the modified Abnor-

mal Involuntary Movement Scale (m-AIMS) [8, 9]. Yet, due to the heterogeneity and

complexity of PD symptoms, such clinical assessments can be challenging and time consum-

ing. Clinicians with different backgrounds and experiences might also vary in their interpreta-

tions of the MDS-UPDRS and m-AIMS [10]. Equally, a person’s motor state at a clinic

appointment may not be typical of their usual state, enhanced by fatigue, dehydration from

travelling or anxiety [10]. Therefore, a clinical assessment is only a snapshot in time, giving lit-

tle indication of function in a more on or off state. Ultimately, the only way to properly charac-

terize a patient’s motor status is to continuously evaluate their motor function over an

extended period of time.

Due to their small-size, light weight, and low-power, wearable motion sensors have already

demonstrated their clinical relevance in healthcare [11–13] and daily-life monitoring [14, 15].

The most widely used sensors are tri-axial accelerometers, gyroscopes, and magnetometers,

commonly combined in an inertial measurement unit (IMU) that can capture three-dimen-

sional orientation, and linear and angular velocities [16, 17]. Thanks to the development of

miniaturized hardware technologies capable of collecting and storing large amount of raw data

[18], IMUs may offer the opportunity to improve the evaluation of the PD motor symptoms
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by collecting free-living movements for prolonged period of time outside the laboratory envi-

ronment. Former studies, such as the one by Bloem et al. [19], have reported that PwP walk

better when observed rather than when unsupervised in their daily lives. This is a consequence

of the well-known “Hawthorne observation effect” [20]: free-living activities involve a combi-

nation of tasks with varying complexities, challenges and distractions that may reduce atten-

tion. In addition, numerous episodes related with PD are challenging to detect during

laboratory-based observation because of their complexity (i.e. the on/off phenomenon) or rar-

ity (i.e. freezing of gait phenomenon) [21]. As a consequence, a thorough evaluation of a PwP

requires the data to be gathered during long observation windows while patients go ahead

with normal every day activities.

Previous reviews have already investigated monitoring of PD using body-fixed-sensors

[22–28]; yet, to our best knowledge, this is the first systematic review to target solely publica-

tions on continuous monitoring of PwP with at least one data capture at home. We focused on

studies that used only wearable inertial sensor over a long period of time (i.e. from one to four-

teen days) and where the data collection was not supervised (either directly or via videotape)

by clinicians or caregivers.

Methodology

This systematic review was performed according to the guidelines of the PRISMA statement

[29]. The literature search was conducted in April 2020 on the IEEE Xplore, PubMed, Spring-

erLink, ACM Digital Library and Web of Science electronic databases with the following

search string:

(Parkins�) AND (bradykinesia OR tremor OR rigidity OR hypokinesia OR dyskinesia OR

freez� OR akinesia OR fluctuat� OR movement disorder) AND (IMU or inertia� OR accel-

er� OR gyro� OR wearable OR body-worn) AND (free-living OR daily-living OR continu-

ous OR 24-hour OR home OR unsupervised)

Only original, full-text, peer-reviewed, journal or conference articles in English that were

published between January 2010 and April 2020 were included in this review. Case studies,

reviews, books, book chapters, editorials, and letters were excluded. Duplicate findings were

manually identified and removed.

Three reviewers (MS, ST, and CC) independently screened the title, abstract and key words

of the records identified through the database searching. Studies were selected if they moni-

tored or estimated the severity of PD symptoms at home with inertial sensors and their data

collection was not supervised by research staff or video cameras. Studies were excluded if the

main recording devices were not IMUs, or PD was not the prevalent disorder of the sample

population. Subsequently, full text assessment was performed by each reviewer and cases of

conflict were debated among them.

The relevant data was extracted from chosen studies and tabularized under predefined

headings. Authorship, symptoms monitored, activities, devices (type, number, placement) and

data collection (number of assessment days, sample size, use of diaries) were all recorded.

Additionally, the studies’ aims, outcome measures, analyses used and results were

summarized.

To analyze the risk of bias of the reviewed studies, an adapted version of the AXIS appraisal

tool for cross-sectional studies was used, containing thirteen questions that could be answered

with a “yes” or “no” [30] (Table 1). A single reviewer scored each study from zero to 13 against

the appraisal tool by summing all the positive answers. Papers were categorized as having low
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(score equal or higher than 11), medium (score between eight and 10) and high (score equal or

lower than seven) risk of bias.

Results

Studies selection

The electronic database searches identified 446 records (Fig 1). Ninety-eight duplicates were

removed and the remaining 348 articles were screened (229 records excluded). Following full

text assessment (95 records excluded) a total of 24 studies were included in the review [31–54].

