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Abstract
An optical microresonator, which parameters are periodically modulated in time, can generate
optical frequency comb (OFC) spectral resonances equally spaced by the modulation frequency.
Significant recent progress in realization of OFC generators based on the modulation of
microresonator parameters boosted interest to their further experimental development and
theoretical understanding of underlying phenomena. However, most of theoretical approaches
developed to date were based on the lumped parameter models which unable to evaluate, analyse,
and optimize the effect of spatial distribution of modulation inside microresonators. Here we
develop the multi-quantum semiclassical theory of parametrically excited OFCs which solves these
problems. As an application, we compare OFCs which are resonantly or adiabatically excited in a
racetrack microresonator (RTM) and a Surface Nanoscale Axial Photonics (SNAP) bottle
microresonator (SBM). The principal difference between these two types of microresonators
consists in much slower propagation speed of whispering gallery modes along the SBM axis
compared to the speed of modes propagating along the RTM waveguide axis. We show that, due to
this difference, similar OFCs can be generated by an SBM with a much smaller size compared to
that of the RTM. Based on the developed theory, we analytically express the OFC spectrum of
microresonators through the spatial distribution of modulated parameters and optimize this
distribution to arrive at the strongest OFCs generated with minimum power consumption.

1. Introduction

An eigenstatem of an ideal lossless isolated stationary optical microresonator varies in time as exp(−iωmt)
with eigenfrequency ωm. The eigenstates of such resonator cannot attenuate or grow and, thus, its
eigenfrequencies ωm cannot be complex valued. Situation is different for the lossless periodically modulated
systems. The behaviour of such systems is described by differential equations (e.g. Maxwell and wave
equations) whose parameters periodically depend on time. It is well known that solutions of such differential
equations can be stable as well as unstable [1, 2]. In the case of stability, the discrete set of quasi-states and
corresponding quasi-eigenfrequencies can be introduced. In the case of instability, the eigenfrequencies of
quasi-states of an ideal lossless optical resonator belong to the continuous spectrum [1–5].

In classical mechanics, resonant oscillations of a periodically modulated resonator, which infinitely grow
with time in the absence of losses, become finite in their presence [6]. Similarly, light in a modulated
resonator, being unstable in the absence of losses, qualitatively changes its behaviour in their presence. For
relatively small losses, the eigenstate of an unmodulated microresonator attenuates as exp(−iωmt−αmt)
where the imaginary part αm of eigenfrequency is introduced [7]. The eigenfrequency ωm of a lossless optical
microresonator, which parameters are periodically modulated with frequency ωp, shifts to ω ′m and splits into a
comb with frequencies ω ′m + nωp numerated by integer n (see, e.g. [8]). A practically important and still not
fully understood problem is concerned with the behaviour of spectrum of parametrically modulated
resonators with losses which are introduced internally and due to the leakage to the input–output waveguides.
Of special interest is the case of resonant excitation, when the modulation frequency ωp coincides with or is
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close to the free spectral range (FSR) of the microresonator. The interest to this problem has been boosted by
recent experimental demonstrations of optical frequency combs (OFCs) generated by parametrically excited
microresonators [9, 10] following significant previous work in the field (see [9–16] and references therein).
In particular, it has been discovered, both theoretically and experimentally, that, in addition to splitting into
ωp-periodic combs, the presence of losses leads to additional fine structure of OFC resonances as a function
of the input light frequency [9, 10].

Here we develop the semiclassical theory of parametrically excited OFCs in microresonators, whose
assumptions fit the common experimental conditions. Physically, the semiclassical conditions assume that
the parameters of the microresonator material vary slowly in space and time compared to the variation in
space and time of the residing electromagnetic field. Since the characteristic variation length of
electromagnetic field commonly coincides with its wavelength λ, the semiclassical approximation assumes
that the refractive index and dimensions of a microresonator and of their modulation-induced perturbations
vary slowly within the distances of the order of λ. This assumption well fits the experimental conditions since
the characteristic wavelength λ∼ 1 µm is usually much smaller than the characteristic variation lengths of
the refractive index and dimensions of microresonators which are commonly≳10 µm. Similarly, variation of
parametric modulation in time is characterized by its frequency ωp and has to be much slower than the light
frequency ω, which is in excellent agreement with the experimental conditions.

