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Synopsis 

Tis thesis describes the application of dynamic 

programming to the design and operation of water resource 

systems, and investigates the use of a version of the 

simple user-orientated problem solving language, HYDRO, 

as developed by the author, in which hydrological and 

hydraulic procedures may be embedded. 

Stochastic dynamic programming methods are explored 

and the policy iteration technique of Howard is developed 

and applied to a two reservoir system to obtain long term 

operating rules. The author found no previous applications 

of this method to reservoir systems design in the current 

literature. 

Because of the high computing costs involved in the 

stochastic methods, the author researched into the use of 

deterministic dynamic programming applied to historical’ 

or synthetically generated inflow sequences for finding 

long term rules. 

It is concluded that the method described produces 

satisfactory results and may in fact be more accurate than 

stochastic dynamic programming in some cases because more 

reliable representations of the basic data structure may 

be used.
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Notation 

The notation is defined in the text. 

Only the main variables are repeated 

state variable. 

control variable. 

time variable. 

dummy time variable 

state transition functions. 

here. 

scalar function of cost per unit time. 

set of admissable states. 

set of admissable controls. 

function of optimum costs. 

function of values at end of process. 

objective function. 

total number of stages in process. 

stage variables. 

in the set. 

vector of inflows. 

expectation operator 

total expected cost of going to end 

expected immediate cost. 

transition probability matrix. 

probabilities. 

of process.
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4. 

CHAPTER 1 

INTRODUCTION 

The Field of Study 
  

The design of a water resources system is one of the 

more interesting aspects of civil engineering at the 

present state of the art since no precise mathematical 

formulation can yet be applied to many of the problems 

involved in the efficient management of a natural and 

uncertain phenomenon such as stream flow. Even if it 

were possible, to describe accurately the statistical 

behaviour of run-off at some point in a catchment, the 

mathematical model constructed would be so complex that 

modern computational methods would be totally inadequate 

to solve the problems with any degree of accuracy. 

Since it is not generally feasible to obtain 

the perfect answer, then some compromise must be found 

between a purely subjective solution and the ideal, but 

impracticable, mathematical analysis. At this point, 

care must be taken not to fall into the trap of expending 

excessive effort to achieve over-—precise answers to the 

parts of the problem which may be explained by mathmematical 

formulae at the cost of overlooking the fabe that the 

uncertain part of the problem should be treated with the 

most well-informed judgment possible. In this respect, 

it is better that the simpler problems be executed by 

computers in order to leave the hydrologist more time to 

consider the value of his method of approach, for no 

matter how precise his solutions may be they are still 

worthless if the wrong problem has been solved. In 

order to investigate the application of computer methods 

in water resources projects it is first necessary to



establish the types of problem involved in the design 

process. The first stage in the design of a water 

resources system is to identify the: objectives of the 

scheme. Having identified objectives one may look at 

a number of a tee iy ae which may feasibly meet them. 

To this end, some means of comparison of each alternative 

is required, a so-called objective function. If a range 

of objectives, which may be conflicting in nature, is 

required, some way of weighting the various aims to form , 

a unified whole must be determined. Alternatively, one 

can make a set of major choices on main objectives and 

sieve these through a set of minor objective functions. 

The determination of an objective function consistent 

with one's aims is of very great importance in the 

application of mathematical methods and needs further 

research. This thesis has taken the standpoint of 

finding what should be done given that an objective 

function has been defined. 

When a good description of a system, or the broad 

outline of a set of possible systems, together with some 

criteria with which to judge the efficiency of each systen, 

has been obtained, then the next step is to collect data 

defining the inputs and outputs of the system, the control 

rules and other system parameters. 

Usually, the inputs are the hydrological data sequences 

associated with various parts of Uhesetacen and the ideal 

demands on the system. The actual outputs are produced 

by operating the system and the efficiency of the system 

is a measure of the correspondence between these outputs 

and the required outputs or demands.



: 3 
Much of this thesis has been deveted to finding 

ways of using computers to assist in ire preparation 

of hydrologic inputs and the determine sion of control 

rules and system parameters for a class of systems dealing 

with reservoir: regulation. 

Ideally, the raw hydrological da’: for the catchment 

area in question should include historic records of 

rainfall, infiltration rates, groundwater discharges, 

surface run-off and evaporation rates, or records of 

the total rates of flow of streams anc rivers at the 

sites of the proposed reservoirs and 2; river regulation 

points. Although the most igporbael records are usually 

stream flows, which are, fortunately, «asy to measure 

and are therefore often available, it is still useful to 

have the other records when data analyses and data 

generation have to be carried out in order that trends 

in the components of total flow may be identified and 

separated from purer random fluctuations. However, 

assuming that records have been taken, care must still 

be exercised in their use. In Chapter 2 worle.dionb 

by the author for the Dee and Clwyd River Authority 

will be described and it will be shown that the 

existing run-off records at different points in the 

catchment areas considered had to be adjusted because 

of incorrectly calibrated flow measuring instruments 

and due allowance had to be made for changing patterns 

of afforestation during the period of record. 

A great deal of research has been carried out in 

recent years into developing sophisticated measuring 

equipment in order to obtain true records, and also into 

developing mathematical methods of analysing and 

correlating the records available, since it is often found



that long rainfall records may exist for a catchment 

but only a short total flow record is available. 

Therefore, ways must be found of estimating the 

required data from that which has been recorded. 

After records have been collected and verified 

short-term information must be extracted from the data 

in the form of unit hydrographs and return periods of 

floods and droughts must be found. These data may be 

used to decide on spillway design flows or to assess 

whether the historic record itself covers a critical 

enough period to be used in designing the system. 

The next process in design is to evaluate the demands 

and constraints which will affect the system and to decide 

the weights to be given to satisfying each demand if 

sufficient water is not available at any time to satisfy 

- all demands. As stated above, it is this area of study 

which presents the greatest problems at the present time 

since many of the constraints and demands conflict in 

their requirements. For instance, there is an obvious 

conflict between a constraint which requires that the 

level in a reservoir should be kept below a certain limit 

in order that flood water may be accommodated and a 

demand for the supply of water which requires that a 

reservoir should be as full as possible. Even more 

difficult a problem is posed when socio-economic data 

must be taken into account as is becoming necessary at 

present. This type of data occurs as recreational and 

amenity requirements such as sailing and fishing which 

demand that rapid fluctuations in resenenie levels are 

avoided. Fortunately, however, these benefits: are not 

likely to conflict with water supply requirements.
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In the work done for the Dee and Clwyd River Authority, 

the demand was assumed to be to maintain a fixed minimum flow 

in the River Dee at a point some way downstream of the reservoir 

sites considered. This meant that the actual release from the 

reservoirs varied with the natural inflow into the River Dee 

between the reservoir sites and the regulation point. The idea 

of maintaining a fixed flow might not bear too much scrutiny, 

especially if the same flow is specified for every month of the 

year, since it becomes uncertain how to evaluate the worth of 

maintaining the flow and the cost of not maintaining it. A 

fixed flow may be specified because it is easier for the 

various industries. and private concerns involved to appreciate 

how variations in the flow might affect them, but it may be 

possible to find an alternative and less wasteful method which 

would still satisfy the water users. The final area of study 

may be described as the actual design of the water resources 

system using the data available. In this part of tis problem 

may be included any data generation which may be necessary if 

the historic records are inadequate. When the data to be used 

has been decided upon then it is necessary to choose a method 

of using it to arrive at a meaningful solution to the problem. 

This thesis has looked at the application of computers, both 

i the general field of hydrology and in the particular case 

of using the hydrological data to obtain operating rules and 

optim.al designs of reservoir systems. 

1.2. Current Design Methods 

For a system consisting of more than one source, it is 

known that a greater yield may be obtainable by the conjunctive 

use of resources in a catchment rather than by their independent 

operation, but the standard methods of design are not able to
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take into account the allocation of releases between resources 

except in a very subjective manner, or for certain very special 

cases. 

The well-tried mass curve analysis of Rippl simply 

assumes that one combined source exists and a total required 

storage is calculated for the worst conditions of inflow and 

demand. Having ascertained the total storage required, the 

problem still remains of allocating the total storage between 

reservoirs and of finding an operating rule to control the 

fraction of demand released from each reservoir. 

Therefore, with the advent of multi-reservoired catchments, 

simulation of the performance of the system over a period of 

historic or synthetically generated streamflows with various 

possible control rules has been practised, the best combination 

of reservoir sizes and applied control rules being chosen, as 

measured by some kind of objective function. However, since 

the choice of control rules is so wide, generalised control 

rules, the same for several possible system parameters, tend 

to be applied, with a consequent loss of accuracy in determining 

the optimum operational policy. In the case of a new reservoir 

being constructed to add to an existing systen, it is impossible, 

with generalised, non-optimum rules, to determine objectively 

the correct size of the new reservoir, since for every size 

tried a different optimum rule will in general be required. 

It is apparent that, if the rules employed in each simulation 

are not at the optimum for that particular configuration, then 

the costs and benefits of various configurations cannot be 

compared with true objectivity. 

New developments in operational research, however, make 

it possible to find the absolute optimum rule for a system, 

and to calculate the expected costs which will be incurred by 

the use of such a rule. Hence, it now becomes possible to
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compare different reservoir configurations operating under 

their own optimum operational rules. 

The author will describe work carried out in conjunction 

with the Dee and Clwyd River Authority using simulation 

methods, and the development of a ohiieinent programming 

procedure, namely dynamic programming, and its possible 

integration into existing design methods. The work described 

in this thesis is not meant to replace simulation exercises 

completely, since the computational effort involved in dynamic 

programming is high even for a two reservoir case, but it is 

felt that for smaller projects, or for sub-systems of larger 

problems, a more efficient solution is obtained by this 

procedure than by any other method used at the present time. 

Dynamic programming allows the determination of a true 

optimum operating policy for a multi-reservoir, multi-use 

system, using general constrains and benefit functions. 

Methods such as linear and quadratic programming have been 

well-developed in recent years, but their use may lead to a 

severe simplification of the cost and bendit functions 

associated with an operating policy. 

The determination of a long term operating policy is not 

beyond the scope of these methods, but even over a fixed time 

period, a larger amount of computer time is generally required 

for their solution than for the dynamic programming procedure. 

1.3. Review of Current Literature 

A paper by Butcher (38) which describes the different methods 

of mathematical programming available concludes that the 

dynamic programming computations are simpler and less time 

consuming than the corresponding linear or quadratic 

programming calculations, whether stochastic or deterministic 

models are used, even with the one multi-purpose reservoir case.
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The various programming routines of use in water resources 

planning are briefly described in a paper produced by Larsen 

and Keckler (13) ea examples are given for the simpler cases. 

The modifications of the basic computational procedures which 

may reduce the volume of calculation in certain cases are given 

but are not always applicable. Only the methods of general 

use have been used in this thesis. 

Most of the resources operation literature is concerned 

with one multi-purpose reservoir but methods are described for 

obtaining near optimal rules for multi-reservoir, multi-purpose 

systems. 

A paper by James (35) describes a marginal analysis of 

reservoir benefits for flood control, water supply and recreation, 

which yielded a rule curve showing maximum levels to be aimed 

for each month for one reservoir case, and maximum volume alloc- 

ation between uses. He mentions that a cyclic process of 

optimising one reservoir at a time may be used for multi-reservoir 

operation. Although dynamic programming is not used in this 

paper it can easily be seen that it could be used instead of 

marginal analysis and the same method of cyclic optimisation 

could be employed for a multi-reservoir site and is basically 

the same as the successive approximations technique described 

by Bellman (10). This methodology was not adopted for the 

purpose of this thesis, but it could be of great use in 

reducing the computational requirements of dynamic programming 

when more than two reservoirs are to be operated conjunctively. 

The tendency at present is to try to achieve long term 

operational rules by using stochastic data rather than relying 

on a deterministic historical or synthetically generated trace. 

Loucks (34) shows how to set up a linear program for the
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stochastic one reservoir case using a four season cycle with 

random serially correlated inflows. The calculation produces 

steady state target lake levels and discharges but the volume 

of computation is large and the computer time involved is 

expensive. 

Lloyd (26) has considered the stochastic approach to design 

with a one reservoir case and pumped storage but does not 

consider optimising the control rule. The aim of this work was 

to assess the long term probability of failure of a reservoir 

of given size using the statistical distribution of inflows 

rather than a deterministic trace. His paper illustrates the 

technique involved in solving for steady state probabilities 

of contents assuming no serial correlation in the inflows, but 

he briefly describes how correlation may be taken into account 

and states that the probability of failure may be increased 

when correlation is considered because of the tendency for 

high and low flows to form clusters. He also points out that 

more work is required on the speed of convergence to the steady 

state solutions which may be relevant for systems of 

relatively short life. Lloyd's work concerned only one reservoir 

and the operating rule is specified so that the transition 

matrices could be set up. No optimisation is involved in the 

work. : ” 

The method of application of Lloyd's work to the case of 

serially correlated inflows for the one reservoir case is 

described by Harris, Dearlove and Morgan (27) and an attempt 

is made to investigate the significance of serial correlation 

in estimating reservoir behaviour. They carried out a steady 

state solution of a two season model assuming independent 

inflows to obtain the long term Deibabiii ties of being at 

specified reservoir levels. They then repeated the calculations
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but assuming various levels of serial correlation between 

the seasons. It was found that the inclusion of serial 

correlation may greatly increase the probability of failure, 

as expected, but the probabilities of being at the higher 

reservoir levels was not much affected by any correlation. 

The transition matrix approach of Lloyd, based on 

Moran's work, is very similar to the policy iteration method 

of dynamic programming described by Howard (12) in that a 

set of simultaneous equations describing the state transitions 

is solved, but Howard's method leads to a way of determining 

the optimum long term operating policy. In the same way as 

the steady state probabilities of reservoir levels may be 

obtained by repeated multiplication of the transition matrices 

instead of solution of the equations, Howard's value iteration 

method of dynamic programming employs multiplication of 

similar matrices in order to arrive at the long term optimum 

operational policy. 

Howard's latter method has been illustrated for a two 

source system by Schweig and Cole (17) and seems to be the 

only stochastic example of a multi-reservoir application of 

dynamic programming in the literature, apart from a similar 

paper written by Burley and Cole (20). A finite reservoir 

operated in conjunction with a limited aquifer is investigated 

in order to obtain the optimal long term monthly decisions 

describing the quantities of water to be released from each 

source given the reservoir level and whether the previous 

month's inflow to the reservoir was higher or lower than the 

average for that month. Four levels of reservoir contents 

formed the discrete points at which optimum controls were 

derived and five possible inflows with their associated
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probabilities were considered in each month. The example 

allowed for four possible combinations of releases from the 

reservoir and aquifer which constituted the decision 

possibilities. 

Schweig and Cole stated that convergence to the long term 

policy was mostly achieved in their experiements within five 

years of iteration, where convergence is assumed to have 

occurred when two consecutive years policies are the same. 

However, Burley and Cole point out in their paper that this 

might not be a sufficient test of convergence and that 

Howard's policy iteration might be required. 

Schweig and Cole mention that the transition matrices 

which lead to the optimum policy may be multiplied together 

to obtain the long term probabilities of reservoir levels and 

hence to arrive at the expected costs of operating the systen, 

which is similar to Lloyd's work. The costs may also be 

obtained by simulating the outimey policy over a period of 

synthetic or historic data. In this way alternative systems 

operating under then optimal policies may be compared, but 

Schweig and Cole state that the greatest hurdle is computer 

running time, which forces the use of large state divisions 

with the consequent inaccuracy, so that research is required 

into speeding the convergence of the policy. 

In some cases, where only one stochastic source is 

involved, efficient methods of application of dynamic 

programming may be possible. Some examples are given in a 

technical memorandum of the Water Research Association (16). 

Young (28) has described a method of using a deterministic 

dynamic programming approach, combined with regression 

analysis of the results, to formulate an annual release policy
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based on synthetically generated inflow traces for a one 

reservoir case. 

By standard statistical analysis of historical records 

Young was able to generate 1000 years annual inflow traces. 

Also, by specifying a correlation or reliability between 

any year's inflow and a forecast of that inflow made in the 

previous year, he was able to generate 1000 years of forecast 

data corresponding to the inflow trace, for any level of 

reliability. 

The first step in his methodology was to perform a 

forward looking deterministic dynamic programming calculation 

on the first inflow trace starting from same given reservoir 

level. However, conventional backward looking dynamic 

programming may be used instead and may be used with more 

generality. Having thus obtained the best policy to follow, 

based on some economic loss function, in each year of the 

1000 year record, he applied a regression analysis to the 

results. The last 100 years of the dynamic programming was 

ignored to avoid end effects. The left hand side of the 

regression function was the rule obtained from the record and 

the right hand side was a combination of the storage level & 

which this rule was chosen, the inflow, and, if required, the 

forecasted inflow for the next year obtained from the second 

trace generated. Itisa disadvantage of Young's investigations 

that the current year's inflow is assumed to be known. 

Young employed two types of economic loss function in 

his analyses. One was a quadratic loss function of the type 

Li = (7-Di)® where Li is the loss in the ithyear and Di is 

the rule, which is the amount of water to release in the ith
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year and the other was the piecewise linear loss function 

Li = 4|7-Dil. The constant, 7, represents a target release 

figure. 

Young also investigated two types of regression function, 

linear and quadratic. The linear function was: 

Di = a, t+ a, Si + aoXi + az Xitt i 

where Si is the storage in the ith year and Xi + 1 is the 

forecasted inflow for the (i + 1)th year. The a's are the 

regression coefficients. 

The quadratic regression used the same variables and 

was of the form: 

: ; , v. ae : a 
Di = a, + ay (Si- + Xi). + aXitl + az Xi+l + a, (Si + xi) + 

ac (Si + Xi) Xi+l 

Young tabulated his results in a most compact and precise 

manner, the implications of which will be described briefly. 

To investigate the errors involved in using an estimate 

of a policy rather than the population policy, Young generated 

twelve 1000 year inflow traces from the same population 

parameters, using the same reservoir size of four units and 

the quadratic loss function +o determine the linear regression 

function applicable to each. Young did not include forecasting 

in the regression for this investigation. He then routed each 

policy through a 1000 year simulation to obtain the economic 

losses involved. Different inflow traces are used for each 

simulation but Young does not say whether he uses the same 

inflow traces for the simulation as he used for the equivalent 

dynamic program, although it is implied that they are different. 

In order to compare the losses obtained to some fixed 

reference, he carried out each simulation again but using the
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standard queuing theory policy, which is to release the target 

draft if possible, to release all the available water if this 

is less than the target, and to release more than the target 

if a spillage would occur. 

Young then calculated the ratio of losses obtained by the 

dynamic programming method and those obtained from the standard 

policy. He found that the average ratio over the 12 trials was 

about 0.88 with a standard deviation of 1.05%, which is a very 

consistent result. He" then generated 100 inflow sequences 

and ran simulations with this data using one fixed regression 

function. This was intended to find the errors involved in 

using a sample policy instead of the population policy. The 

average loss ratio was again about 0.88 and the standard 

deviation was 0.17%. 

These two experiments show that the main source of error 

is in the regression function estimation. 

Young repeated the method of using a fixed linear 

regression function and 100 simulations with various reservoir: 

sizes and with several forecast reliabilities using the quadratic 

loss function. In all cases the standard deviation of the loss 

ratio was small, the maximum being 0.32% and the loss ratio 

itself showed that the regression policies gave improvements 

over the standard policy of from about 10%-30%, the larger 

improvements being obtained for larger reservoir sizes. 

Using a reservoir size of four units, Young studied the 

loss ratios obtained for linear regressions and quadratic loss 

functions with increasing forecast reliabilities. Twelve 

regressions were carried out with reliabilities from O to l. 

The results showed that an improvement over the standard policy
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was achieved in each case. Young then calculated the 

percentage improvement in losses obtained by the forecasting 

cases over the no forecasting case. He deduced that 

improvements were zero or small up to a certain bneuiothe 

reliability but after this the improvements increased 

monotonically with the increase in reliability, the maximum 

improvement achieved being 8.2% for perfect reliability. A 

study of Young's tabulated results does not show a monotonic 

increase, improvements being the same for some reliabilities 

and even falling for higher reliabilities. However, these 

fluctuations may be due to sampling errors and Young's deduction 

seems logical but more results would be required to show that , 

this is a general trend. 

He repeated the experiment using reservoir sizes of 7,10 

and 15 units, and the same type of results were obtained, 

showing that for the quadratic loss function, the dynamic 

programming method combined with regression analysis leads to 

a better policy than the standard queuing theory policy, and 

that the higher the forecast reliability the more the 

improvement. 

Young then studied the results obtained using linear 

regression and the piecewise linear loss function. He found 

that in all cases tried the standard policy was as good as or 

slightly better than the dynamic programming - regression 

analysis policy, but because of the consistent results obtained 

with the quadratic loss function, it can be assumed that the 

standard policy is optimal or near optimal and that the errors 

caused by discretisation of the reservoir levels and the errors 

involved in the regression estimation do not allow this method
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to achieve the standard policy exactly. The maximum 

difference in losses between the standard policy and the dynamic 

programming policy was 6% and the range was 2%. Further there 

does not appear to be any pattern in the differences for the 

various reliability levels. Bearing in mind the error of 6% 

resulting from discretisation of the dynamic program, it is 

possible that this method could achieve Seen better results in 

the quadratic loss case if the intervals of discretisation 

were made smaller. Since the standard policy appears to be 

the best for every level of reliability of forecasting, this 

confirms that 'hedging' against future losses is less important 

with a linear loss function but Young's statement that 

forecasting has no bearing on the policy for the piecewise 

linear loss function is only true when any spillage that occurs 

is assumed to add to the draft. When spillage is regarded as 

waste water hedging may become important. 

Using the quadratic regression function and the quadratic 

loss uddvion with a reservoir size of 10 units, Young then 

carried out five trials with varying forecast reliabilities. 

He found that no forecast case gave very little improvement over 

the standard policy but large improvement (23%-27%) with 

forecasting. Young's interpretation of this result was that 

the large improvements with fomcasting were misleading since 

the no forecast case only gave an improvement of 4%, and that 

the large improvements could be due to the addition of linear 

forecasting terms in the regression equation. He then states 

that the large values are not critical since comparative 

improvements over the standard policy using the linear 

regression function were equal to or greater than these. Hence,
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he deduced that the quadratic regression results were less 

desirable since both sets of results represented answers to 

the same problem. By inspection of Young's table of results 

it can be seen that it is simply not true that the improvements 

gained by linear regression are equal to or greater than those 

gained by quadratic regression, even within ‘sampling error'. 

However, Young's further deduction that ee tcae be inferred 

that dineen regression is as good as or better than more 

complicated (i.e. quadratic) regressionS when a quadratic loss 

function is used is probably true because the multiple 

correlation coefficients are much lower for the quadratic 

regression. 

Using the results obtained, Young plotted the percentage 

‘honey simats achieved over. the standard policy for the perfect 

forecasting and no forecasting cases for various detention 

times. His detention time was the reservoir size divided by 

the average annual inflow. He found that both curves showed 

an increase in improvements with increase in detention time 

until a ceiling was reached at 35% improvement at a detention 

time of about two years for the perfect forecast, and an 

improvement of around 30% at 2.5 years for the no forecasting 

case. He noted that the perfect forecasting and no forecasting 

curves approached each other as detention time increased and 

he concluded that large storage capability is a sufficient 

hedge against an uncertain future. 

Young also plotted the improvements of various levels of 

forecasting over the no forecasting cases against detention 

time. The curves form a skewed bell shape relative to the 

time axis. The curve for perfect forecasting reached a maximum
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of about 10% improvement when the storage was equal to the 

target draft figure and then tapered off. The decreasing 

percentage improvement of forecasting over no forecasting 

shows again that the impact of one year forecasting diminishes 

with increasing reservoir size(Sm). 

In conclusion Young states that the optimal policy is not 

necessarily the standard policy of queuing theory and the 

penalty of using the standard plicy when it is not optimal 

may be as much as 35% additional loss. Experiments indicate 

forecasting to be of value for quadratic loss functions but 

not for the piecewise linear loss function used. For quadratic 

loss, the importance of one year forecasting increases with $m 

to a maximum and then decreases. Forecasting has little 

significance for large reservoirs, but for smaller ones perfect 

forecasting can almost double the percentage improvement due 

to using an optimal policy rather than the standard policy. 

Young's work is of great use but he did not investigate 

the relationship between the policies obtained by his 

deterministic dynamic programming method combined with 

regression analysis and the optimal policies which might have 

been achieved with stochastic dynamic programming. 

Some indication of this comparison is given by the 

consistency of his results when simulating the system using 

the regression functions obtained from various inflow traces. 

However, it is believed that the results presented for this 

one reservoir case are not sufficient to show the great 

_improvements which can be obtained by using dynamic programming, 

since the optimum policy will never by very different from the 

standard policy for a water supply reservoir.
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“~The author has investigated the application of both _ 

Howard's value iteration and policy iteration methods to a 

‘ system of two reservoirs and, independently of Young, came 

to the same conclusion that the computational effort was not 

- justified in view of the inherent inaccuracies involved 

because of the gross discretisation necessary £6 eonting 

computer running time to realistic proportions, and that some 

kind of Monte Carlo deterministic dynamic Sere enmninr approach 

“is preferable when more than one source is stochastic. 

(1.4, The Objective Function 

he It has been stated above that whichever method of 

determining an optimum sizing of resources and the relevant 

operating policy is used, the performance of the system must 

‘be measured against some kind of objective loss or benefit : 

“function. Very often, though, aaiy # subjective method of 3 

‘appraisal is used in simulation exercises because the 

 -hydrologist cannot define his objectives in mathematical terms 

: but only has a basic intuitive feeling of the result required. 

.However experienced the hydrologist may be this method of 

approach is obviously open to inefficiency if not error. ‘In 

“wiew of this, and because more mathematical methods demand if, 

it is felt that as much as possible of the problem should be 

expressed in objective terms and that any part of the problem 

-.-which must still be thought of ina suede way should be 

considered only after several tentative solutions have been 

obtained using only the objective data. At least in this way 

the hydrologist will be able to see clearly what proportion 

. of his solution depends on fact and what proportion depends 

on assumptions. 

a
e
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1.5. Use co Computer Languages 

Because hydrological problems usually involve the 

manipulation of large volumes of data, the use of computers 

becomes especially important to the hydrologist in order to 

cut down the time involved in what is generally a repetitive 

and $pciious process. However, the writing of computer 

programs to carry out the calculations can become extremely 

complicated and time consuming in itself, and because of this 

the author has investigated methods of facilitating the 

communication between the hydrologist and the computer. Because 

of the successful use of simulation languages in inventory fields 

and other queuing problems it appeared that a language might 

help with the reservoir simulation problem. Properties of 

languages, and the properties of the problem were compared and 

experiments were made with the general purpose Hydro Language 

~ developed by Bugliarello (1) at the Carnegie Institute of 

Technology. Modifications to the basic language were made to 

further evaluate the possibilities since the original structure 

was not flexible enough to allow sufficient user control over 

the course of calculations, and, more important, because the 

original system contained flaws in the logic which would not 

allow it to be used in the way that Bugtarello envisaged. 

Routines may be incorporated with the language to 

manipulate raw data and convert it to a form suitable for 

reservoir regulation problems and in particular into a form 

suitable for simulation or mathematical programming exercises. 

The specialist simulation languages looked at had very 

little appeal in regard to the water resources problems 

because of the more complex data structure required in this
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field than in the industrial problems to which the simulation 

languages are applicable, and because of the greater complexity 

of decisions used in operating a water resources system. 

After a thorough study of the different levels of problem- 

orientated languages (POL'S) it would seem that the stages | 

leading up to the design of reservoirs and their operating 

systems lend themselves to efficient treatment using POL'S, 

but the actual design process would be best approached using 

only a data interface with the POL. The dal etion of a 

reservoir system and the application of dynamic programming 

‘procedures, which have much in common with simulation, are 

best carried out using a universal language, such as Fortran 

or Algol, but using the simple data structure of a system 

like Hydro or Genesis. With this in mind, the author has 

allowed for the use of pure Algol code in the Hydro language. 

A real problem was considered and current methods and 

newly developed methods of solution applied to it, and levels 

of utility of the language were defined. The applicability of 

the language in data checking, correlation analysis, manipulation 

and generation of synthetic data was found good. Once a sim- 

ulation or description of the system had been set up for the 

problem, modification to program and data are facilitated with 

a language. This can be done to some extent with an advanced 

computer operating system, such as the George 3 System used on 

I.C.L. machines, and it can be seen how new developments in 

hardware and software can corrupt work being done or render it 

obsolescent. However, it can also be seen that a system which 

remains stable as far as the user is concerned is desirable and 

languages such as Hydro can be updated to take advanage of new 

methods while the users input can remain the same.



CHAPTER 2 

THE SIMULATION METHOD 

2.1. Introduction 

At the present time the most favoured method of designing 

water resources systems and ascertaining the appropriate operating 

rules is to use simulation with either the historical records 

of flows or synthetic records. An operating rule is chosen, 

releases are made accordingly, and the consequent levels of the 

reservoirs throughout the period of records are analysed, partly 

objectively and partly subjectively to determine whether the 

system satisfies certain constraints. 

The Water Research Association have used search methods 

coupled with simulation to assist in the finding of a good 

operational plan and system configuration. System and control 

parameters are fixed and a simulation is performed, resulting 

in an overall operating cost measured by some objective function. 

The parameters are changed, in turn, to find the improvement in 

the objective function. The search methods are designed to 

prohibit backward moves on the response surface once a feasible 

move has been made. These methods are useful and relatively 

cheap in computer time when only a few system parameters exist, 

but complicated control rules and configurations might lead to 

excessive computer running times. 

It is felt that systems might be unrealistically over- 

simplified if designers attempt to use these methods in all 

instances. As an illustration of the simulation method, the 

author will describe work carried out in conjunction with the 

Dee and Clwyd River Authority over a period of about twelve
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months for the determination of the optimum sizing of the 

proposed Brenig Reservoir in North Wales, and for the deduction 

of a suitable operating policy for the allocation of releases 

between the Brenig and the other major source in the systen, 

Llyn Celyn.



Cele The problem 

Figure 2.1, shows the River Dee and its major tributaries, its two 

regulating storages at Llyn Tegid and Llyn Celyn, the amounts and 

locations of the principal abstractions for public water supply, and the 

location of the principal river Dee gauging station at Erbistock. 

Releases to the river are controlled by sluices at Bala; as these are 

downstream of the Dee / Tryweryn junction, the sluices control not only 

the level and flow from Llyn Tegid (Lake Bala), but also the flow from 

the Tryweryn, releases to which are in turn controlled by outlet valves 

at Llyn Celyn. 

Since the existing reservoirs in the area are used to regulate the 

river Dee in order to maintain a prescribed minimum flow upstream of the 

Erbistock gauging station, the yield obtainable by construction of Brenig 

reservoir can only be measured in terms of the increase in maintainable 

flow which is obtainable at Erbistock. The preparation of the data 

“necessary for the determination of the behaviour of the system for various 

prescribed flows is described below.
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Zed Brenig catchment 

The proposed reservoir site is situated on the river Brenig, and has 

a catchment area of 20.2sq.km. This catchment area does not include 

Llyn Bran, which periodically overflows into the Brenig headwaters, or 

the stream diversion at Pant-y-Maen taking water from the Brenig 

catchment into the river Clwyd area. Measurements of these two flows 

since January 1968 show that the net effect is small, and amounts to an 

annual outflow of 3 cusec day. The I9I6-1950 annual average rainfall 

over the catchment area is 1308 mm and the average discharge is 

0-539 eumecs. 

The discharge from the river Brenig, measured at the Pont-y-Rhuddfa 

gauging station, was recorded from 1922 until 1968 (Table 2.1.) by the 

Birkenhead Corporation and later the Wirral Water Board, until the Dee 

and Clwyd River Authority assumed responsibility for its operation. 

Checks on the theoretical rating curve for the gauge revealed that the 

curve underestimated the true flow by 0 to 15% at flows less than I.5 

times the average discharge and flows greater than 10 times the average 

discharge, and consequently the data in the surface water year book series 

will give underestimates of daily, monthly and annual flows with the 

percentage error depending upon the individual flow distributions. 

However, for several reasons, it was decided that the recorded data would 

suffice for yield calculations without anmmendment. 

Firstly, the flow data required for yield assessment should be 

representative of flows which would occur when a large reservoir exists 

in the catchment area. The evapo-transpiration losses from a large 

reservoir would exceed similar losses from a heather and moorland area, 

leading to a reduction in the total runoff from the catchment area, and 

hence the flows required for design purposes should be less than the



true historic flows. 

Secondly, the increasing afforestation of the Brenig valley with evergreen 

conifers will have enforced a gradual change on the rainfall /runoff 

relationships for the river, and because of this it is likely that 

evapo-transpiration and interception losses have been gradually 

increasing over this period of years, and will probably continue to do so 

until the trees reach maturity. 

Thirdly, analyses of the losses from 1922-1955 showed certain 

inhomogeneities in the Brenig runoff data, the issue being confused by 

progressive changes in land management from 1922 onwards. 

Consideration of these points reveals that the underestimation of 

discharges in the historic record is qualitatively compensated for by the 

fact that the data are to be used to represent a catchment area with 

diffemt land use and increased evapo-transpiration losses.



24. Erbistock data 

Daily discharges have been recorded at the Erbistock gauging station since 

October 1937 but the measured flows differ from the natural daily flows 

which would have occurred if there had been no interference with the 

ives and its tributaries. Therefore, the measured flows have been 

adjusted,as described below,to allow for the historical increase in 

control of the river, in order that the natural daily flows could be 

estimated for the purpose of deriving the effective aeloAses required, 

over and above the compensation water, to maintain the prescribed flows. 

The Alwen reservoir is a direct supply reservoir operative for the whole 

period of the Erbistock record. However, it is assumed thé during low: 

river flow periods, when regulation water el oebal are required, the 

compensation water is equivalent to the natural flows from the Alwen 

catchment area, and that no adjustment to the Erbistock measured flows on @ 

daily basis is warranted. 

Upstream of Erbistock, abstractions are taken from the river by the 

Llantysilio Canal Intake and the Fron Pumping station, which commenced 

opetation in 1959. Monthly total abstractions from the river were 

converted to daily means for each month for which abstraction data existed 

(from October 1950) and the daily means were added to the individual 

measured daily Erbistock flows. For the period 1938-1950 the mean daily 

values were estimated as being 0.31 ewmec (Jan. Feb. March. Oct. Nov. 

Dec.), 0-34 cumec (April. May) and 0.43 cumec (June). 

Another factor which affected the historical Erbistock record was the 

flow from Llyn Tegid (Bala Lake). Prior to 1956 the lake level fluctuated 

naturally with the discharge through its outlet at Dee Bridge, and was 

marginally adjusted during dry periods by the Canal Company to provide
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slightly increased outflows. No adjustment for these effects was made 

to the Erbistock recorded flows for this period. As a result of the Bala 

Lake works, completed in 1956, the outlet of the lake was reduced and the 

ewe level controlled by sluices ; under the operating rules during 

spring and summer, lake retention levels were increased to provide 

regulation water for maintaining a prescribed flow of 28.9 ewmecs at 

Erbistock. Although individual daily flow corrections at Erbistock were 

not readily calculable for this period (1956-1964) an approximate monthly 

adjustment to effective releases during dry summer months when regulation 

water was being released from storage can be made. 

After the construction of Llyn Celyn which was completed by Autumn 1964 

and commenced refilling at that time, it was impossible to adjust 

measured Erbistock data other than on a daily basis and this was a 

laborious task of questionable accuracy. The only justification for this 

effort would have been to derive data for the dry summer of 1969, but in 

terms of total runoff at Erbistock the July to October dry period was 

comparable with several other years already included in the 1938-1964 

data period ; it did not represent an event of the order of a I% or 2% 

critical period. Accordingly, effective release data were cdculated on 

estimated natural Erbistock flows for the period 1938-1964 only. 

The quantity of water requiredto be added to the estimated natural 

Erbistock flow in order to maintain the prescribed flow was determined 

for each day and these daily values were summed over the calender months 

to yield the effective release data. In deriving these data it was 

assumed that perfect regulation, or addition of exactly the right amount 

of water, was possible. Monthly effective releases for various 

prescribed flows are given in tables 2.3. to 2.7. 

The effective releases are only the releases required in addition to the
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natural flows at Erbistock, which include Brmig and Celyn runoffs, 

since the compensation water releases from Brenig and Celyn are assumed 

to be equivalent to the natural runoffs from these catchments in dry 

periods when regulation is necessary. 

For a simulation, the longer the record of flows available, the more 

accurate will the yield calculations be. However, the existing record 

of Erbistock flows and the deduced effective releases cover only the 

period 1938-1964 (table 2.2.) but analysis of the nearby Lake Vyrnwy 

runoff record from I9I0-1964 (table 2.9.) showed that no less than 7 of 

the 8 most severe droughts lasting 8 months were recorded before gauging 

started at Erbistock, and it is therefore essential to estimate the river 

flows as far back as possible in order to derive more reliable estimates 

of the behaviour of the reservoirs in individual or concurrent dry years. 

Since the Brenig runoff record was the longest, being measured since 

I922, it was decided to try to extend all records back to this time, so 

that simulations could be carried out with over 40 years data. 

It was first necessary to estimate the individual monthly runoffs at 

Erbistock 3; regression equations of the form : 

Erbistock runoff = A Vyrnwy runoff + B Brenig runoff 

(cusee days 103) (ins ) (cusec days 103) 

were estimated as follows 3: 

Month a 3 
January 0.6125 53-59 

February 5.2878 21.23 

March 3.9386 31.08 

April 74610 0.00 

May 2.9984 32.9461 

June 4.2195 21.8247
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July 4.0388 21.9383 

August 2.7318 33.8980 

September 3.6645 27.3745 

October IT.4315 44.3067 

November 2.8295 35-4793 

December 4.8350 2201213 

These equations gave good agreement between generated and recorded runoff 

data from 1937 to 1964 at medium and high runoffs, but they tended to 

consistently underestimate Erbistock monthly runoff during dry months. 

To improve the accuracy of the generated data, in all cases where the 

above equations forecast a monthly Erbistock runoff of less than I0000 

cusec days a revised equation relating Erbistock runoff to Brenig runoff 

only was devised ; 

Erbistock runoff = 83xBrenig runoff 

(cusec days 103) (cusee days 103) 

The generated data, incorporating this revision where required, are given 

im: table.2.il. 

Since regression analysis yielded very poor results for determining 

effective releases from the Erbistock monthly flows another method of 

estimation had to be employed. The effective releases corresponding to 

the generated Erbistock record and their daily flow distributions within 

individual months, for use in pumping calculations, were obtained by 

replacing the individual months in table 2.II by the most similar month 

in the measured Erbistock record 1938-1955. 

The procedure used in selecting these months was as follows ;
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ae Take Erbistock predicted monthly runoff from Table 2.II. for (say) 

April 1938 : 9.95. 

be Select April runoff from Table 2.2. closest to 9.95, 

i.e. April 1946 (9.81), ensuring that previous months runoff (March 

1946) in Table 2.2. is not grossly dissimilar to that of March 1938 

in Table 2.II. 

Ce If no suitably close April record existed in Table 2.2. use the best 

record in either of the adjacent months (March or May) in Table 2.2. 

d. In autumn, during the month when a drought breaks, baste is a very 

poor guide to effective release 3; the modified selection rule in 

such cases is 3 

i. If predicted Erbistock runoff for September, October or 

November exceeds 10000 cusec days and if predicted Erbistock 

for the previous month is less than I0000 cusec days then 

selection must take account of previous month's effective 

release. 

ii. Find from Brenig daily flow records at what time the drought 

broke midway through the month, and if this is +, 4%, or $= way 

through assume that effective release is 25%, 50% or 75% of the 

effective release for the previous month 3; use Table 2.5. for 

comparing effective releases and select a suitable month from 

Table 2.2. 

The revised synthesised Erbistock record is made up of months from Table 

2.2. selected as described, and is itemised in Table 2.12: the 

corresponding runoff record is given in Table 2.13. and its comparison 

with recorded annual runoff data for the period 1938-68 is given in 

Figure 2.3. The graph highlights wide deviations from recorded data in 

the years 1957-1960 which suggests over recording of discharges, a 

possibility supported by water balance cdculations in those years.
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However, apart from these years (1957-1960) there is agreement between 

synthetic and measured runoffs to within + 40,000 cusec days, 

approximately I0% of the annual average. 

The months specified in Table 2.12. by the use of Table 2.5. corresponding 

to a prescribed flow of 400 cusecs at Erbistock, are used for the other 

prescribed flows tried out in the yield calculations. 

The effective releases for a maintained flow of 400 cusecs, derived from 

Tables 2.12. and 2.5. are given in Table 2.143 the comparison of 

synthesised and recorded effective releases is given in Figure 2.4. 

This shows a standard deviation of : 4000 cusec days in the accuracy of 

individual annual effective releases, which is notunreasonable considering 

the difficulties in synthesising accurate annual effective releases. 

Figure 2.5. shows the comparison of the cumulative probability 

distribution of annual effective releases ; the synthesised 1939-64 

data compares acceptably with the recorded 1939-64 data, and the final 

mixed record to be used for simulation purposes (1923-38 and 1956-64 

synthesised, 1939-64 measured data) is also seen to have a similar 

probability distribution, erring on the conservative side. 

The final combined synthetic and recorded Erbistock record is therefore 

made up as follows : 

1923-38 : synthesised data 

1939-55 : recorded data 

1956 - 64 : synthesised data 

The tables giving this data are as follows : 

Table 2.15 : Erbistock monthly and annual runoff (cusec days 103) 

Table 2.16 : Erbistock monthly and annual effective releases, 

maintained flow 400 cusecs. 

Table 2.17 +: Erbistock monthly and annual effective releases,
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2056 Celyn data 
  

Runoff from the Llyn Celyn catchment area hasbsen measured since September 

1962 ; the reservoir commenced filling in September 1964 and since that 

time natural monthly runoff has been deduced from releases, bpamsreh) cual 

and catchwater inflows. The calculated monthly gatawer runoffs are given 

in Table 2.8. For the purpose of simulating the performance of the 

reservoir system over any historic data period it is necessary to 

estimate the monthly runoffs from the Llyn Celyn catchment area assuming 

that a reservoir existed in the catchment 3; the chosen method of extending 

the Celyn record back to 1923 is that of correlating the Llyn Celyn 

runoff record for the Sarl od 1962-1968 with the Brenig runoff record in 

Table 2.1. and the Lake Vyrnwy runoff record shown in Table 2096 

The regression equations obtained were of the form ; 

Celyn runoff = AxVyrnwy runoff + BreBrenig runoff 

‘) 2) (cusec days I0 (ins) (cusec days I0 

and the values of A and B for various months were : 

Month aC 20: B 
January 0.654 41.298 

February 0.691 

March 0.759 -I.242 

"April 0.410 +1.909 

May 0.659 

June 0.785 

July I.303 =4.153 

August 0.744 

September 0.634 

October 0.760 

‘November 0.688 

December 0.076 +5510
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However, using these coefficients it is possible to obtain negative 

runoffs in March and July ; a further regression analysis was performed 

for these months using Vyrnwy only, which yielded coefficients of 

A = 0.634 and A = I.03 respectively. a2 Gt. 

The monthly runoff data generated from these equations are given in 

Table 2.103; the comparison of the generated and recorded data is good, 

but this is to be expected because of the limited amount of recorded data 

available for Celyn. 

As an addition to the Celyn flows as calculated above, a further 8% of 

the individual flows was used to allow for inflows to Celyn from the 

Hesgin catchwater.



2.66 The Design method 

Using the data as obtained above, a computer program was written to 

simulate the behaviour of the Brenig and Celyn reservoirs over a period 

of forty years, with specified monthly operational rules. 

The required retention levels for Llyn Celyn and the statutory 

compensation releases for both reservoirs were stipulated. 

Since the required maximum storage for the Brehig reservoir was not known, 

an arbitrary high figure of 100,000 cusec days was used. The use of such 

a figure allowed spillage but did not allow the reservoir to run dry over 

the period of record. The size of the existing Celyn reservoir was 

31859 cusec days. 

Various control rules were tried for each prescribed flow in order to 

achieve the best sequence of levels over the period, so that the 

reservoirs were not drawn down for long periods of time or to ensure that 

one reservoir was not empty while the other was full. Also, large, rapid 

fluctuations in the reservoir levels were not desirable in view of the 

proposed use of the reservoirs for recreational and amenity purposes. 

For the Brenig/Celyn system, it was obvious that more water could be taken 

from Celyn than Brenig in the normal operation of the reservoirs, since 

Celyn has approximately five times the annual inflow of Brenig, but, 

bearing in mind the amenity use of the reservoirs, it was thought that the 

percentage contents of each reservoir should be equalised as far as 

possible. 

The first tentative rule to be tried was to treat Brenig as a reserve 

storage and hence take all effective releases from Celyn unless Celyn fell 

to the dead storage level of 5259 cusec days, when the remainder of the 

effective release in any month would be taken from Brenig.
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Analysis of the resulting levels showed that at the higher prescribed 

flows the contents of the two reservoirs were not in balance and that 

there was a sudden switch over from use of one reservoir storage to the 

other in the middle of a year. 

Consequently, it was decided to make use of Brenig storage more 

frequently in order to equalise the drawdown in the reservoirs. 

It was known that a total of approximately 5600 cusec days of storage 

could be released from Brenig during the spring and summer seasons and 

that this would gorse y be replaced during the autumn and winter months 

when high precipitations occured, so that it was decided that from March 

to September the first 700 cusec days of effective release in any month 

would be taken from Brenig as long as Brenig was not overdrawn by 5600 

cusec days. In order that Celyn would not be drawn down to dead water 

level before large releases were made from Brenig, a threshold level in 

Celyn, below which a fraction of the demand would be taken from each 

reservoir, was applied. Because Celyn refills much faster than Brenig, 

the threshold level could not be too high or loss of water by spillage 

would have occurred. Therefore, several levels were tried out in the 

range of I0000 to 20000 cusec days of storage in Celyn for the various 

prescribed flows. 

From the simulations, it was possible to construct graphs of return 

period against total combined storage depletion in the reservoirs for 

each prescribed flow, as shown in Figure 2.2.(a) 

Log. i. 

——> 
Netw — 

period 

  

ORE Prescribed Flow 

Fig. 22; (t)
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Extrapolation on these graphs yielded the total depletion and hence 

required storage, for a return period of once in one hundred years, for 

each prescribed flow, (Fig. 2.2 (b)). 

It was assumed that before 198I a major decision would be taken by the 

regional planning authorities coricerning the development of the River 

Dee, and so it was decided to construct as a possible first stage a 

reservoir at Brenig which was capable of supplying the water required for 

regulation only as far as I98I. 

Between 1975 and 1978 an increased flow of 50 mgd will be required and 

between 1979 and 198I an increase of 73 mgd. 

From the graph of storage required against prescribed flow an increase of 

50 mgd in the prescribed flow wuld require an active storage of 21000 

cusec days at Brenig. Since the average annual inflow to Brenig would be 

only 6500 cusec days, a reservoir at Brenig with a storage much greater 

than about 20000 cusec days could not be constructed and refilled before 

I975. Therefore, it was decided that a reservoir of active capacity 

21000 cusec days, capable of maintaining an increase in prescribed flow 

of 50 mgd at a risk of I% over the period 1975-1978 would be constructed 

at Brenig, and the required increase in flow of 73 mgd between 1979 - 

I98I would be supplied at a risk greater than I% for two years, until a 

decision had been made either to increase the size of Brenig reservoir 

or to supply the demand from another source. 

The control rule applicable to the two reservoirs for an increase in flow 

of 50 mgd was found to be to take all effective releases from Celyn until 

the level fell to I4000 cusec days when two thirds of the effective 

releases would be taken from Brenig. 

Deeseddently. Binnie & Partners developed a daily simulation model for 

the system and it was found that this monthly policy was still applicable 

with minor modifications.



 
 
 
 

 
 

 
 

 
 

 
 

 
 

  
  

  
 
 

 
 

  
 
 

 
 

 
 

 
 

  
  
 
 

 
 

 
 

 
 

  

 
 

 
 

 
   

 
 

  
  

  
  

 
 

 
 

  
  

  
  

   

 
 

  
  

  
 
 

  
 
 

  

 
 

 
 

 
 

 
 

    
 
       

  
 
 

  

  
 
 

 
 

 
 

 
 

 
 

 
 

    
  

 
 

 
   

    
  

  

“| 

< 
' 

. 

: 
{ 

. 
i = 

i 
: 

2) 
' 

5 
1a 

‘ 
fase) 

fos 
kgs? 

S 
2 

z 
. 

i 
nom 

ee 
: 

oe 
FE 

ot 
“9 

O°}: 
{ 

* 
. 

\o 
te 

: 
cay 

"° 
a
 

. 
j 

. 

|
e
 

Pe 
e 

23 
q 

ie 

< 
a
r
y
 

i 
G 

foes 
: 

3 
: 

5 
i 

: 
- 

i 
3 

g 
= 

m
o
 

: 
: 

ee 

2
 

< 
. 

se 
m
e
 

a
:
 

i 
“
N
D
 

a
 

3 
pee 

gq 
3
 

2 
‘ 

ee 
T
a
e
 

i 
rt 

| 
e
y
 

roe 
: 

o
e
 

S
h
e
.
 

i 
e
e
e
 

o
e
 

=
i
 

ee. 
‘ 

e 
a
 

a 
+
 

i 
: 

i. 

= V} 
e is 

j 

: 

0 
ee 

2 
bo 

SEAT 
Ts 

geen 
: 

: 

Dbice] EPEC U% 
sme" vase 

fae 
a 

ee 
ete 

ee 
" 

gasNoy 
AYANNY 

nOIsIgvg 
aautsvay 

SoG 
e
e
e
 

eo 
e
l
e
 

o
e
 

ei 
ee bee 

Stet 
By 

jaae 
mys 

i 
p
e
e
k
 

ia 

 
 

 



 
 

 
 

    
 
 

 
 

  
 
 

- * 

- Freane: ra a 

WILL T 

TH ad amet es een = Somme, gees 

AO29 were: 

      + 
. 

DSTI NSS 

  

  OFF 4 \ | 

2. P49 

  

ELLOS re. 

of THe PRE 

Od 

Ss 
ao 

 
 

MET Aart 

CHR ISTOLL EFFECTING RILTASES | 

ic tae 

  
    

SisCb E#SISTOCK 

PE DICT 

  
on 
aes 

 
 

ROR 

fi 

i 

t 

BE 

YAVHe Tt 3 

AT Frings ce ene 
’ 

ereigon of - Con   LAND Hedevers ANY 
— - 

      

 
 

@. coef ae Beas ke 
es 

 
 

  
  

got 
& 
T
A
V
 

A+ 
DDicDd 

JAMLIT 
II” 

TUANNY 
“s20uS19ya 

| 
 
 

 
 

an 
eS 

he 

é 

f 

a 

ty 
Gn 

“el! 

es I mood 

Crasuncd 
- et 

DATA: 
oR 

, 
s ~ 

DATA” 

“A AMT OITO Flor oF 

He8s 
= bande 

8 
> 
2 

 
 

bee 

1% 

“We 

a 

\ 

sits 
j 

BE 

So aca op atin nc ag See 

EQTIVE. RF 

 
 

rat 

  

ANNUM 

ie de 

 
 

    

dires 

SOCK, \ 

= 

=2 

re 

+ 

\ 

qs 

SED C 

ao 

  

o 
- USYRTHE 

 
 

 
 

   
 Sheets 

  
 



42. 

 
 

UT RUNZ ‘ Com 

mm 
N
e
t
i
 
a
l
a
 

| 
' 

QISE 

    

10 
20 

30 
40 

50 
60 

70 
30 

30 
95 

V
e
e
b
o
b
d
i
h
y
 

A
 

caval ty 

0.0% 
0.05 

0.1 
0.2 

0.5 
i 

2 
s 

 
 

+
i
—
+
—
~
 

99.8 
99.9 

 
 

Gis Fig.



Table 2.1. 

