
Computer Aided Design and Operation of Reservoirs

by

M.J. Harley, B.Sc.

A thesis submitted for the degree of

“ Doctor of Philosophy

Department of Civil Engineering,

The University of Aston in Birmingham.

September, 1973.

Synopsis

Tis thesis describes the application of dynamic

programming to the design and operation of water resource

systems, and investigates the use of a version of the

simple user-orientated problem solving language, HYDRO,

as developed by the author, in which hydrological and

hydraulic procedures may be embedded.

Stochastic dynamic programming methods are explored

and the policy iteration technique of Howard is developed

and applied to a two reservoir system to obtain long term

operating rules. The author found no previous applications

of this method to reservoir systems design in the current

literature.

Because of the high computing costs involved in the

stochastic methods, the author researched into the use of

deterministic dynamic programming applied to historical’

or synthetically generated inflow sequences for finding

long term rules.

It is concluded that the method described produces

satisfactory results and may in fact be more accurate than

stochastic dynamic programming in some cases because more

reliable representations of the basic data structure may

be used.

Acknowledgments

The author would like to thank Dr. T.R.E. Chidley,

B.Sc., Ph.d., M.I.C.E., for his encouragement and advice

throughout this research.

Thanks are also due to the staff of the University

Computer Centre for their help in the early part of this

work.

Finally, the author is indebted to the Science Research

Council for their financial support.

ct

q
r
e
 0g

i

oe

ee

e
e

M
e
e

ee

i
r
y
}
 12

Pp, b

Notation

The notation is defined in the text.

Only the main variables are repeated

state variable.

control variable.

time variable.

dummy time variable

state transition functions.

here.

scalar function of cost per unit time.

set of admissable states.

set of admissable controls.

function of optimum costs.

function of values at end of process.

objective function.

total number of stages in process.

stage variables.

in the set.

vector of inflows.

expectation operator

total expected cost of going to end

expected immediate cost.

transition probability matrix.

probabilities.

of process.

SYNOPSIS

CONTENTS

ACKNOWLEDGMENTS

NOTATION

CHAPTER 1 Introduction

en

hee

1.9

1.4

33

CHAPTER 2

Zu

ese

242

2.4

a5

“0

CHAPTER 3

wel.

ase

a2

3.0 D od

3.52

b A Py:

323.4

3+35.5

3.35.6

The Field of Study

Current Design Methods

Review of Current Literature

The Objective Function

Use of Computer Languages

The Simulation Method

Introduction

The Problem

Brenig Catchment

Erbistock Data

Celyn Data

The Design Method

Review of Computer Languages

Introduction

Requirements of a computer language

for a specialist subject

Existing methods of solving

specialist problems

A compatible subroutine library

Packages

Vehicle Scheduling Package >

1900 Control and Simulation

language (CSL)

Simon (Simulation Language)

Genesys

Page

Number

19

20

22

ae

24

26

28

35

ot

Te

72

fhe.

77

77

78

19

a

80

80

3.3.8

76549

3.3.10

CHAPTER 4

4s

4.2

AS

4.4

4.5

4.6

‘7

4.8

4.9

CHAPTER 5

Sil.

5.2

ao

524

5-5

5.6

mee

Natural language problem-solving

systems

Hydro

Slang

Ascop

The Hydro Language

Introduction

General Description and Operation

of the System

Requirements of an Algol Program

Bugliarello's Hydro

The Line Library

The Translator Program

Example

The ICL 1900 Algol Input/Output

Procedures Used by Hydro

The Method of Dealing with Arrays

in the User's data

Revision of Hydro

Introduction

Special Symbols Employed by the

Revised Hydro

The Form of Input

The Translator Program

Examples of User Input

Flow Diagram for Translator Program

Description of the Flow Diagram for

the Translator Program

Page
Number

85

86

87

88

89

89

92

94

97

98

et

ti

118

120

123

12}:

124

126

129

130

141

164

5.8

5.9

CHAPTER 6

6.1

6.2

6.3

6.4

6.5

CHAPTER 7

Tel

7.2

7-3

T.4

7.5

7.6

7.7.

7.8

1.9

7-10

Heck

Flow Diagrams for the Hydro Reading

Routines

Description of the Flow Diagram

for the reading routines

Deterministic Dynamic Programming

Applied to Reservoir Control

Introduction

The Dynamic Programming Principle

Discretisation of the variables

The Discretised Formulation of

Dynamic Programming

Page
Number

LE

187

135

193

194

£99

201

Derivation of the Iterative Functional

Equation for the Discrete Case

Extension to the Stochastic Case

Introduction |

The State Transitions

The Expected Cost

The Performance Criterion

The Long Term Stochastic Process

The Long Term Iterative Stochastic

Method

The Infinite Time Span case

Intermediate Transitions

The Long Term Equations

Determination of the Optimum Long

Term Control

The Discounted Case

205

221

221

225

224

225

229

231

232

234

236

240

244

Page
Number

CHAPTER 8 The Application of Dynamic

Programming to the Design and

Operation of Reservoir Systems 247

8.1 The Explicit Stochastic Approach 247

8.2 Simple Reservoir - Aquifer System -

Value Iteration 248

8.3 Eee Ponind gaiue testi oa 250

8.4 The Policy Iteration Method eve

8.5 Method of Storage for Policy

Iteration 259

8.6 Flow Diagram for Policy Iteration

Program 258

8.7 Dynamic Programming Applied to

Two Stochastic Reservoirs 262

8.8 Value Iteration ~ Two Stochastic

Reservoirs 263

8.9 Policy Iteration - Two Stochastic

Reservoirs eit

8.10 Convergence of Policy Iteration 272

8.12 A Critical System 2T2

Boia Stochastic Demands 274

8.13 Antecedent Flows ett

8.14 Rate of Convergence of Stochastic

Value Iteration 217

8.15 Minimising Drawdown 278

8.16 The Deterministic Approach 283

8.17 Data Generation 284

8.18

8.19

8.20

8.21

8.22

8.25

CHAPTER 9

9.1

9.2

9.3

CHAPTER 10°

10.1

10.2

10.3

REFERENCES

APPENDIX 1

APPENDIX 2

APPENDIX 3

APPENDIX 4

APPENDIX 5

Extraction of Long Term Policy.

Ao ead cn of Methods of Policy

Extraction

The Consistency of the Deterministic

Method

Length of Data Sequence

Effect of Reservoir Sizes

The Celyn/Brenig System

State Increment Dynamic Programming

Introduction

The Theory

Stochastic Example

Conclusions and Future Work

Specialist Languages

Dynamic Programming

Future Work

Proof of Convergence of Stochastic

Matrices

The z-Transform

Inverse Transform

Line Library

Discretisation of State Variables

Page
Number

287

289

294

301

307

314

316

316

316

320

322

bo ae

223

DSL

D229

336

By

346

348

oy

4.

CHAPTER 1

INTRODUCTION

The Field of Study

The design of a water resources system is one of the

more interesting aspects of civil engineering at the

present state of the art since no precise mathematical

formulation can yet be applied to many of the problems

involved in the efficient management of a natural and

uncertain phenomenon such as stream flow. Even if it

were possible, to describe accurately the statistical

behaviour of run-off at some point in a catchment, the

mathematical model constructed would be so complex that

modern computational methods would be totally inadequate

to solve the problems with any degree of accuracy.

Since it is not generally feasible to obtain

the perfect answer, then some compromise must be found

between a purely subjective solution and the ideal, but

impracticable, mathematical analysis. At this point,

care must be taken not to fall into the trap of expending

excessive effort to achieve over-—precise answers to the

parts of the problem which may be explained by mathmematical

formulae at the cost of overlooking the fabe that the

uncertain part of the problem should be treated with the

most well-informed judgment possible. In this respect,

it is better that the simpler problems be executed by

computers in order to leave the hydrologist more time to

consider the value of his method of approach, for no

matter how precise his solutions may be they are still

worthless if the wrong problem has been solved. In

order to investigate the application of computer methods

in water resources projects it is first necessary to

establish the types of problem involved in the design

process. The first stage in the design of a water

resources system is to identify the: objectives of the

scheme. Having identified objectives one may look at

a number of a tee iy ae which may feasibly meet them.

To this end, some means of comparison of each alternative

is required, a so-called objective function. If a range

of objectives, which may be conflicting in nature, is

required, some way of weighting the various aims to form ,

a unified whole must be determined. Alternatively, one

can make a set of major choices on main objectives and

sieve these through a set of minor objective functions.

The determination of an objective function consistent

with one's aims is of very great importance in the

application of mathematical methods and needs further

research. This thesis has taken the standpoint of

finding what should be done given that an objective

function has been defined.

When a good description of a system, or the broad

outline of a set of possible systems, together with some

criteria with which to judge the efficiency of each systen,

has been obtained, then the next step is to collect data

defining the inputs and outputs of the system, the control

rules and other system parameters.

Usually, the inputs are the hydrological data sequences

associated with various parts of Uhesetacen and the ideal

demands on the system. The actual outputs are produced

by operating the system and the efficiency of the system

is a measure of the correspondence between these outputs

and the required outputs or demands.

: 3
Much of this thesis has been deveted to finding

ways of using computers to assist in ire preparation

of hydrologic inputs and the determine sion of control

rules and system parameters for a class of systems dealing

with reservoir: regulation.

Ideally, the raw hydrological da’: for the catchment

area in question should include historic records of

rainfall, infiltration rates, groundwater discharges,

surface run-off and evaporation rates, or records of

the total rates of flow of streams anc rivers at the

sites of the proposed reservoirs and 2; river regulation

points. Although the most igporbael records are usually

stream flows, which are, fortunately, «asy to measure

and are therefore often available, it is still useful to

have the other records when data analyses and data

generation have to be carried out in order that trends

in the components of total flow may be identified and

separated from purer random fluctuations. However,

assuming that records have been taken, care must still

be exercised in their use. In Chapter 2 worle.dionb

by the author for the Dee and Clwyd River Authority

will be described and it will be shown that the

existing run-off records at different points in the

catchment areas considered had to be adjusted because

of incorrectly calibrated flow measuring instruments

and due allowance had to be made for changing patterns

of afforestation during the period of record.

A great deal of research has been carried out in

recent years into developing sophisticated measuring

equipment in order to obtain true records, and also into

developing mathematical methods of analysing and

correlating the records available, since it is often found

that long rainfall records may exist for a catchment

but only a short total flow record is available.

Therefore, ways must be found of estimating the

required data from that which has been recorded.

After records have been collected and verified

short-term information must be extracted from the data

in the form of unit hydrographs and return periods of

floods and droughts must be found. These data may be

used to decide on spillway design flows or to assess

whether the historic record itself covers a critical

enough period to be used in designing the system.

The next process in design is to evaluate the demands

and constraints which will affect the system and to decide

the weights to be given to satisfying each demand if

sufficient water is not available at any time to satisfy

- all demands. As stated above, it is this area of study

which presents the greatest problems at the present time

since many of the constraints and demands conflict in

their requirements. For instance, there is an obvious

conflict between a constraint which requires that the

level in a reservoir should be kept below a certain limit

in order that flood water may be accommodated and a

demand for the supply of water which requires that a

reservoir should be as full as possible. Even more

difficult a problem is posed when socio-economic data

must be taken into account as is becoming necessary at

present. This type of data occurs as recreational and

amenity requirements such as sailing and fishing which

demand that rapid fluctuations in resenenie levels are

avoided. Fortunately, however, these benefits: are not

likely to conflict with water supply requirements.

De

In the work done for the Dee and Clwyd River Authority,

the demand was assumed to be to maintain a fixed minimum flow

in the River Dee at a point some way downstream of the reservoir

sites considered. This meant that the actual release from the

reservoirs varied with the natural inflow into the River Dee

between the reservoir sites and the regulation point. The idea

of maintaining a fixed flow might not bear too much scrutiny,

especially if the same flow is specified for every month of the

year, since it becomes uncertain how to evaluate the worth of

maintaining the flow and the cost of not maintaining it. A

fixed flow may be specified because it is easier for the

various industries. and private concerns involved to appreciate

how variations in the flow might affect them, but it may be

possible to find an alternative and less wasteful method which

would still satisfy the water users. The final area of study

may be described as the actual design of the water resources

system using the data available. In this part of tis problem

may be included any data generation which may be necessary if

the historic records are inadequate. When the data to be used

has been decided upon then it is necessary to choose a method

of using it to arrive at a meaningful solution to the problem.

This thesis has looked at the application of computers, both

i the general field of hydrology and in the particular case

of using the hydrological data to obtain operating rules and

optim.al designs of reservoir systems.

1.2. Current Design Methods

For a system consisting of more than one source, it is

known that a greater yield may be obtainable by the conjunctive

use of resources in a catchment rather than by their independent

operation, but the standard methods of design are not able to

6.

take into account the allocation of releases between resources

except in a very subjective manner, or for certain very special

cases.

The well-tried mass curve analysis of Rippl simply

assumes that one combined source exists and a total required

storage is calculated for the worst conditions of inflow and

demand. Having ascertained the total storage required, the

problem still remains of allocating the total storage between

reservoirs and of finding an operating rule to control the

fraction of demand released from each reservoir.

Therefore, with the advent of multi-reservoired catchments,

simulation of the performance of the system over a period of

historic or synthetically generated streamflows with various

possible control rules has been practised, the best combination

of reservoir sizes and applied control rules being chosen, as

measured by some kind of objective function. However, since

the choice of control rules is so wide, generalised control

rules, the same for several possible system parameters, tend

to be applied, with a consequent loss of accuracy in determining

the optimum operational policy. In the case of a new reservoir

being constructed to add to an existing systen, it is impossible,

with generalised, non-optimum rules, to determine objectively

the correct size of the new reservoir, since for every size

tried a different optimum rule will in general be required.

It is apparent that, if the rules employed in each simulation

are not at the optimum for that particular configuration, then

the costs and benefits of various configurations cannot be

compared with true objectivity.

New developments in operational research, however, make

it possible to find the absolute optimum rule for a system,

and to calculate the expected costs which will be incurred by

the use of such a rule. Hence, it now becomes possible to

7°

compare different reservoir configurations operating under

their own optimum operational rules.

The author will describe work carried out in conjunction

with the Dee and Clwyd River Authority using simulation

methods, and the development of a ohiieinent programming

procedure, namely dynamic programming, and its possible

integration into existing design methods. The work described

in this thesis is not meant to replace simulation exercises

completely, since the computational effort involved in dynamic

programming is high even for a two reservoir case, but it is

felt that for smaller projects, or for sub-systems of larger

problems, a more efficient solution is obtained by this

procedure than by any other method used at the present time.

Dynamic programming allows the determination of a true

optimum operating policy for a multi-reservoir, multi-use

system, using general constrains and benefit functions.

Methods such as linear and quadratic programming have been

well-developed in recent years, but their use may lead to a

severe simplification of the cost and bendit functions

associated with an operating policy.

The determination of a long term operating policy is not

beyond the scope of these methods, but even over a fixed time

period, a larger amount of computer time is generally required

for their solution than for the dynamic programming procedure.

1.3. Review of Current Literature

A paper by Butcher (38) which describes the different methods

of mathematical programming available concludes that the

dynamic programming computations are simpler and less time

consuming than the corresponding linear or quadratic

programming calculations, whether stochastic or deterministic

models are used, even with the one multi-purpose reservoir case.

8.

The various programming routines of use in water resources

planning are briefly described in a paper produced by Larsen

and Keckler (13) ea examples are given for the simpler cases.

The modifications of the basic computational procedures which

may reduce the volume of calculation in certain cases are given

but are not always applicable. Only the methods of general

use have been used in this thesis.

Most of the resources operation literature is concerned

with one multi-purpose reservoir but methods are described for

obtaining near optimal rules for multi-reservoir, multi-purpose

systems.

A paper by James (35) describes a marginal analysis of

reservoir benefits for flood control, water supply and recreation,

which yielded a rule curve showing maximum levels to be aimed

for each month for one reservoir case, and maximum volume alloc-

ation between uses. He mentions that a cyclic process of

optimising one reservoir at a time may be used for multi-reservoir

operation. Although dynamic programming is not used in this

paper it can easily be seen that it could be used instead of

marginal analysis and the same method of cyclic optimisation

could be employed for a multi-reservoir site and is basically

the same as the successive approximations technique described

by Bellman (10). This methodology was not adopted for the

purpose of this thesis, but it could be of great use in

reducing the computational requirements of dynamic programming

when more than two reservoirs are to be operated conjunctively.

The tendency at present is to try to achieve long term

operational rules by using stochastic data rather than relying

on a deterministic historical or synthetically generated trace.

Loucks (34) shows how to set up a linear program for the

9.

stochastic one reservoir case using a four season cycle with

random serially correlated inflows. The calculation produces

steady state target lake levels and discharges but the volume

of computation is large and the computer time involved is

expensive.

Lloyd (26) has considered the stochastic approach to design

with a one reservoir case and pumped storage but does not

consider optimising the control rule. The aim of this work was

to assess the long term probability of failure of a reservoir

of given size using the statistical distribution of inflows

rather than a deterministic trace. His paper illustrates the

technique involved in solving for steady state probabilities

of contents assuming no serial correlation in the inflows, but

he briefly describes how correlation may be taken into account

and states that the probability of failure may be increased

when correlation is considered because of the tendency for

high and low flows to form clusters. He also points out that

more work is required on the speed of convergence to the steady

state solutions which may be relevant for systems of

relatively short life. Lloyd's work concerned only one reservoir

and the operating rule is specified so that the transition

matrices could be set up. No optimisation is involved in the

work. : ”

The method of application of Lloyd's work to the case of

serially correlated inflows for the one reservoir case is

described by Harris, Dearlove and Morgan (27) and an attempt

is made to investigate the significance of serial correlation

in estimating reservoir behaviour. They carried out a steady

state solution of a two season model assuming independent

inflows to obtain the long term Deibabiii ties of being at

specified reservoir levels. They then repeated the calculations

10.

but assuming various levels of serial correlation between

the seasons. It was found that the inclusion of serial

correlation may greatly increase the probability of failure,

as expected, but the probabilities of being at the higher

reservoir levels was not much affected by any correlation.

The transition matrix approach of Lloyd, based on

Moran's work, is very similar to the policy iteration method

of dynamic programming described by Howard (12) in that a

set of simultaneous equations describing the state transitions

is solved, but Howard's method leads to a way of determining

the optimum long term operating policy. In the same way as

the steady state probabilities of reservoir levels may be

obtained by repeated multiplication of the transition matrices

instead of solution of the equations, Howard's value iteration

method of dynamic programming employs multiplication of

similar matrices in order to arrive at the long term optimum

operational policy.

Howard's latter method has been illustrated for a two

source system by Schweig and Cole (17) and seems to be the

only stochastic example of a multi-reservoir application of

dynamic programming in the literature, apart from a similar

paper written by Burley and Cole (20). A finite reservoir

operated in conjunction with a limited aquifer is investigated

in order to obtain the optimal long term monthly decisions

describing the quantities of water to be released from each

source given the reservoir level and whether the previous

month's inflow to the reservoir was higher or lower than the

average for that month. Four levels of reservoir contents

formed the discrete points at which optimum controls were

derived and five possible inflows with their associated

ll.

probabilities were considered in each month. The example

allowed for four possible combinations of releases from the

reservoir and aquifer which constituted the decision

possibilities.

Schweig and Cole stated that convergence to the long term

policy was mostly achieved in their experiements within five

years of iteration, where convergence is assumed to have

occurred when two consecutive years policies are the same.

However, Burley and Cole point out in their paper that this

might not be a sufficient test of convergence and that

Howard's policy iteration might be required.

Schweig and Cole mention that the transition matrices

which lead to the optimum policy may be multiplied together

to obtain the long term probabilities of reservoir levels and

hence to arrive at the expected costs of operating the systen,

which is similar to Lloyd's work. The costs may also be

obtained by simulating the outimey policy over a period of

synthetic or historic data. In this way alternative systems

operating under then optimal policies may be compared, but

Schweig and Cole state that the greatest hurdle is computer

running time, which forces the use of large state divisions

with the consequent inaccuracy, so that research is required

into speeding the convergence of the policy.

In some cases, where only one stochastic source is

involved, efficient methods of application of dynamic

programming may be possible. Some examples are given in a

technical memorandum of the Water Research Association (16).

Young (28) has described a method of using a deterministic

dynamic programming approach, combined with regression

analysis of the results, to formulate an annual release policy

le.

based on synthetically generated inflow traces for a one

reservoir case.

By standard statistical analysis of historical records

Young was able to generate 1000 years annual inflow traces.

Also, by specifying a correlation or reliability between

any year's inflow and a forecast of that inflow made in the

previous year, he was able to generate 1000 years of forecast

data corresponding to the inflow trace, for any level of

reliability.

The first step in his methodology was to perform a

forward looking deterministic dynamic programming calculation

on the first inflow trace starting from same given reservoir

level. However, conventional backward looking dynamic

programming may be used instead and may be used with more

generality. Having thus obtained the best policy to follow,

based on some economic loss function, in each year of the

1000 year record, he applied a regression analysis to the

results. The last 100 years of the dynamic programming was

ignored to avoid end effects. The left hand side of the

regression function was the rule obtained from the record and

the right hand side was a combination of the storage level &

which this rule was chosen, the inflow, and, if required, the

forecasted inflow for the next year obtained from the second

trace generated. Itisa disadvantage of Young's investigations

that the current year's inflow is assumed to be known.

Young employed two types of economic loss function in

his analyses. One was a quadratic loss function of the type

Li = (7-Di)® where Li is the loss in the ithyear and Di is

the rule, which is the amount of water to release in the ith

Los

year and the other was the piecewise linear loss function

Li = 4|7-Dil. The constant, 7, represents a target release

figure.

Young also investigated two types of regression function,

linear and quadratic. The linear function was:

Di = a, t+ a, Si + aoXi + az Xitt i

where Si is the storage in the ith year and Xi + 1 is the

forecasted inflow for the (i + 1)th year. The a's are the

regression coefficients.

The quadratic regression used the same variables and

was of the form:

: ; , v. ae : a
Di = a, + ay (Si- + Xi). + aXitl + az Xi+l + a, (Si + xi) +

ac (Si + Xi) Xi+l

Young tabulated his results in a most compact and precise

manner, the implications of which will be described briefly.

To investigate the errors involved in using an estimate

of a policy rather than the population policy, Young generated

twelve 1000 year inflow traces from the same population

parameters, using the same reservoir size of four units and

the quadratic loss function +o determine the linear regression

function applicable to each. Young did not include forecasting

in the regression for this investigation. He then routed each

policy through a 1000 year simulation to obtain the economic

losses involved. Different inflow traces are used for each

simulation but Young does not say whether he uses the same

inflow traces for the simulation as he used for the equivalent

dynamic program, although it is implied that they are different.

In order to compare the losses obtained to some fixed

reference, he carried out each simulation again but using the

14.

standard queuing theory policy, which is to release the target

draft if possible, to release all the available water if this

is less than the target, and to release more than the target

if a spillage would occur.

Young then calculated the ratio of losses obtained by the

dynamic programming method and those obtained from the standard

policy. He found that the average ratio over the 12 trials was

about 0.88 with a standard deviation of 1.05%, which is a very

consistent result. He" then generated 100 inflow sequences

and ran simulations with this data using one fixed regression

function. This was intended to find the errors involved in

using a sample policy instead of the population policy. The

average loss ratio was again about 0.88 and the standard

deviation was 0.17%.

These two experiments show that the main source of error

is in the regression function estimation.

Young repeated the method of using a fixed linear

regression function and 100 simulations with various reservoir:

sizes and with several forecast reliabilities using the quadratic

loss function. In all cases the standard deviation of the loss

ratio was small, the maximum being 0.32% and the loss ratio

itself showed that the regression policies gave improvements

over the standard policy of from about 10%-30%, the larger

improvements being obtained for larger reservoir sizes.

Using a reservoir size of four units, Young studied the

loss ratios obtained for linear regressions and quadratic loss

functions with increasing forecast reliabilities. Twelve

regressions were carried out with reliabilities from O to l.

The results showed that an improvement over the standard policy

16

was achieved in each case. Young then calculated the

percentage improvement in losses obtained by the forecasting

cases over the no forecasting case. He deduced that

improvements were zero or small up to a certain bneuiothe

reliability but after this the improvements increased

monotonically with the increase in reliability, the maximum

improvement achieved being 8.2% for perfect reliability. A

study of Young's tabulated results does not show a monotonic

increase, improvements being the same for some reliabilities

and even falling for higher reliabilities. However, these

fluctuations may be due to sampling errors and Young's deduction

seems logical but more results would be required to show that ,

this is a general trend.

He repeated the experiment using reservoir sizes of 7,10

and 15 units, and the same type of results were obtained,

showing that for the quadratic loss function, the dynamic

programming method combined with regression analysis leads to

a better policy than the standard queuing theory policy, and

that the higher the forecast reliability the more the

improvement.

Young then studied the results obtained using linear

regression and the piecewise linear loss function. He found

that in all cases tried the standard policy was as good as or

slightly better than the dynamic programming - regression

analysis policy, but because of the consistent results obtained

with the quadratic loss function, it can be assumed that the

standard policy is optimal or near optimal and that the errors

caused by discretisation of the reservoir levels and the errors

involved in the regression estimation do not allow this method

16.

to achieve the standard policy exactly. The maximum

difference in losses between the standard policy and the dynamic

programming policy was 6% and the range was 2%. Further there

does not appear to be any pattern in the differences for the

various reliability levels. Bearing in mind the error of 6%

resulting from discretisation of the dynamic program, it is

possible that this method could achieve Seen better results in

the quadratic loss case if the intervals of discretisation

were made smaller. Since the standard policy appears to be

the best for every level of reliability of forecasting, this

confirms that 'hedging' against future losses is less important

with a linear loss function but Young's statement that

forecasting has no bearing on the policy for the piecewise

linear loss function is only true when any spillage that occurs

is assumed to add to the draft. When spillage is regarded as

waste water hedging may become important.

Using the quadratic regression function and the quadratic

loss uddvion with a reservoir size of 10 units, Young then

carried out five trials with varying forecast reliabilities.

He found that no forecast case gave very little improvement over

the standard policy but large improvement (23%-27%) with

forecasting. Young's interpretation of this result was that

the large improvements with fomcasting were misleading since

the no forecast case only gave an improvement of 4%, and that

the large improvements could be due to the addition of linear

forecasting terms in the regression equation. He then states

that the large values are not critical since comparative

improvements over the standard policy using the linear

regression function were equal to or greater than these. Hence,

“7

he deduced that the quadratic regression results were less

desirable since both sets of results represented answers to

the same problem. By inspection of Young's table of results

it can be seen that it is simply not true that the improvements

gained by linear regression are equal to or greater than those

gained by quadratic regression, even within ‘sampling error'.

However, Young's further deduction that ee tcae be inferred

that dineen regression is as good as or better than more

complicated (i.e. quadratic) regressionS when a quadratic loss

function is used is probably true because the multiple

correlation coefficients are much lower for the quadratic

regression.

Using the results obtained, Young plotted the percentage

‘honey simats achieved over. the standard policy for the perfect

forecasting and no forecasting cases for various detention

times. His detention time was the reservoir size divided by

the average annual inflow. He found that both curves showed

an increase in improvements with increase in detention time

until a ceiling was reached at 35% improvement at a detention

time of about two years for the perfect forecast, and an

improvement of around 30% at 2.5 years for the no forecasting

case. He noted that the perfect forecasting and no forecasting

curves approached each other as detention time increased and

he concluded that large storage capability is a sufficient

hedge against an uncertain future.

Young also plotted the improvements of various levels of

forecasting over the no forecasting cases against detention

time. The curves form a skewed bell shape relative to the

time axis. The curve for perfect forecasting reached a maximum

18.

of about 10% improvement when the storage was equal to the

target draft figure and then tapered off. The decreasing

percentage improvement of forecasting over no forecasting

shows again that the impact of one year forecasting diminishes

with increasing reservoir size(Sm).

In conclusion Young states that the optimal policy is not

necessarily the standard policy of queuing theory and the

penalty of using the standard plicy when it is not optimal

may be as much as 35% additional loss. Experiments indicate

forecasting to be of value for quadratic loss functions but

not for the piecewise linear loss function used. For quadratic

loss, the importance of one year forecasting increases with $m

to a maximum and then decreases. Forecasting has little

significance for large reservoirs, but for smaller ones perfect

forecasting can almost double the percentage improvement due

to using an optimal policy rather than the standard policy.

Young's work is of great use but he did not investigate

the relationship between the policies obtained by his

deterministic dynamic programming method combined with

regression analysis and the optimal policies which might have

been achieved with stochastic dynamic programming.

Some indication of this comparison is given by the

consistency of his results when simulating the system using

the regression functions obtained from various inflow traces.

However, it is believed that the results presented for this

one reservoir case are not sufficient to show the great

_improvements which can be obtained by using dynamic programming,

since the optimum policy will never by very different from the

standard policy for a water supply reservoir.

yas

“~The author has investigated the application of both _

Howard's value iteration and policy iteration methods to a

‘ system of two reservoirs and, independently of Young, came

to the same conclusion that the computational effort was not

- justified in view of the inherent inaccuracies involved

because of the gross discretisation necessary £6 eonting

computer running time to realistic proportions, and that some

kind of Monte Carlo deterministic dynamic Sere enmninr approach

“is preferable when more than one source is stochastic.

(1.4, The Objective Function

he It has been stated above that whichever method of

determining an optimum sizing of resources and the relevant

operating policy is used, the performance of the system must

‘be measured against some kind of objective loss or benefit :

“function. Very often, though, aaiy # subjective method of 3

‘appraisal is used in simulation exercises because the

 -hydrologist cannot define his objectives in mathematical terms

: but only has a basic intuitive feeling of the result required.

.However experienced the hydrologist may be this method of

approach is obviously open to inefficiency if not error. ‘In

“wiew of this, and because more mathematical methods demand if,

it is felt that as much as possible of the problem should be

expressed in objective terms and that any part of the problem

-.-which must still be thought of ina suede way should be

considered only after several tentative solutions have been

obtained using only the objective data. At least in this way

the hydrologist will be able to see clearly what proportion

. of his solution depends on fact and what proportion depends

on assumptions.

a
e

205

1.5. Use co Computer Languages

Because hydrological problems usually involve the

manipulation of large volumes of data, the use of computers

becomes especially important to the hydrologist in order to

cut down the time involved in what is generally a repetitive

and $pciious process. However, the writing of computer

programs to carry out the calculations can become extremely

complicated and time consuming in itself, and because of this

the author has investigated methods of facilitating the

communication between the hydrologist and the computer. Because

of the successful use of simulation languages in inventory fields

and other queuing problems it appeared that a language might

help with the reservoir simulation problem. Properties of

languages, and the properties of the problem were compared and

experiments were made with the general purpose Hydro Language

~ developed by Bugliarello (1) at the Carnegie Institute of

Technology. Modifications to the basic language were made to

further evaluate the possibilities since the original structure

was not flexible enough to allow sufficient user control over

the course of calculations, and, more important, because the

original system contained flaws in the logic which would not

allow it to be used in the way that Bugtarello envisaged.

Routines may be incorporated with the language to

manipulate raw data and convert it to a form suitable for

reservoir regulation problems and in particular into a form

suitable for simulation or mathematical programming exercises.

The specialist simulation languages looked at had very

little appeal in regard to the water resources problems

because of the more complex data structure required in this

ens

field than in the industrial problems to which the simulation

languages are applicable, and because of the greater complexity

of decisions used in operating a water resources system.

After a thorough study of the different levels of problem-

orientated languages (POL'S) it would seem that the stages |

leading up to the design of reservoirs and their operating

systems lend themselves to efficient treatment using POL'S,

but the actual design process would be best approached using

only a data interface with the POL. The dal etion of a

reservoir system and the application of dynamic programming

‘procedures, which have much in common with simulation, are

best carried out using a universal language, such as Fortran

or Algol, but using the simple data structure of a system

like Hydro or Genesis. With this in mind, the author has

allowed for the use of pure Algol code in the Hydro language.

A real problem was considered and current methods and

newly developed methods of solution applied to it, and levels

of utility of the language were defined. The applicability of

the language in data checking, correlation analysis, manipulation

and generation of synthetic data was found good. Once a sim-

ulation or description of the system had been set up for the

problem, modification to program and data are facilitated with

a language. This can be done to some extent with an advanced

computer operating system, such as the George 3 System used on

I.C.L. machines, and it can be seen how new developments in

hardware and software can corrupt work being done or render it

obsolescent. However, it can also be seen that a system which

remains stable as far as the user is concerned is desirable and

languages such as Hydro can be updated to take advanage of new

methods while the users input can remain the same.

CHAPTER 2

THE SIMULATION METHOD

2.1. Introduction

At the present time the most favoured method of designing

water resources systems and ascertaining the appropriate operating

rules is to use simulation with either the historical records

of flows or synthetic records. An operating rule is chosen,

releases are made accordingly, and the consequent levels of the

reservoirs throughout the period of records are analysed, partly

objectively and partly subjectively to determine whether the

system satisfies certain constraints.

The Water Research Association have used search methods

coupled with simulation to assist in the finding of a good

operational plan and system configuration. System and control

parameters are fixed and a simulation is performed, resulting

in an overall operating cost measured by some objective function.

The parameters are changed, in turn, to find the improvement in

the objective function. The search methods are designed to

prohibit backward moves on the response surface once a feasible

move has been made. These methods are useful and relatively

cheap in computer time when only a few system parameters exist,

but complicated control rules and configurations might lead to

excessive computer running times.

It is felt that systems might be unrealistically over-

simplified if designers attempt to use these methods in all

instances. As an illustration of the simulation method, the

author will describe work carried out in conjunction with the

Dee and Clwyd River Authority over a period of about twelve

N

WwW es

months for the determination of the optimum sizing of the

proposed Brenig Reservoir in North Wales, and for the deduction

of a suitable operating policy for the allocation of releases

between the Brenig and the other major source in the systen,

Llyn Celyn.

Cele The problem

Figure 2.1, shows the River Dee and its major tributaries, its two

regulating storages at Llyn Tegid and Llyn Celyn, the amounts and

locations of the principal abstractions for public water supply, and the

location of the principal river Dee gauging station at Erbistock.

Releases to the river are controlled by sluices at Bala; as these are

downstream of the Dee / Tryweryn junction, the sluices control not only

the level and flow from Llyn Tegid (Lake Bala), but also the flow from

the Tryweryn, releases to which are in turn controlled by outlet valves

at Llyn Celyn.

Since the existing reservoirs in the area are used to regulate the

river Dee in order to maintain a prescribed minimum flow upstream of the

Erbistock gauging station, the yield obtainable by construction of Brenig

reservoir can only be measured in terms of the increase in maintainable

flow which is obtainable at Erbistock. The preparation of the data

“necessary for the determination of the behaviour of the system for various

prescribed flows is described below.

wore
mE
e
e
 Ae a

Reg
she

R
N
G

CO
T
E

TRS wre
a HRS

Reg
So engee

momma
m
e
t
e

eatin |
aire

<n
see

ancnneeencte

AMIENS
URI

Si1ehe
vos

o
r
o

ee
oy 7

g

ashe
qvos

S
N
O
I
S
V
G
L
S
E
Y

G
N
¥

S
u
i
O
A
Y
S
S
3
S
Y

A
v
d
I
O
N
i
e
d

SS
B
w
L
a
N

oa

‘
ees

i

W3iLSAS
330

Y3AIY
ns

-
Ve

aig
,

|
.

7
)

;
a
t

:
‘
D
R
I
E
D

1000.
fF

P
N

‘%s
;

“cD
S
a
k

B
S

U
G
A

:
\:

ae
*

,
‘
D
a
w
e
s

S
T
S

G
p
a
v
o
s

=
B
a
y
n
w

S
u
n
c
s
a
n
d

C
w
V
v

2
V
R

Ro
e
v
n

w
a
r
m

:

.

7

ard
is

a
e

(
J

G
i
T
B
a

Pee

N
A
S
T

e
,

t
i

4

%o
S
S
a

o
vy

a
h

N
e
y

=
~

c
N
A
N

N
M
O
M
W
A
S

D
H
I
D
O
V
D

W
A
T
S

A
D
V
O
L
S
'

S
S
B

S
B
w
O
D

S
t
o

O
T

B
R
E
V
A
N

D
S
w
m
M
s
r
V
|
E
e
r
~
Z
d

S
a
v
e

S$
W
w
n
r
n
a
a
m

:
"
W
A

rIX E
M

.
3

A

m
M
o
n
n
s
e
s
y

~~
T
A
N
I

P
B
W
O
D

F
E
O

C
E
v
e
g

S
A
V
W
A
S
T
S
s
A
v
y

M
G
I
L
I
5
D

o

a.
<=48

R
B
W
O
D

G
E
:
o

b>
°

sey
7

5°
e
e
e

o
D

e
e

a
e

3
.

(
w
u
n

Se e
i
a
e
a
l

a
o
e

_
Te

G
u
v
o
w

w
e
e
r
w
n

A
v
o
r
n

S
e
v
e
n

z
a
i
v
m

A
v
o
s
i
a
A
\

S

"
D
B
W
H
D

S
r
e
e

T
M
O
V
A
W
W
O
S
T
O
D

N
M
O
O
G
B
S
A
I
T
-

W
I
W
A
D

SVNwB-O

G
a
v
o
g

w
s
a
i
v
s

A
W
r
s
e
i
s
s

OO
eer O

N

26.

Zed Brenig catchment

The proposed reservoir site is situated on the river Brenig, and has

a catchment area of 20.2sq.km. This catchment area does not include

Llyn Bran, which periodically overflows into the Brenig headwaters, or

the stream diversion at Pant-y-Maen taking water from the Brenig

catchment into the river Clwyd area. Measurements of these two flows

since January 1968 show that the net effect is small, and amounts to an

annual outflow of 3 cusec day. The I9I6-1950 annual average rainfall

over the catchment area is 1308 mm and the average discharge is

0-539 eumecs.

The discharge from the river Brenig, measured at the Pont-y-Rhuddfa

gauging station, was recorded from 1922 until 1968 (Table 2.1.) by the

Birkenhead Corporation and later the Wirral Water Board, until the Dee

and Clwyd River Authority assumed responsibility for its operation.

Checks on the theoretical rating curve for the gauge revealed that the

curve underestimated the true flow by 0 to 15% at flows less than I.5

times the average discharge and flows greater than 10 times the average

discharge, and consequently the data in the surface water year book series

will give underestimates of daily, monthly and annual flows with the

percentage error depending upon the individual flow distributions.

However, for several reasons, it was decided that the recorded data would

suffice for yield calculations without anmmendment.

Firstly, the flow data required for yield assessment should be

representative of flows which would occur when a large reservoir exists

in the catchment area. The evapo-transpiration losses from a large

reservoir would exceed similar losses from a heather and moorland area,

leading to a reduction in the total runoff from the catchment area, and

hence the flows required for design purposes should be less than the

true historic flows.

Secondly, the increasing afforestation of the Brenig valley with evergreen

conifers will have enforced a gradual change on the rainfall /runoff

relationships for the river, and because of this it is likely that

evapo-transpiration and interception losses have been gradually

increasing over this period of years, and will probably continue to do so

until the trees reach maturity.

Thirdly, analyses of the losses from 1922-1955 showed certain

inhomogeneities in the Brenig runoff data, the issue being confused by

progressive changes in land management from 1922 onwards.

Consideration of these points reveals that the underestimation of

discharges in the historic record is qualitatively compensated for by the

fact that the data are to be used to represent a catchment area with

diffemt land use and increased evapo-transpiration losses.

24. Erbistock data

Daily discharges have been recorded at the Erbistock gauging station since

October 1937 but the measured flows differ from the natural daily flows

which would have occurred if there had been no interference with the

ives and its tributaries. Therefore, the measured flows have been

adjusted,as described below,to allow for the historical increase in

control of the river, in order that the natural daily flows could be

estimated for the purpose of deriving the effective aeloAses required,

over and above the compensation water, to maintain the prescribed flows.

The Alwen reservoir is a direct supply reservoir operative for the whole

period of the Erbistock record. However, it is assumed thé during low:

river flow periods, when regulation water el oebal are required, the

compensation water is equivalent to the natural flows from the Alwen

catchment area, and that no adjustment to the Erbistock measured flows on @

daily basis is warranted.

Upstream of Erbistock, abstractions are taken from the river by the

Llantysilio Canal Intake and the Fron Pumping station, which commenced

opetation in 1959. Monthly total abstractions from the river were

converted to daily means for each month for which abstraction data existed

(from October 1950) and the daily means were added to the individual

measured daily Erbistock flows. For the period 1938-1950 the mean daily

values were estimated as being 0.31 ewmec (Jan. Feb. March. Oct. Nov.

Dec.), 0-34 cumec (April. May) and 0.43 cumec (June).

Another factor which affected the historical Erbistock record was the

flow from Llyn Tegid (Bala Lake). Prior to 1956 the lake level fluctuated

naturally with the discharge through its outlet at Dee Bridge, and was

marginally adjusted during dry periods by the Canal Company to provide

Nh
oO

.

slightly increased outflows. No adjustment for these effects was made

to the Erbistock recorded flows for this period. As a result of the Bala

Lake works, completed in 1956, the outlet of the lake was reduced and the

ewe level controlled by sluices ; under the operating rules during

spring and summer, lake retention levels were increased to provide

regulation water for maintaining a prescribed flow of 28.9 ewmecs at

Erbistock. Although individual daily flow corrections at Erbistock were

not readily calculable for this period (1956-1964) an approximate monthly

adjustment to effective releases during dry summer months when regulation

water was being released from storage can be made.

After the construction of Llyn Celyn which was completed by Autumn 1964

and commenced refilling at that time, it was impossible to adjust

measured Erbistock data other than on a daily basis and this was a

laborious task of questionable accuracy. The only justification for this

effort would have been to derive data for the dry summer of 1969, but in

terms of total runoff at Erbistock the July to October dry period was

comparable with several other years already included in the 1938-1964

data period ; it did not represent an event of the order of a I% or 2%

critical period. Accordingly, effective release data were cdculated on

estimated natural Erbistock flows for the period 1938-1964 only.

The quantity of water requiredto be added to the estimated natural

Erbistock flow in order to maintain the prescribed flow was determined

for each day and these daily values were summed over the calender months

to yield the effective release data. In deriving these data it was

assumed that perfect regulation, or addition of exactly the right amount

of water, was possible. Monthly effective releases for various

prescribed flows are given in tables 2.3. to 2.7.

The effective releases are only the releases required in addition to the

30.

natural flows at Erbistock, which include Brmig and Celyn runoffs,

since the compensation water releases from Brenig and Celyn are assumed

to be equivalent to the natural runoffs from these catchments in dry

periods when regulation is necessary.

For a simulation, the longer the record of flows available, the more

accurate will the yield calculations be. However, the existing record

of Erbistock flows and the deduced effective releases cover only the

period 1938-1964 (table 2.2.) but analysis of the nearby Lake Vyrnwy

runoff record from I9I0-1964 (table 2.9.) showed that no less than 7 of

the 8 most severe droughts lasting 8 months were recorded before gauging

started at Erbistock, and it is therefore essential to estimate the river

flows as far back as possible in order to derive more reliable estimates

of the behaviour of the reservoirs in individual or concurrent dry years.

Since the Brenig runoff record was the longest, being measured since

I922, it was decided to try to extend all records back to this time, so

that simulations could be carried out with over 40 years data.

It was first necessary to estimate the individual monthly runoffs at

Erbistock 3; regression equations of the form :

Erbistock runoff = A Vyrnwy runoff + B Brenig runoff

(cusee days 103) (ins) (cusec days 103)

were estimated as follows 3:

Month a 3
January 0.6125 53-59

February 5.2878 21.23

March 3.9386 31.08

April 74610 0.00

May 2.9984 32.9461

June 4.2195 21.8247

3I.

July 4.0388 21.9383

August 2.7318 33.8980

September 3.6645 27.3745

October IT.4315 44.3067

November 2.8295 35-4793

December 4.8350 2201213

These equations gave good agreement between generated and recorded runoff

data from 1937 to 1964 at medium and high runoffs, but they tended to

consistently underestimate Erbistock monthly runoff during dry months.

To improve the accuracy of the generated data, in all cases where the

above equations forecast a monthly Erbistock runoff of less than I0000

cusec days a revised equation relating Erbistock runoff to Brenig runoff

only was devised ;

Erbistock runoff = 83xBrenig runoff

(cusec days 103) (cusee days 103)

The generated data, incorporating this revision where required, are given

im: table.2.il.

Since regression analysis yielded very poor results for determining

effective releases from the Erbistock monthly flows another method of

estimation had to be employed. The effective releases corresponding to

the generated Erbistock record and their daily flow distributions within

individual months, for use in pumping calculations, were obtained by

replacing the individual months in table 2.II by the most similar month

in the measured Erbistock record 1938-1955.

The procedure used in selecting these months was as follows ;

32.

ae Take Erbistock predicted monthly runoff from Table 2.II. for (say)

April 1938 : 9.95.

be Select April runoff from Table 2.2. closest to 9.95,

i.e. April 1946 (9.81), ensuring that previous months runoff (March

1946) in Table 2.2. is not grossly dissimilar to that of March 1938

in Table 2.II.

Ce If no suitably close April record existed in Table 2.2. use the best

record in either of the adjacent months (March or May) in Table 2.2.

d. In autumn, during the month when a drought breaks, baste is a very

poor guide to effective release 3; the modified selection rule in

such cases is 3

i. If predicted Erbistock runoff for September, October or

November exceeds 10000 cusec days and if predicted Erbistock

for the previous month is less than I0000 cusec days then

selection must take account of previous month's effective

release.

ii. Find from Brenig daily flow records at what time the drought

broke midway through the month, and if this is +, 4%, or $= way

through assume that effective release is 25%, 50% or 75% of the

effective release for the previous month 3; use Table 2.5. for

comparing effective releases and select a suitable month from

Table 2.2.

The revised synthesised Erbistock record is made up of months from Table

2.2. selected as described, and is itemised in Table 2.12: the

corresponding runoff record is given in Table 2.13. and its comparison

with recorded annual runoff data for the period 1938-68 is given in

Figure 2.3. The graph highlights wide deviations from recorded data in

the years 1957-1960 which suggests over recording of discharges, a

possibility supported by water balance cdculations in those years.

ut

ww

a

However, apart from these years (1957-1960) there is agreement between

synthetic and measured runoffs to within + 40,000 cusec days,

approximately I0% of the annual average.

The months specified in Table 2.12. by the use of Table 2.5. corresponding

to a prescribed flow of 400 cusecs at Erbistock, are used for the other

prescribed flows tried out in the yield calculations.

The effective releases for a maintained flow of 400 cusecs, derived from

Tables 2.12. and 2.5. are given in Table 2.143 the comparison of

synthesised and recorded effective releases is given in Figure 2.4.

This shows a standard deviation of : 4000 cusec days in the accuracy of

individual annual effective releases, which is notunreasonable considering

the difficulties in synthesising accurate annual effective releases.

Figure 2.5. shows the comparison of the cumulative probability

distribution of annual effective releases ; the synthesised 1939-64

data compares acceptably with the recorded 1939-64 data, and the final

mixed record to be used for simulation purposes (1923-38 and 1956-64

synthesised, 1939-64 measured data) is also seen to have a similar

probability distribution, erring on the conservative side.

The final combined synthetic and recorded Erbistock record is therefore

made up as follows :

1923-38 : synthesised data

1939-55 : recorded data

1956 - 64 : synthesised data

The tables giving this data are as follows :

Table 2.15 : Erbistock monthly and annual runoff (cusec days 103)

Table 2.16 : Erbistock monthly and annual effective releases,

maintained flow 400 cusecs.

Table 2.17 +: Erbistock monthly and annual effective releases,

356

2056 Celyn data

Runoff from the Llyn Celyn catchment area hasbsen measured since September

1962 ; the reservoir commenced filling in September 1964 and since that

time natural monthly runoff has been deduced from releases, bpamsreh) cual

and catchwater inflows. The calculated monthly gatawer runoffs are given

in Table 2.8. For the purpose of simulating the performance of the

reservoir system over any historic data period it is necessary to

estimate the monthly runoffs from the Llyn Celyn catchment area assuming

that a reservoir existed in the catchment 3; the chosen method of extending

the Celyn record back to 1923 is that of correlating the Llyn Celyn

runoff record for the Sarl od 1962-1968 with the Brenig runoff record in

Table 2.1. and the Lake Vyrnwy runoff record shown in Table 2096

The regression equations obtained were of the form ;

Celyn runoff = AxVyrnwy runoff + BreBrenig runoff

‘) 2) (cusec days I0 (ins) (cusec days I0

and the values of A and B for various months were :

Month aC 20: B
January 0.654 41.298

February 0.691

March 0.759 -I.242

"April 0.410 +1.909

May 0.659

June 0.785

July I.303 =4.153

August 0.744

September 0.634

October 0.760

‘November 0.688

December 0.076 +5510

366

However, using these coefficients it is possible to obtain negative

runoffs in March and July ; a further regression analysis was performed

for these months using Vyrnwy only, which yielded coefficients of

A = 0.634 and A = I.03 respectively. a2 Gt.

The monthly runoff data generated from these equations are given in

Table 2.103; the comparison of the generated and recorded data is good,

but this is to be expected because of the limited amount of recorded data

available for Celyn.

As an addition to the Celyn flows as calculated above, a further 8% of

the individual flows was used to allow for inflows to Celyn from the

Hesgin catchwater.

2.66 The Design method

Using the data as obtained above, a computer program was written to

simulate the behaviour of the Brenig and Celyn reservoirs over a period

of forty years, with specified monthly operational rules.

The required retention levels for Llyn Celyn and the statutory

compensation releases for both reservoirs were stipulated.

Since the required maximum storage for the Brehig reservoir was not known,

an arbitrary high figure of 100,000 cusec days was used. The use of such

a figure allowed spillage but did not allow the reservoir to run dry over

the period of record. The size of the existing Celyn reservoir was

31859 cusec days.

Various control rules were tried for each prescribed flow in order to

achieve the best sequence of levels over the period, so that the

reservoirs were not drawn down for long periods of time or to ensure that

one reservoir was not empty while the other was full. Also, large, rapid

fluctuations in the reservoir levels were not desirable in view of the

proposed use of the reservoirs for recreational and amenity purposes.

For the Brenig/Celyn system, it was obvious that more water could be taken

from Celyn than Brenig in the normal operation of the reservoirs, since

Celyn has approximately five times the annual inflow of Brenig, but,

bearing in mind the amenity use of the reservoirs, it was thought that the

percentage contents of each reservoir should be equalised as far as

possible.

The first tentative rule to be tried was to treat Brenig as a reserve

storage and hence take all effective releases from Celyn unless Celyn fell

to the dead storage level of 5259 cusec days, when the remainder of the

effective release in any month would be taken from Brenig.

38.6

Analysis of the resulting levels showed that at the higher prescribed

flows the contents of the two reservoirs were not in balance and that

there was a sudden switch over from use of one reservoir storage to the

other in the middle of a year.

Consequently, it was decided to make use of Brenig storage more

frequently in order to equalise the drawdown in the reservoirs.

It was known that a total of approximately 5600 cusec days of storage

could be released from Brenig during the spring and summer seasons and

that this would gorse y be replaced during the autumn and winter months

when high precipitations occured, so that it was decided that from March

to September the first 700 cusec days of effective release in any month

would be taken from Brenig as long as Brenig was not overdrawn by 5600

cusec days. In order that Celyn would not be drawn down to dead water

level before large releases were made from Brenig, a threshold level in

Celyn, below which a fraction of the demand would be taken from each

reservoir, was applied. Because Celyn refills much faster than Brenig,

the threshold level could not be too high or loss of water by spillage

would have occurred. Therefore, several levels were tried out in the

range of I0000 to 20000 cusec days of storage in Celyn for the various

prescribed flows.

From the simulations, it was possible to construct graphs of return

period against total combined storage depletion in the reservoirs for

each prescribed flow, as shown in Figure 2.2.(a)

Log. i.

——>
Netw —

period

ORE Prescribed Flow

Fig. 22; (t)

39-6

Extrapolation on these graphs yielded the total depletion and hence

required storage, for a return period of once in one hundred years, for

each prescribed flow, (Fig. 2.2 (b)).

It was assumed that before 198I a major decision would be taken by the

regional planning authorities coricerning the development of the River

Dee, and so it was decided to construct as a possible first stage a

reservoir at Brenig which was capable of supplying the water required for

regulation only as far as I98I.

Between 1975 and 1978 an increased flow of 50 mgd will be required and

between 1979 and 198I an increase of 73 mgd.

From the graph of storage required against prescribed flow an increase of

50 mgd in the prescribed flow wuld require an active storage of 21000

cusec days at Brenig. Since the average annual inflow to Brenig would be

only 6500 cusec days, a reservoir at Brenig with a storage much greater

than about 20000 cusec days could not be constructed and refilled before

I975. Therefore, it was decided that a reservoir of active capacity

21000 cusec days, capable of maintaining an increase in prescribed flow

of 50 mgd at a risk of I% over the period 1975-1978 would be constructed

at Brenig, and the required increase in flow of 73 mgd between 1979 -

I98I would be supplied at a risk greater than I% for two years, until a

decision had been made either to increase the size of Brenig reservoir

or to supply the demand from another source.

The control rule applicable to the two reservoirs for an increase in flow

of 50 mgd was found to be to take all effective releases from Celyn until

the level fell to I4000 cusec days when two thirds of the effective

releases would be taken from Brenig.

Deeseddently. Binnie & Partners developed a daily simulation model for

the system and it was found that this monthly policy was still applicable

with minor modifications.

“|

<
'

.

:
{

.
i =

i
:

2)
'

5
1a

‘
fase)

fos
kgs?

S
2

z
.

i
nom

ee
:

oe
FE

ot
“9

O°}:
{

*
.

\o
te

:
cay

"°
a

.
j

.

|
e

Pe
e

23
q

ie

<
a
r
y

i
G

foes
:

3
:

5
i

:
-

i
3

g
=

m
o

:
:

ee

2

<
.

se
m
e

a
:

i
“
N
D

a

3
pee

gq
3

2
‘

ee
T
a
e

i
rt

|
e
y

roe
:

o
e

S
h
e
.

i
e
e
e

o
e

=
i

ee.
‘

e
a

a
+

i
:

i.

= V}
e is

j

:

0
ee

2
bo

SEAT
Ts

geen
:

:

Dbice] EPEC U%
sme" vase

fae
a

ee
ete

ee
"

gasNoy
AYANNY

nOIsIgvg
aautsvay

SoG
e
e
e

eo
e
l
e

o
e

ei
ee bee

Stet
By

jaae
mys

i
p
e
e
k

ia

- *

- Freane: ra a

WILL T

TH ad amet es een = Somme, gees

AO29 were:

 +
.

DSTI NSS

 OFF 4 \ |

2. P49

ELLOS re.

of THe PRE

Od

Ss
ao

MET Aart

CHR ISTOLL EFFECTING RILTASES |

ic tae

SisCb E#SISTOCK

PE DICT

on
aes

ROR

fi

i

t

BE

YAVHe Tt 3

AT Frings ce ene
’

ereigon of - Con LAND Hedevers ANY
— -

@. coef ae Beas ke
es

got
&
T
A
V

A+
DDicDd

JAMLIT
II”

TUANNY
“s20uS19ya

|

an
eS

he

é

f

a

ty
Gn

“el!

es I mood

Crasuncd
- et

DATA:
oR

,
s ~

DATA”

“A AMT OITO Flor oF

He8s
= bande

8
>
2

bee

1%

“We

a

\

sits
j

BE

So aca op atin nc ag See

EQTIVE. RF

rat

ANNUM

ie de

dires

SOCK, \

=

=2

re

+

\

qs

SED C

ao

o
- USYRTHE

 Sheets

42.

UT RUNZ ‘ Com

mm
N
e
t
i

a
l
a

|
'

QISE

10
20

30
40

50
60

70
30

30
95

V
e
e
b
o
b
d
i
h
y

A

caval ty

0.0%
0.05

0.1
0.2

0.5
i

2
s

+
i
—
+
—
~

99.8
99.9

Gis Fig.

Table 2.1.