We show that, in the semiclassical approximation, calculation of the transmission amplitude exhibiting
OFC is reduced to linear functional equations which can be solved analytically. The developed theory
accounts for multi-quantum transitions between the microresonator eigenstates as well as for the spatial
distribution of modulation (SDM). We determine the complex-shaped profile of individual comb
transmission resonances formed by the interplay between the fine splitting of eigenfrequencies proportional
to the modulation amplitude and their broadening determined by the attenuation of light. We express this
profile through the spatial and temporal dependencies of modulation parameters and optimize the SDM to
minimize the consumption of power required for the OFC generation.

As an application of the developed theory, we consider racetrack microresonators (RTMs) and Surface
Nanoscale Axial Photonics (SNAP) bottle microresonators (SBMs) illustrated in figure 1. Two critical
benefits of the SBMs compared to RTMs are revealed. We show that the effect of parametric excitation is
significantly enhanced in SBMs compared to RTMs with similar dimensions due to the slow propagation
speed of whispering gallery modes (WGMs) along the SBM axis compared to the speed of light along the
RTM waveguide. Consequently, we show that, to generate an OFC with the same repetition rate, the
dimensions of an SBM can be much smaller than the dimensions of an RTM.

Solutions of the major equations used below to derive the expressions for the OFC amplitudes are
reduced to functional equations. These equations are solved in appendices B and C. In sections 2 and 3, we
derive analytical expressions for the OFC amplitudes generated in RTMs and SBMs. In particular cases, our
results coincide with those previously obtained in [9, 10] where the modulation index—the key parameter of
the theory— was considered in [9, 10] as a lumped parameter. Beneficially, the developed theory determines
the actual dependence of the modulation index on the SDM. This allows us to understand the effect of the
SDM and, in particular, to find the optimum SDMs corresponding the minimum consumption power of
modulation required for the OFC generation in RTMs and SBMs. In contrast to the previous results, simple
analytical formulas for the complex-valued modulation indices expressed through the spatially distributed
parametric (refractive index for the RTM and WGM cutoff frequency (CF) for the SBM) modulations are
presented. Our results allow to understand and quantify the characteristic features of OFC in both types of
microresonators, e.g. the resonance splitting effect. The results of sections 2 and 3 can be better understood
after the analysis of the behaviour of parametrically modulated freemicroresonators considered in
appendix D for the RTM and in appendix G for the SBM. Complementary to sections 2 and 3, in
appendix M, we consider the OFC generation in modulated microresonators excited by an internal light
source, which is used in many theoretical studies of microresonators (see e.g. [10, 17–19]), and find the
direct relation between this model and the model of the input–output waveguide used in practice. For the
purpose of a more straightforward comparison of the performance of the RTM and SBM, in the main text of
this paper we consider the input–output waveguides positioned at the edge of SBMs. In appendix L we
describe an approach, which allows to generalise our results to the case of the arbitrary waveguide position.

2. RTM

The development of theory presented in this section is primary stimulated by recent experimental results and
theoretical analysis of OFC generation by parametric modulation of microresonators [9, 10] where the OFCs
were generated by an RTM [9] and a disk microresonator [10] both fabricated of Lithium Niobate. To
describe the OFC generation, the authors of [10] further developed the model Hamiltonian approach which
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Figure 1. (a) An RTM parametrically modulated by a capacitor adjacent to its waveguide (bold black lines) and, optionally, by an
additional capacitor (dashed black lines). Light is coupled to the RTM by a vertically oriented input–output waveguide. Top:
illustration of SDM induced inside the RTM waveguide by the capacitor. (b) Parametrically modulated SBM coupled to the
input–output waveguide. Top: illustration of SDM induced along the SBM. Inset: Magnified coupling region between the
input–output waveguide and microresonators.

was pioneered for the parametric modulation of optical microresonators in [14]. This theory assumes that
the modulation index is small and only single quantum transitions are possible during a single circulation of
light around the microresonator. For the same purpose, the authors of [9] used a semi-empirical theory
developed in [12] to describe the OFC generation by parametric modulation of an RTM. This theory does
not restrict the value of modulation index so that it can be smaller as well as greater than unity. Therefore,
the multiquantum transitions of light during its single roundtrip along the RTM are taken into account. For
small modulation indices, the theories [9, 12] and [10, 14] give similar results. In both theories the
modulation index was introduced as a real parameter whose relation to the SDM of the microresonator
parameters has not been investigated.