Measured Monthly Runoffs (cusec days *I000) - River Brenig at Pont-y- 
  

  

  

  

Rhuddfa 

Year | Jan.| Feb | Mar Ap. May Jn Jy Aug Sep! Ock | Nov | Dec Anal 
1922 Lot 

1923} ~78|1.74| -61 | «15 |.80 |.22/.09| .29}] «51 /1.52 |1.32/1.13|9.1G 

L924) 295) 2234 024 1-533. [oe 71 6511030) 686 (1.04) 90) 4661718) 7.92 

19254° 205 1655 | 45) 033038 1.19) .04)] .05| 653) 2951 27211 .201 7.25 

I1926/1.20| .60| .50| «12 |.39 |.12|.48] .33] .62] .75/1.42| .42/6.95 

1927| -97| «46/1.20|] «51.24 |.45| -AM/I.24 |I.O1/1.25/1.34| .37/9-44 

1928/1271 (Tedd) 232) 281.13: |.44) 231} .18}| .18/1.32/1.98) .78) 9.07 

1929] 45} «29| eIl| +07 )+I44.07} -0O5) «39| -I7| .92/1.47| 2.06} 6.19 

I930|1.54| .4I] .66|] .68).18].07| .37| 89] .64/1.26/1.48/1.20/ 9.38 

I93I| .96/1.03| .34] -7I}-52/.60] -I2| .94] .99] .29/1.49] .58/ 8.57 

193211630 <4) «36/1-08).51 | EL) .37'|°.38]: .6345.354%..67|: «TE Fe 12 

1933). 2091 hh) 214}. -sIl| -I0)<27| .15| «06) <O5] 234) 2.36) 021) 4019 

I934| .87) 15] -49] ~«30/-48).10] .05] .25] .II| .94| .88/1.20| 5.82 

I9SS) «1612.17 | 46} ..552| 216-1623] .201 07 051 |1.65/1.37| .74| 7.84 

1936|1.23| .68/I.II|] .48|.27|.89|].512] .16 0°49] .53/1-34/1.20} 8.89 

1937] +97 |1I.13|1.38| .91}.18|.12|}.08] .04] .04 eI5] .22] .65|5.87 

1938/1225) -40| .27| .121.08|.54| 2471} 223 015 |/I.19/I.04/1I.01| 6.75 

1939 )1-93| +71] +97) +41] «23 |-14) 81 | .33 | 208] .33/1.36 °94/ 8.24 

I940| 223] .86] .67| .41/.36|.10/.13| .06]| .20] .80/1.66 °54| 6.02 

I94I| .38|1.67/1.02| .38].2I |.16|.06| .23 | .II| .81 63] -70/6.36 

1942} .86] .88] .53] .48].18].10|.14] .50 239} -65| .28/1.05|6.04 

194311s28}, 694) <I5} «I7} 263 1-231 .20:] 24 -93| .78| .73| .61|6.79 

1944 /1.18] .44| .36] .20].10|.18].15 | .08 °77 |T.05/1.70|1.20|7.41 

£945 | «082 11.23) 227) «42:/'.38 I. 341219 #09 | T4118) 025) «8315.73 

I946 |T.E2 |E458 |. 234) Ie |.IT}.48).14 -69 | .90] .26/1.07|1.18|7.99       I947|I-05] -13/1.84| .83/.46].16|.1I | .05 | .05] .04 094] 57/6223                       
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Year | San | Feb| Mar] Ap| My | In| Jy | Aug! Sep] Oct} Nev} Bed Ann} 

1948 |2.27 | .88 | .18 | .36 |.09 |.43 |.15 37 683. 43? t-eO6 | 093 [Todd 

1949} .99 | .32] .50 |.85 |.22 |.15 |.06 | .13 | .04 | .72 |L.05 [1.53 16.56 

1950] 45 {1-27 | -45 | -63 |-25 |.07 |.08 | .38 [[.36 | .78] .95]| .99 17-66 

I951j1I.0L | .87 L-L5-|.62 645 |.13 |.07 | .33:| 63 | 24 |L.61 1.47 (8.58 

1952 11.09 bal | 425° 122010 33.4,08 1204) .O7.| «41 10) 6721 297 16.03 

1959 fae 34 $265.) «24> | 43 19 fel 7 Lek? | cadd | 6.) +225 | 688) «34 14.51 

I954| -55| -73 | -64 |.27 |.45 |.39 1.35 | 81 | 41 |[.60 |I.55 [1.18 [8.93 

F955 10 15 164394 wOl feCl WOO [233010 | 204] 204 | SIT [eed 1067 (add 

I956| 296] .2I | .43 |.I9 |.II |.06].31I |[.15 | .58] .55] .30| -75 15-60 

1957| -97 | -87 | .42 |.I2 |.II |.04 |.30] 1.05 /[.05 | .66] .74] .58 16.91 

1958 905 1635 1033 |e T2035: 1033 1-37 | 354 | 08) 84 49 | .43 16.88 

1959 |Le374 «17 | 227 | -87 [31 |.10/214 | .05 | .03 | 230] 87 [2-45 [5.93 

1960 |1.54 |L.OI | -46 |.43 |.10 |.05|.07 | .16 | .83 | .88 |I.72 |I.18 |8.43 

196115507 | .87 |.-I8 | £36 [248 |.06|.17 | 32 | «17 | 288] 64 |L.07 16.27 

1962 (1053 |.260 | 23.) -66 |.33 |-II |.07.| «40 | «52%: .28|. .80 1]. .8T 16.34 

1963 | -13 | .08 [[e2T |.62 [6386.1.54/.31 | .15 | -32]| .38|1.42} 227 5.80 

1964) «22 |. 27 | -58 |.20 je28 |.IO|}.1I| .21 | .I2| .48] ~AI |I.81 4.79 

1965 |1-49 | «27 | -63 |-54 |-40 |.28|.29] .16] .95| .49] .67 |2.16 8.33 

1966} .56| .83 | -46 |.80 |.29 |.14|.14| .53] .30] .86 .93 I.69 17.53 

1967) +55] «84 | .47 |-29 [69 114|.08| .16 | .49 |1.87} .98 Teal Teo 

1968 |I.60} «38 |*.62 |.39 1665 (.22/.61| .12 | .80] .97| .76| 6117.72                              



Erbistock Gross Monthly Runoff (cusec days x 10 =p 

  

  

Year Jan Feb Mar Ap Hay Ja ay Aug Sep Ock Nev bec 
  

37 

38] 63.54 

39] 93.56 

40| 27-42 

41|19.44 

42/39.94 

43| 73-62 

44| 66.62 

45] 34.98 
46| 56.68 

47| 76.54 
48|22.51 

49} 63.69 

50} 31-49 

51] 58.59 

52] 69.79 

63) 2la5t 

54) 35-31 

55| 43-21 

56| 60.45 

OL wage 

58 60.14 

59| 89.75 

60| 96.04 

| 61| 63.46 

62| 80.51 

63| 17-83 

64) 15.85 

651101 .09 

66| 35-34 

67| 36.89 

68] 85.28 

69| 58.71     

27.96 

39-49 
56.27 

68.94 

37-50 

60-57 

26.74 

86.38 

106.58 

10.10 

59.80 

23.42 

82.35 

55.61 

38.95 

39.65 

47-74 

29.85 

Litas 

68.80 

79.49 
13.61 
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57-57 

39.87 
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bs ha fo | 
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Aete 

28.60 

3.59 
15.87 
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I4.62 

38.85 
3599 
A.AT 

39.06 

74.61 

73.89 
2.68 
AZLTG 

14.67 

34.95 
20.014 

Ag. o7 
39.60 
16.89 
33-00 

37.68 
le Aas 

5.30 

59 «93 

14.07 

29-55 

32255 

40.60 

40.96 

56.28 

39.87 

Coat 

4.81 

20.92 

43.69 

46.97 

13.00 

56.63 

20.32 

99.67 

12.34 

37-63 

49 235 

71.64 

23-07 

54.13 

52095 

Loe53 

26.28 
28.22 

28.43 

20 6k8 

02.77 

47.71 

8.62   

I2.71 

60.91 

70.03 

27.82 

13.92 

36.89 

83.82 

Tec 

71.81 

46.13 

42.47 

44 16 
64.23 

eae [5 

23-74 

51099 

25-37 

52 «44 

II5-77 

39-33 

23-34 

46.89 

34.91 

69.43   

38.68 

54.28 

59-58 

95-36) 37-11 

35-76 

52.89 

54.53 

73-65 

38.92 

10.67 

36.38 

40.35] 56-07 

62.10] 85.23 

Doel 

92.08) 83.51 

55+53 

21.58 

98.85] 86.09 

45.57 
61.13 

66.30 
35.37 
T6537 

14.43 
39.90) 64.91 

51.80 

90.26 21.37 

Ir5.66 

36.00015.94 

45-00] 88.35 

Ot. 32 

42.05 

58.94   
  

Oct. 1937 to Sept 

Oct. 1950 to Sept 1953 : 

Post 1953 

1950 : Surface Water Year Book Data with additional 

correction for Canal and Alwen Reservoir. 

correction for Alwen Reservoir. 

s Surface Water Year Book Data 

Surface Water Year Book Data with additional 

 



Table 2.3. 

Effective Release (Cusec days) 

Prescribed Flow — 300 cusecs. 

46 ° 

  

  

                            

Near|Jan| Feb} Mar} Ap May| In| Sy Aug | Sep Oc | Now| Sec} Jotal 

38 2348/4390] 270] 24 —{1037| 44 “ «1° 8,253 

39 I02T|2226| 12 48 |2026|I411I - =~ | Oy pae 

40 | 72 - -| -| -]/2360]/1630 |] 4208|2571| 374 -| - {11,215 

4l I3| 2633 1631 5392 | 2290|3130| 908 | 44] - |16,04I1 

42 6 -| 57 |1788|1182| 2630 -| 29 ~ =| tm | 5,692 

forte *7.4..9 1 T0538) SOT, Ses 284 Ses af ae S50RT 

44) -| - hr = SI EOL TTD: 59 | TGA ee Se ey A TAD 

45| -| - |, 198 me 35 3053. 597 | 470 12 ae A het 

46) - = -| 658] 3156 -| 469 Me + mf “ — | °4,283 

47 | -| 252 -| -| -| 138] I7Z | 4130 [4986 4344 1096 | - |15,117 

48 | - - 6 -|1869| 133] 267} 499 -| I4 - - | 2,788 

ar me om -|1373 |1742|5489 | 2630 |5347 |2760 ee - {19,341 

60.4 oe -| 337|3768|1388 | Ir18| —| <= -| - | 5,6II 

SI] - - - - ~ {1792 | 4893: | 2357 -| 427 < - | 9,469 

52} -| -| - |} 208] 57I]1704|4257|1770| 706} - -| -| 9,216 

53 | -| -|817 ole: =) 9S) 54] 22B LL Hf Os -| - | 1,300 

54} -| -—1|. =| 328] 962 -| - -| =| -- -| -| 1,289 

55| -| -| -]| 59] -| -|1726 | 5368 |se75|1671 | 38 | 168 |14,305 

56) ~ 1-140 — | 990 }2300 |}3452) 915 = ~ - = Ts Tet 

57} -| -| = | 980}1831 1/1362] 214 mf | ao -| =| 4,387 

58 | -| -|600 /I9I0| 996] -| - -| -| - -| - | 3,516 

Pe A ig = - * -| 474] 775 | 1188 |5556|3743 “ mid TLglte 

60 | -| -| =| 4121/2874 |3749|3082 | 1200} -| - -| - |II,316 

61 | - - | 794 35 |I104 |4816|356I | 744 | 460} 144 - -| II, 658 

62 | -| - |396 -| 400 |1261|3740 | 1092 -| 516 -| -1| 7,405 

63 | — [L085 | 145 -| 124 ]1953| 531 | 1186 | 408] 400 -| -| 5,832 

64 |15} 94 - | 261) 709} 2493] 2339 | 2589 |33II| 569} 164 - | [2,544 
   



Table 2.4. 

Prescribed Flow — 350 cusecs 

Effective Release ( Cusec days ) 

  

  

                            

Year| San Feb) Mac | Ap | May | dn | Sy | Aug |Sep | Oct] Nov dec] Total 

38 r= + - | 3398/5188 | 656] 162 -|2235| 94 =|) =lII, 733 

39 - “ ~ -|1949 | 3598 62] 286|3376 |2061 “12 ~ (bbs ooe 

40 | 342 + ie -| TI] 3751} 2440| 5657/3445] 524 -| ~{16,230 

AI - -| =| 2102/3883 | 2494] 6942] 3070|4201 |1258| 84] -|22,034 

42 - | II5 - | 248/2777 | 2046| 3730 45| 142 -| II6] -| 9,219 

43 -| -|2080 |1377} 102 T| 945]. T9r 8 ~[ cp | ey TAS 

44] -| -| 75 | 325/2724 | 1345/ 1300] 3115} -| -| -| -| 8,884 

45 * ol ae t OUT. SS 60} 908) 4503 |1259 |I212| 233/147] 8,966 

46 rs - | 1475} 4545 -| 1006 ~ -| 95) 201. =) 1,149 

47 -| 674 9 = -| 493) 465) 5451|6457|5894/1546} -|20,989 

48 -| -| 103 92|2926| 233] 634] 872 -| 159 -| -| 5,019 

49 “ a ee 99}2558 | 2482} 7039} 3713| 6847 | 3610 =| =[26,370 

50 -| -| - -|I020| 5118] 2010] 337 - -| -| 8,485 

51 " 2 = = -| 2942] 6443} 3527 -|1069 nfs 13,981 

52 - -| 62 | 662/1273 | 2844} 5728] 2663/1518 ~ -| -|14,750 

53 o S11 553 I8} 66] 363} 430] 600] I7] 256 a. st 34aee 

54 “i -| 994 | 1824 * 3 - - ~ -| -| 2,821 

55 Hie — tees > Peep. Fe -| 2782 | 6918 |6775 |2373 | 368} 439/19,920 

56 -| 376 - | 2138|3490 | 4950| I512 - - - -| -|12,466 

Dt - _ - | L714 |2732 |-2424] - 291 - oa = eck 4 Ted 1h 

58 -| -| 600 | 2938/1366 - - -| -| -| -| -| 4,904 

59 reek dans Shee -| -| 1094/1613 | 1906/7056|4696| -| -|16,365 

60 fy eh = |" $35143137 508514137] 1924) - | =| =| 155,994 

61 -| -|I604 | 133]/ITII | 6316|4767 | 1093] 970] 583 -| -|I7,177 

62°| -18 -/II68 a1 347 | 261415290 | 1542 -| 927 -| -|II,796 

63 — |2035| 341 -| 324] 2971} 729 | 1767] 604} 400 -| IB} 9,299 

64 | 325] 370] 94} 810|1072| 3927/3142 | 3676|451I| 869] 528] -|19,324 
   



Table 2.5- 

Effective Release (cusec days) 
  

Prescribed Flow 400 cusecs 
  

48 e 

  

  

  

Year| Jan} Fe] Mar} Ap [May | Jn | Jy | Aug| Sep] Oct] Nov| dec | Total 

38 e 60 | 166/4495| 6698 |I158| 416] 367|3631| 144 = ~ LLU sks5 

39 - = - -| 3275 |5036| 196] 950|4861| 2801 x mri | ABTA DIRS, 

4@ | 1866} St Sh ©] 4651522913332|7107|4367; 970| =) — 22,876 

41 | 372 = -| 390] 5133 |3484 | 8492 |3954|5367/1650| 217 IO | 29,068 

42 1 ie -| 543|3866|3074| 4830] 347] 408 TES ~ | 13,965 

43 = ~ |3339 }2139| 476) 85|1767) 850 = " _ - | 8,655 

44 * - | 315] 9821/3974 |1964 | 2324/4449 = s = - | 14,008 

45 - -| 224|1106} 267) 384/1748)5953|1904| 2117) 965 | 247 | 14,915 

46 - - -|2519 | 5981 -|1693 - -| 327| 210 = «| 10, 130 

47 —|1569 | 281 * - | 1199 | 1096: 6901 | 7957| 7444] 1996 - | 28,443 

48 - -| 510} 362/4271| 382|1154|1332 -| 451 - - 8,462 

49 rs -| I9T| 317|3858 |3247 | 8589 | 4893 | 8347| 4460 _ - | 33,902 

50 = - - -|I70I |6468|2728] 738 ~ - - - | 11,635 

51 - 4 - -| 514143 |7993|4727 -|1897 rT - | 18,811 

52 ~ —| 201 |128I |2067 |4149 | 7228 | 3594 | 2540 - - - | 20,960 

53| r03| -|2455| 208] 389] 847] 84/1085] 18r| 640] - =| 6,782 

54 22 . - |1703 |2830 = 0 ne = = > - | 4,653 

55 = - -| 663 = —|3914 |8468| 8275 3207 I040 834 | 26,401 

56 -| 722] 33|3448/4773 |6450|2358 me 2 = - - | 17,784 

57 = - — |2690|3792 |3576| 441 - ~ ~ -| 247 | 10,746 

58 el oe 705 |hORR IT IG) | 2 | eee eT 6B 6a788 

59 -| 192 74 - 9 }2208 |258I |2907 | 8556/5696 ~ - | 22,223 

60 = = -| 750 |5768 |6525 |5424 |2872 - - - ~ | 21,333 

61 - - |2482| 333|/2419 | 7816 | 6039 |I471/ 1697|1273 - - | 23,530 

62 82 - 12220 -| 787/3712|6840 | 2150 29/1597 ~ Se leLilig 4 

63 15 |3075| 541 -| 538/4128|1056/2471) 971} 400 -| 407 | 13,662 

64| 966| 630] 426/1613|/1768| 5418] 4051] 4937| 5740| 1169 | 1008 ='4 275726                              



Table 2.6. 

Effective Release (cusec days ) 
  

Prescribed Flow 450 cusecs 

49. 

  

Feb 
  

                            

Year Mac | Ap | May | Jn | Sy] Aug] Sep] Ock} Nov} bec} Total 

38 21 | 244} 593 |5641| 8248]1725| 885) 667|508I} 194 - - | 23,299 

39 - - — | 120]4646 |6503} 446|1319 | 6361 |3651 ~ - | 23,046 

40 | 2127 - -|  -|1055|6729| 4438] 8657 | 5367 1241 ~ - 29, 614 

4I 930 = - | 710} 6383 |4544 M0042] 4929 | 6615 }2097| 577] 99 | 36,926 

42 _ 143 136 | 979|5004 |4174| 5945) 727} 750] 34|1358 - | 19,850 

43 ~ -|4716 |3017| 996] 245] 2667| 1500 -~ - -| - {13,141 

44 ~ -| 568 |1860/ 5338 |2665] 3460} 5800 - ~ - - | 19,691 

45 - -—| 715 |I736| 773| 842|2794| 7403 |2554 |3084 |1788 | 394 | 22,083 

46 * ~ ~ 13727 | 7459 =| 2651| If2 ae) TSE, 540 - | 15,243 

47 - 2650] 567 - — |2016) 1663} 8425 |9457 |8944|2446| 34 | 36,202 

48 ~ -|II69 | 780|5709| 532|1948]1783| 58] 822 - ~ | 12,801 

49 -| 81} 430] 591|5203 |4I1I0 [0139 6175 9847 |5310 - - | 41,886 

50 13 - * -|2505 |7853 3535 1288 r . 3 - |} 15,254 

51 om vs my -| 351 }5401)| 9543} 5940 ~|2850 = — | 24,085 

52 + —| 485 [2089 | 2935 |5299| 8765] 4560 | 3604 S = Led 

53 | 328 - 13473 | 497} 829 |1636|1248/1619| 481 |1269 -| 106 | 11,486 

54 | 134 rs + 2aa9 t39L7)| 51) 520 =| Te A ra mele: Tea 

55 - - 3 |II56 I - 3064 fOO18 9775 14159 |1608 |I1278 | 33,062 

56 — |[242| 224 |4884 | 6085 | 7950] 3313 -| 14 - - - | 23,712 

57 * * — |3790|4919 |4787) 591 ee | -I7|>, 22:5 587 | 14,723 

58 - — |1003 |5596 | 2166 - - - - - -| 432 | 9,197 

59 - | 862] 140 2} 203}2241| 3663} 4097 [0056 |6696 -| -| 27,960 

60 - -| 35 |III6|7294|8015| 6724] 3972] 20 - -| -| 27,176 

61 ~- — 13452] 609 | 3192 |9316| 7359] 2123 |2736 |2100 - - | 30,687 

62 | 196 1/3466} 23|1378}5062| 8390} 2800] 98/2410 ~ - | 23,824 

63 | 313 |4420|] 741 -| 818/5328/ 1497] 3316/1465) 439 -| 834°) 19,172 

64 | I79I |II99| 952}2509] 2615] 6918} 4934] 6237] 7038] 1511} 1518 - | 37,222 
   



Effective Release (cusec days) 

Table 2.7% 

Prescribed Flow 500 cusecs 

506 

  

  

                            

Year | Jan | Feb|Mar | Ap | May| Jn | Jy | Aug] Sep] Oct) Nov decl Total 
38] 105} 494]1127|6840 |9798] 2325] 1215] 1167] 6549| 244 -| -| 29,864 

39 ee - -| 486/6046} 8003] 696] 1694] 7861] 4585 -| 68] 29,439 

40 | 3118 -|  - — |1886| 8229] 5634/1207] 6408] 1671 -| -| 37,153 

4I | 1668 - - |1093 | 7633] 5660/I1192) 6021] 8886] 2542/1108] 307] 46,110 

42 -|II63| 411 |1479 |5628| 5336} 7110] 1283] 1236} 178] 2458 -| 26,282 

43 - -|6260]4003 |I601| 445] 3609] 2341 ~ - -| -| 18,259 

44 - -| 953 |2882 |6767] 3615] 4610| 7200 - - -| =| 26,027 

45 -| = |1433 |2515 |1392) 1398} 4054] 8853) 3254| 4128|2732| 460] 30,279 

46 - ~ -}5113|9009} 87/3764) 481 -| 1298] 1078 - | 20,830 

47 -|3980 |L067} 39] 0} 3019] 2479] 9975|10957|10554| 2896| 266 455254 

48 - - 2146 |1438}7259| 761} 2990] 2325] 130] 1247 -| -| 18,296 

49 | 275| 724] 939/6557| 5067111689) 7475/1 1M7 6160 o =. ee oe 

50 | 267) Agr 25 — |3441] 9260] 4477} 1953 “ = a - | 19,467 

51 = rv -| 44/1049} 670111093] 7190} 41} 3923 a - | 30,041 

52 ~ - |1047 |3068 |3856| 6589|L0315| 5656] 4733] II -| =| 35,275 

53 | 164 -|4588 | 939 |1423] 2736] 1844] 2226] 829] 2047 -| 326] 17,572 

54; 369|> 42 - |3227|5033} 339} 1041 -| II6 “ - | 10,167 

55 -| 50} 64/1738] 51 -| 6215 | 568|11275] 5337 2228)1728 | 40,254 

56 —|21I4} 624 |6384|7484/ 9450} 4313] 70} 267 at ae =| 305755 

51 - a - |4992 |6191| 6037) 741 “ ~| IL7| 149/1237 | 19,464 

58 - - |1446 |6046 |2568 - - - - -| 70} 922 | 11,052 

59 -|1779 | 499} 90) 621) 3691} 4851} 5479/11556| 7696 - - | 36,262 

60 - —| 183 |1529 |8844] 9515} 8056] 5172] 107 ~ - - | 33,306 

61 - — |4541 |1033 |4051 0816] 8709 | 2650} 3697] 3000 - - | 38,497 

62 | 394] 75/4806 | 40/2004] 6417] 9940] 3498] 257] 3509 -| 65] 30,905 

63 | 987]5920] 941 —|I184] 6528] 1947| 4287] 2015] 580 -|1480 | 25,769 

64 | 2712/1916 |1683 [3504 |3515| 8418] 6055] 7581 8387 1926] 2068 -| 47,765 
   



oa Table 

Llyn Celyn Inflows 

(Cusec days x 10 3) 

$1. 

  

Near Jan Feb Mac Ap May on Sy os Nov 
Annu al 

etal 
  

62 

63 

64 

65 

66 

67 

68 

69     

0.56 

1.75 

7.83 

3675 

3.64 

9.01 

5.02   

0.40 

1.21 

0.78 

6.08 

3°39 

2.16 

2.56   

6.84 

1.72 

2.96 
3-05 

2055 

6.16 

2.61   

3.83 
T.53 

2-83 

3-83 

1.58 

1.56 

262 

3423 

2.90 

2.60 

2093 

4.29 

2.60 

2695   

2.48 

0-79 

2.61 

3-02 

0.91 

I.68 

1.44     

1.96 

2 3 

Beet 

I.60 

I-75 

2-43 

0.44   

2.33 

1.91 

2527 

2.12 

2.65 

0.84 

I.39   

3.91 

2.50 

1.31 

4.07 

2.24 

4.85 

4.05 

0.89   

ith 

3.24 
3402 

2245 

3.62 

Il .62 

5-48 

IT.4I   

3.48 

8.15 

3.56 

4.69 

1.34 

.22 

3+45/13 96 

4.54 

3.42 

2057 

6.41   
9-48 

7-42 

2095 

5°05   

36-86 

33-75 

48.08 

46.26 

50.07 

41.49 

32-79 
   



  

Table 2.9 

Lake Vyrnwy runoff record I9I0-1969 
  

  

                      

Year] Jan| Fer| Mar | Ap | May | Jn | Sy | Aug} Sep Nov | Dec 

IO |6 .05| 8.96 |3.47] 3.14|1.52/1.25|/2.42/5.52|0.84 5.54] 9.50 

II | 2.93] 5.07]3.15|2.82|1.81/1.04|0.26)/1.31|2.42 8.73] 8.27 

I2 | 5.87] 4.42 |8.54| 1.19] 0.44|2.85/4.08|7-40|1.24 5.36/11.90 

I3 | 3-42] 5.00/8.71| 6.20| 5.37] 3-26|0.30|0.73|1.28 6.60] 4.96 

I4 | 7-65] 8.80]7.86] 3.20] 2.59]0.63 |1.69| 3.54 |1.87 7.84|12.45 

I5 | 8.89] 9.25/3.54]1.93]2.01/0.2I |1.36] 3-44 /0.50 3.95/12.38 

I6 | 8.87] 6.25|3.74| 4.28] 2.38/1.79 |2.04/1.16|2.23 402| 4.43 

IF} 36354) Ts 7513-95) 3-321 2-30)1.7010<50h1 «4913013 5.58} 3.23 

I8 | 6.63] 8.47 |2-I1| 2.23| 2.10] 0.73 |2.92/0.92|41.4 4.45|I.12 

I9 | 6.84] 3.80|6.73| 5.05|1-79|0.53|0.20/1.57|2.64 2. -O8/IT.47 

20 | 9.70] 7-72 |6-I1| 8.23| 5-80|1.30|7-42| 2.83 |1.71| 2.92|4.03| 7.06 

2I |10.85] 1.04] 6.82| 1.63] 1-20] 0.29 |0.34|/4.00|1.57| 3-10} 4-20] 9.25 

22 | 7.82] 8.54/5.23| 2.78/1.50| 0.61 |4.52|2.56| 3-93] 1-50|3-.57| 7-76 

23] 5.7I/IL.77|0.58| 2.98] 4.68/1.37 |1.32|6.15|5-51/10.40] 6.00] 6.75 

241] 6.96] 0.98/2.58| 3.61] 6.74| 3-67 14-35] 5-53 [5-99] 7-34] 4.83] 8.77 

25 | 8.63|I0.34/3.13] 2.58] 3.75/0.66 /0.22/1.46|2.88] 7.31] 3.64] 7.22 

26 | 9.79] 0.96/3.10|1.75|2.82/1.71 |3.19| 3.61 |2.62| 5.39 10.51] 1.68 

271 6675] 4-25] 5-58] 3-17/1-39|4-44 }3-06/8.56|4.94| 3.82] 8.05] 2.76 

28 |T4.21/10.26| 3.88] 2.67] 0.59 | 3.89 |2.79|4.40|1.15] 8.061B.94] 5.03 

29 | 3.14] 1.98/1.01| 0.58| 2.59 |1.23 |0.52/4.73 |1-37| 7-50/3.30|14.20 

30 |IO.OI| I-71] 3-56| 4.03] 2.43 |1.18 |3.12| 5.04 |5.67] 8.52| 8.78] 7.48 

31 | 6.51] 7-72/1-97| 4-40] 4.83] 4.85 |1.22|5.27 (2.68) 1.53 /1.80| 3.82 

32 |II.91| 0.49|3.14| 6.22] 3.88] 0.66 13.44/1.34|4.97| 8.33] 4.98] 4.57 

33 | 5-44] 6.45]5.98]0.96/0.83/1.02 |2.02|0.37|0.21| 3.07] 2.19] I.2T 

34 | 8.61] 0.75/5-03| 2-85] 3-33 ]0-94 |0.29 |2.46 | 3.06] 7.39] 3.36/1D. 60 

35 | 3.20]9.80|2.86| 5.09] 0.73] 3-31 |0.95|0.33 |6.72/10.64| 7.49] 5.06 

36 | 8.28] 3.16]5.02]2.71/0.94 | 3.36 |6.69 |1.57 |4-68) 4.17] 8.00] 8.86 

37 | 9.2819.77/5-41]3.72/1-10|1.86 |I.O1 |0.45 |0.59| 1.52] 2.14] 6.16 

38 |II.77| 3-14|2-.39]0.71|1-.51 14-77 (4-31 13-75 |0-98/1L.94/ 9.48) 6.59 

39 |II.67| 5-91|5-.69]2.57/0.93 (1.25 [8.73 (2.45 |0.77| 1-89 (IL. 65] 6.94 

40 | 1-57] 7-7514-94|4-08/1.95/0.43 |I.61|0.43 |2.50| 7.6115.15] 5.93 

AI | 1.60]9.67]5.05|2.31|2.76]0.99 |0.49 | 3.58 |1.45] 6.82| 4.68] 6.08 

42 | 6.07| 3-92|3.92/4.83|3.79|0.78 |2.0 14.51 |3.34| 6.47) 1.29] 6.62 

43 |II.48| 5.89/1.29/1.87/5-37| 5-36 [2-84 |4.28 16.54) 5.38] 4.41] 4.16   
   



  

  

  

              

Year| Jan} Fe Mac | Ap | May | Jn | Sy [Aug | Sep Oct |No | Bec 

44 | 9.69] 3.15] 1.63 |/1.67|/1.34)/2.77/2-57/1-24| 5.90 9.5611 .64/] 8.28 

45 | 6.26(10.87| 2.55|3-75|3-26|4-93|2-24|2.15| 3.93] 7-03] I-13] 7-20 

46 | 9.97(12.47| 3.13|0-77}0-64|4.20|/1.61 5.89] 8.78] 2.37/1.37| 7.26 

AT | 7+32| 0-79/14.18| 6.09] 3.00/1.85|2.01|0.46 0.81] 0.67] 8.44] 5.88 

48 |L7.76| 7-33) 3-14] 3-09 |1.50|4.97}1-80| 5.85] 4.72| 2.90] 5.17 6.90 

49 | 5.80] 3.43] 2.49|6.46/2.80|/1.96/0.21 I.18] 0.51] 7.92|9.0910.61 

50 | 3-58/IL.52| 4.27] 4.21 /1.74}0.68] 4.20/6.90[1.30 4.86] 6.05] 4.69 

51 | 8.03} 6.94] 7-33]5-14]2.31/0.90/0.73 3.83] 5.73/1.70/2.30/1.38 

52 | 7-27] 4-55] 3-80] 2.09] 2.33/1.70/1-.07/2.77| 2-050. 33} 4-39] 7-03 

53 | 2.40] 4.64 4.08|3.84|2.30|1.99|5.17| 3.42 5.86] 2.47} 9.78) 2.75 

54] 4.49] 6.00] 5.74)2.44 2.81 | 3.95|4.09|4.79| 6.90/14. 61/1. 79} 9.22 

55| 5.42| 3.30] 4.27]/2.68/7.24|4.79 | 1-21 |0.33| 0.39] 1.85] 3.58] 7.63 

56] 8.74] 1.37| 3-33}0-92/1.22|0.97 3.86| 7.13| 4.93] 4.10] 2.96] 8.42 

57 |IO.I1| 7-45] 6.89 0.86/1.53/0.53|6.22|6.60 8.63] 6.15| 4.50| 5.57 

58| 7.23| 9-33] 2.24/1-58|5-81|3.06/2.75/4.27| 8-83] 5.05] 2.49] 4.89 

59 | 8.60) 1.12] 3.38 5.29 |1.20/1.20/2.82|0.75| 0-19] 4.92 6.45}14.92 

60 |10.23} 7-80] 3.91} 4.38/0.87]1I.00] 3.43] 4.21 5.66] 6.69|13.61| 9.86 

61 | 7-90] 6.56} 1.49} 4.82] 3.34 0.58/1.02|3.66| 3.32] 8.61] 6.04] 7.87 

62| 9.81] 8.2T| 2.26} 8.07| 3.17}0-87| 0.94] 6.74] 5-30) 2.29) 4.91 6.25 

63| 0.85] 0.61111.30] 5.67] 4.33/2-56 O6AS |e c6l| 3.63|- Jel 4heseT eee 

64| 2.32] 2.25] 3.34/3.03/3-69/1.42/2.44)1.34 I.60] 3.94| 4.972114.88 

65| 9.16} T.31] 4.95/3-63|4-14/4.29|2.40/2.54 5.651 3-38) 5eT LS. 71 

66} 4.60] 9.19] 4.13] 6.35/4.15|2.35/1.71| 3-25} 3.04 4.81) 6.26/11.53 

67 | 4¢51)- 7.26] 3.78/}2.34/7-L7/1.12|1.80/ 4.13 7.80|I5.32| 4.06] 7.79 

68 |10.44| 2.75] 9.10/2.82/4.12/2.31] 3.92}1.55 781} 7-50] 4-41| 5,11 

69 ef SL 3D! 4.85|4.03|5.49|}1.85/0.61|I.01/ 1.31 - - ~           
  

  

D360



Synthesised Llyn Celyn Gross Natural Monthly Runoff (cusec days x 10°) 

Table 2.10 
54 

Note — Based on linear regressions (calculated by computer from the over- 

lapping data period Set. '62 to Sept.69) relating Llyn Celyn (1000 cusee 
days) with Lake Vyrnwy runoff (inches) and Brenig runoff (I000 cusec days). 

  

  

                          

[Yeaq Jan | Feb | Mar} Ap |May| Jn | Jy | Aug | Sep] Ock] Nov] bec} Ann Total 
10] 4.99] 6.19| 2.08] 2.02 |I.00|0.98/2.35|4.11|0.53|1-99| 3.61|7-59| 37-64 

II} 2.46] 3.50|1.89| 1.82 |I.19]0.82|0.25]0.90/1.53/3.5 6.01/6.61] 30.56 
I2| 4.84]/3.05|5.13]0.77 |0.29| 2.23] 3-95] 5-51 |0-79|4-30 3.69/9.5I| 44.06 

I3} 6695]3-45/ 5-23] 3-99 |3.54] 2.56/0.29|0.54/0.81]3-09] 4.54} 3.96] 38.95 

I4| 6.31 ]6.08/4.72|2.06 |I.7I 10.49 |1.64 |2.63 [1.18 0.84] 5.3919.94| 42.99 

15] 7-33 16-39 |2el2|1 024 |L29210.16 |1-32:12-5610.32 ts 161 2.72 19190). 36, 74 

I6| 7-32]4.32/2.25|2.76 |L.57 |1-40 |1.98 (9 .86 |I.4I 18.56] 4.8313.54| 40.80 

I7| 2.75 |I.18|2.37|2.14 0.86 |I.33 [0-85 [5.57 |1-99 |5-75] 3.84/2.58| 31.2 

I8| 5.47|5.85|1.27|1.44 |1.38]0.57 |2.83 [9 .68|7-27 14-84] 3.06/8.89] 43.55 

19] 5-64 /2.63|4.04]3.26 |I.18]0.42 |0.19 |I.17 |1.67 |I-83| 2.81/9.17| 34.01 

20] 8.00/5.33|3-67|5.32 [3.82 /1.02|7.19 [2.14 |1.08 }2.22| 2.77/5.64148.19 

21] 8.95]0.72|4.09|1.05 |0.79 |0.23 |0.62 |2.98 |0.99 [2.36] 2.89|7.39| 33.06 
22] 6-45/5-90|3-14/1.79 |0-99 10.48 /4.67 |1.90 |2.49 |I.-14| 2.46|/6.20| 37.61 

P3 | 4-74 |8.13 |1.96|/1I.51 |3.08/1-07 |1.35/4.57 |3-49 17-98] 4.7416.74| 49.36 

24| 5-78 |0.68|1.66 [2.11 |4.44 |2.88 |4.81 |4. 11 {3.80 |5.58] 3.321717] 46.34 
25] 6-74 |7-14 [1.82 |1.69 |2.47 |0.52 |0.12 |I.09 |1.82 [5.56] 2.50/7.22| 38.69 
26] 7-96 |4.8I |I.73 |0.94 |I.86 |1.34 |2.16 |2.69 |1.66 [4.10] 7.23|2.44| 38.92 

27] 5-67 |2.94 12.75 (2.27 |0.92 |3.48 [2.33 16.37 [3-13 16.71] 5.54/23 | 44.36 

28 |II.5I |7.09 |2.55|1-63 [0.39 13.05 [2.22 [3.27 10-73 [6-13] 9.59 14.68] 52.84. 
29 | 2.64 |I.37|0.65]0.37 |I-70|0.96 |0.86 | 3.52 |0.87 [5-70] 9.1512.43] 40.22 
30 | 8.54 |I-18 |I.88|2.95 |I.60 |0.96 |2.66 | 4.19 [3.59 |6-48] 6.04]7.18| 47.25 

31 | §.50 [5.33 [I-07 | 3.16 [3-18 |3.80 |1.87 |3.92 |1.70 |I-16| 8.12|3.49] 42.30 
32 | 9.58 |0.34 11.94] 4.61 |2.56|0.52 [2.95 10-99 [3.15 16.331 3-43/4.26| 40.66 
33.4 4.71 [4.46 |3.6210.60 [0.55 10.80 |2.01 |0.27 [0.13 |2-64/1.51|1.25| 22.55 
34| 6.6 |0.52|3.2T|1.74 [2.19 |0.74 [0.17 [1-83 |1.94 |5.61| 2.3117.42134 44 
35| 3.08 |6.78 |1.60/ 3.08 |0.48 | 2.59 |0.42/0.24 | 4.26 |8.09] 5.15/}4.46] 40.23 

36 | 7.0L [2.18 |2.43 {2.03 |0.62 |2. 64 16.60 |I.17 [2.97 [3-17] 5-5017-29 | 43.61 

37 | 7632 16-75 [2-39 [3-26 [0-72 [1-46 [1.00 |0.33 [0.37 [L-15/1-47|4-05| 30.27 

38 | 9.32 |2.17 |1.48}0.52 |I-00 3.74 |3-70|2-79 |0.62 19.08] 6.52/6.07| 47.01 

140 [0.13 14.08 |3.08/1.83 |0. 61 |0.98 [8.00 |1.82 |0.49 |I.44| 8.02]5.71| 46.19 

AO | 1.32 15-35 12-92] 245 [1-28] 0.34 11-56] 0-32 (1-58 15-79 10-42| 3.43] 36.76 

AI | 1.54]6.68/2.57/1.67|1.82]0. 7810.39] 2.66 |0.92/5.19| 3.22|4.32| 31.76 

‘142 | 5.34|2.71 |2-32| 2-89/2.49| 0.61 |2.12| 3.36/2.12 14.92] 0.89/6.29| 36.06 

43 |:9.0414.07|0.79|1-09| 3-54] 4-20|2.83| 3-18] 4.15]4.09] 3.03] 3.68] 43.69     
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Table 2.11 

Erbistock monthly natural runoff from, regression 

equations with low flow modifications* 
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fable 2.12 

Erbistock synthesised record 1923/68 made uv of selected 

historical months e.g.for March 1923 in the synthesised 

record use March 1946 J 
  

  

Yas} SD E. M A M a mf A Ss oO N D 

23| 1.55| 2-46 | 3-46 | 4.54 | 5-54 | 6.41 | 8.45] 8.39] 9.54 | 11.44) 1.49 |12.39 

24| I.5I| 2-47 | 3-45 | 4-45 | 5-55 | 6-43 | 7-38] 8-54) 9-43 | 10-44 |IT. 43 12.46 

25| 2.51] 2.45 | 3-46 | 5.40] 6.45 | 5-54] 7-49] 8.55) 9-41 | 10.44 )11.43 1.38 

26| 1.52] 3-41 | 3-46 | 4-52 | 6-43 | 6.52 | 7-53] 8-38) 9-48 | 10.42 )11.44) 1.41 

27| 1.46] 2.55] 3-51 | 4-54 | 5-41 | 6.48] 8.38] 9.46/10.50 | 9.46)12.46 12.53 

28] 2.46| 2.50 | 3-46 | 4.55 | 5-39 | 6-48 | 7-43] 8-43] 9.52 | IT.39 2.46] 1.55 

29| 1.40] 3.44 | 3-43 | 5-38 | 5-41 | 6-40 | 7-41} 8.39] 9.52 | 10.52 |II.44 1.48 

30! 2.45] 3.45 | 3-55 | 4.50 | 5-49 | 6.50 | 8.42] 9.43 |10.43 | 11.46 |12.46] 1.48 

31] 1.46] 2.43 | 3.48 4.42 | 5.47 | 6-55 | 7-42] 9-43 |10.43 | 10.51 |II.51| 1-45 

32| 2.45] 2.47 | 3-42 | 4-49 | 5-47 | 7-42 | 8-42] 9.45) 9.51 | 11.46/11. 43 12.47 

33| 2.54] 2-51 | 3-54 14-46 | 5.46 | 6-42 | 7-42] 8.55] 9-55 | IL.55/11-45 jI1.4e 

34|12.42| 2.47 | 3-55 | 4-55 | 4-45 | 6-51 | 7-51] 7-50] 9-52 | 10.52 |IT.43| 1-47 

35| 1-55|12.44 | 3-46 | 3-55 | 5-49 | 5-50 | 7-47] 8-47|10.49 | 11.44 |T2.44) 1.55 

36] 1-43] 2.55 | 3-41 | 4-41 | 5.41 | 6.54 | 8.54] 7-75] 9-51 | 9-48/IT.46 12.46 

37] I-5I| 1-43 | 2-43 | 4-54 | 5-41 | 6-41 | 639 | 7-49] 9-49 | 9-40 /IT.42 |T2.de2 

38| 1.43| 2.44 | 3-45 | 4.46 | 5-46 | 6.54 | 7-54] 7-43] 9-40 | IT.39 |IT.49 |12.50 

39] 2.46| 2.54 | 3-41 | 4.55 | 5-44 | 6.42 | 8.50] 7-43] 9-41 | 10-45 |II.44 |12.52 

40| 2.47] 2-48 | 3-54 14-50 | 5-51 | 6-51 | 7-45] 8.55] 8.51 | 10-50 /11.54 |12.45 

4I| 1-53] 2-45 | 3-39 |3-44 | 5.52 | 6.42 | 7.52] 9-45] 9-38 | 10-45 |IT.43 |T2.55 

42|12.42| 2.39 | 3-50 |3-40 | 5.53 | 6-52 | 7-55] 8-46] 3-42 | 9-53 |10.39 12.48 

43| 1.52|12.42 | 2.47 |4-44 | 5.55 | 6-48 | 7-47] 8.53 {10.42 | 10.43 [11.48 j12.41 

44] 1.52] 2.38 | 3-45 [4-43 | 5-48 | 6.44 | 7-48] 8-47] 9.53 | 10-38 11.40 [12.46 

45| 2-54] 2.50 | 3-53 [4-48 | 4.54 | 6.48 | 7-46] 8.49] 9-52 | 10-40 |IT.42 2.38 

46| 1.44] 1.39 |3.42 |4.38 | 5.44 | 6.48 |7-42| 8.54/10.44 | 10.51 |1I.53| 1.38 

47| 1.38| 2-47 | 2-46 14-49 | 4-40 | 7-45 | 6-41 | 8.55] 9-55 | 9-49 10.45 |1e.55 

48| 2.46] 2.40 |3-45 14.54 | 5-46 | 6.54 17-42] 8.46] 9.44 | 16.43 |II.43 [12.38 

49| 1.46] 2.44 | 3-42 |3-39 | 5-52 [6.42 | 7-41 | 8.41] 7-49 | 10.49 |IT.53 |Le.54 

50| 1-40| 2.45 | 2-55 [4-42 | 5-49 | 6.40 | 7-43 | 8.46] 9-46 | 10.43 |12-50 [12.55 

5I| 1.46| 2.40 | 2.43 |3-40 | 4-41 | 6-41 | 6.50} 8.38] 9.53 | 10.39 |II.-40 [12.49 

52| 1.38] 2.39 | 3-42 [4.44 | 5.51 | 6.39 |7-49| 8.47] 9-42 | 10.38 /II.43 12.48 

53| I-41] 2.52 | 3.42 14.48 | 5.49 | 6.49 | 7-38] 7-48] 9-54 1C.39 T0304 1 oe 

54| 1.50|12.55 | 4.51 [3-45 | 4-54 | 6.38 | 7.38] 8.54] 9.53 | II.51 jII. 51 jl2.44 

55]12.55| 2-44 | 3-40 | 4-39 | 5.49 | 6-48 | 6.51] 7-49) 9-49 | 9-40 10.46 |12.42] 

56] 1.46] 2-47 | 3-49 | 4-44 | 5-44 | 7-52 | 7-43] 9-46] 9-44 | IT.4T 10.48 |12.48 

57| I.5I| 2-40 | 3-40 | 4-46 | 5.39 | 7-49 | 6.54 |10.44] 9.46 | 10.45 II.48|12.45 

58|12.42] I-47 | 3-53 | 4-44 | 5247 | 5-50 | 7-43] 8.46/10.44 | 10.43 10.46 |12.43                         
  

 



  

  

                        

Yer} J F M n M s x As 1 Oo N D 
59| 1.47 | 2-47 | 3-52 | 4-51 | 5-49 | 6.52 | 7-48] 8.55 | 9.49/10.39/12.42] 2.46 

60|I2.44 | 2.43 | 3.50 | 4.52 | 5.44] 7-41 | 7-47| 9-45 | 9-43} 10.50/11.40/12.44 

Sit 1.36 | feb 3.43:1 3.40 | 4.40 6.50 | 7-48] 8.38.1 9.45 I0.50/II.43}12.48 

62] 2.45 | 2.39 | 3.44 | 4.47 | 5.50] 6.52 | 6.50| 8.46] 9.44] 9.45/I1.50]/12.55 

63] 2.47 | 2.47 | 2.50] 4.51 | 4-45] 6-43 | 7-43 | 8.52 | 9.42/10.46/II.44/1. 41 

64] 2.47 | 3-49 | 3-50 | 4-54 | 5-50] 6-52 | 7-40] 8.41 | 7-42}10.45|/II.41| 1.48 

65) 2.45 | 2.47 | 3-55.| 4-40 | 4.40 6e438 e716 47 8.52 O-AZ1LO.AS 21 643) 2048 

66] 1.50 | 1-44 | 3.50 | 4-49 | 4.54 | 6.47 | 7-55 | 8.48 | 9.42/10.42/12.50| 1.39 

67| I-50 | 2-40 | 3.50 | 3-45 | 4.49 | 6.42 | 6.39 | 9-45 | 9.53/10.54/II-52| 1.44 

68:4 1%39 se A938 «4 3-39 5-47 | 6.49 | 7.54 | 8.41 | 9.43/10.44/11.48 12.45     
 



  

Table 2.13 

Erbistock runoffs for synthesised record in table Zee cusec days x 10 
3 

  

YEAR 
> F mM“ A M J mic A Ss 9 »b N 

  

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

ao 

40 

4I 

42 

43 

44 

45 

Ae R1 

58.59 

55-61 

69-79 

56.68 

106.58 

27-42 

86.38 

56.68 

86.38 

47-74 

52.89 

43.21 

73-62 

58.89 

43-62 

106 - 58 

I0.10 

2tu 57 

52.89 

69-79 

69-79 

47-74   

106.58 

I0.10 

86.38 

53-31 

29.85 

82.35 

I7.04 

17.83 

60.57 

i 

55.61 

I0.10 

73°55 

29.85 

73-62 

26.74 

47-74 

59.80 

86.38 

39-49 

52.89 

27-96 

82.35     

27.25 

17.83 

27.25 

27.25 

63.41 

27425 

9-23 

35-96 

TTS 

23.88 

43-94 

35-96 

27.25 

53-31 

60-57 

17.83 

53-31 

43-90 

49.19 

32.50 

10.10 

17.83 

18.43   

22.66 

25-75 

18.22 

12.75 

22.66 

20.15 

4.98 

30.16 

31.89 

45.86 

9.81 

20.15 

35-96 

3.10 

22.66 

9.81 

20.15 

30.16 

I7.04 

36.85 

13.29 

13.24 

28.77   

17.20 

41.08 

26.44 

23.65 

12.67 

9°55 

12.67 

13.05 

31.69 

31.69 

6.74 

25-715 

12.67 

6.74 

8.71 

17-57 

16.76 

17-33 

41.08 

8.01 

I7.20   

10.85 

23.65 

17.20 

9.04 

26.90 

26.90 

6.22 

5-37 

32.28 

9-95 

II.I0 

8.14 

29299 

31.86 

10.85 

31.86 

EX 410 

Ded a 

II.10 

8.14 

26.90 

16.61 

26.90   

7-09 

26.72 

3.60 

25.08 

20.29 

18.25 

4.15 

19-57 

9-95 

19-57 

9-95 

4-35 

15.78 

41.26 

6.99 

27.31 

37.02 

II.84 

5.01 

II.59 

15.78 

13.86 

I3.09   

26.26 

41.26 

4.50 

20.29. 

66.30 

19.58 

26.26 

47-40 

47-40 

16.65 

4.50 

4.35 

6.33 
11.59 

3-6. 

18.25 

18.25 

4.50 

16.65 

29.26 

19.96 

6.33 

8.29   

35-19   83. 82 
annual +t 

47-40 

6.93 

28.60 

46.97 

14.62 

14.62 

40.96 

40.96 

33-70 

4.41 

14.62 

43.69 

33-70 

19.80 

56.63 

38.85 

14.62   

56. 

56. 

40. 

67. 

56. 

TL. 

= 
Tl. 

226 

56. 

O35 

26. 

70. 

39 

46 

os 

38. 

40. 

59 « 

29. 

28 

28 

60 

30 

-03 

63 

81 

00 

81 

73 

63 

82 

60 

“93 

03 

87 

297 

87 

85 

96 

93 

a 

83.82 

  

  63-69 159.58 
otal 503.38 

36.89 |70.67 

456.22 

36.89 163.54 
402.84 

83.82 |19.44 
413.62 

10.67 [21.58 
506.28 

106.58 143.21 
545-05 

83.82 22.51 
305955 

70.60] 63.69 
503.21 

92.08/34.98 

469.31 

36.89 | 36.38 
422.86 

Ty eet 3.92 
247-63 

36.89|76.54 
346.37 

73-55143-e1 
478.95 

71.81I| 70.67 
480.04 

I3.92|52.89 
327218 

62.10|53.77 
- 409.82 

55-53 
501.88 

98.85 138.92 

382.39 

36.89 145.57 
354-44 

14.07|56.07 
356.84 

40.35|35.76 
423.49 

95.36170-67 

438.44 
13.92|54.28 

355+14 

  

  

   



61 

  

Year N db 
  

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

a 

58 

60 

61 

62 

63 

64 

65 

66 

67 

68   

66.62 

63-54 

16. 58 

56.68 

oT he 

56.68 

63-54 

19.44 

31.49 

45-57 

56.68 

58.59 

52.89 

76-54 

86.09 

63-54 

86.38 

10.10 

10.10 

86.38 

31.49 

31.49 

93-56     

93.56 

I0.I0 

56.27 

26.74 

86.38 

56.27 

39.49 

38.95 

45.57 

26.74 

I0.10 

56.27 

16.54 

I0.10 

60257 

55.61 

39.49 

I0.10} 

Ale bo 

I0.10 

66.62 

23.88 

106.58 

17.83 

23.88 

29.85 

60.57 

23.88 

23.88 

43.12 

36.85 

27.13 

36.85 

18.43 

21422 

32.50 

9-23 

17.04 

82.35 

32.50 

35-96 

32.50 

32.50 

53-31   23-42   

8.62 

45.86 

22.66 

49.19. 

31.89 

36.85 

13.29 

28.77 

17.83 

20.80 

15.29 

9.81 

13.29 

43.12 

31.89 
36.85 

56.69 

43.12 

22.66 

26.46 

45.86 

I7.83 

20;80   

8.71 

26.46 

6.74 

16.76 

13.05 

21.10 

I7-57 

13.05 

22.66 

13.05 

8.71 

9-55 

31.69 

13.05 

8. 71 

26.46 

59259 

25-75 

59 «55 

26.26 

22.66 

45.86 

31.69   

26.90 

I1.84 

31.86 

II.I0 

322 

10.85 

13.50 

25.83 

26.90 

3.60 

255 

-14 

i. 

