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Abstract

Knowledge graph (KG) has been fully considered in natural language generation

(NLG) tasks. A KG can help models generate controllable text and achieve better per-

formance. However, most existing related approaches still lack explainability and scal-

ability in large-scale knowledge reasoning. In this work, we propose a novel CogNLG

framework for KG-to-text generation tasks. Our CogNLG is implemented based on

the dual-process theory in cognitive science. It consists of two systems: one system

acts as the analytic system for knowledge extraction, and another is the perceptual

system for text generation by using existing knowledge. During text generation, Cog-

NLG provides a visible and explainable reasoning path. Our framework shows excel-

lent performance on all datasets and achieves a BLEU score of 36.7, which increases

by 6.7 compared to the best competitor.
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1 | INTRODUCTION

Language generation is an essential task in natural language processing (NLP), including tasks like machine translation, freeform question answer-

ing, dialog systems, (Choi et al., 2018; Dong et al., 2015; Peng et al., 2020) and so forth. Recently, pre-trained language models (PLMs) like GPTs

(Brown et al., 2020; Radford et al., 2018; Radford et al., 2019), MASS (Song et al., 2019), BART (Lewis et al., 2020) and ProphetNet (Qi

et al., 2020) have made significant progress in various natural language generation (NLG) tasks. However, most PLMs' superior performance is

based on large model parameters and substantial training data. Although PLMs like GPT-2 (Radford et al., 2019) and GPT-3 (Brown et al., 2020)

can generate correct syntactic content, they still make mistakes in specific areas, even commonsense reasoning. The reason for this phenomenon

is that the models did not fully internalize all the knowledge during training. Moreover, it is unknowable what the model has learned because of

the deep learning models' black-box nature.

Recent studies have demonstrated that knowledge graphs (KG) can effectively improve the performance of various NLP tasks. Knowledge

graphs typically store a large amount of external knowledge through entity nodes and inter-entity relationships. It helps the model reduce the

pressure of learning large-scale knowledge and focus on reasoning with existing knowledge. For example, in PLMs pre-training tasks like (Liu

et al., 2020; Sun et al., 2019), KG effectively assists the model's learning ability and reduces large-scale pre-training costs. In named entity
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recognition (NER) tasks, KGs like dictionaries help the model with weakly supervised learning without domain-specific annotated data (Lison

et al., 2020). In NLG tasks, the explicit knowledge in KG effectively guides models to generate controlled, factual text (Koncel-Kedziorski

et al., 2019). However, providing too much knowledge in KG-to-text tasks leads to the over-generation problem because that useless knowledge

as noise will affect the model generation performance (Fu et al., 2020). Furthermore, it will be expensive to manually select accurate knowledge

from a large-scale KG for the model training.

In general, the traditional KG-to-text models still face two main challenges: one is that most models lack explainability, making it difficult to

find out where the issues come from when generating inappropriate content; and another challenge is that most existing approaches don't have

scalability. When the provided knowledge contains errors or irrelevant information, the model's performance decreases badly. To address the

above issues, we propose a cognitive graph framework called CogNLG for KG-to-text tasks insight by the dual-process theory (Evans, 1984;

Evans, 2003; Evans, 2008; Sloman, 1996). The theory implies that human cognitive processing is divided into two systems: Systems 1 and 2. Sys-

tem 1 is a perceptual system that is intuitive, unconscious, and fast. The primary function of System 1 is to collect and retrieve intuitionistic infor-

mation that humans perceive. System 2 is an analytic system for analyzing and reasoning the information provided by System 1. These two

systems work together to form human cognition. Inspired by the dual-process theory, our CogNLG framework consists of Systems 1 and

2. Benefiting from the cognitive graph structure, the generating process of CogNLG is explainable, and our approach can filter out the accurate

knowledge for the target text, which has scalability.

As shown in Figure 1, the cognitive graph for the KG-to-text task is constructed based on the input entities. Each input entity is initially

defined as a source entity node. We add the new extension entity nodes by retrieving the association information of the existing entities through

F IGURE 1 An example of the cognitive graph for KG-to-text generation, the circles in blue are the source entity, the circles in green are the
extension entity, and the circle in gold is one of the predicted best nodes.
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the wiki. Compared to the traditional approaches, which extract the entire KG, the CogNLG System 2 dynamically predicts the best nodes in each

position and only extracts the valuable knowledge. According to the concept of text-to-text in the T5 model (Roberts et al., 2019), we use

prompt-based templates to convert the best nodes triples to unstructured text. System 1 is a generator that predicts the next token based on the

information provided by the input and the best nodes. In this work, we adopt the GPT-2 as System 1, and System 2 is an extractor implemented

based on a graph convolutional neural network (GCN). To effect our implantation, our model evaluates two large-scale KG-to-text datasets called

ENT-DESC (Cheng et al., 2020) and Person and Animal (Vrandeči�c & Krötzsch, 2014).