Risk of bias assessment

The appraisal tool yielded six studies with medium and 18 with low risk of bias. Authors

reported clear aims and objectives (Q1, 95.8%), study designs (Q2, 95.8%) and selection pro-

cesses (Q4, 83.3%), however, the sample size was inadequate in 37.5% of the cases (Q3). The

outcome variables were appropriate to the aims (Q5, 100%) and measured with the correct

instruments (Q6, 100%), while statistics and general methods were reported adequately (Q7,

87.5%; Q8, 79.1%). Results were presented in depth (Q9, 87.5%) and described in the methods

(Q10, 87.5%). Discussions and conclusions were justified by the results (Q11, 100%) with no

conflicts of interests (Q13, 100%), yet, 37.5% of the authors omitted or did not fully investigate

the study’s limitations (Q12). Detailed scores for each level of bias and each individual study

are presented in S1 and S2 Tables.

Table 1. Risk and quality assessment questions.

Question

number

AXIS question

code

INTRODUCTION

Q1 1 Were the aims/objectives of the study clear?

METHODS

Q2 2 Was the study design appropriate for the stated aim(s)?

Q3 3, 4 & 5 Was the sample size justified, clearly defined, and taken from an appropriate

population?

Q4 6 Was the selection process likely to select subjects/participants that were

representative of the target/reference population under investigation?

Q5 8 Were the outcome variables measured appropriate to the aims of the study?

Q6 9 Were the outcome variables measured correctly using instruments/

measurements that had been trialed, piloted or published previously?

Q7 10 Is it clear what was used to determined statistical significance and/or precision

estimates? (e.g. p-values, confidence intervals)

Q8 11 Were the methods (including statistical methods) sufficiently described to

enable them to be repeated?

RESULTS

Q9 12 Were the basic data adequately described?

Q10 16 Were the results presented for all the analyses described and presented in the

methods?

DISCUSSION

Q11 17 Were the authors’ discussions and conclusions justified by the results?

Q12 18 Were the limitations of the study discussed?

OTHER

Q13 19 Were there any funding sources or conflicts of interest that may affect the

authors’ interpretation of the results?

https://doi.org/10.1371/journal.pone.0246528.t001
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Characteristics of included studies

Among the 24 identified papers, 15 included sessions that were recorded both at home and in

the lab during one [33, 35, 38–45, 51], two [31, 32], or three visits [36, 37]; these studies

included an initial calibration/validation in a supervised environment for the development of

ad-hoc algorithms and then subsequent implementation/testing in an unsupervised setting.

Besides the number of testing days and lab sessions, the exact duration of each lab assessment

was not always specified, thus hindering the reproducibility of the protocol. In contrast, nine

articles described data collection that was exclusively undertaken at home [34, 46–50, 52–54]

(Table 2).

Sample sizes ranged from seven [31, 41] to 125 [51] PwP, and from nine [31] to 67 [39] con-

trols in laboratory environments. The same numbers for at-home tests ranged from one [33,

52] to 170 [50] PwP, and from one [33] to 172 [50] controls. In 13 cases, PwP were asked to fill

a diary in order to track activities[31, 36, 37, 53], medication intake [31, 32, 34, 35] and symp-

toms [34, 41, 45–47, 52, 54] (Table 2).

Data were collected by accelerometers alone (in 46.7% of the studies recording in labs and

50% of the studies at-home) [33, 35–37, 41, 44–47, 49–51, 53], in combination with gyroscopes

(lab: 33.3%, home: 33.3%) [31–33, 39, 42, 43, 48, 52] or along with gyroscopes and magnetom-

eters (lab: 20%, home: 16.7%) [34, 38, 40, 51, 54]. Authors used off-the-shelf devices such as

the AX3 (Axivity, York, UK) [44, 45, 50, 51], DynaPort (McRoberts, The Hague, Netherlands)

[33, 39, 42, 43, 48], GT3X (ActiGraph, Pensacola, USA) [53], Mimamori-gait system (Mitsu-

bishi Chemical, Tokyo, Japan) [36, 37], Mobi8 (TMSI International, Oldenzaal, The Nether-

lands) [33], MOX5 (Maastricht Instruments, Maastricht, The Netherlands) [52], Opal

(APDM, Portland, USA) [34, 38, 40, 51, 54] and Parkinson’s Kinetigraph (Global Kinetics

Fig 1. PRISMA flow diagram.

https://doi.org/10.1371/journal.pone.0246528.g001
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Corporation, Melbourne, Australia) [35, 36]. In five studies, volunteers wore prototype sensors

[31, 32, 41, 47, 49] (Fig 2). Data collection frequently lasted for a week and ranged from one

[31, 36, 37, 41, 46, 47, 49] to 14 days [52] (Fig 3 and Table 2).

Fourteen works investigated gait impairments, eight of which focused on walking [31, 33,

36, 37, 42–44, 51], three on turning [38, 40, 48], two on falls [39, 50] and one on physical

Fig 2. Device–Number of studies.

https://doi.org/10.1371/journal.pone.0246528.g002

Fig 3. Data collection–Number of days.

https://doi.org/10.1371/journal.pone.0246528.g003
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Table 3. Aim, outcome measures, type of analyses, and results of the studies.

Author Study Aim Outcome measures Analysis Results

Moore et al.

(2011) [31]

PD gait analysis Stride length (m) Walk detection

algorithm

Controlled

environment

Mean stride length error was equal to

0.064 ± 0.013 m for controls and

0.045 ± 0.024 m for PD patients.