Measured Monthly Runoffs (cusec days *I000) - River Brenig at Pont-y-

Rhuddfa

Year | Jan.| Feb | Mar Ap. May Jn Jy Aug Sep! Ock | Nov | Dec Anal
1922 Lot

1923} ~78|1.74| -61 | «15 |.80 |.22/.09| .29}] «51 /1.52 |1.32/1.13|9.1G

L924) 295) 2234 024 1-533. [oe 71 6511030) 686 (1.04) 90) 4661718) 7.92

19254° 205 1655 | 45) 033038 1.19) .04)] .05| 653) 2951 27211 .201 7.25

I1926/1.20| .60| .50| «12 |.39 |.12|.48] .33] .62] .75/1.42| .42/6.95

1927| -97| «46/1.20|] «51.24 |.45| -AM/I.24 |I.O1/1.25/1.34| .37/9-44

1928/1271 (Tedd) 232) 281.13: |.44) 231} .18}| .18/1.32/1.98) .78) 9.07

1929] 45} «29| eIl| +07)+I44.07} -0O5) «39| -I7| .92/1.47| 2.06} 6.19

I930|1.54| .4I] .66|] .68).18].07| .37| 89] .64/1.26/1.48/1.20/ 9.38

I93I| .96/1.03| .34] -7I}-52/.60] -I2| .94] .99] .29/1.49] .58/ 8.57

193211630 <4) «36/1-08).51 | EL) .37'|°.38]: .6345.354%..67|: «TE Fe 12

1933). 2091 hh) 214}. -sIl| -I0)<27| .15| «06) <O5] 234) 2.36) 021) 4019

I934| .87) 15] -49] ~«30/-48).10] .05] .25] .II| .94| .88/1.20| 5.82

I9SS) «1612.17 | 46} ..552| 216-1623] .201 07 051 |1.65/1.37| .74| 7.84

1936|1.23| .68/I.II|] .48|.27|.89|].512] .16 0°49] .53/1-34/1.20} 8.89

1937] +97 |1I.13|1.38| .91}.18|.12|}.08] .04] .04 eI5] .22] .65|5.87

1938/1225) -40| .27| .121.08|.54| 2471} 223 015 |/I.19/I.04/1I.01| 6.75

1939)1-93| +71] +97) +41] «23 |-14) 81 | .33 | 208] .33/1.36 °94/ 8.24

I940| 223] .86] .67| .41/.36|.10/.13| .06]| .20] .80/1.66 °54| 6.02

I94I| .38|1.67/1.02| .38].2I |.16|.06| .23 | .II| .81 63] -70/6.36

1942} .86] .88] .53] .48].18].10|.14] .50 239} -65| .28/1.05|6.04

194311s28}, 694) <I5} «I7} 263 1-231 .20:] 24 -93| .78| .73| .61|6.79

1944 /1.18] .44| .36] .20].10|.18].15 | .08 °77 |T.05/1.70|1.20|7.41

£945 | «082 11.23) 227) «42:/'.38 I. 341219 #09 | T4118) 025) «8315.73

I946 |T.E2 |E458 |. 234) Ie |.IT}.48).14 -69 | .90] .26/1.07|1.18|7.99 I947|I-05] -13/1.84| .83/.46].16|.1I | .05 | .05] .04 094] 57/6223

4A e

Year | San | Feb| Mar] Ap| My | In| Jy | Aug! Sep] Oct} Nev} Bed Ann}

1948 |2.27 | .88 | .18 | .36 |.09 |.43 |.15 37 683. 43? t-eO6 | 093 [Todd

1949} .99 | .32] .50 |.85 |.22 |.15 |.06 | .13 | .04 | .72 |L.05 [1.53 16.56

1950] 45 {1-27 | -45 | -63 |-25 |.07 |.08 | .38 [[.36 | .78] .95]| .99 17-66

I951j1I.0L | .87 L-L5-|.62 645 |.13 |.07 | .33:| 63 | 24 |L.61 1.47 (8.58

1952 11.09 bal | 425° 122010 33.4,08 1204) .O7.| «41 10) 6721 297 16.03

1959 fae 34 $265.) «24> | 43 19 fel 7 Lek? | cadd | 6.) +225 | 688) «34 14.51

I954| -55| -73 | -64 |.27 |.45 |.39 1.35 | 81 | 41 |[.60 |I.55 [1.18 [8.93

F955 10 15 164394 wOl feCl WOO [233010 | 204] 204 | SIT [eed 1067 (add

I956| 296] .2I | .43 |.I9 |.II |.06].31I |[.15 | .58] .55] .30| -75 15-60

1957| -97 | -87 | .42 |.I2 |.II |.04 |.30] 1.05 /[.05 | .66] .74] .58 16.91

1958 905 1635 1033 |e T2035: 1033 1-37 | 354 | 08) 84 49 | .43 16.88

1959 |Le374 «17 | 227 | -87 [31 |.10/214 | .05 | .03 | 230] 87 [2-45 [5.93

1960 |1.54 |L.OI | -46 |.43 |.10 |.05|.07 | .16 | .83 | .88 |I.72 |I.18 |8.43

196115507 | .87 |.-I8 | £36 [248 |.06|.17 | 32 | «17 | 288] 64 |L.07 16.27

1962 (1053 |.260 | 23.) -66 |.33 |-II |.07.| «40 | «52%: .28|. .80 1]. .8T 16.34

1963 | -13 | .08 [[e2T |.62 [6386.1.54/.31 | .15 | -32]| .38|1.42} 227 5.80

1964) «22 |. 27 | -58 |.20 je28 |.IO|}.1I| .21 | .I2| .48] ~AI |I.81 4.79

1965 |1-49 | «27 | -63 |-54 |-40 |.28|.29] .16] .95| .49] .67 |2.16 8.33

1966} .56| .83 | -46 |.80 |.29 |.14|.14| .53] .30] .86 .93 I.69 17.53

1967) +55] «84 | .47 |-29 [69 114|.08| .16 | .49 |1.87} .98 Teal Teo

1968 |I.60} «38 |*.62 |.39 1665 (.22/.61| .12 | .80] .97| .76| 6117.72

Erbistock Gross Monthly Runoff (cusec days x 10 =p

Year Jan Feb Mar Ap Hay Ja ay Aug Sep Ock Nev bec

37

38] 63.54

39] 93.56

40| 27-42

41|19.44

42/39.94

43| 73-62

44| 66.62

45] 34.98
46| 56.68

47| 76.54
48|22.51

49} 63.69

50} 31-49

51] 58.59

52] 69.79

63) 2la5t

54) 35-31

55| 43-21

56| 60.45

OL wage

58 60.14

59| 89.75

60| 96.04

| 61| 63.46

62| 80.51

63| 17-83

64) 15.85

651101 .09

66| 35-34

67| 36.89

68] 85.28

69| 58.71

27.96

39-49
56.27

68.94

37-50

60-57

26.74

86.38

106.58

10.10

59.80

23.42

82.35

55.61

38.95

39.65

47-74

29.85

Litas

68.80

79.49
13.61

72.62

57-57

39.87

8.26

14.62

bs ha fo |

52.92

54.32

24.30

AI.24

oa

I7

I7

29

20.

49.
36.

53-

.88
9.

eh ¢

83
CT.

M5.

83
as

326

63.
Zl.

18.

43.
35+

28.

46.
236

20.

35+

TS 6

TBs

74.
ee

47.
28.

33.
54.

39.

02

Ig

85
31

23
04

25

00

«
50
AI
22

43
90
96
50
38
le

ie

59
44
32

49

40

21

19

31

47

8.62

20.80

26.46

oa 10

31.89

13.24

13.29

25-75

9.81

56.69

28.77

45.86

30.16

43.12

12.75

28.10

22.66

20.15

9.18

TL. 42

8.68

47-40

30.06

27.90

AA.OI

42.36

13.83

35-70

39-30

15.81

8.68

30.52

4.98

9-55

18.22

Lo o67

T%i29

39.82

8.71

18.37

6.74

31.69

8.01

13.05

19.55

LT Dt

16.76

Ti «33

7.20

41.08

8.69

10.53

30.05

20.39

7.10

26.95

22.90

23.78

eis3%

32.98

23.41

42.47

32.62

47.49

25.

6.

6.

10.

17:

23,

Oi.

266

25.

T2.

26.

rs.

5.

Re

ee

Ts

31s

32.

83

99

22

85
10

65
6i

44

87

78

90

50

Sf

14

04

31

86

28

6.00

Sis

az.

0.

5.

4.

Bi

1.

6s

20.

I4.

‘7.

I4.

er:

72

05

09

59

70

87

62

74

OI

64

67

67

15

26.

38.

EG I2

he

9.

16.

Tl.

84 Tel

ae

I5.

7.

3;

I5.

72

35

I5

95

25

86

09

78

86] 2

60

81

4-35

OL

25.

of.

Tr

T6%

45.

36.

£5;

15

08

3f

59

61

OI

27

ay

8.44

6.02

20.

L2-.

I7.

39

8.

27.

5.

9

78

34

II

03

25

54

20.

36.

A

10.

19.

58
8.

Ig

TF

29

36

81

60

Ot

59

7-09

yee

“52

236

29

02

-64

-80

-96

26

50

-88

-90

“11

37

“02

MI

225

65

ue

14

0A

.8I

72

9-27

8.41

1-0

II.76

6.93
19.80

47.40
53.32
ré.68
67% 30

Aete

28.60

3.59
15.87
33-70
I4.62

38.85
3599
A.AT

39.06

74.61

73.89
2.68
AZLTG

14.67

34.95
20.014

Ag. o7
39.60
16.89
33-00

37.68
le Aas

5.30

59 «93

14.07

29-55

32255

40.60

40.96

56.28

39.87

Coat

4.81

20.92

43.69

46.97

13.00

56.63

20.32

99.67

12.34

37-63

49 235

71.64

23-07

54.13

52095

Loe53

26.28
28.22

28.43

20 6k8

02.77

47.71

8.62

I2.71

60.91

70.03

27.82

13.92

36.89

83.82

Tec

71.81

46.13

42.47

44 16
64.23

eae [5

23-74

51099

25-37

52 «44

II5-77

39-33

23-34

46.89

34.91

69.43

38.68

54.28

59-58

95-36) 37-11

35-76

52.89

54.53

73-65

38.92

10.67

36.38

40.35] 56-07

62.10] 85.23

Doel

92.08) 83.51

55+53

21.58

98.85] 86.09

45.57
61.13

66.30
35.37
T6537

14.43
39.90) 64.91

51.80

90.26 21.37

Ir5.66

36.00015.94

45-00] 88.35

Ot. 32

42.05

58.94

Oct. 1937 to Sept

Oct. 1950 to Sept 1953 :

Post 1953

1950 : Surface Water Year Book Data with additional

correction for Canal and Alwen Reservoir.

correction for Alwen Reservoir.

s Surface Water Year Book Data

Surface Water Year Book Data with additional

Table 2.3.

Effective Release (Cusec days)

Prescribed Flow — 300 cusecs.

46 °

Near|Jan| Feb} Mar} Ap May| In| Sy Aug | Sep Oc | Now| Sec} Jotal

38 2348/4390] 270] 24 —{1037| 44 “ «1° 8,253

39 I02T|2226| 12 48 |2026|I411I - =~ | Oy pae

40 | 72 - -| -| -]/2360]/1630 |] 4208|2571| 374 -| - {11,215

4l I3| 2633 1631 5392 | 2290|3130| 908 | 44] - |16,04I1

42 6 -| 57 |1788|1182| 2630 -| 29 ~ =| tm | 5,692

forte *7.4..9 1 T0538) SOT, Ses 284 Ses af ae S50RT

44) -| - hr = SI EOL TTD: 59 | TGA ee Se ey A TAD

45| -| - |, 198 me 35 3053. 597 | 470 12 ae A het

46) - = -| 658] 3156 -| 469 Me + mf “ — | °4,283

47 | -| 252 -| -| -| 138] I7Z | 4130 [4986 4344 1096 | - |15,117

48 | - - 6 -|1869| 133] 267} 499 -| I4 - - | 2,788

ar me om -|1373 |1742|5489 | 2630 |5347 |2760 ee - {19,341

60.4 oe -| 337|3768|1388 | Ir18| —| <= -| - | 5,6II

SI] - - - - ~ {1792 | 4893: | 2357 -| 427 < - | 9,469

52} -| -| - |} 208] 57I]1704|4257|1770| 706} - -| -| 9,216

53 | -| -|817 ole: =) 9S) 54] 22B LL Hf Os -| - | 1,300

54} -| -—1|. =| 328] 962 -| - -| =| -- -| -| 1,289

55| -| -| -]| 59] -| -|1726 | 5368 |se75|1671 | 38 | 168 |14,305

56) ~ 1-140 — | 990 }2300 |}3452) 915 = ~ - = Ts Tet

57} -| -| = | 980}1831 1/1362] 214 mf | ao -| =| 4,387

58 | -| -|600 /I9I0| 996] -| - -| -| - -| - | 3,516

Pe A ig = - * -| 474] 775 | 1188 |5556|3743 “ mid TLglte

60 | -| -| =| 4121/2874 |3749|3082 | 1200} -| - -| - |II,316

61 | - - | 794 35 |I104 |4816|356I | 744 | 460} 144 - -| II, 658

62 | -| - |396 -| 400 |1261|3740 | 1092 -| 516 -| -1| 7,405

63 | — [L085 | 145 -| 124]1953| 531 | 1186 | 408] 400 -| -| 5,832

64 |15} 94 - | 261) 709} 2493] 2339 | 2589 |33II| 569} 164 - | [2,544

Table 2.4.

Prescribed Flow — 350 cusecs

Effective Release (Cusec days)

Year| San Feb) Mac | Ap | May | dn | Sy | Aug |Sep | Oct] Nov dec] Total

38 r= + - | 3398/5188 | 656] 162 -|2235| 94 =|) =lII, 733

39 - “ ~ -|1949 | 3598 62] 286|3376 |2061 “12 ~ (bbs ooe

40 | 342 + ie -| TI] 3751} 2440| 5657/3445] 524 -| ~{16,230

AI - -| =| 2102/3883 | 2494] 6942] 3070|4201 |1258| 84] -|22,034

42 - | II5 - | 248/2777 | 2046| 3730 45| 142 -| II6] -| 9,219

43 -| -|2080 |1377} 102 T| 945]. T9r 8 ~[cp | ey TAS

44] -| -| 75 | 325/2724 | 1345/ 1300] 3115} -| -| -| -| 8,884

45 * ol ae t OUT. SS 60} 908) 4503 |1259 |I212| 233/147] 8,966

46 rs - | 1475} 4545 -| 1006 ~ -| 95) 201. =) 1,149

47 -| 674 9 = -| 493) 465) 5451|6457|5894/1546} -|20,989

48 -| -| 103 92|2926| 233] 634] 872 -| 159 -| -| 5,019

49 “ a ee 99}2558 | 2482} 7039} 3713| 6847 | 3610 =| =[26,370

50 -| -| - -|I020| 5118] 2010] 337 - -| -| 8,485

51 " 2 = = -| 2942] 6443} 3527 -|1069 nfs 13,981

52 - -| 62 | 662/1273 | 2844} 5728] 2663/1518 ~ -| -|14,750

53 o S11 553 I8} 66] 363} 430] 600] I7] 256 a. st 34aee

54 “i -| 994 | 1824 * 3 - - ~ -| -| 2,821

55 Hie — tees > Peep. Fe -| 2782 | 6918 |6775 |2373 | 368} 439/19,920

56 -| 376 - | 2138|3490 | 4950| I512 - - - -| -|12,466

Dt - _ - | L714 |2732 |-2424] - 291 - oa = eck 4 Ted 1h

58 -| -| 600 | 2938/1366 - - -| -| -| -| -| 4,904

59 reek dans Shee -| -| 1094/1613 | 1906/7056|4696| -| -|16,365

60 fy eh = |" $35143137 508514137] 1924) - | =| =| 155,994

61 -| -|I604 | 133]/ITII | 6316|4767 | 1093] 970] 583 -| -|I7,177

62°| -18 -/II68 a1 347 | 261415290 | 1542 -| 927 -| -|II,796

63 — |2035| 341 -| 324] 2971} 729 | 1767] 604} 400 -| IB} 9,299

64 | 325] 370] 94} 810|1072| 3927/3142 | 3676|451I| 869] 528] -|19,324

Table 2.5-

Effective Release (cusec days)

Prescribed Flow 400 cusecs

48 e

Year| Jan} Fe] Mar} Ap [May | Jn | Jy | Aug| Sep] Oct] Nov| dec | Total

38 e 60 | 166/4495| 6698 |I158| 416] 367|3631| 144 = ~ LLU sks5

39 - = - -| 3275 |5036| 196] 950|4861| 2801 x mri | ABTA DIRS,

4@ | 1866} St Sh ©] 4651522913332|7107|4367; 970| =) — 22,876

41 | 372 = -| 390] 5133 |3484 | 8492 |3954|5367/1650| 217 IO | 29,068

42 1 ie -| 543|3866|3074| 4830] 347] 408 TES ~ | 13,965

43 = ~ |3339 }2139| 476) 85|1767) 850 = " _ - | 8,655

44 * - | 315] 9821/3974 |1964 | 2324/4449 = s = - | 14,008

45 - -| 224|1106} 267) 384/1748)5953|1904| 2117) 965 | 247 | 14,915

46 - - -|2519 | 5981 -|1693 - -| 327| 210 = «| 10, 130

47 —|1569 | 281 * - | 1199 | 1096: 6901 | 7957| 7444] 1996 - | 28,443

48 - -| 510} 362/4271| 382|1154|1332 -| 451 - - 8,462

49 rs -| I9T| 317|3858 |3247 | 8589 | 4893 | 8347| 4460 _ - | 33,902

50 = - - -|I70I |6468|2728] 738 ~ - - - | 11,635

51 - 4 - -| 514143 |7993|4727 -|1897 rT - | 18,811

52 ~ —| 201 |128I |2067 |4149 | 7228 | 3594 | 2540 - - - | 20,960

53| r03| -|2455| 208] 389] 847] 84/1085] 18r| 640] - =| 6,782

54 22 . - |1703 |2830 = 0 ne = = > - | 4,653

55 = - -| 663 = —|3914 |8468| 8275 3207 I040 834 | 26,401

56 -| 722] 33|3448/4773 |6450|2358 me 2 = - - | 17,784

57 = - — |2690|3792 |3576| 441 - ~ ~ -| 247 | 10,746

58 el oe 705 |hORR IT IG) | 2 | eee eT 6B 6a788

59 -| 192 74 - 9 }2208 |258I |2907 | 8556/5696 ~ - | 22,223

60 = = -| 750 |5768 |6525 |5424 |2872 - - - ~ | 21,333

61 - - |2482| 333|/2419 | 7816 | 6039 |I471/ 1697|1273 - - | 23,530

62 82 - 12220 -| 787/3712|6840 | 2150 29/1597 ~ Se leLilig 4

63 15 |3075| 541 -| 538/4128|1056/2471) 971} 400 -| 407 | 13,662

64| 966| 630] 426/1613|/1768| 5418] 4051] 4937| 5740| 1169 | 1008 ='4 275726

Table 2.6.

Effective Release (cusec days)

Prescribed Flow 450 cusecs

49.

Feb

Year Mac | Ap | May | Jn | Sy] Aug] Sep] Ock} Nov} bec} Total

38 21 | 244} 593 |5641| 8248]1725| 885) 667|508I} 194 - - | 23,299

39 - - — | 120]4646 |6503} 446|1319 | 6361 |3651 ~ - | 23,046

40 | 2127 - -| -|1055|6729| 4438] 8657 | 5367 1241 ~ - 29, 614

4I 930 = - | 710} 6383 |4544 M0042] 4929 | 6615 }2097| 577] 99 | 36,926

42 _ 143 136 | 979|5004 |4174| 5945) 727} 750] 34|1358 - | 19,850

43 ~ -|4716 |3017| 996] 245] 2667| 1500 -~ - -| - {13,141

44 ~ -| 568 |1860/ 5338 |2665] 3460} 5800 - ~ - - | 19,691

45 - -—| 715 |I736| 773| 842|2794| 7403 |2554 |3084 |1788 | 394 | 22,083

46 * ~ ~ 13727 | 7459 =| 2651| If2 ae) TSE, 540 - | 15,243

47 - 2650] 567 - — |2016) 1663} 8425 |9457 |8944|2446| 34 | 36,202

48 ~ -|II69 | 780|5709| 532|1948]1783| 58] 822 - ~ | 12,801

49 -| 81} 430] 591|5203 |4I1I0 [0139 6175 9847 |5310 - - | 41,886

50 13 - * -|2505 |7853 3535 1288 r . 3 - |} 15,254

51 om vs my -| 351 }5401)| 9543} 5940 ~|2850 = — | 24,085

52 + —| 485 [2089 | 2935 |5299| 8765] 4560 | 3604 S = Led

53 | 328 - 13473 | 497} 829 |1636|1248/1619| 481 |1269 -| 106 | 11,486

54 | 134 rs + 2aa9 t39L7)| 51) 520 =| Te A ra mele: Tea

55 - - 3 |II56 I - 3064 fOO18 9775 14159 |1608 |I1278 | 33,062

56 — |[242| 224 |4884 | 6085 | 7950] 3313 -| 14 - - - | 23,712

57 * * — |3790|4919 |4787) 591 ee | -I7|>, 22:5 587 | 14,723

58 - — |1003 |5596 | 2166 - - - - - -| 432 | 9,197

59 - | 862] 140 2} 203}2241| 3663} 4097 [0056 |6696 -| -| 27,960

60 - -| 35 |III6|7294|8015| 6724] 3972] 20 - -| -| 27,176

61 ~- — 13452] 609 | 3192 |9316| 7359] 2123 |2736 |2100 - - | 30,687

62 | 196 1/3466} 23|1378}5062| 8390} 2800] 98/2410 ~ - | 23,824

63 | 313 |4420|] 741 -| 818/5328/ 1497] 3316/1465) 439 -| 834°) 19,172

64 | I79I |II99| 952}2509] 2615] 6918} 4934] 6237] 7038] 1511} 1518 - | 37,222

Effective Release (cusec days)

Table 2.7%

Prescribed Flow 500 cusecs

506

Year | Jan | Feb|Mar | Ap | May| Jn | Jy | Aug] Sep] Oct) Nov decl Total
38] 105} 494]1127|6840 |9798] 2325] 1215] 1167] 6549| 244 -| -| 29,864

39 ee - -| 486/6046} 8003] 696] 1694] 7861] 4585 -| 68] 29,439

40 | 3118 -| - — |1886| 8229] 5634/1207] 6408] 1671 -| -| 37,153

4I | 1668 - - |1093 | 7633] 5660/I1192) 6021] 8886] 2542/1108] 307] 46,110

42 -|II63| 411 |1479 |5628| 5336} 7110] 1283] 1236} 178] 2458 -| 26,282

43 - -|6260]4003 |I601| 445] 3609] 2341 ~ - -| -| 18,259

44 - -| 953 |2882 |6767] 3615] 4610| 7200 - - -| =| 26,027

45 -| = |1433 |2515 |1392) 1398} 4054] 8853) 3254| 4128|2732| 460] 30,279

46 - ~ -}5113|9009} 87/3764) 481 -| 1298] 1078 - | 20,830

47 -|3980 |L067} 39] 0} 3019] 2479] 9975|10957|10554| 2896| 266 455254

48 - - 2146 |1438}7259| 761} 2990] 2325] 130] 1247 -| -| 18,296

49 | 275| 724] 939/6557| 5067111689) 7475/1 1M7 6160 o =. ee oe

50 | 267) Agr 25 — |3441] 9260] 4477} 1953 “ = a - | 19,467

51 = rv -| 44/1049} 670111093] 7190} 41} 3923 a - | 30,041

52 ~ - |1047 |3068 |3856| 6589|L0315| 5656] 4733] II -| =| 35,275

53 | 164 -|4588 | 939 |1423] 2736] 1844] 2226] 829] 2047 -| 326] 17,572

54; 369|> 42 - |3227|5033} 339} 1041 -| II6 “ - | 10,167

55 -| 50} 64/1738] 51 -| 6215 | 568|11275] 5337 2228)1728 | 40,254

56 —|21I4} 624 |6384|7484/ 9450} 4313] 70} 267 at ae =| 305755

51 - a - |4992 |6191| 6037) 741 “ ~| IL7| 149/1237 | 19,464

58 - - |1446 |6046 |2568 - - - - -| 70} 922 | 11,052

59 -|1779 | 499} 90) 621) 3691} 4851} 5479/11556| 7696 - - | 36,262

60 - —| 183 |1529 |8844] 9515} 8056] 5172] 107 ~ - - | 33,306

61 - — |4541 |1033 |4051 0816] 8709 | 2650} 3697] 3000 - - | 38,497

62 | 394] 75/4806 | 40/2004] 6417] 9940] 3498] 257] 3509 -| 65] 30,905

63 | 987]5920] 941 —|I184] 6528] 1947| 4287] 2015] 580 -|1480 | 25,769

64 | 2712/1916 |1683 [3504 |3515| 8418] 6055] 7581 8387 1926] 2068 -| 47,765

oa Table

Llyn Celyn Inflows

(Cusec days x 10 3)

$1.

Near Jan Feb Mac Ap May on Sy os Nov
Annu al

etal

62

63

64

65

66

67

68

69

0.56

1.75

7.83

3675

3.64

9.01

5.02

0.40

1.21

0.78

6.08

3°39

2.16

2.56

6.84

1.72

2.96
3-05

2055

6.16

2.61

3.83
T.53

2-83

3-83

1.58

1.56

262

3423

2.90

2.60

2093

4.29

2.60

2695

2.48

0-79

2.61

3-02

0.91

I.68

1.44

1.96

2 3

Beet

I.60

I-75

2-43

0.44

2.33

1.91

2527

2.12

2.65

0.84

I.39

3.91

2.50

1.31

4.07

2.24

4.85

4.05

0.89

ith

3.24
3402

2245

3.62

Il .62

5-48

IT.4I

3.48

8.15

3.56

4.69

1.34

.22

3+45/13 96

4.54

3.42

2057

6.41
9-48

7-42

2095

5°05

36-86

33-75

48.08

46.26

50.07

41.49

32-79

Table 2.9

Lake Vyrnwy runoff record I9I0-1969

Year] Jan| Fer| Mar | Ap | May | Jn | Sy | Aug} Sep Nov | Dec

IO |6 .05| 8.96 |3.47] 3.14|1.52/1.25|/2.42/5.52|0.84 5.54] 9.50

II | 2.93] 5.07]3.15|2.82|1.81/1.04|0.26)/1.31|2.42 8.73] 8.27

I2 | 5.87] 4.42 |8.54| 1.19] 0.44|2.85/4.08|7-40|1.24 5.36/11.90

I3 | 3-42] 5.00/8.71| 6.20| 5.37] 3-26|0.30|0.73|1.28 6.60] 4.96

I4 | 7-65] 8.80]7.86] 3.20] 2.59]0.63 |1.69| 3.54 |1.87 7.84|12.45

I5 | 8.89] 9.25/3.54]1.93]2.01/0.2I |1.36] 3-44 /0.50 3.95/12.38

I6 | 8.87] 6.25|3.74| 4.28] 2.38/1.79 |2.04/1.16|2.23 402| 4.43

IF} 36354) Ts 7513-95) 3-321 2-30)1.7010<50h1 «4913013 5.58} 3.23

I8 | 6.63] 8.47 |2-I1| 2.23| 2.10] 0.73 |2.92/0.92|41.4 4.45|I.12

I9 | 6.84] 3.80|6.73| 5.05|1-79|0.53|0.20/1.57|2.64 2. -O8/IT.47

20 | 9.70] 7-72 |6-I1| 8.23| 5-80|1.30|7-42| 2.83 |1.71| 2.92|4.03| 7.06

2I |10.85] 1.04] 6.82| 1.63] 1-20] 0.29 |0.34|/4.00|1.57| 3-10} 4-20] 9.25

22 | 7.82] 8.54/5.23| 2.78/1.50| 0.61 |4.52|2.56| 3-93] 1-50|3-.57| 7-76

23] 5.7I/IL.77|0.58| 2.98] 4.68/1.37 |1.32|6.15|5-51/10.40] 6.00] 6.75

241] 6.96] 0.98/2.58| 3.61] 6.74| 3-67 14-35] 5-53 [5-99] 7-34] 4.83] 8.77

25 | 8.63|I0.34/3.13] 2.58] 3.75/0.66 /0.22/1.46|2.88] 7.31] 3.64] 7.22

26 | 9.79] 0.96/3.10|1.75|2.82/1.71 |3.19| 3.61 |2.62| 5.39 10.51] 1.68

271 6675] 4-25] 5-58] 3-17/1-39|4-44 }3-06/8.56|4.94| 3.82] 8.05] 2.76

28 |T4.21/10.26| 3.88] 2.67] 0.59 | 3.89 |2.79|4.40|1.15] 8.061B.94] 5.03

29 | 3.14] 1.98/1.01| 0.58| 2.59 |1.23 |0.52/4.73 |1-37| 7-50/3.30|14.20

30 |IO.OI| I-71] 3-56| 4.03] 2.43 |1.18 |3.12| 5.04 |5.67] 8.52| 8.78] 7.48

31 | 6.51] 7-72/1-97| 4-40] 4.83] 4.85 |1.22|5.27 (2.68) 1.53 /1.80| 3.82

32 |II.91| 0.49|3.14| 6.22] 3.88] 0.66 13.44/1.34|4.97| 8.33] 4.98] 4.57

33 | 5-44] 6.45]5.98]0.96/0.83/1.02 |2.02|0.37|0.21| 3.07] 2.19] I.2T

34 | 8.61] 0.75/5-03| 2-85] 3-33]0-94 |0.29 |2.46 | 3.06] 7.39] 3.36/1D. 60

35 | 3.20]9.80|2.86| 5.09] 0.73] 3-31 |0.95|0.33 |6.72/10.64| 7.49] 5.06

36 | 8.28] 3.16]5.02]2.71/0.94 | 3.36 |6.69 |1.57 |4-68) 4.17] 8.00] 8.86

37 | 9.2819.77/5-41]3.72/1-10|1.86 |I.O1 |0.45 |0.59| 1.52] 2.14] 6.16

38 |II.77| 3-14|2-.39]0.71|1-.51 14-77 (4-31 13-75 |0-98/1L.94/ 9.48) 6.59

39 |II.67| 5-91|5-.69]2.57/0.93 (1.25 [8.73 (2.45 |0.77| 1-89 (IL. 65] 6.94

40 | 1-57] 7-7514-94|4-08/1.95/0.43 |I.61|0.43 |2.50| 7.6115.15] 5.93

AI | 1.60]9.67]5.05|2.31|2.76]0.99 |0.49 | 3.58 |1.45] 6.82| 4.68] 6.08

42 | 6.07| 3-92|3.92/4.83|3.79|0.78 |2.0 14.51 |3.34| 6.47) 1.29] 6.62

43 |II.48| 5.89/1.29/1.87/5-37| 5-36 [2-84 |4.28 16.54) 5.38] 4.41] 4.16

Year| Jan} Fe Mac | Ap | May | Jn | Sy [Aug | Sep Oct |No | Bec

44 | 9.69] 3.15] 1.63 |/1.67|/1.34)/2.77/2-57/1-24| 5.90 9.5611 .64/] 8.28

45 | 6.26(10.87| 2.55|3-75|3-26|4-93|2-24|2.15| 3.93] 7-03] I-13] 7-20

46 | 9.97(12.47| 3.13|0-77}0-64|4.20|/1.61 5.89] 8.78] 2.37/1.37| 7.26

AT | 7+32| 0-79/14.18| 6.09] 3.00/1.85|2.01|0.46 0.81] 0.67] 8.44] 5.88

48 |L7.76| 7-33) 3-14] 3-09 |1.50|4.97}1-80| 5.85] 4.72| 2.90] 5.17 6.90

49 | 5.80] 3.43] 2.49|6.46/2.80|/1.96/0.21 I.18] 0.51] 7.92|9.0910.61

50 | 3-58/IL.52| 4.27] 4.21 /1.74}0.68] 4.20/6.90[1.30 4.86] 6.05] 4.69

51 | 8.03} 6.94] 7-33]5-14]2.31/0.90/0.73 3.83] 5.73/1.70/2.30/1.38

52 | 7-27] 4-55] 3-80] 2.09] 2.33/1.70/1-.07/2.77| 2-050. 33} 4-39] 7-03

53 | 2.40] 4.64 4.08|3.84|2.30|1.99|5.17| 3.42 5.86] 2.47} 9.78) 2.75

54] 4.49] 6.00] 5.74)2.44 2.81 | 3.95|4.09|4.79| 6.90/14. 61/1. 79} 9.22

55| 5.42| 3.30] 4.27]/2.68/7.24|4.79 | 1-21 |0.33| 0.39] 1.85] 3.58] 7.63

56] 8.74] 1.37| 3-33}0-92/1.22|0.97 3.86| 7.13| 4.93] 4.10] 2.96] 8.42

57 |IO.I1| 7-45] 6.89 0.86/1.53/0.53|6.22|6.60 8.63] 6.15| 4.50| 5.57

58| 7.23| 9-33] 2.24/1-58|5-81|3.06/2.75/4.27| 8-83] 5.05] 2.49] 4.89

59 | 8.60) 1.12] 3.38 5.29 |1.20/1.20/2.82|0.75| 0-19] 4.92 6.45}14.92

60 |10.23} 7-80] 3.91} 4.38/0.87]1I.00] 3.43] 4.21 5.66] 6.69|13.61| 9.86

61 | 7-90] 6.56} 1.49} 4.82] 3.34 0.58/1.02|3.66| 3.32] 8.61] 6.04] 7.87

62| 9.81] 8.2T| 2.26} 8.07| 3.17}0-87| 0.94] 6.74] 5-30) 2.29) 4.91 6.25

63| 0.85] 0.61111.30] 5.67] 4.33/2-56 O6AS |e c6l| 3.63|- Jel 4heseT eee

64| 2.32] 2.25] 3.34/3.03/3-69/1.42/2.44)1.34 I.60] 3.94| 4.972114.88

65| 9.16} T.31] 4.95/3-63|4-14/4.29|2.40/2.54 5.651 3-38) 5eT LS. 71

66} 4.60] 9.19] 4.13] 6.35/4.15|2.35/1.71| 3-25} 3.04 4.81) 6.26/11.53

67 | 4¢51)- 7.26] 3.78/}2.34/7-L7/1.12|1.80/ 4.13 7.80|I5.32| 4.06] 7.79

68 |10.44| 2.75] 9.10/2.82/4.12/2.31] 3.92}1.55 781} 7-50] 4-41| 5,11

69 ef SL 3D! 4.85|4.03|5.49|}1.85/0.61|I.01/ 1.31 - - ~

D360

Synthesised Llyn Celyn Gross Natural Monthly Runoff (cusec days x 10°)

Table 2.10
54

Note — Based on linear regressions (calculated by computer from the over-

lapping data period Set. '62 to Sept.69) relating Llyn Celyn (1000 cusee
days) with Lake Vyrnwy runoff (inches) and Brenig runoff (I000 cusec days).

[Yeaq Jan | Feb | Mar} Ap |May| Jn | Jy | Aug | Sep] Ock] Nov] bec} Ann Total
10] 4.99] 6.19| 2.08] 2.02 |I.00|0.98/2.35|4.11|0.53|1-99| 3.61|7-59| 37-64

II} 2.46] 3.50|1.89| 1.82 |I.19]0.82|0.25]0.90/1.53/3.5 6.01/6.61] 30.56
I2| 4.84]/3.05|5.13]0.77 |0.29| 2.23] 3-95] 5-51 |0-79|4-30 3.69/9.5I| 44.06

I3} 6695]3-45/ 5-23] 3-99 |3.54] 2.56/0.29|0.54/0.81]3-09] 4.54} 3.96] 38.95

I4| 6.31]6.08/4.72|2.06 |I.7I 10.49 |1.64 |2.63 [1.18 0.84] 5.3919.94| 42.99

15] 7-33 16-39 |2el2|1 024 |L29210.16 |1-32:12-5610.32 ts 161 2.72 19190). 36, 74

I6| 7-32]4.32/2.25|2.76 |L.57 |1-40 |1.98 (9 .86 |I.4I 18.56] 4.8313.54| 40.80

I7| 2.75 |I.18|2.37|2.14 0.86 |I.33 [0-85 [5.57 |1-99 |5-75] 3.84/2.58| 31.2

I8| 5.47|5.85|1.27|1.44 |1.38]0.57 |2.83 [9 .68|7-27 14-84] 3.06/8.89] 43.55

19] 5-64 /2.63|4.04]3.26 |I.18]0.42 |0.19 |I.17 |1.67 |I-83| 2.81/9.17| 34.01

20] 8.00/5.33|3-67|5.32 [3.82 /1.02|7.19 [2.14 |1.08 }2.22| 2.77/5.64148.19

21] 8.95]0.72|4.09|1.05 |0.79 |0.23 |0.62 |2.98 |0.99 [2.36] 2.89|7.39| 33.06
22] 6-45/5-90|3-14/1.79 |0-99 10.48 /4.67 |1.90 |2.49 |I.-14| 2.46|/6.20| 37.61

P3 | 4-74 |8.13 |1.96|/1I.51 |3.08/1-07 |1.35/4.57 |3-49 17-98] 4.7416.74| 49.36

24| 5-78 |0.68|1.66 [2.11 |4.44 |2.88 |4.81 |4. 11 {3.80 |5.58] 3.321717] 46.34
25] 6-74 |7-14 [1.82 |1.69 |2.47 |0.52 |0.12 |I.09 |1.82 [5.56] 2.50/7.22| 38.69
26] 7-96 |4.8I |I.73 |0.94 |I.86 |1.34 |2.16 |2.69 |1.66 [4.10] 7.23|2.44| 38.92

27] 5-67 |2.94 12.75 (2.27 |0.92 |3.48 [2.33 16.37 [3-13 16.71] 5.54/23 | 44.36

28 |II.5I |7.09 |2.55|1-63 [0.39 13.05 [2.22 [3.27 10-73 [6-13] 9.59 14.68] 52.84.
29 | 2.64 |I.37|0.65]0.37 |I-70|0.96 |0.86 | 3.52 |0.87 [5-70] 9.1512.43] 40.22
30 | 8.54 |I-18 |I.88|2.95 |I.60 |0.96 |2.66 | 4.19 [3.59 |6-48] 6.04]7.18| 47.25

31 | §.50 [5.33 [I-07 | 3.16 [3-18 |3.80 |1.87 |3.92 |1.70 |I-16| 8.12|3.49] 42.30
32 | 9.58 |0.34 11.94] 4.61 |2.56|0.52 [2.95 10-99 [3.15 16.331 3-43/4.26| 40.66
33.4 4.71 [4.46 |3.6210.60 [0.55 10.80 |2.01 |0.27 [0.13 |2-64/1.51|1.25| 22.55
34| 6.6 |0.52|3.2T|1.74 [2.19 |0.74 [0.17 [1-83 |1.94 |5.61| 2.3117.42134 44
35| 3.08 |6.78 |1.60/ 3.08 |0.48 | 2.59 |0.42/0.24 | 4.26 |8.09] 5.15/}4.46] 40.23

36 | 7.0L [2.18 |2.43 {2.03 |0.62 |2. 64 16.60 |I.17 [2.97 [3-17] 5-5017-29 | 43.61

37 | 7632 16-75 [2-39 [3-26 [0-72 [1-46 [1.00 |0.33 [0.37 [L-15/1-47|4-05| 30.27

38 | 9.32 |2.17 |1.48}0.52 |I-00 3.74 |3-70|2-79 |0.62 19.08] 6.52/6.07| 47.01

140 [0.13 14.08 |3.08/1.83 |0. 61 |0.98 [8.00 |1.82 |0.49 |I.44| 8.02]5.71| 46.19

AO | 1.32 15-35 12-92] 245 [1-28] 0.34 11-56] 0-32 (1-58 15-79 10-42| 3.43] 36.76

AI | 1.54]6.68/2.57/1.67|1.82]0. 7810.39] 2.66 |0.92/5.19| 3.22|4.32| 31.76

‘142 | 5.34|2.71 |2-32| 2-89/2.49| 0.61 |2.12| 3.36/2.12 14.92] 0.89/6.29| 36.06

43 |:9.0414.07|0.79|1-09| 3-54] 4-20|2.83| 3-18] 4.15]4.09] 3.03] 3.68] 43.69

dan Feb Mar Sn Ock Nov bec Aun. ‘otal

44
45
46
47
48
49
50

Sr

Se

53
54
55
56
57
58
59
60
61
62
63
64
65

66
67

68

1-87

5.16

7-97

6.15

14.56

5.08

2.92

6.56

6s 1-7

2.01

3-65

4.52

6.96

7.87

5.83

7-40

8.69

6.36

8.40

0.72

I.80

7292

33

3.66

8.90 Hoan OO HO W
e
m

N
O

N
O
T

O
I

a

a

G
o

-18

51

ROL

055

-06

237

96

°79

td

20

14

28

095

15

-45

-77

039

053

259

42

055

-90

°35

02

-90

0.79

I.60

I.95

8.48

2.16

1.27

2.68

251

80

256

-48

99

71

229

40

91

~43

-08

-81

-98

-56

29

15 N
M

N
O
N

A

A
O
R

O
N
)

N
E
R

ee

N
e

a
e

e

1.06

2034

0.54

4.08

I.95

4.27

2.93

3.29

£524

2«39

I.51

I.49

0.74

0.58

0.88

3-83

2.61

2.66

4.56

3-51

1.62

2.52

4.13

I.51

1.89 NR ON UNE NE MUN
N

O8
1

O
v

A
G
e

e
e

ee

ee

>

MD

.88

15

42

98

00

85

15

52

54
52

85

-78

-80

OI

83

-719

“57

20

09

85

43

-73

-74

-73

12

Bat?

3.87

3029

1.45

3.90

1.54

0-53

O37

1.33

1.56

3-09

3-76

0.76

0.42

2.40

0.94

0.78

0.46

0.68

2.01

Patt

3-37

I.84

0.88

1.82

°73

10

°57

a

«to

02

14

-66

023

-03

88

<6

Id
86

205

s26

Eo

62

>)

“94

72

92

65
-O1

-58

0.92

I.60

4.38

0.34

4.35

0.88

5-13

2.85

2.06

254

3.56

0.24

5.30

4.91

3.50

0.56

3.13

a 3

5.01

I.94

0.99

I.89

2.42

3-07

I.15 —

PP

A

W
A
N

WO

ND

W
O
.

O
F

O
T

G
O

e
e

e
e

e
e

r
y

AN

G
o
 - 74

-49

057

51

“99

eae

14

- 63

-30

42

-38

25

“13

-47

-60

are

52

it

36

30

OL

-58

“93

94.65

“95

7-27

5234

I.80

0.51

2.20

6.02

3.69

1.29

7-85

1.88

ee

I.41

aie

4.68

3.84

3-74

509

6.55

I.74

2.39

2099

2057

3.66

5.70

84.01

0.81

7.13
5.81
3.56

6.25

4.16

8.46
3.02

6.73

8.i1

2.46

2.04

3210

Lelt

4.44
9.36
4.16

3.38

8.44

3.25 H
w
a

a

3

O
N

W
e
e

7-24

5.12

Talk

3-59

5.65
224

81

“97

.88

-08

20

aoe

77

62

~74

13

25

50

94
-68

a

3-52|13.10

4.31/10.19

2-79! 7

3-03 -48

215 Ww

44.86

40.09

50-35

35-72

49.10

39 II

49.27

46.87

37-33

36.46

56.04

29.10

34230

48.38

39.80

ates

52-97

39.78

40.11

35.28

32.39

47.00

45-51

50.03

44.53

Table 2.11

Erbistock monthly natural runoff from, regression

equations with low flow modifications*

HNeae F M A
My Jy A S o

23

24

25

26

27

eg

30

31

32

33

34

35

36

37

38

40

AI

42

43

44

45
6

AT

49

50

51

52

53

54

55

56

57

58

45-30

55-17

50.84

70.30

56.12

28{100.34

26.04

88.66

55-43

81.25
51.03

51.90

42.69

70-99

57-67

7420

39)10.58

I3.29

21.34

50.05

10.27

69.17

47-78

66.13

60-75

48{32.53
56.61

26.31

59-04

62.87

19.69

32.22

43.51
56.80

58.17

49.98

99.18

10.06

87.58

49-54
32.24

84.82

16.63

Et6T5

62.69

II. 62]
53-43

12.45]

76.66

31.15

75-65

25.10

46.32

59-24

86.59

39.41

51.10

26.00

83.59

99.48

F

33.06

I7.62

26.31

2hal5

59.28

25.23
x

Fad3

34-54

18.33

23.56

46.55

35-04

25.56

54-27

64.20

17.81

52.40

40.28

Bk «59

31.91
x

ee a4

17.61

18.44

22.90

10.78 113.04

57444

24.93

87.88

D9+17T

40.41

38.33

47.22

25-713

11.70

57.86

17-99
17.96

25+35

30.80

64.61

22.74

23-53

42.50

35-78

26.48

40.19

19.08

pepe)

26.93

19.25

13.06

23.65

19.92
*

5.81

30.07

32.83

46.41
*

9.13

21.26

37-98

20.22

27375
x

9-95

19.17

T7223

36.04

eos

12.46

27.98

9+95

45.44
23.05

48.20

AL Ae

38.35

15-59

28.65

18.20

19.99

x

9-95

II.79
30.4417 .71

15.75)

16.67
43.60
23.76
21430

ee O

10.78"
12.38
Teer

de. OL

28.44

8.30.
25.80

13.28)
brs PL

*

14.93

10.37

I5.19

17.29

36.86

22.29

24.15

13401
T5264

13.45
21.75

7.86
ss 6

3.25
48.06
9.12

9.12

28.95
*

6.64

8.30)

x
9-13

.58
62

£75
£95
5G
sO02

.81
5.81

aa:
+53

HHO.

30
18.
3
EO

32.

Tg

30
3.275

AGd

64
62
See

-20

30
36
54
.8I |
78°
63.
£29

.18
sok

.98 |
232

20.

x

*

*

*%

56
*

Ig
47

99

60

47

91

61
x

*

x

LE

7

25

aalt

3,

aye,

aT

ET.

4.

ei.

9.

ar.

-40| 4

4.

Ole

36

46 26%

°27 144
*

32] 4

27 21

57 {18
*

*

x

*

«61 PI.

shoe.

-56 Id.

.09 40.

IOs

«30 (58.

61 |53.

-T129.

95 146.

90 I16.

98

15 |t5.

601 5:
.05 |13.

*

BOE ast

-70 |I8.

Thiet.
4

78 | 4
Ft

98 |L7.

39 [29.

-68 |I9.

6621.6

<OCH Ws
*

e-I3 39-

soa a

52 (28.
HH

-98 |IO.

.69 BI.

63

26
*

15

205

OL |65.

‘12

I5 |26.

OI |45.

42

14
58
26

54

Ig

81°
oT"

x
32

04

88
4

98

58

27

83

6342.10

47

48

15
2

zi 4
78

73

65
x

81

0g

54

32"

46

62

at

34.15

50.42

25.06

26.57

45-75
*

PASS

14.10

38.20

36.92

35-46

Ay 25

T4220

38.59

30.56

382
4

12.43
*

6.64

I4.64

oe 13

22.92 49.42
18.23

ae

sae

254

024

252

O07

252

61

80

18

4.15

29.07

3.32]

78.64

38.24

18.73

38.17

36.51

3+ 32')

33-94

60.37

56-45

82.

50.

52.

40.

68.

10.

51.

68.

Lb.

73+

-03

223

88.

20

De

29.
% pS

ee

69.

Ls

46.
45.
38.

Aes

60.

-18

05

44.

36

38

56

95

OI

02109. 69

50

02

04

O7

34

45

45

82

33

34 [01.76

65
06

26

21

9I

45

713.86

66.36

37.08

35.84

80.12

70.32

1133

86.25

37.86

18.97

40.73

69.80

70.18

ew

81.21

35259

13.58

38.38

93.25
T2.27

67.30

51-23

37-69

62.97

50.82

91.92

3T9T

58.89

88.35

22.19

19.02

38.99:

24.43

58.
69.

40
cr
ot,
42.

89.79{IL5.
63.

EL

38.

10.
18.
AD.
10.

44.
54.

54.

40.

45.
55.

97

67.

53.

65.

AI.

54.

86.

45.

88.
56.
2r.
11.
1B.

so.

40.

33;

62

33

29

SL

ail

66

15

04

46

43

65

23

62

52

28

LO

9
81

Or

94

30

86

30

67

30

38

49
06

ET
42

03
02

39
II

It.

4I

D1

Yeas

59

60

61

62

63

64

65
66

67

78.69

88.79

62.00

88.00

10.78)

ioc

84.46

B2s03

32.24 92.14

053
62.
53.
40.

64
ig

iz.

66.
56.
Ol

69
16

29

63

66

22

22

61

el.

{0 29

i

60.
182.
SL's

39.
30.

29

54-6

70

46

05

ie

18

08

56

50

80

39

68 32

35+

60.

42.

22.

27.

47.

I7.

eI.

47

96

an

30

61

08

38

46

04

- 81

+30

-83

-38

50

£29

259

00

383

-77
oOo

£&
-
 @

230

-I5
x

-98
*

a3
Le

x

~30
24.
re
i.

|T4.

59

a

55

7
4

ogo

237
x

elec)

81

72

23

97
%

«61 [2
4

03

-03

4 beI5

16.

20.

“97

2

78

2236

84

71

“95

92

)

43.

16.

33+

ee

46.

19.

42.

50.

49 |24.

09 |48.
82 |5I.
66|I5.

.06}2T.
95126

11/26.

35)44.

00104.

52153.

90]
51

31

68

33

91

95

99

78

71

49.

29

60 39

42.

84.

27%

38.

50.

46.

aos

T2]05.

74.

62.

48.

1D.

9oltT3.

23/125.

94.

66.

38.

48

14

Le

26
44

48

36

62

27

O7

03

I5

O7

57

68

fable 2.12

Erbistock synthesised record 1923/68 made uv of selected

historical months e.g.for March 1923 in the synthesised

record use March 1946 J

Yas} SD E. M A M a mf A Ss oO N D

23| 1.55| 2-46 | 3-46 | 4.54 | 5-54 | 6.41 | 8.45] 8.39] 9.54 | 11.44) 1.49 |12.39

24| I.5I| 2-47 | 3-45 | 4-45 | 5-55 | 6-43 | 7-38] 8-54) 9-43 | 10-44 |IT. 43 12.46

25| 2.51] 2.45 | 3-46 | 5.40] 6.45 | 5-54] 7-49] 8.55) 9-41 | 10.44)11.43 1.38

26| 1.52] 3-41 | 3-46 | 4-52 | 6-43 | 6.52 | 7-53] 8-38) 9-48 | 10.42)11.44) 1.41

27| 1.46] 2.55] 3-51 | 4-54 | 5-41 | 6.48] 8.38] 9.46/10.50 | 9.46)12.46 12.53

28] 2.46| 2.50 | 3-46 | 4.55 | 5-39 | 6-48 | 7-43] 8-43] 9.52 | IT.39 2.46] 1.55

29| 1.40] 3.44 | 3-43 | 5-38 | 5-41 | 6-40 | 7-41} 8.39] 9.52 | 10.52 |II.44 1.48

30! 2.45] 3.45 | 3-55 | 4.50 | 5-49 | 6.50 | 8.42] 9.43 |10.43 | 11.46 |12.46] 1.48

31] 1.46] 2.43 | 3.48 4.42 | 5.47 | 6-55 | 7-42] 9-43 |10.43 | 10.51 |II.51| 1-45

32| 2.45] 2.47 | 3-42 | 4-49 | 5-47 | 7-42 | 8-42] 9.45) 9.51 | 11.46/11. 43 12.47

33| 2.54] 2-51 | 3-54 14-46 | 5.46 | 6-42 | 7-42] 8.55] 9-55 | IL.55/11-45 jI1.4e

34|12.42| 2.47 | 3-55 | 4-55 | 4-45 | 6-51 | 7-51] 7-50] 9-52 | 10.52 |IT.43| 1-47

35| 1-55|12.44 | 3-46 | 3-55 | 5-49 | 5-50 | 7-47] 8-47|10.49 | 11.44 |T2.44) 1.55

36] 1-43] 2.55 | 3-41 | 4-41 | 5.41 | 6.54 | 8.54] 7-75] 9-51 | 9-48/IT.46 12.46

37] I-5I| 1-43 | 2-43 | 4-54 | 5-41 | 6-41 | 639 | 7-49] 9-49 | 9-40 /IT.42 |T2.de2

38| 1.43| 2.44 | 3-45 | 4.46 | 5-46 | 6.54 | 7-54] 7-43] 9-40 | IT.39 |IT.49 |12.50

39] 2.46| 2.54 | 3-41 | 4.55 | 5-44 | 6.42 | 8.50] 7-43] 9-41 | 10-45 |II.44 |12.52

40| 2.47] 2-48 | 3-54 14-50 | 5-51 | 6-51 | 7-45] 8.55] 8.51 | 10-50 /11.54 |12.45

4I| 1-53] 2-45 | 3-39 |3-44 | 5.52 | 6.42 | 7.52] 9-45] 9-38 | 10-45 |IT.43 |T2.55

42|12.42| 2.39 | 3-50 |3-40 | 5.53 | 6-52 | 7-55] 8-46] 3-42 | 9-53 |10.39 12.48

43| 1.52|12.42 | 2.47 |4-44 | 5.55 | 6-48 | 7-47] 8.53 {10.42 | 10.43 [11.48 j12.41

44] 1.52] 2.38 | 3-45 [4-43 | 5-48 | 6.44 | 7-48] 8-47] 9.53 | 10-38 11.40 [12.46

45| 2-54] 2.50 | 3-53 [4-48 | 4.54 | 6.48 | 7-46] 8.49] 9-52 | 10-40 |IT.42 2.38

46| 1.44] 1.39 |3.42 |4.38 | 5.44 | 6.48 |7-42| 8.54/10.44 | 10.51 |1I.53| 1.38

47| 1.38| 2-47 | 2-46 14-49 | 4-40 | 7-45 | 6-41 | 8.55] 9-55 | 9-49 10.45 |1e.55

48| 2.46] 2.40 |3-45 14.54 | 5-46 | 6.54 17-42] 8.46] 9.44 | 16.43 |II.43 [12.38

49| 1.46] 2.44 | 3-42 |3-39 | 5-52 [6.42 | 7-41 | 8.41] 7-49 | 10.49 |IT.53 |Le.54

50| 1-40| 2.45 | 2-55 [4-42 | 5-49 | 6.40 | 7-43 | 8.46] 9-46 | 10.43 |12-50 [12.55

5I| 1.46| 2.40 | 2.43 |3-40 | 4-41 | 6-41 | 6.50} 8.38] 9.53 | 10.39 |II.-40 [12.49

52| 1.38] 2.39 | 3-42 [4.44 | 5.51 | 6.39 |7-49| 8.47] 9-42 | 10.38 /II.43 12.48

53| I-41] 2.52 | 3.42 14.48 | 5.49 | 6.49 | 7-38] 7-48] 9-54 1C.39 T0304 1 oe

54| 1.50|12.55 | 4.51 [3-45 | 4-54 | 6.38 | 7.38] 8.54] 9.53 | II.51 jII. 51 jl2.44

55]12.55| 2-44 | 3-40 | 4-39 | 5.49 | 6-48 | 6.51] 7-49) 9-49 | 9-40 10.46 |12.42]

56] 1.46] 2-47 | 3-49 | 4-44 | 5-44 | 7-52 | 7-43] 9-46] 9-44 | IT.4T 10.48 |12.48

57| I.5I| 2-40 | 3-40 | 4-46 | 5.39 | 7-49 | 6.54 |10.44] 9.46 | 10.45 II.48|12.45

58|12.42] I-47 | 3-53 | 4-44 | 5247 | 5-50 | 7-43] 8.46/10.44 | 10.43 10.46 |12.43

Yer} J F M n M s x As 1 Oo N D
59| 1.47 | 2-47 | 3-52 | 4-51 | 5-49 | 6.52 | 7-48] 8.55 | 9.49/10.39/12.42] 2.46

60|I2.44 | 2.43 | 3.50 | 4.52 | 5.44] 7-41 | 7-47| 9-45 | 9-43} 10.50/11.40/12.44

Sit 1.36 | feb 3.43:1 3.40 | 4.40 6.50 | 7-48] 8.38.1 9.45 I0.50/II.43}12.48

62] 2.45 | 2.39 | 3.44 | 4.47 | 5.50] 6.52 | 6.50| 8.46] 9.44] 9.45/I1.50]/12.55

63] 2.47 | 2.47 | 2.50] 4.51 | 4-45] 6-43 | 7-43 | 8.52 | 9.42/10.46/II.44/1. 41

64] 2.47 | 3-49 | 3-50 | 4-54 | 5-50] 6-52 | 7-40] 8.41 | 7-42}10.45|/II.41| 1.48

65) 2.45 | 2.47 | 3-55.| 4-40 | 4.40 6e438 e716 47 8.52 O-AZ1LO.AS 21 643) 2048

66] 1.50 | 1-44 | 3.50 | 4-49 | 4.54 | 6.47 | 7-55 | 8.48 | 9.42/10.42/12.50| 1.39

67| I-50 | 2-40 | 3.50 | 3-45 | 4.49 | 6.42 | 6.39 | 9-45 | 9.53/10.54/II-52| 1.44

68:4 1%39 se A938 «4 3-39 5-47 | 6.49 | 7.54 | 8.41 | 9.43/10.44/11.48 12.45

Table 2.13

Erbistock runoffs for synthesised record in table Zee cusec days x 10
3

YEAR
> F mM“ A M J mic A Ss 9 »b N

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

ao

40

4I

42

43

44

45

Ae R1

58.59

55-61

69-79

56.68

106.58

27-42

86.38

56.68

86.38

47-74

52.89

43.21

73-62

58.89

43-62

106 - 58

I0.10

2tu 57

52.89

69-79

69-79

47-74

106.58

I0.10

86.38

53-31

29.85

82.35

I7.04

17.83

60.57

i

55.61

I0.10

73°55

29.85

73-62

26.74

47-74

59.80

86.38

39-49

52.89

27-96

82.35

27.25

17.83

27.25

27.25

63.41

27425

9-23

35-96

TTS

23.88

43-94

35-96

27.25

53-31

60-57

17.83

53-31

43-90

49.19

32.50

10.10

17.83

18.43

22.66

25-75

18.22

12.75

22.66

20.15

4.98

30.16

31.89

45.86

9.81

20.15

35-96

3.10

22.66

9.81

20.15

30.16

I7.04

36.85

13.29

13.24

28.77

17.20

41.08

26.44

23.65

12.67

9°55

12.67

13.05

31.69

31.69

6.74

25-715

12.67

6.74

8.71

17-57

16.76

17-33

41.08

8.01

I7.20

10.85

23.65

17.20

9.04

26.90

26.90

6.22

5-37

32.28

9-95

II.I0

8.14

29299

31.86

10.85

31.86

EX 410

Ded a

II.10

8.14

26.90

16.61

26.90

7-09

26.72

3.60

25.08

20.29

18.25

4.15

19-57

9-95

19-57

9-95

4-35

15.78

41.26

6.99

27.31

37.02

II.84

5.01

II.59

15.78

13.86

I3.09

26.26

41.26

4.50

20.29.