23.65 

sta 

23.65 

12.78 

it DebO 

1350   

9-15 

4.15 

18.25 

5.37 

3.60 

26.72 

26.72 

‘eis 

18.25 

31.86. 

18.25 

13.86 

15.78 

13.86 

15.78 

II.59 

6.99 

2H est   

41.26 

4.50 

29.26 

10.60 

29.26 

20.29 

6.33 

13.86 

41.26 

3.60 

67.30 

56.28 

29.26 

4.50 

16.65 

20.29 

29.26 

II .80 

I0.60 

II.80 

26.36 

16.65 

I0.60   

56.28 

4.41 

33.32 

3.60 

67.30 

38.85 

19.80 

35-19 

38.85 

3699 

33.32 

3s 
56.28 

3.59 
47.40 

16.65 

33.32 

19.80 

9295 

47-40 

19.80 

38.85 

47-40   

13.00 

3-59 

20.32 

43.69 

40.96 

14.07 

59.93 

14.07 

92.08 

I1.76 

27-82 

39. 
40.96 

14.07 

46.97 

46.97 

16.65 

22. 

39-87 

20.92 

40.60 

99-67 

56.28 

4r   

  64.223| 63.54 
476.55 

39.87145.57 
373-17 

36.89 154.28 
425.96 

64.23|86.09 
396.71 

53-77145-57 
449 92 

95.36|85.23 
501.49 

36.89]56.07 

347-38 
60.91|19.44 

307.78 

92.08173.55 
551-04 

22.41] 52.89 
272-30 

20.92| 56.07 
348.61 

40.35|38.92 
449.25 

22.41} 34.13 
413.68 

5. -89.| 70.67 
aaa ut 

95.36| 73-55 
519.62 

36.89|56.07 
387.79 

42.47|45.57 
400.83 

83.82/19.44 
370.59 

27.82{22.51 
342.99 

36.89 {22.51 
464.31 

53-771 93-56 
45759 

44.16] 66.62 
467.99 

457-14 

  

  
 



Table 2.14 

Erbistock effective releases (cusec days x 10) for synthetic record 

Maintained flow 400 cusecs 
  

  

                            

Year J E ™ a M ed ae A rt ° N Db ANNUAL. 

23 - - —|I.70| 2.83] 3-48/5.95|6.95 - - - -|I4.91 

24 —(.57 | 0.22|1.11 -|0.09]0.42 - - - - =| 3-41 

25 - - -|0.47| 0.38] 2.83 |8.59 |8.47 |5.37 - - -|26.11 

26 - - —|1.28]0.09| 4.15|0.81 |0.37 - - =| 0.3716 7607 

27 ~ - ~—{I.70| 5.1310.38|0.37 - - - =} iy =| 7.58 

28 - ~ -|0.66| 3.28]0.38/1.77|0.85| 2.54 - - -| 9.48 

29 | 1.51 | 0.32 | 3.34]6.70| 5.13] 5-23 |8.49 |0-95| 2.54 ~ ee ~| 34,21 

30 ~|°0.22 - -|3.8616.47/0.35 ~ -| 0.21 - -|II.II 

31 - - |0.51}0.54 - -|4.83 - - | 1.90 - ~| 7-78 

32 -| 1.57 -|0.32 -|4.83]0.35/1.90 -| 0.21 - ~| 9.18 

33 ~ ~ -|2.52|5.98]3.07|/4.83|8.47 |8.28 | 1.04] 0.97 | 0.52/35.68 

34 —| 1.57 ~|0.66/I.1I|4.14|7.99 |2.73 j2.54 - - -|20.74 

35 - - - ~|3.86/I.70/1.10|6.90 |4.46 - - ~{18.02 

36 - - -|0.39|5.13 - ~|3.91 - ~| 0.2I -| 9.64 

37 ot oa —|1I.70/5.13]3-48|5.04|8.59 |8.45 [5.37 | 0.52 -| 38.28 

38 - — 10.22 |/2.52/5.98 -|0.10|1.77] 4.37 - - -|14.96 

39 - - = 1066613<97| 3.07106 74116 17 | 5237:1' 2.22 - -{I7.70 

40 | 1.57 - ~ -—|0.05/4.14/1.7518.47 | 4.73 - - | 0.25/20.96 

AI | 0.10 ~ —10s32 120071 34071 toca] 1s90} 3603.1 2ete ~ 1 0.83121 .27 

42 - - ~ -|0.39|4.14|3.91 =| 0.41 | 0-10 | 2.00 ~| 11.83 

43 a = 18557 10298 -|0.38|I.10/1.09 - - -~| 0.01} 5.13 

44 —|-0.06 |0.2212.14|4.27/1.96/1.15/6.90] 0.18 | 0.14 - -| 17.02 

A5 ~ - |2.46/0.36}1.70|0.38/1.69|4.89 | 2.54 | 0.97] 0.52 -|I5.51 

46 ~ - —|4.50/3.97|0.38/4.83 - ~ | 1-90 rm 1a Deon 

AT =! 5.57 -|0.32 -|I.75|3-4818.47] 8.28 | 8.35 | 2.12 | 0.83}35.17 

48 ~ - |0.22|1.70]5.98 -|4.83 - - | 0.64 - ~|13.37 

49 - ~ ~ -|2.07/3.07|8.49|3.95 | 8.59 | 4.46 - —| 30.63 

50 | I-51 ~ ~| 0.54/3-86}5.23/1.77 - - - - -|1I2.91 

51 - - -| -10.39/3.48/6.47}0.37| 0.18 | 2.80 a =/53<69 

52 - - —|0.98 |0.05|5.04]8.59|6.90] 0-41 | 0.14] - ~|22.11 

53 | 0.37 - -—10.36|3-86|3.25/0.42/1.15 ~ | 2.80 ~ | 0.37/12.58 

54 -| 0.83 ~ 102241. 7011 s1610.42 -| 0.18 - - -| 4.51 

55 | 0.83 - - ~13.8610.38/4.14] 8.59 | 8.35 | 4.37 | 0.33 -| 30.85 

56 — 1 Le57 10+19 |0.9813.97 | 7<231L-77 - ~ |} 0.22 | 0.45 -|16.38 

57 “ - -—|2.52|3.28]8.59 - ~ - | 2.12 O | 0.25/16.76 
   



  

  

Year| J F M A M ay a A > oO N Db | ANRVAL 

58 - —-|2.46/0.98 -|I.70;/ 1.77 - - -|10.33 -| 7.24 

51. sfIN57 10.201 > °.=|3-86(4sTAbT -151Ge4 7 023512<001 ok. 130.54 

60 - ~ -|1.28/3.97|8.49|I.I0/1.90 - - - -|16.00 

61 - - 13.34 - -—|6.47/1.15/0.37/1.90 - - -|13.23 

62 - - |0.32 -|I.70|4.15| 6.47 - -|1.90 -|0.83]15.37 

63|1.57|1-57 ~ | “+}e.7210.0911+7713-5910-41 |0.33| . -10.37120.62 

64 |1.57}0.19 —|I.70|2.70)4.14)| 3.33)3-95 4.6312.12 10.22 -123.75 

65 -|I.57 - - -|0.09|1I.10|3.59 - 10.45 - -| 6.80 

66 - - - 10.32 }1.70|1.20} 3.91 |1I.33|0-41 - - -| 8.87 

67 - - — |0.22 10.32 |3.07|5.04 |1I.90|0.18 _ - -|10.73 

ore HE 2 pee = | SONS OPO CrOTs IOS et eT BB 7 8                                



Table 2.15 

Erbistock monthly natural runoff ; Final 

recorded data (cusec days 

combined synthetic and 

x 10°) 
  

Year 
= re M A mM a a A S oO N 

  

23. 

24 

25 

26 

et 

28 

29 

30 

31 

32 

33 

34 

a5 

36 

37 

38 

39 

40 

4I 

42 

43 

44 

45   

43.21 

58.59 

55.61 

69,79 

56.68 

[06.58 

27-42 

86.38 

56.68 

86.38 

47-74 

52.89 

43.21 

13-62 

58.89 

63.54 

93.56 

27-42 

19.44 

39-94 

13-62 

66.62 

34.98     

6.58 

£O.t0 

86.38 

53.31 

29.85 

82.35 

I7-04 

LEAATo\S) 

60.57 

IO.L0O 

55.61 

10.10 

13.55 

29.85 

73 02 

21.96 

39.49 

56s27 

68.94 

37.50 

60.57 

26.74 

86.38   

eis 

17.83 

27-25 

27425 

63.41 

27425 

Vea 

35-96 

17.83 

23.80 

43-90 

53-31 

60.57 

20.02 

49.19 

36.85 

oo eos 

23.88 

9-23 

17.04 

17.83   

22.66 

25-75 

18.22 

12.75 

22.66 

20.15 

-98 

30.16 

31.89 

45.86 

.81 

20.15 

35-96 

21.10 

22.66 

-62 

20.80 

26.46 

JLo 

31.89 

Ts .ck 

13.29 

2575   

77.20 

a 05 

26.44 

23.65 

T2567 

5.55 
12.67 

13.05 

31.69 

31.69 

6.74 

25-75 

13.05 

I2.60 

12.67 

4.98 

9«92 

15.22 

£2467 

17.29 

39.82 

8.71 

18.37   

10.85] 

23.65 

17-20 

9.04 

26.90 

26.90 

6.22 

5+37 

9-95 

II.I0 

8.14 

19-55 

31.86 

TT. 

23.65 

16.61 

26.44   

7-09 

26.72 

3.60 

25.08 

20.29 

18.25 

4.15 

29057 

9395 

L9s 5ST 

9-95 

4.35 

15.78 

41.26 

6.99 

26.72 

38.35 

I2.18 

4.18 

aero 

18.25 

II.86 

II.84   

26.26 

41.26 

4.50 

20.29 

67.30 

19.58 

26.26 

47-40 

47-40 

16.65 

50 

235 

233 

II.59 

- 60 

20.29 

26.26 

eOL 

10.60 

19-57 

19.50 

59 

-09   

35.19 

47.40 

6.93 

28.60 

46.97 

I4.62 

14.62 

40.96 

40.96 

a3 10: 

4.41 

14.62 

43.69 

33.70 

3.59 

O.41 

TOD 

<t ok 

6.93 

19.80 

47-40 

33 03R 

16.65   

  83.82 | 63.69 

503.38 

56.28136.89 
456.22 

56.28|36.89 
402.84 

40.60|83.82 
413.62 

67.30|70.67 
506.26 

70.03 106.58 
545.05 

56.63183.82 
385.55 

711.81 |70.60 
503.21 

13.00|92.08 

469.31 

711.81 |36.89 
422.86 

22.73|17.22 
247.63 

56.63 136.89 
ene. at 

83.82|73.55 
478.95 

28.60|71.81 
480.04 

6.93 |13.92 
Bole Lo 

59 «93 160.91 
381.40 

14.07 [70.03 
438.88 

29.55|95.36 
362.21 

32.55 [27582 
304.12 

40.60|13.92 
318.33 

40.96 |36.89 
417.34 

56428 [83.82 
416.43 

39.87 [17.22 
341.34 

59 «58 

70.67 

63.54 

19.44 

21.58 

43.21 

[22.51 

63.69 

34.98 

36-30 

13.92 

76.54 

43.21 

70.67 

52.89 

54.28 

59 «58 

ae ry 

35-16 

52.89 

34.13 

73-55 

38.92     
 



ft OD<« 

  

YEAR e Oo aN 
  

46 

47 

48 

49 

50 

at 

52 

53 

54 

55 

56 

57 

58 

59 

.|.60 

61 

62 

63 

64     

56. 

16. 

122. 

63. 

31. 

58. 

69. 

2I. 

35- 

43. 

56. 

58. 

52. 

16. 

86. 

63. 

86. 

10. 

IO. 

681106.58 

54| 10.10 

51| 59.80 

69| 23.42 

49| 82.35 

59| 55-61 

79} 38-95 

57} 39-65 

31) 47-74 

21| 29.85 

68| 10.10 

59| 56-27 

89| 76.54 

54| 10.10 

09| 60.57 

54} 55-61 

38} 39-49 

I0| 10.10 

LO; etoLL   

27225 

TI 5..00 

17383 

27 1d 

32-50 

63.41 

21.22 

18.43 

43.90 

35-96 

27.11 

36.85 

18.43 

21:22 

32.50 

9-23 

I7.04 

82.35 

32.50     

9.81 

56.69 

28.77 

45.86 

30.16 

43.12 

12.75 

28.10 

22.66 

20.15 

13.29 

9.81 

13.29 

43.12 

31.89 

36.85 

56.69 

43.12 

22.66   

6.74 

31.69 

8.01 

E3.05 

19.55 

17-57 

16.76 

17-33 

17.20 

41.08 

eitel 

9.55 

31.69 

I3.05 

Bacal 

26.46 

19.55 

25.75 

19.55   

25.87 

12.78 

26.90 

13.50 

5-37 

8.14 

9-04 

5531 

31.86 

32.28 

9-04 

3.60 

19-55 

8.14 

4.15 

5°37 

9-04 

23.65 

GLA   

13.09 

15.78 

13.86 

3.60 

15.81 

4035 
5.01 

25.08 

27631 

II.59 

18.25 

31.86 

18.25 

13.86 

15.78 

13.86 

5237 

18.25 

I2.18   

29.26 

6.33 
26.36 

8.29 

37.02 

II.64 

II.80 

19.96 

41.26 

4.50 

67-30 

56.28 

29.26 

4.50 

16.65 

20.29 

29.26 

II.80 

I0.60   

67.30 
Anand 

4.72 

28.60 

3-59 

715-87 

33-70 

14.62 

38.85 

35-19 

4.41 

33-32 

67.30 

56.28 

3.59 

47-40 

16.65 

33-32 

19.80 

929)   

  22.41{| 71.81 

= 507-47 
4.81 [46.13 

416.9 5 
20.92| 40.35 

449.98 
43.69| 62.10 

393-13 
46.971 42-47 

41333 
13.00192.08 

484.72 

56-63144.16 
356.26 

20.32| 64.23 
328.41 

99-65|98.85 
587-04 

L23341 22.13 
303-67 

27.82|20.92 

348.61 

39-87] 40.35 
449 225 

40.96] 22.41 

413.68 

331-75 

46.97|95-36 
519.62 

46.97| 36.89 
387.79 

16.65| 42.47 
400.83 

22.4T| 83-82 
370-59 

39.87|27.82 
342.99 

  

70.67 

36.38 

56.07 

45.23 

53-71 

83.51 

55.53 

27.58 

86.09 

45.57 

56-07 

38.92 

34.13 

1OeGd 

13255 

56.07 

45.57 

19.44 

122.51     
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Table 2.16 

Erbistock effective releases (cusec days x 10°) for combined record 

Maintained flow 400 cusecs 
  

  

    

NeaR| J Beir A M x. x A Ss 3 N D | ANNUAL 

23 as - —|I.70| 2.83] 3-48|5.95/0.95 - - ~ -|14.91 

24 -|1.57/0.22|I.I1I -|0.09/0.42 - - - - -| 3.41 

25 “ a -|0.47| 0.38} 2.83 |8.59|8.47/5-37 ~ = =| 26.15 

26 - - ~|I.28/0.09/4.15/0.81|0.37 - - -|0.37| 7-07 

eT - - -|I.70|5.13/0.38|0.37 - - - - -| 7.58 

28 - = =-|0.66] 3.28/0.38/1.77|0.85 12.54 - - -| 9.48 

29 |I.51| 0.32] 3.34|6.70| 5.13] 5-23 |8.49 |0.95/2.54 _ - -| 34.21 

30 -|0.22 - -|3.8616.47|/0.35 = -|O.2I - -|II.II 

31 - -10.51|0.54 “ =-|4.83 - ~|P290 ~ -| 7.78 

32 -|I.57 -|0.32 -|4.83|/0.35/1.90 -|0.21 - -| 9.18 

33 = = —|2.52]5.98| 3.07|4.83 |8.47| 8.28|/1-04|0.97|0.52| 35.68 

34 -|I.57 —|0.66/I.I1I|4.14|7.99|2.73|2.54 - - -|20.74 

35 ~ = - -| 3.86|1I.70/1.10|6.90| 4.46 - ~ -/18.02 

36 - - -|0.39] 5.13 i -|3.91 - ~|0.2I a1: 9.64 

37 a ~ —|I.70| 5.13} 3-48/5.04|8.59| 8.45|5.37|0.52 -| 38.28 

38 -| 0.06] 0.17|4.50| 6.70|1.16|0.42 |0.37| 3.63 |0.14 - -|I7.13 

39 - - - —|3.28/5.04}0.20 |0.95/| 4.86 |2.80 - -|I7.12 

40 |I.51 - - -|0.47] 5-23 |3-33|7-11| 4.37 |0.97 ~ -|22.88 

AI |0.37 - —|0-39| 5-13] 3-84/8.49 |3.95| 5-37 |1-65|0-22]0.01 | 29.07 

42 -| 0.38 -10.54|3-87/3-07|/4.83 |0.35/0.41 -|0.52 -|I3.97 

43 % —|3.34/2.14|0.48]0.091.77 |0.85 “ - = -| 8.66 

44 ~ -|0.32/0.98]| 3.97/1-96| 2-32 14.45 - - - -|I4.01 

45 - -|0.22|I.II]0.27| 0.38/1-75 |5-95| 1-90 |2.12|0.97|0.25|14.92 

46 - - -12.52/5.98 —|I.69 - -/0.33/0.21 -|I0.73 

AT -|1I.57/0.28 - -—|I.20|/I.1I0 |6.90/7-96/7-44}2.00 -|28.44 

48 - -|0.51/0.36/4.27/0.38/1I.15 |1.33 -|0.45 - -| 8.46 

49 - -|0.19/0.32] 3.86] 3.25 |8.59 |4.89| 8.35/4.46 - -|33-90 

50 m i - -|I.70/6.47 |2.73 |0.74 - - - -|II.64 

5L - _ - -|0.05/4.14|7-99 |4.73 -|I.90 - -|18.81 

52 - -|0.20/1.28/2.07|4.15 17-23 13-59] 2.54 - a -|20.96 

53 10:6:1.0 -|2.46/0.21/0.39|0.85 0.81 |I.09}0.18|0.64 - -| 6.72 

54 10.02 a ~{I.70|2.83 -|0.10 a a “i -| 4.65 

55 - -| -|0.66 - -|3.91 |8.47| 8.28|3.2T/1.04/0.83}26.40 

56 =| 1.57] 0.19] 0.98] 3.97/7-23|1-77 - —-|0.22)0.45 -|16.38                            
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YEAR} J Fi M A mM WS Si A Ss ° N S| ANRUAL 

57 ~ = —|2.52/3.28/8.59 - - -|2.12 -|0.25/16.76 

58 - -|2.46|0.98 —|I.70|1I.77 - - -|0.33 -| 7-24 

59 -|I.57/0.20 -|3.86/4.14 |I.15 |8.47/8.35|2.80 - -130.54 

60 - ~ -|1.28]3.97|8.49 |I.10|1.90 - - - -|I16.74 

61 - -|3-34 ~ -|6.47|I.15|0.37/1.90 - - -|13.23 

62 ~ -|0.32 -|I.70|4.15|6.47 ~ -/I.90 -|0.83/15.37 

63 |1.57 |1-57 - —|I.12/0.09 |1I.77/3.59 |0.41 | 0.33 -|0.37/10.82 

6411.57 |O.19 -|I.70|1.70/4.14|3.33 /3.95/4.83|/2.12/0.22 - {23-75 

65 - {1.57 - ~ -|0.09 |I.10/3.59 -|0.45 ~ -| 6.80 

66 - - —(0.32/1.70/1.20| 3.91 |1.33/)0.41 - - -| 8.87 

67 - - —|0.22/0.32|3.07/5-04|1.90/0.18 ~ - -|I0.73 

68 ~ - - - —|3.25]/0.10|3.95 - ~ -|0.25] 7.55                              
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Table 2.17 

Erbistock effective releases (cusec days x 10?) for combined record 

Maintained flow 450 cusecs 
  

  

                            

Nene) et Bebe. A Md | ee A SO | N |} D_ | Anno 

23 - -| -—|2.42 |3.92|4.54] 7.40] 1.32 |0.12 - ~ - |I9.72 

24 -|2.65/0.72 |I.74 |0.00/0.25] 0.89 - ~ ~ - -| 6.25 

25 ~ - - |I.06 ]0.84]3.9210.14/10.02 |6.62 ~ -/0.2I /32.81 

26 - - — |2.09 ]0.25| 5.30] 1.62] 0.67 |0.06|0.03 -|0.93 {10.95 

27 - - - 12.42 |6.38]0.53] 0.67 ~ - - -|0.II |I0.II 

28 - ~ - |I.16 |4.65|0.53] 2.67] 1.50|3.60 ~ - - |I4.1I 

29 |2.13 10.57 14.72 |8.25 [6.38 16.73 |10.04| 1.32 |3.60 -| - - 43.74 

30 -|0.72 - - |5-20/7.85| 0.73 - -|0.54 - - |T5.04 

31 ~ -|I.1I7 |0.98 ~ -|5.95 - - (2.85 - - |10.95 

32 — (2.65 |0.14 |0.78 — 15-95] 0.73] 2.55 -|0.54 -|0.34 |13.68 

33 - - — |3-73 7-46 |4.17| 5-95]10.02 |9.78 jI.6I |1.79 |1.36 |4§.87 

34 -|2.65 — |I.16 |I.74 |5.40] 9.54] 3.54 |3.60 ~ - - |27.62 

35 ~ ~ - - 15.20 /2.51/ 1.66] 8.43 |5.31 ~ - — |23.11 

36 ~ - — |0.71 |6.38 |005 -| 5.06 -|0.06 |0.54 - |I2.80 

37 - ~ — |2.42 |6.38/4.54| 6.50|10.13 |9.85 |6.62 1.36 - 147.80 

38 |0.02 |0.24 [0.59 |5.64 |8.25 |1.73| 0.87| 0.67 |5.08 10.19 ee 24630 

39 ~ ~ — |0.12 [4.65 |6.50] 0.45] 1.32 |6.36 13.65 - — |23.05 

40 |2.13 - ~ - |1.06 |6.73| 4.44] 8.66 |5.37 |I.24 - — |29.61 

41 |0.93 - — |0.71 |6.38 |4.54[10.04| 4.93 |6.62 |2.10 |0.58 |0.10 136.93 

42 - |0.74 0.14 |0.98 |5.00 |4.17] 5.95] 0.73 [0-75 10.03 |I. 36 - |19.85 

43 - -|4.72 |3.02 [1.60 |0.25] 2.67| 1.50 - - - - |13.14 

44 - - |0.57 |1.86 |5.34 |2.67| 3.46] 5.80 ~ ~ ~ - |19.69 

45 - -|0.72 |I.74 |0-77 |0.84] 2.79] 7.40 |2.55 |3.08 |I.79 |0.39 |22.08 

46 - - - 13.73 17-46 -| 2.65] O.I1 -|0.75 |0.54 - {15.24 

47 — 12.65 |0.57 - — |2.02/1.66] 8.43 |9.46 |8.94 |2.45 10.03 [36.20 

48 ~ -|I.17 |0.78 [5.71 |0.53| 1.95] 1-78 |0.06 |0.82 ~ - |I2.80 

49 — {0.08 |0.43 |0.59 |5.20 |4.11|D.14| 6.18 |9.85 |5.31 ~ - 141.89 

50 |0.07 - - - 2.51 |7-85] 3.54] 1.29 - - - —|15.25 

51 e a * — |0-35 |5-40|} 9.54) 5.94 - (2.85 = - |24.09 

52 ~ - 10.49 |2.09 |2.94 |5.29| 8.77| 4.56 |3.60 - - - (27.74 

53 10.32 -|3-47 |0.49 [0.83 |1.64/ 1.25] 1.62 |0.48 |1.27 -|0.II |II.49 

54 |O.13 ~ -|2.42 |3.92 |0.05/ 0.52 -|0.01 - - -—| 7.05 

55 - -|0.00 |I.16 ~ -| 5-06/10.02 19.78 |4.16 |I. 61 |1.28 |33.06 

56 - |2.65 [0.43 |1.86 |5.34 |8.77| 2.67 - -|0.57 |0.82 -|23.71   
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Year| 3 F M Ket = - A S fe) N S| ANNUAL 

bi - - -|3.73|4.65/10.14| 0.05 - -|3.08 -| 0.39] 22.04 

58 - -|3.47/1.86 -| 2.51/ 2.67} 0.11 - -1|0.75 -| II.37 

59 -|2.65|0.49 -| 5-20] 5.40| 1.95|10.02/9.85]3.65 _ -|39.e1 

60 —} 2 eel. £12,091 5e341l0 e041. 661 2655 ele al. be eee 

610.21 -|4.72 - -| 7-85/1.95| 0.67}2.55 - ~ -|I7.95 

62 - -|0.57 -|2.51] 5.30| 7.85] 0.1L -12.55 -|1I.28] 20.17 

63|2.65/2.65| —-| —-|1-74] 0-25|2.67] 4-56/0-75|0-75|  —-|0.93/16.95 

64|2.6510.43| -|2.42/2.51| 5.40/4.44] 4.93|/5-95|3-08]0.58|  -|32.39            



Table 2.18 

Erbistock effective releases (cusec days x t0°) for 

combined record. Maintained flow 500 cusecs. 

106 

  

  

                          

age hk IM ae AS ls 9 N | D__ |ANavAL 

23 ~ - —13223 {5.03} 5.66] 8.85) 1.69] 0.12 - -|0.07|24.65 

Odl: rd 5098 L543 12 55210205) Osh SEO x ale ee de oo ne on ge 
25 = - —|I.89 |I.40) 5.03/11. 69/I1.57 8.89 - -|0.10|40.57 

26 - - -|3.07 /0.45} 6.59] I.84] I.17| 0.13] 0.18 -j1.67/1I15.10 

21 -|0.05 -|3-23 |7-63] 0.76| 1.17 _ - - -/0.33/13.17 

28 -|0.04 -{1.74 |6.05}] 0.76] 3.61) 2.34 Aa] 3 - a -|19.27 

29| 3-12 |0.95]| 6.26 |9.80 |7. 63) 8.23/11.19] 1.69] 4.73] 0.01 - -|53.61 

30 -/1I1.43/0.06 - |6.56] 9.26/ 1.28 = -| 1.08 - -|19.67 

31 - —|2.15|1.48 |0.01 | (ee - -| 3.92 - -|I4.67 

32 -|3.98|/0.41 |0.94 |O.01| 7.I1| 1.28 3-25] 0.04) 1.08 -/0.27/18.37 

33)}0.04 - —|5-II 9.01) 5.34) 7-ITjIL.57|11.28] 2.23 |2.73 |2.46 56.88 

34 -|3-98/0.06|1.74 |2.52 6. 70/11 .09} 4.48] 4.73] 0.01 - -|35.31 

35 - - -|0-06 |6.56| 3.44) 2.48] 9.98] 6.16 - ~ -|28.68 

36 - 10.05 -—|I.09 |7.63] 0.34 -— 6.22| 0.04] 0.13/1.08 -|16.58 

37| -| -| -|3-23}7.63] 5.66] 8.00/11. 69|IT.35] 8.89|2.46| -|58.92 
38] O. II |0.49/1.13 | 6.84 |9.80) 2.33] 1.22 Del a55| 0. ed - -| 29.86 

39 ~_ - ~|0-49 |6.05] 8.00] 0.70) 1.69] 7.86 4.59 -—|0.07|29.44 

40| 3.12 - - -/1I.89| 8.23] 5.63/10.21| 6.41 13 67 ~ -|37-15 

Atl T.67 ~ -|I.09 |7.63)] 5-66/1L.19] 6.02] 8.89 2054 | Pe tLj0.3T | 46.12 

42 -/1I.16|0.41 |1.48 |5.63}] 5.34] 7.11) 1.28 T3240. 5812546 -|26.28 

43 - -| 6.26 /4.00 |1.60} 0.45] 3.61| 2.34 - - ~_ -|18.26 

44 - -|0.95 |2.88|6.77] 3.62] 4.61] 7.20 - - - -|26.03 

45 _ -|/1.43 |2.52 |1.39| 1.40) 4.05) 8.85} 3.25) 4.13 12.73 |0.46] 30.22 

46 - - -—|5-II/9.01} 0.09] 3.76) 0.48 -| 1.30/1.08 -|20.83 

AT -13.98/1I.07/0.04|0.01] 3.02] 2.48 9 .98/10.96/10.55 2-90 |0.27|45.25 

48 ~ —|2.15|1.44|7.26] 0.76) 2.99} 2.33] 0.13 L225 - -|18.30 

49 -|0.28/0.72 |0.94 6.56] 5.07|I1.69 7-48/I1 .35] 6.16 - -|50.23 

50}0.27/0.04/0.03 -|3-44| 9.26) 4.48) 1.95 - - - -(|I9.47 

51 - - -|0.04/1.05] 6.70/11 .09] 7.19] 0.04] 3.92 -~ -|30.04 

52 - -| 1.05 /3-07]3.86}] 6.59/10. 32 5.66] 4.73] 0.01 - -| 35.28 

53 OeLoO —| 4.59 |0.94|1I.42] 2.74] 1.84) 2.23] 0.83 2.05 {0033 bie 51 

5410-3710.04 —|3-23)5.03] 0.34) I.04 -| 0.12 - - -/IO.17 

Do -|0.05]0.06/I.74]0.05 -| 6.2211 .57/1L.28) 5.34/2.23/1.73 40.25 

56 -|3.98] 0.72 |2.88]6.77|10.32| 3.61 - eis llr. 29 -|30.64 

51 = ~ —|5.1T|6.05/11.69] 0.34 ~ -| 4.13 -|0.46|27.78      
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Year| J M A mM v = A S ° N Bb | ANNUAL 

58 - -|4.59|2.88/0.01| 3.44] 3.61] 0.48 - -|1.30 -| 16.31 

59 -|3-98/1.05/0.04/6.56] 6.70] 2.99/12. 12/11. 35} 4.59 - -| 49.38 

60 ba -|0.03]3.07 |6.77|IL.19| 2-48] 3.25 of re > -| 26.79 

61 |0.10 —|16.26 - -| 9.26/2.99/} I.I7| 3.25 _ ~ -| 23.03 

62 “a -~/0.95|0.04 |3.44| 6.59}9.26] 0.48 wh} 625 -|1.73}25.74 

63 13-98 |3.98|0.04|0.04 2.52] 0.45] 3.61] 5.66} 1.24/1.30 -|1.67| 24.49 

64 13-98 |0.72 |0.03 | 3-23 [3-44] 6.70| 5.63] 6.02] 7.11 }4.13|/1.11 -| 42.10   
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CHAPTER 3 

REVIEW OF COMPUTER LANGUAGES 
  

3 ok “int voduetion 

When computers were first produced, the only method of communicating with 

them was through their own language, which was ofter peculiar to a 

certain model of computer, or even to one particular machine. The 

instructions consisted of combinations of guntews and special symbols 

which bore no resemblance to the problem statement written in English 

and algebraic terms by the engineer or scientist. 

Before a problem could be coded for a computer it had to be broken down 

into the most basic mathematical processes involved, and each instruction 

then referred to one action, such as addition of two numbers. The 

computer holds the numbers in which may be imagined as a set of cells, 

each of which has an absolute position or address in the machine core. 

When using machine language each possible operation which can be 

performed by the computer was assigned a number, and an instruction 

could consist of the address of a data item to be operated on and a 

number representing the operation to be carried out. Since most 

operations require two operands, a second number must somewhere be 

available. The usual convention makes the number standing in a special 

cell called the accumulator the second operand. The accumulator is also 

available to store the result of the operation. 

It can be seen that the programmer did not then operate on variable 

names, as in algebra, but on the contents of a cdl in the computer store 

which could only be referred to by its absolute address. In order to 

write a program in machine language it was necessary to keep a record of 

what variable or number was represented at each address. With a complex
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program, the clerical work involved in detailing the items present in 

various locations became burdensome and was always open to human error. 

To overcome someof the labour involved in documentation and to reduce the 

possibility of errors, a form of language known as symbolic code was 

written. Instead of referring to absolute addresses, the programmer 

could now label data and instructions by words or mnemonics which 

related the information in the computer store to the normal vocabulary 

of mathematics. However, there still tended to be a one to one 

correspondence between groups of mnemonics and machine language 

instructions, and the program was still too detailed to resemble the 

original problem statement. 

Because of the high speed of computers it was thought that the task of 

translating a problem from scientific terms into machine language could 

be performed by the computer itself with much greater efficiency than 

by a programmer. Therefore, the next step in development was to const- 

ruct languages which resembled ordinary algebraic terminology. These 

languages are known as procedure orientated, or high level, languages 

and are more distant from the computer than the symbolic codes. The 

detailed bredtiown of problems is no longer performed by the programmer, 

and he need not know how the computer stores its information. For the 

computer to be able to carry out the functions described by these 

languages it is first necessary to translate the instructions into its 

own terms. 

They way in which this is done is to write a program in machine 

language which will accept the user's high-level program as data, and 

replace each statement in the high level language with a set of machine 

code instructions to carry out the same process. This program, known 

as a compiler, also controls the addressing required by the machine. 

Several of these high level languages and their associated compilers
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Jece Requirements of a computer language for a specialist subject 
  

Because practising engineers do not have the time to become fully 

conversant with modern computing methods, and indeed, because computer 

instal lations tend to change very rapidly so that only full time users of 

the computer can keep up with new developments, and due to the scattered 

nature of literature concerning specialist procedures, engineering usage 

of the computer is not as widespread as it could be. 

However, it is thought that if a simple, standard system of 

programming for a specialist subject could be designed, which remained 

stable as far as the engineer is concerned, and which inclwed all the 

most commonly used routines of the specialist subject, then this would 

tend to convey more confidence to the engineer and might lead to increased 

computer usage, as opposed to the situation at present, where an 

engineer might feel that he would rather carry out an approximate problem 

solution by hand than spend time searching for a relevant routine in the 

literature and then searching through language manuals to find the 

necessary input and output procedures for data. 

In the past few years there has been an increasing tendency for 

Engineering departments in Universities to teach the basics of computer 

usage to undergraduates, and, as a consequence, it is felt that in future 

more practising engineers will look to the computer to solve their 

problems, and so there is an increasing urgency to provide a well 

documented set of mwutines, implanted in simply structured language. 

It is thought that the knowledge that such systems exist at computing 

installations available to industry, and that simple documented usage 

manuals have been written, is more important than the basic knowl edge 

of one or two computer languages such as Fortran or Algol. It is 

suggested that interest is soon lost in the usage of computers if
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engineers cannot obtain the well tried procedures they require without 

the frustration of weeks of searching. 

A simple computer language for use by a specialist in a particular field 

of engineering should require that the user states his problem and gives 

his data in essentially the same form as he would to a human assistant. 

In the same way, the user should be able to specify various courses of 

action to take depending upon the results obtained at any stage in his 

problem, and since the human capacityto make decisions based on only 

partially defined facts cannot be built into the computer, some form of 

temporary or permanent filing of intermediate results for possible use 

by later cdculations must be provided, so that a human decision can be 

made without having to reconstruct the data on cards or paper tape. 

Facilities should also be provded for editing input data held on files 

so that ammendments or corrections can be made. 

Since a user's problemwould generally be solved using several specialist 

routines, some of which would require as data results from previous 

routines, the form of the data input and output by each routine must be 

acceptable to all other routines which might use the same data.
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363.6 Existing methods of solving specialist problems 

3 edeLs A compatible subroutine library 

The Fortran and Algol languages provide the facility to construct a 

library of routines for a private user, and it is possible to write each 

routine so that the form of the data is the same for each one. Thus, 

the routines would be obeyed by simply writing down in a normal Algol or 

Fortran program the routine names, in the required order of calculation, 

along with the parameters, or data items necessary for the running of the 

routines. However, the reading of data into the correct areas in the 

machine core, and the outputting of results, is left to the user. 

With large amounts of data it is not possible to hold all information in 

the computer core and it is generally in this situation when problems 

occur for a usere With a complicated program, it may be necessary to 

run the same sequence of calculations with several data sets and then to 

carry out further calculations with one of the data sets, to be selected 

by an analysis of the first results. In this case, where the data to be 

used for the second sequence of cdculations cannot be specified before-— 

hand, it is impossible to arrange the input data in the correct order for 

a simple Algol or Fortran program, using only the basic input devices, 

if all the data cannot be held in the core at the same time. The 

problem of reading data in a random order can be overcome by the use of 

magnetic tapes or discs as input devices, but this assumes a knowledge 

of the method of storage on magnetic media and involves keeping a 

directory of the positions of data blocks on the files. Even using tapes 

and discs it is difficult to insert identifying information in the data, 

and the storage of text, for use as titles in outputting results, poses 

special problems.
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It would not be possible to write general routines, for inclusion in the 

library, to read and file away data, without including an unwieldly 

number of parameters to cover all the different types and forms of 

information necessary to a complicated system. 

Since it is the aim of a specialist computer language to take some of 

the burden of machine communication from the user, and to allow him to 

present his problem in familiar terms, without the necessity to manipulate 

his data for the machine's benefit, it is thought that the library of 

compatible subroutines is still too far orientated towards the machine 

to be of great benefit to the casual user. 

Z.36ee Packages 

A further step towards user-orientated languages is provided in 

extremely specialised fields by some computer manufacturers. These 

‘languages' are usually known as soft ware packages and include packages 

for Traffic Engineering, Fluid Distribution Network Analysis, Pipe- 

stressing calculations, Continuous Beam Analysis and Power Systems 

Analysis. 

Each package consists of several programs or routines, including special 

reading routines, which act upon the numerical data provided in an order 

specified by the user. The user's input usually consists of several 

sets of data matrices, identified by standard names, and some simple 

commands which are recognised by the reading routines. 

The commands convey to the package which routines are to be used and 

which data are to be manipulated. In general, the form of data 

necessary for one package may be completely different from that required 

by another, although some standardisation has been attempted between 

packages in the same special field, where a user might need to use the 

results from one package as input data for another. In these cases, the
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user is allowed to file his results from the first package on magnetic 

tape and then, in a separate job, read back the data into the second 

package. 

323.36 Vehicle Scheduling Package 

The ICL 1900 Vehicle Scheduling Package does not act in the same way as 

most of the otherpackages, since it is a complete high level language, 

with a similar structure to that of Algol. 

The user's program, written in the special language, is presented to the 

Vehicle Scheduling compiler for direct translation into machine code, in 

much the same way as an Algol program is translated. 

This type of language is on thesame level as Fortran and Algol, and only 

adds yet another language to the many which exist already. 

2 36k I900 Control and Simulation Language (CSL) 

The original CSL language was developed jointly by IBM United Kingdom 

Ltd. and Esso Petroleum Co. Ltd. for the purpose of carrying out 

simulation exercises, and was adapted for use on the ICL 1900 series of 

machines. 

The CSL system makes use of the facilities provided by Fortran and a 

program written in CSL language could contain blocks of code written 

entirely in Fortran, augmented by the special statements peculiar to CSL. 

The user's input is scanned by a special program or processor which 

assembles an equivalent Fortran program from the information provided. 

This program is then presented to the Fortran compiler for translation 

into machine code and for subsequent execution. 

When the CSL processor reads Sie dade program it must recognise whether 

the input is Fortran code or a special CSL command. If the input is 

Fortran code then it is copied piety to the file where the equivalent 

Fortran program to the user's input is being assembled, but if the input
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is a CSL command then this must be replaced by a Fortran statement or 

set of statements which will carry out the as ks implied by the CSL 

instruction. This pure Fortran code is then written to the assembly 

file. 

The declarations, or reservation of storage space, for all data is left 

to the user, as is the selection of the correct input and output devices 

for thenumerical data. 

The effect of CSL is to make available a library of specialised simulation 

routines and to make their use easier by simplifying the method of 

using them in a Fortran program. 

Fe5a5e SIMON (Simulation language) 

SIMON was written by P.R. Hills at Bristol College of Science and 

Technology and provides the same facilities in Algol as does CSL in 

Fortran. However, Simon is not a language in the grammatical sense, since 

pre-translation of a program containing Simon routines is not necessary 

before it is presented to the Algol compiler. 

Simon consists simply of a set of routines for manipulating the 

membership of lists or queues and for generating random inputs to a 

system from given frequency distributions. The routines are called for 

use from the Algol program in the same way as normal Algol routines, and 

are incorporated in a program by inserting card decks declaring the 

routines at the head of the Algol program which uses them, so that the 

user of the Simon routines needs to be a competent Algol programmer. 

It is thought that Simon might be of ne in reducing the possibility of 

logical errors or omission of clauses in an Algol program for simulating 

a complex system. 

303665 GENES YS 

Genesys was developed by Alcock Shearing and Partners for the Ministry of
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Public Building and Works, and is administered by the Genesys Centre at 

Loughborough University. It was originally written to provide a simple 

user language for structural enginers, but the concepts involved are 

extendable to other fields of engineering. 

In principle, Genesys is similar to CSL, in that the user's program is 

read by a processing system which translates it into Fortran for 

presentation to the Fortran compiler. However, Genesys inclués many 

more facilities than CSL, and recognises a far greater number of commands. 

Furthermore, a user's data is presented in the form of tables which are 

read by special routines, and which may be edited and filed on magnetic 

media as desired. 

Genesys is by far the most versatile and simple user-orientated system 

available at the present time. 

A user's program consists of a set of commands, some of which concern the 

reading of the correct data tables into themachine, and some of which 

specify the calculations to be performed on the data. Following the 

commands are the tables of data, each identified by a title, and each 

having at least two standard column headings. The data itself is listed 

under the relevant column headings. 

The commands of Genesys are used in the same way as calls on compatible 

Gearautthas in Fortran, and any Genesys program may contain Fortran code 

and ordinary subroutines. The Fortran facilities for altering the course 

of programs are available. 

The major advantages of Genesys over Fortran lie in the manipulation of 

the data tables and the provision of a virtual store. The latter 

facility allows a programmer writing a routine for inclusion in the 

Genesys library to imagine that the computer has a very large storage 

capacity, and reduces many of the problems involved in the handling of 

large amounts of data.



When the user's program is presented to Genesys, the tables are 

temporarily filed away automatically on magnetic media, and are later 

accessed by quoting their titles in data reading commands. The tables 

may be accessed in any order and tables may be used which were produced 

as results fromerinput as data to another program as long as they were 

permanently filed at the time by using the Genesys editing and filing 

facilities. Tables may contain data in several forms; an item of data 

may be given as a numerical value, as an arithmetic expression, or if a 

value is not known, or will vary when the table is used several times, 

then it may be given as a variable name, In the latter case, the user 

assigns a value to the variable name before the table is used. 

Various facilities exist for reducing the amount of data to be written in 

a table, and these are all described in the Genesys reference manual, 

but for the purpose of giving an example of a Genesys program, one 

particular facility is useful. If a data item under one column heading 

is the same as the item above it then the '=' sign may be used to 

represent 'ditto'. 

Genesys is composed of many different problem solving groups of routines 

in che teen of a library. 

Each group of routines is called a subsystem, and the user must state at 

the head of his program which subsystem he intends to usee The commands 

available to the user under a particular subsystem are relevant only to 

that subsystem and may not make sense to another subsystem.
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The GENESYS card simply tells the computer operator that the Genesys 

system is to be used. 

The second line is a command to choose the subsystem required. In this 

case the system dealing with continuous beams is required. 

The * TABLES commands tells the system that the information between 

* TABLES and the next command beginning with an asterisk are the data 

tables required by the sybsystem. 

Each table begins with thetitle of the table in inverted commas. 

The line after the title contains the standard column headings for that 

particular data table. The headings are each followed by an optional 

mnemonic indicating the units relevant to that heading. 

After the last table the next commandis * MASTER. This command introduces 

the problem solving commands for that subsystem. 

The first line 

APPLY LAD CASE 'LIVE' Tg BEAM 'B67! 

tells the subsystem which tables are to be used. 

In this case the uniformily distributed load of 25.8 KN/M is to be applied 

over the span connecting supports I and 2, as described in table 'LIVE'. 

The beam itself is described in table 'B67' and is shown in Fig.3.}. 

The second line is self explanatory, and allows support 2 to settle by 

6 MM. 

The bending moments resulting from the load and settlement are now 

calculated. 

The third line tells the system to print the results on the line printer. 

The next command * FINISH tells Genesys that the user has performed all 

his calculations with the subsystem 'CONTINUOUS—BRAMS'. 

After * FINISH the user may * START another subsystem or he may write 

* EXIT which terminates the Genesys run.
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Sadeie Natural language problem-solving systems 

Some steps have been taken recently in the field of artificial machine 

intelligence to produce systems which can understand natural English. 

Gelb, of the IBM Corporation, New York, has developed a program called 

Happiness which is able to solve problems involving probability. The 

user's problem is input in English, and the program then breaks down the 

grammatical and idiomatic structure of the input to produce a precise 

mathematical representation of the problem. The problem may then be 

solved by the computer. 

Winograd, at MIT, has written a program which carries out actions and 

answers questions about a simple world containing several objects, which 

include a table, a box, and some blocks and pyramids, stored as a data 

structure inside the computer and displayed on a television screen to the 

person conversing with it. The world also contains a 'hand' which is able 

to pick up and move the objects. The system is known as SHRDLU, and the 

user may interrogate the system concerning the state of the world at any 

time, and he may give instructions to alter the state of the world. 

The user's instructions are not only analysed grammatically, but any 

instruction is analysed in the context of the previous conversation. 

This facility makes SHRDLU one of the most advanced language understanding 

programs yet produced. 

However, the nearer a system becomes to understanding conversational 

English, the more costly becomes its use, and the more likely it becomes 

for the user to miss out information. It is felt that an engineer should 

present his problem to a computer in a more mathematical and exact manner 

if errors are to be avoided. 

The use of natural language understanding programs would be better 

applied to interrogation and restructuring of information filing systems.
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Sect athe HYDRO 

A simple language for water resources systems, called Hydro, was 

constructed by Bugliarello and McNally at the Carnegie Institute of 

Technology in 1966. The language is not machine based, since the Hydro 

program translates the user's input into ALGOL, which is then 

re-translated by she Algol compiler into machine language, ready for 

execution, so that it carries out a similar process to that of CSL and 

GENESYS. Although Hydro was originally meant to solve problems only in 

water engineering, the structure of the system is such that any routine, 

in any field of science and engineering, can be incorporated into the 

language. 

The Hydro language has been adapted by the author for the IcL 1900 series 

of machines and is described in the following chapter.
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030 De SLANG. 

SLANG is an analogue computer simulation language developed by Hawker 

Siddeley Dynamics. This language simulates the operation of a 

differential analyser. This in turn is a device for solving sets of 

simultaneous ordinary differential equations. It has bee shown else— 

where in this thesis that the reservoir operation problem can be 

described by a set of simultaneous differential equations. One has been 

prevented from using ordinary analogue Soupurens ey reservoirs problems 

because of theccomplex function generators required to simulate data 

sequences and control rules. To a large extent digital simulations of 

analogue computers overcome this problem because almost any type of 

function can be specified. One still has difficulty in specifying 

control rules, especially of the type used in reservoir regulation 

where amenity and recreational factors are taken into account.
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363%k0 Ascop 

Ascop is an integrated system capable of performing a wide range of data 

editing operations as well as many of the standard statistical analyses. 

An Ascop program consists of instructions and data matrices, the 

instructions indicating to the system which analyses are to be performed 

on given data sets. 

The data matrices are arranged so that the columns represent variables and 

the rows represent observations on the values of these variables. Hach 

matrix is assigned a name and number by the user and he also provides the 

column, or variable, names by means of a special statement. 

The user normally instructs the system to read in the data matrices and 

store them on magnetic tapes or discs as a data base for use by the 

system. The editing operations may then be used to check the data and 

to specify the subsets that are required for analysis. The subsets may 

be stored with theoriginal data as new matrices, thus augmenting the 

data base, or created solely for the purpose of analyses. In the latter 

case the subset may be envisaged as a matrix which has no physical 

existence, but only exists in the mind of the user for the limited period 

that the data is to be used. 

The Ascop language has been designed so that the instructions follow 

normal English as far as possible, and there exist several ways of 

saying the same thing, all recognisable to the system. 

Ascop is a very useful tool for carrying out statistical analyses and for 

performing arithmetic and editing operations on matrices, but the data 

structue is so rigid that the system is not readily extendable to other 

fields.
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CHAPTER 4 

THE HYDRO LANGUAGE 

4.1. Introduction 

The Hydro language was the result of a four year pilot effort intended 

primarily to explore the issues arising in the development of a 

comprehensive problem-orientated language for the field of water 

resources, and to provide a framework for rapid future expansion on a 

library of useful computer routines. A first choice facing the 

designer of a language is whether or not to subdivide the water 

resources field into several subfields, such as frequency analysis, 

precipitation analysis, and channel flow, and to provide for each a 

problem-orientated language with a structure and data format most 

suitable to it. 

Subdivision has merit when intercommunication between the different 

sub-areas is limited. For instance, the Integrated Civil Engineering 

System (ICES) developed at M.I.T.is an assembly of different 

sublanguages for surveying, structural frame analyses, soil stability 

analyses etc. The ICES components are integrated into a system by a 

general compiler, which understands the contents of the component 

subcompilers and makes them operate jointly. In the case of water 

resources there is a considerable amount of exchange between the 

possible sub-areas entering into the solution of a typical problem. 

The determination of design spillway flows may begin with the analysis 

of precipitation and proceed through flood routing, which requires open 

channel flow procedures, and frequency analyses. If separate compilers 

were used for each of these sub-areas, the user would be required to 

learn the programming instructions for each to perform a simple routine 

analysis. Furthermore, if subfields are defined on the basis of type
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of problem and corresponding data structure their number would be very 

large. In this respect, the situation in water resources is far more 

complex than, say, structural frame analysis, where one deals with many 

different geometries, but where, chee these have been described, the 

solution is given by the same equations for every frame structure. 

The above considerations militate against the subdivision of a water 

resources language into sub-languages. Thus, Hydro has been designed 

as a comprehensive language, with a data structure valid for the entire 

range of water resources problems it covers. This solution is in the 

direction of greater integration and has potential for further 

expansion; but it does lead to a slightly more general data structure, 

which is less responsive to the needs of a given sub-area. On the other 

hand the user only has to learn one data structure, andis given a tool 

of considerably more power and flexibility. 

The flexibility in Hydro is enhanced by the fact that the Hydro processor 

which converts the user's program to the universal language of Algol, 

has only the task of organising the code that will carry out the 

solutions, but unlike the ICES system it does not have the capability in 

itself of producing problem solutions. The routines which actually 

solve the problems are contained in a library, and can be withdrawn, 

altered or added to much more easily than if they were incorporated 

directly in the processor. The existence of a library of procedures 

separated from the processor also facilitates the building of decision 

links into the language and the use of the language in an on-line 

conversational mode. 

The decision as to the basic structure of the language must be followed 

by several accessory ones : for example, the amount of logical 

decisions to be entrusted to the user versus that entrusted to the
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Lamennee, the size of the individual routines of the language, and the 

criteria to be followed in maintaining, revising and augmenting the 

language. In the actual design of a procedure, it must also be 

decided how general or how specific the procedwe should be. A 

procedure may be designed as a compromise acceptable to most potential 

users, or several different procedures could be constructed, each 

satisfying the needs of a prticular group of users. In Hydro, both 

approaches have been followed, according to circumstances. 

The development specifications which have guided the design of Hydro 

demanded that Hydro should be much simpler to program than Fortran 

or Algol but should have sufficient flexibility to handle different 

types of problems so as to cover a broad area of water resources. The 

commands and data have been structured toward the natural language of 

water resources and there are automatic data transfers between 

commands. The routines available to Hydro have been written so that 

the user may choose to use them separately, one after the other, or, 

when possible so that he may request one complex routine which 

automatically calls for other routines in an order dictated by 

intermediate results. 

In order that the system be easily augmented, the processor and its 

associated libraries have been designed to facilitate the design of 

procedures and the addition of new procedures to the library, or the 

removal and substitution of existing procedures.
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4.2. General description and operation of the System 

The main features of the Hydro System are the translator program and 

the line library. 

From the instructions and data supplied by the user, the translator 

assembles an equivalent Algol program using lines of Algol code stored 

in the library. The generated program is then presented to the Algol 

compiler for execution. In addition, the system employs a general 

working area to which the translator writes the generated program with 

its associated data, and from which it runs. A further component of 

the system consists of a copy of the translator program which is used 

only when alterations or additions are made to the system. This copy 

is necessary in order to avoid corruption of the working translator if 

incorrect alterations are made. 

All components of the system are located on disc and tape: storage 

facilities when the system is not in use, but when a user submits a 

program to Hydro all components are transferred to dise devices only, 

since operations are much more rapid from discs. A more practical 

consideration is that if the line library was accessed on magnetic tape 

the multiple rewindings which would be necessary, would quickly cause a 

deterioration in the quality of the tape. 