Here we consider an RTM coupled to an input–output waveguide illustrated in figure 1(a). We start with
the consideration of the one-dimensional propagation of linearly polarized light localized along the RTM
waveguide away from the coupling region. This propagation is described by the Maxwell equations
∂Ey
∂z = − c−1∂Hx

∂t , ∂Hx
∂z =− c−1∂Dy

∂t . Here c is the speed of light and the dielectric displacement Dy (z, t) is related
to the electric field Ey (z, t) as Dy (z, t) = n2 (z, t)Ey (z, t) where n(z, t) is the effective refractive index.
Combining these equations, we arrive at the wave equation:

∂2E

∂z2
− 1

c2
∂2D

∂t2
= 0, E(z, t) = D(z, t)/n2 (z, t) . (1)

For brevity, in equation (1) and below we omit the coordinate indices of E and D. We solve equation (1) for
the refractive index n(z, t) periodically modulated in time with frequency ωp:

n(z, t) = n0 + iη+∆np0 (z)+∆np1 (z)cos
(
ωpt
)
. (2)

Here n0 is the original constant refractive index of the RTM waveguide and η≪ n0 determines small material
and scattering losses. In agreement with common experimental conditions, we assume that the modulation
frequency ωp is much smaller than the frequency of input light ωin, i.e. ωp≪ ωin, and the amplitudes of the
refractive index perturbations∆npj (z), j = 1,2, are small compared to the original waveguide refractive
index,

∣∣∆npj (z)
∣∣≪ n0. In addition, these amplitudes are assumed to vary in space slow compared to the

3



New J. Phys. 25 (2023) 103047 M Sumetsky

oscillations of light determined by its characteristic propagation constant β = ωinn0
c , i.e.

∣∣∣∂∆npj
∂z

∣∣∣≪ β
∣∣∆np

∣∣
[20]. In the approximation considered, the spectral bandwidth of solution of equation (1) (and, therefore,
the OFC bandwidth) should be much smaller than the frequency of the input light ω. For the modulation
induced by linear electro-optics Pockels effect (like, e.g. in lithium niobate [9, 10, 14]),∆np1 (z)cos(ωpt) in
equation (2) is proportional to the applied voltage, Ucos

(
ωpt
)
, and∆np0 (z) can be set to zero. For the

modulation induced by electrostriction and Kerr effect,∆np0 (z)+∆np1 cos(ωpt) is proportional to the

applied voltage squared,
(
Ucos

(
ωpt
2

))2
, which contributes both to∆np1 (x) and∆np0 (z).

Outside the coupling region indicated by the rectangle in figure 1(a), the field E(x, t) propagating along
the microresonator waveguide is determined by equations (A3) and (A6) of appendix A. Here, we describe
the waveguide coupling with the commonly used transfer matrix approach (see e.g. [21, 22]). For
determinacy, we assume that light propagates into the positive direction along the RTM waveguide axis z. As
illustrated in figure 1(a), the coordinate z= 2L corresponds to the beginning of the coupling region and
coordinate z= 0 corresponds to its end. The monochromatic light launched into the input–output
waveguide is set to Ein (t) = exp(−iωint). Then, the output light Eout(t) is determined by the equation:(

Eout (t)
E(0, t)

)
= S

(
Ein (t)
E(2L, t)

)
, S=

(
τ κ
−κ τ

)
. (3)

For the lossless coupling assumed below, matrix S introduced in this equation is the unitary S-matrix.
Without loss of generality, we assume that the elements of this matrix, τ and κ, are real [23]. Then, the
condition of unitarity yields τ 2 +κ2 = 1. As shown in appendix C, substitution of the solution of
equation (1) at z= 0 and z= L into equation (3) leads to the functional equation (C3). Solution of this
equation is found analytically in appendix B. As the result, calculations detailed in appendix C yield the
comb spectral components Em of Eout (t):

Eout (t) =
∞∑

m=−∞
Em exp

[
i
(
mωp−ωin

)
t
]
,

Em = τδ0m−κ2 exp

[
im

(
π

2
−

ωpT

2
+ arg

(
Ωp1

))]
×
∞∑
n=0

τ nJm
(
σn+1

∣∣Ωp1

∣∣)exp[(n+ 1)