The contributions of this work are as follows:

1. We propose a novel CogNLG framework for KG-to-text generation tasks based on cognitive science. Moreover, experiment results show that

the cognitive graph helps to generate controlled, factual text.

2. We demonstrate that the two-system structure of the cognitive graph provides strong explainability in the process of text generation and scal-

ability in large-scale knowledge reasoning.

3. The performance of our implementation in multiple metrics on the ENT-DESC and the Person and Animal dataset surpasses the state-of-art

work.

The structure of this paper is described as follows. Section 2 introduces some related work about KG-to-text tasks. Then the model and

method details are presented in Section 3. Section 4presents the experimental results. Finally, the conclusion and the future work are presented

in Section 5.

2 | RELATED WORK

2.1 | KG-to-text

A knowledge graph (KG)-to-text generation task is essential in NLG. In traditional NLG tasks, the rule-based systems depend on many hand-

crafted templates (Belz & Reiter, 2006; Duma & Klein, 2013), which is time-consuming and unscalable. In the deep learning approaches, the

Sequential-to-sequential (seq2seq) (Mei et al., 2016; Wiseman et al., 2017) and Variational Autoencoders (VAEs) (Liu et al., 2019; Serban

et al., 2017) models' performance have been dramatically improved compared with the rule-based systems. However, deep learning models can-

not internalize all knowledge, and this problem also arises in deep pre-trained language models. The KG's primary function is to provide adequate

knowledge support for NLP tasks to enhance the logic and model performance. In KG-to-text generation tasks, (Li et al., 2020) implements a KG-

to-text model through the multi-attention mechanism, which encodes the input knowledge triples through a bidirectional GRU unit. Recently

graph neural networks (GNN) have developed rapidly, and there are some works attempts to combine GNN and KG for text generation. (Koncel-

Kedziorski et al., 2019) presents a graph transformer to encode graph structure input, and (Beck et al., 2018) proposes a gate graph neural net-

work for the graph-to-text generation. Moreover, some works store knowledge with memory networks to improve performance on tasks like

multiple-turn dialog (Madotto et al., 2018; Yang et al., 2019). (Zhu et al., 2020) proposes a fact-aware summarization model to ensure that the

content generated by the model conforms to factual logic. The MGCN models (Cheng et al., 2020) adopt multiple graph transformations to obtain

the context feature in different scales, which achieve great performance on KG-to-text tasks. (Chen et al., 2020) and (Ji et al., 2020) use PLM

models with knowledge injection to generate the content with commonsense. However, most of the existing work still lacks the explainability of

generated text and scalable reasoning in large-scale knowledge.

2.2 | Cognitive graph

The idea of the cognitive graph is based on cognitive science, and it was first proposed by (Ding et al., 2019) for multi-hop reading comprehension

in the field of NLP. And (Dong et al., 2015) proposes the Cognitive Knowledge Graph reasoning framework for one-shot knowledge graph relation

reasoning at scale. Both approaches have two systems: Perceptual System and Analytic System, and this is a significant feature of the cognitive

graph compared with typical KGs. The two-system structure is inspired by the dual-process theory, and they run at inconsistent speeds. The per-

ceptual system is more intuitive and unconscious, which means faster computing; the analytic system refers to human logical thinking, and it is

more complex, rational, and slower. For complex problems, the two systems cooperate effectively to improve the performance in natural language

understanding (NLU), and this approach is also known as fast and slow thinking (Kahneman, 2011). And the study of (Rastogi et al., 2020) has

shown that fast and slow thinking can effectively assist Artificial Intelligence (AI) decision-making. Another feature of the cognitive graph is that it

supports reasoning in the large-scale dataset. A cognitive graph framework requires scalability as the human brain can quickly retrieve information

from large amounts of knowledge.
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3 | METHODS

In this section, we describe the implementation of the CogNLG framework in detail. Based on the dual-process theory (Evans, 1984; Evans, 2003;

Evans, 2008; Sloman, 1996), the human content creation process can be divided into two systems. One system is used for subjective language

expression, and it is based on the human brain's accumulated prior linguistic knowledge. The other system retrieves relevant clues in real-time to

support language generation.

The NLU ability in NLG tasks is also critical to model performance. The NLG task can be treated as the reverse work of the reasoning tasks.

The analytic system selects the most appropriate information from the existing knowledge to assist the perceptual system. (Ji et al., 2020) adopts

GPT-2 and GCN (Vashishth et al., 2020) to build a two-system text generation model and achieved significant performance in commonsense text

generation. In this work, we show that the cognitive graph is also effective for KG-to-text tasks. We gain extension knowledge triples associated

with the input through Wikipedia API and sift the best information with the analytic system in real-time. Our implementation can provide infer-

ence paths in large-scale data and reduce the cost of manually sifting knowledge triple.