66.30

19.58

26.26

47-40

47-40

16.65

4.50

4.35

6.33
11.59

3-6.

18.25

18.25

4.50

16.65

29.26

19.96

6.33

8.29

35-19 83. 82
annual +t

47-40

6.93

28.60

46.97

14.62

14.62

40.96

40.96

33-70

4.41

14.62

43.69

33-70

19.80

56.63

38.85

14.62

56.

56.

40.

67.

56.

TL.

=
Tl.

226

56.

O35

26.

70.

39

46

os

38.

40.

59 «

29.

28

28

60

30

-03

63

81

00

81

73

63

82

60

“93

03

87

297

87

85

96

93

a

83.82

 63-69 159.58
otal 503.38

36.89 |70.67

456.22

36.89 163.54
402.84

83.82 |19.44
413.62

10.67 [21.58
506.28

106.58 143.21
545-05

83.82 22.51
305955

70.60] 63.69
503.21

92.08/34.98

469.31

36.89 | 36.38
422.86

Ty eet 3.92
247-63

36.89|76.54
346.37

73-55143-e1
478.95

71.81I| 70.67
480.04

I3.92|52.89
327218

62.10|53.77
- 409.82

55-53
501.88

98.85 138.92

382.39

36.89 145.57
354-44

14.07|56.07
356.84

40.35|35.76
423.49

95.36170-67

438.44
13.92|54.28

355+14

61

Year N db

46

47

48

49

50

51

52

53

54

55

56

a

58

60

61

62

63

64

65

66

67

68

66.62

63-54

16. 58

56.68

oT he

56.68

63-54

19.44

31.49

45-57

56.68

58.59

52.89

76-54

86.09

63-54

86.38

10.10

10.10

86.38

31.49

31.49

93-56

93.56

I0.I0

56.27

26.74

86.38

56.27

39.49

38.95

45.57

26.74

I0.10

56.27

16.54

I0.10

60257

55.61

39.49

I0.10}

Ale bo

I0.10

66.62

23.88

106.58

17.83

23.88

29.85

60.57

23.88

23.88

43.12

36.85

27.13

36.85

18.43

21422

32.50

9-23

17.04

82.35

32.50

35-96

32.50

32.50

53-31 23-42

8.62

45.86

22.66

49.19.

31.89

36.85

13.29

28.77

17.83

20.80

15.29

9.81

13.29

43.12

31.89
36.85

56.69

43.12

22.66

26.46

45.86

I7.83

20;80

8.71

26.46

6.74

16.76

13.05

21.10

I7-57

13.05

22.66

13.05

8.71

9-55

31.69

13.05

8. 71

26.46

59259

25-75

59 «55

26.26

22.66

45.86

31.69

26.90

I1.84

31.86

II.I0

322

10.85

13.50

25.83

26.90

3.60

255

-14

i.

23.65

sta

23.65

12.78

it DebO

1350

9-15

4.15

18.25

5.37

3.60

26.72

26.72

‘eis

18.25

31.86.

18.25

13.86

15.78

13.86

15.78

II.59

6.99

2H est

41.26

4.50

29.26

10.60

29.26

20.29

6.33

13.86

41.26

3.60

67.30

56.28

29.26

4.50

16.65

20.29

29.26

II .80

I0.60

II.80

26.36

16.65

I0.60

56.28

4.41

33.32

3.60

67.30

38.85

19.80

35-19

38.85

3699

33.32

3s
56.28

3.59
47.40

16.65

33.32

19.80

9295

47-40

19.80

38.85

47-40

13.00

3-59

20.32

43.69

40.96

14.07

59.93

14.07

92.08

I1.76

27-82

39.
40.96

14.07

46.97

46.97

16.65

22.

39-87

20.92

40.60

99-67

56.28

4r

 64.223| 63.54
476.55

39.87145.57
373-17

36.89 154.28
425.96

64.23|86.09
396.71

53-77145-57
449 92

95.36|85.23
501.49

36.89]56.07

347-38
60.91|19.44

307.78

92.08173.55
551-04

22.41] 52.89
272-30

20.92| 56.07
348.61

40.35|38.92
449.25

22.41} 34.13
413.68

5. -89.| 70.67
aaa ut

95.36| 73-55
519.62

36.89|56.07
387.79

42.47|45.57
400.83

83.82/19.44
370.59

27.82{22.51
342.99

36.89 {22.51
464.31

53-771 93-56
45759

44.16] 66.62
467.99

457-14

Table 2.14

Erbistock effective releases (cusec days x 10) for synthetic record

Maintained flow 400 cusecs

Year J E ™ a M ed ae A rt ° N Db ANNUAL.

23 - - —|I.70| 2.83] 3-48/5.95|6.95 - - - -|I4.91

24 —(.57 | 0.22|1.11 -|0.09]0.42 - - - - =| 3-41

25 - - -|0.47| 0.38] 2.83 |8.59 |8.47 |5.37 - - -|26.11

26 - - —|1.28]0.09| 4.15|0.81 |0.37 - - =| 0.3716 7607

27 ~ - ~—{I.70| 5.1310.38|0.37 - - - =} iy =| 7.58

28 - ~ -|0.66| 3.28]0.38/1.77|0.85| 2.54 - - -| 9.48

29 | 1.51 | 0.32 | 3.34]6.70| 5.13] 5-23 |8.49 |0-95| 2.54 ~ ee ~| 34,21

30 ~|°0.22 - -|3.8616.47/0.35 ~ -| 0.21 - -|II.II

31 - - |0.51}0.54 - -|4.83 - - | 1.90 - ~| 7-78

32 -| 1.57 -|0.32 -|4.83]0.35/1.90 -| 0.21 - ~| 9.18

33 ~ ~ -|2.52|5.98]3.07|/4.83|8.47 |8.28 | 1.04] 0.97 | 0.52/35.68

34 —| 1.57 ~|0.66/I.1I|4.14|7.99 |2.73 j2.54 - - -|20.74

35 - - - ~|3.86/I.70/1.10|6.90 |4.46 - - ~{18.02

36 - - -|0.39|5.13 - ~|3.91 - ~| 0.2I -| 9.64

37 ot oa —|1I.70/5.13]3-48|5.04|8.59 |8.45 [5.37 | 0.52 -| 38.28

38 - — 10.22 |/2.52/5.98 -|0.10|1.77] 4.37 - - -|14.96

39 - - = 1066613<97| 3.07106 74116 17 | 5237:1' 2.22 - -{I7.70

40 | 1.57 - ~ -—|0.05/4.14/1.7518.47 | 4.73 - - | 0.25/20.96

AI | 0.10 ~ —10s32 120071 34071 toca] 1s90} 3603.1 2ete ~ 1 0.83121 .27

42 - - ~ -|0.39|4.14|3.91 =| 0.41 | 0-10 | 2.00 ~| 11.83

43 a = 18557 10298 -|0.38|I.10/1.09 - - -~| 0.01} 5.13

44 —|-0.06 |0.2212.14|4.27/1.96/1.15/6.90] 0.18 | 0.14 - -| 17.02

A5 ~ - |2.46/0.36}1.70|0.38/1.69|4.89 | 2.54 | 0.97] 0.52 -|I5.51

46 ~ - —|4.50/3.97|0.38/4.83 - ~ | 1-90 rm 1a Deon

AT =! 5.57 -|0.32 -|I.75|3-4818.47] 8.28 | 8.35 | 2.12 | 0.83}35.17

48 ~ - |0.22|1.70]5.98 -|4.83 - - | 0.64 - ~|13.37

49 - ~ ~ -|2.07/3.07|8.49|3.95 | 8.59 | 4.46 - —| 30.63

50 | I-51 ~ ~| 0.54/3-86}5.23/1.77 - - - - -|1I2.91

51 - - -| -10.39/3.48/6.47}0.37| 0.18 | 2.80 a =/53<69

52 - - —|0.98 |0.05|5.04]8.59|6.90] 0-41 | 0.14] - ~|22.11

53 | 0.37 - -—10.36|3-86|3.25/0.42/1.15 ~ | 2.80 ~ | 0.37/12.58

54 -| 0.83 ~ 102241. 7011 s1610.42 -| 0.18 - - -| 4.51

55 | 0.83 - - ~13.8610.38/4.14] 8.59 | 8.35 | 4.37 | 0.33 -| 30.85

56 — 1 Le57 10+19 |0.9813.97 | 7<231L-77 - ~ |} 0.22 | 0.45 -|16.38

57 “ - -—|2.52|3.28]8.59 - ~ - | 2.12 O | 0.25/16.76

Year| J F M A M ay a A > oO N Db | ANRVAL

58 - —-|2.46/0.98 -|I.70;/ 1.77 - - -|10.33 -| 7.24

51. sfIN57 10.201 > °.=|3-86(4sTAbT -151Ge4 7 023512<001 ok. 130.54

60 - ~ -|1.28/3.97|8.49|I.I0/1.90 - - - -|16.00

61 - - 13.34 - -—|6.47/1.15/0.37/1.90 - - -|13.23

62 - - |0.32 -|I.70|4.15| 6.47 - -|1.90 -|0.83]15.37

63|1.57|1-57 ~ | “+}e.7210.0911+7713-5910-41 |0.33| . -10.37120.62

64 |1.57}0.19 —|I.70|2.70)4.14)| 3.33)3-95 4.6312.12 10.22 -123.75

65 -|I.57 - - -|0.09|1I.10|3.59 - 10.45 - -| 6.80

66 - - - 10.32 }1.70|1.20} 3.91 |1I.33|0-41 - - -| 8.87

67 - - — |0.22 10.32 |3.07|5.04 |1I.90|0.18 _ - -|10.73

ore HE 2 pee = | SONS OPO CrOTs IOS et eT BB 7 8

Table 2.15

Erbistock monthly natural runoff ; Final

recorded data (cusec days

combined synthetic and

x 10°)

Year
= re M A mM a a A S oO N

23.

24

25

26

et

28

29

30

31

32

33

34

a5

36

37

38

39

40

4I

42

43

44

45

43.21

58.59

55.61

69,79

56.68

[06.58

27-42

86.38

56.68

86.38

47-74

52.89

43.21

13-62

58.89

63.54

93.56

27-42

19.44

39-94

13-62

66.62

34.98

6.58

£O.t0

86.38

53.31

29.85

82.35

I7-04

LEAATo\S)

60.57

IO.L0O

55.61

10.10

13.55

29.85

73 02

21.96

39.49

56s27

68.94

37.50

60.57

26.74

86.38

eis

17.83

27-25

27425

63.41

27425

Vea

35-96

17.83

23.80

43-90

53-31

60.57

20.02

49.19

36.85

oo eos

23.88

9-23

17.04

17.83

22.66

25-75

18.22

12.75

22.66

20.15

-98

30.16

31.89

45.86

.81

20.15

35-96

21.10

22.66

-62

20.80

26.46

JLo

31.89

Ts .ck

13.29

2575

77.20

a 05

26.44

23.65

T2567

5.55
12.67

13.05

31.69

31.69

6.74

25-75

13.05

I2.60

12.67

4.98

9«92

15.22

£2467

17.29

39.82

8.71

18.37

10.85]

23.65

17-20

9.04

26.90

26.90

6.22

5+37

9-95

II.I0

8.14

19-55

31.86

TT.

23.65

16.61

26.44

7-09

26.72

3.60

25.08

20.29

18.25

4.15

29057

9395

L9s 5ST

9-95

4.35

15.78

41.26

6.99

26.72

38.35

I2.18

4.18

aero

18.25

II.86

II.84

26.26

41.26

4.50

20.29

67.30

19.58

26.26

47-40

47-40

16.65

50

235

233

II.59

- 60

20.29

26.26

eOL

10.60

19-57

19.50

59

-09

35.19

47.40

6.93

28.60

46.97

I4.62

14.62

40.96

40.96

a3 10:

4.41

14.62

43.69

33.70

3.59

O.41

TOD

<t ok

6.93

19.80

47-40

33 03R

16.65

 83.82 | 63.69

503.38

56.28136.89
456.22

56.28|36.89
402.84

40.60|83.82
413.62

67.30|70.67
506.26

70.03 106.58
545.05

56.63183.82
385.55

711.81 |70.60
503.21

13.00|92.08

469.31

711.81 |36.89
422.86

22.73|17.22
247.63

56.63 136.89
ene. at

83.82|73.55
478.95

28.60|71.81
480.04

6.93 |13.92
Bole Lo

59 «93 160.91
381.40

14.07 [70.03
438.88

29.55|95.36
362.21

32.55 [27582
304.12

40.60|13.92
318.33

40.96 |36.89
417.34

56428 [83.82
416.43

39.87 [17.22
341.34

59 «58

70.67

63.54

19.44

21.58

43.21

[22.51

63.69

34.98

36-30

13.92

76.54

43.21

70.67

52.89

54.28

59 «58

ae ry

35-16

52.89

34.13

73-55

38.92

ft OD<«

YEAR e Oo aN

46

47

48

49

50

at

52

53

54

55

56

57

58

59

.|.60

61

62

63

64

56.

16.

122.

63.

31.

58.

69.

2I.

35-

43.

56.

58.

52.

16.

86.

63.

86.

10.

IO.

681106.58

54| 10.10

51| 59.80

69| 23.42

49| 82.35

59| 55-61

79} 38-95

57} 39-65

31) 47-74

21| 29.85

68| 10.10

59| 56-27

89| 76.54

54| 10.10

09| 60.57

54} 55-61

38} 39-49

I0| 10.10

LO; etoLL

27225

TI 5..00

17383

27 1d

32-50

63.41

21.22

18.43

43.90

35-96

27.11

36.85

18.43

21:22

32.50

9-23

I7.04

82.35

32.50

9.81

56.69

28.77

45.86

30.16

43.12

12.75

28.10

22.66

20.15

13.29

9.81

13.29

43.12

31.89

36.85

56.69

43.12

22.66

6.74

31.69

8.01

E3.05

19.55

17-57

16.76

17-33

17.20

41.08

eitel

9.55

31.69

I3.05

Bacal

26.46

19.55

25.75

19.55

25.87

12.78

26.90

13.50

5-37

8.14

9-04

5531

31.86

32.28

9-04

3.60

19-55

8.14

4.15

5°37

9-04

23.65

GLA

13.09

15.78

13.86

3.60

15.81

4035
5.01

25.08

27631

II.59

18.25

31.86

18.25

13.86

15.78

13.86

5237

18.25

I2.18

29.26

6.33
26.36

8.29

37.02

II.64

II.80

19.96

41.26

4.50

67-30

56.28

29.26

4.50

16.65

20.29

29.26

II.80

I0.60

67.30
Anand

4.72

28.60

3-59

715-87

33-70

14.62

38.85

35-19

4.41

33-32

67.30

56.28

3.59

47-40

16.65

33-32

19.80

929)

 22.41{| 71.81

= 507-47
4.81 [46.13

416.9 5
20.92| 40.35

449.98
43.69| 62.10

393-13
46.971 42-47

41333
13.00192.08

484.72

56-63144.16
356.26

20.32| 64.23
328.41

99-65|98.85
587-04

L23341 22.13
303-67

27.82|20.92

348.61

39-87] 40.35
449 225

40.96] 22.41

413.68

331-75

46.97|95-36
519.62

46.97| 36.89
387.79

16.65| 42.47
400.83

22.4T| 83-82
370-59

39.87|27.82
342.99

70.67

36.38

56.07

45.23

53-71

83.51

55.53

27.58

86.09

45.57

56-07

38.92

34.13

1OeGd

13255

56.07

45.57

19.44

122.51

66.

Table 2.16

Erbistock effective releases (cusec days x 10°) for combined record

Maintained flow 400 cusecs

NeaR| J Beir A M x. x A Ss 3 N D | ANNUAL

23 as - —|I.70| 2.83] 3-48|5.95/0.95 - - ~ -|14.91

24 -|1.57/0.22|I.I1I -|0.09/0.42 - - - - -| 3.41

25 “ a -|0.47| 0.38} 2.83 |8.59|8.47/5-37 ~ = =| 26.15

26 - - ~|I.28/0.09/4.15/0.81|0.37 - - -|0.37| 7-07

eT - - -|I.70|5.13/0.38|0.37 - - - - -| 7.58

28 - = =-|0.66] 3.28/0.38/1.77|0.85 12.54 - - -| 9.48

29 |I.51| 0.32] 3.34|6.70| 5.13] 5-23 |8.49 |0.95/2.54 _ - -| 34.21

30 -|0.22 - -|3.8616.47|/0.35 = -|O.2I - -|II.II

31 - -10.51|0.54 “ =-|4.83 - ~|P290 ~ -| 7.78

32 -|I.57 -|0.32 -|4.83|/0.35/1.90 -|0.21 - -| 9.18

33 = = —|2.52]5.98| 3.07|4.83 |8.47| 8.28|/1-04|0.97|0.52| 35.68

34 -|I.57 —|0.66/I.I1I|4.14|7.99|2.73|2.54 - - -|20.74

35 ~ = - -| 3.86|1I.70/1.10|6.90| 4.46 - ~ -/18.02

36 - - -|0.39] 5.13 i -|3.91 - ~|0.2I a1: 9.64

37 a ~ —|I.70| 5.13} 3-48/5.04|8.59| 8.45|5.37|0.52 -| 38.28

38 -| 0.06] 0.17|4.50| 6.70|1.16|0.42 |0.37| 3.63 |0.14 - -|I7.13

39 - - - —|3.28/5.04}0.20 |0.95/| 4.86 |2.80 - -|I7.12

40 |I.51 - - -|0.47] 5-23 |3-33|7-11| 4.37 |0.97 ~ -|22.88

AI |0.37 - —|0-39| 5-13] 3-84/8.49 |3.95| 5-37 |1-65|0-22]0.01 | 29.07

42 -| 0.38 -10.54|3-87/3-07|/4.83 |0.35/0.41 -|0.52 -|I3.97

43 % —|3.34/2.14|0.48]0.091.77 |0.85 “ - = -| 8.66

44 ~ -|0.32/0.98]| 3.97/1-96| 2-32 14.45 - - - -|I4.01

45 - -|0.22|I.II]0.27| 0.38/1-75 |5-95| 1-90 |2.12|0.97|0.25|14.92

46 - - -12.52/5.98 —|I.69 - -/0.33/0.21 -|I0.73

AT -|1I.57/0.28 - -—|I.20|/I.1I0 |6.90/7-96/7-44}2.00 -|28.44

48 - -|0.51/0.36/4.27/0.38/1I.15 |1.33 -|0.45 - -| 8.46

49 - -|0.19/0.32] 3.86] 3.25 |8.59 |4.89| 8.35/4.46 - -|33-90

50 m i - -|I.70/6.47 |2.73 |0.74 - - - -|II.64

5L - _ - -|0.05/4.14|7-99 |4.73 -|I.90 - -|18.81

52 - -|0.20/1.28/2.07|4.15 17-23 13-59] 2.54 - a -|20.96

53 10:6:1.0 -|2.46/0.21/0.39|0.85 0.81 |I.09}0.18|0.64 - -| 6.72

54 10.02 a ~{I.70|2.83 -|0.10 a a “i -| 4.65

55 - -| -|0.66 - -|3.91 |8.47| 8.28|3.2T/1.04/0.83}26.40

56 =| 1.57] 0.19] 0.98] 3.97/7-23|1-77 - —-|0.22)0.45 -|16.38

67.

YEAR} J Fi M A mM WS Si A Ss ° N S| ANRUAL

57 ~ = —|2.52/3.28/8.59 - - -|2.12 -|0.25/16.76

58 - -|2.46|0.98 —|I.70|1I.77 - - -|0.33 -| 7-24

59 -|I.57/0.20 -|3.86/4.14 |I.15 |8.47/8.35|2.80 - -130.54

60 - ~ -|1.28]3.97|8.49 |I.10|1.90 - - - -|I16.74

61 - -|3-34 ~ -|6.47|I.15|0.37/1.90 - - -|13.23

62 ~ -|0.32 -|I.70|4.15|6.47 ~ -/I.90 -|0.83/15.37

63 |1.57 |1-57 - —|I.12/0.09 |1I.77/3.59 |0.41 | 0.33 -|0.37/10.82

6411.57 |O.19 -|I.70|1.70/4.14|3.33 /3.95/4.83|/2.12/0.22 - {23-75

65 - {1.57 - ~ -|0.09 |I.10/3.59 -|0.45 ~ -| 6.80

66 - - —(0.32/1.70/1.20| 3.91 |1.33/)0.41 - - -| 8.87

67 - - —|0.22/0.32|3.07/5-04|1.90/0.18 ~ - -|I0.73

68 ~ - - - —|3.25]/0.10|3.95 - ~ -|0.25] 7.55

68.

Table 2.17

Erbistock effective releases (cusec days x 10?) for combined record

Maintained flow 450 cusecs

Nene) et Bebe. A Md | ee A SO | N |} D_ | Anno

23 - -| -—|2.42 |3.92|4.54] 7.40] 1.32 |0.12 - ~ - |I9.72

24 -|2.65/0.72 |I.74 |0.00/0.25] 0.89 - ~ ~ - -| 6.25

25 ~ - - |I.06]0.84]3.9210.14/10.02 |6.62 ~ -/0.2I /32.81

26 - - — |2.09]0.25| 5.30] 1.62] 0.67 |0.06|0.03 -|0.93 {10.95

27 - - - 12.42 |6.38]0.53] 0.67 ~ - - -|0.II |I0.II

28 - ~ - |I.16 |4.65|0.53] 2.67] 1.50|3.60 ~ - - |I4.1I

29 |2.13 10.57 14.72 |8.25 [6.38 16.73 |10.04| 1.32 |3.60 -| - - 43.74

30 -|0.72 - - |5-20/7.85| 0.73 - -|0.54 - - |T5.04

31 ~ -|I.1I7 |0.98 ~ -|5.95 - - (2.85 - - |10.95

32 — (2.65 |0.14 |0.78 — 15-95] 0.73] 2.55 -|0.54 -|0.34 |13.68

33 - - — |3-73 7-46 |4.17| 5-95]10.02 |9.78 jI.6I |1.79 |1.36 |4§.87

34 -|2.65 — |I.16 |I.74 |5.40] 9.54] 3.54 |3.60 ~ - - |27.62

35 ~ ~ - - 15.20 /2.51/ 1.66] 8.43 |5.31 ~ - — |23.11

36 ~ - — |0.71 |6.38 |005 -| 5.06 -|0.06 |0.54 - |I2.80

37 - ~ — |2.42 |6.38/4.54| 6.50|10.13 |9.85 |6.62 1.36 - 147.80

38 |0.02 |0.24 [0.59 |5.64 |8.25 |1.73| 0.87| 0.67 |5.08 10.19 ee 24630

39 ~ ~ — |0.12 [4.65 |6.50] 0.45] 1.32 |6.36 13.65 - — |23.05

40 |2.13 - ~ - |1.06 |6.73| 4.44] 8.66 |5.37 |I.24 - — |29.61

41 |0.93 - — |0.71 |6.38 |4.54[10.04| 4.93 |6.62 |2.10 |0.58 |0.10 136.93

42 - |0.74 0.14 |0.98 |5.00 |4.17] 5.95] 0.73 [0-75 10.03 |I. 36 - |19.85

43 - -|4.72 |3.02 [1.60 |0.25] 2.67| 1.50 - - - - |13.14

44 - - |0.57 |1.86 |5.34 |2.67| 3.46] 5.80 ~ ~ ~ - |19.69

45 - -|0.72 |I.74 |0-77 |0.84] 2.79] 7.40 |2.55 |3.08 |I.79 |0.39 |22.08

46 - - - 13.73 17-46 -| 2.65] O.I1 -|0.75 |0.54 - {15.24

47 — 12.65 |0.57 - — |2.02/1.66] 8.43 |9.46 |8.94 |2.45 10.03 [36.20

48 ~ -|I.17 |0.78 [5.71 |0.53| 1.95] 1-78 |0.06 |0.82 ~ - |I2.80

49 — {0.08 |0.43 |0.59 |5.20 |4.11|D.14| 6.18 |9.85 |5.31 ~ - 141.89

50 |0.07 - - - 2.51 |7-85] 3.54] 1.29 - - - —|15.25

51 e a * — |0-35 |5-40|} 9.54) 5.94 - (2.85 = - |24.09

52 ~ - 10.49 |2.09 |2.94 |5.29| 8.77| 4.56 |3.60 - - - (27.74

53 10.32 -|3-47 |0.49 [0.83 |1.64/ 1.25] 1.62 |0.48 |1.27 -|0.II |II.49

54 |O.13 ~ -|2.42 |3.92 |0.05/ 0.52 -|0.01 - - -—| 7.05

55 - -|0.00 |I.16 ~ -| 5-06/10.02 19.78 |4.16 |I. 61 |1.28 |33.06

56 - |2.65 [0.43 |1.86 |5.34 |8.77| 2.67 - -|0.57 |0.82 -|23.71

69.

Year| 3 F M Ket = - A S fe) N S| ANNUAL

bi - - -|3.73|4.65/10.14| 0.05 - -|3.08 -| 0.39] 22.04

58 - -|3.47/1.86 -| 2.51/ 2.67} 0.11 - -1|0.75 -| II.37

59 -|2.65|0.49 -| 5-20] 5.40| 1.95|10.02/9.85]3.65 _ -|39.e1

60 —} 2 eel. £12,091 5e341l0 e041. 661 2655 ele al. be eee

610.21 -|4.72 - -| 7-85/1.95| 0.67}2.55 - ~ -|I7.95

62 - -|0.57 -|2.51] 5.30| 7.85] 0.1L -12.55 -|1I.28] 20.17

63|2.65/2.65| —-| —-|1-74] 0-25|2.67] 4-56/0-75|0-75| —-|0.93/16.95

64|2.6510.43| -|2.42/2.51| 5.40/4.44] 4.93|/5-95|3-08]0.58| -|32.39

Table 2.18

Erbistock effective releases (cusec days x t0°) for

combined record. Maintained flow 500 cusecs.

106

age hk IM ae AS ls 9 N | D__ |ANavAL

23 ~ - —13223 {5.03} 5.66] 8.85) 1.69] 0.12 - -|0.07|24.65

Odl: rd 5098 L543 12 55210205) Osh SEO x ale ee de oo ne on ge
25 = - —|I.89 |I.40) 5.03/11. 69/I1.57 8.89 - -|0.10|40.57

26 - - -|3.07 /0.45} 6.59] I.84] I.17| 0.13] 0.18 -j1.67/1I15.10

21 -|0.05 -|3-23 |7-63] 0.76| 1.17 _ - - -/0.33/13.17

28 -|0.04 -{1.74 |6.05}] 0.76] 3.61) 2.34 Aa] 3 - a -|19.27

29| 3-12 |0.95]| 6.26 |9.80 |7. 63) 8.23/11.19] 1.69] 4.73] 0.01 - -|53.61

30 -/1I1.43/0.06 - |6.56] 9.26/ 1.28 = -| 1.08 - -|19.67

31 - —|2.15|1.48 |0.01 | (ee - -| 3.92 - -|I4.67

32 -|3.98|/0.41 |0.94 |O.01| 7.I1| 1.28 3-25] 0.04) 1.08 -/0.27/18.37

33)}0.04 - —|5-II 9.01) 5.34) 7-ITjIL.57|11.28] 2.23 |2.73 |2.46 56.88

34 -|3-98/0.06|1.74 |2.52 6. 70/11 .09} 4.48] 4.73] 0.01 - -|35.31

35 - - -|0-06 |6.56| 3.44) 2.48] 9.98] 6.16 - ~ -|28.68

36 - 10.05 -—|I.09 |7.63] 0.34 -— 6.22| 0.04] 0.13/1.08 -|16.58

37| -| -| -|3-23}7.63] 5.66] 8.00/11. 69|IT.35] 8.89|2.46| -|58.92
38] O. II |0.49/1.13 | 6.84 |9.80) 2.33] 1.22 Del a55| 0. ed - -| 29.86

39 ~_ - ~|0-49 |6.05] 8.00] 0.70) 1.69] 7.86 4.59 -—|0.07|29.44

40| 3.12 - - -/1I.89| 8.23] 5.63/10.21| 6.41 13 67 ~ -|37-15

Atl T.67 ~ -|I.09 |7.63)] 5-66/1L.19] 6.02] 8.89 2054 | Pe tLj0.3T | 46.12

42 -/1I.16|0.41 |1.48 |5.63}] 5.34] 7.11) 1.28 T3240. 5812546 -|26.28

43 - -| 6.26 /4.00 |1.60} 0.45] 3.61| 2.34 - - ~_ -|18.26

44 - -|0.95 |2.88|6.77] 3.62] 4.61] 7.20 - - - -|26.03

45 _ -|/1.43 |2.52 |1.39| 1.40) 4.05) 8.85} 3.25) 4.13 12.73 |0.46] 30.22

46 - - -—|5-II/9.01} 0.09] 3.76) 0.48 -| 1.30/1.08 -|20.83

AT -13.98/1I.07/0.04|0.01] 3.02] 2.48 9 .98/10.96/10.55 2-90 |0.27|45.25

48 ~ —|2.15|1.44|7.26] 0.76) 2.99} 2.33] 0.13 L225 - -|18.30

49 -|0.28/0.72 |0.94 6.56] 5.07|I1.69 7-48/I1 .35] 6.16 - -|50.23

50}0.27/0.04/0.03 -|3-44| 9.26) 4.48) 1.95 - - - -(|I9.47

51 - - -|0.04/1.05] 6.70/11 .09] 7.19] 0.04] 3.92 -~ -|30.04

52 - -| 1.05 /3-07]3.86}] 6.59/10. 32 5.66] 4.73] 0.01 - -| 35.28

53 OeLoO —| 4.59 |0.94|1I.42] 2.74] 1.84) 2.23] 0.83 2.05 {0033 bie 51

5410-3710.04 —|3-23)5.03] 0.34) I.04 -| 0.12 - - -/IO.17

Do -|0.05]0.06/I.74]0.05 -| 6.2211 .57/1L.28) 5.34/2.23/1.73 40.25

56 -|3.98] 0.72 |2.88]6.77|10.32| 3.61 - eis llr. 29 -|30.64

51 = ~ —|5.1T|6.05/11.69] 0.34 ~ -| 4.13 -|0.46|27.78

7I.

Year| J M A mM v = A S ° N Bb | ANNUAL

58 - -|4.59|2.88/0.01| 3.44] 3.61] 0.48 - -|1.30 -| 16.31

59 -|3-98/1.05/0.04/6.56] 6.70] 2.99/12. 12/11. 35} 4.59 - -| 49.38

60 ba -|0.03]3.07 |6.77|IL.19| 2-48] 3.25 of re > -| 26.79

61 |0.10 —|16.26 - -| 9.26/2.99/} I.I7| 3.25 _ ~ -| 23.03

62 “a -~/0.95|0.04 |3.44| 6.59}9.26] 0.48 wh} 625 -|1.73}25.74

63 13-98 |3.98|0.04|0.04 2.52] 0.45] 3.61] 5.66} 1.24/1.30 -|1.67| 24.49

64 13-98 |0.72 |0.03 | 3-23 [3-44] 6.70| 5.63] 6.02] 7.11 }4.13|/1.11 -| 42.10

ve.

CHAPTER 3

REVIEW OF COMPUTER LANGUAGES

3 ok “int voduetion

When computers were first produced, the only method of communicating with

them was through their own language, which was ofter peculiar to a

certain model of computer, or even to one particular machine. The

instructions consisted of combinations of guntews and special symbols

which bore no resemblance to the problem statement written in English

and algebraic terms by the engineer or scientist.

Before a problem could be coded for a computer it had to be broken down

into the most basic mathematical processes involved, and each instruction

then referred to one action, such as addition of two numbers. The

computer holds the numbers in which may be imagined as a set of cells,

each of which has an absolute position or address in the machine core.

When using machine language each possible operation which can be

performed by the computer was assigned a number, and an instruction

could consist of the address of a data item to be operated on and a

number representing the operation to be carried out. Since most

operations require two operands, a second number must somewhere be

available. The usual convention makes the number standing in a special

cell called the accumulator the second operand. The accumulator is also

available to store the result of the operation.

It can be seen that the programmer did not then operate on variable

names, as in algebra, but on the contents of a cdl in the computer store

which could only be referred to by its absolute address. In order to

write a program in machine language it was necessary to keep a record of

what variable or number was represented at each address. With a complex

13

program, the clerical work involved in detailing the items present in

various locations became burdensome and was always open to human error.

To overcome someof the labour involved in documentation and to reduce the

possibility of errors, a form of language known as symbolic code was

written. Instead of referring to absolute addresses, the programmer

could now label data and instructions by words or mnemonics which

related the information in the computer store to the normal vocabulary

of mathematics. However, there still tended to be a one to one

correspondence between groups of mnemonics and machine language

instructions, and the program was still too detailed to resemble the

original problem statement.

Because of the high speed of computers it was thought that the task of

translating a problem from scientific terms into machine language could

be performed by the computer itself with much greater efficiency than

by a programmer. Therefore, the next step in development was to const-

ruct languages which resembled ordinary algebraic terminology. These

languages are known as procedure orientated, or high level, languages

and are more distant from the computer than the symbolic codes. The

detailed bredtiown of problems is no longer performed by the programmer,

and he need not know how the computer stores its information. For the

computer to be able to carry out the functions described by these

languages it is first necessary to translate the instructions into its

own terms.

They way in which this is done is to write a program in machine

language which will accept the user's high-level program as data, and

replace each statement in the high level language with a set of machine

code instructions to carry out the same process. This program, known

as a compiler, also controls the addressing required by the machine.

Several of these high level languages and their associated compilers

1D~

Jece Requirements of a computer language for a specialist subject

Because practising engineers do not have the time to become fully

conversant with modern computing methods, and indeed, because computer

instal lations tend to change very rapidly so that only full time users of

the computer can keep up with new developments, and due to the scattered

nature of literature concerning specialist procedures, engineering usage

of the computer is not as widespread as it could be.

However, it is thought that if a simple, standard system of

programming for a specialist subject could be designed, which remained

stable as far as the engineer is concerned, and which inclwed all the

most commonly used routines of the specialist subject, then this would

tend to convey more confidence to the engineer and might lead to increased

computer usage, as opposed to the situation at present, where an

engineer might feel that he would rather carry out an approximate problem

solution by hand than spend time searching for a relevant routine in the

literature and then searching through language manuals to find the

necessary input and output procedures for data.

In the past few years there has been an increasing tendency for

Engineering departments in Universities to teach the basics of computer

usage to undergraduates, and, as a consequence, it is felt that in future

more practising engineers will look to the computer to solve their

problems, and so there is an increasing urgency to provide a well

documented set of mwutines, implanted in simply structured language.

It is thought that the knowledge that such systems exist at computing

installations available to industry, and that simple documented usage

manuals have been written, is more important than the basic knowl edge

of one or two computer languages such as Fortran or Algol. It is

suggested that interest is soon lost in the usage of computers if

76.

engineers cannot obtain the well tried procedures they require without

the frustration of weeks of searching.

A simple computer language for use by a specialist in a particular field

of engineering should require that the user states his problem and gives

his data in essentially the same form as he would to a human assistant.

In the same way, the user should be able to specify various courses of

action to take depending upon the results obtained at any stage in his

problem, and since the human capacityto make decisions based on only

partially defined facts cannot be built into the computer, some form of

temporary or permanent filing of intermediate results for possible use

by later cdculations must be provided, so that a human decision can be

made without having to reconstruct the data on cards or paper tape.

Facilities should also be provded for editing input data held on files

so that ammendments or corrections can be made.

Since a user's problemwould generally be solved using several specialist

routines, some of which would require as data results from previous

routines, the form of the data input and output by each routine must be

acceptable to all other routines which might use the same data.

TT.

363.6 Existing methods of solving specialist problems

3 edeLs A compatible subroutine library

The Fortran and Algol languages provide the facility to construct a

library of routines for a private user, and it is possible to write each

routine so that the form of the data is the same for each one. Thus,

the routines would be obeyed by simply writing down in a normal Algol or

Fortran program the routine names, in the required order of calculation,

along with the parameters, or data items necessary for the running of the

routines. However, the reading of data into the correct areas in the

machine core, and the outputting of results, is left to the user.

With large amounts of data it is not possible to hold all information in

the computer core and it is generally in this situation when problems

occur for a usere With a complicated program, it may be necessary to

run the same sequence of calculations with several data sets and then to

carry out further calculations with one of the data sets, to be selected

by an analysis of the first results. In this case, where the data to be

used for the second sequence of cdculations cannot be specified before-—

hand, it is impossible to arrange the input data in the correct order for

a simple Algol or Fortran program, using only the basic input devices,

if all the data cannot be held in the core at the same time. The

problem of reading data in a random order can be overcome by the use of

magnetic tapes or discs as input devices, but this assumes a knowledge

of the method of storage on magnetic media and involves keeping a

directory of the positions of data blocks on the files. Even using tapes

and discs it is difficult to insert identifying information in the data,

and the storage of text, for use as titles in outputting results, poses

special problems.

ies

It would not be possible to write general routines, for inclusion in the

library, to read and file away data, without including an unwieldly

number of parameters to cover all the different types and forms of

information necessary to a complicated system.

Since it is the aim of a specialist computer language to take some of

the burden of machine communication from the user, and to allow him to

present his problem in familiar terms, without the necessity to manipulate

his data for the machine's benefit, it is thought that the library of

compatible subroutines is still too far orientated towards the machine

to be of great benefit to the casual user.

Z.36ee Packages

A further step towards user-orientated languages is provided in

extremely specialised fields by some computer manufacturers. These

‘languages' are usually known as soft ware packages and include packages

for Traffic Engineering, Fluid Distribution Network Analysis, Pipe-

stressing calculations, Continuous Beam Analysis and Power Systems

Analysis.

Each package consists of several programs or routines, including special

reading routines, which act upon the numerical data provided in an order

specified by the user. The user's input usually consists of several

sets of data matrices, identified by standard names, and some simple

commands which are recognised by the reading routines.

The commands convey to the package which routines are to be used and

which data are to be manipulated. In general, the form of data

necessary for one package may be completely different from that required

by another, although some standardisation has been attempted between

packages in the same special field, where a user might need to use the

results from one package as input data for another. In these cases, the

19.6

user is allowed to file his results from the first package on magnetic

tape and then, in a separate job, read back the data into the second

package.

323.36 Vehicle Scheduling Package

The ICL 1900 Vehicle Scheduling Package does not act in the same way as

most of the otherpackages, since it is a complete high level language,

with a similar structure to that of Algol.

The user's program, written in the special language, is presented to the

Vehicle Scheduling compiler for direct translation into machine code, in

much the same way as an Algol program is translated.

This type of language is on thesame level as Fortran and Algol, and only

adds yet another language to the many which exist already.

2 36k I900 Control and Simulation Language (CSL)

The original CSL language was developed jointly by IBM United Kingdom

Ltd. and Esso Petroleum Co. Ltd. for the purpose of carrying out

simulation exercises, and was adapted for use on the ICL 1900 series of

machines.

The CSL system makes use of the facilities provided by Fortran and a

program written in CSL language could contain blocks of code written

entirely in Fortran, augmented by the special statements peculiar to CSL.

The user's input is scanned by a special program or processor which

assembles an equivalent Fortran program from the information provided.

This program is then presented to the Fortran compiler for translation

into machine code and for subsequent execution.

When the CSL processor reads Sie dade program it must recognise whether

the input is Fortran code or a special CSL command. If the input is

Fortran code then it is copied piety to the file where the equivalent

Fortran program to the user's input is being assembled, but if the input

80.,

is a CSL command then this must be replaced by a Fortran statement or

set of statements which will carry out the as ks implied by the CSL

instruction. This pure Fortran code is then written to the assembly

file.

The declarations, or reservation of storage space, for all data is left

to the user, as is the selection of the correct input and output devices

for thenumerical data.

The effect of CSL is to make available a library of specialised simulation

routines and to make their use easier by simplifying the method of

using them in a Fortran program.

Fe5a5e SIMON (Simulation language)

SIMON was written by P.R. Hills at Bristol College of Science and

Technology and provides the same facilities in Algol as does CSL in

Fortran. However, Simon is not a language in the grammatical sense, since

pre-translation of a program containing Simon routines is not necessary

before it is presented to the Algol compiler.

Simon consists simply of a set of routines for manipulating the

membership of lists or queues and for generating random inputs to a

system from given frequency distributions. The routines are called for

use from the Algol program in the same way as normal Algol routines, and

are incorporated in a program by inserting card decks declaring the

routines at the head of the Algol program which uses them, so that the

user of the Simon routines needs to be a competent Algol programmer.

It is thought that Simon might be of ne in reducing the possibility of

logical errors or omission of clauses in an Algol program for simulating

a complex system.

303665 GENES YS

Genesys was developed by Alcock Shearing and Partners for the Ministry of

8I.

Public Building and Works, and is administered by the Genesys Centre at

Loughborough University. It was originally written to provide a simple

user language for structural enginers, but the concepts involved are

extendable to other fields of engineering.

In principle, Genesys is similar to CSL, in that the user's program is

read by a processing system which translates it into Fortran for

presentation to the Fortran compiler. However, Genesys inclués many

more facilities than CSL, and recognises a far greater number of commands.

Furthermore, a user's data is presented in the form of tables which are

read by special routines, and which may be edited and filed on magnetic

media as desired.

Genesys is by far the most versatile and simple user-orientated system

available at the present time.

A user's program consists of a set of commands, some of which concern the

reading of the correct data tables into themachine, and some of which

specify the calculations to be performed on the data. Following the

commands are the tables of data, each identified by a title, and each

having at least two standard column headings. The data itself is listed

under the relevant column headings.

The commands of Genesys are used in the same way as calls on compatible

Gearautthas in Fortran, and any Genesys program may contain Fortran code

and ordinary subroutines. The Fortran facilities for altering the course

of programs are available.

The major advantages of Genesys over Fortran lie in the manipulation of

the data tables and the provision of a virtual store. The latter

facility allows a programmer writing a routine for inclusion in the

Genesys library to imagine that the computer has a very large storage

capacity, and reduces many of the problems involved in the handling of

large amounts of data.

When the user's program is presented to Genesys, the tables are

temporarily filed away automatically on magnetic media, and are later

accessed by quoting their titles in data reading commands. The tables

may be accessed in any order and tables may be used which were produced

as results fromerinput as data to another program as long as they were

permanently filed at the time by using the Genesys editing and filing

facilities. Tables may contain data in several forms; an item of data

may be given as a numerical value, as an arithmetic expression, or if a

value is not known, or will vary when the table is used several times,

then it may be given as a variable name, In the latter case, the user

assigns a value to the variable name before the table is used.

Various facilities exist for reducing the amount of data to be written in

a table, and these are all described in the Genesys reference manual,

but for the purpose of giving an example of a Genesys program, one

particular facility is useful. If a data item under one column heading

is the same as the item above it then the '=' sign may be used to

represent 'ditto'.

Genesys is composed of many different problem solving groups of routines

in che teen of a library.

Each group of routines is called a subsystem, and the user must state at

the head of his program which subsystem he intends to usee The commands

available to the user under a particular subsystem are relevant only to

that subsystem and may not make sense to another subsystem.

Example

*GENESYS

*START 'CGYNTINUPUS-BEAMS'!

*TABLES
ER 6 7

LENCO, VN BRR E RDO Epo May DEVS Ea, MM

a. 5 300 400

4 eS = =

srs . : 500

Ci 2y¥ a

SPAN LZaD,,K N/M

Lee 25.8

*MASTER

APPLY BG RD CASE OLIVE Te Bee Sou

ALUM SBPeTE EMER Gr o6,. AMET S:0 F Po 3

PRINT BENDING MNMPMENTS

* PIN. sh

REX. Se

J U.B.L.= 25:8 KN]m

Pelee Ly aad

€ ? 5

1 cI of

E

&
A

ck 4:Sm silem 4:5 m me S+Sm 8

@ © ® ®

84.

The GENESYS card simply tells the computer operator that the Genesys

system is to be used.

The second line is a command to choose the subsystem required. In this

case the system dealing with continuous beams is required.

The * TABLES commands tells the system that the information between

* TABLES and the next command beginning with an asterisk are the data

tables required by the sybsystem.

Each table begins with thetitle of the table in inverted commas.

The line after the title contains the standard column headings for that

particular data table. The headings are each followed by an optional

mnemonic indicating the units relevant to that heading.

After the last table the next commandis * MASTER. This command introduces

the problem solving commands for that subsystem.

The first line

APPLY LAD CASE 'LIVE' Tg BEAM 'B67!

tells the subsystem which tables are to be used.

In this case the uniformily distributed load of 25.8 KN/M is to be applied

over the span connecting supports I and 2, as described in table 'LIVE'.

The beam itself is described in table 'B67' and is shown in Fig.3.}.

The second line is self explanatory, and allows support 2 to settle by

6 MM.

The bending moments resulting from the load and settlement are now

calculated.

The third line tells the system to print the results on the line printer.

The next command * FINISH tells Genesys that the user has performed all

his calculations with the subsystem 'CONTINUOUS—BRAMS'.

After * FINISH the user may * START another subsystem or he may write

* EXIT which terminates the Genesys run.

856

Sadeie Natural language problem-solving systems

Some steps have been taken recently in the field of artificial machine

intelligence to produce systems which can understand natural English.

Gelb, of the IBM Corporation, New York, has developed a program called

Happiness which is able to solve problems involving probability. The

user's problem is input in English, and the program then breaks down the

grammatical and idiomatic structure of the input to produce a precise

mathematical representation of the problem. The problem may then be

solved by the computer.

Winograd, at MIT, has written a program which carries out actions and

answers questions about a simple world containing several objects, which

include a table, a box, and some blocks and pyramids, stored as a data

structure inside the computer and displayed on a television screen to the

person conversing with it. The world also contains a 'hand' which is able

to pick up and move the objects. The system is known as SHRDLU, and the

user may interrogate the system concerning the state of the world at any

time, and he may give instructions to alter the state of the world.

The user's instructions are not only analysed grammatically, but any

instruction is analysed in the context of the previous conversation.

This facility makes SHRDLU one of the most advanced language understanding

programs yet produced.

However, the nearer a system becomes to understanding conversational

English, the more costly becomes its use, and the more likely it becomes

for the user to miss out information. It is felt that an engineer should

present his problem to a computer in a more mathematical and exact manner

if errors are to be avoided.

The use of natural language understanding programs would be better

applied to interrogation and restructuring of information filing systems.

86.

Sect athe HYDRO

A simple language for water resources systems, called Hydro, was

constructed by Bugliarello and McNally at the Carnegie Institute of

Technology in 1966. The language is not machine based, since the Hydro

program translates the user's input into ALGOL, which is then

re-translated by she Algol compiler into machine language, ready for

execution, so that it carries out a similar process to that of CSL and

GENESYS. Although Hydro was originally meant to solve problems only in

water engineering, the structure of the system is such that any routine,

in any field of science and engineering, can be incorporated into the

language.

The Hydro language has been adapted by the author for the IcL 1900 series

of machines and is described in the following chapter.

87.

030 De SLANG.

SLANG is an analogue computer simulation language developed by Hawker

Siddeley Dynamics. This language simulates the operation of a

differential analyser. This in turn is a device for solving sets of

simultaneous ordinary differential equations. It has bee shown else—

where in this thesis that the reservoir operation problem can be

described by a set of simultaneous differential equations. One has been

prevented from using ordinary analogue Soupurens ey reservoirs problems

because of theccomplex function generators required to simulate data

sequences and control rules. To a large extent digital simulations of

analogue computers overcome this problem because almost any type of

function can be specified. One still has difficulty in specifying

control rules, especially of the type used in reservoir regulation

where amenity and recreational factors are taken into account.

88.

363%k0 Ascop

Ascop is an integrated system capable of performing a wide range of data

editing operations as well as many of the standard statistical analyses.

An Ascop program consists of instructions and data matrices, the

instructions indicating to the system which analyses are to be performed

on given data sets.

The data matrices are arranged so that the columns represent variables and

the rows represent observations on the values of these variables. Hach

matrix is assigned a name and number by the user and he also provides the

column, or variable, names by means of a special statement.

The user normally instructs the system to read in the data matrices and

store them on magnetic tapes or discs as a data base for use by the

system. The editing operations may then be used to check the data and

to specify the subsets that are required for analysis. The subsets may

be stored with theoriginal data as new matrices, thus augmenting the

data base, or created solely for the purpose of analyses. In the latter

case the subset may be envisaged as a matrix which has no physical

existence, but only exists in the mind of the user for the limited period

that the data is to be used.

The Ascop language has been designed so that the instructions follow

normal English as far as possible, and there exist several ways of

saying the same thing, all recognisable to the system.

Ascop is a very useful tool for carrying out statistical analyses and for

performing arithmetic and editing operations on matrices, but the data

structue is so rigid that the system is not readily extendable to other

fields.

89.

CHAPTER 4

THE HYDRO LANGUAGE

4.1. Introduction

The Hydro language was the result of a four year pilot effort intended

primarily to explore the issues arising in the development of a

comprehensive problem-orientated language for the field of water

resources, and to provide a framework for rapid future expansion on a

library of useful computer routines. A first choice facing the

designer of a language is whether or not to subdivide the water

resources field into several subfields, such as frequency analysis,

precipitation analysis, and channel flow, and to provide for each a

problem-orientated language with a structure and data format most

suitable to it.

Subdivision has merit when intercommunication between the different

sub-areas is limited. For instance, the Integrated Civil Engineering

System (ICES) developed at M.I.T.is an assembly of different

sublanguages for surveying, structural frame analyses, soil stability

analyses etc. The ICES components are integrated into a system by a

general compiler, which understands the contents of the component

subcompilers and makes them operate jointly. In the case of water

resources there is a considerable amount of exchange between the

possible sub-areas entering into the solution of a typical problem.

The determination of design spillway flows may begin with the analysis

of precipitation and proceed through flood routing, which requires open

channel flow procedures, and frequency analyses. If separate compilers

were used for each of these sub-areas, the user would be required to

learn the programming instructions for each to perform a simple routine

analysis. Furthermore, if subfields are defined on the basis of type

90.

of problem and corresponding data structure their number would be very

large. In this respect, the situation in water resources is far more

complex than, say, structural frame analysis, where one deals with many

different geometries, but where, chee these have been described, the

solution is given by the same equations for every frame structure.

The above considerations militate against the subdivision of a water

resources language into sub-languages. Thus, Hydro has been designed

as a comprehensive language, with a data structure valid for the entire

range of water resources problems it covers. This solution is in the

direction of greater integration and has potential for further

expansion; but it does lead to a slightly more general data structure,

which is less responsive to the needs of a given sub-area. On the other

hand the user only has to learn one data structure, andis given a tool

of considerably more power and flexibility.

The flexibility in Hydro is enhanced by the fact that the Hydro processor

which converts the user's program to the universal language of Algol,

has only the task of organising the code that will carry out the

solutions, but unlike the ICES system it does not have the capability in

itself of producing problem solutions. The routines which actually

solve the problems are contained in a library, and can be withdrawn,

altered or added to much more easily than if they were incorporated

directly in the processor. The existence of a library of procedures

separated from the processor also facilitates the building of decision

links into the language and the use of the language in an on-line

conversational mode.

The decision as to the basic structure of the language must be followed

by several accessory ones : for example, the amount of logical

decisions to be entrusted to the user versus that entrusted to the

ST,

Lamennee, the size of the individual routines of the language, and the

criteria to be followed in maintaining, revising and augmenting the

language. In the actual design of a procedure, it must also be

decided how general or how specific the procedwe should be. A

procedure may be designed as a compromise acceptable to most potential

users, or several different procedures could be constructed, each

satisfying the needs of a prticular group of users. In Hydro, both

approaches have been followed, according to circumstances.

The development specifications which have guided the design of Hydro

demanded that Hydro should be much simpler to program than Fortran

or Algol but should have sufficient flexibility to handle different

types of problems so as to cover a broad area of water resources. The

commands and data have been structured toward the natural language of

water resources and there are automatic data transfers between

commands. The routines available to Hydro have been written so that

the user may choose to use them separately, one after the other, or,

when possible so that he may request one complex routine which

automatically calls for other routines in an order dictated by

intermediate results.

In order that the system be easily augmented, the processor and its

associated libraries have been designed to facilitate the design of

procedures and the addition of new procedures to the library, or the

removal and substitution of existing procedures.

926

4.2. General description and operation of the System

The main features of the Hydro System are the translator program and

the line library.

From the instructions and data supplied by the user, the translator

assembles an equivalent Algol program using lines of Algol code stored

in the library. The generated program is then presented to the Algol

compiler for execution. In addition, the system employs a general

working area to which the translator writes the generated program with

its associated data, and from which it runs. A further component of

the system consists of a copy of the translator program which is used

only when alterations or additions are made to the system. This copy

is necessary in order to avoid corruption of the working translator if

incorrect alterations are made.

All components of the system are located on disc and tape: storage

facilities when the system is not in use, but when a user submits a

program to Hydro all components are transferred to dise devices only,

since operations are much more rapid from discs. A more practical

consideration is that if the line library was accessed on magnetic tape

the multiple rewindings which would be necessary, would quickly cause a

deterioration in the quality of the tape.

Although the system was developed on an ICL 1905 computer using Algol-

60 and the 1900 Algol input/output procedures for the transfer of data

between the computer fast store and the pripheral units, such as card

readers, tapes, printers and discs, it can easily be adapted to run in

any language and on any computer installation with at least 32K

storage space, as long as there are disc or magnetic tape backing store

facilities, and provided that procedures exist or can be written to

936

perform similar tasks to the 1900 input/output system.

A more detailed description of the Hydro translator and the special

data reading procedures used by the system may be found in

Reference (2).

946

4.3.6 Requirements of an Algol program

In order that the operations of the Hydro translator be understood it

is necessary to be conversant with the requirements and structure of

an Algol program. The method of constructing Algol programs may be

found in any computer installations manuals, but a brief description

of some of the major requirements will be given here.

So that the computer may reserve sufficient storage space for all the

variables which may be used in an Algol program, they must be declared

prior to their use. eingis variables may take either integer values or

continuous decimal, or real, values. Integers require only one storage

space in the machine but real numbers require two spaces, since a real

number is stored as a fraction between zero and I plus an exponent.

The declarations take the form

‘INTEGER' variable name,

or ‘'REAL' variable name.

Declarationsof array variables, which represent Yectors and matrices,

must include the size of the array as well as the name. Arrays may be

of any size and any number of dimensions. Array elements are referred

to by subscripts after the array name. The size of the array is

declared by quoting the range of each subscript used.

'INTEGER' 'ARRAY' name [-4:12,0:13]

or 'REAL' ‘ARRAY! name [-4:12,0:13]

will declare an integer or real array called 'name' having I7x 14 =238

elements. The first subscript ranges from —4 to I2 and the second from

O to I3 in steps of I. The two figures separated by a colon and giving

the range of the subscript are termed a bound pair. Individual bound

pairs are separated by commas, and the whole list is enclosed in square

95

subscript brackets.

As well as declaration of variables, it is also necessary to declare any

procedures, or routines, which are to be used. The procedures consist

of blocks of code which may be used several times in a program. Instead

of having to write out the whole block of code every time it is used,

Algol provides the facility to name the block of code, so that only the

name of the block needs to be written down when the code is required.

The naming of the block is performed in the declaration, which, in the

same way as variables, must precede the use of the name in the program,

i.e. ‘PROCEDURE' name 3

'BEGIN'

code

’ 4
END 35

The writing down of the name of the procedure in an Algol program now

implies that the whole block of code is to be used at that point, and is

known as a call on the procedure.

The data for an Algol program iscompletely separated from the program

and is presented as a separate document to the machine.

Any program assembled by the Hydro system has several standard procedures

declared at the head of the program. These are blocks of code which are

able to read in the data for the program in the form that it is given by

the user. The appropriate calls on these procedures read in the user's

data in the correct order and assign the data to the correct variables.

These procedures have a liist of parameters after the procedure name, and

it is the parameters which tell the procedure the names and sizes of the

arrays with which it is dealing.