Although the system was developed on an ICL 1905 computer using Algol- 

60 and the 1900 Algol input/output procedures for the transfer of data 

between the computer fast store and the pripheral units, such as card 

readers, tapes, printers and discs, it can easily be adapted to run in 

any language and on any computer installation with at least 32K 

storage space, as long as there are disc or magnetic tape backing store 

facilities, and provided that procedures exist or can be written to
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perform similar tasks to the 1900 input/output system. 

A more detailed description of the Hydro translator and the special 

data reading procedures used by the system may be found in 

Reference (2).
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4.3.6 Requirements of an Algol program 

In order that the operations of the Hydro translator be understood it 

is necessary to be conversant with the requirements and structure of 

an Algol program. The method of constructing Algol programs may be 

found in any computer installations manuals, but a brief description 

of some of the major requirements will be given here. 

So that the computer may reserve sufficient storage space for all the 

variables which may be used in an Algol program, they must be declared 

prior to their use. eingis variables may take either integer values or 

continuous decimal, or real, values. Integers require only one storage 

space in the machine but real numbers require two spaces, since a real 

number is stored as a fraction between zero and I plus an exponent. 

The declarations take the form 

‘INTEGER' variable name, 

or ‘'REAL' variable name. 

Declarationsof array variables, which represent Yectors and matrices, 

must include the size of the array as well as the name. Arrays may be 

of any size and any number of dimensions. Array elements are referred 

to by subscripts after the array name. The size of the array is 

declared by quoting the range of each subscript used. 

'INTEGER' 'ARRAY' name [ -4:12,0:13] 

or 'REAL' ‘ARRAY! name [ -4:12,0:13] 

will declare an integer or real array called 'name' having I7x 14 =238 

elements. The first subscript ranges from —4 to I2 and the second from 

O to I3 in steps of I. The two figures separated by a colon and giving 

the range of the subscript are termed a bound pair. Individual bound 

pairs are separated by commas, and the whole list is enclosed in square
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subscript brackets. 

As well as declaration of variables, it is also necessary to declare any 

procedures, or routines, which are to be used. The procedures consist 

of blocks of code which may be used several times in a program. Instead 

of having to write out the whole block of code every time it is used, 

Algol provides the facility to name the block of code, so that only the 

name of the block needs to be written down when the code is required. 

The naming of the block is performed in the declaration, which, in the 

same way as variables, must precede the use of the name in the program, 

i.e. ‘PROCEDURE' name 3 

'BEGIN' 

code 

’ 4 
END 35 

The writing down of the name of the procedure in an Algol program now 

implies that the whole block of code is to be used at that point, and is 

known as a call on the procedure. 

The data for an Algol program iscompletely separated from the program 

and is presented as a separate document to the machine. 

Any program assembled by the Hydro system has several standard procedures 

declared at the head of the program. These are blocks of code which are 

able to read in the data for the program in the form that it is given by 

the user. The appropriate calls on these procedures read in the user's 

data in the correct order and assign the data to the correct variables. 

These procedures have a liist of parameters after the procedure name, and 

it is the parameters which tell the procedure the names and sizes of the 

arrays with which it is dealing. 

The Hydro system automatically sets up the correct parameters to read in
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4.4  Bugliarello's HYDRO 
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The version of the HYDRO system available to the author,as written under 

the direction of Bugliarello at the Carnegie Institute of Technology,was 

in a form of ALGOL that was not directly usable on the ICL I900 series of 

machines ,and, because AIGOL does not contain standard reading and writing 

routines,so that different input and output: software tends to be provided 

for the various types of computer ,new routines,incorporating the I900 

ALGOL reading and writing procedures,had to be written to perform the 

equivalent operations to Bugliarello's program.Also,several grammatical 

constructions used by Bugliarello were not available on the 1900 machine, 

but,when the intention was determined from the context of the surrounding 

program statements,code could be written to carry out similar tasks. 

Because of the complexity of the HYDRO translator,Bugliarello's flow 

diagrams and his related description involved extremely lengthy documentation 

and it proved a difficult task to formulate an accurate overall picture of 

what the translator was actually doing.However,by breaking down the program 

into several self-contained groups of statements,the action of each was 

determined and,by re-assenbling these groups in their various combinations, 

the general principles were realised.It then became possible to start re-~ 

writing the program with some confidence,and it wes found that Bugliarello's 

version contained several logical and grammatical errors which would not 

allow thesystem to operate in the intended manner.One error was found 

impossible to correct without restructuring the system to some extent and 

affected the flexibility of the language.It concerned the method of dealing 

with array declerations and the full implications of the error are detailed 

at the end of this chapter. 

This chapter describes the HYDRO system written by the author to perform 

the same operations as Bugliarello's language,and does not include the 

revision necessary for dealing with arrays.The method of overcoming the error 

is dealt with in the next chapter where the author's complete revision of 

the HYDRO laneuvase is described: 

The following description of the translator and line library should be read 

in conjunction with the examples given later in the chapter.
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The line library contains code for all of the Hydro procedures and 

procedure calls, the variable and array reading code, declarations of 

all variables and the declarations of the special data reading procedures 

used by the system. For the convenience of the translator program, 

which has to calculate the position in the library of the code necessary 

to assemble the final Algol program, all code of a similar nature is 

grouped together. For instance, all array declarations are together 

and each is composed of the same number of lines so that it is only 

necessary to know the position of the first declaration in the library 

in order to find the array declaration required, since every array 

variable is given a unique reference number which determines its 

relative position to the first one. The first material on the library 

is the declaration of all single variables which may be used by an 

assembled program. All possible single variables are declared at the 

head of every assembled program because the storage space involved is 

small and thereforeit is not necessary that they be declared as they are 

required. 

Next on the library are the special data reading procedures which assign 

data to the correct variables wnen the program is executed. These are 

also declared at the head of every program assembled by Hydro. 

Following this is a short section of code which is necessary to 

initialise certain variables used by the reading procedures. 

After this preliminary code are the lines Wich read data into all the 

single read-in variables used by the Hydro procedures. These consist 

of calls on one of the data reading procedures. There are the same 

number of lines of code for each variable.
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Following the single read calls are the sections of data reading code 

for each of the read-in arrays which may be used in Hydro. Each section 

of code consists of the array declaration and a call on a data reading 

procedure. 

After the array read lines come the sections of code representing 

material which must be assembled globally to any of the procedures. 

This code mainly consists of array declarations for arrays not of the 

read in type, the calculations of bounds on internal arrays and array 

initialisation procedues. 

The main section of code remaining, which is the largest section, 

contains the bodies of all procedures which exis in the Hydro System. 

After each procedure body is a call on that procedure. The final 

section of code contains a list of Algol 'END's; lines which are used 

to terminate the assembled program.
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Diagram of line library 
  

I. 

Qe 

les 

Declaration of global single variables used by Hydro and 

any general array declarations which are used by all 

Hydro programs 

Declaration*of the seven data reading procedures 

BAS I card 

Single variable reading procedure calls 

BAS 2 card 

Declaration of arrays and 

calls on array reading procedures 

BAS 3 card 

Declaration of global material necessary for some 

procedues 

BAS 4 card 

Procedure bodies and 

calls on procedures 

Algol 'END' cards for terminating program 

A copy of a line library which includes only a few procedures and 

arrays is given in Appendix 4.
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Ah The Translator Program 

The translator program is split into three distinct components or 

phases. The first phase of the translator, which is automatically 

entered when a user submits a program to the system, reads, one by one, 

the input cards, each of which must contain either a procedure name, 

variable names and associated dat@ or data only. By comparing any 

procedum or variable names which occur with a list of permissable names, 

the translator is able to check for spelling mistakes or non-existent 

names which may occur. The cards are also checked for grammatical 

errors, such as misplaced commas or decimal points in data. All input 

cards, except those which contain procedure names are written away to a 

disc file to be used later as data by the generated Algol program. 

When a procedure or variable name is recognised by the translator it 

places a number benseond ite to the procedure we vabbube into a list 

which is used by the second phase of the translator. If any errors 

have been detected in phase one, relevant error messages are written to 

the lineprinter, detailing exactly where the error occurred and 

explaining what may have happened. The execution of the Hydro system 

is then terminated since the operation of the next phase of the 

translator assumes that no errors were found in the previous phase. 

For the program which the system assembles to run correctly, then all 

of the necessury data must be present and all the procedures and 

variables which are :required must be declared befawm they are used. Also 

the data supplied must be read in the correct sequence and assigned to 

the correct variables. The checking needed and the assembly of code to 

perform the requared actions constitute the main function of phase two 

of the translator. 

Phase two, therefore, performs the major task of the Hydro system, since



this is the part of the translator which actually decides which lines 

of Algol code must be moved from the library to solve the user's 

problems. 

Data for a Hydro procedure may be supplied in two ways : 

(a) All of the data necessary for the running of a procedure may 

be given directly after the procedure name in the input deck, or 

(db) some data may be omitted from one procedure because it may be 

calculated by the operation of an earlier procedure upon its own data, 

or the data required may be the same as that given to an earlier procedure 

In the case where data is calculated by a previous procedure, the 

number corresponding to this data variable will not have been placed in 

the list of procedures and variables by phase one since it does not 

appear in the input deck. 

Similarly, there are several internal procedures which are not available 

to the user but are used by other procedures, so that the numbers for 

these internal procedures do not appear in the input list. In some 

cases it would be possible to declare these internal procedures within 

the bodies of the main procedures, but this would lead to an 

unnecessary duplication of effort, since the same internal procedures 

may be used by several external procedures. In addition, some external 

procedures call other external procedures, and although if all the data 

is given for the major procedue it will automatically satisfy the 

smaller procedure, the number for the auxilary procedure will not appear 

in the list unless it has been used in its own right. 

Therefore, it is necessary to use the input list in some way in order 

to check that for every procedure number which appears there, all the 

data variables required by it have been given in the input deck, or 

that the necessary data may be calculated from the data given to a



previous procedure, and to check that all of the procedures 

necessary to the solution of the problem will be available during 

execution of the assembled program. Since these checks can only be 

carried out on the input list then continuous additions to it will be 

necessary, so that when checks are made, the numbers representing 

procedures and variables which are used or generated by the program, 

but not given by the user, will be present in the list. This 

modification is carried out by special blocks of code which are written 

into the translator for every possible procedure available to the user. 

When a procedure number is encountered for the first time in the input 

list, the variables cdculated by it and any auxiliary procedures which 

it uses must be placed into the top of the list, since these are now 

available as data for later procedures in the same way as if they had 

been supplied by the user. Also, the numbers of the auxiliary 

procedures must be placed in the list. This modification of the input 

list is necessary for two reasons. Firstly, if allows the translator 

to check that all variables required for the running of this and later 

procedures will be available and, secondly, a check may be made whether 

this is the first time that a variable or procedure has been used. This 

second point is used when procedures or variables have to be declared. 

If procedure or variable numbers have not appeared before, then they must 

be declared at this stage, but if they have appeared before then no 

declaration is necessary since they will have been declared at their 

first eccurence. As well as declaring procedures and variables if 

necessary, code must also be assembled to read any data which the user 

has given immediately following the procedure being processed. The 

reading of data is performed by special reading procedures which are 

incorporated into every program assembled by Hydro, therefore, for every 

data variable which appears in the input under a particular procedure
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all that is needed is 2 call on the reading procedure relevant to that 

data variable. 

After all of the declarations of variables and other procedures used by 

this procedure have been made, then the declaration of the main 

procedue itself may be carried out, followed by a call on the procedure. 

Now, if the main procedure has been employed before by the user then the 

above checks for declarations will not be necessary since they will have 

been carried out the first time the procedure was used, and all that is 

necessary is the assembly of code to read any new data for the procedure 

and a further call on the procedure. 

As in phase one, if any errors occur, such as missing data or procedures 

then relevant error messages are printed out and the Hydro system 

terminates. Phase two assembles the necessary code by effectively noting 

down the serial numbers of the lines of code required from the line 

library to perform the tasks of declaring variables and procedures, 

reasing data into the variables, and calling the procedures, as well as 

any code necessary for special operations such as initiallising arrays. 

Phase three of the translator is the section which actually writes the 

assembled program which will perform the tasks required by the user. 

The lines of code required, whose line numbers in the library have been 

calculated by phase two, are retrieved from the library and copied onto 

a disc file in preparation for presentation of the assembled program to 

the Algol compiler for execution. The data for this program, which is 

simply a copy of those input cards containing data, has already been 

written to another disc file by Phase one. 

All that remains is for the computer to execute the program and to print
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out the results on theline printer. 

It is still possible for errors to occur in the execution of the users' 

program since, although the translator checks that all variables and 

procedures required are present, the user may have supplied too much of 

too little data for a particular variable. Because of the special data 

reading procedures used by the system, this type of error may be detected 

and an error message will be output to the line printer.
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4.Te Example 

The following example is taken directly from Bugliarello's Hydro 

manuals and illustrates the concept of stringing procedure calls and 

the retention of data and computed results. In addition it illustrates 

input of data to arrays of multiple dimension as well as the use of 

alphanumeric data. 

This program combines six procedures to compute a set of depth-area- 

duration curves for a large storm over a watershed. The data used are 

taken from the drawings of Fig. 4-! and the program is given in Fig. 4,2, 

The process of solution is the following : 

ae From inputted hourly masscurves of rainfall at each 

station in the area covered by the storm isohyetal map, compute six- 

hour masscurves of rainfall. 

b. Find the maximum rainfall at each station for 6, I2, 18, 

and 24 hour periods throughout the storm. 

ce Compute a curve of rainfall depth versus surface area from 

data planimetered from the isohyetal map. This curve relates average 

depth of rain to the areas surrounded by each isohyetal line. 

d. Compute depth-duration curves for the isohyets within 

individual zones of the isohyetal map using the six-hour masscurves at 

individual stations and planimetered areas about those stations within 

given isohyets. 

e- Compute depth-duration curves for isohyets crossing 

combinations of zones of the isohyetal map. 

f. Rearrange the computed depth-duration curves according to 

the area associated wth each to get a complete set of depth-area- 

duration curves.
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SIX .HOUR.MASSCURVES: 
TOTALI1=8; TOTAL1O=20; | 
ZONEL=*A*, *A*, ¥A*, *A*, *B¥, ¥B*X, ¥BX, *BX; 

STATION1=*ANDOVER*, *COLUMBIA*, *WINDHAM*, *MANSFIEL*, 
*HAMPTON*, *STORRS*, * LEBANON*, *COVENTRY*; 

MASSINPUT=0.5,0.8,1.1,1.5,129, 2392075300; 3035 304, 
BAGS 3k 5 dBc As S44 5.4 S.A, 5:45 3256045 
022,012.02 0.3, 068,0+4,0.5,0.6, 057.018) 
0.8,0.8,0.8, 0.8, 0.8,0.9,1.5, 3.0, 329, 3.9, 
022,06. 570.5)0.7, 0:8, 1203222 ,105, 1540.5. 
1 639 8: 56, 196,158, Mable 0.5400 ae 
6.0,0.0, 0. 0, 6.0,0.0;0.0,0.0,0.6;0.0,0-0, 
6:0; 0.0;0.0, 0:0, 0.54.2, 2 eye ee; 
0.2075 0.8, 1 «Ages ts 200s pubs 9085522, ie, 
30 O05 2 aie. 5 Pe 60. 3.9. 5. oe 
0:2,0. 3, 0.4, 0.8, 1.0; 144,20, 2.6; 2.8, 2.8, 
2.8, 26, 248, 228, 23:8, 2.8, 2.8) 5-8, 4.2.4.2, 
O53.0.6;0. 7; 6.6, 1805 bol, 122s bea eks 350s, 
9.1.3, 1s Bo bee et eee te 

0.0,0.1, 0.25024; 0.540: 7,0.8,0;9, 0.950. 9, 
079,0..9, 09930. 94 1 Os0 .905.1-937.9,1. 951.92 

MAXIMUM. STATION. PRECIPITATION: 
DEPTH. AREA.CURVE: 

TOTAL13=15; CONVERTER=1.543; 
CENTER2=*A*,*A1*, *Al*, *AL*, *AL*, *AL*, *A1L*, ¥A1*, *B¥,*B1*, 

*B1*,*Bl*,*B1*, *B1*, *B1*; 

TSOHYETOSG, 6546, 55:45 352, 1405 5 e035 4, Brews 
PLANIMETER2=0,0,16,123,531,1580, 3652, 6704,0,0, 36, 

3519,1171, 3122, 6749; 
DEPTH. DURATION.SINGLE.ZONES: 

' POTALL4=32; 
ZONE3=*A*, *A*, *A*, *A*, *AX, *A*, *A*, eA, *AX, *¥AX, xAX, XAK, 

*A*, *AX, *AX, *Ax, *AX, *BY, *B*, *BE, *BX, *B*, xB, *B*X, 

*B*, *B*, * BX, xB, *BF, *B*, * BX, *BY; 

STATION3=*ANDOVER*, * ANDOVER*, *ANDOVER*, *ANDOVER*, *COLUMBIA*, 
*ANDOVER* , *COLUMBIA* *WINDHAM*, *MANSFIEL*, 
*ANDOVER*, *COLUMBIA*, *WINDHAM*, *MANSFIEL*, 
*ANDOVER*, *COLUMBIA*, *WINDHAM*, *MANSFIEL*, 
*HAMPTON*, *HAMPTON*, *HAMPTON*, *STORRS*, 
*HAMPTON*, *STORRS*, * LEBANON*, 
*HAMPTON*, *STORRS*, * LEBANON*, *COVENTRY*, 
*HAMPTON*, *STORRS*, *LEBANON*, *COVENTRY*; 

ISOHYET3S=0;.6; 5, 4,0, 34.0,;0,0,2;50;,0; 0,130.0, 0, 
0,5,4,0,5,0,0,2,0,0,0,1,0,0,0; 

PLANIMETER3=0,16,123, 411,120, 984, 376,182, 38, 
1522, 929, 751,540,.0;0, 0,0,0,36, 207,112, 
698, 392,81,1244, 872, 667, 342,0,0,0,0; 

DEPTH. DURATION.COMBINED. ZONES: 
TOTAL15=6; 
ZONE4=*A*, *B*, *A*,*B*, *A*, *B*¥,*A*, *B¥S 

ISOHYET4=2,2,2,1,1,13 
PLANIMETER4=1,1,1,0,0,0; 

DEPTH. AREA. DURATION.CURVES: 
PROGRAM. END: 

Fig.4.2 HYDRO PROGRAM.
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It can be seen from Fig. 4,2 how a program was developed to execute 

these six tasks. All rules of data transfer apply; all inputs given 

and outputs computed are always available for use by procedures called 

later in the program. 

A large part of the data for the program, including some alphanumeric 

data and two-dimensional array data, are required for the first 

procedure, SIX.HOUR.-MASSCURVES. The number of raingage stations in the 

watershed (8) is given by the variable TOTALII, and the number of hours 

of rainfall at these stations (20hours) is given by TOTALIO. ZONEI and 

STATIONI are alphanumeric variables; STATIONI is given the raingage 

station names, and ZONEI the rainfall zones in which each is located. 

It is easy to see how each piece of alphanumeric data is given, 

surrounded by asterisks. Finally the 8 masscurves of rainfall, each 

containing 20 values, are given continuously to the two-dimensional 

MASSINPUT array variable. There is no distinction wthin the data given 

for this variable between one masscurve and the next. The 8 curves are 

simply given back to back in an order corresponding to the station names 

given to STATIONI. Two lines are taken for each masscurve, but this of 

course is only done for order and convenience. Any number of lines 

could have been used. 

The second procedure, MAXIMUM.STATION.PRECIPITANON, is given no data; it 

uses many of the same inputs given to SIX.HOUR.MASSCURVES. 

The other procedures of the program are called in order, each followed 

by the data necessary for their execution. The data for DEPTH.ARHA.CURVE, 

DEPTH.DURATION.SINGLE.ZONES, is alphanumeric. In all cases inputs and 

out puts from previous procedures are retained and used, eliminating the 

need for the user to re-submit data already inputted or computed
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elsewhere in the program. The final procedure called, DEPTH.AREA. 

DURATION.CURVES, requires no data; its data are the results of 

previous procedures.
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4.8. The ICL 1900 Algol input/output procedures used by Hydro 

In this section the procedures required by the translator program and 

the assembled program for the transference of information between the 

computer core store and the peripheral devices will be described. 

These procedures, or procedures which eae perform similar functions are 

essential to the implementation of the Hydro system on any computer 

installation. 

Disc handling procedures 
  

These procedures allow numbers to be written to or fetched from a disc 

file so that they may be accessed in any order. 

Using these procedures the disc may be thought of as a one-dimensional 

list. Bach element in the list is numbered serially starting from 

element I, and each element contains one item of data. 

It is possible for the disc procedures to fetch items in the list back 

into core store, starting at any specified element and ending at any 

element. Similarly, it is possible to write information away starting 

at any position in the list. This. facility is used for storing the line 

library, so that the lines necessary to assemble a program may be 

accessed in any order. Each character is identified to the machine by 

using an integer code cypher instead of the actual character. 

In Hydro the information is stored one character to an element, and 

there are 8I characters per line. 

Tie elements in the disc store are transferred from and to arrays in 

the machine core. The Hydro system uses only a one dimensional array 

for this purpose, so that part of the list on the disc is copied 

directly to the array or list in the core.
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The relevant procedures are 3 

a) WORKSTORE (N,S,L) which sets up a list of length L on a file 

on medium S, which is a disc for Hydro, and the file is referenced by a 

number N, assigned by the programmer. 

b) PUTPART (N,K,A,X,Y). 

This procedure transfers the part of the array A, in core, starting 

from array element X and ending with array element Y to the disc file, 

N, and writes it starting at element K on the file. 

c) GETPART (N,K,A,X,Y) 

This procedure reads information from the disc file, N, starting at 

element K on the file, and stores it in the array A, starting at array 

element X and finishing at array element Y. 

Character handling procedures 
  

These procedures are used to read the user's Hydro program one symbol at 

a time and to assign a unique integer number to different symbols, so 

that the machine can manipulate numbers instead of character information. 

a) INBASIC (I); where I is a channel number assigned to a 

peripheral unit. 

This procedure is usedin the form 

Xs= INBASIC (3); 

INBASIC reads the next symbol from the input peripheral specified as its 

parameter and assigns to X the integer code value which represents the 

symbol in the machine. 

b) OUTBASIC (1,X); where I is a channel number and X is a variable 

containing an integer code representing a basic symbol. 

OUTBASIC prints out on channel I the symbol represented by the integer 

code in X.
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4.9. The method of dealing with arrays in theuser's data 

It was shown earlier in this chapter that an array which occured in the 

user's data was declared only once in the assembled program, at its 

first occurrence, and at later occurrences of that array in the user's 

data only reading procedures were incorporated into the program. 

It can be seen tht if an array increases in size, by using the same 

procedure in which it is employed, or another procedure which uses it, 

with different numerical data, at a later stage in theprogram, then the 

storage reserved for the array at its first occurrence will not be 

sufficient for later occurrences. 

This error cannot be overcome by declaring the array every time it is 

used, because it would lead to wastage of the storage space and would 

mean that a previously read in array could not be updated even in one 

elament, since the original array would not be made available by the Algol 

compiler after that point in the program at which it was re-declared. 

There are two methodsof overcoming this difficulty, one of which requires 

the user to provide additional information and the other which could be 

performed automatically by the Hydro system. 

The first method is employed in the author's revision of Hydro and is 

described in the next chapter.
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CHAPTER 

Revision of Hydro 

Sots Introduction 
  

The original version of Hydro as written by Bugliarello was a first step 

in the investigation of high level computer languages for application in 

the field of water resources and hydraulic bueipesewne. but was by no 

means the complete answer to the problem of bringing engineers into 

closer and more confident contact with computers. Although the language 

was simple to use, there was very little flexibility allowed in the 

sequencing of proceedures. The user had no way of altering the course 

of his program depending upon intermediate results and it was impossible 

to repeat sequences of procedures with different data without having to 

write down the same procedure names again. Furthermore, as was stated in 

the previous chapter, the Hydro translator program as written originally 

would not ha¥eoperated in the manner intended for all Cases of user input. 

An additional 

disadvantage was the inability of the system to store information in the 

' form of results from one user program for use in later programs, or, in 

other words, no data bank could be built up. 

When the original Hydro system was constructed, the aim was to find some 

simple language for use by engineers, which could be understood by a 

translator program and then rewritten into one of- the universally accepted 

and standardised computer languages. The facilities which should be 

provided in such a simple language thus had to be examined before a 

translator program could be written, and because it is difficult to 

foresee every eventuality some helpful facilities.were overlooked or 

deemed unimportant at the time- It has become obvious in recent years 

that data management is as difficult, if not more difficult, than 

actually writing a program to carry out the specialist procedures and
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the author felt that the original Hydro system did not go far enough in 

simplifying data input to the machine. Therefore, the Hydro system has 

been rewritten to facilitate the control of the program during execution 

and to provide more useful data handling methods. The user may now employ 

any of the basic Algol - 60 statements within his program, the most 

useful being the conditional 'IF' statement, the 'FOR' statement and the 

'GO TO' statement. 

A further aid to rapid programming is the provision for tabulation of 

data. Identified data may be written in a table in the normal format 

for the original Hydro translator. Any number of variable names and 

associated data may be present in one table, which is assigned a unique 

integer number by the user. However, if the user does not wish to 

tabulate his data, or if there is no need for it, then he may simply 

write the data anywhere before or immediately after the procedure name 

in the same way as for the original system. If any data is not presented 

in a tabular form then the new Hydro translator automaticdly assigns a 

table number to it for its own reference. 

As a consequence of including 'GO TO' statements in the language and to 

provide more flexibility than the original Hydro language it has become 

necessary for the user to give the maximum values which some of the 

Hydro input single variables may take during the course of the program 

at the head of the input. This is necessary because these values are 

used to reserve enough space in the computer core for all the data given 

by the user. These values will always be known since they are only 

counters of the number of data itemsto be input for the Hydro array 

variables. 

Some typical examples of user input for the New Hydro are given at. the 

end of this chapter.
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Since the basic design and philosphy of the original Hydro, and the 

underlying method of assembling an equivalent Algol program from the 

user's input remains similar in the revised version, this chapter does 

not reiterate the information to be found in the last chapter and in the 

Hydro manuals written by Bugliarello.



aes Special Symbols Employed by the Revised Hydro 

A procedure name given by a user of Hydro is given on a separate line and 

is followed by the symbol << 

The use of this symbol facilitates the search for procedure names in the 

user's program. The translator simply scans a line of input for a left 

arrow and if it is found the code for processing a procedure is effected. 

If no data assignments are to be given after the procedure name the left 

arrow may be immediately followed by three asterisks (***) on the same 

line or on the next line. 

If data assignments are given after the procedure name then the three 

asterisks must terminate the block of assignments for that procedure. 

The combination of left arrow and three asterisks have the same 

grammatical effect as the Algol ( and ) symbols after a procedure name 

and only ‘Sedioate ts the translator that all the information between them 

is relative to the procedure. The rulesof grammar for the Algol brackets 

apply to these symbols. 

The 'TAB' symbol indicates that the following informatin up to the two 

asterisks (**) line is a table of data. 

The 'TAB' symbol is followed immediately by a number assigned by the user 

for this table, and this number is used in any refarenae to the table. 

A special case of the 'TAB' symbol occurs when a miltiple table is used, 

In this case the user gives two numbers, separated by commas, after 'TAB'. 

A multiple table is allowed purely for convenience to avoid the user's 

having to provide a large number of tables, written separately, if one 

data array variable is to be assigned different sets of values on different , 

passes through a procedure, 

The user simply has to give the starting number of the tables and the
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finishing table number, He may then write down the name of the variable 

to which the data is to be assigned at the head of the table, followed 

by s= . From the next line onwards he may write the separate sets of 

data, each terminated by a semi-colon. After the last data set has been 

given, the multiple table is concluded by the two asterisks in the 

normal way.
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563. The Form of Input 

The user's input to the revised Hydro begins with a call on the procedure 

MAXVALS which is followed by a list of the shgle valued Hydro variables 

which are employed by the user's program, together with the maximum 

values which each takes. As mentioned previously, these values will 

always be known by the user since they are only counters of the number of 

data items given for the array variables in the user's input. The list 

of variables is terminated with three asterisks. 

Example 5.1. 

MAXVALS <@— 

GRIDROWS s= 12; NOGAUGES :=: 8; 

GRIDCOLUMNS :=: 14; 

HX 3 

After the MAXVALS procedure the user has the option of calling the 

DECLARATIONS procedure. At this stage, any single or array variables 

which the user wishes to employ, and which are not Hydro variables, may 

be declared in the normal Algol manner. As with MAXVALS, the procedure 

is terminated with three asterisks. 

Example 5.2. 

DECLARATIONS <— 

‘INTEGER' I,J; 

'aRRAY' DATA [1:100,1:3]; 

'REAL' X35 

HX 

Following the MAXVALS and DECLARATIONS procedures the user may begin to 

use the normal Hydro procedures with the relevant data. Pure Algol code 

may also be employed after this point. 

Procedural instructions are all given in the same way. First, the 

procedure name is given on a separate line, followed by a left arrow. On
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the next and subsequent lines any necessary data is assigned to the 

procedure variables, or the tables where the data may be found are given 

alongside the variable names, 

If the results from the procedure are required to be filed in the data 

bank for later use then the table number to which the procedure must write 

its results should be given in brackets between the procedure name and 

the left arrow. When all data assignments for a procedure have been 

made, the three asterisks line is given to terminate the group. 

The only other code which may occur on the same line as a procedure name 

is a label. 

Example 5.3. 

LAB: THIESSEN. RAINFALL. AVERAGE (RESULTS TO 'TAB' I0) <Q— 

GRIDROWS s= 33; GRIDCOLUMNS := 12; 

GRIDs= 'TAB' 33 

HEX 6 
9 

Since the left arrow and three asterisks combination is grammatically the 

same as the Algol round brackets then the three asterisks must be 

followed by an Algol terminator, (i.e. 3 'END' or 'ELSE'). 

A label may beused against any Hydro procedure name or against a data 

assignment which is not included between a left arrow and three asterisks. 

Tables of data may be given at any point in the program and take the 

same form as normal ws avert The table number is given on a separate 

line and on subsequent lines the data assignments are given. 

A table is terminated by a two asterisks line. 

Example 5.4. Simple table 

A VARI LO 

GRID $= O,070 51 515 1,151,50,0;50,0, 

G0; ;1;4515157,1,1456. 

Oy 151i 2 0.0 oo



GAUGES := 1,4, 

I,7; 

1,8; 

295s 

2,6, 

3535 

394; 

3573 

RAIN:= 0.II, 0-40, 0.30, 0.25, 0-41, 0.35, 0-20, 0.36; 
RK 3 

Example 5.5. Multiple Table 

Each data set is terminated by a semi-colon. 

* 'TAB! T,4 

RAIN:= 0.3, 0.4, 0.6, 

O52 565 320 

0563°6, 84.0.8, 

O-aynOul 50-3, 

HHS 
3 

Every user's program must 

Os. 5's 

0.4; 

i. 53 

Ojo. 15's 

be terminated by the procedure call 

PROGRAM.END <— followed by a four asterisks line. 

KKEX 

I28,.
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De As The translator program 

Since tabular data, given in any position in the user's program, is 

allowed in the revised version of Hydro, it is not possible to process 

the user's input in the same way as in the original version. In the 

last chapter, it was shown that the first part, or phase one, of the 

original Hydro translator simply compiled a list describing the order of 

occurrence of the Hydro data variables and procedure names in the user's 

input, while copying array to a disc file the linesof input containing 

data assignments. Having done this it was only necessary to use the 

list in some way to assemble an equivalent Algol program. This 

simplicity was achieved because the data was read by the assembled 

program in the same order as it was supplied by the user and because no 

conditional clauses were allowed in the Hydro language. However, since 

the data for the revised version of Hydro may be given in tabular form, 

and Algol control statements are acceptable, then some method must be 

foundto indicate to the assembled program which data table to read from. 

In order to achieve the desired result, it was found that in some 

circumstances the essential operations of all three phases of the original 

Hydro translator must be combined. A list is still compiled but this 

only records the identification numbers of the Hydro procedures occurring 

in the user's input. 

All code for reading data from tables is assembled on a special disc 

scratch file immediately the relevant data variable assignment is found 

in the user's program. Similarly, the code for calling a procedure is 

written to this file when the procedure name occurs in the input. «in 

this case, however, the procedure call is held back until the code 

dealing with all the data assignments following the procedure name has 

been assembled. Any pure Algol statements are copied directly, with no
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alteration, to the file. If a table of data is given by the user, the 

translator copies this to a separate data disc file but inserts some 

necessary information at the head of the table for later use by the 

assembled program. The number of the table, supplied by the user, is 

recorded in a list together with its position in the file, and this list 

is made available to the assembled program. If any data is given which 

is not in a table, then the translator assigns i table number to it, 

copies it to the tables file in the normal way, and writes the 

necessary reading code to the file where the equivalent Algol program 

is being assembled. 

When all of the user's input has been read, the translator processes 

the list of procedures which has been set up- For each procedure 

occurring in the list the translator assembles code to declare the body 

of the procedure and any other procedures it might use. All arrays used 

by the procedures are also declared at this stage. These declarations 

are assembled on a final dise scratch file. After all procedures have 

been processed, the code assembled previously on the program file for 

reading data and calling procedures, is copied after the declarations. 

The assembled program is then complete and in the correct order, and may 

be presented to the Algol compiler for translation into machine code and 

execution. The data for this Algol program is automatically taken from 

the tables file. 

Examples of user input for the revised version of Hydro are given at the 

end of this chapter. 

SS: 
kxamplesof User Input 

Example 5.6. 

The following example demonstrates a possible user's program for the 

  

repetitive use of the revised Thiesson method for calculating areal 

rainfall averages.
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The GRID array represents a reference grid placed over the area under 

consideration and which completely covers the areas If a zero is given 

for an element in the GRID array this means that the grid point falls 

outside the area and if a one is given the point is inside the area. 

The GAUGES array describes the positions of rain gauges in the area by 

supplying the nearest grid coordinates to the gauges. 

GRIDROWS and GRIDCOLUMNS simply give the number of rows and columns in 

the grid so that sufficient space may be reserved in the computer for 

the information supplied by the user, and GRIDAREA is the ground area 

covered by one grid square. 

The THIESSEN,RAINFALL.AVERAGE procedure is called ten times with 

different values for rainfall at the gauge points. 

The rainfall values given in the RAIN array are written in the same 

order as the rain gauge coordinates are supplied to the GAUGES array. 

After the Thiessen procedure has been repeated ten times the RAIN array 

is set to the values given in table 4 and the ARITHMETIC, RAINFALL. 

AVERAGE procedure is called to take the direct averageof these rainfall 

figures.



MAXVAL 5S <+- 

GRIDROWS :=12; NOGAUGE:=8;3 

GRIDCOLUMNS :=14; 

REX 3 

DECLARATIONS <— 

'INTEGER'I; 

KER s 

GRIDAREA:=25.03 

GRID:= 

GAUGES 

'FOR' 

THIESS 

RAIN s= 

KKK § 

0,0,0,0,0,0,0,0,0,1,1,1,0,0, 

050,0,0,0,0,0,0,1,8sty lot, 0, 

5.0505 Oo. Ol giigd's L 5 Wigthe ls Ios ee 

0,04 Lebo Sls hts etl s fo lots ks 

Lol Ls lot, boi sgt pig l 5 Ll Os 

De pcg o Lg Mio dg ipl oe yt gt 05050 

Ll ,L, l,l, EB she lst. t590,0,0,05 

Lyi yd, lsh st 51 sO .0ss 050,05 

Org bg L gy Lg doth gbi5 5.090505 Os 

O 5 Gel 5 kg Lis Lod gt yg e050 50505 

07,0,050,0,1 , 1,29 ,1.0,0,0,0, 

0,0,0,0,0,0,1,1,1,0,0,0,0,05 

Serr glk, 

4,4, 

4,10, 

Dols 

Tol, 

199s 

994, 

II,9; 

Leal, 10! D0" 

EN ,RAINFALL.AVERAGE «<— 

'TAB! I; 

152.



'TAB' I 

BAIN s=1.2,1.35,0+46,0-6,1-3,1-51,0-84,0.673 

baad 

*'TAB! 2 

RATWisehs 5 p66 9003 (0s Vols 551-4 50s Toate 

Hes 

*'TAB! 3 

*'TAB" IO 

RAIN: =1.4,16550+3540+65,1-8,220,0+6,0.93 

Xs 

RAINs='"TAB' 43 

ARITHMETIC ,RAINFALL AVERAGE <— 

KKK 
? 

'IF' RAINFALLAVERAGE<1.0 'THEN' WRITETEXT ('('DRY YEAR')'); 

PROGRAM END ***; 

HHKE



Example 5.7. 

This example gives a possible user's input program for a sequence of 

routines which could generate 100 years of random inflows to a two 

reservoir system given the histograms of flow probabilities determined 

from a historic record, then uses this data in a dynamic programming 

calculation to obtain a near optimum operational policy for the system 

which is then employed in a simulation of the system to find the costs 

incurred by using this policy for 100 years with the inflows previously 

generated. 

The reservoir inflows are assumed to be independent in one time increment 

and it is assumed that serial correlation may be taken into adcount by 

using an indéx which records whether the previous inflow was higher or 

lower than average for that month, and a histogram of inflow 

probabilities is given for each of these two cases for each monthof the 

year. 

The Hydro variables used in the inout are as described below: 

NI is the number of discrete inflows used in the histograms. 

NSTATA and NSTATB are the number of discrete levels used in the two 

reservoirs for the dynamic programming calculation. 

RANDA and RANDB are merely starting points for the generation of random 

numbers. 

The nied FLOWSA and FLOWSB record the inflowhistograms for the two 

reservoirs. 

Two rows of data are given for each month and for each reservoir. The 

first row gives NI sets of data where a set represents a discrete flow 

in the histogram followed directly by its probability. This row is the 

histogram for the case when the previous month's inflow was lower than 

average. The second row is the histogram for a higher than average



previous month's inflow. 

Thus there are 24 rows of data for each reservoir giving 2 histograms 

for each month. 

URA, URB, UDF, USA and USB are unit costs of releases from each 

reservoir, deficits to demand, and spillage costs in each reservoir 

respectively. 

PWF is a present worth or discount factor. 

The arrays STATESA and STATESB record the discrete levels to be used in 

the reservoirs. 

The DEMAND array gives the demand to be used for each month. 

The ORIGVALUES array records the terminating values of being in certain 

system states at the end of a dynamic programming calculation and 

corresponds to the array described in the chapters on dynamic 

programming.



DOC DATA 

MAXVALS <q— 

NIz=53 

NSTATAs=4 5 

NSTATB s=4 3 

REE § 

GENERATE <— 

RANDA:=0.233 

RANDB:=0.873 

FLOWSA:=1-47,0-17,3+44,0-14,6.10,0.34,8.42,0.24,12.06,0.11, 

SEL Typ Ov BT, 508 6 0084 6s 205 0014s Tel 95011 0k 0s ae: 

Ovsi, Gell, 2-46, 02345463022, se FO ee 

De Rte 6970.28) ee ee ad 

. . ° e . ° . ° . . : . e ° ° . . . 9 

FLOWSB=0. 33,0+30,0.87,0+17,1-03,0+26,1-31,0+17,1-99,0-10, 

©0525 00k3' . e e e e . . . ° e . . ° . - 9 

. . : . . . : . . . ’ 

. ems . . ° . . earns 8 

KEE § 

DYNAMIC,PROGRAM <— 

URA:=03URB:=0 3 UDF s:=1003 

USA:=03;USB:=03;PWF:=0.9853 

STATESA:=0, 10000, 20000, 300003 

STATESBs=0 910000, 20000, 300003 

DEMAND =0.22,0.42,0.85,1-62,3+3343+85,4+16, 346,301,176; 

0.36,0.143



  
 



Example 5.8. 

Example of program assembled by Hydro. 

Program assembled for previous example of user's inputs: 

'BEGIN' 

"COMMENT' GENERAL DECLARATIONS FOLLOW; 

General code to declare reading procedures etc 

(as shown in APPENDIX 4 before BAS I line) 

'BEGIN' 

‘COMMENT’ ASSEMBLED PROGRAM FOLLOWS ; 

Niles) 

NSTATA :=4 3 

NSTATB:=4 ; 

TABLEPOINTER s=150003 

'BEGIN' 

'PROCEDURE' GENERATE (RANDA, RANDB, FLOWSA, FLOWSB, AVA, AVB, TABLEPOINTER, 

TABNO) ; 

'VALUE' TABNO; 

'ARRAY' FLOWSA, FLOWSB, AVA, AVB; 

'INTEGER' TABLEPOINTER, TABNO; 

'REAL' RANDA, RANDB; 

"ALGOL'; 

"PROCEDURE' DYNAMICPROGRAM (AVA, AVB, STATESA, STATESB, DEMAND,ORIGVALUES, 

VALUES, DECISIONS, URA,URB,UDF,USA,USB, PUF,NSTATA, NSTATB,NI,TABLEPOINTER, 

TABNO) ; 

'VALUE' TABNO; 

'ARRAY' AVA,AVB,STATESA,STATESB, DEMAND , ORIGVALUES , VALUES , DECISIONS ; 

'INTEGER' NSTATA,NSTATB,NI,TABLEPOINTER,TABNO; 

'"REAL' URA,URB,UDF,USA,USB,PWF; 

"ALGOL'; 

'PROCEDURE' SIMULATE (AVA,AVB,STATESA, STATESB, DEMAND, DECISIONS ,URA,URB, 

UDF, USA,USB,NSTATA, NSTATB, TABLEPOINTER , TABNO) ; 

'VALUE'TABNO; 

"ARRAY' AVA,AVB,STATESA, STATESB, DEMAND, DECISIONS; 

'INTEGER' NSTATA,NST2TB, TABLEPOINTER, TABNO;



'REAL' URA,URB,UDF,USA,USB; 
'ALGOL' ; 
'ARRAY' FLOWSA [1:12,1:4,1:NI] ; 

'ARRAY' FLOWSB [1:12,1:4,1:NI] ; 

'ARRAY' AvA[I:12] ; 
'ARRAY' AVB[I:12] ; 
'ARRAY' FLOWDATA[I:3] ; 
'ARRAY' STATESA [I:NSTATA]; 
'ARRAY' STATESB [1:NSTATB ]; 

'ARRAY' DEMAND [1:12]; 

'ARRAY' ORIGVALUES [I:(NSTATA*NSTATB) J ; 
'ARRAY' VALUES [I:(NSTATA*NSTATB) ] ; 
'ARRAY' DECISIONS [1:(NSTATA*NSTATB*4,1:12] ; 
‘BEGIN' 

RANDA:=0.233 
RANDB:=0.873 
ARRAYREAD(FLOWSA, DAI,I,10013,12,4,NI,0, 
COLM, CHAR, ALPH, NEXTCOLUMN, NUMERICALDATA, SUBI ,SUB2 ,SUB3,BEG,END, 
GETPARTI , BINARY , ALPHANUMERICALDATA , DATAINPUT , PROGEND, FINISHED, 
DEFINESUBSCRIPTS ,LOC,TOP, BOT, 
IOOI); 

ARRAYREAD( FLOWSB,DAI,1,10014,12,4,NI,0, 
CONN UMER = od ee. yy 
CURPE a e  ee  s 
DEFINESURSCRINGE, 2. oe, 
1002) 3 

GENERATE( RANDA,RANDB,FLOWSA, FLOWSB,AVA,AVB, TABLEPOINTER, 0) ; 
‘END! ; 
'BEGIN' 
URA:=0;URB:=05;UDF:=100; 
USA:=0;USBs=053PWF:=0.9853 
ARRAYREAD( STATESA, DAI,I,10015,NSTATA,0,0,0, 
OOM ae a a a ee 

PPP ARE oe ey eo en ee + cee 

CERMe eee 

I003)3 

T3596



I40. 

ARRAYREAD( STATESB, DAI; 31,IO00I6,NSTATB,O,0,0, . .. , 

COUN OUAR Ga ee a 

GETPART, 

DEFINE , 

I004) 3 

ARRAYREAD( DEMAND ,DAI,I,10017,12,0,0,0, 

COLE, CHAR, -.4° 

GOTPARe SS. 

DOT TM ee ee eae 

1005) $ 

ARRAYREAD( ORIGVALUES , DAI, I, I0018,(NSTATA*NSTATB) ,0,0,0, 

COLN DRA ehi se eer et 

MECPARTS os ee, 

DEPT NM ee ee Oe oe 

1006) ; 

DYNAMIC PROGRAM( AVA, AVB,STATESA, STATESB, DEMAND , ORIGVALUES , VALUES, 

DECISIONS , URA, URB, UDF, USA, USB, PWF,NSTATA,NSTATB,NI,TABLEPOINTER, 0) ; 

Pe 8 

'BEGIN' 

SIMULATE (AVA,AVB,STATESA,STATESB, DEMAND, DECISIONS, URA, URB,UDF,USA,USB, 

NSTATA,NSTATB,TABLEPOINTER, 

0)5 

’ 

‘END'; 

"END' ; 

‘END ' ; 

PROGEND: 'END';
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to File 2. 
Set I=J+1.   
  

or newline in oan Move along line until 

position J TAB as. URIND So GH Shay Ox 

newline found in 

Y position J 

baci f | 
eae Ect there is anything ee ae 

on the line before 

i ae cit nities oe 
Copy line up found ine "ELSE! 
to symbol in Ly-Pound —=—4 
position J to 
File 2. 

set I = J+l. Process 

with 
BLOCK3( J) 

Go to label 2 code 

newline 

and not 

BLANK.



  

  

Copy this 

line to 
File 2 newline 

found     

  

Copy YLINE to 

File 23 

Copy this line 

to File 2. 
  

! 
  

Read next line 
  

! 
  

  
Move along line 

until sEND''ELSE' 

or newline found 

in position J   
  

;'END! 
Yor'ELSE! 
found 

    

  

Copy this line to 

Pilbes2 upto 

position J. 

set I=J+1l.     

   
Goto Pabed 2,    

147.



  

  
Block 3(V) 
  

, 

    

V is the position 
Oip tires. LAB 

after NAME:s= 
  

V 
    

Fetch code from 

library to read 
data into this 

variable from a 

table. 

Write the read 

call to Pike 
  

Yy 
      Move along line 

from position V 
2's 1 

until ;'END''ELSE'|L, ae 
or newline found 

found 
in position R   
  

newline 

found 

    
Copy line from 

position (V+1) 
to end of line to 

Pid ee 
  

Y 
  

Read next line 
  

Y         newline wg! 

found   
Move along line 

until ;'END''ELSE' 

or newline found 

an poss tion R   
  

:"*END!': or 
"ELSE' found 

  

Copy line from 

beginning to 

position (R-1) to 

  
  

File 2 

J 
  

  
Write ) and symbol in 
posztaon wk to: Nile “2. 

set I=R41l.     

  

    Goto label 2. 

  

  

  

Copy expression 

for table number 

from position 

(V+1) to 
position (R-1) 
to File 2. 
Write ) to File2 
Write symbol in 

position R to 

File 2. 

Set I=R+1 
  

Go to label 2 

  

 



ae found 

  

  

array variable found 

starting in position 
Ty - 

: found in position: J     

y 
    

Move along line from 

in position J+] until 
2 TEND! Vii TAB Yor 
N/L in position R © 

‘|1If there is anything 
on the line between = 

and this symbol set 

BLANK = false fr teLsRt   
  

  

  

Analyse 

with 

BLOCK1(R) 
      new line and BLANK 

      

new line 

Lf BLANK 
  

  

Store 

variable 

name 3= 

from 

position 

Tact OJ 

in YLINE. 

Set I=J+2 

Analyse 

with 

BLOCK F 

    

  

Store name :=blank 

from position I to 

end in YLINE   
  

y 

    

  

3'END*or 

found 

READ next line C41: 
  

  

y   
      

    

  

Set I=] 

Analyse 

with 

BLOCK 4     

Move along line 

untak “! TAB id sUbIND 
'ELSE' or new line 
found in* position 

J 
If there is anything 
on the line before 
position J then set 

BLANK=FPALSE     

1 
new line NOT BLANK | 
  

    set I=] 
Analyse with BLOCK F   
  

new line 

BLANK 

‘TAB! bp 
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Copy variable 

“| name := from 

position I to 

position J+l 

to YLINE. 

Set I=J+13 

Analyse rest 

of line with 

BLOCK 4 
  

  

  

Analyse with 

BLOCK 1( J)     

 



[( or new line 

I50 

  

BLOCK F(newline not blank) 
  

  

1 
  

Move along line from 

positions) wnt 

>. .\. OT new tine in 
position J 
  

  1 
  

» multiple assignment 
  

! 
  

  

  

  

  

  

  

    

  

  

    
  

  

  
  

  

      
  

  

    
    

  

  

          
  

  
  

  
  

  
    

    
  

  

arpicericn afta Assign a table number 
eo for this data 

This is not a y 

Le Fetch code from library 
ane re to call the read 

' procedure for this 

Copy name:= in aa 
YLINE to Write the code to 

brogeran file 2 program file 2 

Copy this line 

eae eee Write table number to 

program file 2 eee oe 
write ) to file 

i 
Read next line [T™ = pare cas 

set arrays recording 

Y variable number and 

Move aldne Tea6 position in tables file 
ae ee ak to zero: 
until 3; END ELSE ee ese 

| aR. TOP, BOT, MID[I]=0. I=1,20 

position J y 

{ Set TOP[1)= variable no. 
» END ELSE “pa Set BOT[1]= position of start of variable in 

oe ao. tables file = K+60; 
net 5S = Ks Cpositionof start of table in 

tables file) 

Copy line copy a ens 

up to this ef es 
(incl) line 

od t j : eocaicks cae Copy YLINE (variable name :=) to tables file 
file 2 file 5 Copy this line from position I to end to 
oy I=J41 tables file 
4 “ Copy line to 

+ la 31 ; ; 3 
rg ee Read next line itables file 

program l | 
;END : Move along line until ; END ELSE or new new 

(aver > ELSE line in position J line 
Y 

  

Copy this line 

pos. J-l to tables file, write 
3; to tables file. write symbol 
in pos. J to program file 2 

from start to 

  
  

 



  

  

Set BOT[2]= K (end of table) 
Copy TOP,BOT,MID to top of [-o4 
table on file.   
  

Set K=J+1 

Go to label 

Quin 

program   
    

 



  

assignment 

Just an 

expression       

  

BLOCK 4 array name:=blank 

followed by line 

of data 
  

! 
  

;END ELSE found in 

position J on same line as 

all data for this array 
  

! 
  

No multiple;s—Not >; 

  
Move along line between 

position I and J until 

9 in: position 2 

or until J is reached   
  

  
  

Copy name:= 

in YLINE to 

program file 2 

Copy this line 

between 

positions I to 

J inclusive to 

program file 2. 

set I=J+1; 

Go to label 2 

in main 

program.   

Assign a table number for 

this data 
  

! 
  

Fetch code from library 

to call the read 

procedure for this array. 

Write the call to the 

program file 2 
  

{ 
    

  

Write table number to 

program file 2 

write ) $0. fia. eo 2! 
  

| 
  
  

Set arrays recording 

variable number and 

position in tables file to 

Zero 

TOP,BOT,MID [I] +0 I=1,20   
  

Y 
  

Set TOP[.J= variable number 
Set BOT[—1J= position of start 
of variable in tables file 
= K+603 
Set S=K (position of start of 
table on tables file) 
Record 8. 

Set K=K+60 
  

  

Copy YLINE (variable name:=)   to tables file 
  

! 
  

Copy this line from position I 

to J-l1 to tables file. 
Write ; to tables file   
  

1 
    Write symbol in position J to 

program file 2   
  

 



  

Set BOT 2 =K (end of table). 
Copy TOP, BOT ,MID: to top of 
table on file. 
  

t 
  

  Set l=J+l1; 
Go to label 2 on main progrem   label 2 pe 
 



  

  
BLOCK 1(A) 
  

  

  
  

  

    

  

I54. 

    
  

L23     

  

Y 
‘TAB! found in position A 

¥ 
Set K1l=A 

Write 'BEGIN' to 
program file 2 ¢ 

Move along line from Kl Lgen/1 2 
Inclusive until TAB or aa 1 

n/1 found in position L wet Liat 
— ~ aa pea =   

  

t 
TAS 

    
Set BRACK=0 
Fetch code to read data 

into this array. 