Inspired by the dual-process theory, the CogNLG framework mainly consists of two systems called generator system(S1) and extractor sys-

tem (S2). S1 plays the role of a perceptual system and requires a large amount of prior linguistic knowledge. Therefore, a pre-trained model is nec-

essary because it is trained intensively on large-scale corpora. S2 is an analytic system. In S2, we construct a cognitive graph to collect the

supporting knowledge for text generation. Then we use a GNN model to update the hidden state of each node dynamically and iteratively in

the cognitive graph and predict the best nodes to support S1.
The overall model structure is illustrated in Figure 2. We adopt the GPT-2 as S1 and a GCN model as S2. The structure and functionality of

each system are described in detail below.

3.1 | Generator system

The core task of S1 is text generation. We adopt a pre-trained decoder model as the based model of S1. GPT-2 is a decoder model for text genera-

tion, which is widely adopted as a pre-trained model in various NLG tasks (Chen et al., 2020; Ji et al., 2020). The state-of-art GPT-3 (Brown

et al., 2020) as a large language model (LLM) contains 175 billion parameters that cannot be trained on typical workstations. Besides, the issues of

lacking explainability and generating inappropriate content also occur in GPT-3. GPT-2 has a much smaller number of parameters than GPT-3. In

this task, our experimental results demonstrate that our approach can successfully address the above issues with GPT-2.

F IGURE 2 The overall model structure of the CogNLG framework.
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The model needs accurate external knowledge support in generating sequence to generate the text that conforms to the factual logic. Unlike

other knowledge-based approaches, which introduce static external knowledge in each iteration, our S1 dynamically takes the filtered external

knowledge from the Extractor System in each position. The input of S1 is divided into three parts: the Extension (EE), the Condition (EC ), and the

Target (ET ). Furthermore, the input format can be described as the following equation:

Extension<SEP>Condition<SEP> Target ð1Þ

where EE ¼ e1,…,eNf g is the concatenation of the best nodes summary, and the best nodes are predicted by S2 dynamically based on the current

output content semantic in S1 and each node's hidden representation in S2; EC ¼ c1,…,cMf g is the concatenation of input entities; ET ¼ s1,…,sLf g
is the ground truth target sequence, and the < SEP> represents the special separator token.

Like common sequence generation tasks, the tokenizer encodes the input tokens and maps them to a high-dimensional vector through an

embedding layer. In this task, the GPT-2 only outputs the hidden states within the ET index range. The output hidden states in position i can be

denoted as TS
i �ℝ1�H, where H is the dimension size of the hidden features. The hidden states TS

i also represent the S2 semantic feature input

Hsem in position i and be used for the next token prediction in evaluation.

3.2 | Extractor system

External knowledge plays a critical role in the S1 generation performance. Therefore, it is essential to select the most relevant nodes based on the

current semantic feature of S1 and the hidden representations of S2. In particular, the external support knowledge should be closely related to

the current generated content topic. Otherwise, the external knowledge would affect model performance as noise.

We construct a cognitive graph G ¼ <V,E > based on the input entities. There are two types of nodes in G: Source Entity (SE) node and

Extension Entity (EE) node. SE nodes are derived from the input entities; EE nodes are derived from the links of each parent node. G initially con-

sists of multiple SE nodes, then denote a layer depth variable d. The EE nodes for each layer are then generated based on the links of the parent

node. Algorithm 1 describes the construction procedure in detail. Each node vi �V contains the node name, links, and summary. The links array

contains the related child nodes, and it is obtained by retrieving the node name from the wiki. The summary represents the text computed from

the triple of the node and its parent. Previous work has demonstrated that the prompt-based input effectively improves the model's understand-

ing of semantic information. We collect all the relation types from the datasets and design several templates according to their part of speech. As

shown in Figure 3, the triples can be converted into summaries by the templates.

The initial hidden state of G is denoted as HG �ℝH�H, where H is the max size of G. In our approach, we set H equal to the dimension size of

the hidden features in S1. For each node, the hidden feature is computed by S1:

hj ¼ TrmjðTNodeÞ ð2Þ

Hk
G ¼ hℕℒ ð3Þ

where the k is the index of k-th node, and the input TNode is the concatenation embeddings of node name and summary. The Trm of S1 is a trans-

former decoder with ℕ layers, the k-th node initial hidden feature Hk
G is the last position ℒ output in the last layer of the decoder. To predict the

best nodes based on the context in each position, we first combine the semantic feature of each node with the relationship between neighboring

nodes by adopting a variant GCN model. The hidden feature HG is updated iteratively, and the new hidden state H0
G of one backpropagation step

is computed as:

δ¼ σ AD�1� �T
σ HGWαð Þ

� �
ð4Þ

H0
G ¼ σ HGWβþδ

� � ð5Þ

where σ is the activation function, A is the adjacent matrix of G, which represents the relationship between nodes, D is a diagonal matrix and