The Hydro system automatically sets up the correct parameters to read in

9
4.4 Bugliarello's HYDRO

97

The version of the HYDRO system available to the author,as written under

the direction of Bugliarello at the Carnegie Institute of Technology,was

in a form of ALGOL that was not directly usable on the ICL I900 series of

machines ,and, because AIGOL does not contain standard reading and writing

routines,so that different input and output: software tends to be provided

for the various types of computer ,new routines,incorporating the I900

ALGOL reading and writing procedures,had to be written to perform the

equivalent operations to Bugliarello's program.Also,several grammatical

constructions used by Bugliarello were not available on the 1900 machine,

but,when the intention was determined from the context of the surrounding

program statements,code could be written to carry out similar tasks.

Because of the complexity of the HYDRO translator,Bugliarello's flow

diagrams and his related description involved extremely lengthy documentation

and it proved a difficult task to formulate an accurate overall picture of

what the translator was actually doing.However,by breaking down the program

into several self-contained groups of statements,the action of each was

determined and,by re-assenbling these groups in their various combinations,

the general principles were realised.It then became possible to start re-~

writing the program with some confidence,and it wes found that Bugliarello's

version contained several logical and grammatical errors which would not

allow thesystem to operate in the intended manner.One error was found

impossible to correct without restructuring the system to some extent and

affected the flexibility of the language.It concerned the method of dealing

with array declerations and the full implications of the error are detailed

at the end of this chapter.

This chapter describes the HYDRO system written by the author to perform

the same operations as Bugliarello's language,and does not include the

revision necessary for dealing with arrays.The method of overcoming the error

is dealt with in the next chapter where the author's complete revision of

the HYDRO laneuvase is described:

The following description of the translator and line library should be read

in conjunction with the examples given later in the chapter.

A 5s The Line library

The line library contains code for all of the Hydro procedures and

procedure calls, the variable and array reading code, declarations of

all variables and the declarations of the special data reading procedures

used by the system. For the convenience of the translator program,

which has to calculate the position in the library of the code necessary

to assemble the final Algol program, all code of a similar nature is

grouped together. For instance, all array declarations are together

and each is composed of the same number of lines so that it is only

necessary to know the position of the first declaration in the library

in order to find the array declaration required, since every array

variable is given a unique reference number which determines its

relative position to the first one. The first material on the library

is the declaration of all single variables which may be used by an

assembled program. All possible single variables are declared at the

head of every assembled program because the storage space involved is

small and thereforeit is not necessary that they be declared as they are

required.

Next on the library are the special data reading procedures which assign

data to the correct variables wnen the program is executed. These are

also declared at the head of every program assembled by Hydro.

Following this is a short section of code which is necessary to

initialise certain variables used by the reading procedures.

After this preliminary code are the lines Wich read data into all the

single read-in variables used by the Hydro procedures. These consist

of calls on one of the data reading procedures. There are the same

number of lines of code for each variable.

oO oO
e

Following the single read calls are the sections of data reading code

for each of the read-in arrays which may be used in Hydro. Each section

of code consists of the array declaration and a call on a data reading

procedure.

After the array read lines come the sections of code representing

material which must be assembled globally to any of the procedures.

This code mainly consists of array declarations for arrays not of the

read in type, the calculations of bounds on internal arrays and array

initialisation procedues.

The main section of code remaining, which is the largest section,

contains the bodies of all procedures which exis in the Hydro System.

After each procedure body is a call on that procedure. The final

section of code contains a list of Algol 'END's; lines which are used

to terminate the assembled program.

i00.

Diagram of line library

I.

Qe

les

Declaration of global single variables used by Hydro and

any general array declarations which are used by all

Hydro programs

Declaration*of the seven data reading procedures

BAS I card

Single variable reading procedure calls

BAS 2 card

Declaration of arrays and

calls on array reading procedures

BAS 3 card

Declaration of global material necessary for some

procedues

BAS 4 card

Procedure bodies and

calls on procedures

Algol 'END' cards for terminating program

A copy of a line library which includes only a few procedures and

arrays is given in Appendix 4.

TOI.

Ah The Translator Program

The translator program is split into three distinct components or

phases. The first phase of the translator, which is automatically

entered when a user submits a program to the system, reads, one by one,

the input cards, each of which must contain either a procedure name,

variable names and associated dat@ or data only. By comparing any

procedum or variable names which occur with a list of permissable names,

the translator is able to check for spelling mistakes or non-existent

names which may occur. The cards are also checked for grammatical

errors, such as misplaced commas or decimal points in data. All input

cards, except those which contain procedure names are written away to a

disc file to be used later as data by the generated Algol program.

When a procedure or variable name is recognised by the translator it

places a number benseond ite to the procedure we vabbube into a list

which is used by the second phase of the translator. If any errors

have been detected in phase one, relevant error messages are written to

the lineprinter, detailing exactly where the error occurred and

explaining what may have happened. The execution of the Hydro system

is then terminated since the operation of the next phase of the

translator assumes that no errors were found in the previous phase.

For the program which the system assembles to run correctly, then all

of the necessury data must be present and all the procedures and

variables which are :required must be declared befawm they are used. Also

the data supplied must be read in the correct sequence and assigned to

the correct variables. The checking needed and the assembly of code to

perform the requared actions constitute the main function of phase two

of the translator.

Phase two, therefore, performs the major task of the Hydro system, since

this is the part of the translator which actually decides which lines

of Algol code must be moved from the library to solve the user's

problems.

Data for a Hydro procedure may be supplied in two ways :

(a) All of the data necessary for the running of a procedure may

be given directly after the procedure name in the input deck, or

(db) some data may be omitted from one procedure because it may be

calculated by the operation of an earlier procedure upon its own data,

or the data required may be the same as that given to an earlier procedure

In the case where data is calculated by a previous procedure, the

number corresponding to this data variable will not have been placed in

the list of procedures and variables by phase one since it does not

appear in the input deck.

Similarly, there are several internal procedures which are not available

to the user but are used by other procedures, so that the numbers for

these internal procedures do not appear in the input list. In some

cases it would be possible to declare these internal procedures within

the bodies of the main procedures, but this would lead to an

unnecessary duplication of effort, since the same internal procedures

may be used by several external procedures. In addition, some external

procedures call other external procedures, and although if all the data

is given for the major procedue it will automatically satisfy the

smaller procedure, the number for the auxilary procedure will not appear

in the list unless it has been used in its own right.

Therefore, it is necessary to use the input list in some way in order

to check that for every procedure number which appears there, all the

data variables required by it have been given in the input deck, or

that the necessary data may be calculated from the data given to a

previous procedure, and to check that all of the procedures

necessary to the solution of the problem will be available during

execution of the assembled program. Since these checks can only be

carried out on the input list then continuous additions to it will be

necessary, so that when checks are made, the numbers representing

procedures and variables which are used or generated by the program,

but not given by the user, will be present in the list. This

modification is carried out by special blocks of code which are written

into the translator for every possible procedure available to the user.

When a procedure number is encountered for the first time in the input

list, the variables cdculated by it and any auxiliary procedures which

it uses must be placed into the top of the list, since these are now

available as data for later procedures in the same way as if they had

been supplied by the user. Also, the numbers of the auxiliary

procedures must be placed in the list. This modification of the input

list is necessary for two reasons. Firstly, if allows the translator

to check that all variables required for the running of this and later

procedures will be available and, secondly, a check may be made whether

this is the first time that a variable or procedure has been used. This

second point is used when procedures or variables have to be declared.

If procedure or variable numbers have not appeared before, then they must

be declared at this stage, but if they have appeared before then no

declaration is necessary since they will have been declared at their

first eccurence. As well as declaring procedures and variables if

necessary, code must also be assembled to read any data which the user

has given immediately following the procedure being processed. The

reading of data is performed by special reading procedures which are

incorporated into every program assembled by Hydro, therefore, for every

data variable which appears in the input under a particular procedure

I04,

all that is needed is 2 call on the reading procedure relevant to that

data variable.

After all of the declarations of variables and other procedures used by

this procedure have been made, then the declaration of the main

procedue itself may be carried out, followed by a call on the procedure.

Now, if the main procedure has been employed before by the user then the

above checks for declarations will not be necessary since they will have

been carried out the first time the procedure was used, and all that is

necessary is the assembly of code to read any new data for the procedure

and a further call on the procedure.

As in phase one, if any errors occur, such as missing data or procedures

then relevant error messages are printed out and the Hydro system

terminates. Phase two assembles the necessary code by effectively noting

down the serial numbers of the lines of code required from the line

library to perform the tasks of declaring variables and procedures,

reasing data into the variables, and calling the procedures, as well as

any code necessary for special operations such as initiallising arrays.

Phase three of the translator is the section which actually writes the

assembled program which will perform the tasks required by the user.

The lines of code required, whose line numbers in the library have been

calculated by phase two, are retrieved from the library and copied onto

a disc file in preparation for presentation of the assembled program to

the Algol compiler for execution. The data for this program, which is

simply a copy of those input cards containing data, has already been

written to another disc file by Phase one.

All that remains is for the computer to execute the program and to print

I05.

out the results on theline printer.

It is still possible for errors to occur in the execution of the users'

program since, although the translator checks that all variables and

procedures required are present, the user may have supplied too much of

too little data for a particular variable. Because of the special data

reading procedures used by the system, this type of error may be detected

and an error message will be output to the line printer.

PHASH Er

SET STACK POINTER

TG: POSLTION 50

STNO=50

t
4 READ NEXT LINE oF

USERS INPUT

Move along line until

first non-space

character.

Set I=position of

character

Move along line until

sa : or =
Set J=position of

character

Copy name between position

— cig J and ‘position (d-I):.into

Or s.: array IMAG

A variable is

assigned data on

this line

t
Compare name in IMAG

to list of: HYDRO

variable names

Put number

representing variable

found into next stack

position.

Increment stack

pointer

{
If this data line has '——————

not been stored on the

disc file then copy
it now

I06.

eee ce cae

A procedure name has
been found on this:

line

Compare name in IMAG

to list of HYDRO

procedure names

Put number

representing procedure
found into next stack

position

Increment stack

pointer

¥
If procedure is

PROGRAM. END then
proceed to phase 2

else GO TO I

t
Move along line from If end of line then

= or’ [(to end.of r*iread next line of input
line or ;

1

Copy line to disc data

file

 Move along line till

end of line or ;

y If end of line then

read next line

If 3; then set pointer I

to character after ;

GO°TO.2

ce

PHASE 2

Y

YES

Put zero into

bottom of stack

Put into PROGRAM array
the numbers which give

the positions in the
library of the
beginning and end of

the general code which

must proceed every
HYDRO program

!

SET NEW STACK POINTER

TO 49
OPNO=49

 Move to next position

in stack where the

variables and

procedures found by
Phase I are stored

107.

Process with

routine called

ARRAYVARIABLE

Put into program

arrey the numbers

giving the
position of the
code to read data
into this variable

Does the number

represent a

single variable

 —“@———| at label 4

\
YES

=~) variable

y
NO

}
This ais a

procedure

!

Go to the label

where the code

to process this

procedure is to

be found

(label 5)

\

Code to process an array variable

YES

This array will have
been declared at the

previous occurence

so that it need not

be declared again

Look back through stack to

find whether this array
has occured before in the

user's input

Write error

message.

Go “to 3

NO

Y

NO

Look back through

stack to find whether

all the variables

which define the size
of the array have been

given previously by

the user

YES

Put into PROGRAM array

the positions of the

code in the library

which will declare

Put into program array
the position of the

code in the library to

read this array

y

Exit fron

Avia vor ube

code

this array

!

Process with

I09.

Code to process a typical procedure

(Is the procedure

PROGRAM. END

1
NO

Replace procedure.

number in stack

with zero

Y

ARRAYVARIABLE
(label 4)

Fy

t——- no

Go to

label 6

 Move to next

position in stack

ves—«_
Is this an array \
variable

v

i
is ita single

variable

v
NO

Next procedure

in stack has been

found

r

ee

Put into PROGRAM
array the positions
in the library of
the code which
places Algol: 'END'
cards at the end
of the assembled
program and move to
Phase 3

a

~

Put into PROGRAM
array the position
in the library of

the code to read

data into the variable

 jo YES ————— -

Look back through

stack to find
whether all the data

necessary for the

running of the

present procedure

has been given

prior to the next
procedure

NO —| Write error message |

Y Y ES f

Look back through

by the user or implied
by the use of another
procedure

stack to find whether

the present procedure YRS

has occurred before
lab

either directly given Soege 2 ebek il

Label 6;

This procedure has occurred

before — either directly
given by the user or
implied by the use of
another procedure

\

The positions of code in the
library to declare this

procedure and any other

procedures it may use will
have been put into the

PROGRAM array at its first
occurrence and need not be

repeated

Putinto the PROGRAM array

only the positions of code

in the library which calls
this procedure into use

Y

Replace the number

representing this procedure

back into the stack in the

correct position

Y

Move to process next

procedure in stack.

| Go to 5 |

IIo.

Label 7: This procedure has

. not occurred before.

j

Check whether any procedures
that this procedure may use
have occurred previously -
either directly given by the

user or implied by the use
of another procedure

Y
NES

 <t
Put into PROGRAM array the
positions of code in the
library which will declare
the procedure being
processed

y

Put into PROGRAM array the
positions in the library
of any code (after the
Base 3 card) which should
be present before the

procedure is called into

use

¥

Put into PROGRAM array the
positions of code in the

library which will call

this procedure into use

/
Replace the number

representing this procedure

back into the stack in the

correct position

y
Move to process next
procedure in stack

Put into PROGRAM

array the
positions of the
code in the

library which
declares these

procedures.

Put into the

bottom of the

stack the

numbers

representing

these procedures

PHASE 3

Copy the relevant code from the

library, according to the

information given in the

PROGRAM array, to the disc file
where the equivalent program
to the user's input is being

assembled

y

Present the final assembled
program to the Algol compiler
for translation into machine
code and for subsequent
execution of the program with
the data which was written to

the disc data file in Phase I

o

Print results on line printer

Lees

II3.

4.Te Example

The following example is taken directly from Bugliarello's Hydro

manuals and illustrates the concept of stringing procedure calls and

the retention of data and computed results. In addition it illustrates

input of data to arrays of multiple dimension as well as the use of

alphanumeric data.

This program combines six procedures to compute a set of depth-area-

duration curves for a large storm over a watershed. The data used are

taken from the drawings of Fig. 4-! and the program is given in Fig. 4,2,

The process of solution is the following :

ae From inputted hourly masscurves of rainfall at each

station in the area covered by the storm isohyetal map, compute six-

hour masscurves of rainfall.

b. Find the maximum rainfall at each station for 6, I2, 18,

and 24 hour periods throughout the storm.

ce Compute a curve of rainfall depth versus surface area from

data planimetered from the isohyetal map. This curve relates average

depth of rain to the areas surrounded by each isohyetal line.

d. Compute depth-duration curves for the isohyets within

individual zones of the isohyetal map using the six-hour masscurves at

individual stations and planimetered areas about those stations within

given isohyets.

e- Compute depth-duration curves for isohyets crossing

combinations of zones of the isohyetal map.

f. Rearrange the computed depth-duration curves according to

the area associated wth each to get a complete set of depth-area-

duration curves.

ANDOVER ; |

HAMPTON
550 on |

A ZONE |B STORRS

>
 i

ZONE

L COLUMBIA 3 3 4 a i ee
WINDHAM

<i ; fr ety / LEBANON
. | ir COVENTRY

a ve i MANSFIELO =) ud Ly f

Fe
ae | ° oe © |

° 6 (2 13 24 o 6 i2 ‘8 24 TIME IN HOURS

A) MASSCURVES OF RAINFALL

ZONE A.

 B) ISOHYETAL MAP LEBANON

FIG, 4,|

IT5.

SIX .HOUR.MASSCURVES:
TOTALI1=8; TOTAL1O=20; |
ZONEL=*A*, *A*, ¥A*, *A*, *B¥, ¥B*X, ¥BX, *BX;

STATION1=*ANDOVER*, *COLUMBIA*, *WINDHAM*, *MANSFIEL*,
HAMPTON, *STORRS*, * LEBANON*, *COVENTRY*;

MASSINPUT=0.5,0.8,1.1,1.5,129, 2392075300; 3035 304,
BAGS 3k 5 dBc As S44 5.4 S.A, 5:45 3256045
022,012.02 0.3, 068,0+4,0.5,0.6, 057.018)
0.8,0.8,0.8, 0.8, 0.8,0.9,1.5, 3.0, 329, 3.9,
022,06. 570.5)0.7, 0:8, 1203222 ,105, 1540.5.
1 639 8: 56, 196,158, Mable 0.5400 ae
6.0,0.0, 0. 0, 6.0,0.0;0.0,0.0,0.6;0.0,0-0,
6:0; 0.0;0.0, 0:0, 0.54.2, 2 eye ee;
0.2075 0.8, 1 «Ages ts 200s pubs 9085522, ie,
30 O05 2 aie. 5 Pe 60. 3.9. 5. oe
0:2,0. 3, 0.4, 0.8, 1.0; 144,20, 2.6; 2.8, 2.8,
2.8, 26, 248, 228, 23:8, 2.8, 2.8) 5-8, 4.2.4.2,
O53.0.6;0. 7; 6.6, 1805 bol, 122s bea eks 350s,
9.1.3, 1s Bo bee et eee te

0.0,0.1, 0.25024; 0.540: 7,0.8,0;9, 0.950. 9,
079,0..9, 09930. 94 1 Os0 .905.1-937.9,1. 951.92

MAXIMUM. STATION. PRECIPITATION:
DEPTH. AREA.CURVE:

TOTAL13=15; CONVERTER=1.543;
CENTER2=*A*,*A1*, *Al*, *AL*, *AL*, *AL*, *A1L*, ¥A1*, *B¥,*B1*,

B1,*Bl*,*B1*, *B1*, *B1*;

TSOHYETOSG, 6546, 55:45 352, 1405 5 e035 4, Brews
PLANIMETER2=0,0,16,123,531,1580, 3652, 6704,0,0, 36,

3519,1171, 3122, 6749;
DEPTH. DURATION.SINGLE.ZONES:

' POTALL4=32;
ZONE3=*A*, *A*, *A*, *A*, *AX, *A*, *A*, eA, *AX, *¥AX, xAX, XAK,

A, *AX, *AX, *Ax, *AX, *BY, *B*, *BE, *BX, *B*, xB, *B*X,

B, *B*, * BX, xB, *BF, *B*, * BX, *BY;

STATION3=*ANDOVER*, * ANDOVER*, *ANDOVER*, *ANDOVER*, *COLUMBIA*,
ANDOVER , *COLUMBIA* *WINDHAM*, *MANSFIEL*,
ANDOVER, *COLUMBIA*, *WINDHAM*, *MANSFIEL*,
ANDOVER, *COLUMBIA*, *WINDHAM*, *MANSFIEL*,
HAMPTON, *HAMPTON*, *HAMPTON*, *STORRS*,
HAMPTON, *STORRS*, * LEBANON*,
HAMPTON, *STORRS*, * LEBANON*, *COVENTRY*,
HAMPTON, *STORRS*, *LEBANON*, *COVENTRY*;

ISOHYET3S=0;.6; 5, 4,0, 34.0,;0,0,2;50;,0; 0,130.0, 0,
0,5,4,0,5,0,0,2,0,0,0,1,0,0,0;

PLANIMETER3=0,16,123, 411,120, 984, 376,182, 38,
1522, 929, 751,540,.0;0, 0,0,0,36, 207,112,
698, 392,81,1244, 872, 667, 342,0,0,0,0;

DEPTH. DURATION.COMBINED. ZONES:
TOTAL15=6;
ZONE4=*A*, *B*, *A*,*B*, *A*, *B*¥,*A*, *B¥S

ISOHYET4=2,2,2,1,1,13
PLANIMETER4=1,1,1,0,0,0;

DEPTH. AREA. DURATION.CURVES:
PROGRAM. END:

Fig.4.2 HYDRO PROGRAM.

II6.

It can be seen from Fig. 4,2 how a program was developed to execute

these six tasks. All rules of data transfer apply; all inputs given

and outputs computed are always available for use by procedures called

later in the program.

A large part of the data for the program, including some alphanumeric

data and two-dimensional array data, are required for the first

procedure, SIX.HOUR.-MASSCURVES. The number of raingage stations in the

watershed (8) is given by the variable TOTALII, and the number of hours

of rainfall at these stations (20hours) is given by TOTALIO. ZONEI and

STATIONI are alphanumeric variables; STATIONI is given the raingage

station names, and ZONEI the rainfall zones in which each is located.

It is easy to see how each piece of alphanumeric data is given,

surrounded by asterisks. Finally the 8 masscurves of rainfall, each

containing 20 values, are given continuously to the two-dimensional

MASSINPUT array variable. There is no distinction wthin the data given

for this variable between one masscurve and the next. The 8 curves are

simply given back to back in an order corresponding to the station names

given to STATIONI. Two lines are taken for each masscurve, but this of

course is only done for order and convenience. Any number of lines

could have been used.

The second procedure, MAXIMUM.STATION.PRECIPITANON, is given no data; it

uses many of the same inputs given to SIX.HOUR.MASSCURVES.

The other procedures of the program are called in order, each followed

by the data necessary for their execution. The data for DEPTH.ARHA.CURVE,

DEPTH.DURATION.SINGLE.ZONES, is alphanumeric. In all cases inputs and

out puts from previous procedures are retained and used, eliminating the

need for the user to re-submit data already inputted or computed

EIT.

elsewhere in the program. The final procedure called, DEPTH.AREA.

DURATION.CURVES, requires no data; its data are the results of

previous procedures.

iTé.

4.8. The ICL 1900 Algol input/output procedures used by Hydro

In this section the procedures required by the translator program and

the assembled program for the transference of information between the

computer core store and the peripheral devices will be described.

These procedures, or procedures which eae perform similar functions are

essential to the implementation of the Hydro system on any computer

installation.

Disc handling procedures

These procedures allow numbers to be written to or fetched from a disc

file so that they may be accessed in any order.

Using these procedures the disc may be thought of as a one-dimensional

list. Bach element in the list is numbered serially starting from

element I, and each element contains one item of data.

It is possible for the disc procedures to fetch items in the list back

into core store, starting at any specified element and ending at any

element. Similarly, it is possible to write information away starting

at any position in the list. This. facility is used for storing the line

library, so that the lines necessary to assemble a program may be

accessed in any order. Each character is identified to the machine by

using an integer code cypher instead of the actual character.

In Hydro the information is stored one character to an element, and

there are 8I characters per line.

Tie elements in the disc store are transferred from and to arrays in

the machine core. The Hydro system uses only a one dimensional array

for this purpose, so that part of the list on the disc is copied

directly to the array or list in the core.

IED.

The relevant procedures are 3

a) WORKSTORE (N,S,L) which sets up a list of length L on a file

on medium S, which is a disc for Hydro, and the file is referenced by a

number N, assigned by the programmer.

b) PUTPART (N,K,A,X,Y).

This procedure transfers the part of the array A, in core, starting

from array element X and ending with array element Y to the disc file,

N, and writes it starting at element K on the file.

c) GETPART (N,K,A,X,Y)

This procedure reads information from the disc file, N, starting at

element K on the file, and stores it in the array A, starting at array

element X and finishing at array element Y.

Character handling procedures

These procedures are used to read the user's Hydro program one symbol at

a time and to assign a unique integer number to different symbols, so

that the machine can manipulate numbers instead of character information.

a) INBASIC (I); where I is a channel number assigned to a

peripheral unit.

This procedure is usedin the form

Xs= INBASIC (3);

INBASIC reads the next symbol from the input peripheral specified as its

parameter and assigns to X the integer code value which represents the

symbol in the machine.

b) OUTBASIC (1,X); where I is a channel number and X is a variable

containing an integer code representing a basic symbol.

OUTBASIC prints out on channel I the symbol represented by the integer

code in X.

I20-

4.9. The method of dealing with arrays in theuser's data

It was shown earlier in this chapter that an array which occured in the

user's data was declared only once in the assembled program, at its

first occurrence, and at later occurrences of that array in the user's

data only reading procedures were incorporated into the program.

It can be seen tht if an array increases in size, by using the same

procedure in which it is employed, or another procedure which uses it,

with different numerical data, at a later stage in theprogram, then the

storage reserved for the array at its first occurrence will not be

sufficient for later occurrences.

This error cannot be overcome by declaring the array every time it is

used, because it would lead to wastage of the storage space and would

mean that a previously read in array could not be updated even in one

elament, since the original array would not be made available by the Algol

compiler after that point in the program at which it was re-declared.

There are two methodsof overcoming this difficulty, one of which requires

the user to provide additional information and the other which could be

performed automatically by the Hydro system.

The first method is employed in the author's revision of Hydro and is

described in the next chapter.

T2I.

CHAPTER

Revision of Hydro

Sots Introduction

The original version of Hydro as written by Bugliarello was a first step

in the investigation of high level computer languages for application in

the field of water resources and hydraulic bueipesewne. but was by no

means the complete answer to the problem of bringing engineers into

closer and more confident contact with computers. Although the language

was simple to use, there was very little flexibility allowed in the

sequencing of proceedures. The user had no way of altering the course

of his program depending upon intermediate results and it was impossible

to repeat sequences of procedures with different data without having to

write down the same procedure names again. Furthermore, as was stated in

the previous chapter, the Hydro translator program as written originally

would not ha¥eoperated in the manner intended for all Cases of user input.

An additional

disadvantage was the inability of the system to store information in the

' form of results from one user program for use in later programs, or, in

other words, no data bank could be built up.

When the original Hydro system was constructed, the aim was to find some

simple language for use by engineers, which could be understood by a

translator program and then rewritten into one of- the universally accepted

and standardised computer languages. The facilities which should be

provided in such a simple language thus had to be examined before a

translator program could be written, and because it is difficult to

foresee every eventuality some helpful facilities.were overlooked or

deemed unimportant at the time- It has become obvious in recent years

that data management is as difficult, if not more difficult, than

actually writing a program to carry out the specialist procedures and

£22.

the author felt that the original Hydro system did not go far enough in

simplifying data input to the machine. Therefore, the Hydro system has

been rewritten to facilitate the control of the program during execution

and to provide more useful data handling methods. The user may now employ

any of the basic Algol - 60 statements within his program, the most

useful being the conditional 'IF' statement, the 'FOR' statement and the

'GO TO' statement.

A further aid to rapid programming is the provision for tabulation of

data. Identified data may be written in a table in the normal format

for the original Hydro translator. Any number of variable names and

associated data may be present in one table, which is assigned a unique

integer number by the user. However, if the user does not wish to

tabulate his data, or if there is no need for it, then he may simply

write the data anywhere before or immediately after the procedure name

in the same way as for the original system. If any data is not presented

in a tabular form then the new Hydro translator automaticdly assigns a

table number to it for its own reference.

As a consequence of including 'GO TO' statements in the language and to

provide more flexibility than the original Hydro language it has become

necessary for the user to give the maximum values which some of the

Hydro input single variables may take during the course of the program

at the head of the input. This is necessary because these values are

used to reserve enough space in the computer core for all the data given

by the user. These values will always be known since they are only

counters of the number of data itemsto be input for the Hydro array

variables.

Some typical examples of user input for the New Hydro are given at. the

end of this chapter.

23.

Since the basic design and philosphy of the original Hydro, and the

underlying method of assembling an equivalent Algol program from the

user's input remains similar in the revised version, this chapter does

not reiterate the information to be found in the last chapter and in the

Hydro manuals written by Bugliarello.

aes Special Symbols Employed by the Revised Hydro

A procedure name given by a user of Hydro is given on a separate line and

is followed by the symbol <<

The use of this symbol facilitates the search for procedure names in the

user's program. The translator simply scans a line of input for a left

arrow and if it is found the code for processing a procedure is effected.

If no data assignments are to be given after the procedure name the left

arrow may be immediately followed by three asterisks (***) on the same

line or on the next line.

If data assignments are given after the procedure name then the three

asterisks must terminate the block of assignments for that procedure.

The combination of left arrow and three asterisks have the same

grammatical effect as the Algol (and) symbols after a procedure name

and only ‘Sedioate ts the translator that all the information between them

is relative to the procedure. The rulesof grammar for the Algol brackets

apply to these symbols.

The 'TAB' symbol indicates that the following informatin up to the two

asterisks (**) line is a table of data.

The 'TAB' symbol is followed immediately by a number assigned by the user

for this table, and this number is used in any refarenae to the table.

A special case of the 'TAB' symbol occurs when a miltiple table is used,

In this case the user gives two numbers, separated by commas, after 'TAB'.

A multiple table is allowed purely for convenience to avoid the user's

having to provide a large number of tables, written separately, if one

data array variable is to be assigned different sets of values on different ,

passes through a procedure,

The user simply has to give the starting number of the tables and the

I25.

finishing table number, He may then write down the name of the variable

to which the data is to be assigned at the head of the table, followed

by s= . From the next line onwards he may write the separate sets of

data, each terminated by a semi-colon. After the last data set has been

given, the multiple table is concluded by the two asterisks in the

normal way.

I26.

563. The Form of Input

The user's input to the revised Hydro begins with a call on the procedure

MAXVALS which is followed by a list of the shgle valued Hydro variables

which are employed by the user's program, together with the maximum

values which each takes. As mentioned previously, these values will

always be known by the user since they are only counters of the number of

data items given for the array variables in the user's input. The list

of variables is terminated with three asterisks.

Example 5.1.

MAXVALS <@—

GRIDROWS s= 12; NOGAUGES :=: 8;

GRIDCOLUMNS :=: 14;

HX 3

After the MAXVALS procedure the user has the option of calling the

DECLARATIONS procedure. At this stage, any single or array variables

which the user wishes to employ, and which are not Hydro variables, may

be declared in the normal Algol manner. As with MAXVALS, the procedure

is terminated with three asterisks.

Example 5.2.

DECLARATIONS <—

‘INTEGER' I,J;

'aRRAY' DATA [1:100,1:3];

'REAL' X35

HX

Following the MAXVALS and DECLARATIONS procedures the user may begin to

use the normal Hydro procedures with the relevant data. Pure Algol code

may also be employed after this point.

Procedural instructions are all given in the same way. First, the

procedure name is given on a separate line, followed by a left arrow. On

27.

the next and subsequent lines any necessary data is assigned to the

procedure variables, or the tables where the data may be found are given

alongside the variable names,

If the results from the procedure are required to be filed in the data

bank for later use then the table number to which the procedure must write

its results should be given in brackets between the procedure name and

the left arrow. When all data assignments for a procedure have been

made, the three asterisks line is given to terminate the group.

The only other code which may occur on the same line as a procedure name

is a label.

Example 5.3.

LAB: THIESSEN. RAINFALL. AVERAGE (RESULTS TO 'TAB' I0) <Q—

GRIDROWS s= 33; GRIDCOLUMNS := 12;

GRIDs= 'TAB' 33

HEX 6
9

Since the left arrow and three asterisks combination is grammatically the

same as the Algol round brackets then the three asterisks must be

followed by an Algol terminator, (i.e. 3 'END' or 'ELSE').

A label may beused against any Hydro procedure name or against a data

assignment which is not included between a left arrow and three asterisks.

Tables of data may be given at any point in the program and take the

same form as normal ws avert The table number is given on a separate

line and on subsequent lines the data assignments are given.

A table is terminated by a two asterisks line.

Example 5.4. Simple table

A VARI LO

GRID $= O,070 51 515 1,151,50,0;50,0,

G0; ;1;4515157,1,1456.

Oy 151i 2 0.0 oo

GAUGES := 1,4,

I,7;

1,8;

295s

2,6,

3535

394;

3573

RAIN:= 0.II, 0-40, 0.30, 0.25, 0-41, 0.35, 0-20, 0.36;
RK 3

Example 5.5. Multiple Table

Each data set is terminated by a semi-colon.

* 'TAB! T,4

RAIN:= 0.3, 0.4, 0.6,

O52 565 320

0563°6, 84.0.8,

O-aynOul 50-3,

HHS
3

Every user's program must

Os. 5's

0.4;

i. 53

Ojo. 15's

be terminated by the procedure call

PROGRAM.END <— followed by a four asterisks line.

KKEX

I28,.

I29.

De As The translator program

Since tabular data, given in any position in the user's program, is

allowed in the revised version of Hydro, it is not possible to process

the user's input in the same way as in the original version. In the

last chapter, it was shown that the first part, or phase one, of the

original Hydro translator simply compiled a list describing the order of

occurrence of the Hydro data variables and procedure names in the user's

input, while copying array to a disc file the linesof input containing

data assignments. Having done this it was only necessary to use the

list in some way to assemble an equivalent Algol program. This

simplicity was achieved because the data was read by the assembled

program in the same order as it was supplied by the user and because no

conditional clauses were allowed in the Hydro language. However, since

the data for the revised version of Hydro may be given in tabular form,

and Algol control statements are acceptable, then some method must be

foundto indicate to the assembled program which data table to read from.

In order to achieve the desired result, it was found that in some

circumstances the essential operations of all three phases of the original

Hydro translator must be combined. A list is still compiled but this

only records the identification numbers of the Hydro procedures occurring

in the user's input.

All code for reading data from tables is assembled on a special disc

scratch file immediately the relevant data variable assignment is found

in the user's program. Similarly, the code for calling a procedure is

written to this file when the procedure name occurs in the input. «in

this case, however, the procedure call is held back until the code

dealing with all the data assignments following the procedure name has

been assembled. Any pure Algol statements are copied directly, with no

130.

alteration, to the file. If a table of data is given by the user, the

translator copies this to a separate data disc file but inserts some

necessary information at the head of the table for later use by the

assembled program. The number of the table, supplied by the user, is

recorded in a list together with its position in the file, and this list

is made available to the assembled program. If any data is given which

is not in a table, then the translator assigns i table number to it,

copies it to the tables file in the normal way, and writes the

necessary reading code to the file where the equivalent Algol program

is being assembled.

When all of the user's input has been read, the translator processes

the list of procedures which has been set up- For each procedure

occurring in the list the translator assembles code to declare the body

of the procedure and any other procedures it might use. All arrays used

by the procedures are also declared at this stage. These declarations

are assembled on a final dise scratch file. After all procedures have

been processed, the code assembled previously on the program file for

reading data and calling procedures, is copied after the declarations.

The assembled program is then complete and in the correct order, and may

be presented to the Algol compiler for translation into machine code and

execution. The data for this Algol program is automatically taken from

the tables file.

Examples of user input for the revised version of Hydro are given at the

end of this chapter.

SS:
kxamplesof User Input

Example 5.6.

The following example demonstrates a possible user's program for the

repetitive use of the revised Thiesson method for calculating areal

rainfall averages.

I3I.

The GRID array represents a reference grid placed over the area under

consideration and which completely covers the areas If a zero is given

for an element in the GRID array this means that the grid point falls

outside the area and if a one is given the point is inside the area.

The GAUGES array describes the positions of rain gauges in the area by

supplying the nearest grid coordinates to the gauges.

GRIDROWS and GRIDCOLUMNS simply give the number of rows and columns in

the grid so that sufficient space may be reserved in the computer for

the information supplied by the user, and GRIDAREA is the ground area

covered by one grid square.

The THIESSEN,RAINFALL.AVERAGE procedure is called ten times with

different values for rainfall at the gauge points.

The rainfall values given in the RAIN array are written in the same

order as the rain gauge coordinates are supplied to the GAUGES array.

After the Thiessen procedure has been repeated ten times the RAIN array

is set to the values given in table 4 and the ARITHMETIC, RAINFALL.

AVERAGE procedure is called to take the direct averageof these rainfall

figures.

MAXVAL 5S <+-

GRIDROWS :=12; NOGAUGE:=8;3

GRIDCOLUMNS :=14;

REX 3

DECLARATIONS <—

'INTEGER'I;

KER s

GRIDAREA:=25.03

GRID:=

GAUGES

'FOR'

THIESS

RAIN s=

KKK §

0,0,0,0,0,0,0,0,0,1,1,1,0,0,

050,0,0,0,0,0,0,1,8sty lot, 0,

5.0505 Oo. Ol giigd's L 5 Wigthe ls Ios ee

0,04 Lebo Sls hts etl s fo lots ks

Lol Ls lot, boi sgt pig l 5 Ll Os

De pcg o Lg Mio dg ipl oe yt gt 05050

Ll ,L, l,l, EB she lst. t590,0,0,05

Lyi yd, lsh st 51 sO .0ss 050,05

Org bg L gy Lg doth gbi5 5.090505 Os

O 5 Gel 5 kg Lis Lod gt yg e050 50505

07,0,050,0,1 , 1,29 ,1.0,0,0,0,

0,0,0,0,0,0,1,1,1,0,0,0,0,05

Serr glk,

4,4,

4,10,

Dols

Tol,

199s

994,

II,9;

Leal, 10! D0"

EN ,RAINFALL.AVERAGE «<—

'TAB! I;

152.

'TAB' I

BAIN s=1.2,1.35,0+46,0-6,1-3,1-51,0-84,0.673

baad

*'TAB! 2

RATWisehs 5 p66 9003 (0s Vols 551-4 50s Toate

Hes

*'TAB! 3

*'TAB" IO

RAIN: =1.4,16550+3540+65,1-8,220,0+6,0.93

Xs

RAINs='"TAB' 43

ARITHMETIC ,RAINFALL AVERAGE <—

KKK
?

'IF' RAINFALLAVERAGE<1.0 'THEN' WRITETEXT ('('DRY YEAR')');

PROGRAM END ***;

HHKE

Example 5.7.

This example gives a possible user's input program for a sequence of

routines which could generate 100 years of random inflows to a two

reservoir system given the histograms of flow probabilities determined

from a historic record, then uses this data in a dynamic programming

calculation to obtain a near optimum operational policy for the system

which is then employed in a simulation of the system to find the costs

incurred by using this policy for 100 years with the inflows previously

generated.

The reservoir inflows are assumed to be independent in one time increment

and it is assumed that serial correlation may be taken into adcount by

using an indéx which records whether the previous inflow was higher or

lower than average for that month, and a histogram of inflow

probabilities is given for each of these two cases for each monthof the

year.

The Hydro variables used in the inout are as described below:

NI is the number of discrete inflows used in the histograms.

NSTATA and NSTATB are the number of discrete levels used in the two

reservoirs for the dynamic programming calculation.

RANDA and RANDB are merely starting points for the generation of random

numbers.

The nied FLOWSA and FLOWSB record the inflowhistograms for the two

reservoirs.

Two rows of data are given for each month and for each reservoir. The

first row gives NI sets of data where a set represents a discrete flow

in the histogram followed directly by its probability. This row is the

histogram for the case when the previous month's inflow was lower than

average. The second row is the histogram for a higher than average

previous month's inflow.

Thus there are 24 rows of data for each reservoir giving 2 histograms

for each month.

URA, URB, UDF, USA and USB are unit costs of releases from each

reservoir, deficits to demand, and spillage costs in each reservoir

respectively.

PWF is a present worth or discount factor.

The arrays STATESA and STATESB record the discrete levels to be used in

the reservoirs.

The DEMAND array gives the demand to be used for each month.

The ORIGVALUES array records the terminating values of being in certain

system states at the end of a dynamic programming calculation and

corresponds to the array described in the chapters on dynamic

programming.

DOC DATA

MAXVALS <q—

NIz=53

NSTATAs=4 5

NSTATB s=4 3

REE §

GENERATE <—

RANDA:=0.233

RANDB:=0.873

FLOWSA:=1-47,0-17,3+44,0-14,6.10,0.34,8.42,0.24,12.06,0.11,

SEL Typ Ov BT, 508 6 0084 6s 205 0014s Tel 95011 0k 0s ae:

Ovsi, Gell, 2-46, 02345463022, se FO ee

De Rte 6970.28) ee ee ad

. . ° e . ° . ° . . : . e ° ° . . . 9

FLOWSB=0. 33,0+30,0.87,0+17,1-03,0+26,1-31,0+17,1-99,0-10,

©0525 00k3' . e e e e . . . ° e . . ° . - 9

. . : . . . : . . . ’

. ems . . ° . . earns 8

KEE §

DYNAMIC,PROGRAM <—

URA:=03URB:=0 3 UDF s:=1003

USA:=03;USB:=03;PWF:=0.9853

STATESA:=0, 10000, 20000, 300003

STATESBs=0 910000, 20000, 300003

DEMAND =0.22,0.42,0.85,1-62,3+3343+85,4+16, 346,301,176;

0.36,0.143

Example 5.8.

Example of program assembled by Hydro.

Program assembled for previous example of user's inputs:

'BEGIN'

"COMMENT' GENERAL DECLARATIONS FOLLOW;

General code to declare reading procedures etc

(as shown in APPENDIX 4 before BAS I line)

'BEGIN'

‘COMMENT’ ASSEMBLED PROGRAM FOLLOWS ;

Niles)

NSTATA :=4 3

NSTATB:=4 ;

TABLEPOINTER s=150003

'BEGIN'

'PROCEDURE' GENERATE (RANDA, RANDB, FLOWSA, FLOWSB, AVA, AVB, TABLEPOINTER,

TABNO) ;

'VALUE' TABNO;

'ARRAY' FLOWSA, FLOWSB, AVA, AVB;

'INTEGER' TABLEPOINTER, TABNO;

'REAL' RANDA, RANDB;

"ALGOL';

"PROCEDURE' DYNAMICPROGRAM (AVA, AVB, STATESA, STATESB, DEMAND,ORIGVALUES,

VALUES, DECISIONS, URA,URB,UDF,USA,USB, PUF,NSTATA, NSTATB,NI,TABLEPOINTER,

TABNO) ;

'VALUE' TABNO;

'ARRAY' AVA,AVB,STATESA,STATESB, DEMAND , ORIGVALUES , VALUES , DECISIONS ;

'INTEGER' NSTATA,NSTATB,NI,TABLEPOINTER,TABNO;

'"REAL' URA,URB,UDF,USA,USB,PWF;

"ALGOL';

'PROCEDURE' SIMULATE (AVA,AVB,STATESA, STATESB, DEMAND, DECISIONS ,URA,URB,

UDF, USA,USB,NSTATA, NSTATB, TABLEPOINTER , TABNO) ;

'VALUE'TABNO;

"ARRAY' AVA,AVB,STATESA, STATESB, DEMAND, DECISIONS;

'INTEGER' NSTATA,NST2TB, TABLEPOINTER, TABNO;

'REAL' URA,URB,UDF,USA,USB;
'ALGOL' ;
'ARRAY' FLOWSA [1:12,1:4,1:NI] ;

'ARRAY' FLOWSB [1:12,1:4,1:NI] ;

'ARRAY' AvA[I:12] ;
'ARRAY' AVB[I:12] ;
'ARRAY' FLOWDATA[I:3] ;
'ARRAY' STATESA [I:NSTATA];
'ARRAY' STATESB [1:NSTATB];

'ARRAY' DEMAND [1:12];

'ARRAY' ORIGVALUES [I:(NSTATA*NSTATB) J ;
'ARRAY' VALUES [I:(NSTATA*NSTATB)] ;
'ARRAY' DECISIONS [1:(NSTATA*NSTATB*4,1:12] ;
‘BEGIN'

RANDA:=0.233
RANDB:=0.873
ARRAYREAD(FLOWSA, DAI,I,10013,12,4,NI,0,
COLM, CHAR, ALPH, NEXTCOLUMN, NUMERICALDATA, SUBI ,SUB2 ,SUB3,BEG,END,
GETPARTI , BINARY , ALPHANUMERICALDATA , DATAINPUT , PROGEND, FINISHED,
DEFINESUBSCRIPTS ,LOC,TOP, BOT,
IOOI);

ARRAYREAD(FLOWSB,DAI,1,10014,12,4,NI,0,
CONN UMER = od ee. yy
CURPE a e ee s
DEFINESURSCRINGE, 2. oe,
1002) 3

GENERATE(RANDA,RANDB,FLOWSA, FLOWSB,AVA,AVB, TABLEPOINTER, 0) ;
‘END! ;
'BEGIN'
URA:=0;URB:=05;UDF:=100;
USA:=0;USBs=053PWF:=0.9853
ARRAYREAD(STATESA, DAI,I,10015,NSTATA,0,0,0,
OOM ae a a a ee

PPP ARE oe ey eo en ee + cee

CERMe eee

I003)3

T3596

I40.

ARRAYREAD(STATESB, DAI; 31,IO00I6,NSTATB,O,0,0, . .. ,

COUN OUAR Ga ee a

GETPART,

DEFINE ,

I004) 3

ARRAYREAD(DEMAND ,DAI,I,10017,12,0,0,0,

COLE, CHAR, -.4°

GOTPARe SS.

DOT TM ee ee eae

1005) $

ARRAYREAD(ORIGVALUES , DAI, I, I0018,(NSTATA*NSTATB) ,0,0,0,

COLN DRA ehi se eer et

MECPARTS os ee,

DEPT NM ee ee Oe oe

1006) ;

DYNAMIC PROGRAM(AVA, AVB,STATESA, STATESB, DEMAND , ORIGVALUES , VALUES,

DECISIONS , URA, URB, UDF, USA, USB, PWF,NSTATA,NSTATB,NI,TABLEPOINTER, 0) ;

Pe 8

'BEGIN'

SIMULATE (AVA,AVB,STATESA,STATESB, DEMAND, DECISIONS, URA, URB,UDF,USA,USB,

NSTATA,NSTATB,TABLEPOINTER,

0)5

’

‘END';

"END' ;

‘END ' ;

PROGEND: 'END';

Flow Diagram for Translator Program

|

Copy declarations of reading

procedures from line library
to head of File 4

W
n

. ON

.

input into IMAGE array.

Set line pointer to first

symbol on line
Is=

y

Look along line from

position I for *'TAB!

y
Read next line of user's

y

TAB

found?

Process with code

for analysing Cr
tables at label 10 0

YES >—

NO

This makes the end of a

procedure.

Set PROCEDURE ='FALSE'.
Fetch code from library
to call this procedure.

Write this code to
File 2.
Write contents of

PRLINE after procedure

call on Pile: 2.

Write 'END' to File 2.
Replace the three

asterisks with spaces on

Y input line.
y No Go to label 2 to process

Are there three

asterisks on

line?
XH

NO

 Is there a left

arrow «— on

the line ?

Arrow found

in position

R

YES

1 : rest of line.
There is'a procedure re P
name on this line.

Process with code

for procedures at Vv

label II.

Toe

NO

Start from position I Copy input from
Copy .ine are and look along line itp Et to UTR EN to
¢ ea : for any of the ——| File 2. Read new rom positionjline found i é a ae oe Aes cae symbols input lines as
erg 4 fa ORY) SLRs necessary. Set
Pile 2. new line ; 'END' or pointer I after
Gd #6 label. 1. ‘ELSE' occurring in ‘THEN’.

position J. Go to label 2.
"FOR!

| found] Copy input: from

"HOR" to) SDOeto
sf File 2. Read new

_input lines as
necessary. Set

pornter =1" after ."DO!.
Go to label 2.

| ‘END’ 'ELSE* | Copy input from
or 3; found position I to this

symbol to File 2.

set pointer after

symbol.

Go to label 2.

Is next symbol

a 2

A label must YES

precede 3:

COpy, Jane: .fxrom as
nasition Ts A data assignment

ito Pi eos takes place on this

line. Copy name of Set pointer I variable from after :
sition I to before abel 2. rene ee es : to IMAG.

Compare name to list

aver 2) of Hydro variables.

isi ita Hydro
variable ?

YES —____| Retrieve number Y

representing variable

NO Is it an array
Y “\ variable ?

NO Single variable. Process
process with with code

ss code for single for array
variables at variables

‘ label 12. at label 13.

is it a; new. bine

. symbol ? YES

NO

This is pure Algol

code

Y

Look along line

until 3; newline

'END' or ‘ELSE!

Copy line up to
this symbol to
File 2.

Set pointer I

after this

symbol.

Go to label 2

found

Copy line to
program File 2.

ROE one Read next

input line

b E
m

ps

Procedure has been

found on this Line.

Arrow found in

Position R

t

Look along line from YES Copy line from

beginning. — beginning up to 3:
Is there a : ? inclusive (label name)

tO: Have. 2.

NO Update file pointer P.

set I = position of 3

on line.

Set I = 0 Y
wt

Move along line until

non-blank character.

Set new I to this

position.

/

Move along line from

new I until ——or

(found in position J

Y
Copy procedure name

Proms to we.o

IMAG array.

Compare name in IMAG

to list of Hydro

procedure names

Retrieve number, Y,
3 representing

procedure

e— LES Is procedure MAXVALS or

Ree eareang

Copy input lines

between and |

next *** line to NO

File 4. Y :
Go to label 1 in << procedure PROGRAM
main program to END ? YES
process next

input line y

NO

Copy number Y into

STACK array

Write 'BEGIN' to

File 2

Was (found in

position J ?

t
YES

Move along line

from (in
position J until

NAB. found -in

position I

Move along from

I until) found
in position KI.

Copy line from

I+l to Ki-1 to
PRLINE array

Set PRLINE array
to symbols

0);

 ~—

 Go to label 1 in

main program to

process next line

new line

foynd and

BLANK=FALSE

Copy line from

I to end to

File 2

Y

Read next line.

set pointer

Tah

y

Move along ©

lane ‘until.

'?ND' 'HLSB! | newline

Single variable

assignment found on

this line starting

in position I.
variable number is Y.

Set BLANK = TRUE.

¥

Move along line from

position J (on :)
nb Tapes NDE
'ELSE' or new line
found ines position Kl.

Y

 If any symbol except

space occurs on the

line between = and

this symbol then set
BLANK = FALSE.

‘TAB!

found

Process with

BLOCK 3 (K1)

code

 . tONpH t ; "END

new| line

found and

BLANK=TRUE

or ELSE

found
Copy line

trom Lo CO: Kee

GO. Mie! ev

Set == Kis.

Only

NAME :=
on this line.

Copy line to YLINE

array

Y
Read next line

Y

Go to label

Copy YLINE

to File 2.
Copy this

line up to

position J

to File 2.
Set I=J+1.

or newline in oan Move along line until

position J TAB as. URIND So GH Shay Ox

newline found in

Y position J

baci f |
eae Ect there is anything ee ae

on the line before

i ae cit nities oe
Copy line up found ine "ELSE!
to symbol in Ly-Pound —=—4
position J to
File 2.

set I = J+l. Process

with
BLOCK3(J)

Go to label 2 code

newline

and not

BLANK.

Copy this

line to
File 2 newline

found

Copy YLINE to

File 23

Copy this line

to File 2.

!

Read next line

!

Move along line

until sEND''ELSE'

or newline found

in position J

;'END!
Yor'ELSE!
found

Copy this line to

Pilbes2 upto

position J.

set I=J+1l.

Goto Pabed 2,

147.

Block 3(V)

,

V is the position
Oip tires. LAB

after NAME:s=

V

Fetch code from

library to read
data into this

variable from a

table.

Write the read

call to Pike

Yy
 Move along line

from position V
2's 1

until ;'END''ELSE'|L, ae
or newline found

found
in position R

newline

found

Copy line from

position (V+1)
to end of line to

Pid ee

Y

Read next line

Y newline wg!

found
Move along line

until ;'END''ELSE'

or newline found

an poss tion R

:"*END!': or
"ELSE' found

Copy line from

beginning to

position (R-1) to

File 2

J

Write) and symbol in
posztaon wk to: Nile “2.

set I=R41l.

 Goto label 2.

Copy expression

for table number

from position

(V+1) to
position (R-1)
to File 2.
Write) to File2
Write symbol in

position R to

File 2.

Set I=R+1

Go to label 2

ae found

array variable found

starting in position
Ty -

: found in position: J

y

Move along line from

in position J+] until
2 TEND! Vii TAB Yor
N/L in position R ©

‘|1If there is anything
on the line between =

and this symbol set

BLANK = false fr teLsRt

Analyse

with

BLOCK1(R)
 new line and BLANK

new line

Lf BLANK

Store

variable

name 3=

from

position

Tact OJ

in YLINE.

Set I=J+2

Analyse

with

BLOCK F

Store name :=blank

from position I to

end in YLINE

y

3'END*or

found

READ next line C41:

y

Set I=]

Analyse

with

BLOCK 4

Move along line

untak “! TAB id sUbIND
'ELSE' or new line
found in* position

J
If there is anything
on the line before
position J then set

BLANK=FPALSE

1
new line NOT BLANK |

 set I=]
Analyse with BLOCK F

new line

BLANK

‘TAB! bp

149.

Copy variable

“| name := from

position I to

position J+l

to YLINE.

Set I=J+13

Analyse rest

of line with

BLOCK 4

Analyse with

BLOCK 1(J)

[(or new line

I50

BLOCK F(newline not blank)

1

Move along line from

positions) wnt

>. .\. OT new tine in
position J

 1

» multiple assignment

!

arpicericn afta Assign a table number
eo for this data

This is not a y

Le Fetch code from library
ane re to call the read

' procedure for this

Copy name:= in aa
YLINE to Write the code to

brogeran file 2 program file 2

Copy this line

eae eee Write table number to

program file 2 eee oe
write) to file

i
Read next line [T™ = pare cas

set arrays recording

Y variable number and

Move aldne Tea6 position in tables file
ae ee ak to zero:
until 3; END ELSE ee ese

| aR. TOP, BOT, MID[I]=0. I=1,20

position J y

{ Set TOP[1)= variable no.
» END ELSE “pa Set BOT[1]= position of start of variable in

oe ao. tables file = K+60;
net 5S = Ks Cpositionof start of table in

tables file)

Copy line copy a ens

up to this ef es
(incl) line

od t j : eocaicks cae Copy YLINE (variable name :=) to tables file
file 2 file 5 Copy this line from position I to end to
oy I=J41 tables file
4 “ Copy line to

+ la 31 ; ; 3
rg ee Read next line itables file

program l |
;END : Move along line until ; END ELSE or new new

(aver > ELSE line in position J line
Y

Copy this line

pos. J-l to tables file, write
3; to tables file. write symbol
in pos. J to program file 2

from start to

Set BOT[2]= K (end of table)
Copy TOP,BOT,MID to top of [-o4
table on file.

Set K=J+1

Go to label

Quin

program

assignment

Just an

expression

BLOCK 4 array name:=blank

followed by line

of data

!

;END ELSE found in

position J on same line as

all data for this array

!

No multiple;s—Not >;

Move along line between

position I and J until

9 in: position 2

or until J is reached

Copy name:=

in YLINE to

program file 2

Copy this line

between

positions I to

J inclusive to

program file 2.

set I=J+1;

Go to label 2

in main

program.

Assign a table number for

this data

!

Fetch code from library

to call the read

procedure for this array.

Write the call to the

program file 2

{

Write table number to

program file 2

write) $0. fia. eo 2!

|

Set arrays recording

variable number and

position in tables file to

Zero

TOP,BOT,MID [I] +0 I=1,20

Y

Set TOP[.J= variable number
Set BOT[—1J= position of start
of variable in tables file
= K+603
Set S=K (position of start of
table on tables file)
Record 8.

Set K=K+60

Copy YLINE (variable name:=) to tables file

!

Copy this line from position I

to J-l1 to tables file.
Write ; to tables file

1
 Write symbol in position J to

program file 2

Set BOT 2 =K (end of table).
Copy TOP, BOT ,MID: to top of
table on file.

t

 Set l=J+l1;
Go to label 2 on main progrem label 2 pe

BLOCK 1(A)

I54.

L23

Y
‘TAB! found in position A

¥
Set K1l=A

Write 'BEGIN' to
program file 2 ¢

Move along line from Kl Lgen/1 2
Inclusive until TAB or aa 1

n/1 found in position L wet Liat
— ~ aa pea =

t
TAS

Set BRACK=0
Fetch code to read data

into this array.

Write code to program
file 2

y

 fe BO) Sra er

Move along line from

position L until (+4;
END ELSE or n/l found in
position M

‘

Copy line

from L+l1 to

M-1 to

program file

2

Write);'END'
torre Cc

V
(
|

Set BRACK=BRACK +1 |

i

write symbol
in M to file
2

py until (or) or n/1l
Move along line after

 found in position N

Low

Copy line from

L+1 to M-1 to

program file 2

Write); to file
Set Kl=i+1

n/1

Set I=M+1

Go to label

Zo Ene me, yt

program

nee bee
1

Set

M=N

If (then BRACK=
BRACK +13
If) then BRACK=
BRACK-1

Copy line from

L to end to

program file 2

Read next line.

Set L=0

Copy line from

L+1 to end to

program file 2

Read next line

set M=0

T3556

[Read next Copy line to program file

line 2 from L+l to N
Set N=0 Write)3; to file 2

Go to Ut Write 'END' to
ei program file 2

qe n/1 = Write symbol in

SSP Move along line from N+1 > ka

= ; inclusive until +;'END' ae ips = .
ee ee ELSE or n/l found in rhe aaah

 position I t

Go to label 2 in
main program

aa ns

This is the

end of the

table.

Write this

line to the

tables file.