Moreover, there were considerable

fluctuations in stride length for

patients with a longer duration of the

disease

2-D Plots (24 h activities)

Home Fluctuation in stride length (as in

controlled environment)

Pastorino et al.

(2011) [32]

Detection of bradykinesia

severity

Bradykinesia episodes (starting

time and duration)

Activity recognition

algorithm

Bradykinesia estimation:

SVM classifier and meta-

analysis algorithm

Controlled

environment

-

Home The accuracy between the

Bradykinesia Score outcome and the

UPDRS (clinicians twice per day) was

equal to 68.3 ± 8.9% with the standard

classifier and 74.4 ± 14.9% with meta-

analysis algorithm.

Bradykinesia Score [0–4]

Weiss et al.

(2011) [33]

PD gait analysis Temporal measures: average stride

time (s)

3-D Plots of the

amplitude in the

frequency domain

Controlled

environment

Less consistent walking patterns in

PD patients compared to controls.

Moreover, the frequency amplitude

was smaller in PD patients

(0.67 ± 0.22 psd) than in controls

(0.94 ± 0.16 psd)

Frequency measures: stride time

variability (%), dominant

frequency (Hz), amplitude (psd),

width (Hz), and slope (psd/Hz)

Home Results extended in an unsupervised

environment. In particular, frequency

amplitude above 0.3 psd for only 165

minutes in PD and frequency

amplitude above 0.3 psd for 355

minutes in controls.

Das et al. (2012)

[34]

Detection of tremor and

dyskinesia episodes

Tremor episodes (starting time

and duration) Dyskinesia episodes

(starting time and duration)

Dyskinesia and tremor

estimation: ID-APR,

MI-SVM, kNN, DD, and

EM-DD classifiers

Home ID-APR classifier achieved the best

performances with an accuracy

(outcome vs symptoms diary) over

90% for both dyskinesia and tremor.

Griffiths et al.

(2012) [35]

Detection of bradykinesia

and dyskinesia severity

Bradykinesia episodes (starting

time and duration)

Bradykinesia and

dyskinesia estimation:

fuzzy logic algorithms.

Controlled

environment

The Bradykinesia Score outcome

(compared to the Bradykinesia Score

dot test) had a specificity of 88% and a

sensitivity of 95%.
Dyskinesia episodes (starting time

and duration)

Bradykinesia Score [0–80] The Dyskinesia Score outcome had a

highly significant correlation with the

AIMS test (Pearson’s p< 0.0001, R of

0.80).

Dyskinesia Score [0–80]

Home Correlation (p < 0.05) between global

median bradykinesia (from 10 days

recording) and UPDRS.

Correlation (p < 0.0005) between

global median dyskinesia (from 10

days recording) and UPDRS

Author Study Aim Outcome measures Analysis Results

Yoneyama et al.

(2013) (Part 1

and 2) [36, 37]

PD gait analysis Number gait peaks, gait cycle (s)

and average acceleration

magnitude per cycle (m/s2)

Walk detection

algorithm

Controlled

environment

The accuracy of the gait peaks

detection between the outcome and

the videotape was over 94%

Home Average gait cycle was larger in PD

(1.16 ± 0.20 s) rather than controls

(1.08 ± 0.19 s). In addition, the

recognition of PD gait from a normal

gait had 100% sensitivity, 94.1%

specificity, and 96.3% accuracy.

(Continued)
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Table 3. (Continued)

Author Study Aim Outcome measures Analysis Results

El-Gohary et al.

(2014) [38]

PD turning analysis Number of bouts/h, duration (s),

step duration (s), active-rate (%),

number of turns, number of turns/

h, duration (s) angle (degrees),

peak velocity (degrees/s), and

number of steps

Turn detection algorithm Controlled

environment

The turn detection algorithm

achieved a sensitivity of 90% and 76%

and a specificity of 75% and 65%

when compared respectively with a

motion analysis system and a

videotape.

Home PD tend to take shorter turns with

smaller turn angles and more steps

than controls.

Weiss et al.

(2014) [39]

PD fall risk and gait

analysis

Total number of activity bouts,

total percent of activity duration

(%), total number of steps for

3-days, median activity bout

duration (s), median number of

steps for bout, cadence (steps/

min), amplitude of dominant

frequency (prs), width of

dominant frequency (Hz), stride

regularity (g2), and harmonic ratio

Walk detection

algorithm

Controlled

environment

-

Home The walking quantity is similar

between PD fallers and non-fallers,

while fallers had a higher step to step

variability.

Outcomes measures predicted the

time to first fall (p = 0.0034) in PD

patients who reported no falls in the

year prior to testing.

Mancini et al.

(2015) [40]

PD turning analysis Active rate (%),number of turns,

number of turns/hour, turn angle

(degrees), CV turn angle, turn

duration (s), CV turn duration,

number of steps /turn, CV

number of steps /turn, turn mean

velocity (degrees/s), and CV turn

mean velocity

Turn detection algorithm Controlled

environment

Velocity and turn detection were

similar (outcomes vs observed events)

in healthy and PD subjects (p = 0.34

and p = 0.33)

Home PD patients realized the turning

movement slower than the controls

(turn mean velocity 38 ± 5.7˚/s and

43.3 ± 4.8˚/s, respectively) with a

major number of steps (mean number

of steps 3.2 ± 0.8 and 1.7 ± 1.1,

respectively)

Pérez-López

et al. (2015) [41]

Detection of ON/OFF

state

ON/OFF episodes (starting time

and duration)

Walk detection

algorithm

Controlled

environment

-

Bradykinesia and

dyskinesia estimation:

using thresholds

(frequency analysis).