Djj ¼
P

iAij. Wα, Wβ �ℝH�H are learnable weight matrices. The transformed hidden state σ HGWαð Þ is left-multiplied by AD�1� �T
to extract the adja-

cent features δ of the graph. Then the hidden state of the next iteration can be updated by the summation of δ and HGWβ . When human writing,

people prepare all the relevant knowledge beforehand and dynamically select the most relevant knowledge for the current context in real-time,

which is a more efficient and scalable process. Similar to this process, S2 predicts the best nodes X based on the hidden feature HG and the seman-

tic feature Hsem computed by S1:
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Hfusion ¼ σ HG;Hsem½ �Wfusionð Þ ð6Þ

X¼max σ HfusionWclsð Þ½ � ð7Þ

where Hfusion is the fusion feature of HG and Hsem, Wfusion �ℝ2H�H is a learnable weight matrix. Finally Wcls �ℝH�2 maps Hfusion to H-size two

dimensional vectors, then we compute the indices of max value and choose the nodes with index one as the best nodes.

3.3 | Training implementation

A significant challenge in the training of the CogNLG framework is how to determine the best nodes for the current sequence. Most common

related datasets contain only source input entities and ground truth target text. Besides, manually labeling the best nodes of a dataset is costly.

This section proposes a general unsupervised best node labeling approach based on BLEU score and a pre-trained text similarity model to imple-

ment best node labeling on KG-to-text datasets.

For each input of the training set, let Y¼ ½w1,…,wn� be the ground truth target text of input, where w is the word of Y, n is the length of Y.

We split Y into subsets y1,…,ymf g based on pauses (commas, periods, semicolons, and some conjunctions). In the meantime, we construct the

input's cognitive graph G. And the best nodes in yi are computed as:

F IGURE 3 The examples of triple-to-text conversion, where the text in red @sð Þ represents the subject, the text in green @oð Þ represents the
object, and the text in blue @rð Þ represents the relation.

ALGORITHM 1 Cognitive graph construction

6 of 17 LAI ET AL.
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Xyi
best ¼ top-kV � G score yi,Vð Þf g ð8Þ

ej
vj � V

yi,vj
� �¼BLEU yi,vj

� �þSim yi,vj
� � ð9Þ

scorevj � V yi ,vj
� �¼ exp ej=τ

� �
P

k exp ek=τð Þ ð10Þ

where the Sim function is implemented based on a BERT (Devlin et al., 2019) pre-trained model with a binary-class fully connected layer. We use

the summation score of BLEU and Sim function to compute the correlation ej between vj and yi. Since the difference between the correlation

score and the actual best node distribution, we use a variant softmax with temperature τ to smooth the correlation score and compute the final

similarity score. Then we select the top-k nodes Xyi
best with similarity score as the set of best nodes in yi. And the collection of best nodes in Y are

½Xy1
best ,…,Xym

best�. It is important to note that in the evaluation step, the model predicts each position's best nodes X
w1,…,wj½ �
best . However, during the

training step, the time cost for each best node computing is expensive. Therefore, we consider that the best nodes in y�Y are consistent across

the range of y and only compute the best nodes in the start index of y.

3.4 | Loss function

In S1, the final task is to generate the ground truth target text Y¼ ½w1,…,wn�, suppose wt � yi , where yi is a subset of Y. The loss function of S1 is

defined as follows.

ℒgpt ¼�
Xnþ1

t¼1

logP wtjw < t,X
yi
best

� � ð11Þ

Where n is the length of Y, the model stops after the < eos> token is generated. For best node prediction in S2, we compute the loss

between probabilities and the fusion feature:

ℒgcn ¼�
Xnþ1

t¼1

logP score yi ,Vð Þjw < t,Gð Þ ð12Þ

and the final loss can be optimized as:

ℒ¼ℒgptþαℒgcn ð13Þ

where α is a hyper-parameter, in this task, the value of α decreases during the training procedure, and the final loss is back-propagated to optimize

both systems in CogNLG.

4 | EXPERIMENTS

4.1 | Dataset

ENT-DESC The ENT-DESC dataset (Cheng et al., 2020) is extracted from Wikipedia with more than 9.9 million pages. The dataset contains

domains like humans, events, locations, etc. It consists of 110k instances and is significantly larger than related data-to-text datasets such as

WebNLG (Gardent et al., 2017), AGENDA (Koncel-Kedziorski et al., 2019), and E2E (Novikova et al., 2017).

Person and animal The Person and Animal dataset (Vrandeči�c & Krötzsch, 2014) is extracted from structured KG WikiData and

Wikipedia. There are two main types of entities in this dataset named Person and Animal. Compared with the ENT-DESC dataset, it con-

tains only one entity with multiple references in each input. During our experiments, we only generate the first reference for better

comparison.