(
− im

2
ωpT+ iωinT−

η

n0
ωinT+ iΩp0

)]
. (4)

Here δ0m is the Kronecker delta, T is the time of circulation of light along the microresonator circumference
2L [24],

T=
2n0L

c
=

2β0L

ω0
, (5)

Ωp0 and Ωp1 are the modulation parameters,

Ωp0 =
ωin

c

2Lˆ

0

dz∆np0 (z) , Ωp1 =
ωin

c

2Lˆ

0

dz∆np1 (z)exp

(
iωpn0z

c

)
, (6)

and

σn =
sin
(
n
2ωpT

)
sin
(
1
2ωpT

) (7)

is the resonant index. Results similar to equation (4) were previously obtained based on the lumped
modulation parameter model [9, 12, 25]. Here we elucidate and clarify those results by presenting the
expressions for the lumped parameters Ωp0 and Ωp1 (equation (6)) through the spatial variation of
modulated refractive index. Equation (4) is more compact compared to those obtained previously since it
contains only a single sum over the turns of light in the microresonator rather than a double sum in [12, 25].
In previous considerations, parameter Ωp0 proportional to the time-independent component of the external
perturbation was usually set to zero, while the value of modulation index Ωp1 was often set equal to a real
empirical constant [9, 10, 12, 14, 25]. Equation (4) shows that the magnitude of combs |Em|, except for the
central resonance withm= 0, does not depend on the phase of Ωp1 and, thus, the approximation of real Ωp1

can be justified form ̸= 0. Equations (4)–(6) allow to investigate and maximize the comb amplitudes Em by
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optimization of the modulation index Ωp1, which is a functional of the refractive index SDM∆np1 (x).
Remarkably, the introduction of effective modulation index σn

∣∣Ωp1

∣∣ (the argument of the Bessel’s functions
in equation (4)) allows us to simplify the expressions for the comb amplitudes as compared to those derived
in [9, 25].

The cases of major interest described by equations (4)–(7) correspond to the resonant or adiabatic
modulation when many terms contribute into the sum over n. To this end, the phases of these terms must be
close to each other, i.e. satisfy the condition of constructive interference. In particular, the attenuation due
the losses inside the microresonator and coupling should be small, i.e. κ=

√
1− τ 2≪ 1 and 2ηωL

c ≪ 1, as
assumed hereafter. The resonant or adiabatic excitation can take place only at or close to the conditions
ωpT→ 2πN, N= 0, 1, 2, . . ., which includes the adiabatic case ωpT→ 0. At these conditions, we have

σn+1 = (−1)Nn (n+ 1) . (8)

Then, as shown in appendix C, we find

Eout (t) = Ein (t)
τ −U(t)

1− τU(t)
,

U(t) = exp

[
i
(
ωin−ωq

)
T− 2ηωinL

c
+ i
∣∣Ωp1

∣∣cos(ωpt+ arg
(
Ωp1

))]
. (9)

Here, we introduced the RTM eigenfrequencies ωq corresponding to vanishing modulation, Ωp1 = 0, which
are defined by the quantization rule

ωqT+Ωp0 = 2π (s0 + q) , (10)

where integers s0≫ 1 and q≪ s0. The eigenfrequencies defined by this equation coincide which those found
in appendix D for a standing along RTM. For the resonant transmission considered below, we chose the
eigenfrequency ω0 close to the input frequency ωin so that |ωin−ω0| ≪ |ω1−ω0| and assume that q≪ s0 to
satisfy the conditions of our approximation

∣∣ωq−ω0

∣∣≪ ω0. The result similar to equation (9) was
previously obtained in [9, 25] based on the lumped modulation parameter model with a real modulation
index Ωp1. For the weak modulation

∣∣Ωp1

∣∣≪ 1, equation (9) coincides with that obtained in [10]. In the
latter case, we expand the exponent in the expression for U(t) in equation (9) keeping only the first-order
term in |Ωp1| and, thus, take into account only the single quantum transitions with acquisition or loss of
frequency ωp during a single roundtrip of light along the RTM waveguide.