Write code to program 
file 2 
  

y 
  

  fe BO) Sra er 

Move along line from 

position L until (+4; 
END ELSE or n/l found in 
position M 

‘ 

      

    
  

    

  

  

Copy line 

from L+l1 to 

M-1 to 

program file 

2 

Write );'END' 
torre Cc 

V 
( 
| 

Set BRACK=BRACK +1 | 
  

i 
  

write symbol 
in M to file 
2 

py until ( or ) or n/1l   
Move along line after 

  found in position N 

Low   

Copy line from 

L+1 to M-1 to 

program file 2 

Write ); to file 
Set Kl=i+1 
  

  

n/1 
  

Set I=M+1 

Go to label 

Zo Ene me, yt 

program   
  

nee bee 
1 
  

Set 

M=N 

If ( then BRACK= 
BRACK +13 
If ) then BRACK= 
BRACK-1   
    

  

Copy line from 

L to end to 

program file 2 

Read next line. 

Set L=0 
  

  

  
Copy line from 

L+1 to end to 

program file 2 

Read next line 

set M=0   
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[Read next Copy line to program file 

line 2 from L+l to N 
Set N=0 Write )3; to file 2 

Go to Ut Write 'END' to 
ei program file 2 

qe n/1 = Write symbol in 

SSP Move along line from N+1 > ka 

= ; inclusive until +;'END' ae ips = . 
ee ee ELSE or n/l found in rhe aaah 

      position I t 

  

Go to label 2 in 
main program       

 



aa ns 
  

This is the 

end of the 

table. 

Write this 

line to the 

tables file. 

Update kK 

K=K+z3     

  

Simple table. Table number =A 
  

i 
  

Set arrays recording variable 

numbers and their positions 

in table file to zero 

TOP [J]: =o 
BOT [1}: =0 1 20 
MID [I]: =0 
NOVAR:=03 
  

i 
  

Record the next element in 

tables file as the position 

of the start of this table 

LOC{IEK; S:=K; 
PUT ARRAY (1,A LOC) 
  

Y 
    Read next line of user's 

table. Set z=no.of symbols   
  

  

Write all the 

information 

converning the 

position of the 
variables in 

the table at the 

had of the table 

on the file 

NOVAR=NOVAR+1 

BOT[NOVAREK ; 
PUTARRAY 

(1,S,TOP) ; 
PUTARRAY(1, 

SsBOTes 
PUTARRAY(1, 
S,MID); 
TAPLE=FALSE 
  

ye 
    Go to label 1 

in main program 

to process next 

line   
  

on line 

1 ; 
Are the first two symbols 

on the line ** ? 

¥ No 
Set line pointer 

L=0 

  

  

  

10D] Increment line 
pointer I=I+1l       
      
     

Is this position 

the end of the 

line or past end 

of line ISs?    
NO 

Is this symbol 

a space 

NO 

Y 

=a 

    
Copy line to 

tables file 

Update K 

K=K+33 
    

  

4 Move along line 

in position J   
from this position (I) 
UNbIe 3 Or. VO eet OUNd 

  
  

-YES 

    

  

 



L770: 

NO 

| 
Copy name from I to J to 

IMAG. 

Compare name to list of 

Hydro variables. 

Retrieve the number 

representing the variable (Y) 

{ 
Has this variable occurred 

YES before in the table? 

Check through TOP — 

  

      

  

      

      

Move along NO 

line from 

position ( 

L—g—{ J> Look Record variable 
POR s-OL eee 
n/1 i number and the 

sill position of the 

Bie start of the 
position ae ‘ 
I varzEble name in 

tables file 
NOVAR=NOVAR+1 
TOF[NOVAREY ; 
BOT[NOVAH}S+60       

  a et}



Tabel: 10... Table found 
  

    
  

  ‘ 
Look along line. Is 

there a comma after 

AE 

vO 

  

YES 

158. 

  

  

Simple table 

Go to label 4 
  

  

This is a multiple table. Read first 

number after 'TAB' into A 

Read second number after 'TAB' into B. 

A is the number of the starting table. 

Bis the number of the end table. 
  

r 

  
  

Number of tables NTAB=B-A+1; 

Calculate the numberof times the table 

positions recording array MUPOS will be 

  \ 

label 4 

  

filled. , 
NFILLS=ENTIER( NTAB/50) 

recorded in MULPOS the last 

filled. 

EXTRA=NTAB-NFILLS 50 

If EXTRA=0 then EXTRA=50   
Calculate the number of elements 

i 
time/is   

  

{ 
  

and their positions in the tables 

TOP,BOT,MID[I]=0 I=1,20 
Set Jl=1 

M=A 

T=l= first table in set 

K is next position on tables   

Set arrays which will record the variable numbers occurring 

file to zero 

file   
  

  
v 

Read next line of input. 

Cuet) Set z=number of characters 

’ on line 

set line pointer I=0 

! 
Increment line pointer 
I=I+1 

  

  
  

  

  
    

y 
  

YES———<Is this the end of the line?) 

Y 
NO 

| 
Cis this symbol a space? >—t-YES 

t 
vO 

     



Li: 

  

  

Move along line from position I 

until : or n/l in position J 

y 

Store variable name between I 

and J in IMAG 

  
  

  

  
    | 
Move along line from J until = in 

position R. 

Store variable name plus any 

subscript and s= (I®R) in DUMMY 

Y 

Compare name in IMAG to list of 

Hydro variables and 

number Y representing variable 

  

  
  

    

  

  
y 
  

Record variable number Y and the 

position where the variable 

starts=in.the table file in 

TOP and BOT       
  

[Set Table Pointer I=1 <f 

! 
Record position of start of this 

table on file in MULPOS 

MULPOS T=K: 

Set S=start of table 

S=K 

Set K=K+60; 
i.e. leave 60 element at head of 
table for writing TOP, BOT, MID 

  

  
  

  

  

    

information 

Y Pl ad 
Move along line from position Jl 

until 3; or n/l in position J n/1 
  

        
t 

3; end of table 

reached 

{ 
  

  

Copy line from Jl to J to tables file. 
Update K. Set Jl=J+13 

Record position of end of table in 

BOT [2] =K. 
Write ** to end of table. 
Update K. 

Copy TOP, BOT, MID to top of table   
  

Increment table pointer I=I+l 

Increment MULPOS pointer T=T+1 

' 

    

    
  

  

  

Copy line 
from position 

J1 to end to 

tables file. 

Update K. 

Read next 

line. 

Debedd les 
   



de NEA Bees 

    

YES 

    

YES 

  

Hever 
Copy information in 
MULPOS to positions 

file   
  

I60. 

  

Skip next line (**) 
Copy table position 

information in MULPOS 
to Positions file 
Set TABLE=FALSE 

I'Go to label 1 in. main 
program to process next   line. 
  

  
  

  
v 

  

Record BOT[1}-K+60 as 
position of start of 

variable name in 

next table on tables 
file. 

Record MULPOs [T}-x; 
as position of start of 

“next table on file 

Set S=K; 
Set K=K+60;   
  

  
V 
    Copy variable name:= as 

stored in DUMMY to tables 

file.   Go to Lf. 
  

Y 

Mabe 1 oe 
  

 



  

  

Phase 2 
      

    

Write value of K (end of tables file 
position) to position 2001 on tables 

    file 
{ 
  

Use procedure numbers put into STACK 

by Phase l 

STNO is set on last procedure entered 

in STACK. 
  

Y 
    

Set STACK pointer 
OPNO=49 
Set DECL array to blank. (Used for 
storing array numbers which need to 

be declared) 
  

  ' 
    Increment STACK pointer OPNO=OPNO+1   
  

COPNO> STNO)— 

NO 

t 
Go to label where code to 

process this procedure is 

to be found 

y YES 

  

      
{ 

Process procedure | 
  

  

    

IéI. 

  

  

Go to Phase 3 to 

declare arrays in 

DECL 
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Code to process a typical procedure i 

found in the stack by Phase 2 Go to L2O: 

Y 

Has this procedure occurred before 4 

in the STACK array ? YES 

' No processing 

No necessary 

! 
Are all the procedures which this 

procedure might use in the STACK 

before this procedure? YES 

t 
NO 

  

      

  
  

    

      

  

  

Fetch the code from the library 
which will declare the procedures Y 

that have not occurred before. 

Write this code to File 4 
  

    
Load the numbers of these 

procedures into the bottom of the 

STACK. 
    
  

  Y 

Fetch the code to declare the main 

procedure. Write this to File 4 

Y 
Are the arrays which this 

procedure uses in the 
DECL list ? YES 

y 
NO 

Load into DECL list the numbers 

of the arrays which this 

procedure uses that are not 

already in the list 

        

  

  

      

a   

  Y 

Is there any general code from 

after BASE 3 line in library to be 
inserted before this procedure is 

run ? 
  

  

YES 
y 
  

  

Load the positions of this code in the 
library into the PROGRAM array   
 



  

Phase 3 

Y 

Process DECL array set up by 
Phase 2 

      

  

  
  

Y 

Move down list of arrays and 

fetch from the library the code 

to declare them. 

Write this code to File 4 

y 

Process PROGRAM array. 

Fet@h and write to File 4 any 
general code to be inserted 

before program starts. 

v 

Go to Phase 4 

    

  

    

    
  

    

      

  

Phase 4 
      

  { 
Fetch the code assembled on 

File 2 and copy it to File 4 

Y 

  

    

  
  

Write 

‘END! 

‘END! 

PROGEND: 'END'; 

to File 4     
  

! 

Go to Phase 5 
  

      

Y     
Phase 5 

! 
      

  

Present final assembled program on 
File 4 to Algol compiler for 
translation into machine code   
  

t 
  

Execute the program with data from 
tables file   
  

} 
    Write results to line printer or 
file them   
  

Y 

EXIT 

  

163.
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Dabs Description of the Flow Diagram for the translator program 

The translator program is entered at Phase 1 which first copies the 

declarations of the special Hydro data reading procedures from the line 

library to File 4 which is to be used for assembling the final program 

equivalent to the user's input. Some general code used by all programs © 

assembled by Hydro is also copied across at this stage. 

After this preliminary operation the translator passes to Label 1 where 

the next, or first, line of the user's data is read in. The user's data 

is only read in one line at a time and the symbols are stored in a line 

array called IMAGE. An imaginary pointer is then set to the first 

symbol on the line. 

At label 2, the translator looks along the line for the two symbols *'TAB'. 

If these are found at the start of the line then a table has been found 

and the translator starts to process the input with the code for 

analysing tables at label 10. 

If a table is not found then the translator looks for the procedure 

terminating three asterisks. If they are found then a procedure has just 

been processed and all that is now required is to fetch the relevant code 

from the line library to call this procedure. This code is copied to the 

file where the program is being assembled. When the procedure name was 

first encountered the results table number in brackets after the procedure 

name, if present, would have been stored in an array called PRLINE in 

character form. If no results table number is given then the results are 

assumed to go only to the lineprinter, and the character zero is stored 

in PRLINE. 

The number or expression that was stored. in PRLINE is now copied at the 

end of the procedure call as the last parameter to the procedure. The
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call is terminated by writing a left bracket and semi-colon to the file, 

followed by an Algol 'END' symbol. The 'END' symbol is written because 

the translator would have automatically written a 'BEGIN' symbol to the 

file when the procedure name was found in the input. It is necessary 

to surround the data and call with 'BEGIN' and 'END' in the assembled 

program so that all the information given by the user for that procedure, 

between the left arrow and the terminating three asterisks, is related 

to that procedure in the assembled program. 

If neither a table nor the three asterisks line is found at label 2 then 

the translator next looks for a left arrow signifying that a procedure 

name has been written on the line. 

If the arrow is found then the translator processes the procedure with 

the code at label 11. If an arrow is not found then either Hydro data 

assignments or pure Algol code, or a mixture of the two must occur on the 

line. 

Starting from the position at which the pointer is at present set the 

translator moves along the line looking for any of the Algol symbols 'FOR' 

‘IF' 'END' '‘ELSE's;: or newline. If a new line is the first symbol to 

occur then the line contains only Algol code which is copied intact to 

the program file. The translator will then go back to label 1 to read the 

next line of data and will proceed as before. Similarly, if any of the 

symbols 'END' 'ELSE' or 3 are found then the translator copies the line 

beginning at the original position of the pointer up to and including the 

symbol found to the program file. The pointer is set at the next symbol 

and processing starts again from label 2 in the translator. 

However, if either 'IF' or 'FOR' is found then the translator looks along 

the line for the related 'THEN' or 'DO' symbols. If a new line occurs 

before the symbols are found then the line is copied, from the pointer to 

the new line, to the program file, and the next line is read from the
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input, the pointer being set at the beginning of the line. As before, 

the translator looks along the line for the 'THEN' or 'DO' symbols. 

As many new lines are read and copied as necessary to locate these 

symbols. When they are found the translator copies the line from the 

present Sesrvicw ae the pointer up to and including this symbol to the 

program file. The pointer is then set after the symbol and processing 

of the input again continues from label 2. 

The only other symbol which could have been found is the colon symbol :. 

When this symbol is found two possibilities exist. Hither the colon is 

followed by the = symbol, in which case a data assignment of some kind 

follows the equals sign, or it is not in which case the colon is 

terminating a label name. Thus, the translator first looks after the 

colon for the equals sign. If it is not present then the translator 

copies the label name from the position of the pointer up to and 

including the colon to the program file. The pointer is then set at the 

position after the colon and processing begins again from label 2. 

If the equals sign is found then the translator must check whether the va- 

riable name preceding the colon is a Hydro variable name or a name 

employed by the user in the normal Algol way. This is done by copying 

the name from the position of the pointer to the colon into a dummy array 

called IMAG. Any spaces which occur in the input before the variable 

name are omitted. The IMAG array is then compared to strings of Hydro 

variable names by means of the procedure DATREC. If a match is not found 

then the variable is not a recognised Hydro variable. The translator 

moves along the input line until one of the Algol 'END' 'ELSE' or ; 

symbols is found. If a new line occurs before any of these symbols the 

line is copied to the program file and the next line is read, the pointer 

is set at the beginning of this line, and the search continues. When 

one of the symbols is found the translator copies the line from the
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pointer to the symbol to the program file. The pointer is set after 

the symbol and processing recommences from label 2 of the translator. 

However, if the variable name is recognised by DATREC then the number 

representing the variable is recovered from this procedure and set into 

a translator variable Y. If the number representing a Hydro array 

variable then the translator starts to process the input with the code 

at label 13, but if it represents a single variable the input is 

processed with the code at label le. 

The code at label 11 is used for processing an input procedure. 

If an arrow was found on an input line then a procedure name occurs on 

the line. The translator sets the pointer at the beginning of the line 

and looks along from there for a colon which would signify that a label 

precedes the procedure name. If a colon is found then the label, 

including spaces, starting at the beginning of the line and ending at 

the colon, is copied to the program file 2. The colon is also copied 

across. The pointer is then set after the colon. If a colon is not 

found the pointer is left at the start of the line. The translator 

then looks for the first non space character after the present position 

of the pointer. The pointer is now reset at this new position, which 

is the start of the procedure name. The translator looks along the 

line to locate the position of the left arrow, or a left round bracket. 

The name between the position of the pointer and this name is copied 

into IMAG and is then compared by the translator procedure PRREC to a 

list of permissible Hydro procedure names. When a match is found the 

number representing the procedure is retrieved. A check is made to 

see whethe the procedure is either MAXVALS, DECLARATIONS or 

PROGRAM.END. If it is PROGRAM.END. then the end of the user's input 

has been reached and the translator may pass on to the next phase of 

analysis, but if the procedure is MAXVALS or DECLARATIONS then the



user's input between the left arrow and the procedure terminating three 

asterisks line is copied to the program file4. The pointer is set at 

the beginning of the next line and processing continues from label 1 

of the translator. However, if the procedure is an ordinary Hydro 

routine its representative number is copied into the next available 

position in an array called STACK for ee by the translator. 

The Algol symbol 'BEGIN' is then written to the program file Cie LiL ne 

left round bracket was found after the procedure name then the user has 

supplied the number of a table to which he requires his data to be sent, 

as well as to the lineprinter. The translator moves along the line 

until the 'TAB' symbol is found. It then copies the number or expression 

between 'TAB' and the right closing bracket into an array called PRLINE. 

However, if the brackets were not present, PRLINE is set to the 

character O which indicates that the results are to be written to the 

line printer only. 

The translator then reverts to its label 1 position to read in the next 

line of the users data. 

PRLINE is used later by the translator when all data given for the 

procedure by the user has been processed, and the translator is 

assembling code for the procedure call itself. The expression in 

FRLINE is copied to the program file 2 at that point as the last 

parameter to the procedure. 

The code at label 10 is used when a table has been supplied by the 

user. If the *'TAB' symbols are found at the beginning of a line then 

the user has given data in the form of a table. The translator looks 

past the 'TAB' symbol for a comma which would indicate that there are 

two numbers separated by a comma in which case a multiple table follows. 

If a simple table has been found it is processed with the code at label 4.
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If a comma is found then a multiple table has been given and the 

translator sets into A the number of the first table number and into B 

the second number. At this point the translator initialises three 

twenty element arrays, TOP, BOT and MID to zeros. These arrays will 

later be written at the head of the user's table when it is copied to 

the tables file. During the analysis of the table, numbers will be set 

into these arrays which will form a directory of the representative 

numbers of the variables in the table, their locations in the table and 

the form of the data given to each variable respectively. The MID array 

is always left with its elements zero by the translator, since a zero 

signifies to the assembled program that the data for the variable is to 

be read in character form which is always true of data input to the 

translator by the user. It is the assembled program which may write 

results to a table other than in character form and the MID array is 

then necessary to indicate to the assembled program whether it is to 

read data from an input table in character form or from a previously 

generated results table which may have been written in binary form. 

After the arrays have been initialised the translator begins to process 

the contents of the tables. In the case of a multiple table, the first 

line of the table will contain at least a variable name followed by the 

symbols :=. Data may also occur on the same line. The translator first 

stores the variable name up to the : symbol, minus any preceding spaces, 

into the IMAG array for comparison by the DATREC procedure to the list 

of Hydro variable names. The part of the line containing the variable 

name plus := is stored in an array called DUMMY which is written into 

each simple table which is expanded from the user's compact table. 

From the DATREC procedure, the variable number is retrieved and is 

stored in the first element of the TOP array.
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The next available location for storage of data on the tables file is 

recorded in a special tables list as the position at which the table 

starts on the file. The first data stored for the table will be the 

three directory arrays TOP, BOT and MID, but the information to be 

stored in these arrays will not be known until the table has been 

processed. Therefore, space on the file is left at the head of the 

table for the insertion of these arrays. The location on the file 

after this space is recorded in the first element of the BOT array as 

the position of the start of the variable in that table. 

Having done this the translator looks past the = sign in the user's 

input to the actual data. Hach data set in the multiple table is 

separated by a semicolon. The translator first copies the DUMMY array 

to the table and then copies the first data set to the tables file and 

will record in the second element of the BOT array the next available 

location in the file after the end of this set. The TOP, BOT and MID 

arrays are then inserted in the space left at the head of the table. 

This latter procedure is repeated for all the data sets, the starting 

positionof each table being recorded in the special list, and the BOT 

array being revised as each table is written. The TOP and MID arrays 

stay the same for all the tables, since the TOP array only contains the 

one clement recording the variable number, and the MID array contains 

all zeros for user input. 

When the last table has been written away the translator moves past the 

two asterisks line, which terminates a table and begins to process the 

next line starting at label 1 of the translator program. 

The code at label 4 is employed when a simple table has occurred. 

The translator again initialises the directory arrays TOP, BOT and MID 

to zeros, and records in the special list the next available location
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on the tables file as the start of the user's table. The translator 

then looks at the first data line in the table. As with the multiple 

table, the first variable name is located and stored in IMAG and is 

then compared to the list of Hydro variables by the DATREC procedure. 

The number representing the variable is retrieved and stored in the 

first element of the TOP array. A space is left on the tables file for 

the directory arrays and the next location in the file after this space 

is recorded in the first element of the BOT array as the position of the 

start of the first variable of this table on the file. The translator 

then copies the user's input to the tables file until a semi colon is 

found, indicating that all the data for that variable has been given. 

The next variable name in the table is then located and compared to the 

list of Hydro variables. If the same variable as before has been given 

then no additions are made to the TOP and BOT arrays, but the data for 

the variable including the name up to the next semi colon, is copied to 

the tables file. This situation can occur when different elements of 

an array variable are given separately, when the variable name in the 

table will be followed by subscript brackets. 

If a different variable is found then the next available location on 

the tables file is recorded as the start of that variable in the file 

in the next element of the BOT array and the variable number is stored 

in the next element of the TOP array. The variable name and data is 

copied to the tables file up to the next semi colon. 

This procedure is repeated until the two asterisks line is found, 

indicating that the table has ended. At this point the translator 

returns to label 1 to read the next line of input. 

The code at label 13 is used when an array variable assignment is found. 

If an array variable name,which is not in a table, is found in the input
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two possibilitrs exist. Hither the user has given a string of data te 

the variable, as in a table, or he has given a table number where the 

necessary data may be found. The translator now looks past the := 

symbols after the variable name for a 'TAB' symbol or any of the Algol 

symbols ;'END' or 'HLSE'. If the 'TAB' symbol is found before any of 

the others then the user has given ak least on€ table number for this 

variable. In this case the translator first writes an Algol 'BREGIN' 

symbol to the program file 2. 

Then for every 'TAB' symbol found, the translator retrieves the 

appropriate array reading code from the line library and writes it to 

program file 2. The array reading code consists of a call on the 

procedure ARRAYREAD which has several parameters. Hach call in the 

library has different parameters, which depend on the variable found in 

the input, but the last parameter is omitted in the line library. 

This parameter is now filled in by the translator since it represents 

the table number given by the user after the 'TAB' symbol. One ARRAY 

READ call is incorporated into the table for every table number given by 

the user for this variable. 

After the last 'TAB' symbol and its following table number have been 

given the user will have written either a ;'END' or 'ELSE' symbol. 

When the translator finds this symbol, it writes an Algol 'END' symbol 

to match the 'BEGIN' yitioh was written when the variable was found. 

The translator then sets its line pointer to the symbol found and reverts 

to label 2 to process the rest of the user's input. 

If the 'TAB' symbol is not found after the array variable name then 

actual data must be given at this point in the user's program. The 

translator must now ascertain whether only one data item is given or 

several. This is done by checking for a comma in the data. If a comma 

occurs then several items are given, each separated by a comma. If any
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of the symbols ;'END' or 'ELSE' occur before a comma is found then only 

one data item is given to the array variable. The variable name and its 

data assignment may be copied directly to the program file 2 in this 

case in the same way as normal Algol code. The translaor then sets its 

pointer after the terminating symbol found and begins to process the 

rest of the user's input with the code at label 2. 

If a comma is found then a different approach must be made. The 

translator assigns a table number to this data and copies it to the 

tables file in the same way as if it had been given as a table by the 

user. However, code must also be fetched from the library to read the 

data from the assigned table at this point. The variable number is 

retrieved in the normal way by comparing its name, using the DATREC 

procedure, to the list of Hydro variables. The appropriate ARRAYREAD 

call is fetched from the line library, and the assigned table number is 

filled in as the last parameter. This code is then copied to the 

program file 2. 

The translator sets its pointer after the data given and reverts to 

label 2 to process the remainder of the user's input. 

The code at label 12 processes the input when a single variable occurs 

on a line. When a Hydro single variable is found in the user's input 

then either a table number where the data may be found is given, or the 

data itself is given. For a single variable, only one table number will 

be given unlike the position for an array variable where several table 

numbers may be supplied. Therefore, the translator checks whether a 

'TAB' symbol or any of the Algol symbols ;'END' or 'HLSE' occurs first. 

If a 'TAB' symbol is not found then it is not necessary to assemble 

reading code. The variable and its data up to and including the symbol 

found may be copied directly to the program file 2 as though it were 

ordinary Algol code. However, if the 'TAB' symbol is found, the
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translator fetches the appropriate SINGLEREAD call from the line 

library and writes this to the program file 2. As with all other calls 

fetched from the library the last parameter to the procedure is omitted, 

since it represents the table number from which the data must be read, 

and can only be supplied by the user. The table number between the 'TAB! 

symbol and any of the symbols ;'END' or 'ELSE' is now written as the 

last parameter. 

The translator sets its pointer after the last symbol found, and 

recommences processing the user's input with the code at label 2. 

When all the user's input has been processed the translator moves on to 

its Phase two analysis. As mentioned earlier, the phase one part of the 

translator compiles a list,known as the STACK, of all the procedures 

numbers which occurs in the user's data. This information is now used 

to assemble code to declare the procedures used and later to declare the 

arrays used by these procedures. 

The translator looks at each procedure number in the list and goes to a 

position in the translator where a block of code is written which 

relates to the declaring of that procedure. For the procedure under 

consideration the translator looks back through the STACK to ascertain 

whether the procedure has occurred at an earlier stage. If it has, then 

nothing need be done at this point since all the necessary operations 

for declaring the procedure body and its associated array variables will 

have been carried out at the first occurrence in the STACK. However, 

if this is the first occurrence then several operations must be carried 

out. Since some Hydro procedures may use other procedures it is 

necessary to insert at the top of the STACK, when a procedure is 

processed by phase two, the representative numbers of all procedures it 

may use. This action is carried out because a procedure used by another 

at one stage in a program may occur in its own right at a later stage,
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or may be used by a different procedure, but all declarations for the 

smaller procedure will have been carried out at the earlier occurrence 

of the larger procedure, so that they need not be done again. Thus, 

when the translator looks back through the STACK it scans through 

implied procedures as well as actual input procedures, and when any one 

input procedure is processed by phase two only the procedures which do 

not occur above it in the list and which are used by this procedure are 

declared. The body of the main procedure is declared after all of the 

lower order procedures have been declared. The declarations are made 

by fetching the relevant code from the line library, the location of the 

code being related to the procedure number, and writing this code to 

program file 4. For every Hydro procedure which may be used, the 

translator contains code indicating which array variables are required 

for the running of the procedure. When an input procedure is found in 

the STACK compiled by phase one, the translator stores in a list called 

DECL the numbers representing the array variables which need to be 

declared. Only the numbers which are not already in the DECL list are 

inserted. 

When the processing of the STACK list is complete, the phase three 

section of the translator uses the DECL list compiled by phase two to 

assemble code for the declaration of the arrays present. For every 

array number present in the DECL list the translator fetches the 

appropriate declaring code from the line library and writes this to 

program file 4. 

At this stage all processing of the user's input is complete, and only a 

final collection of all the assembled code is necessary. 

The code assembled on file 4 contains the declarations of single 

variables and general code used by the assembled program when executed, 

together with the declarations of the data reading procedures used by
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every program assembled by Hydro. After this on file 4 are the data 

assignments and declarations given by the user under the MAXVALS and 

DECLARATIONS procedures. 

Next are the declarations of all the Hydro procedures which will be used, 

followed by the declarations of the array variables. 

The code assembled on file 2 contains only pure Algol code, the calls 

on the Hydro procedures, and the calls on the data reading procedures, 

ARRAYREAD and SINGLEREAD. This code is now copied from files? toctive A 

after the declarations. The only remaining operation is to write 

several Algol 'END' lines at the end of the program. After this the 

complete assembled program on file 4 may be presented to the Algol 

compiler for translation into machine code and for subsequent execution. 

By means of the data reading procedure calls the program automatically 

locates the necessary numerical and text information it requires from 

the tables file.
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G6. Flow Diagrams for the Hydro Reading Routines 
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5.9. Description of the flow diagram for the reading routines 
  

The first reading routine is the NEXTCOLUMN procedure. This routine 

is able to read into an array called CHAR, lines of data from a table. 

It is assumed that there are two types of information in a table. One 

type is in character form and the other is in binary form. If the 

routine is reading character information then one line of data of 

variable length is read into the CHAR array. The line is terminated by 

a newline symbol. However, if binary information is being read 81 

elements are read from the tables file. In this case each element 

contains one complete real or integer number, whereas for diaaah tan 

information each element contains only one digit of a number, a decimal 

point, a sign, a comma, semicolon or a character of the variable name. 

The routine not only reads in the information but also increments a 

pointer on the CHAR array. When a line of data is read in the pointer 

is set to the first element of the CHAR array. Later calls on the 

procedure move the pointer one element along the array. If the 

pointer is moved past the end of a line for character information or 

past the 8lst number for binary information then more data is read and 

the pointer is set at the beginning of the data. No analysis of the 

data is carried out by this procedure. 

The ALPHANUMERICALDATAis called whan an asterisk is found in the CHAR 

array. This indicates that the information is text which is to be used 

to identify results sent to the lineprinter. Each mnemonic or word is 

given between asterisk symbols. The routine copies the text between ; 

the asterisk found and the next asterisk to an array called ALPH. The 

pointer on the CHAR array is then moved past the text until a semicolon 

or a comma is found. The pointer is then left on this symbol and an 

exit is made from the procedure.
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The NUMERICALDATA procedure is used to construct a complete number 

from the digits supplied as character information by the user. On 

entry to the procedure the pointer on the CHAR array has been set by 

another procedure or by carlier use of this procedure to the 

beginning of a number in character form. The pointer could be set to 

a space preceding the number, a plus or minus sign or the first digit. 

The routine first moves the pointer along the CHAR array to the first 

non-space character, if necessary. The first check made is for the 

presence of a sign. If a sign is present and it is negative then the 

variable NEGATIVE is set 'TRUE'. If no sign is present the routine 

reads the following number up to the terminating symbol which can be 

a comma, semicolon or bracket, by the method detailedin the flow 

diagram. The final assembled number is set into NUM@RICALDATA and an 

exit is made from the routine. 

The SINGLEREAD procedure uses the NEXTCOLUMN procedure to read in a 

line of dataor 81 symbols, depending upon the type of information from 

the table specified as the last parameter to the procedure. The 

procedure first retrieves from the list of table positions the position 

of the start of this table on file. Having determined this position 

the TOP, BOT and MID arrays are read from the head of the table. The 

location in the table of the start of the particular variable to be 

read is found by looking along the TOP array for the variable number. 

When this is found, the position of the start of this variable is 

determined by looking in the equivalent element of the BOT array, and 

the type of data given is determined from the MID array. If the data 

is in binary form then BINARY is set 'TRUE'. 

In either case, the procedure then checks whether the variable is a 

realinteger or text variable. This information is supplied automatically 

in the procedure call for-that particular variable.
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Data is then read into the appropriate variable by means of the 

DATAINPUT procedure and an exit is made from SINGLEREAD. 

The DEFINESUBSCRIPTS procedure is used when an array variable is given 

in a table. The user may have given an element of the array as the 

starting position for filling the rest of the array with the data 

provided. The subscripts for this element will have been supplied, 

separated by commas, within square brackets immediately following the 

array name. This procedure is called from the ARRXYREAD procedure when 

the array has been located in a table. When DEFINESUBSCRIPTS is 

entered, the boolean variable DEFINED is set to 'FALSE' and the variables 

BEG and END will have been set to the positions on file where data 

begins and ends for this array in the table. This information is 

retrieved from the directory arrays for this table by ARRAYRHAD. If 

DEFINESUBSCRIPTS has not been called before by the ARRAYREAD procedure 

then the line pointer on the CHAR array will have been set to a newline 

symbol. The first action of DEFINESUBSCRIPTS is to check whether the 

pointer indicates a newline symbol. If it does, then the next line of 

data for the array is read into CHAR and the pointer is set to the 

first symbol on the line, but if not then the pointer is moved to the 

next symbol on the line being processed. The next operation checks 

whether the data for this array has been exhausted. Every time a new 

line of data is read the procedure adds the number of symbols on the 

line to the variable BEG. BEG is then compared to END. If BEG is 

greater than END then a jump is made to the end of the ARRAYREAD 

procedure. If the data has not been exhausted then DEFINESUBSCRIPTS 

begins to process the subscripts given. The line pointer is moved 

across the line of input in the CHAR array until the first non-space 

character is found. If the symbol is = then no subscripts have been 

supplied so that they are all assumed to be equal to one, and an exit
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is made from the procedure with the pointer set on =. 

If the symbol found was [ then subscripts have been given and the 

NUMERICALDATA procedure is called to read into SUB1 the number between 

[ and the next , or | symbols. If a comma is found after the first 

subscript then more subscripts are given and a similar procedure is 

carried out to find the value of SUB2, but if a 1 symbol was found only 

one subscript was given and an exit may be made from the procedure. 

In the same way a check is made for the presence of a third subscript. 

When all given subscripts have been found an exit is made from the 

procedure. 

The DATAINPUT procedure determines the type of data given for a variable 

and, depending upon this information, calls the relevant 

ALPHANUMERICALDATA or NUMERICALDATA procedures to assemble a data item 

for the variable. At entry to the procedure, FINISHED is set to 'FALSE' 

and the real variable DATAINPUT is set to zero. A check is first made 

to find whether the data is in character or binary form. If it is 

binary information then a check is made to locate the start of the 

data. Any information which a previous program has written in binary 

form will contain mixed data. An identifying variable name will have 

been written first in askauet form. Then a very small number, 10716 

is written in binary form after the variable name and this indicates 

that the real data for the variable immediately follows. The data is 

terminated by the large number 10° © - Therefore, if binary data is 

present the CHAR array is checked for the number 1076 - When this is 

located, DATAINPUT is set to the next number, which is in binary form, 

on the line. A further check is now made for the value of the following 

+76 
number on the line. If it is*10 then FINISHED is set 'TRUE'. In 

either case, an exit is then made from the procedure.



If the data on file was found to be in character form then a more 

complex procedure is carried out. The line pointer is moved along the 

line of data until a mon-space character is found, newlines being read 

as necessarye When a symbol is encountered the procedure checks whether 

it is the * symbol. If it is, then the text array ALPH is set to blanks 

and the ALPHANUMBRICALDATA procedure is called to transfer the next 

piece of text on the line to the ALPH array. The line pointer is set 

on the comma or semi-colon following the data item. If a semicolon is 

present FINISHED is nee to 'TRUE', and in both instances an exit is made 

from the procedure. 

If an asterisk is not found then the data is numerical and the 

NUMERICALDATA procedure is called to assemble a number from the digits 

given and to assign this value to the DATAINPUT variable. 

The line pointer is set on the comma or semicolon following the data 

item and if it is a semicolon FINISHED is set 'TRUE'. An exit is then 

made from the procedure. 

The ARRAYREAD procedure is the most complex data reading procedure and 

is best described in general terms. ARRAYREAD is cence with several 

parameters which include the table number where the data is to be found, 

the data type of the array, and the upper bounds on the array subscripts. 

The first check made is to determine whether the data is given in 

character or binary form in the table. The DEFINESUBSCRIPTS procedure 

is then called to find from the user's input the element from which the 

array will be filled. The next test made is for the type of the array 

variable in question. If it is a real or integer variable then similar 

paths are taken but if it is a text variable then slightly different code 

must be employed. If real data is given then the first procedure 

parameter is used as the array name for assignment of data. Otherwise, 

the second parameter is used as the array name. A process is then
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followed which reads data, using DATAINPUT, into the array, starting 

at the subscripts found by DEFINESUBSCRIPTS. These subscripts are 

then incremented and data again read in until either the data is 

exhausted, marked by a semi-colon, or until the subscripts reach their 

upper bound valuese- If a semi-colon is found and the end of the data 

for this variable has not been reached on the file, as determined by 

the value of the END variable, then DEFINESUBSCRIPTS is used again and 

the whole procedure is repeated. When the end of data is finally 

found an exit is made from the procedure.
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CHAPTER 6 | g 

DETERMINISTIC DYNAMIC PROGRAMMING APPLIED 

TO RESERVOIR CONTROL 

  

  

6.1. Introduction 

Deterministic dynamic programming deals with the case 

where the effective control of a eveten depends only on 

parameters with known values, and can be applied only to systems 

where a direct simulation with the same data can be made. In 

the reservoirs control problem the fixed quantities are the 

inflows to the reservoirs at any time, which may be obtained from 

the historical record or be synthetically generated in some way, 

and the demands on the system. 

A system in which inflows or demands can only be given as 

probability distributions cannot be solved by deterministic 

dynamic programming. The method of solution where uncertainty 

is introduced into the system is known as stochastic dynamic 

programming, which is discussed in the next chapter. 

When a data sequence and the sizes of the system modules 

have been specified, the possible release or control decisions 

which can be made for each reservoir level or combination of 

reservoir levels, or other system 'state', are decided upon by 

the designer. 

Deterministic dynamic programming can then be applied 

to find the optimal decision for any 'state' and time, or stage, 

if the inflows and demands are routed through the system.
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6.26 The Dynamic Programming Principle 

It is not always evident that the operation of a reservoir or water 

resources complex can be taken as the set of non linear, time-varying 

differential equations 

z meee a ey eau: 6.1 

where X = n — dimensional state vector 

m — dimensional control vector cl
 

i 

ct
 

ul time variable measuring time elapsed starting at an 

arbitrary datum 

. ao er ys 
(>) at 

This formulation tends to loosen many preconceived notions that one 

might have about the reservoirs control problem. It is easier to see 

analagous problems in different fields and possibly make use of advances 

in these areas. It also demonstrates more clearly the consequences of 

discretisation of the problems in the more familiar finite differences 

notation. For these reasons, the dynamic programming principle is 

introduced along these lines. 

The state vector is a record of every relevant piece of information 

which might affect the decision to be made at a given time concerning 

the operation of the system. In a simple case, this vector might only 

contain the two elements which give the levels in each reservoir for a 

two reservoir system. A more sophisticated approach might include 

elements which describe whether the previous inflow to each reservoir 

was higher or lower than average for a particular time, thus allowing 

for serial correlation of inflows. 
time 

The state vector at/ t is represented by 

x(t) = x,(+) where x(t) is one known feature at time t 

x,(4) 

*n( +)
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The control vector contains any number of elements, each of which 

describes one operation on a given partof the system 

In the caseof a two reservoir system supplying one demand then onlyone 

operation may be required for each reservoir i-e. the release from each, 

but if two demands are to be satisfied, then there may be two operations 

for each reservoir, namely the releases to be made to each demand. 

The control vector at time t is denoted as 

u(t) = u,(+) where u,(+) is one control variable 

u(t) 
u(*) 

For the two reservoir case and a single demand this might be 

u(t) u,(t) where u,(+) is the release from reservoir I 
at time t 

uy(t) and u,(t) is the release from reservoir 2 at 
time t 

For the two demands case the control vector might be 

u(t) = u,(+) 

u(t) 
u, (+) 
uw, (+) 

where u, (+t) is the release from reservoir I to demand I at time t 

u,(t) is the release from reservoir I to demand 2 at time t 

u,(t) is the release from reservoir 2 to demand I at time t 

u,(+) is the release from reservoir 2 to demand 2 at time t 

The system variables and fixed quantities are related by the system 

equations 6.I. which describe how the system changes from one time period 

to the next when a control is applied. 

The system controller can choose values of U at any time in such a way 

that over a long period of time some measure of performance is optimised. 

This measure takes the form of an integral of a scalar functional of the



state variables, control variables and time plus a scalar functional of 

the final oe ae final time ¢ 

ffx | ie ¥; +I gor Soles Rion BO; 

initial time where t 
oO 

to = fanealtine 

o = dummy variable for time 

if 

Y 

In order to solve the set of equations 6.1. bearing in mind the objectives 

scalar functional for cost per unit time 

scaler functional for final value cost ul 

contained in equation 6.2., it is necessary to use finite difference 

approximations. Equation 6.1. can be written as : 

x(t+§t) = x(t)+f(x(t),u(t),+)St Rot ae 7 Equ. 6.3. 

The integration of equation 6.2. may be simplified by the expression 

t+ St 
: whe 1[5(0},i(c) ,oac = 1 Say acer St oF eo eae Bade 
t 

These are the simplest possible finite difference forms that can be 

written for equations 6.1. and 6.2. When integrating difference 

equations by numerical techniques many problems arise over the choice of 

step size. Fremently they are resolved by solving the equations at 

different spacings and comparing the resitfits.: 

There may be other considerations to take into sgsrrint in the alution 

but these can generally be written in the form of constraints on the 

possible states and policies :; 

x(t )¢X(t) 

u( t)€U( x,t) 

Where x. the set of admissible states, can vary with t, and where U, the 

set of admissible controls, can vary with x and t. 

It is possible to solve the problem by an application of Bellman's
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principle of optimality, which states that if we know an optimal 

trajectory, or sequence of states, from a state x(t) to a state x(t») 

then the portion of the trajectory from any intermediate state x(t) on 

that trajectory to state x(t.) is the optimal trajectory from state 

x(t) to state x(t). 

K ( t¢) 

  

      Lime eee ae te 

Fig. 6.| 

This principle can easily be proved by considering the logic of the 

to 

situation. Referring to Fig. 6.1., if we know CEAD is the optimal 

trajectory from x(t) to x(t.) then let us assume that EBD is the 

optimal trajectory from x(t) to x(t.)- Then path CEBD must have cost 

less than path CEAD, but this contradicts the fact that CEAD is the 

optimal path from x(t.) to x(t) and hence EAD must be the best path 

from x(t) to x(t p)- 

In order to apply the principle to the reservoir operation problem it is 

necessary to define a minimum cost function r[x(+), +]. 

This function determines the minimum cost that could be incurred in 

going to the time te. if the present time is t and the present state 

is xX. 

The principle of optimality may now be written as 

t 

fx), see | x(0),n(0),ar  +¥L(+,),+,] 
tare - Equ. 6.5.
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Using the approximations of equations6.3. and&4. the iterative 

functional equation of dynamic programming may be written as 

1[2(+),4): aR EOmor + 1{ 2 704) ,0() 98,4489] | 
a Equ. 6.6. 

The development of this equation is treated more fully in the next 

section. The interpretation of this equation is that the minimum cost 

at a given state x and the present time t is found by minimising, through 

the choice of the present control u(t), the sum of i[z(+) ,a( +), 4] 8+, the 

cost over the next time interval§t, plus 1Lx( +)+3(5( +) ,a( +), +) St, t+Se] , 

the minimum cost of going to tp from the resulting next state, 

x(+)+F(x(+) u(t), St. 

This iterative equation is solved backwards in time because r[z(+), 4] 

depends on values of the minimum cost function at future times. 

Consequently, the iterations begin by specification of the minimum cost 

function at the final time tee 

Using equation 6.5. 1[k(+,),+,] - ¥[x(+,),t4] Pe eo ia Cele 

The minimum cost function for all x and t can be evaluated by iteratively 

solving equation 6.6. with equation 6.7. as a boundary condition. The 

optimal control at every x and t, denoted by Uppm(Xst) » is obtained as 

the value of u(t) which minimises equation 6.6. for the given x and t.
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6% 3 Discretisation of the variables 
  

Since the levels and releases in a reservoir may take any continuous 

values within their possible ranges at any time, the dynamic programming 

method reduces the computational volume by fixing the variables at 

discrete values and carries out calculations of optimum rules, using 

equation 6.6., only at these values. The costs, 

tf x( t)+2(X(+) ,a(+), t)8t,t+8t], if the resulting state, 

x(t)+f(x(t),u(t),t), is not a discrete value, are obtained by 

interpolating between the costs for the nearest discrete states. The 

time variable is als reduced to discrete values, but the increments in 

time,§t, between each calculation of costs need not be the same for all t. 

The accuracy of the solution of the system equations depends, of course, 

on the discrete step sizes chosen for state, control and time variables 

and some attempt has been made in this thesis to investigate the effects 

of varying step sizes. 

In essence, dynamic programming contains the same steps as simulation, 

except that instead of applying one specified rule to the set of levels 

existing in the system at any time, dynamic programming applies several 

rules to a particular set of levels and chooses the one which is the 

best at that time. No assumption is made about the state of the system 

in one period of time, the best rule being determined for every state 

which could occur. 

The simulation approach would, involve fixing the controls, u, at each 

time and running a simulation of the system starting from some given 

state x(t ,)- This simulation would produce a cost 

‘ 

Jy = (2 Z(¢),3(¢) elac ¥L+,),+,] 

4 
° 

Further simulations can be run with every possible control sequence,
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and the costs, J, obtained. The sequence with the minimum cost is the 

optimal one. : 

Hill climbing and directed search techniques have been used to modify 

the sequence of U's to find the best sequence ° 

The number of trajectories possible depends upon the number of controls 

which may be applied at each time, and upon the number of time increments 

chosen. For a system where four controls may be applied at one time, and 

with a twelve months total time in one monthly increments the number of 

trajectories is - approximately I7 million. So it is clear that, even 

with this short process, it would be computationally impossible to 

evaluate all the trajectories. However, the dynamic programming method 

does in fact perform an equivalent calculation with far less computational 

effort.
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6.4. The discretised famulation of dynamic programming 

In the discretised dynamic programming notation, the time varia ble is 

called the stage variable (k) and this measures the time elapsed from 

the beginning of the process. A stage in the process is the period of 

time over which a control is applied and corresponds to St in the 

continuous case. In the conventional dynamic programming procedure §t 

is normally taken to be constant for all t and becomes At. In the 

reservoirs control problem a fixed control rule may be applied over a 

stage length of one month. Since the stage variable is discretised it is 

not necessary to know the absolute value & the time, but only the integer 

number of stages elapsed from the beginning of the process. 

The absolute time is related to the stage variable by the equations 

+ = t_+kAt 
° 

and KAt = t,-t 
f: OD 

where * = time at which the process begins 

t. = time at which the process ends 

At = the length of time for one stage 

K = the total number of time periods (stages) in the process 

+ = absolute time 

Equation 6.3., the system equations may be written as 

x(k+I) = x(k) + £(x(k),u(k),k)At ee Equ. 6.8. 

For convenience we may write 

x(k+I) = al x(%) a(x) » ic] es) Ue Fe Equ. 6.96 

where [ x(x) ju(k),k] = x(k) + £(x(k),u(k),k)At. 

Expanding equation 6.9. gives 

x (+I) = weg) ox gC) ++ - gC) 9g) 94,0) (#9)
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x,(x4T) = ge (1) px5() 5-03, (1c) pup (ie)y ug(ie) »..u,(e) 94] 

x (42) = 6 [xp(3) 9 5(e) seo (1c) yt0z(Xe) 4 (1c) 5.2.0 (1c) 1] 

where Xy is a discretised value of any one observable feature of the 

system 

us is a discretised value of one operation on one part of the 

system. 

Example I. 

For a two reservoir system where the reservoirs are not inter- 

connected, and one demand is to be satisfied ; 

x,(k) = level in reservoir I at stage k 

x,(i) = level in reservoir 2 at stage k 

x(k) = Xy 

v2 

u, (x) = release made from res.I at stage k 

u,(k) = release made from res.2 at stage k 

u 
~ at u(k) = a 

re 

x(t) = ey[xp() pup(X) si] 

x9(K#I) = gp[xp() sup(i) »X] 

The functions, g, only contain the variables for one reservoir, 

since the level at stage (k+I) in one reservoir does not 

depend upon the level and operation of the other reservoir 

at stage (k) because they are not interconnected. 

The levels at stage (k+I) depend upon the stage variable, k, because both 

the levels and the controls at any time may be restricted to a particular 

range of values, which change with time.
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For instance, the level in a reservoir may have to be constrained below 

a flood level which may change for every month, or there might be a 

minimum acceptable release in any month to provide for compensation 

water. Obviously, the range of control may also depend on the level 

itself since it is not possible to release more water than is available 

and it may not be allowed to release water below a minimum storage level. 

These restrictions are called the constraints on the problem and are 

represented by 

x(k)€ X(k) Con : ; Equ. 6.10 

u(k) € U(x,k) oor. Equ. 6.11 

Although it is not generally true, these constraints may be separated 

for each reservoir or for each level in a reservoir, in which case the 

constraints become 

x(k) € K(x) up(ie)€ 0, (x, 5k) aE aE I aL SL. 

x91) € K(x) 

x(k) € KC) u(k) € 0 (x, 5) 

In order to choose the Bia ie for every possible combination of 

levels at each time stage, it is necessary to have some kind of 

performance criterion for the system. In some cases this will be a cost 

function where a penalty is applied, for chaiole. for not releasing 

enough water to supply a demand, or a benefit otek where a reward is 

Bes ok for each unit of water released or power generated in a hydro 

electric scheme. The purpose of dynamic programming is to find the best 

operating rules at each stage, starting from some given state, so that 

the sequence of states throughout the process is the best which can be 

obtained to minimise or maximise the performance criterion. 

Therefore, the performance criterion may be written as 

Fe = n 
J “= 1 (i) ,0(k) ,&] +? Lex) x] where 1 is any function, .Equ. 6.12. 

k=o0



and u(k) is the control at stage teks 

In the two reservoirs problem the quantity to be minimised may be the 

deficits to supply, in which case the performance criterion becomes 
K : 

J “= [d(x) - u, (x) - u,(«)] where 

D(k) is the demand at stage k 

f u, (x) is the release from reservoir i at stage k. 

and 2 u,;(k)@ D(x) 
a:



2056 

6.5. Derivation of the iterative functional equation for the 

discrete case 

Consider stage K at the end of the process : 

The system my be in any state in the range X(K). 

It is conceivable that a penalty will be attached to being in certain 

states at the end of the process. For instance, an operator may want 

the reservoirs to be completely empty at this stage and the penalty to 

be attached to each state will then be the cost of discharging the 

amount of water attachedto that state until the reservoir is empty. 

Other types of penalty may be used but this will depend upon the system. 

The penalty to be attached to each state will be designated as 

6[z(x) x] which is a special case of the general cost function 

applied at each stage, 1 r(a9 sate) kl 

Thus, the best state to be in at stage K is the one wth the minimum 

penalty function, although this does not necessarily lie on the complete 

optimal trajectory. 

Now consider stage (K-I) : 

Again, the system may be in any state in the allowable range. It is not 

yet known which of the states will lie on the optimal trajectory from 

x( 0) so that it is necessary to calculate the best trajectory to the end 

of the process from all possible states at this stage. 

If the system is in state x,(K-I) then it may make a transition to 

several states at stage K, depending upon the control vector, Uys applied. 

Let these states be 

a(x, (x-1) ,a,(K-1),(x-2)} = ¥,(x) 
g X,(K-L) ,i,(K-L) ,(K-1)] = ¥,(K) poe ae Bees, GaSe 

a[x,(K-1) ,@,(K-1),(K-1)] = ¥,(x)
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The associated costs involved in the transition will be 

i{z, (K-1) ,8,(K-1) ,(x-z)] = Cc, 

fz, (K-1) ,%,(K-1) ,(x-z)] = € 4 ow fiws Me oe, Gel Ac 

1[&,(K-1) ,3,,(«-1) ,(K-)] = ¢ 

Now, in order to compute the least cost trajectory of going from stage 

x,(K-I) to the end of the process, the costs of the transitionsto time 

k are added to thepenalty functions at time K. 

i-e. Under decision u_the total cost is 7 

c,+#[7,(x) x] = re_[x,(x-z)| 60 bet a Babe bel 5: 

Under decision U, the total cost is 

¢.+6L7(K) 5x] = re, [z,(x-z)] Boas Sew 6 RE 

These total costs are computed for every decision at time (K-I) and the 

minimum one is chosen as the best trajectory from x,(K-I) to the end of 

the process. The costof this trajectory is Cp Lq(K-1)} 

The above calculation is repeated for every possible discrete state 

x(K-I), so that we obtain the minimum cost trajectory from all x(K-I) 

to the end of the process. 

The calculation then proceeds to stage (K-2) where identical computations 

to those carried out at stage (K-I) are performed. 

If the system is in state x1(K-2) then it may make transitions under 

different decisions to the states 

@ Lz, (K-2) ,8,(K-2) ,(K-2)] J (K-1) 
alz,(k-2) ,a,(K-2) ,(K-2)] Yp(K-I) ee ae Equ. 6.17. 

ale, (x-2),0,(x-2),(x-2)) =F (x-2)



The immediate costs of the transitions will be 

Lz, (K-2) su, (K-2) ,(K-2)] = D, 

fz, (K-2) ,8,(K-2) ,(x-2)] «2, age Equ. 6.18. 

iL z,.(K-2) su_(K-2) ,(K-2)] * i, 

From the previous stage, we know the optimum costs of going from any 

state at (K-I) to the end of the process, i.e. the TC, om [2(K-1)] : 

so that the total cost of going from state x, (IK-2) to the end is the 

minimum of 

Dy#C om ¥_( K-2) 

D,#™y pal ¥p(-1) . . « . Equ. 6.19. 

D tre oprLy,(K-2)] 

which is denoted by "yp |X, (K-2) }. 