We follow the same experiment setup of (Cheng et al., 2020), the dataset is randomly split into three subsets for the training set (80%), devel-

opment set (10%), and test set (10%). Table 1 presents the statistics of the datasets. Each dataset item contains a list of source input entities, a

ground truth target text, and the associated topic-related entities with the source input. In training and evaluating our CogNLG framework, we
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only take the source input entities and the target text. Then we use the Wikipedia API to search for a 2-hop (the node extension depth d is set as

two as it is large enough in this task) path associated with the input entities and save all path triples. The node name, summary and the related

child nodes are extracted from the response node info of Wikipedia. We collect 620 million triples and store them in the database. Considering

the time-consuming training, we construct a cognitive graph for each item in advance according to the method mentioned in Section 3.2. We use

the default triples provided in the datasets for other related approaches.

4.2 | Baselines and metrics

To evaluate the performance of CogNLG comprehensively, we compare it with the state-of-the-art KG-to-text MGCN (Cheng et al., 2020)

models and other GNN-based aggregation methods: GraphTransformer (Koncel-Kedziorski et al., 2019), GRN (Beck et al., 2018), GCN

(Marcheggiani & Perez-Beltrachini, 2018) and DeepGCN (Guo et al., 2019). We also compare our model with transformer-based models:

DSG (Fu et al., 2020) and KGPT (Chen et al., 2020), where KGPT is a decoder-based pre-trained language model with knowledge

injection.

We evaluate CogNLG and other approaches on multiple evaluation metrics, including BLEU (Papineni et al., 2002), METEOR (Denkowski &

Lavie, 2011), TER (Snover et al., 2006), ROUGE (Lin, 2004), and PARENT (Dhingra et al., 2019). Both the evaluation measures BLEU and ROUGE

are based on n-gram analysis. BLEU measures text similarity to the reference based on n-gram overlap, while ROUGE further measures the lon-

gest common subsequence (LCS) between the generated and the reference text. METEOR considers word order and synonymy to evaluate the

generated content quality. TER quantifies the edit distance between generated and reference text. PARENT combines TER with paragraph reuse

for summary evaluation. By utilizing these metrics, we obtain objective measures of model performance, enabling comparisons with other

approaches in the field of KG-to-text generation.

4.3 | Experimental details

We implement the CogNLG framework based on the Huggingface Transformers (Wolf et al., 2020). The pre-trained model of the GPT-2 in the S1
is “gpt2", released by (Radford et al., 2019). In this task, the number of transformer layers ℕ is 12, and the hidden size H is 768; all the activation

functions are gelu (Hendrycks & Gimpel, 2016); the value of k in Equation (8) is set as 6, and the temperature τ in Equation (10) is set to 0.2; the

hyper-parameter α is initialized with 0.5 and linearly decreasing to 0.2 in 5000 steps. We optimize CogNLG with Adam (Kingma & Ba, 2017),

the learning rate of S1 is 5� 10�5 and the learning rate of S2 is 1 � 10�4. To accelerate the convergence of the CogNLG, we further pre-trained

vanilla GPT-2 with input entities and target text. The batch size of the pre-trained step is eight, and the batch size of CogNLG is set as one

because its input length changes in real-time. During decoding, we use Nucleus Sampling (Holtzman et al., 2019) with top-8 tokens, which is more

efficient than beam search.

4.4 | Results

The overall experimental results on the ENT-DESC and the Person and Animal datasets are shown in Tables 2 and 3. On the ENT-DESC dataset,

our CogNLG framework is superior to all related approaches. Our model and KGPT (Chen et al., 2020) outperform the vanilla MGCN in all evalua-

tion metrics. The BLEU score of CogNLG increases by 11.0 compared with the MGCN; this implies a significant improvement in performance for

adopting the pre-trained model and two-system architecture. Compared to the MGCN ensemble models (MGCN + CNN + delex and MGCN +

SUM + delex), our CogNLG outperforms them in BLEU and METEOR scores, but fell behind in ROUGEL. It indicates that our model can generate

content with more diversity and ensure fluency and accuracy.

TABLE 1 Statistics of datasets.

Dataset Train Dev Test Entities

ENT-DESC 88,651 11,081 11,081 657,554

Person and animal 352,782 44,101 44,101 440,984
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On the Person and Animal dataset, our model outperforms other approaches in BLEU, METEOR, and ROUGEL. The result shows that MGCN

performs better in complex graph structure scenarios with multiple input entities. Since the average number of entities in the Person and Animal

dataset is much smaller than in the ENT-DESC dataset, MGCN performs worse than other related approaches. Our CogNLG still shows excellent

performance on this dataset, and we can conclude that CogNLG has strong robustness on different entity structure datasets.