Home ON/OFF classifier, compared to the

self-recorded motor state, had a

sensitivity of 99.9% and a specificity

of 99.9%

Bradykinesia (starting time and

duration) Dyskinesia (starting

time and duration)

ON state detection: when

dyskinesia is detected.

OFF state detection:

when bradykinesia is

detected.

Weiss et al.

(2015) [42]

PD gait analysis in

patients suffering of

freezing of gait and not

Total number of activity bouts,

total percent of activity duration

(%), total number of steps for

3-days, median activity bout

duration (s), median number of

steps for bout, and cadence (steps/

min), amplitude of dominant

frequency (prs), width of

dominant frequency (Hz), stride

regularity (g2), and harmonic ratio

Walk detection

algorithm

Controlled

environment

-

Home Freezers’ walkers had a higher gait

variability (i.e., the anterior–posterior

power spectral density width;

p = 0.003) and a lower gait

consistency (i.e., the vertical stride

regularity; p = 0.007)

Author Study Aim Outcome measures Analysis Results

(Continued)
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Table 3. (Continued)

Author Study Aim Outcome measures Analysis Results

Bernad-Elazari

et al. (2016) [43]

Assessment of PD

conditions

Classification PD vs Healthy, PD

mild vs PD severe, and PD mild vs

Healthy

Recognition of walk-to-

sit and sit-to-walk

transitions.

Controlled

environment

PD vs Healthy: accuracy = 74.6%

PD mild vs PD severe:

accuracy = 56.2%

SVM to discriminate

different PD conditions

PD mild vs Healthy: accuracy = 52.7

Home PD vs Healthy: accuracy = 92.3%

PD mild vs PD severe:

accuracy = 89.8%

PD mild vs Healthy: accuracy = 85.9%Leave-one-out approach

Del Din et al.

(2016) [44]

PD gait analysis Step velocity (m/s), step length

(m), swing time var (s), step

velocity var (m/s), step length var

(m), step time var (s), stance time

var (s), step time (s), swing time

(s), stance time (s), step time asy

(s), swing time asy (s), stance time

asy (s), and step length asy (m)

Walk detection

algorithm

Controlled

environment

2 out of 14 outcomes were

significantly different in PD and

controls.

PD patients walked with slower and

shorter steps (i.e., step velocity

1.254 ± 0.211 m/s and 1.393 ± 0.207

m/s for PD and controls, respectively)

Home 4 out of 14 outcomes were

significantly different in PD and

controls.

PD patients walked with slower and

shorter steps (i.e., step velocity

1.038 ± 0.422 m/s and 1.103 ± 0.411

m/s for PD and controls, respectively)

Fisher et al.

(2016) [45]

Detection of ON/OFF

state and Dyskinesia

episodes

ON/OFF episodes (starting time

and duration)

ON/OFF state and

dyskinesia estimation:

ANN and leave-one-out

approach

Controlled

environment

Classification algorithm vs diary:

ON: sensitivity = 69%,

specificity = 82%

OFF: sensitivity = 60%,

specificity = 83%

Dyskinesia: sensitivity = 49%,

specificity = 99%

Dyskinesia episodes (starting time

and duration)

Home Diary vs ANN

ON: sensitivity = 52%,

specificity = 91%

OFF: sensitivity = 50%,

specificity = 83%

Dyskinesia: sensitivity = 38%,

specificity = 93%

Ossig et al.

(2016) [46]

Detection of ON/OFF

state and Dyskinesia

episodes

Dyskinesia episodes (starting time

and duration)

ON/OFF state and

dyskinesia estimation via

calibrated individual

thresholds

Home The classifier ON/OFF and

Dyskinesia, compared to the diary,

had a moderate-to-strong correlation

(p from 0.404 to 0.658)
Bradykinesia episodes (starting

time and duration)

ON/OFF episodes (starting time

and duration)

Battista and

Romaniello

et al. (2018) [47]

Detection of tremor

episodes

Tremor episodes (starting time

and duration)

Tremor detection: using

thresholds (frequency

analysis)

Home Tremor outcome, compared to the

diary, had a sensitivity of 99.3%, a

specificity of 99.6%, and an accuracy

of 98.9%

Mancini et al.

(2018) [48]

PD turning analysis in

patients suffering of

freezing of gait and not

Number of turns/30 min, turn

angle (degrees), CV turn angle,

turn duration (s), CV turn

duration, mean velocity (degrees/

s), CV mean velocity, peak

velocity (degrees/s), CV peak

velocity, 2D jerk (m2/s5), CV 2D

jerk, ML jerk (m2/s5), CV ML jerk,

ML range (m2/s), and CV ML

range

Turn detection algorithm Home Similar number of turns in PD

freezers and non-freezers: 19.3 ± 9.2

/30 min and 22.4 ± 12.9 /30 min

respectively (p = 0.194)).