Update kK

K=K+z3

Simple table. Table number =A

i

Set arrays recording variable

numbers and their positions

in table file to zero

TOP [J]: =o
BOT [1}: =0 1 20
MID [I]: =0
NOVAR:=03

i

Record the next element in

tables file as the position

of the start of this table

LOC{IEK; S:=K;
PUT ARRAY (1,A LOC)

Y
 Read next line of user's

table. Set z=no.of symbols

Write all the

information

converning the

position of the
variables in

the table at the

had of the table

on the file

NOVAR=NOVAR+1

BOT[NOVAREK ;
PUTARRAY

(1,S,TOP) ;
PUTARRAY(1,

SsBOTes
PUTARRAY(1,
S,MID);
TAPLE=FALSE

ye
 Go to label 1

in main program

to process next

line

on line

1 ;
Are the first two symbols

on the line ** ?

¥ No
Set line pointer

L=0

10D] Increment line
pointer I=I+1l

Is this position

the end of the

line or past end

of line ISs?
NO

Is this symbol

a space

NO

Y

=a

Copy line to

tables file

Update K

K=K+33

4 Move along line

in position J
from this position (I)
UNbIe 3 Or. VO eet OUNd

-YES

L770:

NO

|
Copy name from I to J to

IMAG.

Compare name to list of

Hydro variables.

Retrieve the number

representing the variable (Y)

{
Has this variable occurred

YES before in the table?

Check through TOP —

Move along NO

line from

position (

L—g—{ J> Look Record variable
POR s-OL eee
n/1 i number and the

sill position of the

Bie start of the
position ae ‘
I varzEble name in

tables file
NOVAR=NOVAR+1
TOF[NOVAREY ;
BOT[NOVAH}S+60

 a et}

Tabel: 10... Table found

 ‘
Look along line. Is

there a comma after

AE

vO

YES

158.

Simple table

Go to label 4

This is a multiple table. Read first

number after 'TAB' into A

Read second number after 'TAB' into B.

A is the number of the starting table.

Bis the number of the end table.

r

Number of tables NTAB=B-A+1;

Calculate the numberof times the table

positions recording array MUPOS will be

 \

label 4

filled. ,
NFILLS=ENTIER(NTAB/50)

recorded in MULPOS the last

filled.

EXTRA=NTAB-NFILLS 50

If EXTRA=0 then EXTRA=50
Calculate the number of elements

i
time/is

{

and their positions in the tables

TOP,BOT,MID[I]=0 I=1,20
Set Jl=1

M=A

T=l= first table in set

K is next position on tables

Set arrays which will record the variable numbers occurring

file to zero

file

v

Read next line of input.

Cuet) Set z=number of characters

’ on line

set line pointer I=0

!
Increment line pointer
I=I+1

y

YES———<Is this the end of the line?)

Y
NO

|
Cis this symbol a space? >—t-YES

t
vO

Li:

Move along line from position I

until : or n/l in position J

y

Store variable name between I

and J in IMAG

 |
Move along line from J until = in

position R.

Store variable name plus any

subscript and s= (I®R) in DUMMY

Y

Compare name in IMAG to list of

Hydro variables and

number Y representing variable

y

Record variable number Y and the

position where the variable

starts=in.the table file in

TOP and BOT

[Set Table Pointer I=1 <f

!
Record position of start of this

table on file in MULPOS

MULPOS T=K:

Set S=start of table

S=K

Set K=K+60;
i.e. leave 60 element at head of
table for writing TOP, BOT, MID

information

Y Pl ad
Move along line from position Jl

until 3; or n/l in position J n/1

t

3; end of table

reached

{

Copy line from Jl to J to tables file.
Update K. Set Jl=J+13

Record position of end of table in

BOT [2] =K.
Write ** to end of table.
Update K.

Copy TOP, BOT, MID to top of table

Increment table pointer I=I+l

Increment MULPOS pointer T=T+1

'

Copy line
from position

J1 to end to

tables file.

Update K.

Read next

line.

Debedd les

de NEA Bees

YES

YES

Hever
Copy information in
MULPOS to positions

file

I60.

Skip next line (**)
Copy table position

information in MULPOS
to Positions file
Set TABLE=FALSE

I'Go to label 1 in. main
program to process next line.

v

Record BOT[1}-K+60 as
position of start of

variable name in

next table on tables
file.

Record MULPOs [T}-x;
as position of start of

“next table on file

Set S=K;
Set K=K+60;

V
 Copy variable name:= as

stored in DUMMY to tables

file. Go to Lf.

Y

Mabe 1 oe

Phase 2

Write value of K (end of tables file
position) to position 2001 on tables

 file
{

Use procedure numbers put into STACK

by Phase l

STNO is set on last procedure entered

in STACK.

Y

Set STACK pointer
OPNO=49
Set DECL array to blank. (Used for
storing array numbers which need to

be declared)

 '
 Increment STACK pointer OPNO=OPNO+1

COPNO> STNO)—

NO

t
Go to label where code to

process this procedure is

to be found

y YES

{

Process procedure |

IéI.

Go to Phase 3 to

declare arrays in

DECL

I62.

Code to process a typical procedure i

found in the stack by Phase 2 Go to L2O:

Y

Has this procedure occurred before 4

in the STACK array ? YES

' No processing

No necessary

!
Are all the procedures which this

procedure might use in the STACK

before this procedure? YES

t
NO

Fetch the code from the library
which will declare the procedures Y

that have not occurred before.

Write this code to File 4

Load the numbers of these

procedures into the bottom of the

STACK.

 Y

Fetch the code to declare the main

procedure. Write this to File 4

Y
Are the arrays which this

procedure uses in the
DECL list ? YES

y
NO

Load into DECL list the numbers

of the arrays which this

procedure uses that are not

already in the list

a

 Y

Is there any general code from

after BASE 3 line in library to be
inserted before this procedure is

run ?

YES
y

Load the positions of this code in the
library into the PROGRAM array

Phase 3

Y

Process DECL array set up by
Phase 2

Y

Move down list of arrays and

fetch from the library the code

to declare them.

Write this code to File 4

y

Process PROGRAM array.

Fet@h and write to File 4 any
general code to be inserted

before program starts.

v

Go to Phase 4

Phase 4

 {
Fetch the code assembled on

File 2 and copy it to File 4

Y

Write

‘END!

‘END!

PROGEND: 'END';

to File 4

!

Go to Phase 5

Y
Phase 5

!

Present final assembled program on
File 4 to Algol compiler for
translation into machine code

t

Execute the program with data from
tables file

}
 Write results to line printer or
file them

Y

EXIT

163.

I64 .

Dabs Description of the Flow Diagram for the translator program

The translator program is entered at Phase 1 which first copies the

declarations of the special Hydro data reading procedures from the line

library to File 4 which is to be used for assembling the final program

equivalent to the user's input. Some general code used by all programs ©

assembled by Hydro is also copied across at this stage.

After this preliminary operation the translator passes to Label 1 where

the next, or first, line of the user's data is read in. The user's data

is only read in one line at a time and the symbols are stored in a line

array called IMAGE. An imaginary pointer is then set to the first

symbol on the line.

At label 2, the translator looks along the line for the two symbols *'TAB'.

If these are found at the start of the line then a table has been found

and the translator starts to process the input with the code for

analysing tables at label 10.

If a table is not found then the translator looks for the procedure

terminating three asterisks. If they are found then a procedure has just

been processed and all that is now required is to fetch the relevant code

from the line library to call this procedure. This code is copied to the

file where the program is being assembled. When the procedure name was

first encountered the results table number in brackets after the procedure

name, if present, would have been stored in an array called PRLINE in

character form. If no results table number is given then the results are

assumed to go only to the lineprinter, and the character zero is stored

in PRLINE.

The number or expression that was stored. in PRLINE is now copied at the

end of the procedure call as the last parameter to the procedure. The

165-6

call is terminated by writing a left bracket and semi-colon to the file,

followed by an Algol 'END' symbol. The 'END' symbol is written because

the translator would have automatically written a 'BEGIN' symbol to the

file when the procedure name was found in the input. It is necessary

to surround the data and call with 'BEGIN' and 'END' in the assembled

program so that all the information given by the user for that procedure,

between the left arrow and the terminating three asterisks, is related

to that procedure in the assembled program.

If neither a table nor the three asterisks line is found at label 2 then

the translator next looks for a left arrow signifying that a procedure

name has been written on the line.

If the arrow is found then the translator processes the procedure with

the code at label 11. If an arrow is not found then either Hydro data

assignments or pure Algol code, or a mixture of the two must occur on the

line.

Starting from the position at which the pointer is at present set the

translator moves along the line looking for any of the Algol symbols 'FOR'

‘IF' 'END' '‘ELSE's;: or newline. If a new line is the first symbol to

occur then the line contains only Algol code which is copied intact to

the program file. The translator will then go back to label 1 to read the

next line of data and will proceed as before. Similarly, if any of the

symbols 'END' 'ELSE' or 3 are found then the translator copies the line

beginning at the original position of the pointer up to and including the

symbol found to the program file. The pointer is set at the next symbol

and processing starts again from label 2 in the translator.

However, if either 'IF' or 'FOR' is found then the translator looks along

the line for the related 'THEN' or 'DO' symbols. If a new line occurs

before the symbols are found then the line is copied, from the pointer to

the new line, to the program file, and the next line is read from the

166.

input, the pointer being set at the beginning of the line. As before,

the translator looks along the line for the 'THEN' or 'DO' symbols.

As many new lines are read and copied as necessary to locate these

symbols. When they are found the translator copies the line from the

present Sesrvicw ae the pointer up to and including this symbol to the

program file. The pointer is then set after the symbol and processing

of the input again continues from label 2.

The only other symbol which could have been found is the colon symbol :.

When this symbol is found two possibilities exist. Hither the colon is

followed by the = symbol, in which case a data assignment of some kind

follows the equals sign, or it is not in which case the colon is

terminating a label name. Thus, the translator first looks after the

colon for the equals sign. If it is not present then the translator

copies the label name from the position of the pointer up to and

including the colon to the program file. The pointer is then set at the

position after the colon and processing begins again from label 2.

If the equals sign is found then the translator must check whether the va-

riable name preceding the colon is a Hydro variable name or a name

employed by the user in the normal Algol way. This is done by copying

the name from the position of the pointer to the colon into a dummy array

called IMAG. Any spaces which occur in the input before the variable

name are omitted. The IMAG array is then compared to strings of Hydro

variable names by means of the procedure DATREC. If a match is not found

then the variable is not a recognised Hydro variable. The translator

moves along the input line until one of the Algol 'END' 'ELSE' or ;

symbols is found. If a new line occurs before any of these symbols the

line is copied to the program file and the next line is read, the pointer

is set at the beginning of this line, and the search continues. When

one of the symbols is found the translator copies the line from the

167.

pointer to the symbol to the program file. The pointer is set after

the symbol and processing recommences from label 2 of the translator.

However, if the variable name is recognised by DATREC then the number

representing the variable is recovered from this procedure and set into

a translator variable Y. If the number representing a Hydro array

variable then the translator starts to process the input with the code

at label 13, but if it represents a single variable the input is

processed with the code at label le.

The code at label 11 is used for processing an input procedure.

If an arrow was found on an input line then a procedure name occurs on

the line. The translator sets the pointer at the beginning of the line

and looks along from there for a colon which would signify that a label

precedes the procedure name. If a colon is found then the label,

including spaces, starting at the beginning of the line and ending at

the colon, is copied to the program file 2. The colon is also copied

across. The pointer is then set after the colon. If a colon is not

found the pointer is left at the start of the line. The translator

then looks for the first non space character after the present position

of the pointer. The pointer is now reset at this new position, which

is the start of the procedure name. The translator looks along the

line to locate the position of the left arrow, or a left round bracket.

The name between the position of the pointer and this name is copied

into IMAG and is then compared by the translator procedure PRREC to a

list of permissible Hydro procedure names. When a match is found the

number representing the procedure is retrieved. A check is made to

see whethe the procedure is either MAXVALS, DECLARATIONS or

PROGRAM.END. If it is PROGRAM.END. then the end of the user's input

has been reached and the translator may pass on to the next phase of

analysis, but if the procedure is MAXVALS or DECLARATIONS then the

user's input between the left arrow and the procedure terminating three

asterisks line is copied to the program file4. The pointer is set at

the beginning of the next line and processing continues from label 1

of the translator. However, if the procedure is an ordinary Hydro

routine its representative number is copied into the next available

position in an array called STACK for ee by the translator.

The Algol symbol 'BEGIN' is then written to the program file Cie LiL ne

left round bracket was found after the procedure name then the user has

supplied the number of a table to which he requires his data to be sent,

as well as to the lineprinter. The translator moves along the line

until the 'TAB' symbol is found. It then copies the number or expression

between 'TAB' and the right closing bracket into an array called PRLINE.

However, if the brackets were not present, PRLINE is set to the

character O which indicates that the results are to be written to the

line printer only.

The translator then reverts to its label 1 position to read in the next

line of the users data.

PRLINE is used later by the translator when all data given for the

procedure by the user has been processed, and the translator is

assembling code for the procedure call itself. The expression in

FRLINE is copied to the program file 2 at that point as the last

parameter to the procedure.

The code at label 10 is used when a table has been supplied by the

user. If the *'TAB' symbols are found at the beginning of a line then

the user has given data in the form of a table. The translator looks

past the 'TAB' symbol for a comma which would indicate that there are

two numbers separated by a comma in which case a multiple table follows.

If a simple table has been found it is processed with the code at label 4.

169.

If a comma is found then a multiple table has been given and the

translator sets into A the number of the first table number and into B

the second number. At this point the translator initialises three

twenty element arrays, TOP, BOT and MID to zeros. These arrays will

later be written at the head of the user's table when it is copied to

the tables file. During the analysis of the table, numbers will be set

into these arrays which will form a directory of the representative

numbers of the variables in the table, their locations in the table and

the form of the data given to each variable respectively. The MID array

is always left with its elements zero by the translator, since a zero

signifies to the assembled program that the data for the variable is to

be read in character form which is always true of data input to the

translator by the user. It is the assembled program which may write

results to a table other than in character form and the MID array is

then necessary to indicate to the assembled program whether it is to

read data from an input table in character form or from a previously

generated results table which may have been written in binary form.

After the arrays have been initialised the translator begins to process

the contents of the tables. In the case of a multiple table, the first

line of the table will contain at least a variable name followed by the

symbols :=. Data may also occur on the same line. The translator first

stores the variable name up to the : symbol, minus any preceding spaces,

into the IMAG array for comparison by the DATREC procedure to the list

of Hydro variable names. The part of the line containing the variable

name plus := is stored in an array called DUMMY which is written into

each simple table which is expanded from the user's compact table.

From the DATREC procedure, the variable number is retrieved and is

stored in the first element of the TOP array.

I70.

The next available location for storage of data on the tables file is

recorded in a special tables list as the position at which the table

starts on the file. The first data stored for the table will be the

three directory arrays TOP, BOT and MID, but the information to be

stored in these arrays will not be known until the table has been

processed. Therefore, space on the file is left at the head of the

table for the insertion of these arrays. The location on the file

after this space is recorded in the first element of the BOT array as

the position of the start of the variable in that table.

Having done this the translator looks past the = sign in the user's

input to the actual data. Hach data set in the multiple table is

separated by a semicolon. The translator first copies the DUMMY array

to the table and then copies the first data set to the tables file and

will record in the second element of the BOT array the next available

location in the file after the end of this set. The TOP, BOT and MID

arrays are then inserted in the space left at the head of the table.

This latter procedure is repeated for all the data sets, the starting

positionof each table being recorded in the special list, and the BOT

array being revised as each table is written. The TOP and MID arrays

stay the same for all the tables, since the TOP array only contains the

one clement recording the variable number, and the MID array contains

all zeros for user input.

When the last table has been written away the translator moves past the

two asterisks line, which terminates a table and begins to process the

next line starting at label 1 of the translator program.

The code at label 4 is employed when a simple table has occurred.

The translator again initialises the directory arrays TOP, BOT and MID

to zeros, and records in the special list the next available location

I7I.

on the tables file as the start of the user's table. The translator

then looks at the first data line in the table. As with the multiple

table, the first variable name is located and stored in IMAG and is

then compared to the list of Hydro variables by the DATREC procedure.

The number representing the variable is retrieved and stored in the

first element of the TOP array. A space is left on the tables file for

the directory arrays and the next location in the file after this space

is recorded in the first element of the BOT array as the position of the

start of the first variable of this table on the file. The translator

then copies the user's input to the tables file until a semi colon is

found, indicating that all the data for that variable has been given.

The next variable name in the table is then located and compared to the

list of Hydro variables. If the same variable as before has been given

then no additions are made to the TOP and BOT arrays, but the data for

the variable including the name up to the next semi colon, is copied to

the tables file. This situation can occur when different elements of

an array variable are given separately, when the variable name in the

table will be followed by subscript brackets.

If a different variable is found then the next available location on

the tables file is recorded as the start of that variable in the file

in the next element of the BOT array and the variable number is stored

in the next element of the TOP array. The variable name and data is

copied to the tables file up to the next semi colon.

This procedure is repeated until the two asterisks line is found,

indicating that the table has ended. At this point the translator

returns to label 1 to read the next line of input.

The code at label 13 is used when an array variable assignment is found.

If an array variable name,which is not in a table, is found in the input

I72.

two possibilitrs exist. Hither the user has given a string of data te

the variable, as in a table, or he has given a table number where the

necessary data may be found. The translator now looks past the :=

symbols after the variable name for a 'TAB' symbol or any of the Algol

symbols ;'END' or 'HLSE'. If the 'TAB' symbol is found before any of

the others then the user has given ak least on€ table number for this

variable. In this case the translator first writes an Algol 'BREGIN'

symbol to the program file 2.

Then for every 'TAB' symbol found, the translator retrieves the

appropriate array reading code from the line library and writes it to

program file 2. The array reading code consists of a call on the

procedure ARRAYREAD which has several parameters. Hach call in the

library has different parameters, which depend on the variable found in

the input, but the last parameter is omitted in the line library.

This parameter is now filled in by the translator since it represents

the table number given by the user after the 'TAB' symbol. One ARRAY

READ call is incorporated into the table for every table number given by

the user for this variable.

After the last 'TAB' symbol and its following table number have been

given the user will have written either a ;'END' or 'ELSE' symbol.

When the translator finds this symbol, it writes an Algol 'END' symbol

to match the 'BEGIN' yitioh was written when the variable was found.

The translator then sets its line pointer to the symbol found and reverts

to label 2 to process the rest of the user's input.

If the 'TAB' symbol is not found after the array variable name then

actual data must be given at this point in the user's program. The

translator must now ascertain whether only one data item is given or

several. This is done by checking for a comma in the data. If a comma

occurs then several items are given, each separated by a comma. If any

I73.

of the symbols ;'END' or 'ELSE' occur before a comma is found then only

one data item is given to the array variable. The variable name and its

data assignment may be copied directly to the program file 2 in this

case in the same way as normal Algol code. The translaor then sets its

pointer after the terminating symbol found and begins to process the

rest of the user's input with the code at label 2.

If a comma is found then a different approach must be made. The

translator assigns a table number to this data and copies it to the

tables file in the same way as if it had been given as a table by the

user. However, code must also be fetched from the library to read the

data from the assigned table at this point. The variable number is

retrieved in the normal way by comparing its name, using the DATREC

procedure, to the list of Hydro variables. The appropriate ARRAYREAD

call is fetched from the line library, and the assigned table number is

filled in as the last parameter. This code is then copied to the

program file 2.

The translator sets its pointer after the data given and reverts to

label 2 to process the remainder of the user's input.

The code at label 12 processes the input when a single variable occurs

on a line. When a Hydro single variable is found in the user's input

then either a table number where the data may be found is given, or the

data itself is given. For a single variable, only one table number will

be given unlike the position for an array variable where several table

numbers may be supplied. Therefore, the translator checks whether a

'TAB' symbol or any of the Algol symbols ;'END' or 'HLSE' occurs first.

If a 'TAB' symbol is not found then it is not necessary to assemble

reading code. The variable and its data up to and including the symbol

found may be copied directly to the program file 2 as though it were

ordinary Algol code. However, if the 'TAB' symbol is found, the

I74.

translator fetches the appropriate SINGLEREAD call from the line

library and writes this to the program file 2. As with all other calls

fetched from the library the last parameter to the procedure is omitted,

since it represents the table number from which the data must be read,

and can only be supplied by the user. The table number between the 'TAB!

symbol and any of the symbols ;'END' or 'ELSE' is now written as the

last parameter.

The translator sets its pointer after the last symbol found, and

recommences processing the user's input with the code at label 2.

When all the user's input has been processed the translator moves on to

its Phase two analysis. As mentioned earlier, the phase one part of the

translator compiles a list,known as the STACK, of all the procedures

numbers which occurs in the user's data. This information is now used

to assemble code to declare the procedures used and later to declare the

arrays used by these procedures.

The translator looks at each procedure number in the list and goes to a

position in the translator where a block of code is written which

relates to the declaring of that procedure. For the procedure under

consideration the translator looks back through the STACK to ascertain

whether the procedure has occurred at an earlier stage. If it has, then

nothing need be done at this point since all the necessary operations

for declaring the procedure body and its associated array variables will

have been carried out at the first occurrence in the STACK. However,

if this is the first occurrence then several operations must be carried

out. Since some Hydro procedures may use other procedures it is

necessary to insert at the top of the STACK, when a procedure is

processed by phase two, the representative numbers of all procedures it

may use. This action is carried out because a procedure used by another

at one stage in a program may occur in its own right at a later stage,

I75.

or may be used by a different procedure, but all declarations for the

smaller procedure will have been carried out at the earlier occurrence

of the larger procedure, so that they need not be done again. Thus,

when the translator looks back through the STACK it scans through

implied procedures as well as actual input procedures, and when any one

input procedure is processed by phase two only the procedures which do

not occur above it in the list and which are used by this procedure are

declared. The body of the main procedure is declared after all of the

lower order procedures have been declared. The declarations are made

by fetching the relevant code from the line library, the location of the

code being related to the procedure number, and writing this code to

program file 4. For every Hydro procedure which may be used, the

translator contains code indicating which array variables are required

for the running of the procedure. When an input procedure is found in

the STACK compiled by phase one, the translator stores in a list called

DECL the numbers representing the array variables which need to be

declared. Only the numbers which are not already in the DECL list are

inserted.

When the processing of the STACK list is complete, the phase three

section of the translator uses the DECL list compiled by phase two to

assemble code for the declaration of the arrays present. For every

array number present in the DECL list the translator fetches the

appropriate declaring code from the line library and writes this to

program file 4.

At this stage all processing of the user's input is complete, and only a

final collection of all the assembled code is necessary.

The code assembled on file 4 contains the declarations of single

variables and general code used by the assembled program when executed,

together with the declarations of the data reading procedures used by

176.

every program assembled by Hydro. After this on file 4 are the data

assignments and declarations given by the user under the MAXVALS and

DECLARATIONS procedures.

Next are the declarations of all the Hydro procedures which will be used,

followed by the declarations of the array variables.

The code assembled on file 2 contains only pure Algol code, the calls

on the Hydro procedures, and the calls on the data reading procedures,

ARRAYREAD and SINGLEREAD. This code is now copied from files? toctive A

after the declarations. The only remaining operation is to write

several Algol 'END' lines at the end of the program. After this the

complete assembled program on file 4 may be presented to the Algol

compiler for translation into machine code and for subsequent execution.

By means of the data reading procedure calls the program automatically

locates the necessary numerical and text information it requires from

the tables file.

I77.

G6. Flow Diagrams for the Hydro Reading Routines

NEXT COLUMN

t

Increment line

pointer

COLM=COLM+1

q

Is this a binary

table?

YES YES

 Is this symbol

NO new line? NO

Has the end of Set BEG=BEG+

| 0 ¢———— line been passed COLMs

COLM > 81 ?

VES Read next 81
symbols from

| tables file y
starting at

Set BEG=BEG+813 position BEG

BEG is next position on

file where data is

stored for this variable Set COLM=1

Read next 81
symbols or

numbers from

file

Set COLM=1

178.

ALPHANUMERICALDATA |

* found in position
COLM

 y
Increment line

pointer

COLM=COLM+1

< Is ea Store symbol in

next element of

ALPH array

<i,

YES

This is the end

of the data

item

 Y
Move along line

(increment line

pointer) and read
new lines if

necessary until

3°07’, found jin

position COLM

NUMERICALDATA

!
Set line pointer

COLM=COLM-1 ;
{

Set NEGATIVE=
Set NUMBER=03

Set exponent EXPO=1

'RPALSE' 5

\

ee

Increment line pointer

COLM=COLM+1 3
If end of line is

passed then read next
line of data and

set COLM=1

t
/ is this symbol a -

or +?

 ae

Is it an integer or .

or 3 or , or] ?

integer

found

Set

<f. NEGATIVEH=

‘TRUE!

“i NO

<a

Set EXPO=EXPO-1

A

Set NUMBER=NUMBERx
10 EXPO

Is NEGATIVE='TRUS'? < »

NO

YES {

| NUMBER=-NUMBER

NUMERICALDATA=
NUMBER

 Vv

Exit with pointer

SeOt: One Ors Ona)

YES in number form (check in MID
array) ?

Set BINARY=
TRUE.
Set a a

Single read
TABNO given as

parameter

TYPE given as

parameter

t
Set BINARY='FALSE's;

 {

Retrieve from file the

position where this table

starts

t
Retrieve (starting at this
position) the arrays TOP,
BOT, MID, recording the
positions of the variables

etc. in the table

 |

Look along the TOP array for

this variable number.

Retrieve from BOT array the

position of the start of

this variable in the table

(BEG).

{
Is the data for this variable

NOs are

tH

BHG=BEG—81
Set COLM=81

 Is TYBE=
(integer) ?

NO

eens

text

re

y

10 Is TYPE=1 (real variable) ? Yas

Set VAR]l=next number

YES

t
Set VAR2=DATAINPUT

next number in table

Set

VAR2=DATAINPUT

Set COLM=0

set next symbol

= new line

 >

in table.

VAR1=DATAINPUT

(next symbol
in table)

Set DEFINED

=TRUE

DEFINESUBSCRIPTS

 l

Set DEFINED=FALSE.
BEG=beginning of table

on file

END=end of table on

file.

COLM has been set by

ARRAYREAD

{
If COLM indicates end

of line then read next

line,

Set BEG=BEG+COLM

else set COLM=COLM+1

i
Has the end of the data

for this variable been YES —igiGo to end of
reached. ARRAYREAD

BEG > END ?

NO

\
| ——YES—_ Is this symbol a space? 5

NO

t
-—<— 10 —< Is the symbol = or [)

 DEFINED=

FALSE?

a

Set SUBl=

SUB2=

NO SUB3=1

Move to next symbol

Read next line if

necessary

!
Set SUBl=number after [
and before » or J]

 Exit with

line pointer

on =

 » found

ct a { Set SUB3= YES Eno

number

between found Move past ,
9 and)

¢

7 4 Set SUB2=number between this Move > and next , or }
past , ae

DATATNPUT

t

BINARY has been set

previously

Y

Set FINISHED=FALSE
Set DATAINPUT=0

1

Move to next symbol

or number

 YES

TES

Set ALBH array

blank

.

Read next line if

necessary

Is this variable in num

form

1

BINARY=TRUE?
|

ie)

{
Is this symbol space? >

NO

NO

{

Read symbols

following *

up to next *

into ALPH

using

ALPHANUMERICALDATA

Set pointer on

es OLP: 3.af ber

second *

This is numerical data

Set DATAINPUT= number

before next , or 3

(CALL NUMERICALDATA)

Te it 7 10

YES
¥

Set FINISHED=TRUE

—— =

a

NO

Is this number

10-76 (start
of data)?

YES

Move to next

number

Set DATAINPUT=

this number

 Is.next number

1078 ?

YES NO

Set
FINISHED=TRUE [

’

[ARRAYREAD |

TABNO given as parameter

TYPE given es parameter

BNDI, BND2, BND3 given

f

Retrieve from file the

position where this table

starts

¥

Retrieve (starting at this
position) the arrays TOP,
BOT, MID which record the

positions of the variables

etcein the table

Y
 Retrieve from these arrays

the positions of the start

and end of the variable

BEG and END

Set BEG=BEG-81
Set COLM=81

{

wt v

Use DEFINESUBSCRIPTS

 procedure

y
Is TYPH=1 or 2
(real or integer variable)

YES

Is the data given in number

prenn iies form BINARY=TRUB? NO
4

2» NO,

 {

Set ARRAY [SUB1]
= nexy data item

In} table —

DATAINPDT

Tt: DYPH= use VARLe as ARRAY

If TYRHS2 suse: VARewas ARRAY

i

NO

YES Is second bound on array
Zero BND2=0?

I83.

Set COLM=0
Set next symbol=

new line

 Go to label

L100

 eae ¢
_ *

Is third bound zero

BND3=0 ? 10 Set ARRAY [SUB1,SUB2,
t——| SUB3] = DATAINPUT=

next data item
YES

q
Set ARRAY [SUB1,SUBZ] =
DATAINPUT=next data

item

NO MS Ge hr Increment first

|

Has the end of the

data assignment been

reached?

Is this. symbol. 3; or 10/6?

subscript SUB1=SUB1+1

NO YES
1 |
Increment set

third SUB2=SUB2+1+»< SUB2 > BND2? YES Set SUB2=1
subscript “= Set SUB1=SUB1+1} |
SUB3:= |
SUB3+1 ren NO

YES ('

(Si3)m3?) Set SUB3=1

Ve t a
fine Co ae

SUB1 > BND1? NO Go to LLL11 above

YES

Set ERROR=TRUE.
Write error
message.
Terminate program.

This is a text variable

I
Call DATAINPUT to read

thi's:-text' <into ALPH

 array

BOUND=END2

YES NO

| |

Set BOUND=1 Set BOUND=BND3

 Y — i <i

aie YES

Copy first

symbol (only
symbol) in ALPH
into VAR2 SUBL

Set ERROR=TRUE.
Write error

message (too
many characters

Copy text data in ALPH Copy text in ALPH

into third dimension of into second dimension

this array until full of VAR2

VAR2 SUB1,SUB2,I = VAR2 SUBL .be-APH

ALPH I I=1, BOUND

T15 EBOUND eae 1 iat a y
y

Is next symbol in

ALPH blank ? NO

YES

YES

Increment first

subscript

SUB1=SUB1+1

Has the end of the

data assignment

been reached.

3; after last piece
of text?

——NO

y

BND2=0
or BND3=0?

NO

 in one piece of

text)
Terminate

program

Go to label

LLL60

NO

BND3 > 0? YES——*} Set SUB2=SUB2+1

NO

SUB2 > BND2? NO

t
YES

f
Set SUB2=1

Set SUB1L=SUB1+1

 te ath

ay.
 >

SUB1 > BND1?

YES

t

NO Go to L100 above -

Set ERROR=TRUE.
Write error

message (too many
characters in

text)
Terminate program.

I87.

5.9. Description of the flow diagram for the reading routines

The first reading routine is the NEXTCOLUMN procedure. This routine

is able to read into an array called CHAR, lines of data from a table.

It is assumed that there are two types of information in a table. One

type is in character form and the other is in binary form. If the

routine is reading character information then one line of data of

variable length is read into the CHAR array. The line is terminated by

a newline symbol. However, if binary information is being read 81

elements are read from the tables file. In this case each element

contains one complete real or integer number, whereas for diaaah tan

information each element contains only one digit of a number, a decimal

point, a sign, a comma, semicolon or a character of the variable name.

The routine not only reads in the information but also increments a

pointer on the CHAR array. When a line of data is read in the pointer

is set to the first element of the CHAR array. Later calls on the

procedure move the pointer one element along the array. If the

pointer is moved past the end of a line for character information or

past the 8lst number for binary information then more data is read and

the pointer is set at the beginning of the data. No analysis of the

data is carried out by this procedure.

The ALPHANUMERICALDATAis called whan an asterisk is found in the CHAR

array. This indicates that the information is text which is to be used

to identify results sent to the lineprinter. Each mnemonic or word is

given between asterisk symbols. The routine copies the text between ;

the asterisk found and the next asterisk to an array called ALPH. The

pointer on the CHAR array is then moved past the text until a semicolon

or a comma is found. The pointer is then left on this symbol and an

exit is made from the procedure.

T8%.

The NUMERICALDATA procedure is used to construct a complete number

from the digits supplied as character information by the user. On

entry to the procedure the pointer on the CHAR array has been set by

another procedure or by carlier use of this procedure to the

beginning of a number in character form. The pointer could be set to

a space preceding the number, a plus or minus sign or the first digit.

The routine first moves the pointer along the CHAR array to the first

non-space character, if necessary. The first check made is for the

presence of a sign. If a sign is present and it is negative then the

variable NEGATIVE is set 'TRUE'. If no sign is present the routine

reads the following number up to the terminating symbol which can be

a comma, semicolon or bracket, by the method detailedin the flow

diagram. The final assembled number is set into NUM@RICALDATA and an

exit is made from the routine.

The SINGLEREAD procedure uses the NEXTCOLUMN procedure to read in a

line of dataor 81 symbols, depending upon the type of information from

the table specified as the last parameter to the procedure. The

procedure first retrieves from the list of table positions the position

of the start of this table on file. Having determined this position

the TOP, BOT and MID arrays are read from the head of the table. The

location in the table of the start of the particular variable to be

read is found by looking along the TOP array for the variable number.

When this is found, the position of the start of this variable is

determined by looking in the equivalent element of the BOT array, and

the type of data given is determined from the MID array. If the data

is in binary form then BINARY is set 'TRUE'.

In either case, the procedure then checks whether the variable is a

realinteger or text variable. This information is supplied automatically

in the procedure call for-that particular variable.

re.

Data is then read into the appropriate variable by means of the

DATAINPUT procedure and an exit is made from SINGLEREAD.

The DEFINESUBSCRIPTS procedure is used when an array variable is given

in a table. The user may have given an element of the array as the

starting position for filling the rest of the array with the data

provided. The subscripts for this element will have been supplied,

separated by commas, within square brackets immediately following the

array name. This procedure is called from the ARRXYREAD procedure when

the array has been located in a table. When DEFINESUBSCRIPTS is

entered, the boolean variable DEFINED is set to 'FALSE' and the variables

BEG and END will have been set to the positions on file where data

begins and ends for this array in the table. This information is

retrieved from the directory arrays for this table by ARRAYRHAD. If

DEFINESUBSCRIPTS has not been called before by the ARRAYREAD procedure

then the line pointer on the CHAR array will have been set to a newline

symbol. The first action of DEFINESUBSCRIPTS is to check whether the

pointer indicates a newline symbol. If it does, then the next line of

data for the array is read into CHAR and the pointer is set to the

first symbol on the line, but if not then the pointer is moved to the

next symbol on the line being processed. The next operation checks

whether the data for this array has been exhausted. Every time a new

line of data is read the procedure adds the number of symbols on the

line to the variable BEG. BEG is then compared to END. If BEG is

greater than END then a jump is made to the end of the ARRAYREAD

procedure. If the data has not been exhausted then DEFINESUBSCRIPTS

begins to process the subscripts given. The line pointer is moved

across the line of input in the CHAR array until the first non-space

character is found. If the symbol is = then no subscripts have been

supplied so that they are all assumed to be equal to one, and an exit

190.

is made from the procedure with the pointer set on =.

If the symbol found was [then subscripts have been given and the

NUMERICALDATA procedure is called to read into SUB1 the number between

[and the next , or | symbols. If a comma is found after the first

subscript then more subscripts are given and a similar procedure is

carried out to find the value of SUB2, but if a 1 symbol was found only

one subscript was given and an exit may be made from the procedure.

In the same way a check is made for the presence of a third subscript.

When all given subscripts have been found an exit is made from the

procedure.

The DATAINPUT procedure determines the type of data given for a variable

and, depending upon this information, calls the relevant

ALPHANUMERICALDATA or NUMERICALDATA procedures to assemble a data item

for the variable. At entry to the procedure, FINISHED is set to 'FALSE'

and the real variable DATAINPUT is set to zero. A check is first made

to find whether the data is in character or binary form. If it is

binary information then a check is made to locate the start of the

data. Any information which a previous program has written in binary

form will contain mixed data. An identifying variable name will have

been written first in askauet form. Then a very small number, 10716

is written in binary form after the variable name and this indicates

that the real data for the variable immediately follows. The data is

terminated by the large number 10° © - Therefore, if binary data is

present the CHAR array is checked for the number 1076 - When this is

located, DATAINPUT is set to the next number, which is in binary form,

on the line. A further check is now made for the value of the following

+76
number on the line. If it is*10 then FINISHED is set 'TRUE'. In

either case, an exit is then made from the procedure.

If the data on file was found to be in character form then a more

complex procedure is carried out. The line pointer is moved along the

line of data until a mon-space character is found, newlines being read

as necessarye When a symbol is encountered the procedure checks whether

it is the * symbol. If it is, then the text array ALPH is set to blanks

and the ALPHANUMBRICALDATA procedure is called to transfer the next

piece of text on the line to the ALPH array. The line pointer is set

on the comma or semi-colon following the data item. If a semicolon is

present FINISHED is nee to 'TRUE', and in both instances an exit is made

from the procedure.

If an asterisk is not found then the data is numerical and the

NUMERICALDATA procedure is called to assemble a number from the digits

given and to assign this value to the DATAINPUT variable.

The line pointer is set on the comma or semicolon following the data

item and if it is a semicolon FINISHED is set 'TRUE'. An exit is then

made from the procedure.

The ARRAYREAD procedure is the most complex data reading procedure and

is best described in general terms. ARRAYREAD is cence with several

parameters which include the table number where the data is to be found,

the data type of the array, and the upper bounds on the array subscripts.

The first check made is to determine whether the data is given in

character or binary form in the table. The DEFINESUBSCRIPTS procedure

is then called to find from the user's input the element from which the

array will be filled. The next test made is for the type of the array

variable in question. If it is a real or integer variable then similar

paths are taken but if it is a text variable then slightly different code

must be employed. If real data is given then the first procedure

parameter is used as the array name for assignment of data. Otherwise,

the second parameter is used as the array name. A process is then

1926

followed which reads data, using DATAINPUT, into the array, starting

at the subscripts found by DEFINESUBSCRIPTS. These subscripts are

then incremented and data again read in until either the data is

exhausted, marked by a semi-colon, or until the subscripts reach their

upper bound valuese- If a semi-colon is found and the end of the data

for this variable has not been reached on the file, as determined by

the value of the END variable, then DEFINESUBSCRIPTS is used again and

the whole procedure is repeated. When the end of data is finally

found an exit is made from the procedure.

es Oo

CHAPTER 6 | g

DETERMINISTIC DYNAMIC PROGRAMMING APPLIED

TO RESERVOIR CONTROL

6.1. Introduction

Deterministic dynamic programming deals with the case

where the effective control of a eveten depends only on

parameters with known values, and can be applied only to systems

where a direct simulation with the same data can be made. In

the reservoirs control problem the fixed quantities are the

inflows to the reservoirs at any time, which may be obtained from

the historical record or be synthetically generated in some way,

and the demands on the system.

A system in which inflows or demands can only be given as

probability distributions cannot be solved by deterministic

dynamic programming. The method of solution where uncertainty

is introduced into the system is known as stochastic dynamic

programming, which is discussed in the next chapter.

When a data sequence and the sizes of the system modules

have been specified, the possible release or control decisions

which can be made for each reservoir level or combination of

reservoir levels, or other system 'state', are decided upon by

the designer.

Deterministic dynamic programming can then be applied

to find the optimal decision for any 'state' and time, or stage,

if the inflows and demands are routed through the system.

194.

6.26 The Dynamic Programming Principle

It is not always evident that the operation of a reservoir or water

resources complex can be taken as the set of non linear, time-varying

differential equations

z meee a ey eau: 6.1

where X = n — dimensional state vector

m — dimensional control vector cl

i

ct

ul time variable measuring time elapsed starting at an

arbitrary datum

. ao er ys
(>) at

This formulation tends to loosen many preconceived notions that one

might have about the reservoirs control problem. It is easier to see

analagous problems in different fields and possibly make use of advances

in these areas. It also demonstrates more clearly the consequences of

discretisation of the problems in the more familiar finite differences

notation. For these reasons, the dynamic programming principle is

introduced along these lines.

The state vector is a record of every relevant piece of information

which might affect the decision to be made at a given time concerning

the operation of the system. In a simple case, this vector might only

contain the two elements which give the levels in each reservoir for a

two reservoir system. A more sophisticated approach might include

elements which describe whether the previous inflow to each reservoir

was higher or lower than average for a particular time, thus allowing

for serial correlation of inflows.
time

The state vector at/ t is represented by

x(t) = x,(+) where x(t) is one known feature at time t

x,(4)

*n(+)

956

The control vector contains any number of elements, each of which

describes one operation on a given partof the system

In the caseof a two reservoir system supplying one demand then onlyone

operation may be required for each reservoir i-e. the release from each,

but if two demands are to be satisfied, then there may be two operations

for each reservoir, namely the releases to be made to each demand.

The control vector at time t is denoted as

u(t) = u,(+) where u,(+) is one control variable

u(t)
u(*)

For the two reservoir case and a single demand this might be

u(t) u,(t) where u,(+) is the release from reservoir I
at time t

uy(t) and u,(t) is the release from reservoir 2 at
time t

For the two demands case the control vector might be

u(t) = u,(+)

u(t)
u, (+)
uw, (+)

where u, (+t) is the release from reservoir I to demand I at time t

u,(t) is the release from reservoir I to demand 2 at time t

u,(t) is the release from reservoir 2 to demand I at time t

u,(+) is the release from reservoir 2 to demand 2 at time t

The system variables and fixed quantities are related by the system

equations 6.I. which describe how the system changes from one time period

to the next when a control is applied.

The system controller can choose values of U at any time in such a way

that over a long period of time some measure of performance is optimised.

This measure takes the form of an integral of a scalar functional of the

state variables, control variables and time plus a scalar functional of

the final oe ae final time ¢

ffx | ie ¥; +I gor Soles Rion BO;

initial time where t
oO

to = fanealtine

o = dummy variable for time

if

Y

In order to solve the set of equations 6.1. bearing in mind the objectives

scalar functional for cost per unit time

scaler functional for final value cost ul

contained in equation 6.2., it is necessary to use finite difference

approximations. Equation 6.1. can be written as :

x(t+§t) = x(t)+f(x(t),u(t),+)St Rot ae 7 Equ. 6.3.

The integration of equation 6.2. may be simplified by the expression

t+ St
: whe 1[5(0},i(c) ,oac = 1 Say acer St oF eo eae Bade
t

These are the simplest possible finite difference forms that can be

written for equations 6.1. and 6.2. When integrating difference

equations by numerical techniques many problems arise over the choice of

step size. Fremently they are resolved by solving the equations at

different spacings and comparing the resitfits.:

There may be other considerations to take into sgsrrint in the alution

but these can generally be written in the form of constraints on the

possible states and policies :;

x(t)¢X(t)

u(t)€U(x,t)

Where x. the set of admissible states, can vary with t, and where U, the

set of admissible controls, can vary with x and t.

It is possible to solve the problem by an application of Bellman's

I97.

principle of optimality, which states that if we know an optimal

trajectory, or sequence of states, from a state x(t) to a state x(t»)

then the portion of the trajectory from any intermediate state x(t) on

that trajectory to state x(t.) is the optimal trajectory from state

x(t) to state x(t).

K (t¢)

 Lime eee ae te

Fig. 6.|

This principle can easily be proved by considering the logic of the

to

situation. Referring to Fig. 6.1., if we know CEAD is the optimal

trajectory from x(t) to x(t.) then let us assume that EBD is the

optimal trajectory from x(t) to x(t.)- Then path CEBD must have cost

less than path CEAD, but this contradicts the fact that CEAD is the

optimal path from x(t.) to x(t) and hence EAD must be the best path

from x(t) to x(t p)-

In order to apply the principle to the reservoir operation problem it is

necessary to define a minimum cost function r[x(+), +].

This function determines the minimum cost that could be incurred in

going to the time te. if the present time is t and the present state

is xX.

The principle of optimality may now be written as

t

fx), see | x(0),n(0),ar +¥L(+,),+,]
tare - Equ. 6.5.

198.

Using the approximations of equations6.3. and&4. the iterative

functional equation of dynamic programming may be written as

1[2(+),4): aR EOmor + 1{ 2 704) ,0() 98,4489] |
a Equ. 6.6.

The development of this equation is treated more fully in the next

section. The interpretation of this equation is that the minimum cost

at a given state x and the present time t is found by minimising, through

the choice of the present control u(t), the sum of i[z(+) ,a(+), 4] 8+, the

cost over the next time interval§t, plus 1Lx(+)+3(5(+) ,a(+), +) St, t+Se] ,

the minimum cost of going to tp from the resulting next state,

x(+)+F(x(+) u(t), St.

This iterative equation is solved backwards in time because r[z(+), 4]

depends on values of the minimum cost function at future times.

Consequently, the iterations begin by specification of the minimum cost

function at the final time tee

Using equation 6.5. 1[k(+,),+,] - ¥[x(+,),t4] Pe eo ia Cele

The minimum cost function for all x and t can be evaluated by iteratively

solving equation 6.6. with equation 6.7. as a boundary condition. The

optimal control at every x and t, denoted by Uppm(Xst) » is obtained as

the value of u(t) which minimises equation 6.6. for the given x and t.

199-6

6% 3 Discretisation of the variables

Since the levels and releases in a reservoir may take any continuous

values within their possible ranges at any time, the dynamic programming

method reduces the computational volume by fixing the variables at

discrete values and carries out calculations of optimum rules, using

equation 6.6., only at these values. The costs,

tf x(t)+2(X(+) ,a(+), t)8t,t+8t], if the resulting state,

x(t)+f(x(t),u(t),t), is not a discrete value, are obtained by

interpolating between the costs for the nearest discrete states. The

time variable is als reduced to discrete values, but the increments in

time,§t, between each calculation of costs need not be the same for all t.

The accuracy of the solution of the system equations depends, of course,

on the discrete step sizes chosen for state, control and time variables

and some attempt has been made in this thesis to investigate the effects

of varying step sizes.

In essence, dynamic programming contains the same steps as simulation,

except that instead of applying one specified rule to the set of levels

existing in the system at any time, dynamic programming applies several

rules to a particular set of levels and chooses the one which is the

best at that time. No assumption is made about the state of the system

in one period of time, the best rule being determined for every state

which could occur.

The simulation approach would, involve fixing the controls, u, at each

time and running a simulation of the system starting from some given

state x(t ,)- This simulation would produce a cost

‘

Jy = (2 Z(¢),3(¢) elac ¥L+,),+,]

4
°

Further simulations can be run with every possible control sequence,

200.

and the costs, J, obtained. The sequence with the minimum cost is the

optimal one. :

Hill climbing and directed search techniques have been used to modify

the sequence of U's to find the best sequence °

The number of trajectories possible depends upon the number of controls

which may be applied at each time, and upon the number of time increments

chosen. For a system where four controls may be applied at one time, and

with a twelve months total time in one monthly increments the number of

trajectories is - approximately I7 million. So it is clear that, even

with this short process, it would be computationally impossible to

evaluate all the trajectories. However, the dynamic programming method

does in fact perform an equivalent calculation with far less computational

effort.

201.

6.4. The discretised famulation of dynamic programming

In the discretised dynamic programming notation, the time varia ble is

called the stage variable (k) and this measures the time elapsed from

the beginning of the process. A stage in the process is the period of

time over which a control is applied and corresponds to St in the

continuous case. In the conventional dynamic programming procedure §t

is normally taken to be constant for all t and becomes At. In the

reservoirs control problem a fixed control rule may be applied over a

stage length of one month. Since the stage variable is discretised it is

not necessary to know the absolute value & the time, but only the integer

number of stages elapsed from the beginning of the process.

The absolute time is related to the stage variable by the equations

+ = t_+kAt
°

and KAt = t,-t
f: OD

where * = time at which the process begins

t. = time at which the process ends

At = the length of time for one stage

K = the total number of time periods (stages) in the process

+ = absolute time

Equation 6.3., the system equations may be written as

x(k+I) = x(k) + £(x(k),u(k),k)At ee Equ. 6.8.

For convenience we may write

x(k+I) = al x(%) a(x) » ic] es) Ue Fe Equ. 6.96

where [x(x) ju(k),k] = x(k) + £(x(k),u(k),k)At.

Expanding equation 6.9. gives

x (+I) = weg) ox gC) ++ - gC) 9g) 94,0) (#9)

202.

x,(x4T) = ge (1) px5() 5-03, (1c) pup (ie)y ug(ie) »..u,(e) 94]

x (42) = 6 [xp(3) 9 5(e) seo (1c) yt0z(Xe) 4 (1c) 5.2.0 (1c) 1]

where Xy is a discretised value of any one observable feature of the

system

us is a discretised value of one operation on one part of the

system.

Example I.

For a two reservoir system where the reservoirs are not inter-

connected, and one demand is to be satisfied ;

x,(k) = level in reservoir I at stage k

x,(i) = level in reservoir 2 at stage k

x(k) = Xy

v2

u, (x) = release made from res.I at stage k

u,(k) = release made from res.2 at stage k

u
~ at u(k) = a

re

x(t) = ey[xp() pup(X) si]

x9(K#I) = gp[xp() sup(i) »X]

The functions, g, only contain the variables for one reservoir,

since the level at stage (k+I) in one reservoir does not

depend upon the level and operation of the other reservoir

at stage (k) because they are not interconnected.

The levels at stage (k+I) depend upon the stage variable, k, because both

the levels and the controls at any time may be restricted to a particular

range of values, which change with time.

Oo

=
a

o

For instance, the level in a reservoir may have to be constrained below

a flood level which may change for every month, or there might be a

minimum acceptable release in any month to provide for compensation

water. Obviously, the range of control may also depend on the level

itself since it is not possible to release more water than is available

and it may not be allowed to release water below a minimum storage level.

These restrictions are called the constraints on the problem and are

represented by

x(k)€ X(k) Con : ; Equ. 6.10

u(k) € U(x,k) oor. Equ. 6.11

Although it is not generally true, these constraints may be separated

for each reservoir or for each level in a reservoir, in which case the

constraints become

x(k) € K(x) up(ie)€ 0, (x, 5k) aE aE I aL SL.

x91) € K(x)

x(k) € KC) u(k) € 0 (x, 5)

In order to choose the Bia ie for every possible combination of

levels at each time stage, it is necessary to have some kind of

performance criterion for the system. In some cases this will be a cost

function where a penalty is applied, for chaiole. for not releasing

enough water to supply a demand, or a benefit otek where a reward is

Bes ok for each unit of water released or power generated in a hydro

electric scheme. The purpose of dynamic programming is to find the best

operating rules at each stage, starting from some given state, so that

the sequence of states throughout the process is the best which can be

obtained to minimise or maximise the performance criterion.

Therefore, the performance criterion may be written as

Fe = n
J “= 1 (i) ,0(k) ,&] +? Lex) x] where 1 is any function, .Equ. 6.12.

k=o0

and u(k) is the control at stage teks

In the two reservoirs problem the quantity to be minimised may be the

deficits to supply, in which case the performance criterion becomes
K :

J “= [d(x) - u, (x) - u,(«)] where

D(k) is the demand at stage k

f u, (x) is the release from reservoir i at stage k.

and 2 u,;(k)@ D(x)
a:

2056

6.5. Derivation of the iterative functional equation for the

discrete case

Consider stage K at the end of the process :

The system my be in any state in the range X(K).

It is conceivable that a penalty will be attached to being in certain

states at the end of the process. For instance, an operator may want

the reservoirs to be completely empty at this stage and the penalty to

be attached to each state will then be the cost of discharging the

amount of water attachedto that state until the reservoir is empty.

Other types of penalty may be used but this will depend upon the system.

The penalty to be attached to each state will be designated as

6[z(x) x] which is a special case of the general cost function

applied at each stage, 1 r(a9 sate) kl

Thus, the best state to be in at stage K is the one wth the minimum

penalty function, although this does not necessarily lie on the complete

optimal trajectory.

Now consider stage (K-I) :

Again, the system may be in any state in the allowable range. It is not

yet known which of the states will lie on the optimal trajectory from

x(0) so that it is necessary to calculate the best trajectory to the end

of the process from all possible states at this stage.

If the system is in state x,(K-I) then it may make a transition to

several states at stage K, depending upon the control vector, Uys applied.

Let these states be

a(x, (x-1) ,a,(K-1),(x-2)} = ¥,(x)
g X,(K-L) ,i,(K-L) ,(K-1)] = ¥,(K) poe ae Bees, GaSe

a[x,(K-1) ,@,(K-1),(K-1)] = ¥,(x)

206.

The associated costs involved in the transition will be

i{z, (K-1) ,8,(K-1) ,(x-z)] = Cc,

fz, (K-1) ,%,(K-1) ,(x-z)] = € 4 ow fiws Me oe, Gel Ac

1[&,(K-1) ,3,,(«-1) ,(K-)] = ¢

Now, in order to compute the least cost trajectory of going from stage

x,(K-I) to the end of the process, the costs of the transitionsto time

k are added to thepenalty functions at time K.

i-e. Under decision u_the total cost is 7

c,+#[7,(x) x] = re_[x,(x-z)| 60 bet a Babe bel 5:

Under decision U, the total cost is

¢.+6L7(K) 5x] = re, [z,(x-z)] Boas Sew 6 RE

These total costs are computed for every decision at time (K-I) and the

minimum one is chosen as the best trajectory from x,(K-I) to the end of

the process. The costof this trajectory is Cp Lq(K-1)}

The above calculation is repeated for every possible discrete state

x(K-I), so that we obtain the minimum cost trajectory from all x(K-I)

to the end of the process.

The calculation then proceeds to stage (K-2) where identical computations

to those carried out at stage (K-I) are performed.

If the system is in state x1(K-2) then it may make transitions under

different decisions to the states

@ Lz, (K-2) ,8,(K-2) ,(K-2)] J (K-1)
alz,(k-2) ,a,(K-2) ,(K-2)] Yp(K-I) ee ae Equ. 6.17.

ale, (x-2),0,(x-2),(x-2)) =F (x-2)

The immediate costs of the transitions will be

Lz, (K-2) su, (K-2) ,(K-2)] = D,

fz, (K-2) ,8,(K-2) ,(x-2)] «2, age Equ. 6.18.

iL z,.(K-2) su_(K-2) ,(K-2)] * i,

From the previous stage, we know the optimum costs of going from any

state at (K-I) to the end of the process, i.e. the TC, om [2(K-1)] :

so that the total cost of going from state x, (IK-2) to the end is the

minimum of

Dy#C om ¥_(K-2)

D,#™y pal ¥p(-1) . . « . Equ. 6.19.

D tre oprLy,(K-2)]

which is denoted by "yp |X, (K-2) }.

Again, this calculation is repeated for all states x(K-2), so that we

will know all 7 pn lx(K-2))

It can now be clearly seen that this dynamic programming approach is an

iterative process which, at any stage, links with the following stage by

means of the minimum cost functions TCopms

Mathematically, this can be written as

Copal z(X)] = Min 1 (ie) yi ,(k) »i]+ 20 yon ELEC) 531,() 1] fc Meas? Gs 20:

u;€U

J=I,m(x,k)

where m(x,k) is the number of decisions which may be made for this state

and stage and PC pal ()] represents the minimum cost, starting in state

x(k) at time k, of going to the end of the process.

In dynamic programming notation TCopm (1) is usually represented by

t (1c) «] so that the equation becomes

r[x(x) ,«] = Min 1 Z(ie) p@(1c) 5] + Lelx(x) ,3,() 51g] +7]

u;€U(x,k)
a di ouhe ees eae Baus. 65.27.

J=I,m(x,k)

This equation is known as the iterative functional equation of dynamic

programming. It states that the minimum cost of going from a state x at

stage k to the end of the process is obtained by minimizing the sum of

the cost incurred duztmg stage k, and the minimum cost in going to the end

of the process from the resulting state at stage (k+I).

It can be seen from the iterative functional equation that if we know the

penalty function at stage K then the equation may be applied in a backward

direction starting from stage K and finishing at stage 0. After all

calculations are complete we will have the optimum decision to be made at

every stage and for every state which may occur at that stage. If the

state of the system x(0) is known at stage o then all that is necessary

is to apply the now known optimum decision for that state and stage and

find the resulting state. The known optimum decision for that state at

that stage is applied and the resulting state computed. This process is

repeated until stage K is reached, when we will have found the optimum

decision which will have to be made at each stage and the resulting

optimum sequence of states.

Since the optimum rules starting from any stage and any state are found

by the d.p. then if an error is made in the operation of the system, so

that the optimal sequence of states is broken at some stage then all that

is necessary is to find from the dynamic programming results the optimal

rules to be applied starting from that stage and that state which is the

result of the incorrect operation.

Example 2

Consider a two reservoir system with no interconnections, supplying one

demand.

Let the discretised levels be 0,I,2 units in each reservoir so that the

possible state vectors at any stage are

z,-{o} =,-[o)z,-[oz,-[r] =--fi]z--(2)z -lols. tole I>

Let there be three decisions at each stage ;:

I. Take all demand from TEs. bs 4a u ere where D is the I
. - demand at any stage.

2. Take all demand from res. 2. ice. Y= Ole! “y
D Us

3. Take half of the demand from each reservoir i.e.

~ |Dd/2
“LD/e2

Assume that the reservoirs only have to be operated for I year and let

the time between operations be one season of 3 months, so that there are

four stages to the process.