Conditions when the amplitudes |Em| of comb lines with large numbersm≫ 1 are resonantly enhanced
are of the major practical interest. For very small deviations from the parametric resonance,

ωpT= 2πN+∆ωpT,
∣∣∆ωpT

∣∣≪ α, α=
κ2

2
+

2ηωinL

c
, (11)

asymptotic calculations detailed in appendix E yield the OFC amplitude variation near the resonant
frequency ωq = ω0 +

2π q
T :

|Em| ∼= κ2
∣∣Ωp1

∣∣−1/2Em, Em =
∣∣1−Λ2

m

∣∣−1/2∣∣∣Λm− i
√
1−Λ2

m

∣∣∣|m|,
Λm =∆ωTΩ + iαΩ, ∆ωTΩ =

(
ωin−ωq

)
T− 1

2m∆ωpT∣∣Ωp1

∣∣ , αΩ =
α∣∣Ωp1

∣∣ . (12)

Here we introduce the normalized comb line amplitude Em = |Em|κ−2
∣∣Ωp1

∣∣1/2, and also dimensionless
frequency deviation∆ωTΩ and full roundtrip attenuation αΩ measured in units of modulation index

∣∣Ωp1

∣∣.
At the exact parametric resonance, when∆ωpT= 0, and ωpT= 2πN, N> 1, parameter Λm does not depend
on OFC line numberm. In this case, equation (12) coincides with that obtained in [10] under the condition
of weak modulation index

∣∣Ωp1

∣∣≪ 1. From equation (12), the slowest variation of the OFC power with the
line numberm is achieved either at the smallest possible Λ, i.e. for ωin = ωs, or for Λ∼= 1. Alternatively, in the
adiabatic case, N= 0 and ωpT=∆ωpT, and for a small deviation of the modulation frequency ωp from the
parametric resonance condition, parameter Λm, even being fixed at its smallest value atm= 0, will slowly
move out of resonance for largerm.

Numerical comparison of the comb amplitudes found from equations (12) and (4) demonstrates the
remarkable accuracy of equation (12) both for weak modulation,

∣∣Ωp1

∣∣≪ 1 [10, 14], and strong modulation,∣∣Ωp1

∣∣∼ 1 [9, 25]. As an example, figures 2(a)–(c) compare the behaviour of amplitudes |Em| as a function of
dimensionless frequency variation∆ωTΩ of the input light for the case of exact resonance, ωpT= 2π ,
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Figure 2. (a)–(c) The behaviour of comb line power in dB, 20 log(|Em|), as a function of dimensionless frequency variation
∆ωTΩ of the input light for the case of parametric resonance, ωpT= 2π , modulation index |Ωp1|= 1, coupling parameter
κ= 0.04, and full round trip attenuation (a) α= 0.05, (b) α= 0.01 and (c) α= 0.002. (d) The comb line power for the
adiabatic modulation ωpT= 0.001; here other parameters are the same as in (b). In (a)–(d), circles indicate the maxima of plots.
(e) The behaviour of the maximum comb line power as a function ofm for κ= 0.04, and α= 0.05, 0.01, and 0.002.

modulation index
∣∣Ωp1

∣∣= 1, coupling parameter κ= 0.04, and different attenuation parameters
α= 0.05, 0.01, and 0.002. In agreement with the condition of validity of equation (12), much better
agreement, which also holds for

∣∣Ωp1

∣∣≫ 1, takes place in the vicinity of the maxima of the comb amplitudes,
where ||Λ| − 1| ≪ 1. For the combs with numbersm smaller thanminf corresponding to the inflection
condition,m<minf, the plots in figures 2(a)–(c) exhibit two peaks with maxima indicated by circles and one
minimum. For greater numbersm>minf, these plots have a single maximum. From equation (12), two
conditions, Λ→ 0 and Λ→±1, correspond to the flatten frequency combs since then |Λ− i

√
1−Λ2| → 1

and the comb peaks amplitude becomes slow function ofm. The first condition corresponds to two maxima
peak values of the plots in figures 2(a)–(c) atm<minf, while the second condition corresponds to the single
minimum of these plots atm>minf. For small deviation from the parametric resonance satisfying
equation (11), equation (12) remains sufficiently accurate as well, as illustrated in figure 2(d) for
∆ωpT= 0.001. It is seen from this figure that the non-zero∆ωpT leads to the small asymmetry of the comb
line power plot with respect to∆ωTΩ = 0.