Furthermore, mean jerkiness, mean

and variability of medio-lateral

jerkiness were higher in freezers

(p < 0.05).

Author Study Aim Outcome measures Analysis Results

(Continued)
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activity [53]. Ten articles examined symptoms, side-effects of treatments, and their fluctua-

tions, including two on bradykinesia [32, 35], four on tremor [34, 47, 52, 54], four on dyskine-

sia [34, 35, 45, 46] and four on the on/off state [41, 45, 46, 49] (Table 2). During gait

impairment monitoring, sensors were typically placed at the lower back, in 63.6% and 57.1%

of the works taking place in the lab or at-home, respectively [33, 38, 39, 42–44, 48, 50, 51].

Table 3. (Continued)

Author Study Aim Outcome measures Analysis Results

Rodriguez-

Molinero et al.

(2018) [49]

Detection of ON/OFF

state

ON/OFF episodes (starting time

and duration)

Walk detection

algorithm Bradykinesia

and dyskinesia detection:

using thresholds

(frequency analysis).

Home The accuracy between the classifier

algorithm and the diary was equal to

92.20%Bradykinesia (starting time and

duration)

ON state detection: when

dyskinesia is detected.

Dyskinesia (starting time and

duration)

OFF state detection:

when bradykinesia is

detected.

Del Din et al.

(2019) [50]

PD fall risk and gait

analysis

Macro gait: total walking, time per

day (min), percentage of walking

time, number of steps per day,

Bouts per day, mean bout length

(sec), and variability (S2 Table).

Walk detection

algorithm

Home PD fallers had a greater variability

(step length) while controls fallers less

variability (step velocity) than their

non-faller counterparts (p<0.004).

Micro gait: Step Velocity (m/s),

step length (m), swing time var (s),

step velocity var (m/s), step length

var (m), step time var (s), stance

time var (s), step time (s), swing

time (s), stance time (s), step time

asy (s), swing time asy (s), stance

time asy (s), and step length asy

(m)

Galperin et al.

(2019) [51]

PD motor symptoms

analysis

Gait quantity (i.e., number of steps

and number of walking bouts) and

gait quality (i.e., step length (m),

step regularity, and the amplitude

of dominant frequency (g2/Hz))

Walk detection

algorithm

Controlled

environment

Demographics and subject

characteristics, laboratory-based

measures of gait symmetry, and

motor symptom severity together

explained the 27.1% of the variance in

total daily-living physical activity

Home

Heijmans et al.

(2019) [52]

Detection of tremor

severity

Tremor episodes (starting time

and duration)

Linear regression Home Tremor severity outcome (classifier)

and tremor score diary had

correlations of up to r = 0:43Tremor severity score

Mantri et al.

(2019) [53]

Monitoring of physical

activity in PD patients

and its correlation with

Physical Activity Scale in

the Elderly

Moderate-vigorous physical

activity (min/day), number of

steps

Algorithm for level of

physical activity

Home Median moderate-vigorous physical

activity was 8.1 min/day and not

correlated with Physical Activity Scale

in the Elderly (ρ = -0.003, p = 0.98).

McNames et al.

(2019) [54]

Detection of tremor

episodes

Tremor episodes (starting time

and duration)

Walk detection

algorithm

Tremor estimation: using

thresholds (frequency

analysis

Home In the control cohort, the algorithm

detected tremor incorrectly 1.1% of

the time or less. Moreover, there was

a good correspondence between

constancy of rest tremor as measured

and UPDRS (ρ = 0:54).

Abbreviations: AIM = abnormal involuntary movements, ANOVA = Analysis of variance, ANN = Artificial Neural Network, asy = asymmetry, CV = Coefficient of

Variation, DD = Diverse Density, EM-DD = Expectation Maximization version of Diverse Density, ICC = Intra Class Correlation, ID-APR = discriminative variant of

the axis-parallel hyper-rectangle, kNN = k-Nearest Neighbor, MI-SVM = Multiple Instance Support Vector Machine, ML = medio-lateral PD = Parkinson’s Disease,

SVM = Support Vector Machine, UPDRS = Unified Parkinson’s Disease Rating Scale, var = variability.

https://doi.org/10.1371/journal.pone.0246528.t003
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Lower back sensors were also combined with IMUs at the top of each foot (lab: 9.1%, home:

14.3%) [38, 40], waist (lab: 18.2%, home: 21.4%) [36, 37, 53], and left shank (lab: 9.1%, home:

7.1%) [31]. To monitor symptoms and their fluctuations, typical sensor positions included the

waist (lab: 25%, home: 20%) [41, 49], wrist (lab: 25%, home: 20%) [35, 46, 47], both wrists (lab:

25%, home: 30%) [45, 52, 54] or in a combination of both ankles and the waist (lab: 25%,

home: 20%) [32, 34] (Table 2).