Again, this calculation is repeated for all states x(K-2), so that we 

will know all 7 pn lx(K-2)) 

It can now be clearly seen that this dynamic programming approach is an 

iterative process which, at any stage, links with the following stage by 

means of the minimum cost functions TCopms 

Mathematically, this can be written as 

Copal z(X)] = Min 1 (ie) yi ,(k) »i]+ 20 yon ELEC) 531,() 1] fc Meas? Gs 20: 

u;€U 

J=I,m(x,k) 

where m(x,k) is the number of decisions which may be made for this state 

and stage and PC pal ()] represents the minimum cost, starting in state 

x(k) at time k, of going to the end of the process. 

In dynamic programming notation TCopm (1) is usually represented by 

t (1c) «] so that the equation becomes



r[x(x) ,«] = Min 1 Z( ie) p@(1c) 5] + Lelx(x) ,3,() 51g] +7] 

u;€U(x,k) 
a di ouhe ees eae Baus. 65.27. 

J=I,m(x,k) 

This equation is known as the iterative functional equation of dynamic 

programming. It states that the minimum cost of going from a state x at 

stage k to the end of the process is obtained by minimizing the sum of 

the cost incurred duztmg stage k, and the minimum cost in going to the end 

of the process from the resulting state at stage (k+I). 

It can be seen from the iterative functional equation that if we know the 

penalty function at stage K then the equation may be applied in a backward 

direction starting from stage K and finishing at stage 0. After all 

calculations are complete we will have the optimum decision to be made at 

every stage and for every state which may occur at that stage. If the 

state of the system x( 0) is known at stage o then all that is necessary 

is to apply the now known optimum decision for that state and stage and 

find the resulting state. The known optimum decision for that state at 

that stage is applied and the resulting state computed. This process is 

repeated until stage K is reached, when we will have found the optimum 

decision which will have to be made at each stage and the resulting 

optimum sequence of states. 

Since the optimum rules starting from any stage and any state are found 

by the d.p. then if an error is made in the operation of the system, so 

that the optimal sequence of states is broken at some stage then all that 

is necessary is to find from the dynamic programming results the optimal 

rules to be applied starting from that stage and that state which is the 

result of the incorrect operation. 

Example 2 

Consider a two reservoir system with no interconnections, supplying one



demand. 

Let the discretised levels be 0,I,2 units in each reservoir so that the 

possible state vectors at any stage are 

z,-{o} =,-[o)z,-[oz,-[r] =--fi]z--(2)z -lols. tole I> 

Let there be three decisions at each stage ;: 

I. Take all demand from TEs. bs 4a u ere where D is the I 
. - demand at any stage. 

2. Take all demand from res. 2. ice. Y= Ole! “y 
D Us 

3. Take half of the demand from each reservoir i.e. 

~ |Dd/2 
“LD/e2 

Assume that the reservoirs only have to be operated for I year and let 

the time between operations be one season of 3 months, so that there are 

four stages to the process. 

Kk ®. 0,152, 3. 

Let the inflows in these time periods be 
Res.I Res.2. 

i=: 0 LNA = 2a s INF = I unit 

kee ek INF = I unit INF = 2 vamnits 

KGigees INF = I. unit LN. 2a te 

k=. 3 INES = 3 units INF = Taunus 

Let the demands in these time periods be 

k=. 0 D = 4 units 

b=. 1 D = 4 units 

k= 22 D = 4 units 

kee. 3 D = 4 units



We wish to minimise the deficits to demand over the yeare 

Assume that the operator wishes to have both reservoirs full at the end 

of the period, andif they are not full, then water will have to be 

pumped into them from some other source, thus incurring pumping costs. 

Let the pumping cost be £190 / unit pumped for each reservoir. 

Let the cost of a deficit to demand be £300 / unit. 

The reservoirs are both full at the beginning of the process. 

The penalty costs at the end of the process, k = 4, are the costs of 

pumping water into the reservoirs until tey are full. Therefore : | 

plz, (4) +4] = 4x 290 1[x, 14] 

ble, (4) 54] = 3x 290 = £870 = 1[z, »4] 

éz,(4) 4] 

LE (4) 04] 

6 fz,4) 04] = 2x 290 = £580 = hz, ,4] 

£1160 

! fr Pd 290 = £580 = rf, 4] 

290 = £870 - Lz, 4] t Ww m4 

6 [z,(4) 54] 1% 290 "= £290 = [x44] 

é[x,(4).4] = 2x 290 = £580 abe 6d 
6[E5(4) .4] = Ix 290 = #290 é B,.4] 

LF, (4) »4] = 0x 290 = 0 Sale id 

The expression to be minimised is 

K-I ! ee 
J =) By (D(k)-R,(k)-B,(k)) x cools §[Ec4),4] 

where Ry and Ry are the actual releases from reservoir I and reservoir 2, 

which may be different from u;(k) and u,(k) since there may not be enough 

water in the reservoirs to release all of the stipulated release. 

The state transition function @ - is given by the following ;



aii. 

x41) = @,[x,(e) a, (1c) 5x] 

* x(k) + INFLOW I (k)—u, (x) 

x(K4HI) = Bo[xp(k) Up(K) 5k] 
u x,(k) + INFLOW 2 (k)—u, (i) 

with the constraints 3: 

ae rt x,(k+I)3o then 

es te x,(k+I)<o then 

R. = x,(k)+INFLOW I (k) and next state x,(k+I) = 0 
L 

Ce tr x,,(k+I)$o then 

Ro = Uy 

d. If X_(k+I)<o0 then 

hy * X,(k)+INFLOW 2 and next state X,(k+I) = 0 

ee if x,(k+I)>x, max ben 

SPILL I = x,(k+I)-x, may ond next state x, (k+I) = Xp ee 

x = 2 units 
I max 

f. if X_(k+I) >x, max ‘nen 

SPILL 2 = X5(k+I)-x, max 2nd next state x, (k+I) i ae 

x =2 units 
2 max 

The dynamic programming procedure is set out in the following table. 

The costs in column (II) are initially set to the penalty costs since 

these may be viewed as being the costs to go from stage K to the end of 

the process.



  

  

  

  

  

  

  

  

  

  

                                  
  

STARTING! AVAILABLE] DECisSions |] ACTUAL SPiriS | RESVLTING| costror |Sertcit 

STATE WAT es RELEASES STATE Reeaine" ua Totat 

ess s Pee tants ie [he Ryo) Re nei SREt nes 8 exSor sx. | Cost 

O* 3 0 O 0 O E 870 300 II70 

0 0 3 E 2 2 2 Ti 0 0 I 0 870 300 LO 

0} 4 0 x I OQ 432 0 | 580 |900_ |1480 

P PiGedes (001.0 4.0. [0 he. 1580 1300... Be6 
I 3 2 a 2* 2 2 0 0 af O 870 0 870 

0) 4 0 Za i 0 2 0 580 600 |II80 

4) OS 10 boclf) G | eerneo (300. 71eee 

Z 3 5 2 2% 2 2 0 O I li 580 0 580 

0 4 0 3 I 0 a 0 580 300 880 

4 O* 4 0 O 0 O B 870 0 870 

E 0 4 cE 2 2 ls 0 0 2 0 580 300 I180 

0 4 0 id: 2 0 2 O 580 900 1480 

4 O* 4 O 0 0 0 2 580 0 580 

I 4 2 2 2 2 0 0 2 O | 580 O 580 

0 4 0 2 2 0 2 0 | 580 |600 |II80 

4°90 4 O 450 I 0 2 | 580 0 580 

2 4 3 2 on Te 2 0 0 2 I | 290 0 290 

0) 4 @) 3 2 ‘0 2 0 580 300 880 

4 O* 4 0 0 0 E a: 580 0 580 

2 0 5 oT 2 2 i iL 0 2 0 580 300 880 

0 4 0 ae 8 0 v2 0 580 900 1480 

ree ee ee cg ee ee eee 

I Reb fae oe 2 be@e baa | O° 1a oe 4 580 oF 0 580 

Gal wo | Ds ete ae 190: 1p8o .. |6enr aaa 

4 O* 4 @) 0 iL if 2 290 0 290 

2 5 3 2 2 2 JL 0 2 ip 290 O 290 

He 4 0 5 8 0 Z 0 580 300 880 

INF T 3 Def * denotes the optimum decision 

INES? = I for a state 

STAGE 3



  

  

  

  

  

  

  

  

  

  

                                  
  

START inc] AVAILAGLE | Decisions] ACTUAL SPILLS RESULTING! “Ost Cf [PERicIT 

STATE WATER RELEASES STATE pesoorwy * bro 

ee or cout coche oe a Ry Ro a ee sete ae nso ee cee 

4 O I 0 0 6 20 2 1580 |900_ {1480 

0. | I 2 2 oe |) gt 2 0 Guo Oo PTT9IO "10300" | 1470 

0 4 O.-ts2 0 0 I 0 | 870 |600 1470 

4 0 I 0 0 : 0 2 |580 |900_ |I480 

I I 3 2 owt T 2 So PS rt} 870"..4300° . IE 

0 4 0 3 0 G°.Ta o | 870 |300 |II70 

i, 1 a a 76 Oe tt Ol 2 580. foo “idee 

2 i 4 2 2 I 2 0 0. F0 2 | 580 |300 {880° 

0 Ae 1G 4 0 0 i 0 | 870 0 870 

4 0 2 0 0 0 0 2 | 580 |600 {1180 

I 0 2 2 2 on 12 2 0 0 0 O° -I270"71 0 II70 

0 4 0 2 0 0 2 o | 580 |600 |rI180 

4 0 2 0 0 I 0 2 | 580 [600 |i180 

7 2 3 2 2x ete. Ee 0.10 tT 1,870 0 870 

0 4 0 3 0 0 2 0 | 580 |300 |880 

4 0 2 0 0 2 0 2 | 580 |600 |{II80 

2 2 4 2 oe 2 2 0 0 0 2 | 580 0 580 

0 4 0 4 0 0 2 0 | 580 0 580 

4 0 3 0 0 0 0 2 | 580 |300 |880 

2 0 3 2 2 pa. 1-2 2 0 6 4 0 | 870 0 870 

0 4 0 2 I pet 2 Oo | 580 |600 {1180 

Lae Os 186 | Oa. Oe ee 1 She. pabo. (Gee 

I 3 3 2 om 19 2 ot 0 I I | 580 0 580 

0 4 0 3 : 0 2 0 | 580 {300 |880 

4 0 3 0 0 2 0 2 | 580 300 |880 

2 3 4 2 Oe...) 2 2 0 0 I 2 | 290 0 290 

een Olek Fh ee Eke 1 05 | SBD. PO eaeo 

INFI = I D=4 

INFe = 

STAGE 2
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STARTING | AVAILAGLE] DEcisions| ACTUAL SPucs [Resorrandecs” © | bert 

daa. eee ee Ee Tak dada (| ee deeaeanete Tans 
Ao eo hee FO OO eT Oe Ber dogg... 7% 

Oise Dept et Lek bk Oa"). Bet tae Beet KO Oot Baar 1 ane ware 

Oe OO. bo" [0 | Ocot .| Os Te 70") 6002: gee 

Be) ALE Oe eri aed Od Bt BT A900: “baa 

T ofa ed ots Poe eet Oa ae Geo SETTIO 14.300. 41470 

ONCE EO 3 150 108 Fd Ee TEIO™e eo mate 

4 TOO 4. FO es 7 BIO OOO” ere 

Ore als be [oP Fee ee Oe 8: 0d Be 48708 — Pape art ae 

Ok gee | Oneid 00" EO. Te 4641 ITO“ leo. saii9 

PO gh Oia TO. 1 O.:) oF 8710-600 ere 

TO ie eee) oP ee ok oO Meee es Ob OAeEAIO dO Tage 

0. 4 Qe he Or 1-0 od 2 eab 018710: | 600. aie 

fet 6 12 .o eo | test Os he | BO | boo” rato 

I 2 eee | oe I 1 OTB a Oi Oo eee ee ee ae 

Oe Poe Pe 0s) o> Pee pO 4 BIG) 300: “erro 

Ae Be 22° POs + ate: e287 =800 - JTATO 

2. no ee OO le Owe oO eo oO: 2 f Oe BIO 6 us B70 

0 4 0 4 0 0 2 OT STO 0 870 

WO 3 Oo EOL Osamu 2 Beas. Bob ariG 

CaO Peder hee | oO Te Bo Pore te EO. argo” (eg ghrr a 

Oa he Oe ote Lt Lee Oo SRI. moo. < are 

fe Ls he Toe Le LO ee 1820 38 ote ere0 
I 4 Fee ok ip oe eo 1d be IG 0 {870 

Or Eee Es Pt EG Oe of 890" ao. ee 

Ae sO 8 dy On. Or ood et Peony ee ee 

2b Bee 4 Fe eek ee” Pes PO. oe ae) Oe nee 0 {580 

Mie AO. AGs Leek Or ha? Gel 6890 0 [870 
acs 

INFI = D=4 

INF2 

STAGE I
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ae ae | 
Res [RES| Rex! [REs2 SPict | shin | REs 2 ie ie L0-2,-2,) TAL 

\ op erent toe | en Ree, ae 2 shea acess wee ts 

4 lewcle 10 fe vl acto 1a rage lee wledin 
Oe lo te alters Qurte le 16 0 | o| 1770 | 300 | 2070 

0 Oo hE lo: Lo. le) ovPerto |s06. 42070 
ae los. jee co. fou lo fo ‘Le | waomeece 170 

LoVe Lo eee a ee er fo os sree Ae 
0° [4.“le° 12°. eo" 16" Jeo 76 bari0 léc0 “lite 
Octo 1S Jo ee bt. [0 fee 170 ete. Inz70 

gp OTS. OR Eee Fe’ Pe Tg org to ae Fade. ep earo 
0 44.10 138 Lee vo - 8 10-7 tigo igen aaa90 
4 lee 13. bo 18. [0 lo 13 lae70. [300 In970 

Poo PATIL eS le ago. (i | Oe taro. aoe saree 
O44 "to jr. PE fo "ho: leo Gete70 “900. 2076 
a Toe la lo... fo 0. 10 be 4 wero 300 11470 

i ye ee Geiey x for>1 oO. .be. | 6 Pid ee [hao 
Ole fe kee Oe ee | Tete”. ethers 

4 lo |3 lo lo |z lo |e2 |at7o |300 |ta70 
Bo ipels io lipw er be aba tr et “listo 16. aes 

oe Te eo [eo oo :! onamo G60" aie 
a Low Pe hose: fo. [ok Bo btagonc| p. gad0 

eco" | 404 be ete Crete” Tors bos} aeIo: $00 tage 
O bd 10) eee | 0. 12 o 1220 ee Feere 
4. Poe la eo ole. fo sO: dee Tizyo. 1 2 lege 

, te Lek Poe Po tebe | rt7o! oe eee 
6 tk dO Te. bee -to ba.) obo. leo0 “ego 
4: loe la toc ve 1s. to 7 8. ILI0. bee ie 

a fades: ie 1 ber io ote. lola Lt | er 0 {870 
OM 4a £683 oe lo. be° 10 baie. oo. aes 

INFI = 2 De 4 
INF2 2 I 

STAGE O
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Retrieval of optimal trajectory 

Let us assume that the reservoirs are both full at the beginning of the 

process 

ise. x(0) 3] ‘ %, 

then from the stage o chart it can be seen that the optimum decision is 

to take half the demand from each reservoir 

: = - 2 ies = - 22 
ive « Uppp(Xg 2°) [2] with Ropm( Xz 9°) oH 

Aa = 
Ey 36 

From the stage I chart the optimal decision for this state is 

Yopp( Xgst) -[7] with R.4(Xest)-= 4 
opr’; 8’ “TZ 

The resultant state is x(2) + \- x 

The resultant state is x(1) 

3 

From the stage 2 chart the optimal decision for this state is 

Uppal *5 92) -[2] with Ropp(%5 92) 3] 

The resultant state is x(3) -(<]- Xo 

From the stage 3 chart the optimal decision for this state is 

ee BA ee 2 
Yop X23) i] with Ropn(Xp»3) [3] 

The resultant state is x(4) -[3]- x 
0 4 

Hence, at the end of the process the operator will have reservoir 2 empty 

and reservoir I with one unit, so that he will have to incur the penalty 

cost for this state, which involves pumping a total of 3 units at a cost 

of £870. 

Thus the total minimum cost is £870 since no deficits occurred. 

As a check on this figure, it can be seen from the stage o chart that the 

total cost of going from stage x(o) [2] to the end of the process is



2IT 

indeed £870 (column (15))-. 

Consider the case where subjective decisions are taken : 

Since reservoir I-has 4 units and reservoir 2. has 3 units, including 

inflows, at stage 0, there is no obvious decision at this stage. 

We could take all from reservoir I.or half from each. 

Let the subjective decision be to take all from reservoir I. 

Therefore x(I) (31, u(o) 6], R( 0) -(4| 

There is no deficit cost. 

At stage I reservoir I has I unit and reservoir 2.has 4 units, including 

inflows. Thus, the obvious decision is to take all the demand from 

reservoir 2. 

Tharstoré xt2) {?7]. (I) él, 1) {°| 

There is no deficit cost. 

At stage 2 reservoir I. has 2 units and reservoir 2. has 2 units, 

including inflows. The obvious decision is to take half from each 

reservoir. 

Therefore x(3) {31 u(2) -[5 R(2) = | 

There is no deficit cost. 

At the 3rd stage reservoir I- has 3 units and reservoir 2 has I unit, 

including inflows. Therefore, we may take all from reservoir I. or half 

from each, at the same cost. Let the decision be to take all from 

reservoir I. 

Therefore, x(4) (rl, u( 3) -(4]. R( 3) -[3] 

There is a deficit of I unit at a cost of 2300.



2m8. 

The cost of pumping the reservoirs full is £870. 

Therefore, the total cost is &II70. 

Therefore, even with this simple process, the dynamic programming 

solution finds a more economical sequence of decisions, than a 

subjective method. In the example, it is possible to see what the 

optimal sequence of decisions is, because of the limited period of time, 

but in a long historical record, it would be impossible, without a 

simulation of each policy, to accurately determine the optimum policy. 

The number of possible combinations of decision for any process is m 

where m is the number of decisions which may be made at any stage and N 

is the number of stages. This means that — simulations with different 

combinations of aevintoue: would have to be made, and the costs computed, 

to be sure of obtaining the optimum sequence, so that in the example 

24 (=16) trials would have been necessary. 

In the above example, the inflows, demands and possible decisions have 

been chasen so that all the discretised states only make transitions to 

‘other discretised states. The method is easily extended to cases where 

transitions are made to intermediate states. The cost of going to the 

end of the process from the resultant intermediate state is obtained by 

interpolating between the costs for the nearest discretised states. The 

extra computer time and cost involved in using interpolation is often 

worth the reduction in storage achieved. 

For example, consider starting state x( 0) “ol in the example. 

Let the inflow to reservoir I be 1.7 units instead of 2 units, considering 

two decisions only. 

The first line of the chart would now be :



  

  
  

  

STARTING AVAILABLE DECISIONS | ACTUAL SPILLS RESULTANT [cost oF | NEFIciT oral 
STATE WATER RELEASES STATE | CONG ERM) cost 

REs RES RES 1 RESZ sP P RES TRES RESULT Angst Cd-Ry -R a) CosT 
\ col) + Jeon yal yy u R R tu | SPier stare Of 

a WEL | Ine \ 2 \ z \ 2. \ 2 [ERP of 

‘ oO 0 ¥ ° \ ILO | (4-171) x30] 2.160 oO \s 4 Oty 
e a oO 4 ° | ° Y "7 } © | (v2) 126e [(4-1)xS0q 2160                                 

The value v = 1260 is obtained by interpolation as shown below. 

For the second decision, the resultant state is x(I) ee 

We now consider the nearest quantised states to this 

; - 2 ~ I 
1iOa..XC4) -[6| and x(I) = [3 

The cost of going from x(I) [6+ the end of the process is obtained 

from stage I as £1170. 

The cost of going from x(I) -| ite the end of the process is obtained 

from stage I as £1470. 

Assuming a linear interpolation procedure, then the cost of going from: 

x(I) -|*51 to the end of the process is given by 

ee 0.7xIZ10.+ 0.3 1470 = £1260... where V Z()] aa ae 

cost of going from state x at stage k to end of the process. 

In general, for a two component vector, the resultant state is 

oi 
The nearest states are x(k) -[al, Re etek 

where ac<x;<c and bex,<d 

The cost of x(k) a is then given by 
x 
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V BE = I-(x,-b) V [:] + (x,-b) V [a I-(x,~a) 

(a-b) (a~b) (c-a) 

  

+ I-(x,~-b) V a + (x,-b) V (s] (x,-a) 
PEaus Gere. 

(d~b) (d—b) (c-a)
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Chapter 7 

Extension to the Stochastic Case 

Tiel. Introduction 

Stochastic dynamic programming is'a similar process to deterministic 

programming but deals with He case where uncertainty is present in a 

system. The stage, state and control variables are the same as for the 

deterministic case but the system equations are affected by stochastic 

inputs, and possibly stochastic outputs. In the reservoirs problem, the 

stochastic inputs are those streamflows which cannot be predicted exactly. 

Instead of using fixing inflows to each reservoir at a particular time as 

in deterministic pro gramming, a discretised probabildey distribution of 

inflows is specified. The inflows are now denoted by the vector 

Wy J=I,r, where r is the number of discretised sets of inflows in the 

probability distribution. Each element in the vector Wy contains one 

random input to the system at a state and stage and the vector has one 

probability, b attached to it. There may be any number of elements in I. 

the vector and any number of r, of vectors with different probabilities 

may be possible for a given state and stage. The distri butions of these 

vectors are assumed to te independent from one stage to the next. If there 

is a correlation in time then this can be overcome by defining additional 

state variables which are set ouenaant of time. The distribution of inputs 

at the stage and ae under consideration in the dynamic programming 

calculation is then given by 

w(k) € W(x(k) ,k) hie ee 5 

The calculations are carried out, in the same way as for the deterministic 

case, for every state at each stage so that if the values of the state 

variables are known from observation at any stage the operation of the 

system, from that stage to the end of the process, becomes independent of 

any occurrence before that stage, which is the necessary criterion for



 



Slisicua The state transitions 

The system equations now become 

x(k+I) = @[z() ,a(%) , W(X) yk i ee ge. Mite To hy 

In the stochastic case it can be seen that the resultant state now varies 

with the applied combination of inputs as well as with the chosen control. 

Any of the resultant states may be the same for different w because of the 

constraints on the problem. 

The costs associated with the state transitions from a specified state, 

X59 stage, k, and control, Ups may be written as 

cy = Lk, (x),a,(e),¥,() Xe} + Lele, (x) ,5,(e),%,(c) 1), ed] 
with probability b, 

Cc. af (4) 5 (0c) »¥(2) 5] + alk, (x) 0,(%) 48 ,(0c) 5d , +I 

3 with probability bs 

0 = 1 (4) ,8,(e) 800) x) + t[aLe, 00) 84000) 70) 4] , 7] 
with probability bi, eae et re Hosts ieee 

where by represents the probability of obtaining the ao inflow vector for 

a particular stage and stage and where C, is the cost of going from this 

state and stage to the end of the process if W. occurs at this stage. 
J
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‘Lie 3s The expected cost 

Some method of combining these costs must be found in order to arrive at 

one value for the cost of going from state x, (x) to the end of the 

process for each control, Ups which may be applied at stage k, so that 

the optimum cost may be chosen. 

The method used is to combine the various Seae C, for one control into 

the expected or average cost B(x, (kc) ,u,(k) ,k) which is obtained by 

summing the C5 multiplied by their corresponding probabilities, b,,(J=I,r) 

so that 

a “ Ty 

B(x,(k)up(k),k) = S 6, x by SS ileus oc wea aes TORN Pea 
Jai 

The optimum cost then becomes 

- Min = = tfz,(«) x] = FREE) 9300) 90) cote a aa reas 

or, in expanded forn, 
: fy 

ifx(xjix] - Be = 
. J= 

1 [aE 5,0) 5,0) nD) x v, 0 | es MO ads 

(21F,00,8,09 58,09 2] ‘ 
B 

which is the standard form of the iterative functional equation for the 

stochastic case.
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‘edie The Performance Criterion 

The performance criterion may be written as 
K 
Ds 1[(ic) ,B(d) 5 W(e) Xe] Soe Mais bee 43 2S Le - 

w(o), wk), w(K) k=O 

where the expectation is taken over the sequence of stochastic inputs. 

All constraints and penalty functions are similar to those for the 

deterministic case. 

The use of the expected cost for determining which is the best policy is 

a point of controversy. Much discussion may be found in the literature 

on operational research techniques on whether a real individual makes 

decisions based upon an expected gain or loss as computed. In practice, 

a manager may well place such a high cost on failure of any kind that 

this distorts the average cost. It is assumed in this thesis that 

failure of a supply is not catastrophic and that ‘hedging’ is justified. 

Example 7.1. 

The random vector, W, for any state, X59 and stage, k, may be any of the 

subsets 

w(x) = ae Wine: Wiad with probability b, 

w(x) = es Wray - Wiad with probability b, 

w i(k) = [eM aoe wa a" "| with probability b,, 

which constitute the main set W(x,(k),k), 

where Wra could be the inflow to the — reservoir under the oe: possible 

combination of inflows, 

and where n could be the total number of reservoirs in the system. 

The equivalent deterministic vector is 

w(x) = aes 1 Wraps wd with probability b,=I



Example 7.2. 

If the possible inflows in time period (k+I) depend upon the inflow in 

time period k, then state variables must be defined which eliminates the 

dependence. 

Consider a one reservoir system where the inflows in any month depends 

upon whether the inflow in the previous haute was higher or lower than 

the average for that month. 

If previous inflow was higher than average then we might have 

inflow in this month = I unit = w,(k) with probability 0.2 

2 init w(K) with probability 0.5 

3 unit w(K) with probability 0.3 

where w(x) contains only one element since there is only one inflow to 

the system. 

If previous inflow was lower than average then we might have 

intlow in this month: = O27 unit w(x) with probability 0.3 

1.6 unit wo(k) with probability 0.4 

2) ana iH w(x) with probability 0.3 

The overall average inflow for this month is therefore 

(Tx50.0 + 2 x.005 +:3. % 003). 4 (0.7 xiOuk ¥ 1.6.x 0.4 4 2) x 0.3) 
  

2 

= I.775 units 

One extra state variable is now defined, which can take two values, 

which denote whether the previous inflow was high or low. 

At any stage, dynamic programming calculations are carried out for both 

values, since, until the computations have been performed for the whole 

process, when the optimal trajectory can then be chosen from known initial 

‘values of all the variables, it is impossible to know which of the values, 

high or low, will occur at that stage. 

The state vector now becomes



x(k) = x(k) where x, is the level in the reservoir and Xo 

x(k) contains a number or letter which denotes high 

or low previous inflows 

Let the reservoir have three discrete levels at any stage, 0,1,2 units 

and let H denote high previousinflow and L denote low previous inflows, 

then the possible states at that stage are now 

ele lte, ele et 
Any Yector which contains H has the inflows I,2,3 units with respective 

probabilities 0.2,0.5, 0.3, and any vector which contains L has the inflows 

0.7, 1.6, 2 with probabilities 0.3, 0.4 and 0.3. 

The resultant states vectors under any control rule must also contain the 

variables L or H and these are evaluated by finding whether the inflow 

under consideration at this stage is higher or lower than the average. 

Consider being in state x(k) {s| 
H 

Then the inflows are 

I unit with probability 0.2 

2 unit with probability 0.5 

3 unit with probability 0.3 

The average inflow for the month is I.775 units 

Let the decision be to release I unit from the reservoir. 

An inflow of less than the average for the month will lead to a state with 

L in the vector and an inflow higher than average will lead to a state with 

H in the vector. 

So that the resultant states under a release of I unit will be 

x( k+I) ala 
L 

x(k+I) ey 
H 

\°| with probability 0.2 
L 

WW bB with probability 0.5 

H
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x(k+I) = [ea = LE with probability 0.3 
H H 

Each of these resultant states will have a cost attached to it from the 

previous step in the process, so that the total expected cost for this 

decision can be calculated. 

The concept if high and low previous inflows can be extended tb include 

any number of antecedent indices.
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[a5ie The long term stochastic process 
  

So far, the methods discussed can only be applied to a process which has 

a finite number of stages. The results of the cdculations yield one 

optimum control rule for each state in each stage, and the results 

obtained for each state may not be the same at different stages. 

A dynamic program may be required to find the optimum rules at each stage 

and state for a twelve months process, where the inflows at each stage 

are given as probability distributions. If the distributions for each 

month are obtained from historical data then they represent the statistical 

properties of the inflows over a long period of time. In this case, the 

distributions in a particular month are identical for the same month in 

every year. 

If a dynamic programming computation is performed over a period of several 

years, using the same monthly distributions and the same unit costs in 

each year then it is found that if the number of years is large enough, 

the control rules chosen for each state in a particular month become the 

same for every year, so that the rules obtained after a long period of 

time represent the long term optimal decisions. A proof of this 

convergence is given by Bellman but an analogy can be drawn between 

the solution of the iterative functional equation and the iterative 

solution of an implicit function by Newton's method. 

Another analogy is the way in which one can determine the probability of 

emptiness of a reservoir either by powering the transition matrix or by 

solving directly for the steady state probabilities. 

However, the convergence to a long term policy is asymptotic and it is 

difficult to determine exactly when the policy has converged, but an 

analysis of the iterative functional equation for a system with a large 

number of stages leads to a more direct analytical solution to the 

problem.
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An additional concept of state and stage variables is needed to describe 

the development of an analytical method for the long term stochastic 

process. 

The stage variable is still considered to be a period of one month but 

the month is not specified. Instead, the name of the month is included 

in the state vectors as another state variable, so that at any stage the 

system can be in any combination of month, levels, antecedent indices etc. 

e.g. x(k) = | JANUARY 
LEVEL I 
HIGH 
LEVEL 2 
HIGH 

and each of these state vectors will have a probability distribution of 

inflows attached to it. 

Before the analytical method is described the dynamic programming equations 

for the iterative slution of the normal fixed period process, with 

stochastic inflows, using the same monthly distributions in each year, 

and employing state vectors as described above, will be devel oped.
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Tinbse The Long Term Iterative Stochastic Method 

In order to achieve convergence of the policy with a long term process, 

the unit costs employed at each stage must be the same, although they may 

still vary with the state and control, and since the month is now a part 

of the state vector the costs may vary from month to nonthe 

Therefore, the unit cost may be written as 

fx, ,3,,7,] for all ty f, ahd J. 

Equations 7.1. may now be written as 

x(k+I) = Z[Z(k) ,a() 5w(k)] ie ee Oe 

Equations 7.2. may be written as 

o- 1e,,a,%,)+ Lek,,3,,5,], 1] 
with probability bys J=I,r e ° ° . Eque Tes 

Equations 7.3. may be written 
x 

E (x, (ic) »u,(x) ) = = C5 x by ° ° ° ° Hque 7 Qe 

J=1I 

Equation 7.4. may be written 

I Lz, (x) sx] = Min B(x, (1) ,u,(k) Ve ea Ba TELOs 
u 

aE 
f=I ,m 

Equations 7.9. may be expanded as 

- 

B (F,(00)paghse)) = 1[z,,3,.v,)x b, 

oe
 

< 

= tfek, ,o,.v],x+1] x v, 

for: abl eee of Rows elsivs
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Wash The infinite time span case 

For the development of the general equations for the infinite time span 

case it is now necessary to restructure the form of the probability 

distributions. 

Let p.. be the probability of mding a transition from state x. to state 
Ji a 

x5 over one stage for a particular control rule Ups where x; and e 

both discrete states, 

are 

and let 1 be the immediate cost of making this decision. 
Ji 

Thus, there exists a matrix P with elements P54 which describes the state 

transitions given a fixed control rule for each state. 

This matrix has the form, 

Jan Feb Mar Apr May Jun Jly Aug Sep Oct Nov Dec 

P =Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jly 

Aug 

sep 

Oct 

Nov 

Dec 

a 
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Sl
 

Sl
 

Sl
 

Sl
 

Sl
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Only the submatrices, M, will have non-zero elements since it is only 

possible to make transitions from states in one month to states in the 

next month. 

It can easily be seen that equations 7.II. may now be written as 

a a 

B(x, (ic) u,(«)) == 15 4*P yy + = 1[z,,+1] ZP;, + + « Equ. 7-13. 

where a is the total number of discretised states at one stage. 

The first summation in equations 7.13. is independent of stage and is 

therefore constant throughout time for a particular state, X59 and 

control Ups 

a 

Let a, = = tak Dig for all i 7; eee an. Bae 
J=I 

a 

Therefore E(x, (ic) su,() ) = a+ 7 [z,.x+1] x Py, ; vi ate 1 okt
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TOs Intermediate transitions 
  

In writing equations 7.15. it was assumed that under a fixed control, 

Ups there existed a probability, Py59 of making a transition from a 

discretised state x5 at stage k to every state x. at stage k+I, where 
J 

Ze is a discretised state only. Now the actual inflows at state x and 

stage k, represented by wa(k), d=I,r, may not allow transitions to all 

states at stage k+I and the transitions which exist may not be to 

discretised states, but it is an easy matter to rearrange the probabilities 

of the Wa so that equations 7.15 may still be used. 

Consider equations 7.8. with some W, which does not lead to a discrete 
d 

state, Then the corresponding cost under a fixed control, Ups is 

Ca = Lz, ,5,55,1+ Lalx, 2,57) ,x+2] with probability b,- 

Let x,,(k+I) = alz,.u,.¥,] be the resultant non-discrete state, so that 

b, may now be interpreted as the probability of going from state X5 to 
d 

state + in one transition. 

The value of the optimum cost function, a[x,,+1] must be found by 

interpolation between the nearest discretised states. 

If x only contains one element, say the level in a one reservoir system, 

and Xo and ty are the two nearest discretised levels, with Xq7Xy Xs 

then using linear interpolation : 

1[z, «+1 | = (xzemx, ) x Lz, +] + (Faia) x x[z, x+1] 

(=, ) (x,-z,) 
  

Thus 

Cc, zd, = lz, ,3,,%,] 1 

+ (2-2, ) x a[ x, ,x+1 | xb, + (x_-X,) x r[z, ,x+1] x by 

5%) FH) 
    

It can be seen that the probability (x,-x, ) xb, may be added to any 

( Xq-X,)
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direct probability Pay which may exist under one of the Wa and 

(x,-<,) s bs may be added to any direct probability Pha which may exist, 

(x-x, ) 

without altering the solution of the problem. 

  

If no transfer is made from state X to some discrete state X5 either 

directly or indirectly by apportioning part of the probability of going 

to a non-discrete state, then Pry is set +o ZELOe 

Equation 7.II may now be written : 

(F,(4),8,09) = Ek as x , 

= fk, x1] + Epes K+ lt x ps. 
TL Je Ja. 

re a 

The value of > ifx, a Ww j xb is identical to that => Let oer pt: 
qa eet d Jal Ji Ji 

so that no restructuring is necessary, and 

rt — _ — 

qs = Ss Lz, 3,57, x ba 

d=1 :
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7-9. Thelong term equations 

Now that it has been demonstrated how to set up the P matrix, all the 

equations which will be derived from equations 7.15 may be used with 

complete generality. 

If it is assumed that a rule has been fixed for every X59 so that no 

minimisation is required then the optimum costs, I, at every stage now 

become the only possible costs. 

Let v, (x) be the total expected cost of going to the end of the process 

starting from state x, at stage k. 

Then 

v, (k) = r[z, x] 

Therefore, for a fixed control system, equations 7.15. may be written as : 

a 
v, (x) oe + =. vj (+1) a i= La ‘ . < Bae, 7-16. 

In matrix notation equation 7.16 is 

v(k) a q + v(k+I) x P e ° e Eique Wee ee 

where the ah column of P contains the Pry and v and q are row vectors. 

If n is defined as the number of stages to go to the end of the process 

equations 7-17. may be written as 

v(ntI) = q + v(n)P * ‘ «Bau. 7.10; 

For the determination of the equations for the solution of the long term 

process it is now convenient to break down equations 7.18 into the twelve 

distinct monthly processes involved. 

Let d be the number of discretised states in one month so that d = a/I2, 

and let t be a stage variable, where a stage is twelve months. 

Consider the month of January : 

The probability transition matrix to describe a transfer from a state in 

January of one year to January in the following year is given by



Ry = My My AMY XM XM XM. XM oxM 2M  xM xl xM, 

and the immediate costs Qs are given by 

Qy= a,+M) (a,+M,(q 3¢M(a gr, ( qo+M,( agtM( 74M, (ate ( IgtMy (a7 _+Hl,, 

(azy*My7(ay5+My5) -...)) 

where the subscripts represent the month numbers. 

The structure of equations 7.18 may now be used to describe the yearly 

transitions for the January matrix : 

v,(t+I) = Qy + v,(+)R, ° ° * * Equ. 7-19. 

For the manipulation of these matrix equations it is convenient to use the 

technique of 3 - transformation, where the s-transform of some function 

f(n) is defined as F(s) = = wa. A table:of s'= transforms for 

common functions is given meas 2 

Let the s-transform of the vector v(t) be y(#). 

Taking the s-transformations of equation 7.19. we obtain 

e* [y(a) - Ho] = 2 + Flee, 

yz(#) - @ yz (#)R, x = Qy + v,(0) 

y;(#) [ 7-28, ] = = Q, + v,(0) 

I-s 

where I is the unit matrix. 

‘ ee SR eh cee ae ie yz() = 8 Qy [1-8] + v,(0) [t-« z, | é a SRaus 1420 

I-g 

It is shown in Appendix I that 

[7-s rl = I S+ Us) fo Wee's: Bqu-dielt20 
I-%



238 6 

where S is a stochastic matrix whose a column is the vector of limiting 

state probabilities if the system is started in the eg state, and J(#) 

is a set of matrices representing the transient behaviour of the system. 

It is also shown in Appendix I that all columns of S are identical. 

Therefore, substituting Equations A.I.20. in Equations 7.20 we obtain 

ype) = 2 U5, +8 UI(s) +z ¥,(0)5, + ¥,(0)3,(s) 
(I-s)2 (I-s) ( I-s) 

By inspection of this equation for yz(s) it is possible to identify the 

components of vz(t)- The terms QS represents a ramp of magnitude 

~ = (I-s)2 
QySy° 

Partial frag:tion expansion (see Appendix 3) shows that the term 

3 Q,J7(#) represents a step of magnitude Q,9;(1) plus geometic terms 

(I-s) 
that tend to zero as t becomes very large. 

The quantity I v,(0)8, is a step of magnitude v,(0)8, and v,(0)5,() 

(I-s) 
represents geometric components that vanish for large t. 

Thus, for large t, 

v,(t) = +Q,5, + Q,5,(1) + v,(0)8, 

If a now vector, Gr» with components G_ is defined by G_ = 0,5, then 
J I 

v;(+) - +G, + Q,97(1) + v,(0)S; ‘ ; ‘ : Bess’ 75 21. 

The quantity Gs is equal to the sum of the immediate costs Qs weighted by 

the limiting state probabilities that result if the system is started in 

the at state, or 
d 

as ee Qi Sig 
i=l 

where S;z is an element of Sy and represents the long term probability of 

being in state ie if the system was started in state 5 

The Gs is also the average cost per transition if the system is started in
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the a? state and allowed to makemany transitions. It may be called the 

average cost of the oa state. Inspecting equation 7.2I. it can be seen 

that G) is the slope of the asymptotic of v;(t)- 

Since all states in the same Markov chain have identical columns in te 

Sy matrix, such states all have the same average coste 

Therefas, 
d 

G¢=S QT (0) where (CO is the limiting state probability 
J=1I distribution. 

The vectors Q,9;(1) and v,(0)8 represent the intercepts at t=O of the 

asymptotes of v,(t)- 

Let v, be the asymptotic intercept of v,(*) so that for large t 

v, (+) = tG, bi af 1 = I,d ° . . . Equ. 12265 

The row vector with components v5 may be designated by vy so that 

Equations 7.22. then become 

v,(+) = tG, + vy 

If the system is completely ergodic then all G. = G and G is the average 

cost of the process rather than the average cost of a state so that 

equations 7.22. become 

v,() = 16+ Vv, iv= I,a (Oe es RE So a eae 

Now that it has been demonstrated that the costs involved in a Markov 

process tend to increase at a constant rate for large t, a method will be 

described in which direct use is made of this fact to obtain the optimal 

long term control.



7-10. Determination of the optimum long term control 

We have deduced the equations 7.23, 

v, (+) = tG + v,,5 is Eoa S for large ‘t, 

and the dynamic programming equation is 

v, (++I) - Qy = vz (+)R, . ° e e 

for a fixed set of controls. 

Equations 7.19. may be expanded as 

d 
v, (+) =, +z v,(t-I)R,, ee | fe ae 

240. 

Equ.e 7.19 

. Eque 7-24 

Substituting Equations 7.23 in equations 7.24 we obtain the equations 

d 
$4.49) 3.8, += (+-z)¢ + v5] Ry4: Lim Tite 

J=1 

d d 
10+ 4, = a, ¢ (t-I)¢S Ry, + > v5R5; 

J=1 J=1 

d 
Since S R,. =I we have 

Ji 
J=1 

d 
OF Seni te. Ys Bye i = I,a oes . Equ.e [s25 

It can be seen that these are d simultaneous equations but (d+1) unknowns. 

Therefore, one of the Vj» Say Va» may be set to zero and the equations 

solved for G and the relative values of the Vi° It will be shown that 

only the relative values are required to find the optimal controls for 

the system. 

Having deduced equations 7.25. by using a yearly transition matrix for 

January, Ris rather than using the complete set of monthly transitions 

described by P it is now possible to revert to the monthly structure of 

the problem given by equations 7.16. 
a 

v, (x) = 4; —_ vj(k+1) ¥'Dy,. for 2 1,8. 
J=I 

or, inn notation, 

Bou. (L6¢



a 
v, (n+T) mas +> vy(n) ps, for i=I,a eters ee. Baus eee 

J=l : : 

In normal iterative dynamic programming, if we have a policy with n stages 

to go then we find the best alternative in the i*” state with (n+I) stages 

to go by minimising 
Min ae ae 

v, (n+I) = Uf qf + ed v;(n)p,,f epi ar SR ors 
f=I,m . Jal 

Inspecting the matrix form of equations 7.26. given by equations 7.18. it 

can be seen that the equations may be written in the M notation as 

v,(n+1) <a, > Ve (n)M, 

vo(mtI) = a, + v3(n)if, 

v,(n+I) = a3 + Vu (nm), 

v,(n+I) = q4 + Vs(n)M, 

V,,(n+I) » a5 + vy, (n) i, 

ve(m+I) = a¢ + ¥4(n)My ere Sie py 

v(t) = a + Vs (n)i, 

Vg( n+I) = qg + V5 (n)Mg 

Vo(o+1) = I + Vo(n) My 

Vyo( ntI)= dant vu(n)M4 

Vaz (n+1)=a55 I Va(n) My 

Vy(ntI)= ay ot v, (n) it, 

where the subscripts refer to the month numbers. 

Considering only the last equation of this set 

Equations 7.26. may now be reduced to 
. d 

v;(n+I) = a, + soa vj(n)p,, for i = a-d+I,a
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Now for large n we may use the values obtained for large t in equation 

7-23. so that equation 7.27 may be written 
Min & 

v, (n+I) =u qa,f+ (nG + =e: for i=a-d+I,a 
£ 

fal, J=I I2 

d 
Since = p,.f =I then nG and any constant in the v. terms 

io T2 : 

become independent of the decision u.. (from v,(0)8;) e 

Thus, we may minimise 
d 

atte V5 P54 for each state i=a-dtI,a 

and furthermore we may use the relative values of the v obtained from Ed 

equations 7.25., for the policy that was used up to stage n. 

Having obtained the relative values of the components of vy from 

equations 7.25. these may be back-substituted in equations 7.28. to find 

the other Vy J=2,I2. and a similar minimisation to the above may be 

carried out for all other states Xs i=I,(a-d). 

It can be shown[\2] that if the minimisation procedure yields different 

controls for any state at stage (n+I) from those which were used to 

assemble equations 7.25. for stage n, then the new controls, if applied 

over a long period of time, would lead to a lower average cost per 

transition for the process than the previous controls. 

Equations 7.25. may be regarded as performing the same function as 2 

simulation of a long historic sequence. If a simulation was run starting 

from a known state and using fixed controls for every state then at the 

end of the run we would have the total cost of operating the system over 

a long period of time. If the total cost is divided by the number of 

transitions made then we obtain the average cost per transition. 

However, with a simulation, we have no drect method of correcting the 

controls to obtain a better policy, whereas the solution of equations 7.25. 

in conjunction with the minimisation procedure leads to a method of
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obtaining a better policy with a lower average loss per transition. 

If a different set of controls is found by the minimisation procedure 

than those that were used to set up the probability matrix, P, used to 

assemble equations 7.25. then the new controls are used in the formation 

of a new P matrix. The equations 7.25. are again solved using the new P 

matrix, and the minimisation procedure applied to the values obtained. 

This method is repeated until the controls found by the minimisation are 

the same as those used in the construction of equations 7.25. At this 

point the best policy has been found.
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T+ Il The discounted case 

So far the costs incurred in future time periods have been given equal 

weight to cost incurred at the present time, and do not take into account 

the interest payable on borrowed capital and the rate of inflation. Phas 

section will deal with the case where discounting of future costs is 

important. 

Following Howard's notation, let p be the value at the beginning of a 

transition interval of a unit cost incurred at the end of the interval, so 

that B =I where I is the interest rate. 
14+1 

Now equation 7.19. the dynamic programming recurrence equation for the no 

discounting case can be written as 

vz( ++I) = Q tBv,(+)R, ec. Soct e Oe P00. 

where Bv,(t) represents the values at stage t+I of the expected costs of 

going from any state x with t stages to go to the end of the process. 

Taking the s-transforms of equation 7.30. we obtain 

e“Ly,(s)-¥,(0)] Zo 4, + Py;(s) B, 
I-s 

yy(#)-v,(0) = 8 Q, + Be y,(2)R, 
I-3% 

y_(s)(I-pak,) = 2 Q, + v,(0) 

Ii-g 

or yz() = 2 9y(T-pel,)™ + V;(0)(I-Bsk,)~* ; e::: Boi ee5T 5 

From the discounting case we know that 

et Tait aoc ae (I-#k,) i Sy +d, (s) where 5S; is the matrix of limiting state 
1-3 

probabilities and J, (4) is the transformed matrix of transient components 

of the system. 

Hence it is obvious that we may write
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(I-(pa)R, )* = S, + J, (Bs) wi > aia lalate: OMe Ts 2k 

Equation 7.31. can then be written as 

y, (3) nt fae" 7 (Pe) + v, (0 1s Sj+ al Equ.7.33- 

Inspecting equation 7.33 we see that the term 

v, (0) < Sy tends towards zero for large + since the inverse transform of 
1-Bz 

Similarly, 

v, (0) 5, (Ba) represents terms that decay to zero since the eigenvalues 

of Ry are all less than or equal to unity and so the eigenvalues of PR, 

are certain to be less than unity. 

Q) z S, represents a step component of magnitude a qs plus 
1-Bs to B 

3 
l-s 

a term that tends to zero as t becomes large. 

g Q, 9, (Pa) represents a step of magnitude Q, 5, (B) plus terms that decay 
l-s 

to zero as t becomes large 

Therefore, for large + 

v,(t) = 2 Q,5, + @,9,(B) = QL S)+5,(p) 07 ah ee haan, ee 
1-B : 1-p 

From equation 7.34 it can be seen that, for large t, the present day costs 

of operating the system with t stages to go to the end of the process 

become constant. 

Therefore, for large t, letting v5 be the constant values, we may write 

equation 7.30. as 

v,=4, +Bv, 2, | ee ey Te Dee
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These equations are solved for the v, and the calculations then proceed 1 

as for the no-discounting case with the probabilities in the monthly 

transition matrices, M, multiplied by B/I2. 

Note that it is not now necessary to set one of the Mg to zero to solve 

the equations, since there are now only d unknowns and d equations. The 

values of V5 thus obtained are the absolute values of operating the process 

over @ long period of time starting in state $y under a fixed set of 

controls.
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2 Chapter 8 

The Application of Dynamic Programming to 

the DesignikOperation of Reservoir Systems 

8.1. The Explicit Stochastic Approach 

The only explicit stochastic dynamic ea aay 3 multi-source 

models in the literature at the present time are those 

investigated by the Water Research Association. ‘The earliest 

models are those described by Schweig and Cole in 1968 £17.) 5 

which require the assumption of very simple atreentTow 

dependencies. 

The problems involved the determination of the long tern operating 

rules for a system comprising two linked reservoirs meeting a 

common demand. Draw off was permitted from either of the reservoirs 

directly to supply and transfers were allowed from the smaller to , 

the larger reservoir. Because of the lengthy calculations 

involved in these problems, only a flow diagram of the necessary 

computer program was given, but an example of the method of 

computation was described for a simpler case involving a small 

surface reservoir operated in conjunction with a major underground 

source. Transfers of water between the sources were considered 

redundant. The method of solution used was the conventional 

reverse time sequence stochastic dynamic programming value 

iteration approach, as described in Chapter 7. Schweig and Cole 

assumed that the policy had converged to an optimum when, in all 

seasons of the year, the revised control rules at step N of the 

iteration were identical to those at step (N-12). However, a 

paper by Burley and Cole (20) describing the same work stated 

that the results of the value iteration approach needed to be 

tested further as O'Kane (41) had demonstrated that the necessary 

criterion of convergence described above might not be sufficient»
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and that application of Howard's policy iteration method (12) 

might be called for. 

8.2. Simple Reservoir —- Aquifer System — Value Iteration 

With this in mind, the author developed a set of programs to 

investigate the behaviour of the policies and costs in the long 

term situation. The water resource system used was the same as 

that in the example given by Schweig and Cole, but a two season 

model only was considered. 

| 

Size of surface reservoir 

States (levels) used for dynamic program 

Maximum release from Aquifer in any season 

i 

  

  

  

            

  

  

        

30000 units 

O, 10000, 20000, 30000. 

10000 units 

  

  

  

                

Inflows:- Season 1 Season 2 

Inflow Props Inflow Prob. 

4.000 0.3 500 0.2 

5000 0.6 5000 v.5 

7000 ad 8000 0.3 

Demands :— Season 1 Season 2 

12500 15000 

Possible decisions 

at any state and 

stage :— Season 1 Season 2 

Decision | Release |Release | Release  |Release| Decision 
Reference| from from from from Ref. 
Number Reservoir /Aquifer | Reservoir|Aquifer| Number 

di 12500 0 12500 2500 5 

a 7500 5000 7500 7500 6 

4 2500 10000 2500 10000 " 

4 0 10000 0 10000 8 

Costs:— Release from reservoir FAO/unit 

Release from aquifer £80/unit 

Deficit to demand £100/unit 

Discount factor 0.985
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The release costs were calculated on the size of the release 

aimed for and not on the actual release pessible for a given 

reservoir level. 

As in Cole's example, the problem was cons‘dered to be solved 

when the policies obtained for one year wee identical to those 

obtained in the previous year. If one con:iders a solution 

surface in multi-dimensional space this mexns that the solution 

obtained occurs at the nearest low point on the surface to the 

given starting conditions. 

The results obtained for this example are given below. It was 

found that the fourth year's solutions were the same as those for 

the third year. Therefore the process was considered to have 

optimised and the procedure was terminated. 

Table of Optimum Decisions Obtained in Each Year 

(Numbers represent decision reference numbers) 

  

  

  

  

  

  

Season 1 Season 2 

Reservoir 

level O 10000 20000 40000 O 10000 20000 40000 

Year 1 3 2 x Z. G 5 5 5 

Year 2 3 3 7 1 a 6 § 5 

Year 3 3 a 2 i 7 6 5 5 

Year 4 3 3 2 1 3 6 5 S           
The CPU time taken on the ICL 1900 computer was 16 seconds but 

only & seconds of this was used in the problem solution, the rest 

being used in system organisation and program compilation prior 

to loading the program for execution. The total time involved 

was 1 minute 45 seconds.
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No attempt was made in this first program to store any information 

calculated for the first year and which could be used by every 

iteration in order to make the program more efficient. Any basic 

costing information required in later years had to be re-calculated. 

The program instructions occupied 4672 words of core store after 

consolidation and the maximum total amount of core store used in 

execution was 14,016 words. 

8.3. Long Period Value Iteration 

This first program was also checked by a hand calculation to ensure 

that no errors of logic were occurring in the computer calculation. 

Having found that the program was correct and knowing the time 

and core store taken, it was decided to run a second value 

iteration program which would continue past the apparent policy 

convergence in years 3 and 4 to produce costs and decisions for 

fifty years. It was thought that this program would also provide 

an indication of the speed of convergence of the discounted costs 

to the constant values predicted by the theory. 

In fact, it was found that cost convergence did not take place 

within 50 years and not even within 80 years, as later tried. 