For applications, it is usually important to evaluate the comb line amplitude as a function ofm for the
fixed frequency. However, it is also interesting to look at the dependence of the comb line power maxima as a
function of their number shown in figure 2(e). It is seen that, in the dB scale, this dependence onm is
nonlinear atm<minf and linear atm>minf following equation (12).

3. SBM

SNAP microresonator structures are fabricated at the surface of an optical fibre by nanoscale deformation
[26]. Several approaches for fabrication of these resonators developed to date achieve the unprecedented
subangstrom precision [26–33]. Commonly, SNAP microresonators are fabricated from the silica fibres,
which parameters (refractive index distribution and dimensions) can be varied in time by applying strong
modulated laser field. The frequency of this field is supposed to be separated from a weaker field generating
OFC due to the induced modulation of the SBM parameters and the OFC spectrum itself. For pure silica
fibres, modulation can be induced by the combined nonlinear Kerr and radiation pressure effects [17].

6
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Generally, SBMs can be introduced at the surfaces of fibres fabricated of materials other than pure silica.
These fibres include fibres fabricated of dopped silica and silica fibres integrated with other materials
[34–36], as well as accurately polished [10] fibres fabricated of highly nonlinear materials such as lithium
niobate [37, 38]. Modulation of the SBMs fabricated at the surfaces of these fibres can be induced by the
applied electromagnetic field through Pockels, Kerr and radiation pressure effects, as well as their
combinations, and PZT-induced mechanical vibrations [39, 40].

The SBM considered in this section is illustrated in figure 1(b). Light is localized in an SBM in the form
of WGMs which circulate near the fibre surface and slowly propagate along its length z. Thanks to
dramatically small variation of the SBM parameters along the axial coordinate z, the expression for a WGM
propagating in an SBM is factorized as Emp (φ, r,z, t) = exp(imφ)Qmp (ϱ)Emp (z) where (z, ϱ,φ) are the
cylindrical coordinates. The WGM slowness is ensured by the condition that its frequency ω is close to a fibre
CF ωcut (z, t), i.e. |ω−ωcut (z, t)| ≪ ω. The CF varies along the fibre length and changes in time due to the
modulation of SBM parameters. First, we introduce the original CF of the unperturbed SBM, ω0

cut (z) and its
relatively small variation∆ω0

cut (z) so that

∆ω0
cut (z) = ω0

cut (z) −ω0. (13)

Here frequency ω0 is assumed to be adjacent to the CF, and the CF variation∆ω0
cut (z) is assumed to be small

enough,
∣∣∆ω0

cut (z)
∣∣≪ ω0. The full time-dependent CF variation of the SBM is the sum of original stationary

CF variation∆ω0
cut (z), which determines the SBM shape, much smaller variation

∆ωp0 (z)+∆ωp1 (z)cos(ωpt) introduced by parametric modulation, and complex parameter−iγ
determined by the material losses:

∆ωcut (z, t) = ∆ω0
cut (z)+∆ωp0 (z)+∆ωp1 (z)cos

(
ωpt
)
− iγ, (14)

where
∣∣∆ωp0 (z, t)

∣∣ , ∣∣∆ωp1 (z, t)
∣∣ ,γ≪ ∣∣∆ω0

cut (z)
∣∣. Under these conditions, the z-dependence of the WGM

field, Emp (z), is described by the Schrödinger equation [41, 42]:

i
∂E

∂t
+

χ

2

∂2E

∂z2
−ωcut (z, t)E= 0, ωcut (z, t) = ω0 +∆ωcut (z, t) , χ =

c2

n20ω
. (15)

Here the CF ωcut (z, t) is a sufficiently smooth function of z everywhere except, possibly, at the
microresonator edges. Equations (14) and (15) were previously used in [41] to determine the OFC spectrum
for the model of time-dependent harmonic oscillator. A more general numerical analysis of the OFC
generation based on these equations was performed in [43]. Here we assume that the CF variation∆ω0

cut(z)
is sufficiently large and/or expanded along the axial direction to support multiple eigenmodes localized in
the SBM as required for the generation of multiple comb lines. We introduce the propagation constant
β(z,ω) and propagation time τ(z,ω) in the unmodulated SBM:

β (z,ω) =

√
2

χ
(∆ω−∆ω0

cut (z)), τ (z,ω) =
1

χ

zˆ

0

dz

β (z,ω)
, ∆ω = ω−ω0. (16)

Under the assumptions made, solution of equation (15) away from the turning points can be found in the
semiclassical approximation [44] (see appendix F). This solution allows us to determine the OFC spectrum
of the modulated SBM using the approach similar to that developed in the previous section for the RTM.