Aims, outcome measures, and types of analysis

Fourteen articles investigated gait impairments with the aim of assessing different mobility

tendencies and habits in daily life (Tables 2 and 3). Kinematics [31, 33, 36–38, 40, 43, 44], also

in combination with frequency measures [33, 39, 42, 51] were computed to study PD and

healthy subjects [31, 33, 36–38, 40, 43, 44, 53], or different PD populations such as recently

and previously diagnosed patients [31], fallers and non-fallers [39, 50], and subjects with or

without freezing-of-gait [42, 48, 50]. In order to extract kinematic and frequency parameters,

walk detection algorithms were implemented in seven cases [31, 36, 37, 39, 42, 44, 50, 51],

while turning algorithms in three [38, 40, 48].

Ten articles studied symptoms and their fluctuations with the intention of detecting brady-

kinesia [32, 35, 41, 49], tremor [34, 47, 52, 54], dyskinesia [34, 35, 41, 45, 46, 49], and on/off

state episodes [41, 45, 46, 49]. Supervised machine learning approaches, such as Artificial Neu-

ral Networks (ANN) [45], Fuzzy logic algorithms [35], linear regression [52] and Support Vec-

tor Machine (SVM) [32] models were used in this context. One publication used multiple

instance learning algorithms [34], namely, the Diverse Density (DD), Expectation Maximiza-

tion version of Diverse Density (EM-DD), Discriminative variant of the axis-parallel hyper-

rectangle (ID-APR), Multiple instance learning k-Nearest Neighbor (MIL-kNN) and Multiple

Instance Support Vector Machine (MI-SVM). Finally, four studies used thresholds and analy-

ses of frequency patterns [41, 47, 49, 54]. Walk [41, 49, 54] and activity recognition [32] algo-

rithms were also employed in order to assess symptoms during specific patients’ actions

(Tables 2 and 3).

Results of the included studies

Yoneyama et al. (2013/2014) [36, 37] found that the average duration of the gait cycle was lon-

ger in PwP (1.16 ± 0.20 s) compared to controls (1.08 ± 0.19 s; p< 0.001). Similarly, Del Din

et al. (2016) [44] reported that Parkinsonians walked with slower and shorter steps (step veloc-

ity:1.038 ± 0.422 m/s and 1.103 ± 0.411 m/s for PD and controls, respectively; p< 0.001).

Moreover, PwP presented less consistent (e.g. step time variability: 0.175 ± 0.156 s for control

and 0.181 ± 0.179 for PD; p = 0.07) and asymmetric (e.g. step time asymmetry: 0.093 ± 0.086

for control and 0.098 ± 0.142 for PD; p = 0.116) walking patterns [44], with fluctuations in

kinematics and frequency measures compared to healthy subjects [31, 33, 44].

Three studies also investigated turning [38, 40, 48] and confirmed that PwP take shorter

turns (2.0 s and 2.2 s for PD and control, respectively; p = 0.001) with smaller angles (92.0˚

and 95.2˚ for PD and control, respectively; p = 0.001) [38]. In addition, PwP completed the

turning movement at a slower pace than controls (turn mean velocity: 38 ± 5.7˚/s and

43.3 ± 4.8˚/s, respectively; p = 0.04) and with a greater number of steps (mean number of

steps: 3.2 ± 0.8 and 1.7 ± 1.1, respectively; p = 0.04) [40].

One publication investigated the correlation of the monitored overall steps taken (3615/

day) and time spent in moderate-to-vigorous-physical-activities (MVPA, 8.1 min/day) with

the self-reported activity using the Physical Activity Scale in the Elderly–PASE; there was a

moderate correlation for steps (r = 0.56, p = 0.003), but practically no correlation for MVPA (r
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= -0.003, p = 0.98) [53]. Finally, two works estimated that falls occurred most frequently in

PwP with a more variable, less consistent walking pattern [39, 50]; furthermore frequency sen-

sor-derived measures were successfully able to predict future falls even in patients with no pre-

vious fall history [39].

When assessing symptoms at-home, Pastorino et al. [32] classified bradykinesia with respect

to the UPDRS outcome as measured by clinicians twice per day and achieved an accuracy of

68.3 ± 8.9% with the standard SVM and 74.4 ± 14.9% with a meta-analysis algorithm. Das et al.

[34] obtained an accuracy versus symptom diaries of over 90% for both dyskinesia and tremor

detection with a multiple instance learning ID-APR classifier. During a recording of ten days, a

significant correlation (p< 0.0005) with an r = 0.64 between global median bradykinesia and

UPDRS, and a correlation (p< 0.05) with a margin of error of 3.9 (over a range 0–8) between

global median dyskinesia and UPDRS was found by Griffiths et al. [35]. Pérez-López et al. [41]

developed an algorithm for the on/off state events recognition based on threshold detection and

analysis of frequency patterns with a sensitivity of 99.9% and a specificity of 99.9% (compared

to the symptom diary). Rodriguez-Molinero et al. [49] has built upon the previous study,

increasing the sample size to 23 PwP and achieving an accuracy of 92.20%. Fisher et al. [45]

built an ANN classifier that was validated from symptom diaries with a sensitivity ranging from

38% to 52% and specificity from 83% to 93% for the on/off states and for dyskinesia. The

method implemented by Ossig et al. [46] had a moderate-to-strong correlation with subject dia-

ries for on/off states and dyskinesia (p-values ranging from 0.404 to 0.658). For the tremor

assessment, Battista and Romaniello et al. [47] accomplished a sensitivity of 99.3%, a specificity

of 99.6%, and an accuracy of 98.9% as against the tremor diaries; Heijmans et al. [52] reported

correlations of up to r = 0.43, when compared to diaries, while McNames et al. [54] detected

tremor presence (incorrectly) just 1.1% of the time or less in healthy volunteers.