CogNLG has excellent scalability, which can filter knowledge noise, and it is a highlight compared with other traditional approaches. To ana-

lyze the scalability of CogNLG, we introduce triple noise for the ENT-DESC dataset. For each item in the ENT-DESC dataset, we randomly add

the same number of triple noises as the origin triples. Triple noise refers to triples unrelated to the target text, leading to a severe decline in model

performance when the model cannot effectively filter noise. Table 4 illustrates the performance comparison on the ENT-DESC test set with noise.

The results show that all approaches performance decrease when introducing the triple noise. CogNLG shows great stability and still achieves the

best performance compared with other approaches.

We further analyze the S2 knowledge extraction performance of CogNLG to evaluate its scalability in detail. The knowledge extraction per-

formance can be treated as the best nodes prediction performance in Section 3.3. We introduce the F1 score as the evaluation metric and evalu-

ate the test set of the ENT-DESC and the Person and Animal. We set the max size of the cognitive graph equal to the hidden size H. Table 5

presents the results of the prediction performance in different hidden sizes. It is shown that S2 performance remains stable on both datasets

when the hidden size changes. The results also explain why CogNLG remains stable on the ENT-DESC dataset with triple noise and demonstrate

that CogNLG has outstanding scalability in large-scale dataset inference.

Over-generation is one potential reason for the model performance decrease caused by the triple noise. When the model can't effectively fil-

ter irrelevant entities, the generated text will contain irrelevant entity information. We count the proportion of irrelevant entities generated by

different models under the original ENT-DESC dataset and the dataset with triple noise. As shown in Figure 4, the irrelevant entities proportion

TABLE 2 Comparison of different models on the ENT-DESC test set.

Models BLEU METEOR TER# ROUGE1 ROUGE2 ROUGEL PARENT

GraphTransformer (Koncel-Kedziorski et al., 2019) 19.1 16.1 94.5 53.7 37.6 54.3 21.4

GRN (Beck et al., 2018) 24.4 18.9 70.8 54.1 38.3 55.5 21.3

GCN (Marcheggiani & Perez-Beltrachini, 2018) 24.8 19.3 70.4 54.9 39.1 56.2 21.8

DeepGCN (Guo et al., 2019) 24.9 19.3 70.2 55.0 39.3 56.2 21.8

DSG (Fu et al., 2020) 20.7 18.8 77.0 54.1 34.4 46.9 14.2

KGPT (Chen et al., 2020) 30.7 26.2 57.5 64.3 47.3 57.0 32.8

MGCN (Cheng et al., 2020) 25.7 19.8 69.3 55.8 40.0 57.0 23.5

MGCN+CNN+delex (Cheng et al., 2020) 29.6 23.7 63.2 63.0 46.7 63.2 31.9

MGCN+SUM+delex (Cheng et al., 2020) 30.0 23.7 67.4 62.6 46.3 62.7 31.5

CogNLG 36.7 28.6 49.4 65.2 48.0 58.9 37.9

Note: # represents lower is better.

TABLE 3 Comparison of different models on the person and animal test set.

Models BLEU METEOR TER# ROUGE1 ROUGE2 ROUGEL PARENT

GraphTransformer (Koncel-Kedziorski et al., 2019) 44.0 33.8 48.5 71.1 56.3 63.6 22.7

GRN (Beck et al., 2018) 18.5 17.0 69.5 48.5 25.4 42.4 17.3

GCN (Marcheggiani & Perez-Beltrachini, 2018) 18.1 16.7 69.9 48.0 24.9 42.0 16.2

DeepGCN (Guo et al., 2019) 21.2 18.9 67.1 51.4 28.8 45.3 21.5

DSG (Fu et al., 2020) 41.4 33.9 46.3 72.4 59.4 64.5 25.9

KGPT (Chen et al., 2020) 39.3 31.8 53.1 66.7 52.1 58.4 46.8

MGCN (Cheng et al., 2020) 18.2 16.8 70.2 51.8 29.6 45.7 22.7

MGCN+CNN+delex (Cheng et al., 2020) 21.8 19.3 66.7 51.8 29.6 45.7 22.7

MGCN+SUM+delex (Cheng et al., 2020) 20.3 18.4 67.8 50.6 27.8 44.5 20.4

CogNLG 48.2 34.4 49.1 69.9 57.2 64.8 24.6

Note: # represents lower is better.
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increases in all models when introducing the triple noise. Due to the excellent performance of the S2, our CogNLG generated text contains the

lowest irrelevant entity proportion, which implies it can effectively suppress the over-generation issue.

4.5 | Analysis and discussion

4.5.1 | Ablation study

We designed several experiments to analyze the performance impact of each component in CogNLG. To compare the results without external

knowledge and only to use S1, we use the vanilla GPT-2 for training and evaluating with input entities and the ground truth target text. As shown

in Table 6, the BLEU score of GPT-2 decreased by 12.5 compared with CogNLG, which is worse than most graph-based approaches in Table 2.