Kk ®. 0,152, 3.

Let the inflows in these time periods be
Res.I Res.2.

i=: 0 LNA = 2a s INF = I unit

kee ek INF = I unit INF = 2 vamnits

KGigees INF = I. unit LN. 2a te

k=. 3 INES = 3 units INF = Taunus

Let the demands in these time periods be

k=. 0 D = 4 units

b=. 1 D = 4 units

k= 22 D = 4 units

kee. 3 D = 4 units

We wish to minimise the deficits to demand over the yeare

Assume that the operator wishes to have both reservoirs full at the end

of the period, andif they are not full, then water will have to be

pumped into them from some other source, thus incurring pumping costs.

Let the pumping cost be £190 / unit pumped for each reservoir.

Let the cost of a deficit to demand be £300 / unit.

The reservoirs are both full at the beginning of the process.

The penalty costs at the end of the process, k = 4, are the costs of

pumping water into the reservoirs until tey are full. Therefore : |

plz, (4) +4] = 4x 290 1[x, 14]

ble, (4) 54] = 3x 290 = £870 = 1[z, »4]

éz,(4) 4]

LE (4) 04]

6 fz,4) 04] = 2x 290 = £580 = hz, ,4]

£1160

! fr Pd 290 = £580 = rf, 4]

290 = £870 - Lz, 4] t Ww m4

6 [z,(4) 54] 1% 290 "= £290 = [x44]

é[x,(4).4] = 2x 290 = £580 abe 6d
6[E5(4) .4] = Ix 290 = #290 é B,.4]

LF, (4) »4] = 0x 290 = 0 Sale id

The expression to be minimised is

K-I ! ee
J =) By (D(k)-R,(k)-B,(k)) x cools §[Ec4),4]

where Ry and Ry are the actual releases from reservoir I and reservoir 2,

which may be different from u;(k) and u,(k) since there may not be enough

water in the reservoirs to release all of the stipulated release.

The state transition function @ - is given by the following ;

aii.

x41) = @,[x,(e) a, (1c) 5x]

* x(k) + INFLOW I (k)—u, (x)

x(K4HI) = Bo[xp(k) Up(K) 5k]
u x,(k) + INFLOW 2 (k)—u, (i)

with the constraints 3:

ae rt x,(k+I)3o then

es te x,(k+I)<o then

R. = x,(k)+INFLOW I (k) and next state x,(k+I) = 0
L

Ce tr x,,(k+I)$o then

Ro = Uy

d. If X_(k+I)<o0 then

hy * X,(k)+INFLOW 2 and next state X,(k+I) = 0

ee if x,(k+I)>x, max ben

SPILL I = x,(k+I)-x, may ond next state x, (k+I) = Xp ee

x = 2 units
I max

f. if X_(k+I) >x, max ‘nen

SPILL 2 = X5(k+I)-x, max 2nd next state x, (k+I) i ae

x =2 units
2 max

The dynamic programming procedure is set out in the following table.

The costs in column (II) are initially set to the penalty costs since

these may be viewed as being the costs to go from stage K to the end of

the process.

STARTING! AVAILABLE] DECisSions |] ACTUAL SPiriS | RESVLTING| costror |Sertcit

STATE WAT es RELEASES STATE Reeaine" ua Totat

ess s Pee tants ie [he Ryo) Re nei SREt nes 8 exSor sx. | Cost

O* 3 0 O 0 O E 870 300 II70

0 0 3 E 2 2 2 Ti 0 0 I 0 870 300 LO

0} 4 0 x I OQ 432 0 | 580 |900_ |1480

P PiGedes (001.0 4.0. [0 he. 1580 1300... Be6
I 3 2 a 2* 2 2 0 0 af O 870 0 870

0) 4 0 Za i 0 2 0 580 600 |II80

4) OS 10 boclf) G | eerneo (300. 71eee

Z 3 5 2 2% 2 2 0 O I li 580 0 580

0 4 0 3 I 0 a 0 580 300 880

4 O* 4 0 O 0 O B 870 0 870

E 0 4 cE 2 2 ls 0 0 2 0 580 300 I180

0 4 0 id: 2 0 2 O 580 900 1480

4 O* 4 O 0 0 0 2 580 0 580

I 4 2 2 2 2 0 0 2 O | 580 O 580

0 4 0 2 2 0 2 0 | 580 |600 |II80

4°90 4 O 450 I 0 2 | 580 0 580

2 4 3 2 on Te 2 0 0 2 I | 290 0 290

0) 4 @) 3 2 ‘0 2 0 580 300 880

4 O* 4 0 0 0 E a: 580 0 580

2 0 5 oT 2 2 i iL 0 2 0 580 300 880

0 4 0 ae 8 0 v2 0 580 900 1480

ree ee ee cg ee ee eee

I Reb fae oe 2 be@e baa | O° 1a oe 4 580 oF 0 580

Gal wo | Ds ete ae 190: 1p8o .. |6enr aaa

4 O* 4 @) 0 iL if 2 290 0 290

2 5 3 2 2 2 JL 0 2 ip 290 O 290

He 4 0 5 8 0 Z 0 580 300 880

INF T 3 Def * denotes the optimum decision

INES? = I for a state

STAGE 3

START inc] AVAILAGLE | Decisions] ACTUAL SPILLS RESULTING! “Ost Cf [PERicIT

STATE WATER RELEASES STATE pesoorwy * bro

ee or cout coche oe a Ry Ro a ee sete ae nso ee cee

4 O I 0 0 6 20 2 1580 |900_ {1480

0. | I 2 2 oe |) gt 2 0 Guo Oo PTT9IO "10300" | 1470

0 4 O.-ts2 0 0 I 0 | 870 |600 1470

4 0 I 0 0 : 0 2 |580 |900_ |I480

I I 3 2 owt T 2 So PS rt} 870"..4300° . IE

0 4 0 3 0 G°.Ta o | 870 |300 |II70

i, 1 a a 76 Oe tt Ol 2 580. foo “idee

2 i 4 2 2 I 2 0 0. F0 2 | 580 |300 {880°

0 Ae 1G 4 0 0 i 0 | 870 0 870

4 0 2 0 0 0 0 2 | 580 |600 {1180

I 0 2 2 2 on 12 2 0 0 0 O° -I270"71 0 II70

0 4 0 2 0 0 2 o | 580 |600 |rI180

4 0 2 0 0 I 0 2 | 580 [600 |i180

7 2 3 2 2x ete. Ee 0.10 tT 1,870 0 870

0 4 0 3 0 0 2 0 | 580 |300 |880

4 0 2 0 0 2 0 2 | 580 |600 |{II80

2 2 4 2 oe 2 2 0 0 0 2 | 580 0 580

0 4 0 4 0 0 2 0 | 580 0 580

4 0 3 0 0 0 0 2 | 580 |300 |880

2 0 3 2 2 pa. 1-2 2 0 6 4 0 | 870 0 870

0 4 0 2 I pet 2 Oo | 580 |600 {1180

Lae Os 186 | Oa. Oe ee 1 She. pabo. (Gee

I 3 3 2 om 19 2 ot 0 I I | 580 0 580

0 4 0 3 : 0 2 0 | 580 {300 |880

4 0 3 0 0 2 0 2 | 580 300 |880

2 3 4 2 Oe...) 2 2 0 0 I 2 | 290 0 290

een Olek Fh ee Eke 1 05 | SBD. PO eaeo

INFI = I D=4

INFe =

STAGE 2

er4 °

STARTING | AVAILAGLE] DEcisions| ACTUAL SPucs [Resorrandecs” © | bert

daa. eee ee Ee Tak dada (| ee deeaeanete Tans
Ao eo hee FO OO eT Oe Ber dogg... 7%

Oise Dept et Lek bk Oa"). Bet tae Beet KO Oot Baar 1 ane ware

Oe OO. bo" [0 | Ocot .| Os Te 70") 6002: gee

Be) ALE Oe eri aed Od Bt BT A900: “baa

T ofa ed ots Poe eet Oa ae Geo SETTIO 14.300. 41470

ONCE EO 3 150 108 Fd Ee TEIO™e eo mate

4 TOO 4. FO es 7 BIO OOO” ere

Ore als be [oP Fee ee Oe 8: 0d Be 48708 — Pape art ae

Ok gee | Oneid 00" EO. Te 4641 ITO“ leo. saii9

PO gh Oia TO. 1 O.:) oF 8710-600 ere

TO ie eee) oP ee ok oO Meee es Ob OAeEAIO dO Tage

0. 4 Qe he Or 1-0 od 2 eab 018710: | 600. aie

fet 6 12 .o eo | test Os he | BO | boo” rato

I 2 eee | oe I 1 OTB a Oi Oo eee ee ee ae

Oe Poe Pe 0s) o> Pee pO 4 BIG) 300: “erro

Ae Be 22° POs + ate: e287 =800 - JTATO

2. no ee OO le Owe oO eo oO: 2 f Oe BIO 6 us B70

0 4 0 4 0 0 2 OT STO 0 870

WO 3 Oo EOL Osamu 2 Beas. Bob ariG

CaO Peder hee | oO Te Bo Pore te EO. argo” (eg ghrr a

Oa he Oe ote Lt Lee Oo SRI. moo. < are

fe Ls he Toe Le LO ee 1820 38 ote ere0
I 4 Fee ok ip oe eo 1d be IG 0 {870

Or Eee Es Pt EG Oe of 890" ao. ee

Ae sO 8 dy On. Or ood et Peony ee ee

2b Bee 4 Fe eek ee” Pes PO. oe ae) Oe nee 0 {580

Mie AO. AGs Leek Or ha? Gel 6890 0 [870
acs

INFI = D=4

INF2

STAGE I

rh
 oe

 ETA RT ING

ae ae |
Res [RES| Rex! [REs2 SPict | shin | REs 2 ie ie L0-2,-2,) TAL

\ op erent toe | en Ree, ae 2 shea acess wee ts

4 lewcle 10 fe vl acto 1a rage lee wledin
Oe lo te alters Qurte le 16 0 | o| 1770 | 300 | 2070

0 Oo hE lo: Lo. le) ovPerto |s06. 42070
ae los. jee co. fou lo fo ‘Le | waomeece 170

LoVe Lo eee a ee er fo os sree Ae
0° [4.“le° 12°. eo" 16" Jeo 76 bari0 léc0 “lite
Octo 1S Jo ee bt. [0 fee 170 ete. Inz70

gp OTS. OR Eee Fe’ Pe Tg org to ae Fade. ep earo
0 44.10 138 Lee vo - 8 10-7 tigo igen aaa90
4 lee 13. bo 18. [0 lo 13 lae70. [300 In970

Poo PATIL eS le ago. (i | Oe taro. aoe saree
O44 "to jr. PE fo "ho: leo Gete70 “900. 2076
a Toe la lo... fo 0. 10 be 4 wero 300 11470

i ye ee Geiey x for>1 oO. .be. | 6 Pid ee [hao
Ole fe kee Oe ee | Tete”. ethers

4 lo |3 lo lo |z lo |e2 |at7o |300 |ta70
Bo ipels io lipw er be aba tr et “listo 16. aes

oe Te eo [eo oo :! onamo G60" aie
a Low Pe hose: fo. [ok Bo btagonc| p. gad0

eco" | 404 be ete Crete” Tors bos} aeIo: $00 tage
O bd 10) eee | 0. 12 o 1220 ee Feere
4. Poe la eo ole. fo sO: dee Tizyo. 1 2 lege

, te Lek Poe Po tebe | rt7o! oe eee
6 tk dO Te. bee -to ba.) obo. leo0 “ego
4: loe la toc ve 1s. to 7 8. ILI0. bee ie

a fades: ie 1 ber io ote. lola Lt | er 0 {870
OM 4a £683 oe lo. be° 10 baie. oo. aes

INFI = 2 De 4
INF2 2 I

STAGE O

216.

Retrieval of optimal trajectory

Let us assume that the reservoirs are both full at the beginning of the

process

ise. x(0) 3] ‘ %,

then from the stage o chart it can be seen that the optimum decision is

to take half the demand from each reservoir

: = - 2 ies = - 22
ive « Uppp(Xg 2°) [2] with Ropm(Xz 9°) oH

Aa =
Ey 36

From the stage I chart the optimal decision for this state is

Yopp(Xgst) -[7] with R.4(Xest)-= 4
opr’; 8’ “TZ

The resultant state is x(2) + \- x

The resultant state is x(1)

3

From the stage 2 chart the optimal decision for this state is

Uppal *5 92) -[2] with Ropp(%5 92) 3]

The resultant state is x(3) -(<]- Xo

From the stage 3 chart the optimal decision for this state is

ee BA ee 2
Yop X23) i] with Ropn(Xp»3) [3]

The resultant state is x(4) -[3]- x
0 4

Hence, at the end of the process the operator will have reservoir 2 empty

and reservoir I with one unit, so that he will have to incur the penalty

cost for this state, which involves pumping a total of 3 units at a cost

of £870.

Thus the total minimum cost is £870 since no deficits occurred.

As a check on this figure, it can be seen from the stage o chart that the

total cost of going from stage x(o) [2] to the end of the process is

2IT

indeed £870 (column (15))-.

Consider the case where subjective decisions are taken :

Since reservoir I-has 4 units and reservoir 2. has 3 units, including

inflows, at stage 0, there is no obvious decision at this stage.

We could take all from reservoir I.or half from each.

Let the subjective decision be to take all from reservoir I.

Therefore x(I) (31, u(o) 6], R(0) -(4|

There is no deficit cost.

At stage I reservoir I has I unit and reservoir 2.has 4 units, including

inflows. Thus, the obvious decision is to take all the demand from

reservoir 2.

Tharstoré xt2) {?7]. (I) él, 1) {°|

There is no deficit cost.

At stage 2 reservoir I. has 2 units and reservoir 2. has 2 units,

including inflows. The obvious decision is to take half from each

reservoir.

Therefore x(3) {31 u(2) -[5 R(2) = |

There is no deficit cost.

At the 3rd stage reservoir I- has 3 units and reservoir 2 has I unit,

including inflows. Therefore, we may take all from reservoir I. or half

from each, at the same cost. Let the decision be to take all from

reservoir I.

Therefore, x(4) (rl, u(3) -(4]. R(3) -[3]

There is a deficit of I unit at a cost of 2300.

2m8.

The cost of pumping the reservoirs full is £870.

Therefore, the total cost is &II70.

Therefore, even with this simple process, the dynamic programming

solution finds a more economical sequence of decisions, than a

subjective method. In the example, it is possible to see what the

optimal sequence of decisions is, because of the limited period of time,

but in a long historical record, it would be impossible, without a

simulation of each policy, to accurately determine the optimum policy.

The number of possible combinations of decision for any process is m

where m is the number of decisions which may be made at any stage and N

is the number of stages. This means that — simulations with different

combinations of aevintoue: would have to be made, and the costs computed,

to be sure of obtaining the optimum sequence, so that in the example

24 (=16) trials would have been necessary.

In the above example, the inflows, demands and possible decisions have

been chasen so that all the discretised states only make transitions to

‘other discretised states. The method is easily extended to cases where

transitions are made to intermediate states. The cost of going to the

end of the process from the resultant intermediate state is obtained by

interpolating between the costs for the nearest discretised states. The

extra computer time and cost involved in using interpolation is often

worth the reduction in storage achieved.

For example, consider starting state x(0) “ol in the example.

Let the inflow to reservoir I be 1.7 units instead of 2 units, considering

two decisions only.

The first line of the chart would now be :

STARTING AVAILABLE DECISIONS | ACTUAL SPILLS RESULTANT [cost oF | NEFIciT oral
STATE WATER RELEASES STATE | CONG ERM) cost

REs RES RES 1 RESZ sP P RES TRES RESULT Angst Cd-Ry -R a) CosT
\ col) + Jeon yal yy u R R tu | SPier stare Of

a WEL | Ine \ 2 \ z \ 2. \ 2 [ERP of

‘ oO 0 ¥ ° \ ILO | (4-171) x30] 2.160 oO \s 4 Oty
e a oO 4 ° | ° Y "7 } © | (v2) 126e [(4-1)xS0q 2160

The value v = 1260 is obtained by interpolation as shown below.

For the second decision, the resultant state is x(I) ee

We now consider the nearest quantised states to this

; - 2 ~ I
1iOa..XC4) -[6| and x(I) = [3

The cost of going from x(I) [6+ the end of the process is obtained

from stage I as £1170.

The cost of going from x(I) -| ite the end of the process is obtained

from stage I as £1470.

Assuming a linear interpolation procedure, then the cost of going from:

x(I) -|*51 to the end of the process is given by

ee 0.7xIZ10.+ 0.3 1470 = £1260... where V Z()] aa ae

cost of going from state x at stage k to end of the process.

In general, for a two component vector, the resultant state is

oi
The nearest states are x(k) -[al, Re etek

where ac<x;<c and bex,<d

The cost of x(k) a is then given by
x

2

V BE = I-(x,-b) V [:] + (x,-b) V [a I-(x,~a)

(a-b) (a~b) (c-a)

+ I-(x,~-b) V a + (x,-b) V (s] (x,-a)
PEaus Gere.

(d~b) (d—b) (c-a)

1 ND

H

Chapter 7

Extension to the Stochastic Case

Tiel. Introduction

Stochastic dynamic programming is'a similar process to deterministic

programming but deals with He case where uncertainty is present in a

system. The stage, state and control variables are the same as for the

deterministic case but the system equations are affected by stochastic

inputs, and possibly stochastic outputs. In the reservoirs problem, the

stochastic inputs are those streamflows which cannot be predicted exactly.

Instead of using fixing inflows to each reservoir at a particular time as

in deterministic pro gramming, a discretised probabildey distribution of

inflows is specified. The inflows are now denoted by the vector

Wy J=I,r, where r is the number of discretised sets of inflows in the

probability distribution. Each element in the vector Wy contains one

random input to the system at a state and stage and the vector has one

probability, b attached to it. There may be any number of elements in I.

the vector and any number of r, of vectors with different probabilities

may be possible for a given state and stage. The distri butions of these

vectors are assumed to te independent from one stage to the next. If there

is a correlation in time then this can be overcome by defining additional

state variables which are set ouenaant of time. The distribution of inputs

at the stage and ae under consideration in the dynamic programming

calculation is then given by

w(k) € W(x(k) ,k) hie ee 5

The calculations are carried out, in the same way as for the deterministic

case, for every state at each stage so that if the values of the state

variables are known from observation at any stage the operation of the

system, from that stage to the end of the process, becomes independent of

any occurrence before that stage, which is the necessary criterion for

Slisicua The state transitions

The system equations now become

x(k+I) = @[z() ,a(%) , W(X) yk i ee ge. Mite To hy

In the stochastic case it can be seen that the resultant state now varies

with the applied combination of inputs as well as with the chosen control.

Any of the resultant states may be the same for different w because of the

constraints on the problem.

The costs associated with the state transitions from a specified state,

X59 stage, k, and control, Ups may be written as

cy = Lk, (x),a,(e),¥,() Xe} + Lele, (x) ,5,(e),%,(c) 1), ed]
with probability b,

Cc. af (4) 5 (0c) »¥(2) 5] + alk, (x) 0,(%) 48 ,(0c) 5d , +I

3 with probability bs

0 = 1 (4) ,8,(e) 800) x) + t[aLe, 00) 84000) 70) 4] , 7]
with probability bi, eae et re Hosts ieee

where by represents the probability of obtaining the ao inflow vector for

a particular stage and stage and where C, is the cost of going from this

state and stage to the end of the process if W. occurs at this stage.
J

224.

‘Lie 3s The expected cost

Some method of combining these costs must be found in order to arrive at

one value for the cost of going from state x, (x) to the end of the

process for each control, Ups which may be applied at stage k, so that

the optimum cost may be chosen.

The method used is to combine the various Seae C, for one control into

the expected or average cost B(x, (kc) ,u,(k) ,k) which is obtained by

summing the C5 multiplied by their corresponding probabilities, b,,(J=I,r)

so that

a “ Ty

B(x,(k)up(k),k) = S 6, x by SS ileus oc wea aes TORN Pea
Jai

The optimum cost then becomes

- Min = = tfz,(«) x] = FREE) 9300) 90) cote a aa reas

or, in expanded forn,
: fy

ifx(xjix] - Be =
. J=

1 [aE 5,0) 5,0) nD) x v, 0 | es MO ads

(21F,00,8,09 58,09 2] ‘
B

which is the standard form of the iterative functional equation for the

stochastic case.

2256

‘edie The Performance Criterion

The performance criterion may be written as
K
Ds 1[(ic) ,B(d) 5 W(e) Xe] Soe Mais bee 43 2S Le -

w(o), wk), w(K) k=O

where the expectation is taken over the sequence of stochastic inputs.

All constraints and penalty functions are similar to those for the

deterministic case.

The use of the expected cost for determining which is the best policy is

a point of controversy. Much discussion may be found in the literature

on operational research techniques on whether a real individual makes

decisions based upon an expected gain or loss as computed. In practice,

a manager may well place such a high cost on failure of any kind that

this distorts the average cost. It is assumed in this thesis that

failure of a supply is not catastrophic and that ‘hedging’ is justified.

Example 7.1.

The random vector, W, for any state, X59 and stage, k, may be any of the

subsets

w(x) = ae Wine: Wiad with probability b,

w(x) = es Wray - Wiad with probability b,

w i(k) = [eM aoe wa a" "| with probability b,,

which constitute the main set W(x,(k),k),

where Wra could be the inflow to the — reservoir under the oe: possible

combination of inflows,

and where n could be the total number of reservoirs in the system.

The equivalent deterministic vector is

w(x) = aes 1 Wraps wd with probability b,=I

Example 7.2.

If the possible inflows in time period (k+I) depend upon the inflow in

time period k, then state variables must be defined which eliminates the

dependence.

Consider a one reservoir system where the inflows in any month depends

upon whether the inflow in the previous haute was higher or lower than

the average for that month.

If previous inflow was higher than average then we might have

inflow in this month = I unit = w,(k) with probability 0.2

2 init w(K) with probability 0.5

3 unit w(K) with probability 0.3

where w(x) contains only one element since there is only one inflow to

the system.

If previous inflow was lower than average then we might have

intlow in this month: = O27 unit w(x) with probability 0.3

1.6 unit wo(k) with probability 0.4

2) ana iH w(x) with probability 0.3

The overall average inflow for this month is therefore

(Tx50.0 + 2 x.005 +:3. % 003). 4 (0.7 xiOuk ¥ 1.6.x 0.4 4 2) x 0.3)

2

= I.775 units

One extra state variable is now defined, which can take two values,

which denote whether the previous inflow was high or low.

At any stage, dynamic programming calculations are carried out for both

values, since, until the computations have been performed for the whole

process, when the optimal trajectory can then be chosen from known initial

‘values of all the variables, it is impossible to know which of the values,

high or low, will occur at that stage.

The state vector now becomes

x(k) = x(k) where x, is the level in the reservoir and Xo

x(k) contains a number or letter which denotes high

or low previous inflows

Let the reservoir have three discrete levels at any stage, 0,1,2 units

and let H denote high previousinflow and L denote low previous inflows,

then the possible states at that stage are now

ele lte, ele et
Any Yector which contains H has the inflows I,2,3 units with respective

probabilities 0.2,0.5, 0.3, and any vector which contains L has the inflows

0.7, 1.6, 2 with probabilities 0.3, 0.4 and 0.3.

The resultant states vectors under any control rule must also contain the

variables L or H and these are evaluated by finding whether the inflow

under consideration at this stage is higher or lower than the average.

Consider being in state x(k) {s|
H

Then the inflows are

I unit with probability 0.2

2 unit with probability 0.5

3 unit with probability 0.3

The average inflow for the month is I.775 units

Let the decision be to release I unit from the reservoir.

An inflow of less than the average for the month will lead to a state with

L in the vector and an inflow higher than average will lead to a state with

H in the vector.

So that the resultant states under a release of I unit will be

x(k+I) ala
L

x(k+I) ey
H

\°| with probability 0.2
L

WW bB with probability 0.5

H

228,

x(k+I) = [ea = LE with probability 0.3
H H

Each of these resultant states will have a cost attached to it from the

previous step in the process, so that the total expected cost for this

decision can be calculated.

The concept if high and low previous inflows can be extended tb include

any number of antecedent indices.

229.

[a5ie The long term stochastic process

So far, the methods discussed can only be applied to a process which has

a finite number of stages. The results of the cdculations yield one

optimum control rule for each state in each stage, and the results

obtained for each state may not be the same at different stages.

A dynamic program may be required to find the optimum rules at each stage

and state for a twelve months process, where the inflows at each stage

are given as probability distributions. If the distributions for each

month are obtained from historical data then they represent the statistical

properties of the inflows over a long period of time. In this case, the

distributions in a particular month are identical for the same month in

every year.

If a dynamic programming computation is performed over a period of several

years, using the same monthly distributions and the same unit costs in

each year then it is found that if the number of years is large enough,

the control rules chosen for each state in a particular month become the

same for every year, so that the rules obtained after a long period of

time represent the long term optimal decisions. A proof of this

convergence is given by Bellman but an analogy can be drawn between

the solution of the iterative functional equation and the iterative

solution of an implicit function by Newton's method.

Another analogy is the way in which one can determine the probability of

emptiness of a reservoir either by powering the transition matrix or by

solving directly for the steady state probabilities.

However, the convergence to a long term policy is asymptotic and it is

difficult to determine exactly when the policy has converged, but an

analysis of the iterative functional equation for a system with a large

number of stages leads to a more direct analytical solution to the

problem.

230-6

An additional concept of state and stage variables is needed to describe

the development of an analytical method for the long term stochastic

process.

The stage variable is still considered to be a period of one month but

the month is not specified. Instead, the name of the month is included

in the state vectors as another state variable, so that at any stage the

system can be in any combination of month, levels, antecedent indices etc.

e.g. x(k) = | JANUARY
LEVEL I
HIGH
LEVEL 2
HIGH

and each of these state vectors will have a probability distribution of

inflows attached to it.

Before the analytical method is described the dynamic programming equations

for the iterative slution of the normal fixed period process, with

stochastic inflows, using the same monthly distributions in each year,

and employing state vectors as described above, will be devel oped.

231.

Tinbse The Long Term Iterative Stochastic Method

In order to achieve convergence of the policy with a long term process,

the unit costs employed at each stage must be the same, although they may

still vary with the state and control, and since the month is now a part

of the state vector the costs may vary from month to nonthe

Therefore, the unit cost may be written as

fx, ,3,,7,] for all ty f, ahd J.

Equations 7.1. may now be written as

x(k+I) = Z[Z(k) ,a() 5w(k)] ie ee Oe

Equations 7.2. may be written as

o- 1e,,a,%,)+ Lek,,3,,5,], 1]
with probability bys J=I,r e ° ° . Eque Tes

Equations 7.3. may be written
x

E (x, (ic) »u,(x)) = = C5 x by ° ° ° ° Hque 7 Qe

J=1I

Equation 7.4. may be written

I Lz, (x) sx] = Min B(x, (1) ,u,(k) Ve ea Ba TELOs
u

aE
f=I ,m

Equations 7.9. may be expanded as

-

B (F,(00)paghse)) = 1[z,,3,.v,)x b,

oe

<

= tfek, ,o,.v],x+1] x v,

for: abl eee of Rows elsivs

Epa

Wash The infinite time span case

For the development of the general equations for the infinite time span

case it is now necessary to restructure the form of the probability

distributions.

Let p.. be the probability of mding a transition from state x. to state
Ji a

x5 over one stage for a particular control rule Ups where x; and e

both discrete states,

are

and let 1 be the immediate cost of making this decision.
Ji

Thus, there exists a matrix P with elements P54 which describes the state

transitions given a fixed control rule for each state.

This matrix has the form,

Jan Feb Mar Apr May Jun Jly Aug Sep Oct Nov Dec

P =Jan

Feb

Mar

Apr

May

Jun

Jly

Aug

sep

Oct

Nov

Dec

a

Sl

Sl

Sl

Sl

Sl

Sl

Fig. Aes

Sl

T

1)

@

Sl

IO

Mir

Miro

4

Only the submatrices, M, will have non-zero elements since it is only

possible to make transitions from states in one month to states in the

next month.

It can easily be seen that equations 7.II. may now be written as

a a

B(x, (ic) u,(«)) == 15 4*P yy + = 1[z,,+1] ZP;, + + « Equ. 7-13.

where a is the total number of discretised states at one stage.

The first summation in equations 7.13. is independent of stage and is

therefore constant throughout time for a particular state, X59 and

control Ups

a

Let a, = = tak Dig for all i 7; eee an. Bae
J=I

a

Therefore E(x, (ic) su,()) = a+ 7 [z,.x+1] x Py, ; vi ate 1 okt

2346

TOs Intermediate transitions

In writing equations 7.15. it was assumed that under a fixed control,

Ups there existed a probability, Py59 of making a transition from a

discretised state x5 at stage k to every state x. at stage k+I, where
J

Ze is a discretised state only. Now the actual inflows at state x and

stage k, represented by wa(k), d=I,r, may not allow transitions to all

states at stage k+I and the transitions which exist may not be to

discretised states, but it is an easy matter to rearrange the probabilities

of the Wa so that equations 7.15 may still be used.

Consider equations 7.8. with some W, which does not lead to a discrete
d

state, Then the corresponding cost under a fixed control, Ups is

Ca = Lz, ,5,55,1+ Lalx, 2,57) ,x+2] with probability b,-

Let x,,(k+I) = alz,.u,.¥,] be the resultant non-discrete state, so that

b, may now be interpreted as the probability of going from state X5 to
d

state + in one transition.

The value of the optimum cost function, a[x,,+1] must be found by

interpolation between the nearest discretised states.

If x only contains one element, say the level in a one reservoir system,

and Xo and ty are the two nearest discretised levels, with Xq7Xy Xs

then using linear interpolation :

1[z, «+1 | = (xzemx,) x Lz, +] + (Faia) x x[z, x+1]

(=,) (x,-z,)

Thus

Cc, zd, = lz, ,3,,%,] 1

+ (2-2,) x a[x, ,x+1 | xb, + (x_-X,) x r[z, ,x+1] x by

5%) FH)

It can be seen that the probability (x,-x,) xb, may be added to any

(Xq-X,)

235.

direct probability Pay which may exist under one of the Wa and

(x,-<,) s bs may be added to any direct probability Pha which may exist,

(x-x,)

without altering the solution of the problem.

If no transfer is made from state X to some discrete state X5 either

directly or indirectly by apportioning part of the probability of going

to a non-discrete state, then Pry is set +o ZELOe

Equation 7.II may now be written :

(F,(4),8,09) = Ek as x ,

= fk, x1] + Epes K+ lt x ps.
TL Je Ja.

re a

The value of > ifx, a Ww j xb is identical to that => Let oer pt:
qa eet d Jal Ji Ji

so that no restructuring is necessary, and

rt — _ —

qs = Ss Lz, 3,57, x ba

d=1 :

236.

7-9. Thelong term equations

Now that it has been demonstrated how to set up the P matrix, all the

equations which will be derived from equations 7.15 may be used with

complete generality.

If it is assumed that a rule has been fixed for every X59 so that no

minimisation is required then the optimum costs, I, at every stage now

become the only possible costs.

Let v, (x) be the total expected cost of going to the end of the process

starting from state x, at stage k.

Then

v, (k) = r[z, x]

Therefore, for a fixed control system, equations 7.15. may be written as :

a
v, (x) oe + =. vj (+1) a i= La ‘ . < Bae, 7-16.

In matrix notation equation 7.16 is

v(k) a q + v(k+I) x P e ° e Eique Wee ee

where the ah column of P contains the Pry and v and q are row vectors.

If n is defined as the number of stages to go to the end of the process

equations 7-17. may be written as

v(ntI) = q + v(n)P * ‘ «Bau. 7.10;

For the determination of the equations for the solution of the long term

process it is now convenient to break down equations 7.18 into the twelve

distinct monthly processes involved.

Let d be the number of discretised states in one month so that d = a/I2,

and let t be a stage variable, where a stage is twelve months.

Consider the month of January :

The probability transition matrix to describe a transfer from a state in

January of one year to January in the following year is given by

Ry = My My AMY XM XM XM. XM oxM 2M xM xl xM,

and the immediate costs Qs are given by

Qy= a,+M) (a,+M,(q 3¢M(a gr, (qo+M,(agtM(74M, (ate (IgtMy (a7 _+Hl,,

(azy*My7(ay5+My5) -...))

where the subscripts represent the month numbers.

The structure of equations 7.18 may now be used to describe the yearly

transitions for the January matrix :

v,(t+I) = Qy + v,(+)R, ° ° * * Equ. 7-19.

For the manipulation of these matrix equations it is convenient to use the

technique of 3 - transformation, where the s-transform of some function

f(n) is defined as F(s) = = wa. A table:of s'= transforms for

common functions is given meas 2

Let the s-transform of the vector v(t) be y(#).

Taking the s-transformations of equation 7.19. we obtain

e* [y(a) - Ho] = 2 + Flee,

yz(#) - @ yz (#)R, x = Qy + v,(0)

y;(#) [7-28,] = = Q, + v,(0)

I-s

where I is the unit matrix.

‘ ee SR eh cee ae ie yz() = 8 Qy [1-8] + v,(0) [t-« z, | é a SRaus 1420

I-g

It is shown in Appendix I that

[7-s rl = I S+ Us) fo Wee's: Bqu-dielt20
I-%

238 6

where S is a stochastic matrix whose a column is the vector of limiting

state probabilities if the system is started in the eg state, and J(#)

is a set of matrices representing the transient behaviour of the system.

It is also shown in Appendix I that all columns of S are identical.

Therefore, substituting Equations A.I.20. in Equations 7.20 we obtain

ype) = 2 U5, +8 UI(s) +z ¥,(0)5, + ¥,(0)3,(s)
(I-s)2 (I-s) (I-s)

By inspection of this equation for yz(s) it is possible to identify the

components of vz(t)- The terms QS represents a ramp of magnitude

~ = (I-s)2
QySy°

Partial frag:tion expansion (see Appendix 3) shows that the term

3 Q,J7(#) represents a step of magnitude Q,9;(1) plus geometic terms

(I-s)
that tend to zero as t becomes very large.

The quantity I v,(0)8, is a step of magnitude v,(0)8, and v,(0)5,()

(I-s)
represents geometric components that vanish for large t.

Thus, for large t,

v,(t) = +Q,5, + Q,5,(1) + v,(0)8,

If a now vector, Gr» with components G_ is defined by G_ = 0,5, then
J I

v;(+) - +G, + Q,97(1) + v,(0)S; ‘ ; ‘ : Bess’ 75 21.

The quantity Gs is equal to the sum of the immediate costs Qs weighted by

the limiting state probabilities that result if the system is started in

the at state, or
d

as ee Qi Sig
i=l

where S;z is an element of Sy and represents the long term probability of

being in state ie if the system was started in state 5

The Gs is also the average cost per transition if the system is started in

2396

the a? state and allowed to makemany transitions. It may be called the

average cost of the oa state. Inspecting equation 7.2I. it can be seen

that G) is the slope of the asymptotic of v;(t)-

Since all states in the same Markov chain have identical columns in te

Sy matrix, such states all have the same average coste

Therefas,
d

G¢=S QT (0) where (CO is the limiting state probability
J=1I distribution.

The vectors Q,9;(1) and v,(0)8 represent the intercepts at t=O of the

asymptotes of v,(t)-

Let v, be the asymptotic intercept of v,(*) so that for large t

v, (+) = tG, bi af 1 = I,d ° . . . Equ. 12265

The row vector with components v5 may be designated by vy so that

Equations 7.22. then become

v,(+) = tG, + vy

If the system is completely ergodic then all G. = G and G is the average

cost of the process rather than the average cost of a state so that

equations 7.22. become

v,() = 16+ Vv, iv= I,a (Oe es RE So a eae

Now that it has been demonstrated that the costs involved in a Markov

process tend to increase at a constant rate for large t, a method will be

described in which direct use is made of this fact to obtain the optimal

long term control.

7-10. Determination of the optimum long term control

We have deduced the equations 7.23,

v, (+) = tG + v,,5 is Eoa S for large ‘t,

and the dynamic programming equation is

v, (++I) - Qy = vz (+)R, . ° e e

for a fixed set of controls.

Equations 7.19. may be expanded as

d
v, (+) =, +z v,(t-I)R,, ee | fe ae

240.

Equ.e 7.19

. Eque 7-24

Substituting Equations 7.23 in equations 7.24 we obtain the equations

d
$4.49) 3.8, += (+-z)¢ + v5] Ry4: Lim Tite

J=1

d d
10+ 4, = a, ¢ (t-I)¢S Ry, + > v5R5;

J=1 J=1

d
Since S R,. =I we have

Ji
J=1

d
OF Seni te. Ys Bye i = I,a oes . Equ.e [s25

It can be seen that these are d simultaneous equations but (d+1) unknowns.

Therefore, one of the Vj» Say Va» may be set to zero and the equations

solved for G and the relative values of the Vi° It will be shown that

only the relative values are required to find the optimal controls for

the system.

Having deduced equations 7.25. by using a yearly transition matrix for

January, Ris rather than using the complete set of monthly transitions

described by P it is now possible to revert to the monthly structure of

the problem given by equations 7.16.
a

v, (x) = 4; —_ vj(k+1) ¥'Dy,. for 2 1,8.
J=I

or, inn notation,

Bou. (L6¢

a
v, (n+T) mas +> vy(n) ps, for i=I,a eters ee. Baus eee

J=l : :

In normal iterative dynamic programming, if we have a policy with n stages

to go then we find the best alternative in the i*” state with (n+I) stages

to go by minimising
Min ae ae

v, (n+I) = Uf qf + ed v;(n)p,,f epi ar SR ors
f=I,m . Jal

Inspecting the matrix form of equations 7.26. given by equations 7.18. it

can be seen that the equations may be written in the M notation as

v,(n+1) <a, > Ve (n)M,

vo(mtI) = a, + v3(n)if,

v,(n+I) = a3 + Vu (nm),

v,(n+I) = q4 + Vs(n)M,

V,,(n+I) » a5 + vy, (n) i,

ve(m+I) = a¢ + ¥4(n)My ere Sie py

v(t) = a + Vs (n)i,

Vg(n+I) = qg + V5 (n)Mg

Vo(o+1) = I + Vo(n) My

Vyo(ntI)= dant vu(n)M4

Vaz (n+1)=a55 I Va(n) My

Vy(ntI)= ay ot v, (n) it,

where the subscripts refer to the month numbers.

Considering only the last equation of this set

Equations 7.26. may now be reduced to
. d

v;(n+I) = a, + soa vj(n)p,, for i = a-d+I,a

2426

Now for large n we may use the values obtained for large t in equation

7-23. so that equation 7.27 may be written
Min &

v, (n+I) =u qa,f+ (nG + =e: for i=a-d+I,a
£

fal, J=I I2

d
Since = p,.f =I then nG and any constant in the v. terms

io T2 :

become independent of the decision u.. (from v,(0)8;) e

Thus, we may minimise
d

atte V5 P54 for each state i=a-dtI,a

and furthermore we may use the relative values of the v obtained from Ed

equations 7.25., for the policy that was used up to stage n.

Having obtained the relative values of the components of vy from

equations 7.25. these may be back-substituted in equations 7.28. to find

the other Vy J=2,I2. and a similar minimisation to the above may be

carried out for all other states Xs i=I,(a-d).

It can be shown[\2] that if the minimisation procedure yields different

controls for any state at stage (n+I) from those which were used to

assemble equations 7.25. for stage n, then the new controls, if applied

over a long period of time, would lead to a lower average cost per

transition for the process than the previous controls.

Equations 7.25. may be regarded as performing the same function as 2

simulation of a long historic sequence. If a simulation was run starting

from a known state and using fixed controls for every state then at the

end of the run we would have the total cost of operating the system over

a long period of time. If the total cost is divided by the number of

transitions made then we obtain the average cost per transition.

However, with a simulation, we have no drect method of correcting the

controls to obtain a better policy, whereas the solution of equations 7.25.

in conjunction with the minimisation procedure leads to a method of

2436

obtaining a better policy with a lower average loss per transition.

If a different set of controls is found by the minimisation procedure

than those that were used to set up the probability matrix, P, used to

assemble equations 7.25. then the new controls are used in the formation

of a new P matrix. The equations 7.25. are again solved using the new P

matrix, and the minimisation procedure applied to the values obtained.

This method is repeated until the controls found by the minimisation are

the same as those used in the construction of equations 7.25. At this

point the best policy has been found.

NM = 5

T+ Il The discounted case

So far the costs incurred in future time periods have been given equal

weight to cost incurred at the present time, and do not take into account

the interest payable on borrowed capital and the rate of inflation. Phas

section will deal with the case where discounting of future costs is

important.

Following Howard's notation, let p be the value at the beginning of a

transition interval of a unit cost incurred at the end of the interval, so

that B =I where I is the interest rate.
14+1

Now equation 7.19. the dynamic programming recurrence equation for the no

discounting case can be written as

vz(++I) = Q tBv,(+)R, ec. Soct e Oe P00.

where Bv,(t) represents the values at stage t+I of the expected costs of

going from any state x with t stages to go to the end of the process.

Taking the s-transforms of equation 7.30. we obtain

e“Ly,(s)-¥,(0)] Zo 4, + Py;(s) B,
I-s

yy(#)-v,(0) = 8 Q, + Be y,(2)R,
I-3%

y_(s)(I-pak,) = 2 Q, + v,(0)

Ii-g

or yz() = 2 9y(T-pel,)™ + V;(0)(I-Bsk,)~* ; e::: Boi ee5T 5

From the discounting case we know that

et Tait aoc ae (I-#k,) i Sy +d, (s) where 5S; is the matrix of limiting state
1-3

probabilities and J, (4) is the transformed matrix of transient components

of the system.

Hence it is obvious that we may write

2 5.

(I-(pa)R,)* = S, + J, (Bs) wi > aia lalate: OMe Ts 2k

Equation 7.31. can then be written as

y, (3) nt fae" 7 (Pe) + v, (0 1s Sj+ al Equ.7.33-

Inspecting equation 7.33 we see that the term

v, (0) < Sy tends towards zero for large + since the inverse transform of
1-Bz

Similarly,

v, (0) 5, (Ba) represents terms that decay to zero since the eigenvalues

of Ry are all less than or equal to unity and so the eigenvalues of PR,

are certain to be less than unity.

Q) z S, represents a step component of magnitude a qs plus
1-Bs to B

3
l-s

a term that tends to zero as t becomes large.

g Q, 9, (Pa) represents a step of magnitude Q, 5, (B) plus terms that decay
l-s

to zero as t becomes large

Therefore, for large +

v,(t) = 2 Q,5, + @,9,(B) = QL S)+5,(p) 07 ah ee haan, ee
1-B : 1-p

From equation 7.34 it can be seen that, for large t, the present day costs

of operating the system with t stages to go to the end of the process

become constant.

Therefore, for large t, letting v5 be the constant values, we may write

equation 7.30. as

v,=4, +Bv, 2, | ee ey Te Dee

246 6

These equations are solved for the v, and the calculations then proceed 1

as for the no-discounting case with the probabilities in the monthly

transition matrices, M, multiplied by B/I2.

Note that it is not now necessary to set one of the Mg to zero to solve

the equations, since there are now only d unknowns and d equations. The

values of V5 thus obtained are the absolute values of operating the process

over @ long period of time starting in state $y under a fixed set of

controls.

NO

a
s

—

2 Chapter 8

The Application of Dynamic Programming to

the DesignikOperation of Reservoir Systems

8.1. The Explicit Stochastic Approach

The only explicit stochastic dynamic ea aay 3 multi-source

models in the literature at the present time are those

investigated by the Water Research Association. ‘The earliest

models are those described by Schweig and Cole in 1968 £17.) 5

which require the assumption of very simple atreentTow

dependencies.

The problems involved the determination of the long tern operating

rules for a system comprising two linked reservoirs meeting a

common demand. Draw off was permitted from either of the reservoirs

directly to supply and transfers were allowed from the smaller to ,

the larger reservoir. Because of the lengthy calculations

involved in these problems, only a flow diagram of the necessary

computer program was given, but an example of the method of

computation was described for a simpler case involving a small

surface reservoir operated in conjunction with a major underground

source. Transfers of water between the sources were considered

redundant. The method of solution used was the conventional

reverse time sequence stochastic dynamic programming value

iteration approach, as described in Chapter 7. Schweig and Cole

assumed that the policy had converged to an optimum when, in all

seasons of the year, the revised control rules at step N of the

iteration were identical to those at step (N-12). However, a

paper by Burley and Cole (20) describing the same work stated

that the results of the value iteration approach needed to be

tested further as O'Kane (41) had demonstrated that the necessary

criterion of convergence described above might not be sufficient»

248.

and that application of Howard's policy iteration method (12)

might be called for.

8.2. Simple Reservoir —- Aquifer System — Value Iteration

With this in mind, the author developed a set of programs to

investigate the behaviour of the policies and costs in the long

term situation. The water resource system used was the same as

that in the example given by Schweig and Cole, but a two season

model only was considered.

|

Size of surface reservoir

States (levels) used for dynamic program

Maximum release from Aquifer in any season

i

30000 units

O, 10000, 20000, 30000.

10000 units

Inflows:- Season 1 Season 2

Inflow Props Inflow Prob.

4.000 0.3 500 0.2

5000 0.6 5000 v.5

7000 ad 8000 0.3

Demands :— Season 1 Season 2

12500 15000

Possible decisions

at any state and

stage :— Season 1 Season 2

Decision | Release |Release | Release |Release| Decision
Reference| from from from from Ref.
Number Reservoir /Aquifer | Reservoir|Aquifer| Number

di 12500 0 12500 2500 5

a 7500 5000 7500 7500 6

4 2500 10000 2500 10000 "

4 0 10000 0 10000 8

Costs:— Release from reservoir FAO/unit

Release from aquifer £80/unit

Deficit to demand £100/unit

Discount factor 0.985

249 J @

The release costs were calculated on the size of the release

aimed for and not on the actual release pessible for a given

reservoir level.

As in Cole's example, the problem was cons‘dered to be solved

when the policies obtained for one year wee identical to those

obtained in the previous year. If one con:iders a solution

surface in multi-dimensional space this mexns that the solution

obtained occurs at the nearest low point on the surface to the

given starting conditions.

The results obtained for this example are given below. It was

found that the fourth year's solutions were the same as those for

the third year. Therefore the process was considered to have

optimised and the procedure was terminated.

Table of Optimum Decisions Obtained in Each Year

(Numbers represent decision reference numbers)

Season 1 Season 2

Reservoir

level O 10000 20000 40000 O 10000 20000 40000

Year 1 3 2 x Z. G 5 5 5

Year 2 3 3 7 1 a 6 § 5

Year 3 3 a 2 i 7 6 5 5

Year 4 3 3 2 1 3 6 5 S
The CPU time taken on the ICL 1900 computer was 16 seconds but

only & seconds of this was used in the problem solution, the rest

being used in system organisation and program compilation prior

to loading the program for execution. The total time involved

was 1 minute 45 seconds.

250.

No attempt was made in this first program to store any information

calculated for the first year and which could be used by every

iteration in order to make the program more efficient. Any basic

costing information required in later years had to be re-calculated.

The program instructions occupied 4672 words of core store after

consolidation and the maximum total amount of core store used in

execution was 14,016 words.

8.3. Long Period Value Iteration

This first program was also checked by a hand calculation to ensure

that no errors of logic were occurring in the computer calculation.

Having found that the program was correct and knowing the time

and core store taken, it was decided to run a second value

iteration program which would continue past the apparent policy

convergence in years 3 and 4 to produce costs and decisions for

fifty years. It was thought that this program would also provide

an indication of the speed of convergence of the discounted costs

to the constant values predicted by the theory.

In fact, it was found that cost convergence did not take place

within 50 years and not even within 80 years, as later tried.

However, it could be seen from the costs printed out for each year

that the costs were increasing at a decreasing rate as the number

of years became greater. Figure 8.1. shows a graph of discounted

costs versus number of years for the case of starting from an

empty reservoir in season l.

It was interesting to note that after about 60 years' iterations

a change over occurred and the costs showed that it was better to

start in a given state in season 2, thus having an extra season

to go to the end of the process,than to start in the same state

in season l.

25Le

952 i

The computer program for these long period calculations was made

more efficient by storing the immediate costs and the coefficients

involved in interpolating between state costs for intermediate

state transitions, as described in Chapter 7, when they were

calculated in the first year's iterations.

The C.P.U. time for the 50 year case was 39 seconds, 22 seconds

of which were used in the problem calculations. The C.P.U. time

per one year's iterations was 0.334 seconds and the initial time

Io read in data and calculate the information needed in every

eas was 5.4 seconds. The total computer time for 50 years was

2 minutes 5 seconds.

As well as showing the speed of convergence of costs and providing

calculation times, the long period computations showed that the

policy, which had apparently converged after 3 years when the

first program was run, changed in year 5 and again in year 6.

From year 6 onwards the policy was the same for all years.

Table of Optimum Decisions Obtained in Each Year (Year 4 Onwards)

(Numbers represent decision reference numbers)

Season 1 Season 2

Reservoir
Level QO 10000 20000 30000 QO 10000 20000 30000

Year 4 3 3 2 a a 6 5 5

Year 5 3 3 2 a 7 G G 5

Year 6 3 3 3 1 7 6 G S

Year 7 3 3 2 A 7 6 G 5
8.4. The Policy Iteration Method

With the information that a long term steady state policy exists

and knowing that at least one sub optimum solution may be found,

it is now possible to apply Howard's policy iteration method and

to verify in practice that this method does in fact converge

monotonically to the true optimum policy.

The information general to every year was again stored for

computational efficiency. Because of the small size of the

problem it was possible to store all the data in the computer

central core. The method, as described in Chapter 7, consists

of performing yearly value iterations alternating with solving

the set of equations describing the system.

It was found that the optimum policy was reached with 4 equation

solutions and 5 value iterations, the last being to check that the

optimum has been reached.

The optimum policy found by this method agreed with the long term

optimum policy found in the 50 year iteration, thus verifying that

Howard's policy iteration method is applicable to the water resourcs

problem.

One of the intermediate policies found by this method in moving

towards the optimum was the sub optimum policy found by the first

trial where iteration was discontinued after 4 years when the

policies for the third and fourth years were the same. However,

it is not necessary for this to occur and probably only happens

because of the simplicity of the problen.

The following table shows the long term costs and associated

decisions found by the program. The costs are the equation

solutions plus one year's iteration.

ORA 254.

Optimum Costs Decision Comments

Res. Level 8 16 600 20 000 Zo0co _|Nos.
Season {116500 740000 700000 700000 4211 Decisions

1 based on

Iteration immediate

1 costs only.

Season {1947055 11537742 {1219444 |1189500 6555." {Solve

2 ; equations
with these
decs.

Season |64248521 | 64734759 | 63281511 | 62830886 } 3332 Costs

eS - produced fra
: “j previous

as ee equation

Season - | golutions.

e 64055854 | 63571590! 64125761 | 62703828 | F666 {Now solve
with these
new decisiowm
to give next
long term
costs: #1
Iteration.

Season ! 61251 480 | 60747674 | 60335141 | 59944510 | 3321

Iteration +.
3 Season !61113543 | 60648936 | 60235763) 59837769 17655

2

Season: 61229556 | 60725031 } 60308129 | 59909924 | 3331 Optinun

ZL , decisions.

Iteration have been

Season ee a

2 61091843 | 60615600 | 60209372 | 59809372 [7668 ea ee

on before

this is
known.

Season]61198864 | 60693247 | 60271952 | 59872792 | 3331

Iteration + ee
3] Season | 61061353 |60583254} 60173511 | 59773511 | 7665

2

These results show that Howard's policy iteration method does in

fact find the optimum long term policy and that each step in the

method yields a better solution than the previous one. The long

term costs obtained from the equation solutions also give an idea

of the number of years necessary to reach a stationery cost

situation when compared to the costs obtained after 80 years with

the value iteration approach.

255.

The computer program took 19 seconds of C.P.U. time, of which

9 seconds were used in the calculations and 10 seconds in system

management. The total execution time was 1 minute 23 seconds.

The program instructions occupied 10816 words of core store and the

total store occupied at run time was 18,240 words. The program,

as before, stored general information calculated at iteration 1

for use in later iterations.

8.5. Method of Storage for Policy Iteration

B= Array —_ becision | 2. x 4
oot

I

7

4

pe es
oo du

w=

S
U
R

Decision |

Store |
 Stee 2

_Typical Wnit

256.

For any discretised state considered there are three possible

inflows with their relative probabilities and therefore three

possible end states. Since ‘the end states may not be discretised

states they are recorded by storing the nearest discretised

states to the intermediate state together with the two

interpolation coefficients necessary. If the end state coincides

with a discrete state this is taken as the lower bound with a

coefficient of 1, and the next highest discrete state is considered

to be the higher bound with a coefficient of zero.

For convenience the coefficients obtained are all multiplied by

the discount factor.

‘ 4
os

C - Array Dec. Dec. Dec. Dece

(State

4

2
Season 14 3

4

2

3
A

The C array stores the immediate transition costs for each state

and each possible decision. These costs are worked out and

stored at the same time as the information is stored in the

B array.
End States

MATI Array ts oe : a

State 4 Coeff.1 | Coeff.2 |Coeff.34 [Coeff 4

em a : : °

BS :

88 :
™j} 4 “e

s

2516

The MATI matrix is used to hold the transition coefficients

for the chosen set of policies for each state of season l.

MAT2 is a matrix similar to MATI but with an additional

column. The matrix is used to hold transition coefficients

for season 2 and the last column is used to hold the average

transition costs.

These coefficients are obtained by adding the coefficients in

the B array, for the chosen decisions. and given state,into

the matrix element describing the same end state as that

related to the coefficient in the B array.

8.6. Flow Diagram for Policy Iteration Program

Read in

NSTAT = number of states per season

VA = size of reservoir.

UPUMZ. = Max draft from Aquifer

NI = number of inflows in histogram

Read in inflow data

Read in possible decisions

Read in cost data

Read in demands

Calculate transition coefficients

 and expected costs.

2596

Set Values [ly = O° I= Liner

y

Set Season ete

1
 =< LAGELI

 Set.sa = Season x NSsTAT

\

Set State: =i

E Sea

Set Decision = 1 ;

Set Cost 1 = C[{Xl + State,Decision]

: N
Set Coste= = BLX1 + State,I,2] x Values| B{x1+State,1,]

LoseM

M = (Decision -1) x 2x WNI+1

Ws

(Decision -l1) x 2x NI +2x NI
¥ .

Set Cost 4 ({Decision] = Cost 1 + Cost 2

| Set Decision = Decision + 1 |

¥

‘ Goto

LAGELS

H-«— No ~¢ Decision = 5:¢>

Yes

| AS
Set ND = Decision number with

least cost
Set Cost = Cost 3 {ND}

) ;

_ CW = Policy {x1}? »—Yes—Set Different = True ¥ :

No Y

 a

Set Policy (X1) = ND

Set Temp Values (State} = Cost

[Set State = State + 1

Geto

LAREL2

¥
+ Yo -=—< State = 5?

. Yes Os a

Goto

 LABEL

260.

Set

VALUES (I) = Temp Values (I)

I = 1,NSTAT
PRINT VALUES

1
< Is Season = 1? \+ Yes

No
¥

—_—«—[SET SEASON = 1]

Print POLICIES

1
< Different. = True? \» No Terminate

| Program

Yes

| Set Different = False |

Y

Set last column of MAT2

to the transition costs for

the chosen decisions for

each state in Season 2.

:
Fill rest of MAT2 with the

relevant state transition coefficients

from the B array for the chosen

decisions in each state for Season 2

y

Similarly, fill up the MATI matrix

with the Season 1 coefficients

y

Multiply

MATI x MAT2

 Set result in MAT2

y

Add transition costs for

Season 1 into last column

 of MATZ

Go to

REPEAT

Set COLVEC vector equal to

last column of MAT2

/[Set MAT] = -MAT2

Add 1 to all leading

 diagonal elements of MAT

Solve

MADE V.= COLVEC

for values Vector V

Set

VALUES array to >

first half of solutions V

(Season 1 long term values)

aL 26

8.7. Dynanic Programming Applied to Two Stochastic Reservoirs

Because of the success of mie policy iteration method in the

simple case of one reservoir combined with an aquifer, it was

decided to attempt to apply this method toa system of two

finite stochastic reservoirs meeting a common Remand This

system is general enough to cover many practical situations

and is able to include the simple aquifer system by treating

the second reservoir as the aquifer. This system is also

easily adaptable to include the multi-demand or resource

allocation problem, and the stochastic demand case which occurs

with a regulating reservoir.

The system is similar to that described by Burley and Cole,

except beet transfers between the reservoirs were not

considered since this does not alter the basic method and it

was only the efficiency of the various dynamic programming

methods which was under investigation. Serial correlation of

inflows in each reservoir was allowed for in exactly the same

way as that used by Schweig and Cole, the probability

distribution of inflows to each source in any month depending

upon whether the previous month's inflow was considered to be

higher or lower than the average for that month. Of course,

more complicated methods of accounting for antecedent flows

can be incorporated but this only increases the computation

time.