Discussion

The main aim of the present work is to review and compare previous studies on the monitor-

ing of PwP using only wearable inertial sensors and with at least one data capture carried out

during unsupervised home activities. The intent was to inform future works in which the

authors aim to use body-fixed-sensors for extended periods of time in scenarios where data

captures are not monitored either directly or via a videotape.

As a matter of fact, the evaluation of PD requires extensive judgement from highly-trained

professionals, yet clinical assessments in a clinical setting provide only a partial overview of the

disease’s pathological progression [55]. In addition, numerous episodes related with PD are

challenging to detect during laboratory-based short-term observations. To consistently analyse

motor symptoms, fluctuations and gait impairments, long observation windows are required

due to the complexity and sporadicity of such events [21].

Wearable motion sensors are able to monitor PwP outside of standard clinical environ-

ments (for example, in private homes or community dwellings), and provide technically and

clinically relevant information for clinicians and patients; therefore, a continuous assessment

of the pathology may improve the quality of life of PwP, allowing them to preserve their inde-

pendence and avoid additional disease complications. [12, 56, 57].

Characteristics of the studies

For the purpose of gathering large datasets from IMUs recordings lasting from one to 14 days,

the most frequently used off-the-shelf devices were the DynaPort, Opal and AX3 (Fig 2), while

five works used inertial non-commercial prototypes. The majority of the studies adopted off-

the-shelf devices and off-line algorithm solutions. However, a potential implementation of ad-
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hoc hardware and on-board algorithms could enhance real-time feedbacks and ultimately

have a meaningful impact in the life of patients living, for instance, in rural communities and

remote areas [35, 46]. In both cases, the direct manipulation of raw data, gathered during the

free-living acquisitions, avoids the use of aggregated data (i.e. step, distance) generated by

“black box” software of commercial devices.

In the reviewed articles, diaries were completed by PwP or caregivers in order to track daily

activities, medication intake, and symptom occurrences. However, the use of self-report for a

complex task, such as the self-detection and recording of motor status over a prolonged period,

may lead to misinterpretations and errors, particularly in PwP who have impaired cognition

[58]. Patients may not always be able to correctly identify their own motor fluctuations and

symptoms or they may log motor symptoms in incorrect time slots, or forget to update the rec-

ords and then complete them many hours later from a recalled general state of function.

Reportedly, diaries are not a reliable means of comparison; for example, Erb et al. [58] found

that 38% of PwP in this study omitted approximately 25% of entries. However, developing dig-

ital versions, with alerts and prompts, may lessen the drawbacks typically associated with tradi-

tional paper-based diaries for PwP [59], while the involvement of caregivers trained in the data

collection could benefit the quality of the reports.

The number of subjects involved in the data collections is another important aspect with an

impact on the results. Sample sizes varied considerably among studies and ranged from one

[33, 52] to 170 PwP, [50] from one [33] to 172 [50] controls, and from 1 [52] to 342 [50] volun-

teers in total (PwP and controls) in unsupervised environments. No pre-study calculation was

reported in any of the papers to justify the sample size chosen. As a consequence, the small

number of volunteers in certain experimental protocols generated less conclusive and decisive

results in terms of statistical power.

Devices’ number and placement were various, depending on the outcomes measured. Con-

cerning impaired locomotion, the center of mass was extensively used in literature to measure

movement performance and level of stability [60–62]. Accordingly, to monitor activities such

as walking and turning, most of the papers agreed to adopt a single sensor worn close to the

waist [36, 37, 53] and lower back [33, 38, 39, 42–44, 48, 50, 51]. Besides, PwP may exhibit

asymmetric walk due to the different level of impairment of the lower limbs, characterized by

a reduction in walking speed, shuffling steps, and limited foot lifting [3]. Consequently, a sen-

sor attached on the single limb would capture recordings with large variations in gait patterns

and it would give just a partial overview of the patient’s status.

Sensor positioning and number is also crucial for the assessment of multiple symptoms on

different subjects. In fact, tremor, dyskinesia, bradykinesia, and other PD related motor fluctu-

ations affect upper and lower limbs differently depending on the manifestation and stage of

the disease [3]. Thus, a combination of several devices might be more suitable for multiple and

concurrent evaluations, however this would compromise the comfort of the system. Yet, given

that fewer wearable devices enhance the acceptability, wearability and usability of the system, a

sensor on the wrist may offer a good trade-off between applicability and end-user

convenience.