The results prove that external knowledge plays a vital role in the performance of KG-to-text tasks.

The CogNLG-R is designed with the same structure as the CogNLG framework but disables the S2 predictor and replaces it with a random

selector for best nodes selection. The CogNLG-R performs poorly and even worse than the vanilla GPT-2. It implies that inaccurate knowledge

would reduce the model performance as noise, and CogNLG S2 contributes to filtering accurate knowledge for S1.

TABLE 4 Comparison of different models on the ENT-DESC test set with random tripple noise.

Models BLEU METEOR TER# ROUGE1 ROUGE2 ROUGEL PARENT

GraphTransformer (Koncel-Kedziorski et al., 2019) 14.3 16.0 128.4 51.7 31.9 39.1 8.1

GRN (Beck et al., 2018) 20.4 15.1 87.0 46.6 30.5 39.6 19.0

GCN (Marcheggiani & Perez-Beltrachini, 2018) 16.9 14.4 102.4 45.8 29.8 38.1 18.2

DeepGCN (Guo et al., 2019) 19.3 14.5 83.7 44.4 28.5 37.9 17.7

DSG (Fu et al., 2020) 12.4 11.9 77.0 41.8 25.7 38.5 13.5

KGPT (Chen et al., 2020) 11.1 8.3 90.1 30.8 19.3 27.2 24.2

MGCN (Cheng et al., 2020) 20.6 15.5 87.0 47.0 31.0 40.1 19.1

CogNLG 28.1 24.2 65.0 58.6 39.7 52.4 28.4

Note: # represents lower is better.

TABLE 5 The performance of S2 on the ENT-DESC and the person and animal test set.

Datasets Hidden size F1 Precision Recall

ENT-DESC H¼768 87.7 87.0 88.4

H¼1024 86.4 85.3 87.6

Person and animal H¼768 91.1 94.8 87.7

H¼1024 88.6 95.2 82.8

F IGURE 4 The irrelevant entities proportion of the generated text on the ENT-DESC dataset. “*noise" represents the value with triple noise.
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To analyze the impact of the triple-to-text policy, the CogNLG-T takes the original triples as EE input in S1. The performance of CogNLG-T

decreased slightly compared to CogNLG, indicating that the transformation from triple to text can effectively improve the model's internalization

of the triple relational.

The CogNLG-O represents the model performance training with the original triples from the ENT-DESC dataset instead of using the triples

from the Wiki Database. As shown in Table 6, the performance of CogNLG-O is similar to CogNLG.

4.5.2 | Explainability analysis

To verify the performance of CogNLG explainability, we present some cases of how the CogNLG S2 is reasoning the best nodes. As shown in

Figure 5, each case consists of a simplified cognitive graph at the top and the generated text at the bottom. In the beginning, the EE and ET in S1
are missing, and S2 predicts the best node based on the semantics of EE . The best nodes prediction at the beginning of the generated sentence

are shown in cases (a) and (b). We observed that the relation of best nodes in both cases are related to the sentence's subject. In case (a), the sub-

ject is a person, and the best nodes include “gender", “birthday", “country", “occupation", and so forth. The subject of case (b) is an airplane base,

and the best nodes include the “instance of the subject", “established date", “country", and so forth. In case (c), when the model encounters the

preposition “in", S2 successfully predicts the best node “Villorsonnens" required by the next token. We observe that the best nodes usually

remain constant within a clause. However, when it comes to “is" or prepositions like “in", “at", the best nodes change significantly. Case

(d) illustrated that S2 successfully deduces the relationship between “Villorsonnens" and “Fribourg", which reflects reasoning ability to the depth

information of the cognitive graph.

We also present the relation tag of the top three best nodes prediction results for each token in Table 7. The predicted relation tags of best

nodes have a high correlation with the current token, making it easy to forecast what token the model will generate in the next position. The visual

analysis of best nodes prediction demonstrates that CogNLG shows explainability ability in NLG tasks. It can be concluded that S2 provides all

nodes that it considers nodes to have a high probability of being generated in the following text to prevent information omission. S1 then decides

what to generate based on the context. In particular, S1's selection of knowledge is influenced by the semantic distribution of the training set.

4.5.3 | Case study

We study example outputs by GCN, MGCN+SUM, and CogNLG to compare the efficiency of knowledge extraction. The results are shown in

Figure 6, where GCN and MGCN+SUM use the KG provided by the ENT-DESC dataset. The highlighted text in red represents the main input

entity, and the highlighted text in blue represents the topic-related entities. The first row in Figure 6 is the gold reference. GCN fails to generate

the main entity, which means it cannot extract knowledge accurately. The CogNLG S2 is implemented based on a variant GCN with aggregate

semantic information from S1. It successfully filters out accurate knowledge by binary classification based on the current context and node rela-

tional information. Compared to the output text generated by MGCN+SUM, CogNLG describes related entities more accurately. It further dem-

onstrates that the CogNLG excellent performance benefits from the two-system structure, making S1 focus on organizing language expression

and S2 focus on knowledge extraction.