However, it could be seen from the costs printed out for each year 

that the costs were increasing at a decreasing rate as the number 

of years became greater. Figure 8.1. shows a graph of discounted 

costs versus number of years for the case of starting from an 

empty reservoir in season l. 

It was interesting to note that after about 60 years' iterations 

a change over occurred and the costs showed that it was better to 

start in a given state in season 2, thus having an extra season 

to go to the end of the process,than to start in the same state 

in season l.
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The computer program for these long period calculations was made 

more efficient by storing the immediate costs and the coefficients 

involved in interpolating between state costs for intermediate 

state transitions, as described in Chapter 7, when they were 

calculated in the first year's iterations. 

The C.P.U. time for the 50 year case was 39 seconds, 22 seconds 

of which were used in the problem calculations. The C.P.U. time 

per one year's iterations was 0.334 seconds and the initial time 

Io read in data and calculate the information needed in every 

eas was 5.4 seconds. The total computer time for 50 years was 

2 minutes 5 seconds. 

As well as showing the speed of convergence of costs and providing 

calculation times, the long period computations showed that the 

policy, which had apparently converged after 3 years when the 

first program was run, changed in year 5 and again in year 6. 

From year 6 onwards the policy was the same for all years. 

Table of Optimum Decisions Obtained in Each Year (Year 4 Onwards) 

(Numbers represent decision reference numbers) 

  

  

  

  

  

  

Season 1 Season 2 

Reservoir 
Level QO 10000 20000 30000 QO 10000 20000 30000 

Year 4 3 3 2 a a 6 5 5 

Year 5 3 3 2 a 7 G G 5 

Year 6 3 3 3 1 7 6 G S 

Year 7 3 3 2 A 7 6 G 5         
8.4. The Policy Iteration Method 

With the information that a long term steady state policy exists



and knowing that at least one sub optimum solution may be found, 

it is now possible to apply Howard's policy iteration method and 

to verify in practice that this method does in fact converge 

monotonically to the true optimum policy. 

The information general to every year was again stored for 

computational efficiency. Because of the small size of the 

problem it was possible to store all the data in the computer 

central core. The method, as described in Chapter 7, consists 

of performing yearly value iterations alternating with solving 

the set of equations describing the system. 

It was found that the optimum policy was reached with 4 equation 

solutions and 5 value iterations, the last being to check that the 

optimum has been reached. 

The optimum policy found by this method agreed with the long term 

optimum policy found in the 50 year iteration, thus verifying that 

Howard's policy iteration method is applicable to the water resourcs 

problem. 

One of the intermediate policies found by this method in moving 

towards the optimum was the sub optimum policy found by the first 

trial where iteration was discontinued after 4 years when the 

policies for the third and fourth years were the same. However, 

it is not necessary for this to occur and probably only happens 

because of the simplicity of the problen. 

The following table shows the long term costs and associated 

decisions found by the program. The costs are the equation 

solutions plus one year's iteration.
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Optimum Costs Decision Comments 

Res. Level 8 16 600 20 000 Zo0co _|Nos. 
Season {116500 740000 700000 700000 4211 Decisions 

1 based on 

Iteration immediate 

1 costs only. 

Season {1947055 11537742 {1219444 |1189500 6555." {Solve 

2 ; equations 
with these 
decs. 

Season |64248521 | 64734759 | 63281511 | 62830886 } 3332 Costs 

eS - produced fra 
: “j previous 

as ee equation 

Season - | golutions. 

e 64055854 | 63571590! 64125761 | 62703828 | F666 {Now solve 
with these 
new decisiowm 
to give next 
long term 
costs: #1 
Iteration. 

Season ! 61251 480 | 60747674 | 60335141 | 59944510 | 3321 

Iteration +. 
3 Season !61113543 | 60648936 | 60235763) 59837769 17655 

2 

Season: 61229556 | 60725031 } 60308129 | 59909924 | 3331 Optinun 

ZL , decisions. 

Iteration have been 

Season ee a 

2 61091843 | 60615600 | 60209372 | 59809372 [7668 ea ee 

on before 

this is 
known. 

Season ]61198864 | 60693247 | 60271952 | 59872792 | 3331 

Iteration + ee 
3] Season | 61061353 |60583254} 60173511 | 59773511 | 7665 

2                 
  

These results show that Howard's policy iteration method does in 

fact find the optimum long term policy and that each step in the 

method yields a better solution than the previous one. The long 

term costs obtained from the equation solutions also give an idea 

of the number of years necessary to reach a stationery cost 

situation when compared to the costs obtained after 80 years with 

the value iteration approach.
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The computer program took 19 seconds of C.P.U. time, of which 

9 seconds were used in the calculations and 10 seconds in system 

management. The total execution time was 1 minute 23 seconds. 

The program instructions occupied 10816 words of core store and the 

total store occupied at run time was 18,240 words. The program, 

as before, stored general information calculated at iteration 1 

for use in later iterations. 

8.5. Method of Storage for Policy Iteration 

B= Array —_ becision | 2. x 4 
oot 

I 
          

7 

  

4 

pe es 
oo du

 
w=
 
S
U
R
 

Decision | 

  

  

Store | 
                Stee 2 

_Typical Wnit
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For any discretised state considered there are three possible 

inflows with their relative probabilities and therefore three 

possible end states. Since ‘the end states may not be discretised 

states they are recorded by storing the nearest discretised 

states to the intermediate state together with the two 

interpolation coefficients necessary. If the end state coincides 

with a discrete state this is taken as the lower bound with a 

coefficient of 1, and the next highest discrete state is considered 

to be the higher bound with a coefficient of zero. 

For convenience the coefficients obtained are all multiplied by 

the discount factor. 

‘ 4 
os 

C - Array Dec. Dec. Dec. Dece 

           

  

(State 

       
4 

2 
Season 14 3 

4 

2 

3 
A 

The C array stores the immediate transition costs for each state 

and each possible decision. These costs are worked out and 

stored at the same time as the information is stored in the 

  

  

  

  

  

B array. 
End States 

MATI Array ts oe : a 

State 4 Coeff.1 | Coeff.2 |Coeff.34 [Coeff 4 

em a : : ° 

BS : 

88 : 
™j} 4 “e 

s            
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The MATI matrix is used to hold the transition coefficients 

for the chosen set of policies for each state of season l. 

MAT2 is a matrix similar to MATI but with an additional 

column. The matrix is used to hold transition coefficients 

for season 2 and the last column is used to hold the average 

transition costs. 

These coefficients are obtained by adding the coefficients in 

the B array, for the chosen decisions. and given state,into 

the matrix element describing the same end state as that 

related to the coefficient in the B array.



8.6. Flow Diagram for Policy Iteration Program 
  

  

Read in 

NSTAT = number of states per season 

VA = size of reservoir. 

UPUMZ. = Max draft from Aquifer 

NI = number of inflows in histogram 

Read in inflow data 

Read in possible decisions 

Read in cost data 

Read in demands       

  

Calculate transition coefficients 

    and expected costs. 
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Set Values [ly = O° I= Liner 
      

y 
  

  

Set Season ete 
      

1 
  =< LAGELI 

  

  Set.sa = Season x NSsTAT 
    

\ 

  

Set State: =i       

  

  

    

      
    

  

  
E Sea 

Set Decision = 1 ; 

Set Cost 1 = C[{Xl + State,Decision] 

: N 
Set Coste= = BLX1 + State,I,2] x Values| B{x1+State,1,] 

LoseM 

M = (Decision -1) x 2x WNI+1 

Ws   
  

(Decision -l1) x 2x NI +2x NI 
¥ . 

Set Cost 4 ({Decision] = Cost 1 + Cost 2 
  
  

    
  

  

| Set Decision = Decision + 1 | 
  

¥ 

    

  
‘ Goto 

LAGELS     

H-«— No ~¢ Decision = 5:¢> 

Yes 

| AS 
Set ND = Decision number with 

least cost 
Set Cost = Cost 3 {ND} 

) ; 

_ CW = Policy {x1}? »—Yes—Set Different = True ¥ : 

  

      
    
  

      
  

No Y 

  a 

Set Policy (X1) = ND 

Set Temp Values (State} = Cost 

  

    

    
  

  

[Set State = State + 1 
    

  

  

Geto 

LAREL2     

¥ 
+ Yo -=—< State = 5? 

. Yes Os a



  

  

Goto 

  LABEL 
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Set 

VALUES (I) = Temp Values (I) 

I = 1,NSTAT 
PRINT VALUES       
  

  

1 
< Is Season = 1? \+ Yes 

No 
¥ 

—_—«—[ SET SEASON = 1] 
  

  

  

  

Print POLICIES 

1 
< Different. = True? \» No Terminate 

| Program 

Yes 

| Set Different = False | 

Y 

Set last column of MAT2 

to the transition costs for 

      

  

  

  

  
  

the chosen decisions for 

each state in Season 2. 

: 
Fill rest of MAT2 with the 

relevant state transition coefficients 

from the B array for the chosen 

decisions in each state for Season 2 

    

  
  

  

y 

Similarly, fill up the MATI matrix 

with the Season 1 coefficients 

  
        

y 
  

  

Multiply 

MATI x MAT2 

    Set result in MAT2 

y 

Add transition costs for 

Season 1 into last column 

  

  
  

  of MATZ 
  

 



  

  

Go to 

REPEAT 

  

Set COLVEC vector equal to 

last column of MAT2     
  

  

/[ Set MAT] = -MAT2 
    

  
  

Add 1 to all leading 

  diagonal elements of MAT   
  

    
Solve 

MADE V.= COLVEC 

for values Vector V     
  

  
  

Set 

VALUES array to > 

first half of solutions V 

(Season 1 long term values)       

    

    

aL 26



8.7. Dynanic Programming Applied to Two Stochastic Reservoirs 

Because of the success of mie policy iteration method in the 

simple case of one reservoir combined with an aquifer, it was 

decided to attempt to apply this method toa system of two 

finite stochastic reservoirs meeting a common Remand This 

system is general enough to cover many practical situations 

and is able to include the simple aquifer system by treating 

the second reservoir as the aquifer. This system is also 

easily adaptable to include the multi-demand or resource 

allocation problem, and the stochastic demand case which occurs 

with a regulating reservoir. 

The system is similar to that described by Burley and Cole, 

except beet transfers between the reservoirs were not 

considered since this does not alter the basic method and it 

was only the efficiency of the various dynamic programming 

methods which was under investigation. Serial correlation of 

inflows in each reservoir was allowed for in exactly the same 

way as that used by Schweig and Cole, the probability 

distribution of inflows to each source in any month depending 

upon whether the previous month's inflow was considered to be 

higher or lower than the average for that month. Of course, 

more complicated methods of accounting for antecedent flows 

can be incorporated but this only increases the computation 

time. 

Four discretised levels were used for each reservoir, making 

the number of states in each reservoir eight in all, where the 

state comprises a combination of level and an index indicating 

whether the previous month's inflow was higher or lower than



average. Thus, the total number of combinations of states 

in the system was sixty-four. Five possible inflows, with 

their corresponding probabilities were allowed for each month. 

The objective function allowed for costing the releases from 

each reservoir, the spills and the deficits to supply. 

However, in the example used, only deficit was assigned a 

unit cost greater than zero, so that the dynamic program 

would minimise deficits only. This is comparable to 

conventional methds where the probability of emptiness is 

minimised, except that the dynamic program not only tries to 

minimise the probability of emptiness but also the size of 

the deficits. This might mean that more deficits occur but 

are not as disastrous as, say, one major deficit. If this is 

not acceptable to some engineers then it is extremely easy to 

rewrite the objective function to minimise only the number of 

deficits occurring. 

8.8. Value Iteration - Two Stochastic Reservoirs 

In order to investigate the rate of convergence to the correct 

optimum long term policy it was first decided to carry out a 

value iteration procedure which would be continued until 

several years'consecutive iterations showed the same results. 

The inflow and demand data used for these examples was taken 

from the Celyn/Brenig system described in Chapter 2. Both 

reservoirs were assumed to have 30000 units capacity, where 

one unit was a cusec-day. The demands used for each month 

were the average monthly effective releases to maintain a 

flow of 450 cusecs in the Celyn/Brenig system. The release 

decisions were to take 0%, 25%, 50%, 75% or 100% of the demand 

from Celyn in any month.



  

Demands (cusec-days) 

264.4 

  

Dec. 
  

                        
  

Inflow Data (cusec-—days) 

Jan.| Feb.| Mar.| April| May | June! July! Aug. | Sept./ Oct. | Nov. 

220 |} 420 | 850 | 1620 | 3340 | 3850; 4160; 3460 | 3010 ; 1760 | 360 140 

‘Unit Costs:- Release from Celyn URA = &0/unit 

Release from Brenig URB = &£0/unit 

Spill from Celyn USA = £0/unit 

Spill from Brenig USB = £0/unit 

Deficit cost UDF = £100/unit 

Present worth or discount 
factor PWF = 0.985 
(nonthly) 2 4h encom 

  

  

  

  

  

  

  

a) Brenig 

Month Average Monthly Inflow Histograms 

Monthly Low Previous Inflow | High Previous Inflow _ 

Inflow Inflow |Probability Inflow Probability 

January | 1000 330 0.30 520 O6515% 

870 0.17 790 0.22 

1030 0.26 1050 0.39 

1510 0.17 1540 0.22 

1990 0.10 1930 0.04 

February; 740 220 0.27 180 0.20 

250 0.15 410 0.20 

880 0.27 670 0.25 

1230 0.19 1 0.25 

1650 0.12 1510 0.10 

March 550 230 0.26 170 0.13 

440 0.26 310 0,26 

620 0.26 460 0.35 

1120 0.17 670 0.13 

1840 0.05 1180 0.13 

Conte              
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Montiy Inflow Histograms 
Month Average 

Monthly Low Previous Inflow High Previous Inflow 

oa ata Inflow | Probability | Inflow | Probability 

April 420 110 Oeeb ‘ao 0.29 

250 0452 400 0.24 

4.40 0.24 510 0.17 

750 0.21 6440 0.18 

1080 0.03 i 870 Onte 

May $50 . 110 0.33 100 0.05 

290 0.22 180 0.32 

430 0.22 270 0.26 

670 0.15 370 0.16 

800 0.08 480 0.21 

June 230 80 O42 SO 0.20 

150 0.23 140 0.20 

260 0.12 220 0.20 

470 0.19 330 0.25 

- 890 0.04 550 0.15 

July 210 60 0.43 120 0.19 

140 ey 160 0.25 
250 0413 300 0.25 

410 0.10 370 0.19 
710 0.07 490 0.12 

August { 390 60 0.37 170 Oe 3S: 

190 0.27 350 0.18 

350 002s. 540 0.06 

570 0.10 850 0.19 

940 0.03 5 50 0.19 

September; 540 70 0455 240 0.12 

190 0.20 440 0.25 

480 0.17 620 0.18 

600 0.13 980 0.38 

860 Osi/ 1360 0.07 

Conte            
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Monts Average Monthly Inflow Histograms 

Monthly Low Previous Inflow High Previous Inflow 

ipeee Inflow] Probebility| Inflow | Probability 

October 7°70 120 0.14 / 260 0.21 

320 0.14 560 0.17 

410 0.13 810 0.21 

880 0.50 970 0.16 

1460 0.09 1490 0.25 

November; 970 250 0.14 670 0.38 

350 0.18 960 0.21 

720 0.18 1420 0.25 

960 0.23 1690 0.12 

1440 0.27 1980 0.04 

December; 970 330 0.11 400 0.20 

640 0.31 700 0.15 

800 0.12 980 0.10 

1080 0.31 1190 0.40 

1780 0.15 1690 0.15 

b) Celyn 

Monthly Inflow Histograms 

Month j|Average Low Previous Inflow High Previous Inflow 
Monthly 
Inflow Inflow | Probability Inflow [Probability 

January |6140 1470 . 0.17 3170 0.17 

3440 0.14 _ 5160 0.24 

6100 0.34 6280 0.14 

8420 0.24 7130 0.17 

12060 Osi2 8430 0.28 

February} 3960 410 0.11 740 0.25 

2460 0.34 2970 0.28 

4630 0.22 4920 0.25 

6380 0.22 6280 0.12 

7870 0.11 7620 0.10 

Cont.            
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~ Monthly Inflow Histograms 
  

  

  

  

  

  

  

      

  

  

Month Average | Low Previous Inflow High Previous Inflow 
Monthly an 
Inflow Inflow | Probability Inflow | Probability 

March 2690 1210 0.21 1070 0.16 

1900 0.18 1890 0.29 

2610 0.36 2460 0.26 

4.930 0.18 5330 0.19 

7780 0.07 4520 0.10 

April 2200 480 0.08 750 0.20 

940 0.13 1800 0.30 

1530 0.28 2410 0.20 

2590 0.38 3630 “0,25 

4280 0.13 5310 0.05 

May 1810 480 0.18 640 0.16 

950 0.29 <1 oe 0.16 

1650 0.24 1610 0.20 

2580 0.15 2500 0.40 

4260 0.14 3680 0.08 

June 1600 400 0.27 620 0.27 

870 0.31 1020 0.35 

1420 On4> 1670 0.23 

2410 0.12 2860 0.19 

3490 . 0.15 3910 0.16 

July 2390 510 0.34 360 0.10 

1420 Pa) odeh 1780 0.42 

2440 0.32 2540 0.24 

ALO 0.10 4080 0.19 

2020 0,14 6600 0.05 

August | 2530 590 0.32 920 0.34 
1860 Osis 1950 0.14 

2640 0.18 2910 0.19 

3420 0.21 3950 0.14 

5040 0.16 0.19 5210 
    Cont.            
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Monthly Inflow Histograms 

Month ees Low Previous Inflow High Previous Inflow | 

Inflow Inflow | Probability Inflow Probability, 

September] 2430 510 0.36 7°70 0.29 

1640 0.28 1910 0.16 

2680 0.18 3570 0.39 

4140 0.14 5390 0.13 

7270 0.04 7170 0.03 

October 4450 1120 Cems 1670 Os23 

24-30 0.24 3410 0.23 

4210 0.21 5360 0.27 
5880 0.24 7400 0.19 

84-90 0.10 11380 0.08 

November | 4650 1680 Ogi2 850 O07 

2730 0.22 2980 0.37 

4870 0.31 454.0 0.19 

6250 0.22 6090 0.15 

8260 0.13 9110 0.22 

December ; 6120 2190 0.09 2110 0.17 

4240 0.31 3860 0.25 

6000 0.20 6840 0.42 

8260 0.31 9380 0.12 

11460 0.09 12430 0.04             
  

Since Schweig and Cole suggested in their paper that the computer 

running time might be high for this type of problem it was 

decided to write the computer program for the S.R.C. Atlas 

computer to avoid a monopoly of the ICL 1900 machine with 

excessive running times. The program stored all input date in 

the central core of the computer but any cost or system transition 

data calculated in the first iteration was not stored for use in 

-later iterations but had to be re-calculated when required.



The program run time was limited to 288000 instructions and 

the compilation store was 81K. The store occupied at execution 

time was 20K and 13 blocks of magnetic storage were used. The 

actual number of instructions carried out was 288078. Exactly 

14 years of iterations were performed at approximately 20000 

instructions each, where 10000 instructions take about one minute 

of run time. However, only half the policy for iteration 14 was 

printed out before the program time terminated. It was thought 

at first that the system had optimised with the yearly policies 

after and including iteration eight the same, but when the policy 

iteration method had been carried out and the optimum policy was 

found to be different from that at iteration 13, the value 

iteration results were investigated more thoroughly. It was 

found that iterations 8,9,10, 11 and 12 produced the same policy 

but the policy changed in iteration 14, but still not producing 

the optimum. Since the policy was the same for five consecutive 

iterations it is thought that the policy was very near the 

optimum or that the system was aad that many policies could have 

been close to the optimum. Later investigations implied that 

the total reservoir storage was far too large for the inflows and 

demands considered, so that almost any reasonable policy would 

suffice. 

Exactly the same program was run on the ICL 1900 computer at 

Aston University when it was found that 5 ?/12 years' value 

iterations were carried out in a C.P.U. time of 1805 seconds 

with a total machine occupation time of 54 minutes, which gives 

an approximate total time per iteration of 9.7 minutes, compared 

to the equivalent Atlas time of 2 minutes.
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A trial was then made to find the decrease in time produced by 

storing intermediate transition and cost data, calculated at the 

first year's iteration, for use in each iteration, rather than 

re-calculating the same data at each iteration. 

The first program run on the ICL 1900 machine with stored results | 

produced 74 iterations with the same C.P.U. time as before and 

with a total time of 59 minutes. A second program was limited to 

580 seconds of C.P.U. time and produced 2 2/12 iterations ina 

total of 19 minutes. 

From these results it can be shown that one iteration absorbs 

about 240 seconds of C.P.U. time and about 7.86 minutes of total 

time. Further, the preliminary time to calculate and store the 

transition and cost data was almost zero. However, the latter 

figure may be grossly inaccurate because initial compilation time 

was not included in the calculations, but the other figures will 

be approximately correct since they are much larger than 

compilation time. 

The comparisons show that the extra time in retrieving and filing 

information on discs is still preferable to recalculating it at 

every iteration. It should be noted that the information was 

stored in such a way that to carry out the complete dynamic 

programming calculations for one monthly stage two’ blocks of 

information containing 600 pieces of data each needed to be 

retrieved from disc files.
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8.9. Policy Iteration - Two Stochastic Reservoirs 

The policy iteration method carried out on the same data allowed 

for storage of intermediate calculated data since the calculations 

were expected to consume enough computer time with efficient 

programming without the necessity of recalculation of intermediate 

data. 

The Atlas program itself occupied 12436 words of core store and 

the total number of instructions carried out at run time was 

500178, the store used. in execution being 61K. 

~The optimum policy was reached within four iterations where an 

iteration comprised a value iteration over 12 months to obtain a 

policy and the solution of a set of equations developed from the 

policy. An extra value iteration was required at the end to 

prove that the system had actually optimised. It was found from 

inspection of the results for January that the values obtained 

from solution of the equations at iteration 3 were not different 

from the final results to any practical degree, the solutions 

only differing in the second decimal place with values of 340 at 

the minimum and 261500 at the maximum. 

The solutions from iteration 2 were from 25 to 75 units different 

from the final results, the values ranging from 381 to 261544 

units. 

At iteration 1, larger differences were found. These varied from 

9700 to 13000 units, the solutions being in the range 12413 to 

271254.



These results suggest that the first solution, based on 

minimising the immediate costs, is a poor one, but the fact that 

‘the solutions from iterations 2 and 3 are both close to the 

optimum suggests that several sub optimum policies might exist 

which yield very similar long term costs and that the optimum is 

only marginally the best policy. 

8.10. Convergence of Policy Iteration 

A second program was then run with a Brenig size reduced to 

20000 cusec-days to investigate the convergence of the solutions. 

The optimum was reached in three policy iterations instead of 

four, which suggested that there were fewer steep ascent paths 

to the optimum than before. The first solutions differed from 

the optimum by from 7300 to 9000, the actual solution values 

being in the range 9278 to 198617. 

The second iteration produced values from 476 to 191315 which 

differed from the optimum by from 17 to 29. 

Since these results still seemed to show that many sub-optimun 

policies might exist which were close to the optimum, it was 

decided to reduce the reservoir sizes and to increase the demands 

so that the optimum policy choice would be much more critical. 

8.11. <A Critical System 

Brenig was reduced to 15000 cusec-days and Celyn to 12000 cusec- 

days, while the demand was increased by 50%. 

The optimum was again reached in only three iterations, the first 

solutions being in the range 991503 to 1444985, which differed 

from the optimum by from 401000 to 550000. This result showed



a substantially higher percentage difference range between 2736 

the first solution and the optimum than had been found before. 

This confirmed that the optimum choice was more critical than 

before. 

The second iteration yielded solutions in the range 444054 to 

1045157, with differences from the optimum being from 1080 to 

1630, which may be considered minor differences when compared 

to the solutions. 

The three programs described above lead one to conclude that 

solutions close to the optimum are reached within only two or 

three iterations, but the rate of convergence to the optimum 

after this stage depends on the sensitivity of the system. Thus, 

when relatively large sources of water are present the dynamic 

program may spend several iterations in achieving the absolute 

optimum policy when a sub-optimum policy might be adequate for 

all practical purposes, but if the sources are small compared 

with the demand, the optimum policy is found quickly. 

From the number of instructions carried out at execution time in 

the above programs an estimate of the number Of instructions per 

full iteration, which includes one year's value iteration and one 

solution to a set of simultaneous equations, was found to be 

115000. 

The run with Brenig 15000, Celyn 12000, was investigated for 

policy changes between the iterations. 

Iteration 2 started with a policy which was different to the 

final policy by 15 decisions different by one decision interval, 

one different by two intervals and two different in four intervals. 

The total number of decisions in a: Podiey is 768. Therefore, only 

18 in 768, or 2.3% of decisions, were different to the optimum.
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The policy used by iteration 1 was the immediate cost minimisation 

policy and this was also compared to the optimum. It was found 

that 41 decisions were one interval, ten decisions were two 

intervals, 38 decisions were three intervals and 190 decisions 

were four intervals from the optimum, giving a total of 279 

differences or 36.3%. Most of the differences, 193, were 

concentrated in the last few months of the year, when the greatest 

inflows occur, and the decisions are not so critical. 

8.12. Stochastic Demands 

A further program with reservoir sizes of 30000 units was run 

using five stochastic demands for each month instead of using 

the monthly means. The optimum policy showed that in November, 

December and January when the inflows are high and demands 

smaller, since they are regulating demands, more water tends to be 

taken from Celyn, which has the higher rates of inflows, than 

before. Presumably, this allows Brenig to fill and Brenig is 

then used in the summer months as more of a standby supply. This 

is to be expected since it is logical to hold more water in 

emergency supply as the system demands become more uncertain. 

Celyn is used as the working supply because it has a faster 

filling capability than Brenig. In the early wetter months of 

the year, the tendency is to use Brenig more than before and to 

let Celyn fill if necessary.
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Stochastic Demand Data (Section 8.12.) 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

      

Month : Demand Data €cusec-—days) 

Demand O 220. $930 | 2130 . | 2650 
January 

Demand 0 240. | 500 730 | 2650 
February 

Demand 10 520 940 3470 | 4720 

Demand 10 680 1080 2170 5020 

“Se Probability | 0-26. |.0.14 | O38 .| 0.355 +053 

i Demand 70  +| 1140 | 3050 | 5120 | 6880 
oy 

Probability {| O«2l | 0.17 | 0.14 | 0.29 | 0.19 

Demand - 270 2180 { 4810 7280 10090 

aes Probability {| 0+29 | O14 | 0.33 | 0.19 | 0.05 

Demand 550 2160 | 4190 | 6770 | 9910 

Demand 30 4200.'|; 3550 | 5750 .| 9470 
August 

Demand 10 660 5250 {59004 9760 
September 

Probability | O«48 | 0.07 | 0.14 | 0.17 | 0.14 

Demand 20 660 2370 | 4190 7780 

CE OREE Sl probability and OsdBu Oke § OLSs ct 0.00/91, 0.05 

Demand 0 560 1070 | 1730 | 2450 
November ee 

Probability |0.71 | 0.10 | 0.10 | 0.07 | 0.02 

Demand 0 130 370 930 1310 
December /j 

ae Probability [0-71 | 0.10 | 0.07 | 0.05 | 0.07                
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This assures that Brenig will not be drawn down too much early in 

the year, but allows Celyn to fill more rapidly, in order to 

ensure a full Celyn reservoir at the beginning of summer. 

If Celyn is still low in summer, Brenig is drawn down more than 

in the average demands case. 

In October, just before the wetter months, if Celyn is low, more 

water is taken from Brenig. This is because of the fact that 

Brenig will be used less in winter and will therefore refill, but — 

Celyn will be required to satisfy the winter demands more than 

before and must therefore be allowed to refill as much as possible 

pefore November. 

In the summer months, if Celyn is low, most of the water is drawn 

from Brenig to allow Celyn to refill for the rest of the dry 

spell, but if Celyn is more than a quarter full this is mainly 

used, with Brenig being used only when Celyn falls below this 

level. 

The expected costs involved in the stochastic demand case are 

greater than in the average demands case. This is to be expected 

Since higher demands are involved in the demand histograms. 

However, because of the low probabilities of higher demands and 

the smoothing effect of the corresponding low demands, the effect 

is not too great in terms of total expected deficits at any stage, 

but the effect on total costs, of course, depends on the objective 

function used. In the problem described above, after 7 years 

value iteration, the deficits involved for the average demand and 

stochastic demands cases were 2610 and 4080 units respectively, 

if the system started with both reservoirs empty. The difference



217° 

is 1470 units, which is only about 6% of the average annual 

demand, but when a unit cost of £100 is applied, the difference 

in operating costs over seven years becomes £147,000, which is 

substantial. It is not argued here that a deficit cost of 

£100 per unit is realistic, but it can be seen that small changes 

in system variables might lead to high cost increases which are 

not negligible. 

It is eeftt to point out that the value iterations in the 

stochastic demand case do not take any longer than the average 

demands case in computation time because the size of the matrices 

involved depend only on the number of states in the system. Once 

the matrices have been set up the computations are the same. It 

is only in the preliminary stages of the dynamic program that 

extra calculations are involved. 

8.14. Antecedent Flows 

It was noticed throughout the dynamic programming investigations 

that the benefit derived from incorporating high and low previous 

flow indices was small, since the costs and decisions found for 

the two cases were always similar. Howevax. this may only apply 

for the particular inflows occurring in the Celyn-Brenig system. 

The inflow histograms tabulated preViously show that the 

histograms for the two cases were not significantly different in 

most months for either reservoir. 

8.14. Rate of Convergence of Stochastic Value Iteration 

With the values een 14 value iterations for Celyn and Brenig 

sizes of 30000 units each, and the long term discounted values 

from the policy iteration with the same data, it is possible to 

show the convergence of the values for January starting from 

both reservoirs empty.
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Values for January Starting from State of Both Reservoirs Empty 

Celyn Storage 30000 cusec-days 

Brenig Storage 30000 cusec-—days 

Average monthly demands used. 

  

Iteration No. | Value (cost) Differences 

  

é 

1 233580 
2 254367 20787 
3 258620 4253 

A 260072 : 1452 

> 260724 652 
6 261050 326 
G3 261221 171 
8 261316 95 
9 261371 55 

10 261406 35 
11 261428 22 
12 261444 16 
13 2614-56 12 
14 261466 3 10 

Long Term 261509 | 43         
  

From the above table it can be seen that the 'long-term' costs 

are approached very quickly in the first few years but the curve 

tends to flatten out after this to approach the long term 

asymptotically. 

8.15.  Minimising Drawdown 

A stochastic value iteration dynamic programming calculation 

was carried out for reservoir sizes of 30000 cusec-days each, 

with an objective function which ignored deficits but minimised 

.the draw down in the reservoir. The optimum long term policy
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found was quite different from the policy found by minimising 

deficits for the same input data. 

Figure 8.1. shows a brief summary of the decisions reached in 

the deficits minimisation case for the four seasons. . 

Figures are fractions of demand to be taken from Celyn 

  

  

  

  

            

Celyn Level | Brenig Level |} Spring! Summer / Autumn | Winter 
March-| June— | Sept.-— | Dec.- 
May Aug. Nov. Feb. 

0 O 0.50- | 0.75 0.75-1 O 
0.75 

10000 0.50- | O - 0-0.50 0 
0.75 0.25 

20000 0.50- | 0 0.50 0 
0.75 

30000 0.25- {| 0 0-0.25 0 
0.50 

10000 0 0.75 a 1 O 

10000 0.75 1 0.75 O 

20000 0.75 * 0.75 0 

30000 0.75 O- 0.50- O 
0.50 0.75 

20000 0 4 - 1 - 

10000 0.75- | 1 1 - 

20000 0.75 5 - - 

30000 0.50- ; 1 0.75 O 
0.75 

30000 0 1 eo 1 1 

10000 1 1 4 - 

20000 - a a 1 

30000 0.50- | 1 1 0 
0.75 
  
  

Fig. ak 
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It can be seen that in winter when Celyn and Brenig are drawn 

down after the dry months, Celyn is allowed to fill first to 

about 15000 cusec-days, while Brenig satisfies the small winter 

demands. After this, when Celyn contains sufficient water to 

aueely the spring demands, Brenig is allowed to fill, while all 

the demand is taken from Celyn, unless Brenig is about to 

overflow, when all the demand is taken from Brenig. 

In the spring, if Celyn is still below one third full, the demand 

is shared between the reservoirs, with a tendency to take more 

from Celyn, so that Brenig can fill ready for the summer. In 

fact, all through the Celyn range, more water tends to be taken 

from Celyn. The aim is to have Brenig full first because it 

has smaller inflows. Even if Celyn is low in the spring, it 

is probable that it will fill sufficiently for the summer 

because it has high rates of inflow. 

In the summer, all the demand is taken from Celyn, with Brenig 

as a standby supply. If Celyn is drawn down below one third full 

and Brenig is still high, all the water is taken from Brenig, but 

if Brenig is nearly emptied a higher fraction of demand is again 

allocated to Celyn. 

In autumn, if Celyn is low after summer, the fraction of demand 

taken from Celyn is inversely proportional to the level of 

Brenig. As Celyn becomes more than half full, all the demand is 

taken from Celyn, so that Brenig can begin to refill if 

necessary, ready for supplying the low winter demands and for 

the following summer. 

Figure 8.2. shows the policy obtained by minimising the draw 

down in the reservoirs.



  

  

  

  

                
  

Celyn Level Brenig Level Spring | Summer} Autumn Winter 
March— | June- Sept.e- | Dec.- 
May Aug. Nov. Febe 

O 0 O O a 1 

10000 1 7 pels a 

20000 7 & 1 a 

40000 0.75 1 0.50 O 

10000 O O 0 Z + 

10000 1 1 ay i 

20000 1 1 1 2 

30000 0:75 si 0.50 0 

20000 0 2 O 2 1. 

10000 1 - 1 

20000 + Ji ay 1 

30000 0,75 A Dio 0 

30000 0 1 0 1 1 
10000 a ap 1: xr 

20000 ZL z eh a 

40000 x i 2 0 

Big e 8 e 2] or 

In winter, Brenig is always allowed to fill before Celyn, all 

the demand being taken from Celyn. 

the demand is taken from Brenig. 

to rise to avoid wastage of water. 

If Brenig is about to overflow, 

Thus, Celyn level is allowed 

In the spring, if both reservoirs are still very low, the demand 

is taken from Brenig but generally most or all of the demand is 

taken from Celyn whatever the levels in the reservoir. Thus, 

Brenig is again allowed to fill before Celyn, as in winter.
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In the summer and autumn the demand is taken from Celyn unless 

Brenig is about to overflow, when it is shared. 

The interesting point to note is that in summer, when Brenig is 

empty and Celyn is at any level, even full, the demand is all 

allocated to Brenig. This is in direct conflict to the 

minimisation of deficits but is logical for minimising draw down 

since the objective function in this case tries to supply the 

demand if sufficient water is available but; if a conflict arises 

between supplying demand and maximising the reservoir levels when 

‘either of the reservoirs is below about 4000 cusec-days, the 

maximisation takes precedence. This type of objective function 

may be applicable in the case of hydro-electric power generation, 

when water supply is not the main purpose of the reservoir, but 

would probably be more complicated than the linear function used 

here, a higher penalty being placed on higher draw downs than 

implied by a linear rule.
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8.16 The Deterministic Approach 

From the discussions in the previous sections it is 

evident that the solution of the stochastic control case 

for more than two or possibly three reservoirs or components 

is virtually impossible even using efficient methods of 

computation. However, the deterministic problem for a 

given system can be solved with far less effort and this 

leads to the possibility of increasing the sige of the 

systems which may be analysed. A further benefit which 

ensues is that the intervals of discretisation of the state 

variables may be decreased to tae tade more states so that a 

more accurate solution is obtained. 

It was therefore decided to investigate the Bp placation 

of deterministic dynamic programming to the solution of the 

long term policy. If it is possible to achieve a policy 

which is reasonably close to the optimum by analysing 

deterministic results, then the method has distinct 

advantages over the stochastic method. The main problem 

in trying to apply stochastic dynamic programming to a 

real system is to summarise the probability distribution of 

inflows in a histogram and to include serial and cross 

correlations between the inflows in a multi-unit system 

while attemptingto keep the amount of data to a minimum so 

that the computer program does not reach unmanageable 

proportions. It is obvious that gross inaccuracies and 

over simplifications may occur, so that the optimum policy 

found by stochastic dynamic programming might not be the 

optimum for the real system. 

However, if deterministic dynamic programming can be
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applied, the actual historic data, with its real correlations, 

may be used. Even if long sequences of historic data are 

not available it is possible to generate synthetic inflow 

and demand traces by using regression analysis or auto 

correlation techniques. Although the statistical parameters 

have to be estimated from the historic data this can be done 

in far more detail, and thus with more accuracy, than can be 

allowed for in the stochastic method. 

In order to be able to compare the worth of policies 

obtained by analysing deterministic dynamic programming 

results to those obtained by the stochastic method it is 

necessary to use data with the same statistical properties 

for both approaches. For this purpose the Celyn/Brenig 

histograms described in Section 8.8 were taken as the basic 

data structure. The deterministic data used was generated 

by a very simple procedure which only produced inflows of 

magnitudes equal to the discrete flows given by the 

histograms. In this way, it was ensured that the 

deterministic traces would be as close to the statistical 

properties of the histograms as possible. 

8.17 Data generation 

A standard random number generating routine was 

employed which produced numbers between O and l. The flow 

diagram for the complete routine is shown below and is self 

explanatory when read in conjunction with the data structure 

of section 8.8. 

The demand data used were the twelve average monthly 

demands, also given in section 8.8.



LABELI: ] 

h 

Flow Diagram for Data Generation Routine   

Yes 
Er eee 0? 

5 No 

(Start ) 

Y 
    

Haack monthly inflow averages 

for Celyn and Brenig. 

Read monthly histograms 
  

{ 
  

Re-orgenise histo, rams to show 

cumulative probabilities. 
(Each discrete flow associated 

with upper and lower bounds of 

cumlative probability). 
  

\ 
    

Set MO: TH = I- 

Set Nel 

Set ANTA = ANTB=I 

(antecedent index =I if previous 
flow less than monthly average).       

    Generate random number ,X. 
  

  

  
  

Generate random number,Y. 
    
  

Yes 

: No     
Locate X in cum lative 

probability ranges for Brenig for 

given ANTB and MONTH. 
  

' 
    

Locate Y in cumulative 

probability ranges for Celyn for 

given ANTA and MONTH.     
 



  

Set FLOWA= relevant Celyn inflow 

corresponding to probability 

range of Y,. 

Set FLOWB= relevant Brenig inflow 

corresponding to probability 

range of X.   Print MONTH, FLOWB,FLOWA. 
  

Y 
™ 

      
  j 
  

F
e
 

month. 
  

No. 4 

286. 

  

      

    

    

Set ANTA= 2, ANTB= 2, "4 

FLOWA <Average for Celyn for this Yes 
Set ANTA=I 

FLOWS < Average for Brenig for this Yes 
+ Set ANTB=1 

month. 

No y 
<i} 

  

      
  

  —mqQ 

  

N=required length of series in months? > 
  

> Yes 

No     

  

Set N=N+I 

Set MONTH = MONTH +I     

y 
Yes 

<; MONTH =13? Set MONTH=I 
    

No Y ’ ! 
    

  

       



8.18 Extraction of Long Term Policy 

Assuming that the best decision for the system for every 

state at every stage has been found by deterministic dynamic 

programming for a long data sequence, whether synthetic or 

historic, the hurdle remains of using it to operate the 

system in the Pure: The problem of the Controller when 

running a reservoir system is to decide upon the best way 

of operating the system in the immediate day, week or month, 

ahead based upon the data Bear ants to him at the time. 

One way of doing this is to look back over the historical or 

synthetic data sequence used for the deterministic dynamic 

program to try to identify one or more similar situations to 

the current one and implement the decision, or some average 

of the decisions if several similar situations were found, 

of those determined by the dynamic program for those 

situations. This kind of approach would probably require a 

computer to be available for searching rapidly through the 

past data to compare the present situation with the record 

of situations. 

Another method would be to analyse the decisions 

implemented by the dynamic program for given sets of 

available data and attempt to extract the average or most 

frequently occurring decisions for given situations. 

: Young (28), as described in chapter 1, applied a 

regression analysis to his deterministic results for a 

simple one reservoir system. The dea wior for any system 

state and known previous inflows, as many as thought 

necessary, was made a function of these known variables. 

However, it is thought that the use of the same regression
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function for all situations might lead to gross inaccuracies. 

It would appear better to break down the policies into a 

group of regression functions, say one for each combination 

of levels, so that the regression would only then be upon 

the previous inflows. It is the latter type of approach 

which has been used mainly in this thesis, although 

regression analysis was not the basis of ‘averaging' the 

decisions. A simple average of the decisions for a 

particular set of results for given system variables was 

used at first, put a refinement of this was applied to later 

results. The method consisted of weighting the possible 

decisions at any time according to the saving in cost each 

produced over the worst decision which could have been made 

at the time, and goes a sven dae ons the idea of 

investigating the effect of applying each possible decision 

for a particular state in turn through all time while holding 

the decisions for all other states at their optimum ad each 

time. 

The Geohnatead extraction of the policy is made by 

setting up an array which includes an element for every 

possible decision for every possible state. The costs 

computed in the dynamic program for each decision for a 

given state are added into the relevant array element. 

This procedure is followed at every stage of the calculation 

so that the costs accumulate in the array elements. 

Throughout the dynamic program calculation, the 

optimum decisions are used as normal, the long term policy 

extraction being independent of the intermediate calculations. 

When the dynamic programming calculation is complete the
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long term policy is found by choosing the optimum decision 

for each state as the one corresponding to the minimum 

accumulated cost for that state. 

8.19 Comparison of methods of policy extraction 

In order to verify that the author's method of long 

term policy extraction from deterministic dynamic 

programming runs was a reasonable method, several 50 year 

trials were carried out to compare the policies thus 

obtained to those obtained by choosing, for each state, 

the decision which occurred most frequently. The reservoir 

sizes used were 30000 units for both sources, and the inflow 

and demand data were those of section 8.8, the 50 year inflow 

traces being generated by the method described in section 

8.15. The objective was to minimise deficits only. 

The policies obtained were very similar for both methods, 

the author's method yielding marginally better costs in 

Simulations over 50 years, but because of the large storages 

involved compared to the demands, these results cannot lead 

to any general conclusions. Far more rigorous tests must 

be applied to determine whether one method is better than 

the other. However, the results did show that the author's 

method produced comparable policies and since it is not 

the purpose of this thesis to determine the best method of 

policy extraction, but only to show that consistent near 

optimum policies are extractable from deterministic dynamic 

programming calculations, with great computational reductions 

over the stochastic methods, any logical extraction method 

is acceptable. It is useful to reiterate here that 

because inaccuracies occur in trying to simplify the
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statistical properties of the data for use in stochastic 

programming, the results obtained by using synthetically 

generated traces together with the deterministic dynamic 

programming method may in fact be the more accurate. 

8.20 The consistency of the deterministic method 

As stated previously, before deterministic dynamic 

programming can be applied with confidence to finding long 

term policies for a system, some experiments must be carried 

out to compare the results obtained by this method to those 

fonat by the equivalent stochastic approach. 

For this purpose, it was decided to apply deterministic 

dynamic programming to the simplified Celyn/Brenig system 

with reservoir sizes of 12000 and 15000 cusec-days 

respectively. Four levels and two antecedent indices were 

used in exactly the same way as the stochastic run described 

in Section 8.11. The demands used were again 1+ times 

those given in Section 8.8. Sequences of 100 years inflow 

data were generated by the method of Section 8.15 and the 

deterministic Neem o Sob anailns method applied, the long 

term policies being extracted by the author's method. 

The reservoir sizes and demands were such that the 

policies obtained would be critical. The objective 

function was to minimise the deficit costs incurred, a 

discound factor of 1.5% per month being used. 

The policies obtained for four of the inflow traces 

(Sl - S4 in Table 8.1) were applied to the same traces in 

the simulations. After this, three more traces (S5 - 87) 

were generated and the long term policies found from dynamic 

programming, but instead of applying each policy to the



inflow data used to calculate that policy, the policies 

were applied to different sequences to show whether the 

policies obtained in each case were general to the inflow 

population. In Section 8.11 a policy for this same system 

was determined by the stochastic method. This policy was 

now applied in a simulation to the same generated data as 

for Sl of Table 8.1 and the results are shown as S8. In 

all the simulations described previously the policy used was 

stated as a matrix of decisions, one for each possible 

discretised state in each month. When intermediate, or 

non-—discrete states, were encountered in the simulation the 

relevant decisions were obtained by interpolation among the 

nearest discretised states. However, the simulations of 

Sl and S8, which used the same generated data, were repeated 

with the decision for any Hb rnedtuie state being taken as 

that for the nearest discrete state, no interpolation being 

used. The costs in these instances are shown in brackets 

after the costs for the interpolation method. 

The 100 year simulations took a total computer occupation 

time of from 4 to 5 minutes with C.P.U. times of from 45 to 

55 seconds. 

The computer programs for S2 to S4 were complete data 

generation, dynamic programming and simulation runs in the 

same jobs. The C.P,U. time varied from 1418 to 1555 seconds. 

Separate programs for 100 years data generation, and 

simulations took about 33 seconds and 55 seconds 

respectively for one instance. Unfortunately, the total 

computer occupation time for the complete program was not 

ascertainable because of the introduction of a time sharing 

system.
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Table 8.1 

| RUN SIMULATION COSTS OVER : Reservoir Sizes:- 
_ NUMBER 100 YEARS 

(Deficits x £100) _ Celyn 12000cusec day 

$1 | 1241200 (2734500)* Brenig 15000 cusec day 

So. | 2131560 Demands: 14 times those 

S3 1489940 
cel of Section 8.8. 

7 ~ Inflows: Generated from 
84 | 3258790 histograms of 

————t ees se Section 8.8. 
$5 | 2562060 

| 86 | 2796170 

2810810 paeet Sy Coe a as 
| S8 1251820 (2594500)* 

  
* Costs with no interpolation. 

The actual policies derived by the stochastic and 

deterministic methods cor cases S8 and Sl were compared 

and it wad found that about 10% of the decisions were 

different, nearly two-thirds of these being different in 

only one decision interval. 

Table 8.1 shows that the deficit costs incurred over 

100 years of simulation in the same data by policies $1 and 

S8 are very nearly the same, whether interpolation for 

policies for intermediate states is used or not. 

The costs shown in Table 8.1 are the actual costs 

incurred since the discount factor used in the dynamic 

program was not applied in the simulations. Therefore, 

the figures show the real sizes of the deficit multiplied by 

the unit cost of £100. The figure of £1251820 represents 

a total deficit of 12518.2 cusee-days over 100 years, which 

is less than 0.3% of the total demand over the period.
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Expressing the deficit as a percentage of the demand shows 

that the spread of the figures in Table 8.1 is in fact 

small, the highest figure only being about 1% of the demand. 

The costs for trials S4 to S86, for which the policies 

derived from one set of data were applied to a different 

data sequence for the simulations, fall well within the 

cost range for the other simulations and indicate that the 

deterministic policies are applicable over the inflow 

population as a whole, but because of the small number of 

trials carried out it would be unsafe to conclude that this 

is always so. However, the weasies show that further 

research in this area would be worthwhile. 

The policies obtained for runs S2 to S4 were analysed 

and compared in detail to that for the stochastic policy of 

S8 and were also compared to one another. The results 

are shown below.
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s2 53 54 S8 
  

S2 71 (9.2%) 70(9.13) 82(10.7%) 
  

S35 71(9.2%) 60(7.8%) 67(8.7%) 
  

54 70(9.1%) 60(7.8%) 75(9.8%) 
  

58   82(10.75) 67(8.7%) 75(9.8%)           
Total number of decision differences 

between policies. 
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8.21 Length of data sequence 

Following this set of experiments, it was decided to 

investigate the effects on the policies and simulation cost 

of varying the length of the data series used in the 

deterministic dynamic programs. In these experiments, 

the same 100 years generated trace, 84, was used throughout 

as a data base. For the dynamic program, the required 

length of data series was taken from the end of the 100 

year trace. The policies produced in each case were 

applied over the full 100 year sequence in the simulation 

runs. 

The same system as in the previous section was used, 

all inflow, size, and cost data being identical. The unit 

deficit costs was again £100. 

The same composite computer program, which generated 

data, performed the dynamic program and ran the simulation, 

as in Section 8.19 for runs $2 to S4 was used. 

The total C.P.U. time was 796 seconds for a 50 year 

program, 483 seconds for 25 years, 359 seconds for 15 years 

and 297 seconds for 10 years. 

The simulation costs are given in Table 8.9. 
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The following tables show the policies derived from 

the 50 to 10 year programs compared to S4, the 100 year 

policy, and S8, the stochastic policy.
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+ Ferntree at eer ren st traning tent eM 

| Length of | Total number of 

| data series decisions different from: __ 
used in ap. S4 38 

| im years j ‘ 

| 10 Bag. 237 

15 150 162 

25 100 144 

tea ee cee 
100 0 75 

Table 8.18 

It can be seen from these tables that the policy for 

the 50 year sequence is very similar to the stochastic 

policy and to the 100 year policy, the simulation cost 

being close to that for run S84. Even the 25 year policy 

produces a low simulation cost although the policy is 

different in twice as many decision elements as the 100 

year policy from the stochastic policy. This, combined 

with the results of comparisons of policies from different 

100 year sequences, leads one to believe that the policy 

differences which do occur between data sets and those 

caused by length of series, at least with series greater 

than 50 years in length, are minor differences and generally 

occur for states where there is a marginal choice between 

the possible decisions.
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8.22 Effect of reservoir sizes 

A series of 50 year deterministic dynamic programs 

combined with 50 year simulations was carried out, using 

the same data sequence throughout for both the dynamic 

programs and the simulations, to investigate the convergence 

to optimal reservoir sizes using the near optimum policy 

determined for each case. At the same time, further tests 

were made to compare simulation costs obtained when policy 

interpolation for intermediate states was used to those 

obtained when the decision for an intermediate state was 

taken as the same decision as that for the nearest discretised 

state. 

In both cases, experiments were also carried out to show 

the results of using a policy which was optimum for one 

reservoir size combination on all other size combinations. 

The results are given in Table 8.19. The demands used were 

1% times those of section 8.8 and the objective was to 

minimise deficit costs, the unit deficit Boat being £100. 

A discount factor of 1.5% per month was employed in the 

dynamic programs but not in the simulations. 

The dynamic programs of Series 2 of Table 8.19 using 

8 levels in each reservoir with two antecedent indices for 

previous inflow, HIGH and LOW, giving 256 states in all, 

used about 900 seconds of C.P.U. time and one hour total 

time onthe ICL 1905 computer. The simulations used about 

30 seconds of C.P.U. time and 6 minutes total time.
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The first series of programs was run with 6 levels in 

each reservoir, which, combined with the antecedent indices, 

gave a total of 144 system states. Only the deterministic 

dynamic programs were carried out for this trial, no attempt 

being made to extract a ee term policy for simulation 

purposes. For twenty ootitinae lens of reservoir capacities, 

the fifty year optimum costs of running the system, starting 

from states of both reservoirs full and both reservoirs 

empty, with initial antecedent indices representing low 

previous inflows to both reservoirs, were extracted. These 

costs are, of course, the absolute minimum costs which could 

be achieved with the given data and discretisation level. 

Any long term policy applied to the same data and problem 

structure would necessarily produce higher operating costs 

than these. The results of the first series of programs 

are shown in columns (4) and (5) in Table 8.19. 

It can be seen that for a fixed Celyn size and decreasing 

Brenig size the costs of starting from both reservoirs full 

tends to increase with decreasing Brenig size, as expected. 

However, although this occurs for each chosed Celyn size, 

there is no relationship between the lowest costs incurred 

in each group for the various Celyn sizes. This may be 

explained by the varying accuracy of the problems as the 

size combinations change, because the same number of states 

are used in each reservoir whatever the capacity. Therefore, 

the problems with smaller reservoir capacities yield the 

more accurate results. Neither is the accuracy of the 

“problem the same for, say, a problem with Celyn 24000 and



Brenig 18000, and a problem with Celyn 18000 and Brenig 

24000, since the accuracy is also related to the inflow 

rates to each reservoir, and consequently the ‘usefulness' 

of the reservoir, which is determined by the policy solution 

itself. The accuracy is also affected by discretisation 

of the decision possibilities. 

The figures in column (5), for starting from both 

reservoirs empty, are likely to be more affected by the 

accuracy of the problem since the costs (of deficits) are 

only incurred when the reservoirs are depleted. The figures 

show that the general tendency is for the costs to fall for 

smaller reservoir sizes, which is clearly not logical. 