In particular, the eigenmodes and eigenfrequencies of a standing along SBM are presented in appendix G.
For the stationary CF,∆ωp1(z) = 0, the frequency eigenvalues of the SBM are determined by the
semiclassical quantization rule similar to equation (G5) of appendix G:

2

Lˆ

0

β
(
z,ωq

)
dz+Ω̃p0 = 2π (s0 + q+ ς) ,

Ω̃p0 =
2

χ

Lˆ

0

∆ωp0 (z)

β (z,ω0)
dz. (17)

Here s0≫ 1 and q are integer quantum numbers and ς ∼ 1 is the phase shift which appears due to the
reflection of semiclassical solutions of equation (15) from the turning points. Similar to equation (10), we set
ω0 equal to an eigenfrequency corresponding to s= s0 and consider OFCs localized near ω0. From

7
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equation (16), the full roundtrip time of WGM circulation between the SBM axial turning points z= 0 and
z= L at ω = ω0 is

T= 2τ (L,ω0) . (18)

We assume now that an SBM is coupled to a transversely oriented input–output waveguide positioned
close to the left SBM edge as illustrated in figure 1(b). The configuration shown in figure 1(b) is similar to
that experimentally investigated in [27]. In the right-hand side of the coupling region, the solution of
equation (15) can be presented as a sum of solutions propagating into the positive and negative direction
along the RTM, E→(z, t)+ E←(z, t). As in the previous section, we assume that the modulation is absent in a
certain vicinity to the right of the coupling region. In this vicinity, the boundary condition is similar to that
of the coupled RTM considered in section 2:(

Eout (t)
E→ (0, t)

)
= S

(
Ein (t)

E← (0, t)

)
, S=

(
τ κ
−κ τ

)
. (19)

Here Ein(t) = exp(−iωint) and Eout(t) = exp(−iωint)E0out(t) are the input and output fields in the waveguide.
At the right edge of the SBM, the boundary condition for the solution E→(z, t)+ E←(z, t) corresponds to the
semiclassical condition of its evanescent decay for z> L [7]:

E→ (z, t) |z↗L = exp

(
− iπ

2

)
E← (z, t) |z↗L. (20)

Solution of equation (15), E→(z, t)+ E←(z, t), with boundary conditions determined by equations (19)
and (20) detailed in appendix I yields the expression for the output field:

Eout (t) =
∞∑

m=−∞
Em exp

[
i
(
mωp−ωin

)
t
]
,

Em = τδ0m−κ2 exp

(
iπm

2

)
×
∞∑
n=0

τ nJm
(
σn+1

∣∣∣Ω̃p1

∣∣∣)

× exp

(n+ 1)

− im
2
ωpT+ 2i

Lˆ

0

β (z,ω0)dz+ iΩ̃p0− γT− iπ

2

 , (21)

where the modulation induced phase shift Ω̃p0 and modulation parameter Ω̃p1 are determined by equations

Ω̃p0 =
2

χ

Lˆ

0

∆ωp0 (z)

β (z,ω0)
dz, Ω̃p1 =

2

χ

Lˆ

0

∆ωp1 (z)cos

(
ωp

(
T

2
− τ (z,ω0)

))
dz

β (z,ω0)
, (22)

and

σn =
sin
(
n
2ωpT

)
sin
(
1
2ωpT

) . (23)

In full analogy to the derivation of equation (12) for the RTM, the asymptotic of amplitudes |Em| at exact
parametric resonance ωpT= 2πN, N= 0,1,2, . . . , is

|Em| ∼= κ2
∣∣∣Ω̃p1

∣∣∣−1/2Ẽm, Em =
∣∣∣1− Λ̃2

∣∣∣−1/2∣∣∣Λ̃− i
√
1− Λ̃2

∣∣∣|m|,
Λ̃ = ∆̃ωTΩ + iα+

Ω , ∆̃ωTΩ =

(
ωin−ωq

)
T∣∣∣Ω̃p1

∣∣∣ , α̃+
Ω =

α+∣∣∣Ω̃p1

∣∣∣ , α+ =
κ2

2
+

ηωinT

n0
. (24)