Four discretised levels were used for each reservoir, making

the number of states in each reservoir eight in all, where the

state comprises a combination of level and an index indicating

whether the previous month's inflow was higher or lower than

average. Thus, the total number of combinations of states

in the system was sixty-four. Five possible inflows, with

their corresponding probabilities were allowed for each month.

The objective function allowed for costing the releases from

each reservoir, the spills and the deficits to supply.

However, in the example used, only deficit was assigned a

unit cost greater than zero, so that the dynamic program

would minimise deficits only. This is comparable to

conventional methds where the probability of emptiness is

minimised, except that the dynamic program not only tries to

minimise the probability of emptiness but also the size of

the deficits. This might mean that more deficits occur but

are not as disastrous as, say, one major deficit. If this is

not acceptable to some engineers then it is extremely easy to

rewrite the objective function to minimise only the number of

deficits occurring.

8.8. Value Iteration - Two Stochastic Reservoirs

In order to investigate the rate of convergence to the correct

optimum long term policy it was first decided to carry out a

value iteration procedure which would be continued until

several years'consecutive iterations showed the same results.

The inflow and demand data used for these examples was taken

from the Celyn/Brenig system described in Chapter 2. Both

reservoirs were assumed to have 30000 units capacity, where

one unit was a cusec-day. The demands used for each month

were the average monthly effective releases to maintain a

flow of 450 cusecs in the Celyn/Brenig system. The release

decisions were to take 0%, 25%, 50%, 75% or 100% of the demand

from Celyn in any month.

Demands (cusec-days)

264.4

Dec.

Inflow Data (cusec-—days)

Jan.| Feb.| Mar.| April| May | June! July! Aug. | Sept./ Oct. | Nov.

220 |} 420 | 850 | 1620 | 3340 | 3850; 4160; 3460 | 3010 ; 1760 | 360 140

‘Unit Costs:- Release from Celyn URA = &0/unit

Release from Brenig URB = &£0/unit

Spill from Celyn USA = £0/unit

Spill from Brenig USB = £0/unit

Deficit cost UDF = £100/unit

Present worth or discount
factor PWF = 0.985
(nonthly) 2 4h encom

a) Brenig

Month Average Monthly Inflow Histograms

Monthly Low Previous Inflow | High Previous Inflow _

Inflow Inflow |Probability Inflow Probability

January | 1000 330 0.30 520 O6515%

870 0.17 790 0.22

1030 0.26 1050 0.39

1510 0.17 1540 0.22

1990 0.10 1930 0.04

February; 740 220 0.27 180 0.20

250 0.15 410 0.20

880 0.27 670 0.25

1230 0.19 1 0.25

1650 0.12 1510 0.10

March 550 230 0.26 170 0.13

440 0.26 310 0,26

620 0.26 460 0.35

1120 0.17 670 0.13

1840 0.05 1180 0.13

Conte

265.

Montiy Inflow Histograms
Month Average

Monthly Low Previous Inflow High Previous Inflow

oa ata Inflow | Probability | Inflow | Probability

April 420 110 Oeeb ‘ao 0.29

250 0452 400 0.24

4.40 0.24 510 0.17

750 0.21 6440 0.18

1080 0.03 i 870 Onte

May $50 . 110 0.33 100 0.05

290 0.22 180 0.32

430 0.22 270 0.26

670 0.15 370 0.16

800 0.08 480 0.21

June 230 80 O42 SO 0.20

150 0.23 140 0.20

260 0.12 220 0.20

470 0.19 330 0.25

- 890 0.04 550 0.15

July 210 60 0.43 120 0.19

140 ey 160 0.25
250 0413 300 0.25

410 0.10 370 0.19
710 0.07 490 0.12

August { 390 60 0.37 170 Oe 3S:

190 0.27 350 0.18

350 002s. 540 0.06

570 0.10 850 0.19

940 0.03 5 50 0.19

September; 540 70 0455 240 0.12

190 0.20 440 0.25

480 0.17 620 0.18

600 0.13 980 0.38

860 Osi/ 1360 0.07

Conte

266.

Monts Average Monthly Inflow Histograms

Monthly Low Previous Inflow High Previous Inflow

ipeee Inflow] Probebility| Inflow | Probability

October 7°70 120 0.14 / 260 0.21

320 0.14 560 0.17

410 0.13 810 0.21

880 0.50 970 0.16

1460 0.09 1490 0.25

November; 970 250 0.14 670 0.38

350 0.18 960 0.21

720 0.18 1420 0.25

960 0.23 1690 0.12

1440 0.27 1980 0.04

December; 970 330 0.11 400 0.20

640 0.31 700 0.15

800 0.12 980 0.10

1080 0.31 1190 0.40

1780 0.15 1690 0.15

b) Celyn

Monthly Inflow Histograms

Month j|Average Low Previous Inflow High Previous Inflow
Monthly
Inflow Inflow | Probability Inflow [Probability

January |6140 1470 . 0.17 3170 0.17

3440 0.14 _ 5160 0.24

6100 0.34 6280 0.14

8420 0.24 7130 0.17

12060 Osi2 8430 0.28

February} 3960 410 0.11 740 0.25

2460 0.34 2970 0.28

4630 0.22 4920 0.25

6380 0.22 6280 0.12

7870 0.11 7620 0.10

Cont.

267.6

~ Monthly Inflow Histograms

Month Average | Low Previous Inflow High Previous Inflow
Monthly an
Inflow Inflow | Probability Inflow | Probability

March 2690 1210 0.21 1070 0.16

1900 0.18 1890 0.29

2610 0.36 2460 0.26

4.930 0.18 5330 0.19

7780 0.07 4520 0.10

April 2200 480 0.08 750 0.20

940 0.13 1800 0.30

1530 0.28 2410 0.20

2590 0.38 3630 “0,25

4280 0.13 5310 0.05

May 1810 480 0.18 640 0.16

950 0.29 <1 oe 0.16

1650 0.24 1610 0.20

2580 0.15 2500 0.40

4260 0.14 3680 0.08

June 1600 400 0.27 620 0.27

870 0.31 1020 0.35

1420 On4> 1670 0.23

2410 0.12 2860 0.19

3490 . 0.15 3910 0.16

July 2390 510 0.34 360 0.10

1420 Pa) odeh 1780 0.42

2440 0.32 2540 0.24

ALO 0.10 4080 0.19

2020 0,14 6600 0.05

August | 2530 590 0.32 920 0.34
1860 Osis 1950 0.14

2640 0.18 2910 0.19

3420 0.21 3950 0.14

5040 0.16 0.19 5210
 Cont.

268.

Monthly Inflow Histograms

Month ees Low Previous Inflow High Previous Inflow |

Inflow Inflow | Probability Inflow Probability,

September] 2430 510 0.36 7°70 0.29

1640 0.28 1910 0.16

2680 0.18 3570 0.39

4140 0.14 5390 0.13

7270 0.04 7170 0.03

October 4450 1120 Cems 1670 Os23

24-30 0.24 3410 0.23

4210 0.21 5360 0.27
5880 0.24 7400 0.19

84-90 0.10 11380 0.08

November | 4650 1680 Ogi2 850 O07

2730 0.22 2980 0.37

4870 0.31 454.0 0.19

6250 0.22 6090 0.15

8260 0.13 9110 0.22

December ; 6120 2190 0.09 2110 0.17

4240 0.31 3860 0.25

6000 0.20 6840 0.42

8260 0.31 9380 0.12

11460 0.09 12430 0.04

Since Schweig and Cole suggested in their paper that the computer

running time might be high for this type of problem it was

decided to write the computer program for the S.R.C. Atlas

computer to avoid a monopoly of the ICL 1900 machine with

excessive running times. The program stored all input date in

the central core of the computer but any cost or system transition

data calculated in the first iteration was not stored for use in

-later iterations but had to be re-calculated when required.

The program run time was limited to 288000 instructions and

the compilation store was 81K. The store occupied at execution

time was 20K and 13 blocks of magnetic storage were used. The

actual number of instructions carried out was 288078. Exactly

14 years of iterations were performed at approximately 20000

instructions each, where 10000 instructions take about one minute

of run time. However, only half the policy for iteration 14 was

printed out before the program time terminated. It was thought

at first that the system had optimised with the yearly policies

after and including iteration eight the same, but when the policy

iteration method had been carried out and the optimum policy was

found to be different from that at iteration 13, the value

iteration results were investigated more thoroughly. It was

found that iterations 8,9,10, 11 and 12 produced the same policy

but the policy changed in iteration 14, but still not producing

the optimum. Since the policy was the same for five consecutive

iterations it is thought that the policy was very near the

optimum or that the system was aad that many policies could have

been close to the optimum. Later investigations implied that

the total reservoir storage was far too large for the inflows and

demands considered, so that almost any reasonable policy would

suffice.

Exactly the same program was run on the ICL 1900 computer at

Aston University when it was found that 5 ?/12 years' value

iterations were carried out in a C.P.U. time of 1805 seconds

with a total machine occupation time of 54 minutes, which gives

an approximate total time per iteration of 9.7 minutes, compared

to the equivalent Atlas time of 2 minutes.

2706

A trial was then made to find the decrease in time produced by

storing intermediate transition and cost data, calculated at the

first year's iteration, for use in each iteration, rather than

re-calculating the same data at each iteration.

The first program run on the ICL 1900 machine with stored results |

produced 74 iterations with the same C.P.U. time as before and

with a total time of 59 minutes. A second program was limited to

580 seconds of C.P.U. time and produced 2 2/12 iterations ina

total of 19 minutes.

From these results it can be shown that one iteration absorbs

about 240 seconds of C.P.U. time and about 7.86 minutes of total

time. Further, the preliminary time to calculate and store the

transition and cost data was almost zero. However, the latter

figure may be grossly inaccurate because initial compilation time

was not included in the calculations, but the other figures will

be approximately correct since they are much larger than

compilation time.

The comparisons show that the extra time in retrieving and filing

information on discs is still preferable to recalculating it at

every iteration. It should be noted that the information was

stored in such a way that to carry out the complete dynamic

programming calculations for one monthly stage two’ blocks of

information containing 600 pieces of data each needed to be

retrieved from disc files.

afi.

8.9. Policy Iteration - Two Stochastic Reservoirs

The policy iteration method carried out on the same data allowed

for storage of intermediate calculated data since the calculations

were expected to consume enough computer time with efficient

programming without the necessity of recalculation of intermediate

data.

The Atlas program itself occupied 12436 words of core store and

the total number of instructions carried out at run time was

500178, the store used. in execution being 61K.

~The optimum policy was reached within four iterations where an

iteration comprised a value iteration over 12 months to obtain a

policy and the solution of a set of equations developed from the

policy. An extra value iteration was required at the end to

prove that the system had actually optimised. It was found from

inspection of the results for January that the values obtained

from solution of the equations at iteration 3 were not different

from the final results to any practical degree, the solutions

only differing in the second decimal place with values of 340 at

the minimum and 261500 at the maximum.

The solutions from iteration 2 were from 25 to 75 units different

from the final results, the values ranging from 381 to 261544

units.

At iteration 1, larger differences were found. These varied from

9700 to 13000 units, the solutions being in the range 12413 to

271254.

These results suggest that the first solution, based on

minimising the immediate costs, is a poor one, but the fact that

‘the solutions from iterations 2 and 3 are both close to the

optimum suggests that several sub optimum policies might exist

which yield very similar long term costs and that the optimum is

only marginally the best policy.

8.10. Convergence of Policy Iteration

A second program was then run with a Brenig size reduced to

20000 cusec-days to investigate the convergence of the solutions.

The optimum was reached in three policy iterations instead of

four, which suggested that there were fewer steep ascent paths

to the optimum than before. The first solutions differed from

the optimum by from 7300 to 9000, the actual solution values

being in the range 9278 to 198617.

The second iteration produced values from 476 to 191315 which

differed from the optimum by from 17 to 29.

Since these results still seemed to show that many sub-optimun

policies might exist which were close to the optimum, it was

decided to reduce the reservoir sizes and to increase the demands

so that the optimum policy choice would be much more critical.

8.11. <A Critical System

Brenig was reduced to 15000 cusec-days and Celyn to 12000 cusec-

days, while the demand was increased by 50%.

The optimum was again reached in only three iterations, the first

solutions being in the range 991503 to 1444985, which differed

from the optimum by from 401000 to 550000. This result showed

a substantially higher percentage difference range between 2736

the first solution and the optimum than had been found before.

This confirmed that the optimum choice was more critical than

before.

The second iteration yielded solutions in the range 444054 to

1045157, with differences from the optimum being from 1080 to

1630, which may be considered minor differences when compared

to the solutions.

The three programs described above lead one to conclude that

solutions close to the optimum are reached within only two or

three iterations, but the rate of convergence to the optimum

after this stage depends on the sensitivity of the system. Thus,

when relatively large sources of water are present the dynamic

program may spend several iterations in achieving the absolute

optimum policy when a sub-optimum policy might be adequate for

all practical purposes, but if the sources are small compared

with the demand, the optimum policy is found quickly.

From the number of instructions carried out at execution time in

the above programs an estimate of the number Of instructions per

full iteration, which includes one year's value iteration and one

solution to a set of simultaneous equations, was found to be

115000.

The run with Brenig 15000, Celyn 12000, was investigated for

policy changes between the iterations.

Iteration 2 started with a policy which was different to the

final policy by 15 decisions different by one decision interval,

one different by two intervals and two different in four intervals.

The total number of decisions in a: Podiey is 768. Therefore, only

18 in 768, or 2.3% of decisions, were different to the optimum.

274.

The policy used by iteration 1 was the immediate cost minimisation

policy and this was also compared to the optimum. It was found

that 41 decisions were one interval, ten decisions were two

intervals, 38 decisions were three intervals and 190 decisions

were four intervals from the optimum, giving a total of 279

differences or 36.3%. Most of the differences, 193, were

concentrated in the last few months of the year, when the greatest

inflows occur, and the decisions are not so critical.

8.12. Stochastic Demands

A further program with reservoir sizes of 30000 units was run

using five stochastic demands for each month instead of using

the monthly means. The optimum policy showed that in November,

December and January when the inflows are high and demands

smaller, since they are regulating demands, more water tends to be

taken from Celyn, which has the higher rates of inflows, than

before. Presumably, this allows Brenig to fill and Brenig is

then used in the summer months as more of a standby supply. This

is to be expected since it is logical to hold more water in

emergency supply as the system demands become more uncertain.

Celyn is used as the working supply because it has a faster

filling capability than Brenig. In the early wetter months of

the year, the tendency is to use Brenig more than before and to

let Celyn fill if necessary.

215 .

Stochastic Demand Data (Section 8.12.)

Month : Demand Data €cusec-—days)

Demand O 220. $930 | 2130 . | 2650
January

Demand 0 240. | 500 730 | 2650
February

Demand 10 520 940 3470 | 4720

Demand 10 680 1080 2170 5020

“Se Probability | 0-26. |.0.14 | O38 .| 0.355 +053

i Demand 70 +| 1140 | 3050 | 5120 | 6880
oy

Probability {| O«2l | 0.17 | 0.14 | 0.29 | 0.19

Demand - 270 2180 { 4810 7280 10090

aes Probability {| 0+29 | O14 | 0.33 | 0.19 | 0.05

Demand 550 2160 | 4190 | 6770 | 9910

Demand 30 4200.'|; 3550 | 5750 .| 9470
August

Demand 10 660 5250 {59004 9760
September

Probability | O«48 | 0.07 | 0.14 | 0.17 | 0.14

Demand 20 660 2370 | 4190 7780

CE OREE Sl probability and OsdBu Oke § OLSs ct 0.00/91, 0.05

Demand 0 560 1070 | 1730 | 2450
November ee

Probability |0.71 | 0.10 | 0.10 | 0.07 | 0.02

Demand 0 130 370 930 1310
December /j

ae Probability [0-71 | 0.10 | 0.07 | 0.05 | 0.07

STs.

This assures that Brenig will not be drawn down too much early in

the year, but allows Celyn to fill more rapidly, in order to

ensure a full Celyn reservoir at the beginning of summer.

If Celyn is still low in summer, Brenig is drawn down more than

in the average demands case.

In October, just before the wetter months, if Celyn is low, more

water is taken from Brenig. This is because of the fact that

Brenig will be used less in winter and will therefore refill, but —

Celyn will be required to satisfy the winter demands more than

before and must therefore be allowed to refill as much as possible

pefore November.

In the summer months, if Celyn is low, most of the water is drawn

from Brenig to allow Celyn to refill for the rest of the dry

spell, but if Celyn is more than a quarter full this is mainly

used, with Brenig being used only when Celyn falls below this

level.

The expected costs involved in the stochastic demand case are

greater than in the average demands case. This is to be expected

Since higher demands are involved in the demand histograms.

However, because of the low probabilities of higher demands and

the smoothing effect of the corresponding low demands, the effect

is not too great in terms of total expected deficits at any stage,

but the effect on total costs, of course, depends on the objective

function used. In the problem described above, after 7 years

value iteration, the deficits involved for the average demand and

stochastic demands cases were 2610 and 4080 units respectively,

if the system started with both reservoirs empty. The difference

217°

is 1470 units, which is only about 6% of the average annual

demand, but when a unit cost of £100 is applied, the difference

in operating costs over seven years becomes £147,000, which is

substantial. It is not argued here that a deficit cost of

£100 per unit is realistic, but it can be seen that small changes

in system variables might lead to high cost increases which are

not negligible.

It is eeftt to point out that the value iterations in the

stochastic demand case do not take any longer than the average

demands case in computation time because the size of the matrices

involved depend only on the number of states in the system. Once

the matrices have been set up the computations are the same. It

is only in the preliminary stages of the dynamic program that

extra calculations are involved.

8.14. Antecedent Flows

It was noticed throughout the dynamic programming investigations

that the benefit derived from incorporating high and low previous

flow indices was small, since the costs and decisions found for

the two cases were always similar. Howevax. this may only apply

for the particular inflows occurring in the Celyn-Brenig system.

The inflow histograms tabulated preViously show that the

histograms for the two cases were not significantly different in

most months for either reservoir.

8.14. Rate of Convergence of Stochastic Value Iteration

With the values een 14 value iterations for Celyn and Brenig

sizes of 30000 units each, and the long term discounted values

from the policy iteration with the same data, it is possible to

show the convergence of the values for January starting from

both reservoirs empty.

278.)

Values for January Starting from State of Both Reservoirs Empty

Celyn Storage 30000 cusec-days

Brenig Storage 30000 cusec-—days

Average monthly demands used.

Iteration No. | Value (cost) Differences

é

1 233580
2 254367 20787
3 258620 4253

A 260072 : 1452

> 260724 652
6 261050 326
G3 261221 171
8 261316 95
9 261371 55

10 261406 35
11 261428 22
12 261444 16
13 2614-56 12
14 261466 3 10

Long Term 261509 | 43

From the above table it can be seen that the 'long-term' costs

are approached very quickly in the first few years but the curve

tends to flatten out after this to approach the long term

asymptotically.

8.15. Minimising Drawdown

A stochastic value iteration dynamic programming calculation

was carried out for reservoir sizes of 30000 cusec-days each,

with an objective function which ignored deficits but minimised

.the draw down in the reservoir. The optimum long term policy

"7

found was quite different from the policy found by minimising

deficits for the same input data.

Figure 8.1. shows a brief summary of the decisions reached in

the deficits minimisation case for the four seasons. .

Figures are fractions of demand to be taken from Celyn

Celyn Level | Brenig Level |} Spring! Summer / Autumn | Winter
March-| June— | Sept.-— | Dec.-
May Aug. Nov. Feb.

0 O 0.50- | 0.75 0.75-1 O
0.75

10000 0.50- | O - 0-0.50 0
0.75 0.25

20000 0.50- | 0 0.50 0
0.75

30000 0.25- {| 0 0-0.25 0
0.50

10000 0 0.75 a 1 O

10000 0.75 1 0.75 O

20000 0.75 * 0.75 0

30000 0.75 O- 0.50- O
0.50 0.75

20000 0 4 - 1 -

10000 0.75- | 1 1 -

20000 0.75 5 - -

30000 0.50- ; 1 0.75 O
0.75

30000 0 1 eo 1 1

10000 1 1 4 -

20000 - a a 1

30000 0.50- | 1 1 0
0.75

Fig. ak

280.

It can be seen that in winter when Celyn and Brenig are drawn

down after the dry months, Celyn is allowed to fill first to

about 15000 cusec-days, while Brenig satisfies the small winter

demands. After this, when Celyn contains sufficient water to

aueely the spring demands, Brenig is allowed to fill, while all

the demand is taken from Celyn, unless Brenig is about to

overflow, when all the demand is taken from Brenig.

In the spring, if Celyn is still below one third full, the demand

is shared between the reservoirs, with a tendency to take more

from Celyn, so that Brenig can fill ready for the summer. In

fact, all through the Celyn range, more water tends to be taken

from Celyn. The aim is to have Brenig full first because it

has smaller inflows. Even if Celyn is low in the spring, it

is probable that it will fill sufficiently for the summer

because it has high rates of inflow.

In the summer, all the demand is taken from Celyn, with Brenig

as a standby supply. If Celyn is drawn down below one third full

and Brenig is still high, all the water is taken from Brenig, but

if Brenig is nearly emptied a higher fraction of demand is again

allocated to Celyn.

In autumn, if Celyn is low after summer, the fraction of demand

taken from Celyn is inversely proportional to the level of

Brenig. As Celyn becomes more than half full, all the demand is

taken from Celyn, so that Brenig can begin to refill if

necessary, ready for supplying the low winter demands and for

the following summer.

Figure 8.2. shows the policy obtained by minimising the draw

down in the reservoirs.

Celyn Level Brenig Level Spring | Summer} Autumn Winter
March— | June- Sept.e- | Dec.-
May Aug. Nov. Febe

O 0 O O a 1

10000 1 7 pels a

20000 7 & 1 a

40000 0.75 1 0.50 O

10000 O O 0 Z +

10000 1 1 ay i

20000 1 1 1 2

30000 0:75 si 0.50 0

20000 0 2 O 2 1.

10000 1 - 1

20000 + Ji ay 1

30000 0,75 A Dio 0

30000 0 1 0 1 1
10000 a ap 1: xr

20000 ZL z eh a

40000 x i 2 0

Big e 8 e 2] or

In winter, Brenig is always allowed to fill before Celyn, all

the demand being taken from Celyn.

the demand is taken from Brenig.

to rise to avoid wastage of water.

If Brenig is about to overflow,

Thus, Celyn level is allowed

In the spring, if both reservoirs are still very low, the demand

is taken from Brenig but generally most or all of the demand is

taken from Celyn whatever the levels in the reservoir. Thus,

Brenig is again allowed to fill before Celyn, as in winter.

£82,

In the summer and autumn the demand is taken from Celyn unless

Brenig is about to overflow, when it is shared.

The interesting point to note is that in summer, when Brenig is

empty and Celyn is at any level, even full, the demand is all

allocated to Brenig. This is in direct conflict to the

minimisation of deficits but is logical for minimising draw down

since the objective function in this case tries to supply the

demand if sufficient water is available but; if a conflict arises

between supplying demand and maximising the reservoir levels when

‘either of the reservoirs is below about 4000 cusec-days, the

maximisation takes precedence. This type of objective function

may be applicable in the case of hydro-electric power generation,

when water supply is not the main purpose of the reservoir, but

would probably be more complicated than the linear function used

here, a higher penalty being placed on higher draw downs than

implied by a linear rule.

283.6

8.16 The Deterministic Approach

From the discussions in the previous sections it is

evident that the solution of the stochastic control case

for more than two or possibly three reservoirs or components

is virtually impossible even using efficient methods of

computation. However, the deterministic problem for a

given system can be solved with far less effort and this

leads to the possibility of increasing the sige of the

systems which may be analysed. A further benefit which

ensues is that the intervals of discretisation of the state

variables may be decreased to tae tade more states so that a

more accurate solution is obtained.

It was therefore decided to investigate the Bp placation

of deterministic dynamic programming to the solution of the

long term policy. If it is possible to achieve a policy

which is reasonably close to the optimum by analysing

deterministic results, then the method has distinct

advantages over the stochastic method. The main problem

in trying to apply stochastic dynamic programming to a

real system is to summarise the probability distribution of

inflows in a histogram and to include serial and cross

correlations between the inflows in a multi-unit system

while attemptingto keep the amount of data to a minimum so

that the computer program does not reach unmanageable

proportions. It is obvious that gross inaccuracies and

over simplifications may occur, so that the optimum policy

found by stochastic dynamic programming might not be the

optimum for the real system.

However, if deterministic dynamic programming can be

284,

applied, the actual historic data, with its real correlations,

may be used. Even if long sequences of historic data are

not available it is possible to generate synthetic inflow

and demand traces by using regression analysis or auto

correlation techniques. Although the statistical parameters

have to be estimated from the historic data this can be done

in far more detail, and thus with more accuracy, than can be

allowed for in the stochastic method.

In order to be able to compare the worth of policies

obtained by analysing deterministic dynamic programming

results to those obtained by the stochastic method it is

necessary to use data with the same statistical properties

for both approaches. For this purpose the Celyn/Brenig

histograms described in Section 8.8 were taken as the basic

data structure. The deterministic data used was generated

by a very simple procedure which only produced inflows of

magnitudes equal to the discrete flows given by the

histograms. In this way, it was ensured that the

deterministic traces would be as close to the statistical

properties of the histograms as possible.

8.17 Data generation

A standard random number generating routine was

employed which produced numbers between O and l. The flow

diagram for the complete routine is shown below and is self

explanatory when read in conjunction with the data structure

of section 8.8.

The demand data used were the twelve average monthly

demands, also given in section 8.8.

LABELI:]

h

Flow Diagram for Data Generation Routine

Yes
Er eee 0?

5 No

(Start)

Y

Haack monthly inflow averages

for Celyn and Brenig.

Read monthly histograms

{

Re-orgenise histo, rams to show

cumulative probabilities.
(Each discrete flow associated

with upper and lower bounds of

cumlative probability).

\

Set MO: TH = I-

Set Nel

Set ANTA = ANTB=I

(antecedent index =I if previous
flow less than monthly average).

 Generate random number ,X.

Generate random number,Y.

Yes

: No
Locate X in cum lative

probability ranges for Brenig for

given ANTB and MONTH.

'

Locate Y in cumulative

probability ranges for Celyn for

given ANTA and MONTH.

Set FLOWA= relevant Celyn inflow

corresponding to probability

range of Y,.

Set FLOWB= relevant Brenig inflow

corresponding to probability

range of X. Print MONTH, FLOWB,FLOWA.

Y
™

 j

F
e

month.

No. 4

286.

Set ANTA= 2, ANTB= 2, "4

FLOWA <Average for Celyn for this Yes
Set ANTA=I

FLOWS < Average for Brenig for this Yes
+ Set ANTB=1

month.

No y
<i}

 —mqQ

N=required length of series in months? >

> Yes

No

Set N=N+I

Set MONTH = MONTH +I

y
Yes

<; MONTH =13? Set MONTH=I

No Y ’ !

8.18 Extraction of Long Term Policy

Assuming that the best decision for the system for every

state at every stage has been found by deterministic dynamic

programming for a long data sequence, whether synthetic or

historic, the hurdle remains of using it to operate the

system in the Pure: The problem of the Controller when

running a reservoir system is to decide upon the best way

of operating the system in the immediate day, week or month,

ahead based upon the data Bear ants to him at the time.

One way of doing this is to look back over the historical or

synthetic data sequence used for the deterministic dynamic

program to try to identify one or more similar situations to

the current one and implement the decision, or some average

of the decisions if several similar situations were found,

of those determined by the dynamic program for those

situations. This kind of approach would probably require a

computer to be available for searching rapidly through the

past data to compare the present situation with the record

of situations.

Another method would be to analyse the decisions

implemented by the dynamic program for given sets of

available data and attempt to extract the average or most

frequently occurring decisions for given situations.

: Young (28), as described in chapter 1, applied a

regression analysis to his deterministic results for a

simple one reservoir system. The dea wior for any system

state and known previous inflows, as many as thought

necessary, was made a function of these known variables.

However, it is thought that the use of the same regression

AQO

LOD e

function for all situations might lead to gross inaccuracies.

It would appear better to break down the policies into a

group of regression functions, say one for each combination

of levels, so that the regression would only then be upon

the previous inflows. It is the latter type of approach

which has been used mainly in this thesis, although

regression analysis was not the basis of ‘averaging' the

decisions. A simple average of the decisions for a

particular set of results for given system variables was

used at first, put a refinement of this was applied to later

results. The method consisted of weighting the possible

decisions at any time according to the saving in cost each

produced over the worst decision which could have been made

at the time, and goes a sven dae ons the idea of

investigating the effect of applying each possible decision

for a particular state in turn through all time while holding

the decisions for all other states at their optimum ad each

time.

The Geohnatead extraction of the policy is made by

setting up an array which includes an element for every

possible decision for every possible state. The costs

computed in the dynamic program for each decision for a

given state are added into the relevant array element.

This procedure is followed at every stage of the calculation

so that the costs accumulate in the array elements.

Throughout the dynamic program calculation, the

optimum decisions are used as normal, the long term policy

extraction being independent of the intermediate calculations.

When the dynamic programming calculation is complete the

289

long term policy is found by choosing the optimum decision

for each state as the one corresponding to the minimum

accumulated cost for that state.

8.19 Comparison of methods of policy extraction

In order to verify that the author's method of long

term policy extraction from deterministic dynamic

programming runs was a reasonable method, several 50 year

trials were carried out to compare the policies thus

obtained to those obtained by choosing, for each state,

the decision which occurred most frequently. The reservoir

sizes used were 30000 units for both sources, and the inflow

and demand data were those of section 8.8, the 50 year inflow

traces being generated by the method described in section

8.15. The objective was to minimise deficits only.

The policies obtained were very similar for both methods,

the author's method yielding marginally better costs in

Simulations over 50 years, but because of the large storages

involved compared to the demands, these results cannot lead

to any general conclusions. Far more rigorous tests must

be applied to determine whether one method is better than

the other. However, the results did show that the author's

method produced comparable policies and since it is not

the purpose of this thesis to determine the best method of

policy extraction, but only to show that consistent near

optimum policies are extractable from deterministic dynamic

programming calculations, with great computational reductions

over the stochastic methods, any logical extraction method

is acceptable. It is useful to reiterate here that

because inaccuracies occur in trying to simplify the

Flow Disgram for Deterministic Dynamic Prosramnming

Start

Read data:-—
Demands

Inflow averages .
Decision options
Reservoir levels
Costs

Present Worth Factor PWF

Set VALUES array
to zero

Set FRECUENCES
array to zero

y

Read initial:-
Month number
Inflow to Brenig
Inflow to Celyn

{

~~

Read next:-
Month number
Inflow to Brenig
Inflow to Celyn
Calculate whether previous
month's inflows were higher
or lowerthan average for that
month.

Set ANTA = 1 for lower,
2 for higher in Celyn

Set ANTB = 1 for lower, =
2 for higher in Brenig.

Set LEVEL A
4

il aN

y

Set LEVEL B
5

i lI Si MRIS

Gass 3 Set DECISION = 1

u =

i |

Set RAP = proportion of release
from Celyn corresponding to the
value of DECISION.

Set D = demand for this month

Set RA = RAP x D

Set RB = D —- RA

Set Deficits = 0

Set Spills = 0

 y
Calculate levels of reservoirs
after inflows and releases,
OFA and QFB.

‘Calculate spills SA, SB.

Calculate deficits DFA, DFB.

¥

Find nearest four discretised
states to state given by GFA
and QFB.

Calculate interpolation factors.

(Calculate whether specified chicved”) YES
t

RA and RB, could have been achieved
with the water available.

wo F

oe LE Set RA1=
RA

RA2 =

Calculate maximum releases possible:
RA1 and RB1

} tt

Calculate immediate costs of this decision.
I COST = URA x RA1 + URB x RB‘

+ USA x SA + USB x SB
+ UDF x (DFA + DFB)

¥

Calculate, using interpolation factors,
the value of being in the end state
given by CFA and @FB at the end of the
month.

This cost is found from:the known VALUES

- array. Acibbanioe
ager ee ne ete tenet eee: oe ay ee te

Set: END:COS) to this value:

Calculate TOTAL COST sof this decision

at this stage. TOTAL COST = I COST + PWF x END COST

RB

 < Is DECISION = 1? D—»—YES !

Ho acf | a y

P Set ¢ Is TOTAL COST < GEMP COST? >> YES —| Fete cogm smomat, COD

y
NO . |

Add TOTALCOST for this decision end state
into FREQUENCIES array.
FREQUENCIES [LEVEL A, ANTA, LEVELS, ANTB, DECISION] =
FREQUENCIES (LEVEL A, ANTA, oe ANTB, DECISION) +
TOTAL COST

e
g
i
e
s

Y

Set DECISION = DECISION + 1

t : oe |

Is DECISION > than number of NO Go to
« options possible? , : | LABEL 4

=F

TEMP COST is now equal to the minimum
cost obtained for this level combination.
Store this cost in TEMP VALUES array
as the optimum cost of going to the end
of the process from this state and stage.
TEMP VALUES (STATE As STATE B} = TEMP COS?

} :
‘Set LEVEL B = LEVEL B+ 1|

1
Is LEVEL B> Number of possible __,_NO Go to

ea in Brenig. os LABEL 3 |

+ Le

| Set LEVEL A = LEVEL A + 1 ee _

/ Is LEVEL AY number of possible ’ [Go te
\. levels in Celyn. LABEL 2 |

) YES

Set VALUES array =
TEMP VALUES array.

ee Se
Has the required number of months
been processed NO * Go to

LABEL 11

YES

For each combined value of LEVEL A,
ANTA, LEVELB, ANTB, find the
maxirium cost over the values of
DECISION of
FREQUENCIES [LEVELA, ANTA, LEVELB,
ANTB, DECISION).

Record and print the value of DECISION
for the minimum cost as the optimum
long term decision for the state given
by LEVELA, ANTA, LEVELB, ANTB.

nN S
.

statistical properties of the data for use in stochastic

programming, the results obtained by using synthetically

generated traces together with the deterministic dynamic

programming method may in fact be the more accurate.

8.20 The consistency of the deterministic method

As stated previously, before deterministic dynamic

programming can be applied with confidence to finding long

term policies for a system, some experiments must be carried

out to compare the results obtained by this method to those

fonat by the equivalent stochastic approach.

For this purpose, it was decided to apply deterministic

dynamic programming to the simplified Celyn/Brenig system

with reservoir sizes of 12000 and 15000 cusec-days

respectively. Four levels and two antecedent indices were

used in exactly the same way as the stochastic run described

in Section 8.11. The demands used were again 1+ times

those given in Section 8.8. Sequences of 100 years inflow

data were generated by the method of Section 8.15 and the

deterministic Neem o Sob anailns method applied, the long

term policies being extracted by the author's method.

The reservoir sizes and demands were such that the

policies obtained would be critical. The objective

function was to minimise the deficit costs incurred, a

discound factor of 1.5% per month being used.

The policies obtained for four of the inflow traces

(Sl - S4 in Table 8.1) were applied to the same traces in

the simulations. After this, three more traces (S5 - 87)

were generated and the long term policies found from dynamic

programming, but instead of applying each policy to the

inflow data used to calculate that policy, the policies

were applied to different sequences to show whether the

policies obtained in each case were general to the inflow

population. In Section 8.11 a policy for this same system

was determined by the stochastic method. This policy was

now applied in a simulation to the same generated data as

for Sl of Table 8.1 and the results are shown as S8. In

all the simulations described previously the policy used was

stated as a matrix of decisions, one for each possible

discretised state in each month. When intermediate, or

non-—discrete states, were encountered in the simulation the

relevant decisions were obtained by interpolation among the

nearest discretised states. However, the simulations of

Sl and S8, which used the same generated data, were repeated

with the decision for any Hb rnedtuie state being taken as

that for the nearest discrete state, no interpolation being

used. The costs in these instances are shown in brackets

after the costs for the interpolation method.

The 100 year simulations took a total computer occupation

time of from 4 to 5 minutes with C.P.U. times of from 45 to

55 seconds.

The computer programs for S2 to S4 were complete data

generation, dynamic programming and simulation runs in the

same jobs. The C.P,U. time varied from 1418 to 1555 seconds.

Separate programs for 100 years data generation, and

simulations took about 33 seconds and 55 seconds

respectively for one instance. Unfortunately, the total

computer occupation time for the complete program was not

ascertainable because of the introduction of a time sharing

system.

296.

Table 8.1

| RUN SIMULATION COSTS OVER : Reservoir Sizes:-
_ NUMBER 100 YEARS

(Deficits x £100) _ Celyn 12000cusec day

$1 | 1241200 (2734500)* Brenig 15000 cusec day

So. | 2131560 Demands: 14 times those

S3 1489940
cel of Section 8.8.

7 ~ Inflows: Generated from
84 | 3258790 histograms of

————t ees se Section 8.8.
$5 | 2562060

| 86 | 2796170

2810810 paeet Sy Coe a as
| S8 1251820 (2594500)*

* Costs with no interpolation.

The actual policies derived by the stochastic and

deterministic methods cor cases S8 and Sl were compared

and it wad found that about 10% of the decisions were

different, nearly two-thirds of these being different in

only one decision interval.

Table 8.1 shows that the deficit costs incurred over

100 years of simulation in the same data by policies $1 and

S8 are very nearly the same, whether interpolation for

policies for intermediate states is used or not.

The costs shown in Table 8.1 are the actual costs

incurred since the discount factor used in the dynamic

program was not applied in the simulations. Therefore,

the figures show the real sizes of the deficit multiplied by

the unit cost of £100. The figure of £1251820 represents

a total deficit of 12518.2 cusee-days over 100 years, which

is less than 0.3% of the total demand over the period.

297.

Expressing the deficit as a percentage of the demand shows

that the spread of the figures in Table 8.1 is in fact

small, the highest figure only being about 1% of the demand.

The costs for trials S4 to S86, for which the policies

derived from one set of data were applied to a different

data sequence for the simulations, fall well within the

cost range for the other simulations and indicate that the

deterministic policies are applicable over the inflow

population as a whole, but because of the small number of

trials carried out it would be unsafe to conclude that this

is always so. However, the weasies show that further

research in this area would be worthwhile.

The policies obtained for runs S2 to S4 were analysed

and compared in detail to that for the stochastic policy of

S8 and were also compared to one another. The results

are shown below.

298.

se No. of Decision Differences
a

“4

2 Pew A: Mad Pik Ss N | D | TOTAL

£
H I 6 Bed Gor 6 ae 3 L.1°O: por

a2 5 0 $4.0 12 O04 T Tob. 6° Fie

3 3 21° 6.4L. hte] Dal” Be aoe 1p. | 4
eg tg :
6
mee OF’ O Leo 2? | Oat a. O Ova") 3

TOTAL $34 Bac dP een 9 8 pat 4 S428 #70

S2 convared to S4

Table 8.2

%
“ No. of Decision Differences

3 Bowe ee uM a Tae Ss yi D le "AU

£
4 I Ova TA 15 Dod tS 4 2 }.0.-1-49
¢

Z 2 5 OES oe 2 10 0 Pb esp 2a

3 3 I 0} 0 Opt 3} 0 0 010 6
oS

g4 Of O Tei ht 10 Oo F071 0 0} 0 5

TOTAL Te:14- 7 8 od 5a Teas 4 SOA TL

S2 compared to S3

“x Table 8.3

oe

y) No. of Decision Differences
< ,

$ Poy wa Pee 1 Tha Pos ny] oD (foraL
é HI 6 {2 8 ee ae eae te SVG 50
S

; 5 OO eee Done tO. 4 4% Lapa ape 3s

Sa5 z 0:10 eis 4 O 0 0}; 0 9

34 0 7-04 0/1011.)-040 [0 61,0 4.38

TOTAL 9. de pl | 10, | ae r0 4 5 B16 82

S2 compared 58

Table 8.4

299.

ard
y
de :
a No. of Decision Differences

3 Jd ry M A M a: ad A 5 0 N D TOTAL

5 T 0 2 LO 9 0 6 6 2] i 4 5 0 43

<=
B23 Bt SAT OAR a OL a Maite OT Bee dQ. ie EO 9
3
Oo % I 3 0 0 0 I Z 0 0 0 0 0 6

-_
SA Ae TO eeeer Oo tk 0. bo Oat. OOo eG ser eee ie

OPAL | 2 | Bh le Dede Let Oe) Std A) gee ee ee

S3 compared to 54

Hable.6.5

No. of Decision Differences

Tere a Oe a a eee Pk. PS Omir D | TOrAL

Ao
.
of

B
e
c
s
i
o
n

E
e
d
e
v
v
a
l
s

& a
ff
er
en
t

f Qn * 4 epee eee | Oto Ch et Meth 2 Ld ae

2 O13. 1 Ree Oe ote Bete er Oe Oe 8

3 Tee ee Ot Oi, ort Rd Os Ob Ou 8

4 ON ON 08 OU TO Lee a Ory) Och OO Ere

 TOTAD [31 d 6 9k LO Bes ae 6 2 4 2 0 67

sear errr noes neened

Table 8.6

“3
oe

é
te No. of Decision Differences
4 Ry

? a ime aye be ee SPO hs oes o | nt D | ToTaL

‘ ir 4 Ast TO 8 0 5 6 3 : 2 I 0 AA
s

A

ee O51 Ot . peOne 30. Soi Sogou O ke Osh 0 7

2 3 0 Tt 0 0 0 6 4 0 0 0 0 0 a

34 Oey 0:9 00. et Ge ie ee Oe 6 Pea A Os

momar | 4 ot TT Bi LS: hc Tae 15 3 I 2 I 0 75

S4 compared to 58

Table 8.7

s2 53 54 S8

S2 71 (9.2%) 70(9.13) 82(10.7%)

S35 71(9.2%) 60(7.8%) 67(8.7%)

54 70(9.1%) 60(7.8%) 75(9.8%)

58 82(10.75) 67(8.7%) 75(9.8%)
Total number of decision differences

between policies.

Table 8.8

300-6

301.

8.21 Length of data sequence

Following this set of experiments, it was decided to

investigate the effects on the policies and simulation cost

of varying the length of the data series used in the

deterministic dynamic programs. In these experiments,

the same 100 years generated trace, 84, was used throughout

as a data base. For the dynamic program, the required

length of data series was taken from the end of the 100

year trace. The policies produced in each case were

applied over the full 100 year sequence in the simulation

runs.

The same system as in the previous section was used,

all inflow, size, and cost data being identical. The unit

deficit costs was again £100.

The same composite computer program, which generated

data, performed the dynamic program and ran the simulation,

as in Section 8.19 for runs $2 to S4 was used.

The total C.P.U. time was 796 seconds for a 50 year

program, 483 seconds for 25 years, 359 seconds for 15 years

and 297 seconds for 10 years.

The simulation costs are given in Table 8.9.

if

ee oe | Average Yearly costs over
in years 100 year simulation

100 (S4) 32588

ae oer Oe

28 ee S08 z

ees ak 127904
Table 8.9

302.

The following tables show the policies derived from

the 50 to 10 year programs compared to S4, the 100 year

policy, and S8, the stochastic policy.

Table 8.12

8
2
i No. of Decision Differences

3 Co ee ok a fo SPE a Bek 0 RD) | TOTAL
;

a I 0 S12 hopes 0 6 4 6 3% 7 0 0 53

3 5 So ot oe Ley) Oem le oer eee OL bs Oo ee eee Td

ase gt Thao o | 0-4 heme tO t- 0 peO 4.0.17 Tt
“3.

§ 4 5 I 0 Oo bay I 0 0 0 0 0 0 I8

TORAL |) 5 9.132 F 30.400: | 1A aor 6 5 7 3 0 95

50 year d.p. compared to S58

3 Table 8,10

Rs ee
— No. of Decision Differences

= = 2 RF M A M J J A S 0 N D | TOTAL
g : ;

HI 0 5 6: P10 0 4 2 2 I 5 0 0 35
<

Oo

3 2 0 I 0 0 0 I 2 0 2 0 2 0 8

6 tigen P01 Oh et Saree OO 7°60 0 3
Seale
go 4 4 0 0 0 I 0 0 0 0 0 0 0 _

TOTAL | 4 7 6 | Io } 6 4 3 3 5 e 0 51

50 year d.p. compared to S4

De Leole StLT

3
=
- No. of Decision Differences

3 a F M A M J J A S 0 WN D | TOTAL

ae 0 7 Tt OOul 28 a 8 5 12a 63.4:50 0 0 88

2
Z 2 O | eee oe On 0 ee er Oo bs hae Om S

3 3 0 4 0 0 0 Z 2 0 0 0 6 0 19
=>
3 4 4 2 0 Of T2 I 0 0 0 oO 0 0 I9

TOPaE A) CA I6 P8541 26. 1 TA Te TO 5 31 8 Oo | 144

25 year d.p. compared to 58

WN
 ° iS

No. of Decision Differences .

-

$
ow

a
a
4 Poe a he a Se et OR oO beh TOTAL

2 RO i Bb pet Oe ad eae SL OO LO ees Oe

BO) ae Oe Odea SRE | o. Tap heh es

3 SSO Memo Oh do | TO OL: Lae ee

+
Bf evr Oy OL et One Ore tO ero 6

BOTAL | 3 FIGS tah 1 Ot seemed 10%: TOT A) Pa ae B10) E00

25 year d.p. compared to S4

a Table §.13
_

S. ; No. of Decision Differences

a 3 JE RM | eee ya eee OT ei TO
3S
5 I 0 I | 19° | T9 Aa ee 5 3 8 |-II 0 0 78

oo Po Ae ee er 0 ae Oot Oh ae PSO ay

3 eee ee ts | ok ee POO LOSE 6 oh. 0: age

bef
Sera A Oa ef Ook OO Oo Gt 0: 10. 40.) ae

| OPAL 7e55 02 bp aiteleoo beta | 4 | be te 8 OF 162
a a ol ia cit eccdesapls MAM Madcon Wi aetna i calla maiadeiasclebiridarestitendh ac eae Siesta

I5 year d.p. compared to $8

% Table 8.14

& No. of Decision Differences
pa

{

4 eee eae Me eae TO TS A St O] ON de D1 TOPAL

i EO. Dom epee ge he bd BRAN 7 | 12 Ps Onde 78

Boor) 3c oe bee Th St OC) oF |e. bk Pe pee 14

3 Bek Ot Gr POO Tielhoge kb: Aamaeme te Tre pT. Ip Drie 55
SS

emo |S Oe Bd 201 9 10.) 0 OO Ot my S25

TOTALS 6] I4 4 T3 hse fag:) Os raed bf 7 8420 } “Eso I5

I5 year d.p. compared

Table 8.15

305 6

+p. compared to 88

a a
<<

SE
5 O
N
O

~

oO
oO

NNES
NNe

oe
NY

B

N

A

oO
oO

@

N

N

IK
H

yaa
o

N

\
o

(>)
©

b
e
e

N
S
S

Oi
me

Hi
N

n
nN

oO
I
O
)

in
'

Hi
Hi

T
h
e
n

f
e

®
4

©
 |

<¢-|°
eo"

Sgr
ee

ee
tty

ae
=

|
Be

i
G
3

eae
i

CN
oO

SE
Oya

G
a
t

N

t
a
l
e
s

{

A
y

,
M
1
.
5

NN
7

ONY
©

2
}

S
i

}
ON

oft
|

‘dt
:

n
i

h
h

oe
NEE

ee
C
e
e

N
S

o
f

iH
O
i

O
f

1
{

A
o
e

*

6-4)
=o

oN
nN

NY
N
Y

tf
O74

1
A

bi
M
m

O
f

=
sf

oe
N

oa
oO

\O
tH

Hi

Fy
S
3
2

Ne}
\
O

ws
CO

rong
eS

Oo
oO

@

@

|
sl

Hi
i

id
Hi

N

N
Y

wv
oO
Gi

raralfiq
s
e
y

worsioay
>}

“on

IO year d

—
—

P|
<i
oH

ite
ONE.

NN
LON

oO
©

ME
NN

oh
el

fA
N

a)
oO

oO
oO

WN
nN

H
mo

}

%
oO

H
ee

©
@

Oo
eS

nN
A

TNL
OO

et
H

nw

wn
oO

oO
N
Y

oO
NY

Hi
Hi

n
<

O
V
O

H
O
n
i

sO
a

t
t

P
O
H

C
a

-
,

Of
=

be
eee

—

KN
8

O

=

oO!
rep

a
Cyt
e
e

e
e

\
o
!
}

oc
|

vey
Ki!

fo}
F
D

a
o

N

J
O
g

sk
|

i
Ho}

Nw
@

|
i

{
B
N
R

mena
e
l

oss
oO

ee
os

|
i

a
a

in
S
O

G
i
a

st
e

m

'
KH

i]
8

S
e
e

e
e

e
e
e

a

<4
cS

nN
f
a

S
i
t

3
GH

L
N

mH
i

CON
O°

i
!

i
eo

es
oe
e
e

eet
tt

BO
es

S
e

O
p

ane
en

\
FR

P
e
d

e
a
s
e
d

S
e

os
S
e
e

Bd
ids

ko
Dee

i
N

l
O

|
O
n
o

et
te de

et
ij |

3 <q
H

A

N
N

i
,

EX

=

<
eH

s
“nt

}e
"9

e
yey)

S
v
a
r

ve1s120 4
N

3

B17 Table 8.

306.

+ Ferntree at eer ren st traning tent eM

| Length of | Total number of

| data series decisions different from: __
used in ap. S4 38

| im years j ‘

| 10 Bag. 237

15 150 162

25 100 144

tea ee cee
100 0 75

Table 8.18

It can be seen from these tables that the policy for

the 50 year sequence is very similar to the stochastic

policy and to the 100 year policy, the simulation cost

being close to that for run S84. Even the 25 year policy

produces a low simulation cost although the policy is

different in twice as many decision elements as the 100

year policy from the stochastic policy. This, combined

with the results of comparisons of policies from different

100 year sequences, leads one to believe that the policy

differences which do occur between data sets and those

caused by length of series, at least with series greater

than 50 years in length, are minor differences and generally

occur for states where there is a marginal choice between

the possible decisions.

307.6

8.22 Effect of reservoir sizes

A series of 50 year deterministic dynamic programs

combined with 50 year simulations was carried out, using

the same data sequence throughout for both the dynamic

programs and the simulations, to investigate the convergence

to optimal reservoir sizes using the near optimum policy

determined for each case. At the same time, further tests

were made to compare simulation costs obtained when policy

interpolation for intermediate states was used to those

obtained when the decision for an intermediate state was

taken as the same decision as that for the nearest discretised

state.

In both cases, experiments were also carried out to show

the results of using a policy which was optimum for one

reservoir size combination on all other size combinations.

The results are given in Table 8.19. The demands used were

1% times those of section 8.8 and the objective was to

minimise deficit costs, the unit deficit Boat being £100.

A discount factor of 1.5% per month was employed in the

dynamic programs but not in the simulations.

The dynamic programs of Series 2 of Table 8.19 using

8 levels in each reservoir with two antecedent indices for

previous inflow, HIGH and LOW, giving 256 states in all,

used about 900 seconds of C.P.U. time and one hour total

time onthe ICL 1905 computer. The simulations used about

30 seconds of C.P.U. time and 6 minutes total time.

303.

6b°S
T
A
R
E

0S22L6
+e8cOn

o0026L
ELece

+L6926
Sede

+701790L
2789S

00022
OOOSL

OO002L

0S22S8
SeHESE

OOSL8
2Seee

868486
4649

«
OLLEEOL

C
L
S

7
o000¢

OoOOSL
O00zL

0S2764
L6z29¢¢

OS2r0L
2do2ee

00L266
Stes

-
-

OO0¢<
OOOL2

O00eL

0
5
2
6
4

O2LEg¢e
oO0SedL

0
6tr7LOOL

S924
=

=
0009¢

o00r2e
oo0zL

OSeer
0

.
OS26%

oO
689456

O*Ld
Ld¢4796

ZOLgo
0000¢

OOOSL
OO0SL

OSzetr
0

OSee
oO

L8LSS6
S°Ov

£6L796
8S8¢

O00¢¢
oo08L

O00SL

OS2et
0

00082
oO

698556
8°22

oe
i

o0009¢
oOo00L2e

OO0SL

OS2e4
°

00082
oO

0¢
456

9°db
=

=
O006¢

0
0
0
2

O00S-L

oO
3

°
0

Z6L4S6
o°2

276956
e
e
e

OO0¢E
<

OOOSL
OO0O8L

oO
°

o000S¢
°

602756
é°0

L99956
4O00L

o009¢
OOOsL

oooar

O-
°

00SS2
0

455756
€°0

722L56
889

O006£
OooL2

OO08L

°
oO

006S2
0

2681756
b°o

060856
06%

o00e#
o00r2

O003L

=
=

=
=

17£8656
SLLe

|
00092

OO0SL
oocL2e

=
a

=
=

6£17656
OSLL

0006£
oo008L

OOOL2e

.
47217096

644
000¢+

OOOL2
O00LzZ

LonL96
22s

000St
o00Kr2

oooLe

789596
gLozg

O006¢
OOOSL

oo0ove

96£596
6vLL

o00er
ooo8L

o00K2

046996
£94

_
0
0
0
5

o00Le
|

O00Ne

4
8
9
6

9LS
*
0
0
s
t

00072
|

. OCOKe

+98896
LSo2

000S+
OQOOSL

O000¢

445026
LEeL

0008+
OOO8L

oo000€

2d1246
6L6

OOOLS
oo00L2

oO000¢

Ld6¢d6
849

000%
oo0ore

OO000€

(eb)
sorseioa

|,
-66)

5)
(2)

(9)
(Ss)

(1)
(<)

()
)

aoy
u
o
z
y
z
e
t
o
d

MOT
4
Q
0
Q

MOT
4
3
0
Q

MOT
4
Z
0
Q

MOT
q
V
0
q

~T9qZut
U
I
A

seoTpulL
soot

pul
soot

PUL
gaot p

u
l

g
n
o
y
s
n
o
r
y
y

w
o
F
g
e
t
o
d
z
a
q
u
r

q
u
a
p
e
d
e
q
u
y

q
u
e
p
a
o
0
q
u
y

q
Q
u
e
p
s
o
e
q
u
y

q
u
e
p
o
o
o
4
u
y

S
e
n
o
r

kro

o00gL
seTottod

£ot
Od

£4duq
Ting

£4dug
Tina

reese
Ted

ZOOOSL
ros

U
T
M

54509
s
e
T
o
t
t
o
d

soz
Z@

seytaeg
u
o
T
t
y
e
t
o
d

£
T
I
B
9
_

-:430qQ
w
o
u
y

J
u
y
q
u
e
q
s

=-?490q
w
o
r
y

J
u
y
q
y
r
e
q
s

s
k
e
p

-
o
o
s
n
g

wozzetodzaquyz
|

aoz
LoFTod

|

-aequz

yno
eZereay

|

AfoOATesed
youve

ut
sTaseT

g |

APFoATeser
yows

UT
STeAST

9
e3e104g

skep
-

9
8
n
d

F
N
O
U
R
T
R

4NQ
B
u
y
s
n

s
4
s
o
o

“
Q
9
T
H

4nq
¢

s
e
t
t
e
s

e
S
e
T
t
a
g

*L
seTates

T
B
4
0
,

S
O
Z
T
S

T
p
y
o
A
T
e
s
e
y

O
L
°
T
°
D

sy
w
u
o
y
z
e
t
n
u
t
g

9°
10D

sy
u
o
T
z
e
T
a
u
t
s

g
r
e
o
l

of
r
e
4
y
e

s
o
n
t
e
a

*d°q
|

savoek
0G

roqgze
s
o
n
T
e
A

*d*d

5309.

The first series of programs was run with 6 levels in

each reservoir, which, combined with the antecedent indices,

gave a total of 144 system states. Only the deterministic

dynamic programs were carried out for this trial, no attempt

being made to extract a ee term policy for simulation

purposes. For twenty ootitinae lens of reservoir capacities,

the fifty year optimum costs of running the system, starting

from states of both reservoirs full and both reservoirs

empty, with initial antecedent indices representing low

previous inflows to both reservoirs, were extracted. These

costs are, of course, the absolute minimum costs which could

be achieved with the given data and discretisation level.

Any long term policy applied to the same data and problem

structure would necessarily produce higher operating costs

than these. The results of the first series of programs

are shown in columns (4) and (5) in Table 8.19.

It can be seen that for a fixed Celyn size and decreasing

Brenig size the costs of starting from both reservoirs full

tends to increase with decreasing Brenig size, as expected.

However, although this occurs for each chosed Celyn size,

there is no relationship between the lowest costs incurred

in each group for the various Celyn sizes. This may be

explained by the varying accuracy of the problems as the

size combinations change, because the same number of states

are used in each reservoir whatever the capacity. Therefore,

the problems with smaller reservoir capacities yield the

more accurate results. Neither is the accuracy of the

“problem the same for, say, a problem with Celyn 24000 and

Brenig 18000, and a problem with Celyn 18000 and Brenig

24000, since the accuracy is also related to the inflow

rates to each reservoir, and consequently the ‘usefulness'

of the reservoir, which is determined by the policy solution

itself. The accuracy is also affected by discretisation

of the decision possibilities.