Finally, given the potential continuous long-term adoption of wearable systems by PwP,

aspects which were neglected in the identified papers, such as a system’s comfort of use, set-up

process, instructions for use, support, aesthetics and display, should always be considered to

guarantee long-term acceptability and efficacy of the system. For instance, the FDA-approved

Parkinson’s Kinetigraph system (PKG), which provides continuous, objective, ambulatory

assessments of PD symptoms, has been proved to show high patient acceptability, with 81% of

the users reporting satisfactory outcomes [63]. These considerations are crucial if the final pur-

pose is to gather large datasets and if PwP have to interact on a daily basis with the system.
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Aim, outcome measures, type of analyses, and results

Kinematic parameters, such as duration of gait cycle, step length, and velocity, were clearly dif-

ferentiated between the PD and healthy populations. In fact, PwP walked slower and with

shorter steps [36, 37, 44]. Less consistent gait patterns with major fluctuations in kinematics

and frequency measures were also observed [31, 33, 44]. Findings also underlined differences

in turning [38, 40, 48], showing patients taking shorter turns with smaller angles and complet-

ing the turning movement slower and with a greater number of steps. Concerning the risk of

falling, the relationship between the level of activity and impairments is still a matter of debate

among the scientific community. On one side, more active patients could be more susceptible

to falls since they are exposed to more unsafe situations, but on the other hand they could be at

a lower risk of falling due to a better general health condition. Two reviewed articles estimated

that falls occurred significantly more frequently in PwP with a less consistent walking pattern

[39, 50], while fallers seemed to have a reduced capability to regulate gait due to a partial loss

of postural stability [64]. Inertial wearable device can detect such impaired walking patterns

and predict future falls even in patients with no previous fall history [39].

To evaluate tremor at-home, two papers reported an accuracy against the symptom diary

higher than the 90% [34, 47]. In particular, Battista and Romaniello et al. [47] presented a

promising method based on the spectral analysis of inertial data from a single wrist worn

sensor, in conjunction with the detection of specific movement patterns generally related

with Parkinsonism. To assess bradykinesia and dyskinesia, Griffiths et al. [35] implemented

a fuzzy logic approach using data collected from an accelerometer on the most affected

wrist; these algorithms are the core of the PKG, the first FDA-approved device for the con-

tinuous assessment of PD symptoms. In addition, regarding dyskinesia, Fisher et al. [45]

developed an ANN classifier that was validated from symptom diaries obtaining a promis-

ing level of specificity (93%) but still with a low sensitivity level (38%). Finally, to detect on/

off episodes, Pérez-López et al. [41] and Rodriguez-Molinero et al. [49] developed an algo-

rithm based on the extraction of gait features from an accelerometer on the waist. The algo-

rithm showed an accuracy of 92.2% when compared to the results of the diaries, however

this approach relied upon gait parameters and required patient’s movement; therefore, it

might not be suitable for the recognition during the advanced stage of the disease when

PwP are mostly inactive.

Conclusion

The systematic review included 24 studies on the monitoring of PD using inertial sensors dur-

ing unsupervised home activities. Previous articles already underlined how the well-know

“Hawthorne observation effect” [20] could influence the reliability of data gathered in a labora-

tory setting since participants perform better when completing scripted tasks and while

observed by a clinician. Furthermore, episodes associated with PD usually require long periods

of observation because of their complexity (i.e. the on/off phenomenon) or rarity (i.e. freezing

of gait phenomenon). As a consequence, home based data captures could generate more com-

plete and exhaustive results in the analysis of the Parkinson’s disease.

Fourteen articles focused on postural and gait disturbances [31, 33, 36–40, 42–44, 48, 50,

51, 53] with the intention of evaluating mobility in daily life. The majority of the studies agreed

that a position close to the center of mass (waist or lower back) was ideal for impaired gait

analysis. Kinematic parameters, such as duration of gait cycle, step length, and velocity, were

shown to be capable of discriminating PD and healthy subjects. Furthermore, researchers

reported less consistent gait patterns in patients that may be used to predict falls in the Parkin-

sonian population [39].
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Ten articles investigated symptoms and their fluctuations aiming to detect bradykinesia,

tremor, dyskinesia, and on/off state episodes [32, 34, 35, 41, 45–47, 49, 52, 54]. Even if

researchers were able to achieve accuracies over 90% in a free-living environment [34, 41, 47,

49], the assessment of multiple symptoms on different subjects necessitated the employment

of a high number of wearable devices, compromising the user-friendliness of the system and

patients’ comfort. The wrist position may offer the best compromise between performance,

applicability, and end-user convenience.

In conclusion, future studies commencing an assessment of PwP for prolonged time peri-

ods may look into the a) development and testing of dedicated hardware and software for real-

time feedback that would also permit the interaction between clinicians and patients, and b)

the incorporation of digital versions of diaries with alerts and prompts in the study’s design

that would allow the correlation between quantitative measurements and self-reported out-

comes. Additionally, characteristics which were ignored by researchers, such as the system’s

comfort of use, set-up process, instructions for use, support, aesthetics and display, need to be

strongly considered. These reflections are fundamental for the efficacy of a health care system

that will be used mostly by older people in a social environment and it should not affect

patients physically or psychologically [12, 56, 57, 65–70].
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