4.5.4 | Error study

We visualize the CogNLG evaluation BLEU�4 and ROUGEL scores distribution on the ENT-DESC test set. The results are illustrated in Figure 7.

Most cases show a Gaussian distribution near the average scores in Table 2. However, it can be observed a bipolar distribution in many cases

(b) and (c) display the average target reference length and best node labels in each ROUGEL score range, and they both have a Gaussian

TABLE 6 Results of the ablation study on the ENT-DESC test set.

Models BLEU METEOR TER# ROUGE1 ROUGE2 ROUGEL PARENT

GPT-2 24.2 20.5 83.1 53.2 35.2 46.6 23.3

CogNLG-R 23 20.9 69.7 51.7 33.0 45.7 21.4

CogNLG-T 35.5 28.3 49.1 64.8 47.1 58.1 37.1

CogNLG-O 37.3 28.4 57.7 63.6 47.7 58.3 32.3

CogNLG 36.7 28.6 49.4 65.2 48.0 58.9 37.9

Note: # represents lower is better.
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distribution. The reasons for the bipolar distribution cases in (a) are shorter text length and fewer best node labels. We find that the generated

outputs get high scores in short texts if the reference contains enough topic-related entity information. On the contrary, the generated outputs

get low scores if the reference is mainly composed of verbs, adjectives, and so forth, and lacks topic-related nouns.

We also observed that some cases get low scores due to entity missing or mismatching. The external knowledge is obtained from the

Wikipedia API, and we use fuzzy matching to retrieve entity association information. Therefore, it inevitably leads to some missing or mismatched

issues. To study the consequences of missing entities, we selected an instance and manually removed the birthday and country from the graph.

As shown in Table 8, when CogNLG misses the birthday and country, it still generates a fake birthday and country. Moreover, we observed that

F IGURE 5 Cases of cognitive graph reasoning path. The text in red is the current last position token, and the blue is the next prediction
token. The red circles are the best node for the current token, and the blue circles are the best node for the next token (red and blue overlapping
circles represent the best nodes for both).

TABLE 7 Case results on predicting the top three best nodes for each token.

Dataset

ENT-DESC Silva Dimmo (Person)![Birthday,Gender,Occupation]

Milton (Location)![Instance,Location,Country]

the University of Science and Technology (Organization)![Instance,Location,Country]

Person and animal Frederic Alderson (Person)![Birthday,Occupation, Institution]

the African penguin (Animal)![Taxon, Instance,Location]

Alaska (Location)![Instance,Location,Country]
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the birthday was randomly different each time the model generates, but the country was the same. The result is similar to using vanilla GPT-2

without any external knowledge, that is, the generated sentences are grammatically smooth but may not follow factual logic.

A deep end-to-end model cannot control whether it generates related entities randomly or fixedly because it is unknown what knowledge is

internalized. The two-system-based CogNLG helps us locate the wrong entities by observing the cognitive graph. After adding the missing enti-

ties, the model generates the relevant text accurately.

4.5.5 | Diversity analysis

To evaluate the diversity of the model, we randomly sort the input entities and make three predictions on each test set. We adopt the Self-BLEU

(Zhu et al., 2018) score to compute the diversity of the generated text. As shown in Table 9, CogNLG achieves the lowest Self-BLEU score on

F IGURE 6 Comparison of different models on an example.

F IGURE 7 Data distribution visualization on the ENT-DESC test set.

TABLE 8 An example of CogNLG generation with knowledge missing.

Gold Lee Aaron (born Karen Lynn Greening, July 21, 1962) is a Canadian rock singer.

Missing birthday and country Lee Aaron (born June 21, 1969) is an American rock musician.

+birthday Lee Aaron (born July 21, 1962) is an American rock musician.

+birthday

+country Lee Aaron (born July 21, 1962) is a Canadian rock singer, songwriter, and musician.

LAI ET AL. 13 of 17

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13461 by T

est, W
iley O

nline L
ibrary on [13/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



both datasets, indicating that the generated text of CogNLG is more diverse. We believe it is due to the design of the two system structures,

which makes the model S1 to adapt to the information provided by the S2 with increasing generation diversity during training.

5 | CONCLUSION

This paper proposes a CogNLG framework for KG-to-text tasks and obtains the state-of-art results on the ENT-DESC and the Person and Animal

dataset. The implementation is based on cognitive science. Our CogNLG can reason at the large-scale dataset and has great explainability and

scalability with the two-system structure. We demonstrate that the cognitive graph can be applied to NLG tasks with outstanding performance.

In the future, we will work to improve the training efficiency of CogNLG and extend it to domain-specific multimodal generation tasks.
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