The figures in column (5), for starting from both

reservoirs empty, are likely to be more affected by the

accuracy of the problem since the costs (of deficits) are

only incurred when the reservoirs are depleted. The figures

show that the general tendency is for the costs to fall for

smaller reservoir sizes, which is clearly not logical.

However, in spite of this, because the costs fall over a

wide range as Celyn size decreases, whatever the capacity

of Brenig, it may be deduced that Celyn is the more important

reservoir of the two, which is true because it has much

higher rates of inflow than Brenig, and that the level of

discretisation of Celyn affects the costs even more than

the capacity. When Celyn becomes very small, the accuracy

of the problem becomes greater, and the influence of Brenig

on the system becomes more pronounced, as Celyn reaches its

critical capacity, which appears to be about 15000 cusec-

days. The last two figures in column (5) show that the

costs are less for a Brenig size of 15000 cusec-days than

for a size of 18000 cusec-days which indicates that the

accuracy of Brenig discretisation still affects the system

more than the capacity. From this one can assume that even

- at a capacity of 15000 cusec-days Brenig is still too large.

The figures shown in column (7), using 8 levels in

Dus

each reservoir instead of 6, still show the same tendencies,

the critical level of Celyn,before costs increase at a fast

rate, being about 15000 cusec-—days. One can see again

that Brenig capacity does not appear to affect the costs

unduly at a capacity of 15000 cusec-—days.

Because the change in accuracy of the problems affects

the final optimum costs, and since the absolute optimum

policy is used throughout the dynamic programming solution,

rather than the best long term fixed policy obtainable,

which would have to be applied in practise, it is not

strictly fair to compare the optimum costs incurred by each

reservoir size combination to determine the optimal

configuration. Therefore, a practical way to determine

costs which are comparable is to extract the long term

policy as described in previous sections and to apply this

to a sequence of data in a simulation to obtain the operating

costs.

Column (8) of Table 8.19 shows the costs obtained from

50 year simulations starting from a state of both reservoirs

full with antecedent indices representing low previous flows.

In this set of simulations, linear interpolation was used

to determine a decision for states that were not discrete

from the decisions for the nearest surrounding discretised

state decisions. The figures show that no costs are

incurred until Celyn capacity is 12000 cusec-—days and Brenig

capacity is 21000 cusec-—days. The costs are nearly the

same whatever the capacity of Brenig after this. These

results indicate that the critical level in Celyn probably

lies between 15000 and 12000 cusec-days, while Brenig can

be reduced below 15000 cusec—days. Further experiments

in this range would determine the optimal sizes.

The simulations described above were repeated without

interpolation for decisions for intermediate states,and it

was found that the costs incurred started at a much greater

Celyn size of 18000 cusec-days and the costs for lower Celyn

sizes were much higher then before (Col. (9)). Although

some of the costs for a fixed Celyn size increase with

decreasing Brenig size this is not always so, especially

when Celyn has a capacity of 12000 cusec—days, when no cost

pattern can be seen. It is apparent that policy interpolation

is desirable and, because there is not always a pattern to

the costs when no interpolation is used, that in some

instances the no-interpolation method might yield reasonable

results but in others it might not. Because there is a

tendency, when simulation combined with trial and error

dani determination is used as a design method, to apply

a generalised policy to several reservoir sizes to find

comparable operating costs, it was decided to apply one long

term policy, determined for a size combination of 15000

cusec-days in Celyn and 24000 cusec-days in Brenig, to a

range of combinations in simulation exercises. The results

are shown in Column (10) of Table 8.19 and show that no costs

are incurred until Celyn has cnpeeie. 12000 cusec-days and

Brenig has capacity 24000 cusec-days. The costs are then

ten times greater, with policy interpolation, than those

incurred in the same circumstances with the optimum long

term policies for each system. The figures again confirm

that the optimal capacity of Celyn lies between 15000 and

5136

12000 cusec-days. They also show that, in this case,

any reasonable policy could be used to locate the critical

eek. an obvious increase in costs occurring at this point.

These simulations were repeated using no policy

interpolation and, as before, the figures show that costs

are incurred at higher size combinations, but another

obvious increase occurs when Celyn falls to 12000 cusec-—days.

The results of Table 8.19 thus indicate that the

cheapest and easiest method of determining caer

reservoir sizes may be to apply a reasonable operating

policy, say the space, or reservoir balancing rule, to

various size combinations until a sudden large increase in

costs is indicated. This will show the area for detailed

investigation in one reservoir. The experiment can then

be repeated to obtain a critical range for the other

reservoir, or reservoirs.

The determination of the best sizes can then be carried

out by dynamic programming in a restricted range,

Experiments to investigate the level of discretisation

necessary are described in Appendix 5.

314.

8.22 The Celyn/Brenig System

Because a policy had been found by the simulation

method for the Celyn/Brenig system, as described in Chapter

2, it was decided to apply the deterministic dynamic

programming method to the same 42 years inflow and demand

data. The objective function used was to minimise the

deficit costs, but a kichee cost weighting was given to

deficits which involved compensation water, the unit cost

ratio of deficits in compensation to deficits in make-up

water being 10, with costs of £1000/unit and £100/unit. A

discount factor was not used. The long term policy was

extracted from the dynamic programming results by the author's

method. | 3

The reservoirs were divided into 11 levels each, and

HIGH and LOW antecedent indices were taken into account when

the policy was extracted. The reservoir sizes used were

21000 cusec-days and 31859 cusec-days in Brenig and Celyn

respectively. The monthly retention levels, compensation

waters, and low water Limit in Celyn were used in the same

way as in Chapter 2.

Simulations over the 42 years data were then carried

out using the dynamic programming policy, with interpolation

for intermediate states, and the policy found by the methods

of Chapter 2.

The policy of Chapter 2 produced a total cost of

£1,291,167 over 42 years, or £30,742 per year on average.

Three consecutive monthly deficits occurred in 1934 from

July to September, the total compensation deficit being

138 cusec-days and the ordinary make-up deficit being

8814 cusec days. In 1937, make-up deficits were 2118

cusec-—days over the two months, October and November, and

there were no compensation deficits. In 1938, there was a

compensation deficit, only, of 60 cusec-days in June. Thus,

deficits occurred in three separate years, the total

compensation deficit being 198 cusec-days, and the make-up

deficit being 10932 cusec-—days.

The dynamic programming policy with the same date

produced simulation costs of £979,800 over 42 years, or an

Rveraeh yearly cost of £23,329. Deficits only occurred in

the three months, July to September, of 1934. The

compensation deficits were 94 cusec-—days, and the make-up

deficits were 8858 cusec-days.

The results show that the dynamic programming method

produces a better policy for this aaah if deficits are

minimised. The true value of dynamic programming is not

reflected in the difference in costs, however, because the

work described in previous sections indicates that the size

of Celyn reservoir is greater than required and that the

policy is not very critical. |

The computer program for the deterministic dynamic

program used above consumed a total of 1 hour 52 minutes,

and a C.P.U. time of 2160 seconds on the ICL 1905 machine,

and the simulation with the resulting policy took 6 minutes

13 seconds total time and 39 seconds C.P.U. time, 22 seconds

being used in computation.

The simulation using the policy of Chapter 2 took

2 minutes 46 seconds of total time and 32 seconds C.P.U.

time, 19 seconds being used in computation.

Chapter 9

‘State Increment Dynamic Programming

ae Introduction

The theory¢application of state increment dynamic programming

is described by Larsen (II). He states that this method leads

to a computational procedure that has significant advantages

in terms of computational requirements over the conventional

procedure. The main objective of the method is to reduce the

high speed memory requirements by arranging the calculations

so that the maximum number of computations may be carried out

with the minimum immediate information.

9.2. The Theory

The basic iterative functional equation is the same as that

given by equation 6.6. The discretisation of state, control

and time variables is done in exactly the same way as for the

conventional case. The minimum cost and optional control

are computed at all quantised values of ¥ and t. The

minimisation in equation 6.6. is performed by applying all

admissable discretised controls and choosing the minimum value

of the right hand side of the equation. The generality of

the problem formulation and the form of the solution are in

no way changed.

As described by Larsen, the reduction in computational

requirements is obtained by combining the two basic concepts

of the new approach. The first of these is related to the

choice of ft in equation 6.6. This time increment, which is

the interval over which a control is applied, is not now set

equal to At, the time increment between successive

computations of optimal control. Thus, two time intervals

have been introduced into the calculation instead of one, At,

as for the conventional method. The dynamic programming

317

calculations are still carried out at fixed time intervals,

or stages. It is only the computations within these stages

which are modified.

However, the §&t in equation 6.6., over which a control is

applied, is not fixed but is chosen as part of the calculation.

As described in Chapter 6, in the conventional method St

is fixed at At, and a particular state may make a transition

0 any other state during this time, but the state increment

method finds the value of + during which the original state

makes a transition to the next nearest discretised state.

This value may be less than, equal to, or greater than At,

but if it is greater than At, the value used for the

subsequent optimisation is set at 4t. This procedure ensures

that the state transition is over one or less state increments.

Formally,

ft =o Min AX

iz I fn ‘ = » a mise ° i ole ; ’ FERRER Equation 9.1

The value of ft is calculated for each state variable and the

minimum is chosen. Thus, the next state, ¥ + F (x, 0, +) &t,

is always close to the present state. Larsen describes it

as lying on the surface of an n- dimensional hypercube centred

at X, with length 24xi along the xi-axis. The minimum cost

at the next state is found using interpolation in (n-1) of

the state variables and time, using values at the discretised

states that lie in this hypercube at times (t +At) and

(t + 24t). In other words, a state transition beginning at

time t is made to a time for which there is no value of the

function, I, stored in the machine since the calculations for

I are only carried out at fixed intervals,At. Therefore, the

value of I at the time under consideration is found by

extrapolation of the values calculated at times (t + Mt) and

(t + 26t). Because the transitions are to states within a

confined hypercube, only the minimum costs corresponding to

these points need to be stored in the high speed memory, as

opposed to the minimum costs for every admissable discrebivea

state as required by the conventional method.

However, the saving in high speed storage by using this method

is offset by the need to transfer these small blocks of data

from low speed to high speed memory at frequent intervals, if

_the calculations are carried out in the same Ondee as for the

conventional procedure, because each state for which calculations

are carried out might need a different set of values. The

computing time involved in these transfers is so large that the

method is not attractive. But if large amounts of data are

-~transferred infrequently, the waiting time is reduced and if

the computations can be arranged to take advantage of this then

the method might become useful.

Z State increment dynamic programming uses this concept by

____ carrying out the computations not according to the ordering of »

the time increments, as in the conventional procedure, but in

blocks which cover a small number of discretised states buty

many time increments. If the present state under consideration

is in the interior of a block, then the discretised states

required for extrapolation of the minimum cost at the resulting

--state after transition are always in the block, it is then

possible to compute the minimum cost and the optimal decisions

throughout the block on the basis of an initial set of

minimum costs at the two largest discretised values of time

at the end of the block. By modifying the computations at the

boundaries of the block it is possible to allow the

trajectories to pass from block to block. Consequently, an

3196

efficient computational procedure is obtained in which the

transfer of a relatively small amount of initial date enables

computations to take place throughout the block.

Other interpretations of extrapolation methods than that

described above may be used for finding the optimum cost at

the resulting state after transition. Some of these involve

using only the optimum costs found at stage (t +At) instead of

for both (t + At) and (t + 24t). Advantage can also be taken

of the fact that interpolation can be carried out at time t

when sufficient costs have been computed for some states by

other methods. The procedures are described in detail by

Larsen.

Interblock transitions are easily made into previously computed

blocks by storing the optimal costs previously calculated at

the boundary of the blocks, as well as the costs at the end of

the block under consideration. It is also hoetneene to

re-compute the values along that boundary for the new block.

Larsen states that transitions into blocks which have not been

previously calculated are more complicated and the calculations

are not so accurate. However, it is possible to a limited

extent to order the blocks so that some calculations can be

carried out where it is known that the transitions will not go

out of the block. For instance, in the reservoirs problen,

the transitions at the extreme states cannot go outside the

block, since negative reservoir storages cannot exist. The

methods where transitions must be to blocks not yet computed

are not described here but are detailed by Larsen. Only the

general principle of state increment dynamic programming needs

to be given here, since the author's experiement with this

method only concerned the extra time required over the

320.

conventional procedure caused by introducing the minimisation

of §t and the subsequent time extrapolations. Otherwise, the

computations were exactly the same as for the conventional

procedure. All cost data was held in the computer fast store.

9.3. Stochastic Example

The system and data used was exactly the same as that described

in Section 8.8. The reservoir sizes were again both 30,000

cusec-days and the decision options were identical.

The number of instructions carried out was 288048 in the

requested execution time. In this time,10i annual iterations

were produced but the system did not optimise. However, the

policy produced at iteration 10 was only different in one

decision from the policy found at iteration 10 in Section 8.8.

The policies found at each iteration should be the same as those

in Section 8.8. but the differences will be caused by the

difference between the extrapolation over two time periods when

§t is less than&t, and the interpolation at one time as with

the conventional procedure. In fact, in the example taken, most

of the §t were equal to At because of the large state increments,

. SO that, although the computations still included the same

number of steps, and therefore absorbed the same computer time,

no extrapolation was necessary. The values of the states in

January at iteration 10 were slightly different from the values

in the conventional procedure, ranging from 262459 to 253 instead

of 261405 to 253. From the number of iterations carried out in

both programs it can be seen that the state increment method

takes about 1.4 times longer than the conventional method.

However, this is the maximum time difference which can be expected

since no transition data was stored at the first year's iteration

for use in subsequent iterations. If this was done, only the

521.

first iteration's time would be significantly different for

the two methods, but the values of &t for each state and each

decision would have to be stored. However, when the transition

data is stored to save computing time, the amount of data which

has to be transferred from low speed storage even for one state

makes the use of state increment dynamic programming impractical.

Also, for the efficient use of this method, the state increments

should be small so that St is less thanAt.

Therefore, for the stochastic approach, where transition data,

which is the same for each iteration, can be stored and all

iterations act on similar data, the state increment method is not

very useful, but in a deterministic case, where the data

continually varies at each iteration and a large number of states

exist in the system, this method might reduce the computation

time by reducing the number of transfers of data from low speed

to high speed storage when only a small amount of the data can

be stored in the high speed store at one time.

For a comparison of the times consumed on the Atlas computer to

the time taken on the Ect 900 machine for this method a short

run of the same ptoarell was made on theZée computer. It was

found that 37/12 iterations were carried out in a CPU time of

1780 seconds and a total time of 53 minutes. This gives a

time of 15.5 minutes per yearly iteration compared to the Atlas

figure of 2.8 minutes per iteration.

Chapter 10

Conclusions

10.1 Specialist Languages

Details of a language which meets many of the

requirements for an ideal specialist computing language

have been given. It was found that such a powerful

language is necessary for reservoir design problems, unless

one were to have to revert to a more general language as

ALGOL or FORTRAN. Various discrete and continuous

simulation languages were not useful for such problems.

The most important conclusion to be drawn from this

study, which was only realised well into the work, was the

extraordinary power of a POL in the hands of an expert in

its use. A POL is the 'Seven League Boots' of the

computer user. While it can be true that a POL simplifies

computer usage for the ordinary user he can probably gain

almost as much from the of a package or even a compatible

library of sub-routines as from the use of a POL. To some

extent developments in computer hardware and system software

have changed the original climate in which POL's were

spawned.

The desk top computer, the mini computer and the

terminal have all had the effect of bringing low cost

computing into the design office. The small computer

favours the use of a series of small programs, one for each

task with minimum linkage. Though linkage can be achieved

through inexpensive tape Wincace devices now available.

System software has improved to a vast extent making

the compatible subroutine idea look attractive. For

instance the George 3 and 4 system software available on

the ICL 1900 series computers has made forms of virtual

sas and linkage of programs more available to the user.

By use of the file-store in such systems, which operate

similarly to the data files in the HYDRO described herein,

one can link the output from one package to the input of

another with very little programming. The user has many

of the problems of peripheral assignment removed from him or

made easier. Once again it is true to be said that these

new system control languages lend proportionally more power

to the expert than the novice.

We see the situation that while attempts are being made

to simplify computer usage by the proviniee of Problem

Oriented Languages and powerful System Control Languages

the power available to the expert user is growing ata

greater rate than it is becoming available to the non-

expert. Whether this situation is desirable or not is

debatable; it does however seem inevitable.

10.2 Dynamic Programming

Ls 2615 The deterministic dynamic programming procedures

described in Chapter 8 were structured to fit into the

HYDRO language. However, for every different system

configuration a new dynamic program must be written so as

to include all of its special peculiarities. Because of

this, the author allowed for the use of pure Algol code in

the user's input to HYDRO. The computer user could then

write his dynamic programming and simulation system

descriptions using the flexibility of Algol while still

being able to employ the simple data structure of HYDRO.

524.

10.2.2. A computer program was developed for the

stochastic value iteration method describing two finite

es iti supplying one demand point. It was found

that although the method converged to the optimum policy,

the point of convergence could not be defined with

precision. In particular, it is unsafe to assume that

. convergence has taken place when two year's consecutive

policies are the same.

BOsZa ce A program has been written for the application

of Howard's policy iteration method to the two finite

stochastic reservoirs problem, which involves the solution

of a large number of simultaneous equations. However,

because of the monthly grouving of the equations it was

possible to apply matrix partitioning and an efficient

method of solution has been developed by the author. With

the method of using policy iteration developed in this thesis,

it is not necessary, once one month's solutions have been

obtained, to substitute them in the other eleven month's

equations to find the complete solution. Because one

year's value iteration always follows the solution of the

equations it is only necessary to know the solutions for

January. The value iteration procedure itself, if carried

out on a monthly basis, will update these costs for the

other eleven months as the calculations proceed. This

method is more efficient and will lead to the optimum more

quickly than performing the value iteration on a yearly

basis with the complete equation solutions as starting

values.

The policy iteration method, as described above, was

applied to two finite stochastic reservoirs. Four levels

were used in each reservoir, and two antecedent indices of

inflow were included in the state space. The number of

system states was therefore 64 in each month. Five inflows,

with their associated probabilities were allowed to each

reservoir, and five possible decision options were

considered at each state and stage.

It was found, for the Celyn/Brenig data given in Section

8.8, that the optimum policy was achieved after 4 years’

policy iterations. This policy corresponded in all but

one decision in 768 to the policy found by value iteration

after 15 years.

The number of times a set of equations has to be

solved before the optimum is obtained may be reduced by a

combination of value and policy iteration. Value iteration

may be avplied until the first suboptinum is reached, when

two consecutive years' policies are the same, and then

policy iteration can take over fully, or, when the

suboptimum is reached, one policy iteration may be used to

check whether it is in fact the optimun. at it 26 210f,

then value iteration may be applied again until the next

local optimum is reached, when another policy iteration

check may be used, and so on.

UOG2 644 The computer time taken by the policy iteration

method to reach the optimum was even longer than that

required by the value iteration procedure to carry out

13 years' iterations.

In view of the fact that the value iteration policy,

after 8 years, produced a policy only different in two

decisions out of 768 from the optimum policy, it is

@onsidered that value iteration is the more practical

approach. If this method is continued until five years'

policies are the same, it is unlikely that the policy will

change to any significant degree after this.

LG os Unless it is important to find short term

policies for stochastic data, then it is suggested that

even value iteration consumes excessive computer times.

In order to use the method in a real problem involving two

or more reservoirs with stochastic inflows, the number of

states which it would be necessary to employ would be so

small that the raTiabili ty of the results would be

questionable.

Furthermore, the requirement of stating the inflows,

and perhaps demands, in histogram form might lead to severe

oversimplifications of the statistical properties of the data.

It must also be borne in mind that the program would have

to be run for various trial configurations, so that the

design cost would soon become. prohibitive.

10:2.5, Because of the gross discretisation necessary for

the stochastic methods of dynamic programming and the

computing costs involved, the author was led to explore the

idea of obtaining near optimum policies from the results of

the deterministic dynamic programming method applied to

historical or synthetically generated data.

As a result of the reduced computational requirements

involved in this method, the intervals of discretisation of

the state variables could be made smaller, thus increasing

the accuracy of the solution. It is also thought that

the problem accuracy is greater because the data is not

ifetood into simple histograms. The historical data

itself can be used complete with its true serial and cross

correlations. Even if the historical sequence is not

long enough, or critical enough, and has to be extended by

synthetic methods, it is thought that generation techniques

are sufficiently advanced to yield traces that incorporate

more of the true statistical properties of the real data

than histograms,combined with states describing correlations,

can ever do.

LOeee te Whatever, the method of design used, careful

thought must be given to the objective function.

Two completely different policies were obtained when

deficits were minimised in one case, and reservoir total

drawdown was minimised in another. On the surface it

might appear that the two objectives would achieve the same

ends, but, depending upon the size of, and inflows to, the

reservoirs, this might not be true.

The real objective for a water supply reservoir is

to minimise the deficits. If there is more than one

objective the weighting to be given to each must be decided.

10.2.8. If deterministic dynamic programming is used on

a historical or synthetically generated data trace, then some

method of extracting a long term policy from the results

must be used. Using regression analysis to find one

single function which relates the decision to be made to the

known values of the system variables at any time is thought

to be too gross a method. Much of the detailed information

would be smoothed over in this way.

A better method, still using regression analysis,

‘would be to split the system variables into smaller units

and produce a different function for each. It is also

necessary to decide upon which system variables to include

in the regression analysis. The reservoir levels must

obviously be included, but the effect of including previous

inflows and forecasts of future inflows must be investigated

by some form of factor analysis. Efficient statistical

routines for regression and factor analysis are available

at most computer installations.

For early studies in reservoir system design it is not

considered necessary to use such techniques. It is only

when the final design has been decided that such refinements

should be used to improve the policy. It appears from

the results of Chapter 8 that it would be sufficient only

to include the reservoir levels, and perhaps crude measures

of previous inflows, in the system variables, until the

adie design parameters have been found.

A good method of policy extraction in these early

stages has been described in Section 8.18.

10.2.9. Deterministic dynamic programming was applied to

a system of two reservoirs with fixed sizes, but with

different inflow traces generated from the same histograms.

The long term policies derived were applied to simulations

using the corresponding inflow traces. For states which

were not discrete, the simulation interpolated for

decisions between the nearest discretised states.

The consistency of the policies and simulation costs

was found to be good.

10.2.0. Experiments carried out using different data

sequences in the simulations from those used in the dynamic

programs showed that the simulation costs fell within the

range of costs obtained when the same sequences were used

for both.

This again indicates that the policies found from

deterministic dynamic programming applied to synthetic data

traces are consistent.

10.2.i7% Simulations were carried out using the policy

found from stochastic policy iteration for the equivalent

system. The costs and the policy itself were comparable

to those achieved with the deterministic method.

LOCAL Les Simulations of all policies without interpolation

for intermediate states produced much higher costs than with

interpolation. This indicates that the policies tend to be

continuous and that interpolation may be used to advantage.

EO Sih D0 Experiments were carried out to investigate the

length of data series required in the deterministic

programs.

The results showed that a 50 year sequence produced

similar costs to thosefor 100 years which appeared to be

equivalent to costs incurred using the policy found by

policy iteration. Even the costs from a sequence as short

as 15 years were not excessive. However, shorter series

produced much higher costs.

It seems that sequences of 50 years' data would be

adequate, at least until the final reservoir sizes have been

fixed, longer traces being used for 'polishing' the operating

530.

policy if thought necessary.

10.2.14. For a fixed, generated 50 year data trace, the

two reservoir sizes were varied and deterministic dynamic

programming applied to find the appropriate long term

policies. Simulations with these policies were then

carried out to obtain the 50 year operating costs.

The policy from an intermediate combination of

reservoir sizes was applied to all the size combinations and

simulation costs again calculated. It was found, using the

policy doplidwble to each configuration, that costs were not

incurred until the reservoirs were small. It can be

inferred that at least one reservoir size had become critical

at that point.

The costs obtained when the one fixed policy was used

throughout started at a slightly greater size in one

reservoir and subsequent costs were much greater than those

found using the correct policy in each case.

Therefore, it is suggested that any reasonable

Gperatins rule, say the space rule or balancing rule, may

be applied to various trial configurations until a large

increase in costs occurs when the reservoirs are made

slightly smaller. This method will yield a limited range

of possible reservoir sizes. The optimum sizes may then

be found by applying deterministic dynamic programming.

10.2.15. State Increment dynamic programming was

investigated but was not found to be of great advantage for

water resources problems. The computer programs are also

more difficult to write, from the data management point of

‘view, than for the conventional case. The method would be

331.

more advantageously applied to problems where the inputs

may be described as smooth, continuous functions, or where

‘the system is such that a large number of states may be

used. In the latter case considerable savings in computer

time might be obtained.

10.3 Future Work

EO 255 a. The results described in thig thesis indicate

that deterministic dynamic programming is a viable method

of obtaining operational policies. Many aspects of its

application have been investigated and present a wide scope

of topics in which research in depth would be worthwhile.

LG. o res More work is required on the effect of varying

‘the number of states considered in the system. The optimum

number of states and their distribution in space may depend

upon system parameters such as inflow, reservoir size, and

demands. The distribution of the states will also be

related to the objective function in some way.

LO. 545% Further experiments are necessary to investigate

She consistency of the policies when synthetic data traces

are used.

10.54 The policies derived from stochastic dynamic

programming should be compared more thoroughly to those

derived from synthetic data traces.

te tele More experiments should be carried out on the

length of data series required.

10.3.6. Far more work is needed into the effects of

different objective functions. Data needs to be collected

from practising engineers concerning their requirements

from water resource systems.

10.35.76 Thought should be given to the idea of

wnaintaining prescribed flows in rivers, and the penalties

to he applied for not meeting these flows.

10.3.8. Research is needed into the use of the ‘critical

period' as a basis for deriving a policy.

10,:5,.9- The effect of including variables to describe

previous inflows or forecasted inflows should be studied.

10.65.10. If possible, it would be informative to apply

deterministic dynamic programming to existing systems,

operating under rules derived by other means. In this way

the benefits of this method could be demonstrated ina

powerful manner.

ED Gein dks Changes in policies found for various reservoir

sizes should be investigated.

26

10.

11.6

I2.

136

14.

156

16-6

DDD

References

Bugliarello,G., McNally,W.D., Onstott,J.T., & Gormley,J.T.
‘Design Philosophy, Specifications, and Implications of
"Hydro", a Pilot Computer Language for Hydrology and
Hydraulic Engineering'
Carnegie Institute of Technology, Pittsburgh, Pa. 1966.

McNally,W.D., ‘Hydro User's Manual’,
Carnegie Institute of Technology, Pittsburgh, Pa., 1966.

McNally,W.D., ‘Hydro Reference Manual',
Carnegie Institute of Technology, Pittsburgh, Pa., 1966.

Roos,D., ‘ICES System Design',
Massachusetts Institute of Technology Press, Cambridge,
Massachusetts ,1966.

‘Computer Languages and Program Libraries', Task Committee.
Journal, A.S.C.E. Hydraulics Div., HY7, July, 1972.

Cooper,B.E., 'Ascop User's Manual', Science Research Council
Atlas Computer Laboratory, Chilton, Didcott, Berks.

‘Genesys Reference Manual', March, 1970. The Genesys Centre

University of Technology, Loughborough.

'Hydrologic/1' - A. proposal fora subsystem of Genesys
Draft

Bellman,R., 'Dynamic Programming', Princeton University
Press, Princeton, New Jersey, 1957.

Bellman,R., ‘Applied Dynamic Programming', Princetown,
University Press, Princetown, New Jersey, 1962.

Larsen,R.E., ‘State Increment Dynamic Programming',
Stanford Research Institute, Menlo Park, California, 1968.

Howard,R.A. ‘Dynamic Programming and Markov Processes’,
Cambridge (Mass.) Technology Press, 1960.

Larsen,R.E., & Keckler,W.G., ‘Application of Dynamic
Programming to the Control of Water Resources Systems',
Technical Memorandum 1967, Stanford Research Institute
Menlo Park, California.

Keckler,W.G., & Larsen,R.E., ‘Dynamic Programming
Applications to Water Resources System Operation and
Planning', Journal of Mathematical oe and Applications
24, 80 - 109 (1968).

Korsak,A.dJ. & Larsen,R.E., 'Convergence Proofs for a
dynamic programming successive approximations technique’,
Fourth I.F.A.C. Congress, Warsaw, Poland, June, 1969.

Mawer,P.A., Sherriff,Jd.D. F., Thorn,D., Wyatt,T.
‘Multiple Resource Studies! ; Technical Memorandum T.M.67
Economics Group, September, 1971, Water Research Association.

17.

18.

19.

20.

ats

22.

25-6

4.

256

26.

27.

28.

29.

30.

334.

Schweig,Z., & Cole,J.A., ‘Optimal Control of Linked
Reservoirs', Water Resources Research, Vol 4, Nr 4
June, 1968.

Schweig,Z., ‘Optimisation of Control Rules for Water
Storage Systems by dynamic programming', Water
Research Association, 12682» Reservoir Yield,
Part 3, Technical Paper T.P. 61.

~Cole,J.A., ‘Probability of Short Term Inflows -
Decisions in Time of Drought', Water Research
Association, Reservoir Yield Symposium, Part 1, 1965,
Paper 9.

Burley ,M.J. & Cole,J.A., ‘Alternative digital computer
applications to evaluate linked water resources'.
International Association of Scientific Hydrology,
Tucson Symposium, 1969.

Buras,N.,'Conjunctive operation of dams and Laquitevs’
Froc., A.S.C.E. Hydraulics Div., 89, HY6,.3; 111-131.

Meier,L., ‘Combined Optimum Control and Estimation',
1965 Allerton Conference, Univ. of Illinois (OG
1965) pp 109-120.

Buras,N., 'The Conjunctive use of Surface and Ground
Waters', W.R.A., Reservoir Yield Symposium, 1965,
Paper 10,: Part 1.

Aton,G. & Scott, V.H., ‘Dynamic Programming for
conjunctive Water Use', Journal, Hydraulics Div.,
Proc. A.S.C.E., HYS, May, 1971:

Roefs,T.G. & Bodin,L.D., 'Multireservoir Operation
Studies', Water Resources Research, Vol 6, Nr 2
April, 1970.

Lloyd,E.H. ‘Probability of Emptiness - I'
W.R.A. Reservoir Yield Symposium, 1965 Part I
Paper 5.

Harris,R.A., Dearlove,R.E. & Morgan,M.
'Serially Correlated inflows and subsequent
attainment of steady state probabilities' ,WR.A.
Technical Memorandum T.P.45, Reservoir Yield - Il.

Young,G.K., 'Finding Reservoir Operating Rules',
Proce, A.S.C.E. Hydraulics Div. 93,HY6, Nov. 1967.

Hal1l,W.A. & Howell, D.T., ‘The Optimisation of single
purpose reservoir design with application to synthetic
hydrology examples'. Journal of Hydrology, 1963
DP 592. 2: 205.6

‘Some factors influencing required reservoir storage'
Proc., A.S.C.E., Hydraulics Div. HY7, July, 1971.

31.

324

336

36.

37 -

38.

39.

40.

Ad.

535+

Wilson,T.T., & Kirdar,E.,
‘Use of Runoff Forecasting in Reservoir operations’,
Journal, A.S.C.E., Irrigation and Drainage Div., 96
IRZ, Sept.1970.

Gablinger,M & Loucks,D.P., ‘Markov models for Flow
Regulation', Journal A.S.C.E., Hydraulics Div., HY‘
January, 1970.

Harboe,R.C., Mobasheri,F. & Yeh, W.W-G
‘Optimal Policy for Reservoir Operation',
Journal, A.S.C.E., Hydraulics Div., HY.11, Nov.1970.

Loucks ,D.P.,'Computer Models for Reservoir Regulation",
Journal, A.S.C.E., Sanitary Div., SA4, August, 1968.

Jemes, L.D., 'Economic Derivation of Reservoir
Operating Rules', Journal A.S.C.E., Hydraulics Div.
HY9, Sept. 1968.

Fiering,M.B., 'Forecasts with Varying Reliability',
Journal A.S.C.E. Sanitary Div, June 1969.

Perez., A.I., Schaake,J., & Pyatt,E.E.,
‘Simulation Model for Flow Augmentation Costs',
Journal, A.S.C.E. Hydraulics Div. HY1, Jan.1970.

Butcher,W.S. ‘Mathematical Models for optimising
the allocation of stored water', Internation Assoc.
Scientific Hydrology. 'The use of Analog and Digital
Computers in Hydroiogy', Tucson Symposium, 1969.
Burges,S.d. & Linsley,R.K., ‘Some factors influencing
required reservoirs storage', A.S.C.E. Hydraulics
Div.. July 1971, HY7.

Hall gW.A. 3 Askew,A.Jd. 9 Yeh,W.W.-G.

'Use of the Critical period in Reservoir Analysis',
Water Resources Research, Vol 5, Nr 6, December, 1969.

O'Kane, Personal Communication

5376

Appendix I

Proof of convergence of stochastic matrices

Assume that we have a probability transition matrix, Rywith all non zero

elements where R, is the probability of jumping from state J to state i.
J

in one time increment, and the probabilities are independent of time.

n =~, :
Then R, 770 a3 Ris =I for all J where R is an nxn matrix

i=I

Let k be a discrete time variable.

The probability of moving from state J at time k to state i at time

(k + §) is obviously the (i,,)th element of the matrix (2)*.

Let B(0) be a column vector whose elements are the probabilities of the

system being in the states J (fw I,n) at time k=0.

Then B(k), the probabilities of being in states J (J = I,n) at time k,

is given by

B(k) = (8)* 3(0)
To prove that p(k) reaches a limiting distribution for large k it is

necessary to investigate the latent roots, or eigenvalues, of the matrix

R. The latent roots of the matrix R are given by the equations

\z El =O where | | represents a determinant.

n
LetA,,A,, bie AL be the n distinct roots where [|] Ay, lz]

Jet

The equations

Rx=Ax ana y' R= Aj’ 9: ste ERT Es)

where x and y are column vectors, have solutions x and y other than

zero, if and only if A is a root (eigenvalue) of R. For each eigenvalue,

Aj(J=I,n), therefore, we can solve for the corresponding left and right

eigenvectors x, and Vs:
J

Let H-[%,, x, z,-.- Rel

and K -(5,, vo v4 once ve yn]

From equation (A.I.I.) it follows that

RH = HL and ca = ix? . ° e (A.1.2.)

where L is the diagonal matrix

% <a At oO oe tee . a

oe Re ee, ee

GOs. eee? Fe

From (A.I.2.) we thus have the alternative expression for R given by

2 mee aee or ae ea
Ree HLH = (xt) , K e ° . CasE, 359

From (A.I.I1.)

Rx, = A, XE

Premultiplying by v5 we have

yt Re, = 5/3,
J 1 ae sh

a if ss
Also from (A.I.I.) we have yz =A,¥5- Postmultiplying by x, we have

wn Pca —f/—- -/ ib

Tye A 3 aT ON ITS

—{e- = =-% = = ~
Vy RE Ay Oe eI, Ae;

If the eigenvaluesA, and A, are different then obviously

pes She (
Jy ee _ O a # J e ° ° KsT.4 5)

We can obviously choose the scales of x_ and yy so that
J

go Pe
Jz <> = aL . . . (£5225)

Using equations (A.I.4.) and (A.I.5.) we can write

ow fmm -_

Ron = 7

and equation (A.I.3.) can be put in the form

n

R-fik’- S Af, pe ae Te)
J=L

539.6

— set
where os = XV yz

and

7 Sys =f x :
AAs x, (7; x5)F5 = O (from (4)) forif#d

-;-t-\-/_--/_- :
= SAGs x5)9; = 3,34." By (from A.I.5.) for i # J a Ridied ele he

n — _

>. A, =I
J=L

‘This last expression follows from

J=I J=I

Because of the relations in A.I.7. we may write, using equations A.I.6.
n

(Bf == (A,)*4, since (A,)& = Z,
eo gL

=k Meee eit
(R) ba (A 5) a wa . ° . Awl eGle

JeI

Now, the probability distribution of being in the states, J, at time k is

given by

p(k) = (2)* p(0)

Bh) seco iy poy) \ = 0 0 ae Tre? es ¥y P(O))AZ xy

i x eae
p(k) tee Ses Xy where® , aoe p(0) ‘ : oy aes

Since the columns of R must always sum to unity then it is possible to

write

ml
 m fish ieee

I] 3ip, cia i a eae

[z,2, ieee 1

dr folly na. BI

From equation A.I.I. we have

ol

HW

si mre
=A.Y,

e e ° Pools te

Comparing A.I.I. and A.I.I0O. we see that one non trivial solution to

340.

equation A.I.I. is

x! (rahe des

Ax

In this case,

I

eng oe —

17% p(O) = I since the elements of p(O) must sum to

unity.

Therefore, we may write from equation A.I.9.

n k
Blk) =k, ASE + S “85 5

n k
p(k) = x, teas = ee cate Asked Ts

The root A, = I cannot be exceeded by any other root.

ul Since] R eT QO there is at least one non trivial solution of the

Lp ay

equation yR =Ay

ey
Let ¥e be the maximum element of WFll where Al denotes the absolute

arf,
values of the components of y.

Then, because the columns of R sum to unity,

t= rt = | ‘ yi> (y B), =WAll ys

from which WAS be

From equation A.I.II. it follows that the eigenvector, es will give a

limiting distribution for p(k) independent of p(0) as ko if Ng? * -

are all less than unity.

Frechet (1938) has shown that 7s An are all less than unity if the R

matrix or any power of the R matrix has all non zero elements.

However, even if this were not the case, if the physical process has any

stability then it is possible to insert very small positive elements in

place of the zeros which occur, without altering the behaviour of the

system.

5A4E.

It also follows from equation A.1I.8. that
k n k n k

AX ees - -'} ey
R = 45 *; Vy -\, Xz Vr + Ny xy V5 5 is Sk a ee

° 8 by

I ae cag seseI) As k->0O sinceN, = I and vy a ftsEs ss Te,

e e . Ast. 136

so that Rn converges to a stochastic matrix, with all columns identicalin

and equal to the limiting state distribution p(k).

Pea A.I.I2. may be pees as

aoe SLL yd set 1 + z fs ce

Er s + T(k) eee sO Ae ae

where S is a stochastic matrix whose oe column is the vector of limiting

state probabilities if the system is started in the hie state, and T(k)

is a set of differential matrices with geometrically decreasing coefficients.

For the determination of the analytical equations of dynamic programming

for a long term process it is now necessary to write equation A.I.I4. in

oo

terms of s-transforms where F(s) = > e(k) aX ;
k=0

A table of s-transforms for commonly occurring functions f(k) is given in

Appendix 2.

Now the basic equation for state distributions at any time for a fixed

transition matrix Ris

p(k+I) = R p(k) fo oe

Let T() be the s-transform of p(k).

Then by taking the s-transformationsof equation A.I.I5. we have

os | 1 (s) - 3(0)| = RT (s)

Expanding, we have

(2) - p(0) = skT(s)

We) = (T - 28)? 3(0) Cee ae
where I is the unit matrix.

542.

Let H(k) be the inverse transformation of (I - az) on an element by

elment basis. Then, taking the inverse transformation of equation A.I.16.

we have

p(k) = H(t) 3(0) eg Aa. TTs

But we know that

B(k) = R°5(0) Sees Magne

Therefore, comparing equations A.I.I7. and Axl FGs

H(ic) = #*

From equation A.I.I4. we may say that

H(k) = aX = S + Fk) ° ° ° Ae 29%

Taking the transform of equation A.1.19. gives

(TeR led Sh ots) ee ogue-s “Aer eeGs
1-3

where J is the transform of T.

It can be seen that equation A.I.20. is an equation describing the

system under consideration which is now indepement of k.

This equation will be of use in showing how analytical equations may be

formed for the long term dynamic programming problem.

3446

Appendix 2

The s-transform

oD

Fis) = SS f(n)s"
n=0

where F(s) is independent of n.

The re-transformation of a transform will produce the original function.

Consider some typical functions ;

a) f(n) = I, n = O~lyes5s

0, n<0O

The g—-transform is

=)

Fs) = = f(n)e" = I+ a+ + =} + ee Cana Oe ee oe
n=0 I-%

n =
db) fin) s«., nO

0 n a n
Fis) = S f(n)s = S&S &s) =1

n=0 n=0 [-X%

2
c) If F(s) = & (es) then

n=0

oD a

a fle) = S neem?
ds n=0

= ee S ns = a4 P(e) = ad/Tt =Ss 4
n=0 ds ds \I-«~ = (I-«)

Thus if f(n) = ne” then

F(s) =es%
(T-e)*

The s-transform of f(nt1I) is given by

= n — m-I S f(ntlI)s = f(nje where m = n+I
=(Q m=1

f(I) + f(2)a + £(3)8° fo eg
eo he

Now = £(m)s" ms
m=I

and = f(n)e = £(0) + f(I)s+ #o ae + ess
n=0

3456

ee = I
Thus = e(m) et = 3 = tia)e -.— (0)

m=I n=O

If Pls) = = f(n)#” then
n=0

the s-transform of f(n+I)

= £(nt+I)s" = go Ge a £(0))

A table of s-transforms for common functions occurring in dynamic

programming is presented in Table I.

Table I

2-transforms

function for nSO #—transform

£(n) F(s)

f£,(n)+£,(n) FL (8)+F,(#)

kf(n) oe constant kF()

f(n-I) aF(s)

f(n+I1) a 1 ((#)-£(0))

re I

Tos

I (unit step) =
I[-#

ne os
(I-es) 2

n (unit ramp) 8
(I-s)2

ot. £(n) F(«s)

uae e

347.

Appendix 3

The inverse transform of # Q J(s)
I-3

- a Bios ;
T(n) = =, Aj x; Vy by definition i : < haaa be

Taking the a-transform
a

J(s) - = I X5 pe ° . ‘ e Ae3e2e

J=2 (1-\;#)

Multiplying throughout by 2 Q we have
i-%

——_ _ a - —f

3B QJ(#) =. Q =. a ; a Vy ° ° ° A323 «Se

(I-s) J=2 (I-s)(I-\;#)

Partial fraction expansion gives

- Se ae
a We) = Cera) a, (TS)

oe | C2) TEAR)

The inverse transform gives

a a

eLearn eo es we An ee 7 gate ae
J=2 (I-A) (ie 9

As n=jyem the second term in the brackets—30

Therefore we have

i a - —/

It. = QS zc Xy Vy = constant as n —® co

i.e. a step of magnitude Q = ob x, ¥ i Jes):
J=e2 I-y;)

From equation A.8.2. it can be seen that
a

ui) toe
J=2 (E-R;) p73

Therefore, the term B Q T(s) represents a step of magnitude

(I-s)

a

QJ(I) f= I x yt
J=2 (I-A;)

349»

Appendix 4

Line library

"LIBRARY ' (ED,SUBGROUPTEMP)
‘INPUT '3=ED2(ICLA=DEFAULT(0))
'OUPPUT 'O=LPO
'BEGIN'
"REAL 'GRIDAREA, RAINVOLUME, SHEDAREA, RAINFALLAVERAGE, ANNUAL ,MEAN,DSR;
'INTEGER'A,B,C,D,K,L,SUBI,SUB2,SUB3,COLM,Z,GRIDROWS ,GRIDCOLUMNS,
TOTAL4 , TOTAL6,DSI;
"BOOLEAN ' FINISHED;
'INTEGER' 'ARRAY'CHAR(T+80] ,ALPH(1:80] ,DaI(I+2] ; "REAL' 'aRRAY'DAR(I:2|;
"PROCEDURE ' NEXTCOLUMN(COLM, CHAR,Z) ;
‘INTEGER 'COLM,2Z;
‘INTEGER' "ARRAY 'CHAR;
"ALGOL';
"REAL ' ‘PROCEDURE ' NUMERICALDATA(COLM,CHAR,Z,ALPH,NEXTCOLUMN) ;
‘INTEGER 'COLM,2Z;
'INTEGER'' ARRAY 'CHAR,ALPH;
"PROCEDURE' NEXTCOLUMN ;
'RLGOL' ;
‘PROCEDURE 'ALPHANUMERICALDATA(COLM, CHAR,Z,ALPH,NEXTCOLUMN) ;
'INTEGER'COLM,Z;
‘INTEGER '' ARRAY 'CHAR, ALPH;
"PROCEDURE 'NEXTCOLUMN ;
"ALGOL';
‘PROCEDURE ' DEFINESUBSCRIPTS(COLM, CHAR,Z,ALPH, NEXTCOLUMN, NUMERICALDATA,
SUBI , SUB2 ,SUB3) ;
‘INTEGER! COLM,Z,SUBI,SUB2,SUB3;
‘INTEGER! ' ARRAY ' CHAR, ALPH;
"PROCEDURE ' NEXTCOLUMN ;
"REAL ' 'PROCEDURE' NUMERICALDATA;
'ALGOL' ;
"REAL ' 'PROCEDURE' DATAINPUT(COLM, CHAR,Z,ALPH,NEXTCOLUMN , NUMERICALDATA,
SUBI , SUB2 ,SUB3 , ALPHANUMERICALDATA, DEFINESUBSCRIPTS , FINISHED ,A,B,C,D);
"INTEGER 'COLM,Z,SUBI,SUB2,SUB3,A,B,C,D;
'INTEGER''ARRAY'CHAR,ALPH;
"BOOLEAN ' FINISHED ;
'PROCEDURE' NEXTCOLUMN ;
"REAL ' 'PROCEDURE'NUMERICALDATA;
'PROCEDURE' ALPHANUMERICALDATA;
'PROCEDURE' DEFINESUBSCRIPTS ;
"ALGOL' ;

"PROCEDURE ' SINGLEREAD(VARI, VAR2 , TYPE, COLM, CHAR,Z,ALPH,NEXTCOLUMN,
NUMERICALDATA, SUBI , SUB2 ,SUB3 , ALPHANUMERICALDATA, DEFINESUBSCRIPTS,
FINISHED ,A,B,C,D,DATAINPUT) ;
'VALUE'TYPE;
‘INTEGER 'TYPE;
"REAL 'VARI;
‘INTEGER 'VAR2 ;
‘INTEGER 'COLM,Z,SUBI,SUB2,SUB3,A,B,C,D;
‘INTEGER' 'ARRAY'CHAR,ALPH;
"BOOLEAN ' FINISHED;
"PROCEDURE 'NEXTCOLUMN ;
"REAL ' 'PROCEDURE'NUMERICALDATA;
'PROCEDURE' ALPHANUMERICALDATA;
'PROCEDURE' DEFINESUBSCRIPTS ;

350.

"REAL ' 'PROCEDURE' DATAINPUT ;
'ALGOL';
‘PROCEDURE' ARRAYREAD(VARI, VAR2 ,TYPE,AA,BB,CC,DD,BNDI,BND2,BND3,
COLM, CHAR,Z,ALPH, NEXTCOLUMN, NUMERICALDATA,
SUBI , SUB2 ,SUB3 , ALPHANUMERICALDATA, DEFINESUBSCRIPTS,
FINISHED ,A,B,C,D,DATAINPUT, PROGEND) ;
'VALUE'TYPE,BNDI,BND2,BND3,AA,BB,CC,DD;
'INTEGER'TYPE, BNDI, BND2,BND3,AA,BB,CC,DD;
"REAL ' 'ARRAY'VARI;
‘INTEGER! 'ARRAY'VAR2;
‘INTEGER ' COLM,Z ,SUBI,SUB2,SUB3,A,B,C,D;
'INTEGER' 'ARRAY'CHAR,ALPH;
"BOOLEAN ' FINISHED ;
"LABEL 'PROGEND ;
'PROCEDURE' NEXTCOLUMN;
"REAL ' ' PROCEDURE' NUMERICALDATA$
"PROCEDURE ' ALPHANUMERICALDATA ;
'PROCEDURE' DEFINESUBSCRIPTS ;
"REAL ' "PROCEDURE' DATAINPUT ;
"ALGOL' ;

Zs=0:COLM:=0;SELECT INPUT(3);SELECT OUTPUT(O) ;
LLL9 : NEXTCOLUMN(COLM, CHAR,2Z) ;
'IF 'CHAR[COLM] =158'THEN' 'GOTO'LLL9;
A:=CHAR[COLM];
B:=CHAR(COLM+J] ;
C:=CHARCCOLM+2]J ;s
Ds=CHARCCOLM+3] ;
COLM: =COLM+3 ;
DEFINESUBSCRIPTS(COLM, CHAR,Z,ALPH,NEXTCOLUMN,NUMERICALDATA,
SUBI , SUB2 ,SUB3) ;
ALPH[T] :=I61;
BASI
SINGLEREAD(DSR,GRIDCOLUMNS,2,
COLM, CHAR,Z,ALPH, NEXTCOLUMN, NUMERICALDATA, SUBI ,SUB2 ,SUB3,
ALPHANUMERICALDATA , DEFINESUBSCRIPTS , FINISHED,A,B,C,D,DATAINPUT) ;
SINGLEREAD(DSR,GRIDROWS,2,
COLM, CHAR,Z,ALPH, NEXTCOLUMN , NUMERICALDATA,SUBI ,SUB2 ,SUB3,
ALPHANUMERICALDATA, DEFINESUBSCRIPTS , FINISHED,A,B,C,D,DATAINPUT) ;
SINGLEREAD(GRIDAREA,DSI,I,
COLM, CHAR,Z,ALPH, NEXTCOLUMN , NUMERICALDATA , SUBI , SUB2 ,SUB3,
ALPHANUMERICALDATA , DEFINESUBSCRIPTS , FINISHED,A,B,C,D,DATAINPUT) ;
SINGLEREAD(DSR,TOTAL4,2,
COLM, CHAR,Z,ALPH, NEXTCOLUMN , NUMERICALDATA,SUBI ,SUB2,SUB3,
ALPHANUMERICALDATA , DEFINESUBSCRIPTS , FINISHED,A,B,C,D,DATAINPUT) ;
SINGLEREAD(DSR, TOTAL6,2,
COLM, CHAR,Z , ALPH, NEXTCOLUMN , NUMERICALDATA,SUBI ,SUB2 ,SUB3,
ALPHANUMERICALDATA, DEFINESUBSCRIPTS , FINISHED, A,B,C,D,DATAINPUT) ;
SINGLEREAD(ANNUAL ,DSI,I, :
COLM, CHAR,Z,ALPH, NEXTCOLUMN , NUMERICALDATA, SUBI , SUB2,SUB3,
ALPHANUMERICALDATA, DEFINESUBSCRIPTS , FINISHED, A,B,C,D,DATAINPUT) ;
BAS2
‘BEGIN’ ' INTEGER" 'ARRAY'GRID(I:GRIDROWS,I :GRIDCOLUMNS] ;

ARRAYREAD(DAR,GRID,2,18,29,20,15,GRIDROWS ,GRIDCOLUMNS ,0O,

351.

COLM, CHAR,Z,ALPH, NEXTCOLUMN , NUMERICALDATA, SUBI , SUB2 ,SUB3,
ALPHANUMERICALDATA , DEFINESUBSCRIPTS , FINISHED ,A,B,C,D,DATAINPUT, PROGEND) ;
'BEGIN' 'REAL' ‘ARRAY 'RAIN(I:GRIDROWS,I:GRIDCOLUMNS] ;

ARRAYREAD(RAIN, DAI,1,29,12,20,25,GRIDROWS , GRIDCOLUMNS ,O,

COLM, CHAR,Z,ALPH, NEXTCOLUMN , NUMERICALDATA , SUBI ,SUB2,SUB3,
ALPHANUMERICALDATA , DEFINESUBSCRIPTS , FINISHED, A,B,C,D,DATAINPUT ,PROGEND) ;
'BEGIN' 'REAL' 'ARRAY'SHEDRAIN[I:TOTAL6] ;

ARRAYREAD(SHEDRAIN, DAI, I,30,19,16,15,TOTAL6,0,0,

COLM, CHAR,Z,ALPH, NEXTCOLUMN , NUMERICALDATA, SUBI , SUB2 ,SUB3,
ALPHANUMERICALDATA , DEFINESUBSCRIPTS , FINISHED ,A,B,C,D,DATAINPUT,PROGEND) ;
'BEGIN' 'REAL' "ARRAY 'STATIONRAIN[I: TOTAL];

ARRAYREAD(STATIONRAIN, DAI,1I,30,31,12,31,TOTAL4,0,0,

COLM, CHAR,Z,ALPH, NEXTCOLUMN , NUMERICALDATA, SUBI ,SUB2 ,SUB3,
ALPHANUMERICALDATA, DEFINESUBSCRIPTS , FINISHED, A,B,C,D,DATAINPUT, PROGEND) ;
BAS3
'FOR'Ks=I'STEP'I'UNTIL'GRIDROWS 'DO''BEGIN'
'FOR'Ls=I'STEP'I'UNTIL'GRIDCOLUMNS 'DO''BEGIN'
RAIN[K ,L] =-1;'END''END'
BAS4
'BEGIN'
'PROCEDURE' AVERAGE(VECTOR, LENGTH, MEAN) ;
‘INTEGER 'LENGTH;
"REAL 'MEAN;
"REAL ' 'ARRAY'VECTOR;
"ALGOL';
'BEGIN'
'PROCEDURE' ARITHMETICRAINFALLAVERAGE(AVERAGE, SHEDRAIN, TOTAL6,
RAINFALLAVERAGE) ;
‘INTEGER 'TOTAL6;
"REAL 'RAINFALLAVERAGE;
'REAL' 'ARRAY'SHEDRAIN;
'PROCEDURE' AVERAGE;
"ALGOL' ;
ARITHMETICRAINFALLAVERAGE(AVERAGE, SHEDRAIN, TOTAL6 , RAINFALLAVERAGE) ;
'BEGIN'
"PROCEDURE ' NORMALANNUALPRECIPITATION(AVERAGE, STATIONRAIN, TOTAL4 , ANNUAL) ;
‘INTEGER ' TOTAL ;
"REAL ' ANNUAL;
"REAL' 'ARRAY'STATIONRAIN;
'PROCEDURE' AVERAGE;
"ALGOL';

NORMALANNUALPRECIPITATION(AVERAGE, STATIONRAIN, TOTAL4 , ANNUAL) ;
'BEGIN' ;
‘PROCEDURE 'THIESSENRAINFALLAVERAGE(RAINVOLUME, SHEDAREA,GRID,GRIDAREA,
GRIDROWS , GRIDCOLUMNS ,RAIN, RAINFALLAVERAGE) ;
'INTEGER' 'ARRAY'GRID;
‘INTEGER 'GRIDROWS ,GRIDCOLUMNS ;
"REAL' 'ARRAY'RAIN;
"REAL 'RAINVOLUME, SHEDAREA ,GRIDAREA, RAINFALLAVERAGE;

'ALGOL' ;
THIESSENRAINFALLAVERAGE(RAINVOLUME, SHEDAREA,GRID,GRIDAREA,
GRIDROWS , GRIDCOLUMNS , RAIN, RAINFALLAVERAGE) ;
BAS5
'END!
'END!

'HND!

'BND!

'RND!

'RND!

'RND!

'BND

'HND !

‘END!

'RND

'RND!

'RND!

‘END!
‘END!
'RND

'RND *

+

NSO

We

Ww
e

we

te

W
e

Oe

8
80

We

ee

ee

we

ee

we

ee

we

ee

:

'END' ;
'RND! 3

PROGEND: *END';
GARBAGE
HX CO

E.D.S. SOURCE FILE IS OF LENGTH I4 BUCKETS.

354.

APPENDIX 5

Discretisation of state variables

Deterministic experiments were carried out with various

numbers of states in the same system. The data used were

‘the 42. years inflows and the demands for a maintained ‘flow

‘of 450 Sugece described in Chawesie > for the Celyn/Brenig

system. The reservoir capacities were 30000 Pusecsds ys

for both reservoirs. The objective was to minimise

- deficits, the unit deficit cost being £100/unit. Table

A5.1 shows the dynamic programming costs incurred in the
“

several cases.

«

es sip a Sin be a es ag oy ee =

No. of levels | Costs after 1 year Costs after 42 years|

in each Starting from both: | Starting from both:
Reservoir Full Empty Pe PRE. 1c. ey |

£ oe £ Z

4 0.4 1069216 © 20659 120599

6 0 976559 <2 W029, 22065

8 = - / 62 756

16 0 974008 0 0

21 G. 1073086 0 0

Table A5.1

Fig.A5.1 shows the costs for a typical case of one

year's dynamic programming. For the Siva endo systen,

it was thought that from six to eight levels in each

neue die was sufficient. However, the distribution of

the states is significant. Inspection of Fig. A5.1 shows

that the sensitive range of levels for minimisation of

deficits is from 0 to 10000 cusec-days, as would be expected.

For different objective functions different ranges would be

important. It is a cheap and efficient process to

investigate the sensitive range for a particular system

by running one dynamic program wink a relatively large

number of states and to fix the states for the design

investigation depending upon the results.

It appears, from the results of Chapter 8,

that the significant range of reservoir sizes may be

ascertained using reasonable state increments, and then,

if required, the state increments may be reduced to find

the optimum solution.

5566

J w > u 2

= Zz a
ad
oo

4 a > a <A Zz oy

4 ta
1S) o