However, in spite of this, because the costs fall over a 

wide range as Celyn size decreases, whatever the capacity 

of Brenig, it may be deduced that Celyn is the more important 

reservoir of the two, which is true because it has much 

higher rates of inflow than Brenig, and that the level of 

discretisation of Celyn affects the costs even more than 

the capacity. When Celyn becomes very small, the accuracy 

of the problem becomes greater, and the influence of Brenig 

on the system becomes more pronounced, as Celyn reaches its 

critical capacity, which appears to be about 15000 cusec- 

days. The last two figures in column (5) show that the 

costs are less for a Brenig size of 15000 cusec-days than 

for a size of 18000 cusec-days which indicates that the 

accuracy of Brenig discretisation still affects the system 

more than the capacity. From this one can assume that even 

- at a capacity of 15000 cusec-days Brenig is still too large. 

The figures shown in column (7), using 8 levels in



Dus 

each reservoir instead of 6, still show the same tendencies, 

the critical level of Celyn,before costs increase at a fast 

rate, being about 15000 cusec-—days. One can see again 

that Brenig capacity does not appear to affect the costs 

unduly at a capacity of 15000 cusec-—days. 

Because the change in accuracy of the problems affects 

the final optimum costs, and since the absolute optimum 

policy is used throughout the dynamic programming solution, 

rather than the best long term fixed policy obtainable, 

which would have to be applied in practise, it is not 

strictly fair to compare the optimum costs incurred by each 

reservoir size combination to determine the optimal 

configuration. Therefore, a practical way to determine 

costs which are comparable is to extract the long term 

policy as described in previous sections and to apply this 

to a sequence of data in a simulation to obtain the operating 

costs. 

Column (8) of Table 8.19 shows the costs obtained from 

50 year simulations starting from a state of both reservoirs 

full with antecedent indices representing low previous flows. 

In this set of simulations, linear interpolation was used 

to determine a decision for states that were not discrete 

from the decisions for the nearest surrounding discretised 

state decisions. The figures show that no costs are 

incurred until Celyn capacity is 12000 cusec-—days and Brenig 

capacity is 21000 cusec-—days. The costs are nearly the 

same whatever the capacity of Brenig after this. These 

results indicate that the critical level in Celyn probably 

lies between 15000 and 12000 cusec-days, while Brenig can



be reduced below 15000 cusec—days. Further experiments 

in this range would determine the optimal sizes. 

The simulations described above were repeated without 

interpolation for decisions for intermediate states,and it 

was found that the costs incurred started at a much greater 

Celyn size of 18000 cusec-days and the costs for lower Celyn 

sizes were much higher then before (Col. (9)). Although 

some of the costs for a fixed Celyn size increase with 

decreasing Brenig size this is not always so, especially 

when Celyn has a capacity of 12000 cusec—days, when no cost 

pattern can be seen. It is apparent that policy interpolation 

is desirable and, because there is not always a pattern to 

the costs when no interpolation is used, that in some 

instances the no-interpolation method might yield reasonable 

results but in others it might not. Because there is a 

tendency, when simulation combined with trial and error 

dani determination is used as a design method, to apply 

a generalised policy to several reservoir sizes to find 

comparable operating costs, it was decided to apply one long 

term policy, determined for a size combination of 15000 

cusec-days in Celyn and 24000 cusec-days in Brenig, to a 

range of combinations in simulation exercises. The results 

are shown in Column (10) of Table 8.19 and show that no costs 

are incurred until Celyn has cnpeeie. 12000 cusec-days and 

Brenig has capacity 24000 cusec-days. The costs are then 

ten times greater, with policy interpolation, than those 

incurred in the same circumstances with the optimum long 

term policies for each system. The figures again confirm 

that the optimal capacity of Celyn lies between 15000 and
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12000 cusec-days. They also show that, in this case, 

any reasonable policy could be used to locate the critical 

eek. an obvious increase in costs occurring at this point. 

These simulations were repeated using no policy 

interpolation and, as before, the figures show that costs 

are incurred at higher size combinations, but another 

obvious increase occurs when Celyn falls to 12000 cusec-—days. 

The results of Table 8.19 thus indicate that the 

cheapest and easiest method of determining caer 

reservoir sizes may be to apply a reasonable operating 

policy, say the space, or reservoir balancing rule, to 

various size combinations until a sudden large increase in 

costs is indicated. This will show the area for detailed 

investigation in one reservoir. The experiment can then 

be repeated to obtain a critical range for the other 

reservoir, or reservoirs. 

The determination of the best sizes can then be carried 

out by dynamic programming in a restricted range, 

Experiments to investigate the level of discretisation 

necessary are described in Appendix 5.
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8.22 The Celyn/Brenig System 

Because a policy had been found by the simulation 

method for the Celyn/Brenig system, as described in Chapter 

2, it was decided to apply the deterministic dynamic 

programming method to the same 42 years inflow and demand 

data. The objective function used was to minimise the 

deficit costs, but a kichee cost weighting was given to 

deficits which involved compensation water, the unit cost 

ratio of deficits in compensation to deficits in make-up 

water being 10, with costs of £1000/unit and £100/unit. A 

discount factor was not used. The long term policy was 

extracted from the dynamic programming results by the author's 

method. | 3 

The reservoirs were divided into 11 levels each, and 

HIGH and LOW antecedent indices were taken into account when 

the policy was extracted. The reservoir sizes used were 

21000 cusec-days and 31859 cusec-days in Brenig and Celyn 

respectively. The monthly retention levels, compensation 

waters, and low water Limit in Celyn were used in the same 

way as in Chapter 2. 

Simulations over the 42 years data were then carried 

out using the dynamic programming policy, with interpolation 

for intermediate states, and the policy found by the methods 

of Chapter 2. 

The policy of Chapter 2 produced a total cost of 

£1,291,167 over 42 years, or £30,742 per year on average. 

Three consecutive monthly deficits occurred in 1934 from 

July to September, the total compensation deficit being 

138 cusec-days and the ordinary make-up deficit being



8814 cusec days. In 1937, make-up deficits were 2118 

cusec-—days over the two months, October and November, and 

there were no compensation deficits. In 1938, there was a 

compensation deficit, only, of 60 cusec-days in June. Thus, 

deficits occurred in three separate years, the total 

compensation deficit being 198 cusec-days, and the make-up 

deficit being 10932 cusec-—days. 

The dynamic programming policy with the same date 

produced simulation costs of £979,800 over 42 years, or an 

Rveraeh yearly cost of £23,329. Deficits only occurred in 

the three months, July to September, of 1934. The 

compensation deficits were 94 cusec-—days, and the make-up 

deficits were 8858 cusec-days. 

The results show that the dynamic programming method 

produces a better policy for this aaah if deficits are 

minimised. The true value of dynamic programming is not 

reflected in the difference in costs, however, because the 

work described in previous sections indicates that the size 

of Celyn reservoir is greater than required and that the 

policy is not very critical. | 

The computer program for the deterministic dynamic 

program used above consumed a total of 1 hour 52 minutes, 

and a C.P.U. time of 2160 seconds on the ICL 1905 machine, 

and the simulation with the resulting policy took 6 minutes 

13 seconds total time and 39 seconds C.P.U. time, 22 seconds 

being used in computation. 

The simulation using the policy of Chapter 2 took 

2 minutes 46 seconds of total time and 32 seconds C.P.U. 

time, 19 seconds being used in computation.



Chapter 9 

‘State Increment Dynamic Programming 

ae Introduction 

The theory¢application of state increment dynamic programming 

is described by Larsen (II). He states that this method leads 

to a computational procedure that has significant advantages 

in terms of computational requirements over the conventional 

procedure. The main objective of the method is to reduce the 

high speed memory requirements by arranging the calculations 

so that the maximum number of computations may be carried out 

with the minimum immediate information. 

9.2. The Theory 

The basic iterative functional equation is the same as that 

given by equation 6.6. The discretisation of state, control 

and time variables is done in exactly the same way as for the 

conventional case. The minimum cost and optional control 

are computed at all quantised values of ¥ and t. The 

minimisation in equation 6.6. is performed by applying all 

admissable discretised controls and choosing the minimum value 

of the right hand side of the equation. The generality of 

the problem formulation and the form of the solution are in 

no way changed. 

As described by Larsen, the reduction in computational 

requirements is obtained by combining the two basic concepts 

of the new approach. The first of these is related to the 

choice of ft in equation 6.6. This time increment, which is 

the interval over which a control is applied, is not now set 

equal to At, the time increment between successive 

computations of optimal control. Thus, two time intervals 

have been introduced into the calculation instead of one, At, 

as for the conventional method. The dynamic programming
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calculations are still carried out at fixed time intervals, 

or stages. It is only the computations within these stages 

which are modified. 

However, the §&t in equation 6.6., over which a control is 

applied, is not fixed but is chosen as part of the calculation. 

As described in Chapter 6, in the conventional method St 

is fixed at At, and a particular state may make a transition 

0 any other state during this time, but the state increment 

method finds the value of + during which the original state 

makes a transition to the next nearest discretised state. 

This value may be less than, equal to, or greater than At, 

but if it is greater than At, the value used for the 

subsequent optimisation is set at 4t. This procedure ensures 

that the state transition is over one or less state increments. 

Formally, 

ft =o Min AX 

iz I fn ‘ = » a mise ° i ole ; ’ FERRER Equation 9.1 

  

The value of ft is calculated for each state variable and the 

minimum is chosen. Thus, the next state, ¥ + F (x, 0, +) &t, 

is always close to the present state. Larsen describes it 

as lying on the surface of an n- dimensional hypercube centred 

at X, with length 24xi along the xi-axis. The minimum cost 

at the next state is found using interpolation in (n-1) of 

the state variables and time, using values at the discretised 

states that lie in this hypercube at times (t +At) and 

(t + 24t). In other words, a state transition beginning at 

time t is made to a time for which there is no value of the 

function, I, stored in the machine since the calculations for 

I are only carried out at fixed intervals,At. Therefore, the 

value of I at the time under consideration is found by



extrapolation of the values calculated at times (t + Mt) and 

(t + 26t). Because the transitions are to states within a 

confined hypercube, only the minimum costs corresponding to 

these points need to be stored in the high speed memory, as 

opposed to the minimum costs for every admissable discrebivea 

state as required by the conventional method. 

However, the saving in high speed storage by using this method 

is offset by the need to transfer these small blocks of data 

from low speed to high speed memory at frequent intervals, if 

_the calculations are carried out in the same Ondee as for the 

conventional procedure, because each state for which calculations 

are carried out might need a different set of values. The 

computing time involved in these transfers is so large that the 

method is not attractive. But if large amounts of data are 

-~transferred infrequently, the waiting time is reduced and if 

the computations can be arranged to take advantage of this then 

the method might become useful. 

Z State increment dynamic programming uses this concept by 

____ carrying out the computations not according to the ordering of » 

the time increments, as in the conventional procedure, but in 

blocks which cover a small number of discretised states buty 

many time increments. If the present state under consideration 

is in the interior of a block, then the discretised states 

required for extrapolation of the minimum cost at the resulting 

--state after transition are always in the block, it is then 

possible to compute the minimum cost and the optimal decisions 

throughout the block on the basis of an initial set of 

minimum costs at the two largest discretised values of time 

at the end of the block. By modifying the computations at the 

boundaries of the block it is possible to allow the 

trajectories to pass from block to block. Consequently, an



3196 

efficient computational procedure is obtained in which the 

transfer of a relatively small amount of initial date enables 

computations to take place throughout the block. 

Other interpretations of extrapolation methods than that 

described above may be used for finding the optimum cost at 

the resulting state after transition. Some of these involve 

using only the optimum costs found at stage (t +At) instead of 

for both (t + At) and (t + 24t). Advantage can also be taken 

of the fact that interpolation can be carried out at time t 

when sufficient costs have been computed for some states by 

other methods. The procedures are described in detail by 

Larsen. 

Interblock transitions are easily made into previously computed 

blocks by storing the optimal costs previously calculated at 

the boundary of the blocks, as well as the costs at the end of 

the block under consideration. It is also hoetneene to 

re-compute the values along that boundary for the new block. 

Larsen states that transitions into blocks which have not been 

previously calculated are more complicated and the calculations 

are not so accurate. However, it is possible to a limited 

extent to order the blocks so that some calculations can be 

carried out where it is known that the transitions will not go 

out of the block. For instance, in the reservoirs problen, 

the transitions at the extreme states cannot go outside the 

block, since negative reservoir storages cannot exist. The 

methods where transitions must be to blocks not yet computed 

are not described here but are detailed by Larsen. Only the 

general principle of state increment dynamic programming needs 

to be given here, since the author's experiement with this 

method only concerned the extra time required over the
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conventional procedure caused by introducing the minimisation 

of §t and the subsequent time extrapolations. Otherwise, the 

computations were exactly the same as for the conventional 

procedure. All cost data was held in the computer fast store. 

9.3. Stochastic Example 

The system and data used was exactly the same as that described 

in Section 8.8. The reservoir sizes were again both 30,000 

cusec-days and the decision options were identical. 

The number of instructions carried out was 288048 in the 

requested execution time. In this time,10i annual iterations 

were produced but the system did not optimise. However, the 

policy produced at iteration 10 was only different in one 

decision from the policy found at iteration 10 in Section 8.8. 

The policies found at each iteration should be the same as those 

in Section 8.8. but the differences will be caused by the 

difference between the extrapolation over two time periods when 

§t is less than&t, and the interpolation at one time as with 

the conventional procedure. In fact, in the example taken, most 

of the §t were equal to At because of the large state increments, 

. SO that, although the computations still included the same 

number of steps, and therefore absorbed the same computer time, 

no extrapolation was necessary. The values of the states in 

January at iteration 10 were slightly different from the values 

in the conventional procedure, ranging from 262459 to 253 instead 

of 261405 to 253. From the number of iterations carried out in 

both programs it can be seen that the state increment method 

takes about 1.4 times longer than the conventional method. 

However, this is the maximum time difference which can be expected 

since no transition data was stored at the first year's iteration 

for use in subsequent iterations. If this was done, only the
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first iteration's time would be significantly different for 

the two methods, but the values of &t for each state and each 

decision would have to be stored. However, when the transition 

data is stored to save computing time, the amount of data which 

has to be transferred from low speed storage even for one state 

makes the use of state increment dynamic programming impractical. 

Also, for the efficient use of this method, the state increments 

should be small so that St is less thanAt. 

Therefore, for the stochastic approach, where transition data, 

which is the same for each iteration, can be stored and all 

iterations act on similar data, the state increment method is not 

very useful, but in a deterministic case, where the data 

continually varies at each iteration and a large number of states 

exist in the system, this method might reduce the computation 

time by reducing the number of transfers of data from low speed 

to high speed storage when only a small amount of the data can 

be stored in the high speed store at one time. 

For a comparison of the times consumed on the Atlas computer to 

the time taken on the Ect 900 machine for this method a short 

run of the same ptoarell was made on theZée computer. It was 

found that 37/12 iterations were carried out in a CPU time of 

1780 seconds and a total time of 53 minutes. This gives a 

time of 15.5 minutes per yearly iteration compared to the Atlas 

figure of 2.8 minutes per iteration.



Chapter 10 

Conclusions 

10.1 Specialist Languages 

Details of a language which meets many of the 

requirements for an ideal specialist computing language 

have been given. It was found that such a powerful 

language is necessary for reservoir design problems, unless 

one were to have to revert to a more general language as 

ALGOL or FORTRAN. Various discrete and continuous 

simulation languages were not useful for such problems. 

The most important conclusion to be drawn from this 

study, which was only realised well into the work, was the 

extraordinary power of a POL in the hands of an expert in 

its use. A POL is the 'Seven League Boots' of the 

computer user. While it can be true that a POL simplifies 

computer usage for the ordinary user he can probably gain 

almost as much from the of a package or even a compatible 

library of sub-routines as from the use of a POL. To some 

extent developments in computer hardware and system software 

have changed the original climate in which POL's were 

spawned. 

The desk top computer, the mini computer and the 

terminal have all had the effect of bringing low cost 

computing into the design office. The small computer 

favours the use of a series of small programs, one for each 

task with minimum linkage. Though linkage can be achieved 

through inexpensive tape Wincace devices now available. 

System software has improved to a vast extent making 

the compatible subroutine idea look attractive. For



instance the George 3 and 4 system software available on 

the ICL 1900 series computers has made forms of virtual 

sas and linkage of programs more available to the user. 

By use of the file-store in such systems, which operate 

similarly to the data files in the HYDRO described herein, 

one can link the output from one package to the input of 

another with very little programming. The user has many 

of the problems of peripheral assignment removed from him or 

made easier. Once again it is true to be said that these 

new system control languages lend proportionally more power 

to the expert than the novice. 

We see the situation that while attempts are being made 

to simplify computer usage by the proviniee of Problem 

Oriented Languages and powerful System Control Languages 

the power available to the expert user is growing ata 

greater rate than it is becoming available to the non- 

expert. Whether this situation is desirable or not is 

debatable; it does however seem inevitable. 

10.2 Dynamic Programming 

Ls 2615 The deterministic dynamic programming procedures 

described in Chapter 8 were structured to fit into the 

HYDRO language. However, for every different system 

configuration a new dynamic program must be written so as 

to include all of its special peculiarities. Because of 

this, the author allowed for the use of pure Algol code in 

the user's input to HYDRO. The computer user could then 

write his dynamic programming and simulation system 

descriptions using the flexibility of Algol while still 

being able to employ the simple data structure of HYDRO.



524. 

10.2.2. A computer program was developed for the 

stochastic value iteration method describing two finite 

es iti supplying one demand point. It was found 

that although the method converged to the optimum policy, 

the point of convergence could not be defined with 

precision. In particular, it is unsafe to assume that 

. convergence has taken place when two year's consecutive 

policies are the same. 

BOsZa ce A program has been written for the application 

of Howard's policy iteration method to the two finite 

stochastic reservoirs problem, which involves the solution 

of a large number of simultaneous equations. However, 

because of the monthly grouving of the equations it was 

possible to apply matrix partitioning and an efficient 

method of solution has been developed by the author. With 

the method of using policy iteration developed in this thesis, 

it is not necessary, once one month's solutions have been 

obtained, to substitute them in the other eleven month's 

equations to find the complete solution. Because one 

year's value iteration always follows the solution of the 

equations it is only necessary to know the solutions for 

January. The value iteration procedure itself, if carried 

out on a monthly basis, will update these costs for the 

other eleven months as the calculations proceed. This 

method is more efficient and will lead to the optimum more 

quickly than performing the value iteration on a yearly 

basis with the complete equation solutions as starting 

values.



The policy iteration method, as described above, was 

applied to two finite stochastic reservoirs. Four levels 

were used in each reservoir, and two antecedent indices of 

inflow were included in the state space. The number of 

system states was therefore 64 in each month. Five inflows, 

with their associated probabilities were allowed to each 

reservoir, and five possible decision options were 

considered at each state and stage. 

It was found, for the Celyn/Brenig data given in Section 

8.8, that the optimum policy was achieved after 4 years’ 

policy iterations. This policy corresponded in all but 

one decision in 768 to the policy found by value iteration 

after 15 years. 

The number of times a set of equations has to be 

solved before the optimum is obtained may be reduced by a 

combination of value and policy iteration. Value iteration 

may be avplied until the first suboptinum is reached, when 

two consecutive years' policies are the same, and then 

policy iteration can take over fully, or, when the 

suboptimum is reached, one policy iteration may be used to 

check whether it is in fact the optimun. at it 26 210f, 

then value iteration may be applied again until the next 

local optimum is reached, when another policy iteration 

check may be used, and so on. 

UOG2 644 The computer time taken by the policy iteration 

method to reach the optimum was even longer than that 

required by the value iteration procedure to carry out 

13 years' iterations. 

In view of the fact that the value iteration policy,



after 8 years, produced a policy only different in two 

decisions out of 768 from the optimum policy, it is 

@onsidered that value iteration is the more practical 

approach. If this method is continued until five years' 

policies are the same, it is unlikely that the policy will 

change to any significant degree after this. 

LG os Unless it is important to find short term 

policies for stochastic data, then it is suggested that 

even value iteration consumes excessive computer times. 

In order to use the method in a real problem involving two 

or more reservoirs with stochastic inflows, the number of 

states which it would be necessary to employ would be so 

small that the raTiabili ty of the results would be 

questionable. 

Furthermore, the requirement of stating the inflows, 

and perhaps demands, in histogram form might lead to severe 

oversimplifications of the statistical properties of the data. 

It must also be borne in mind that the program would have 

to be run for various trial configurations, so that the 

design cost would soon become. prohibitive. 

10:2.5, Because of the gross discretisation necessary for 

the stochastic methods of dynamic programming and the 

computing costs involved, the author was led to explore the 

idea of obtaining near optimum policies from the results of 

the deterministic dynamic programming method applied to 

historical or synthetically generated data. 

As a result of the reduced computational requirements 

involved in this method, the intervals of discretisation of 

the state variables could be made smaller, thus increasing



the accuracy of the solution. It is also thought that 

the problem accuracy is greater because the data is not 

ifetood into simple histograms. The historical data 

itself can be used complete with its true serial and cross 

correlations. Even if the historical sequence is not 

long enough, or critical enough, and has to be extended by 

synthetic methods, it is thought that generation techniques 

are sufficiently advanced to yield traces that incorporate 

more of the true statistical properties of the real data 

than histograms,combined with states describing correlations, 

can ever do. 

LOeee te Whatever, the method of design used, careful 

thought must be given to the objective function. 

Two completely different policies were obtained when 

deficits were minimised in one case, and reservoir total 

drawdown was minimised in another. On the surface it 

might appear that the two objectives would achieve the same 

ends, but, depending upon the size of, and inflows to, the 

reservoirs, this might not be true. 

The real objective for a water supply reservoir is 

to minimise the deficits. If there is more than one 

objective the weighting to be given to each must be decided. 

10.2.8. If deterministic dynamic programming is used on 

a historical or synthetically generated data trace, then some 

method of extracting a long term policy from the results 

must be used. Using regression analysis to find one 

single function which relates the decision to be made to the 

known values of the system variables at any time is thought 

to be too gross a method. Much of the detailed information



would be smoothed over in this way. 

A better method, still using regression analysis, 

‘would be to split the system variables into smaller units 

and produce a different function for each. It is also 

necessary to decide upon which system variables to include 

in the regression analysis. The reservoir levels must 

obviously be included, but the effect of including previous 

inflows and forecasts of future inflows must be investigated 

by some form of factor analysis. Efficient statistical 

routines for regression and factor analysis are available 

at most computer installations. 

For early studies in reservoir system design it is not 

considered necessary to use such techniques. It is only 

when the final design has been decided that such refinements 

should be used to improve the policy. It appears from 

the results of Chapter 8 that it would be sufficient only 

to include the reservoir levels, and perhaps crude measures 

of previous inflows, in the system variables, until the 

adie design parameters have been found. 

A good method of policy extraction in these early 

stages has been described in Section 8.18. 

10.2.9. Deterministic dynamic programming was applied to 

a system of two reservoirs with fixed sizes, but with 

different inflow traces generated from the same histograms. 

The long term policies derived were applied to simulations 

using the corresponding inflow traces. For states which 

were not discrete, the simulation interpolated for 

decisions between the nearest discretised states. 

The consistency of the policies and simulation costs



was found to be good. 

10.2.0. Experiments carried out using different data 

sequences in the simulations from those used in the dynamic 

programs showed that the simulation costs fell within the 

range of costs obtained when the same sequences were used 

for both. 

This again indicates that the policies found from 

deterministic dynamic programming applied to synthetic data 

traces are consistent. 

10.2.i7% Simulations were carried out using the policy 

found from stochastic policy iteration for the equivalent 

system. The costs and the policy itself were comparable 

to those achieved with the deterministic method. 

LOCAL Les Simulations of all policies without interpolation 

for intermediate states produced much higher costs than with 

interpolation. This indicates that the policies tend to be 

continuous and that interpolation may be used to advantage. 

EO Sih D0 Experiments were carried out to investigate the 

length of data series required in the deterministic 

programs. 

The results showed that a 50 year sequence produced 

similar costs to thosefor 100 years which appeared to be 

equivalent to costs incurred using the policy found by 

policy iteration. Even the costs from a sequence as short 

as 15 years were not excessive. However, shorter series 

produced much higher costs. 

It seems that sequences of 50 years' data would be 

adequate, at least until the final reservoir sizes have been 

fixed, longer traces being used for 'polishing' the operating
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policy if thought necessary. 

10.2.14. For a fixed, generated 50 year data trace, the 

two reservoir sizes were varied and deterministic dynamic 

programming applied to find the appropriate long term 

policies. Simulations with these policies were then 

carried out to obtain the 50 year operating costs. 

The policy from an intermediate combination of 

reservoir sizes was applied to all the size combinations and 

simulation costs again calculated. It was found, using the 

policy doplidwble to each configuration, that costs were not 

incurred until the reservoirs were small. It can be 

inferred that at least one reservoir size had become critical 

at that point. 

The costs obtained when the one fixed policy was used 

throughout started at a slightly greater size in one 

reservoir and subsequent costs were much greater than those 

found using the correct policy in each case. 

Therefore, it is suggested that any reasonable 

Gperatins rule, say the space rule or balancing rule, may 

be applied to various trial configurations until a large 

increase in costs occurs when the reservoirs are made 

slightly smaller. This method will yield a limited range 

of possible reservoir sizes. The optimum sizes may then 

be found by applying deterministic dynamic programming. 

10.2.15. State Increment dynamic programming was 

investigated but was not found to be of great advantage for 

water resources problems. The computer programs are also 

more difficult to write, from the data management point of 

‘view, than for the conventional case. The method would be
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more advantageously applied to problems where the inputs 

may be described as smooth, continuous functions, or where 

‘the system is such that a large number of states may be 

used. In the latter case considerable savings in computer 

time might be obtained. 

10.3 Future Work 

EO 255 a. The results described in thig thesis indicate 

that deterministic dynamic programming is a viable method 

of obtaining operational policies. Many aspects of its 

application have been investigated and present a wide scope 

of topics in which research in depth would be worthwhile. 

LG. o res More work is required on the effect of varying 

‘the number of states considered in the system. The optimum 

number of states and their distribution in space may depend 

upon system parameters such as inflow, reservoir size, and 

demands. The distribution of the states will also be 

related to the objective function in some way. 

LO. 545% Further experiments are necessary to investigate 

She consistency of the policies when synthetic data traces 

are used. 

10.54 The policies derived from stochastic dynamic 

programming should be compared more thoroughly to those 

derived from synthetic data traces. 

te tele More experiments should be carried out on the 

length of data series required. 

10.3.6. Far more work is needed into the effects of 

different objective functions. Data needs to be collected 

from practising engineers concerning their requirements 

from water resource systems.



10.35.76 Thought should be given to the idea of 

wnaintaining prescribed flows in rivers, and the penalties 

to he applied for not meeting these flows. 

10.3.8. Research is needed into the use of the ‘critical 

period' as a basis for deriving a policy. 

10,:5,.9- The effect of including variables to describe 

previous inflows or forecasted inflows should be studied. 

10.65.10. If possible, it would be informative to apply 

deterministic dynamic programming to existing systems, 

operating under rules derived by other means. In this way 

the benefits of this method could be demonstrated ina 

powerful manner. 

ED Gein dks Changes in policies found for various reservoir 

sizes should be investigated.
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Appendix I 

Proof of convergence of stochastic matrices 
  

Assume that we have a probability transition matrix, Rywith all non zero 

elements where R, is the probability of jumping from state J to state i. 
J 

in one time increment, and the probabilities are independent of time. 

n =~, : 
Then R, 770 a3 Ris =I for all J where R is an nxn matrix 

i=I 

Let k be a discrete time variable. 

The probability of moving from state J at time k to state i at time 

(k + §) is obviously the (i,,)th element of the matrix (2)*. 

Let B(0) be a column vector whose elements are the probabilities of the 

system being in the states J (fw I,n) at time k=0. 

Then B(k), the probabilities of being in states J (J = I,n) at time k, 

is given by 

B(k) = (8)* 3(0) 
To prove that p(k) reaches a limiting distribution for large k it is 

necessary to investigate the latent roots, or eigenvalues, of the matrix 

R. The latent roots of the matrix R are given by the equations 

\z El =O where | | represents a determinant. 

n 
LetA,,A,, bie AL be the n distinct roots where [|] Ay, lz] 

Jet 

The equations 

Rx=Ax ana y' R= Aj’ 9: ste ERT Es) 

where x and y are column vectors, have solutions x and y other than 

zero, if and only if A is a root (eigenvalue) of R. For each eigenvalue, 

Aj(J=I,n), therefore, we can solve for the corresponding left and right 

eigenvectors x, and Vs: 
J 

Let H-[%,, x, z,-.- Rel 

and K -(5,, vo v4 once ve yn]



From equation (A.I.I.) it follows that 

RH = HL and ca = ix? . ° e (A.1.2.) 

where L is the diagonal matrix 

% <a At oO oe tee . a 

oe Re ee, ee 

GOs. eee? Fe 

From (A.I.2.) we thus have the alternative expression for R given by 

2 mee aee or ae ea 
Ree HLH = (xt) , K e ° . CasE, 359 

From (A.I.I1.) 

Rx, = A, XE 

Premultiplying by v5 we have 

yt Re, = 5/3, 
J 1 ae sh 

a if ss 
Also from (A.I.I.) we have yz =A,¥5- Postmultiplying by x, we have 

wn Pca —f/—- -/ ib 

Tye A 3 aT ON ITS 

—{e- = =-% = = ~ 
Vy RE Ay Oe eI, Ae; 

If the eigenvaluesA, and A, are different then obviously 

pes She ( 
Jy ee _ O a # J e ° ° KsT.4 5) 

We can obviously choose the scales of x_ and yy so that 
J 

go Pe 
Jz <> = aL . . . (£5225) 

Using equations (A.I.4.) and (A.I.5.) we can write 

ow fmm -_ 

Ron = 7 

and equation (A.I.3.) can be put in the form 

n 

R-fik’- S Af, pe ae Te) 
J=L
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— set 
where os = XV yz 

and 

7 Sys =f x : 
AAs x, (7; x5 )F5 = O (from (4)) forif#d 

-;-t-\-/_--/_- : 
= SAGs x5)9; = 3,34." By (from A.I.5.) for i # J a Ridied ele he 

n — _ 

>. A, =I 
J=L 

‘This last expression follows from 

J=I J=I 

Because of the relations in A.I.7. we may write, using equations A.I.6. 
n 

(Bf == (A,)*4, since (A,)& = Z, 
eo gL 

=k Meee eit 
(R) ba (A 5) a wa . ° . Awl eGle 

JeI 

Now, the probability distribution of being in the states, J, at time k is 

given by 

p(k) = (2)* p(0) 

Bh) seco iy poy) \ = 0 0 ae Tre? es ¥y P(O))AZ xy 

i x eae 
p(k) tee Ses Xy where® , aoe p( 0) ‘ : oy aes 

Since the columns of R must always sum to unity then it is possible to 

write 

ml
 m fish ieee 

I] 3ip, cia i a eae 

[z,2, ieee 1 

dr folly na. BI 

From equation A.I.I. we have 

ol
 

HW 

si mre 
=A.Y, 

e e ° Pools te 

Comparing A.I.I. and A.I.I0O. we see that one non trivial solution to
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equation A.I.I. is 

x! (rahe des 

Ax 

In this case, 

I 

eng oe — 

17% p(O) = I since the elements of p(O) must sum to 

unity. 

Therefore, we may write from equation A.I.9. 

n k 
Blk) =k, ASE + S “85 5 

n k 
p(k) = x, teas = ee cate Asked Ts 

The root A, = I cannot be exceeded by any other root. 

ul Since] R eT QO there is at least one non trivial solution of the 

Lp ay 

equation yR =Ay 

ey 
Let ¥e be the maximum element of WFll where Al denotes the absolute 

arf, 
values of the components of y. 

Then, because the columns of R sum to unity, 

t= rt = | ‘ yi> (y B), =WAll ys 

from which WAS be 

From equation A.I.II. it follows that the eigenvector, es will give a 

limiting distribution for p(k) independent of p(0) as ko if Ng? * - 

are all less than unity. 

Frechet (1938) has shown that 7s An are all less than unity if the R 

matrix or any power of the R matrix has all non zero elements. 

However, even if this were not the case, if the physical process has any 

stability then it is possible to insert very small positive elements in 

place of the zeros which occur, without altering the behaviour of the 

system.



5A4E. 

It also follows from equation A.1I.8. that 
k n k n k 

AX ees - -'} ey 
R = 45 *; Vy -\, Xz Vr + Ny xy V5 5 is Sk a ee 

° 8 by
 

I ae cag seseI) As k->0O sinceN, = I and vy a ftsEs ss Te, 

e e . Ast. 136 

so that Rn converges to a stochastic matrix, with all columns identicalin 

and equal to the limiting state distribution p(k). 

Pea A.I.I2. may be pees as 

aoe SLL yd set 1 + z fs ce 

Er s + T(k) eee sO Ae ae 

where S is a stochastic matrix whose oe column is the vector of limiting 

state probabilities if the system is started in the hie state, and T(k) 

is a set of differential matrices with geometrically decreasing coefficients. 

For the determination of the analytical equations of dynamic programming 

for a long term process it is now necessary to write equation A.I.I4. in 

oo 

terms of s-transforms where F(s) = > e(k) aX ; 
k=0 

A table of s-transforms for commonly occurring functions f(k) is given in 

Appendix 2. 

Now the basic equation for state distributions at any time for a fixed 

transition matrix Ris 

p(k+I) = R p(k) fo oe 

Let T() be the s-transform of p(k). 

Then by taking the s-transformationsof equation A.I.I5. we have 

os | 1 (s) - 3(0)| = RT (s) 

Expanding, we have 

(2) - p(0) = skT(s) 

We) = (T - 28)? 3(0) Cee ae 
where I is the unit matrix.
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Let H(k) be the inverse transformation of (I - az) on an element by 

elment basis. Then, taking the inverse transformation of equation A.I.16. 

we have 

p(k) = H(t) 3(0) eg Aa. TTs 

But we know that 

B(k) = R°5(0) Sees Magne 

Therefore, comparing equations A.I.I7. and Axl FGs 

H(ic) = #* 

From equation A.I.I4. we may say that 

H(k) = aX = S + Fk) ° ° ° Ae 29% 

Taking the transform of equation A.1.19. gives 

(TeR led Sh ots) ee ogue-s “Aer eeGs 
1-3 

where J is the transform of T. 

It can be seen that equation A.I.20. is an equation describing the 

system under consideration which is now indepement of k. 

This equation will be of use in showing how analytical equations may be 

formed for the long term dynamic programming problem.
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Appendix 2 

The s-transform 

oD 

Fis) = SS f(n)s" 
n=0 

where F(s) is independent of n. 

The re-transformation of a transform will produce the original function. 

Consider some typical functions ; 

a) f(n) = I, n = O~lyes5s 

0, n<0O 

The g—-transform is 

=) 

Fs) = = f(n)e" = I+ a+ + =} + ee Cana Oe ee oe 
n=0 I-% 

n = 
db) fin) s«., nO 

0 n a n 
Fis) = S f(n)s = S&S &s) =1 

n=0 n=0 [-X% 

2 
c) If F(s) = & (es) then 

n=0 

oD a 

a fle) = S neem? 
ds n=0 

= ee S ns = a4 P(e) = ad/Tt =Ss 4 
n=0 ds ds \I-«~ = ( I-«) 

Thus if f(n) = ne” then 

F(s) =es% 
(T-e)* 

The s-transform of f(nt1I) is given by 

= n — m-I S f(ntlI)s = f(nje where m = n+I 
=(Q m=1 

f(I) + f(2)a + £(3)8° fo eg 
eo he 

Now = £(m)s" ms 
m=I 

and = f(n)e = £(0) + f(I)s+ #o ae + ess 
n=0
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ee = I 
Thus = e(m) et = 3 = tia)e -.— (0) 

m=I n=O 

If Pls) = = f(n)#” then 
n=0 

the s-transform of f(n+I) 

= £(nt+I)s" = go Ge a £(0)) 

A table of s-transforms for common functions occurring in dynamic 

programming is presented in Table I. 

Table I 

2-transforms 

  

function for nSO #—transform 

£(n) F(s) 

f£,(n)+£,(n) FL (8)+F,(#) 

kf(n) oe constant kF() 

f(n-I) aF(s) 

f( n+I1) a 1 ((#)-£(0)) 

re I 

Tos 

I (unit step) = 
I[-# 

ne os 
( I-es) 2 

n (unit ramp) 8 
(I-s)2 

ot. £(n) F(«s)



uae e 
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Appendix 3 

The inverse transform of # Q J(s) 
I-3 

- a Bios ; 
T(n) = =, Aj x; Vy by definition i : < haaa be 

Taking the a-transform 
a 

J(s) - = I X5 pe ° . ‘ e Ae3e2e 

J=2 (1-\;#) 

Multiplying throughout by 2 Q we have 
i-% 

——_ _ a - —f 

3B QJ(#) =. Q =. a ; a Vy ° ° ° A323 «Se 

(I-s) J=2 (I-s)( I-\;#) 

Partial fraction expansion gives 

- Se ae 
a We) = Cera) a, (TS) 

oe | C2) TEAR) 

The inverse transform gives 

a a 

eLearn eo es we An ee 7 gate ae 
J=2 (I-A) (ie 9 

As n=jyem the second term in the brackets—30 

Therefore we have 

i a - —/ 

It. = QS zc Xy Vy = constant as n —® co 

i.e. a step of magnitude Q = ob x, ¥ i Jes): 
J=e2 I-y;) 

From equation A.8.2. it can be seen that 
a 

ui) toe 
J=2 (E-R;) p73 

Therefore, the term B Q T(s) represents a step of magnitude 

(I-s) 

  

a 

QJ(I) f= I x yt 
J=2 (I-A;)
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Appendix 4 

Line library 

"LIBRARY ' ( ED,SUBGROUPTEMP ) 
‘INPUT '3=ED2( ICLA=DEFAULT( 0) ) 
'OUPPUT 'O=LPO 
'BEGIN' 
"REAL 'GRIDAREA, RAINVOLUME, SHEDAREA, RAINFALLAVERAGE, ANNUAL ,MEAN,DSR; 
'INTEGER'A,B,C,D,K,L,SUBI,SUB2,SUB3,COLM,Z,GRIDROWS ,GRIDCOLUMNS, 
TOTAL4 , TOTAL6,DSI; 
"BOOLEAN ' FINISHED; 
'INTEGER' 'ARRAY'CHAR(T+80] ,ALPH(1:80] ,DaI(I+2] ; "REAL' 'aRRAY'DAR(I:2|; 
"PROCEDURE ' NEXTCOLUMN( COLM, CHAR,Z) ; 
‘INTEGER 'COLM,2Z; 
‘INTEGER' "ARRAY 'CHAR; 
"ALGOL'; 
"REAL ' ‘PROCEDURE ' NUMERICALDATA( COLM,CHAR,Z,ALPH,NEXTCOLUMN) ; 
‘INTEGER 'COLM,2Z; 
'INTEGER'' ARRAY 'CHAR,ALPH; 
"PROCEDURE' NEXTCOLUMN ; 
'RLGOL' ; 
‘PROCEDURE 'ALPHANUMERICALDATA( COLM, CHAR,Z,ALPH,NEXTCOLUMN) ; 
'INTEGER'COLM,Z; 
‘INTEGER '' ARRAY 'CHAR, ALPH; 
"PROCEDURE 'NEXTCOLUMN ; 
"ALGOL'; 
‘PROCEDURE ' DEFINESUBSCRIPTS( COLM, CHAR,Z,ALPH, NEXTCOLUMN, NUMERICALDATA, 
SUBI , SUB2 ,SUB3) ; 
‘INTEGER! COLM,Z,SUBI,SUB2,SUB3; 
‘INTEGER! ' ARRAY ' CHAR, ALPH; 
"PROCEDURE ' NEXTCOLUMN ; 
"REAL ' 'PROCEDURE' NUMERICALDATA; 
'ALGOL' ; 
"REAL ' 'PROCEDURE' DATAINPUT( COLM, CHAR,Z,ALPH,NEXTCOLUMN , NUMERICALDATA, 
SUBI , SUB2 ,SUB3 , ALPHANUMERICALDATA, DEFINESUBSCRIPTS , FINISHED ,A,B,C,D); 
"INTEGER 'COLM,Z,SUBI,SUB2,SUB3,A,B,C,D; 
'INTEGER''ARRAY'CHAR,ALPH; 
"BOOLEAN ' FINISHED ; 
'PROCEDURE' NEXTCOLUMN ; 
"REAL ' 'PROCEDURE'NUMERICALDATA; 
'PROCEDURE' ALPHANUMERICALDATA; 
'PROCEDURE' DEFINESUBSCRIPTS ; 
"ALGOL' ; 

"PROCEDURE ' SINGLEREAD( VARI, VAR2 , TYPE, COLM, CHAR,Z,ALPH,NEXTCOLUMN, 
NUMERICALDATA, SUBI , SUB2 ,SUB3 , ALPHANUMERICALDATA, DEFINESUBSCRIPTS, 
FINISHED ,A,B,C,D,DATAINPUT) ; 
'VALUE'TYPE; 
‘INTEGER 'TYPE; 
"REAL 'VARI; 
‘INTEGER 'VAR2 ; 
‘INTEGER 'COLM,Z,SUBI,SUB2,SUB3,A,B,C,D; 
‘INTEGER' 'ARRAY'CHAR,ALPH; 
"BOOLEAN ' FINISHED; 
"PROCEDURE 'NEXTCOLUMN ; 
"REAL ' 'PROCEDURE'NUMERICALDATA; 
'PROCEDURE' ALPHANUMERICALDATA; 
'PROCEDURE' DEFINESUBSCRIPTS ;
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"REAL ' 'PROCEDURE' DATAINPUT ; 
'ALGOL'; 
‘PROCEDURE' ARRAYREAD( VARI, VAR2 ,TYPE,AA,BB,CC,DD,BNDI,BND2,BND3, 
COLM, CHAR,Z,ALPH, NEXTCOLUMN, NUMERICALDATA, 
SUBI , SUB2 ,SUB3 , ALPHANUMERICALDATA, DEFINESUBSCRIPTS, 
FINISHED ,A,B,C,D,DATAINPUT, PROGEND) ; 
'VALUE'TYPE,BNDI,BND2,BND3,AA,BB,CC,DD; 
'INTEGER'TYPE, BNDI, BND2,BND3,AA,BB,CC,DD; 
"REAL ' 'ARRAY'VARI; 
‘INTEGER! 'ARRAY'VAR2; 
‘INTEGER ' COLM,Z ,SUBI,SUB2,SUB3,A,B,C,D; 
'INTEGER' 'ARRAY'CHAR,ALPH; 
"BOOLEAN ' FINISHED ; 
"LABEL 'PROGEND ; 
'PROCEDURE' NEXTCOLUMN; 
"REAL ' ' PROCEDURE' NUMERICALDATA$ 
"PROCEDURE ' ALPHANUMERICALDATA ; 
'PROCEDURE' DEFINESUBSCRIPTS ; 
"REAL ' "PROCEDURE' DATAINPUT ; 
"ALGOL' ; 

Zs=0:COLM:=0;SELECT INPUT(3);SELECT OUTPUT(O) ; 
LLL9 : NEXTCOLUMN( COLM, CHAR,2Z) ; 
'IF 'CHAR[COLM] =158'THEN' 'GOTO'LLL9; 
A:=CHAR[COLM]; 
B:=CHAR(COLM+J] ; 
C:=CHARCCOLM+2]J ;s 
Ds=CHARCCOLM+3] ; 
COLM: =COLM+3 ; 
DEFINESUBSCRIPTS(COLM, CHAR,Z,ALPH,NEXTCOLUMN,NUMERICALDATA, 
SUBI , SUB2 ,SUB3) ; 
ALPH[T] :=I61; 
BASI 
SINGLEREAD(DSR,GRIDCOLUMNS,2, 
COLM, CHAR,Z,ALPH, NEXTCOLUMN, NUMERICALDATA, SUBI ,SUB2 ,SUB3, 
ALPHANUMERICALDATA , DEFINESUBSCRIPTS , FINISHED,A,B,C,D,DATAINPUT) ; 
SINGLEREAD(DSR,GRIDROWS,2, 
COLM, CHAR,Z,ALPH, NEXTCOLUMN , NUMERICALDATA,SUBI ,SUB2 ,SUB3, 
ALPHANUMERICALDATA, DEFINESUBSCRIPTS , FINISHED,A,B,C,D,DATAINPUT) ; 
SINGLEREAD(GRIDAREA,DSI,I, 
COLM, CHAR,Z,ALPH, NEXTCOLUMN , NUMERICALDATA , SUBI , SUB2 ,SUB3, 
ALPHANUMERICALDATA , DEFINESUBSCRIPTS , FINISHED,A,B,C,D,DATAINPUT) ; 
SINGLEREAD(DSR,TOTAL4,2, 
COLM, CHAR,Z,ALPH, NEXTCOLUMN , NUMERICALDATA,SUBI ,SUB2,SUB3, 
ALPHANUMERICALDATA , DEFINESUBSCRIPTS , FINISHED,A,B,C,D,DATAINPUT) ; 
SINGLEREAD( DSR, TOTAL6,2, 
COLM, CHAR,Z , ALPH, NEXTCOLUMN , NUMERICALDATA,SUBI ,SUB2 ,SUB3, 
ALPHANUMERICALDATA, DEFINESUBSCRIPTS , FINISHED, A,B,C,D,DATAINPUT) ; 
SINGLEREAD( ANNUAL ,DSI,I, : 
COLM, CHAR,Z,ALPH, NEXTCOLUMN , NUMERICALDATA, SUBI , SUB2,SUB3, 
ALPHANUMERICALDATA, DEFINESUBSCRIPTS , FINISHED, A,B,C,D,DATAINPUT) ; 
BAS2 
‘BEGIN’ ' INTEGER" 'ARRAY'GRID(I:GRIDROWS,I :GRIDCOLUMNS] ; 

ARRAYREAD(DAR,GRID,2,18,29,20,15,GRIDROWS ,GRIDCOLUMNS ,0O,
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COLM, CHAR,Z,ALPH, NEXTCOLUMN , NUMERICALDATA, SUBI , SUB2 ,SUB3, 
ALPHANUMERICALDATA , DEFINESUBSCRIPTS , FINISHED ,A,B,C,D,DATAINPUT, PROGEND) ; 
'BEGIN' 'REAL' ‘ARRAY 'RAIN(I:GRIDROWS,I:GRIDCOLUMNS] ; 

ARRAYREAD( RAIN, DAI,1,29,12,20,25,GRIDROWS , GRIDCOLUMNS ,O, 

COLM, CHAR,Z,ALPH, NEXTCOLUMN , NUMERICALDATA , SUBI ,SUB2,SUB3, 
ALPHANUMERICALDATA , DEFINESUBSCRIPTS , FINISHED, A,B,C,D,DATAINPUT ,PROGEND) ; 
'BEGIN' 'REAL' 'ARRAY'SHEDRAIN[I:TOTAL6] ; 

ARRAYREAD( SHEDRAIN, DAI, I,30,19,16,15,TOTAL6,0,0, 

COLM, CHAR,Z,ALPH, NEXTCOLUMN , NUMERICALDATA, SUBI , SUB2 ,SUB3, 
ALPHANUMERICALDATA , DEFINESUBSCRIPTS , FINISHED ,A,B,C,D,DATAINPUT,PROGEND) ; 
'BEGIN' 'REAL' "ARRAY 'STATIONRAIN[I: TOTAL]; 

ARRAYREAD( STATIONRAIN, DAI,1I,30,31,12,31,TOTAL4,0,0, 

COLM, CHAR,Z,ALPH, NEXTCOLUMN , NUMERICALDATA, SUBI ,SUB2 ,SUB3, 
ALPHANUMERICALDATA, DEFINESUBSCRIPTS , FINISHED, A,B,C,D,DATAINPUT, PROGEND) ; 
BAS3 
'FOR'Ks=I'STEP'I'UNTIL'GRIDROWS 'DO''BEGIN' 
'FOR'Ls=I'STEP'I'UNTIL'GRIDCOLUMNS 'DO''BEGIN' 
RAIN[K ,L] =-1;'END''END' 
BAS4 
'BEGIN' 
'PROCEDURE' AVERAGE( VECTOR, LENGTH, MEAN) ; 
‘INTEGER 'LENGTH; 
"REAL 'MEAN; 
"REAL ' 'ARRAY'VECTOR; 
"ALGOL'; 
'BEGIN' 
'PROCEDURE' ARITHMETICRAINFALLAVERAGE( AVERAGE, SHEDRAIN, TOTAL6, 
RAINFALLAVERAGE) ; 
‘INTEGER 'TOTAL6; 
"REAL 'RAINFALLAVERAGE; 
'REAL' 'ARRAY'SHEDRAIN; 
'PROCEDURE' AVERAGE; 
"ALGOL' ; 
ARITHMETICRAINFALLAVERAGE( AVERAGE, SHEDRAIN, TOTAL6 , RAINFALLAVERAGE) ; 
'BEGIN' 
"PROCEDURE ' NORMALANNUALPRECIPITATION( AVERAGE, STATIONRAIN, TOTAL4 , ANNUAL) ; 
‘INTEGER ' TOTAL ; 
"REAL ' ANNUAL; 
"REAL' 'ARRAY'STATIONRAIN; 
'PROCEDURE' AVERAGE; 
"ALGOL'; 

NORMALANNUALPRECIPITATION( AVERAGE, STATIONRAIN, TOTAL4 , ANNUAL) ; 
'BEGIN' ; 
‘PROCEDURE 'THIESSENRAINFALLAVERAGE( RAINVOLUME, SHEDAREA,GRID,GRIDAREA, 
GRIDROWS , GRIDCOLUMNS ,RAIN, RAINFALLAVERAGE) ; 
'INTEGER' 'ARRAY'GRID; 
‘INTEGER 'GRIDROWS ,GRIDCOLUMNS ; 
"REAL' 'ARRAY'RAIN; 
"REAL 'RAINVOLUME, SHEDAREA ,GRIDAREA, RAINFALLAVERAGE;



'ALGOL' ; 
THIESSENRAINFALLAVERAGE( RAINVOLUME, SHEDAREA,GRID,GRIDAREA, 
GRIDROWS , GRIDCOLUMNS , RAIN, RAINFALLAVERAGE) ; 
BAS5 
'END! 
'END! 

'HND! 

'BND! 

'RND! 

'RND! 

'RND! 

'BND 

'HND ! 

‘END! 

'RND 

'RND! 

'RND! 

‘END! 
‘END! 
'RND 

'RND * 

+ 

NSO
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: 

'END' ; 
'RND! 3 

PROGEND: *END'; 
GARBAGE 
HX CO 

E.D.S. SOURCE FILE IS OF LENGTH I4 BUCKETS.
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APPENDIX 5 

Discretisation of state variables 

Deterministic experiments were carried out with various 

numbers of states in the same system. The data used were 

‘the 42. years inflows and the demands for a maintained ‘flow 

‘of 450 Sugece described in Chawesie > for the Celyn/Brenig 

system. The reservoir capacities were 30000 Pusecsds ys 

for both reservoirs. The objective was to minimise 

- deficits, the unit deficit cost being £100/unit. Table 

A5.1 shows the dynamic programming costs incurred in the 
“ 

several cases. 

« 

  

  

            
  

es sip a Sin be a es ag oy ee = 

No. of levels | Costs after 1 year Costs after 42 years| 

in each Starting from both: | Starting from both: 
Reservoir Full Empty Pe PRE. 1c. ey | 

£ oe £ Z 

4 0.4 1069216 © 20659 120599 

6 0 976559 <2 W029, 22065 

8 = - / 62 756 

16 0 974008 0 0 

21 G. 1073086 0 0 

Table A5.1 

Fig.A5.1 shows the costs for a typical case of one 

year's dynamic programming. For the Siva endo systen, 

it was thought that from six to eight levels in each 

neue die was sufficient. However, the distribution of 

the states is significant. Inspection of Fig. A5.1 shows 

that the sensitive range of levels for minimisation of 

deficits is from 0 to 10000 cusec-days, as would be expected. 

For different objective functions different ranges would be



important. It is a cheap and efficient process to 

investigate the sensitive range for a particular system 

by running one dynamic program wink a relatively large 

number of states and to fix the states for the design 

investigation depending upon the results. 

It appears, from the results of Chapter 8, 

that the significant range of reservoir sizes may be 

ascertained using reasonable state increments, and then, 

if required, the state increments may be reduced to find 

the optimum solution.
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