Here Ẽm = |Em|κ−2
∣∣∣Ω̃p1

∣∣∣−1/2is the normalized comb line amplitude, and ∆̃ωTΩ and α̃+
Ω are dimensionless

frequency deviation and full roundtrip attenuation measured in units of modulation index
∣∣∣Ω̃p1

∣∣∣. The
validity of equation (24) is limited by the validity of the semiclassical solution of equation (15). In particular,
it assumes that the OFC bandwidth is small compared to the bandwidth of the SBM discrete spectrum.

8
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4. SBM vs. RTM

We are now ready to compare the OFC generation characteristics of the RTM and SBM. Due to the similarity
of expressions for the OFC spectra of the RTM and SBM (compare equations (4), (6), (7), (10), (12) and
equations (17), (21)–(24)), the major difference between these characteristics is included in the expressions
for modulation parameters Ωp1 and Ω̃p1 defined by equations (6) and (22). The most interesting for
applications are the cases of resonant and adiabatic parametric modulation when

ωpT= 2πN, N= 0,1,2, . . . , (25)

where N= 0 corresponds to the adiabatic modulation, ωpT≪ 2π . For N⩾ 1, the microresonator length
enabling the resonant modulation is proportional to N, e.g. for a RTM L= πNc/n0ωp. In the adiabatic case,
the OFC repetition rate is much smaller than the microresonator FSR, ωp≪ 2π

T , and the microresonator
eigenfrequency dispersion is irrelevant. In contrast, in the resonant case, N⩾ 1, the equispacing of the
eigenfrequencies, which correspond to the frequencies of the generated comb lines, is critical. The
semiclassical perturbation theory used above assumes that the FSR 2π/T is constant (i.e. the eigenfrequency
dispersion is small) with sufficient accuracy. In the case of RTM, the latter assumption suggests that the value
of modulation indices, Ωp1 and Ω̃p1, rather than the dispersion determines the OFC bandwidth. In the case of
SBM, the dispersion can be minimized for microresonators with parabolic, semi-parabolic [27] as well as
completely different from parabolic [42] CF variation. Increasing the SBM dimensions allow to reduce its
axial FSR and dispersion, as e.g. in long rectangular SBM [32]. However, the OFC bandwidth may be limited
by the relatively narrow bandwidth of the SBM discrete spectrum (see the discussion below).

Hereafter, we distinguish the parameters of an RTM and an SBM (where necessary to avoid confusion) by
adding ‘∼’ at the top of the SBM parameters. For example, the roundtrip time and refractive index are
denoted as T and n0 for an RTM and as T̃ and ñ0 for an SBM. Our analysis in the previous sections
considered the refractive index SDM∆np1(z) for an RTM and the CF modulation ∆̃ωp1 (z) for an SBM. To

compare the effects of these modulations, we express the amplitude ∆̃ωp1 (z) of an SBM through the

amplitude of its effective refractive index modulation ∆̃np1 (z) and effective radius variation ∆̃r0 (z) with the
rescaling relation:

∆̃ωp1 (z)

ω̃0
=−

∆̃np1 (z)

ñ0
=−∆̃r0 (z)

r0
. (26)

We define the OFC-equivalent microresonators as microresonators generating similar OFCs. Provided
that the generated OFC bandwidth is not limited by the microresonators’ dispersion and by the SBM spectral
bandwidth, it follows from the developed theory that the resonantly modulated RTM and SBM are
OFC-equivalent if they generate OFCs with the same modulation indices, Ωp1 = Ω̃p1, central resonance
frequency ω0, and repetition rate ωp. Excluding the adiabatic modulation, the latter condition, together with
the resonant condition of equation (25), determines the roundtrip time T= 2πN

ωp
, which should be the same

for the OFC-equivalent RTM and SBM as well.
It is instructive, first, to consider the case of the uniform SDMs, when∆np1 (z) = ∆n0p1 for the RTM and

∆̃ωp1 (z) = ∆̃ω
0

p1 for the SBM. Then, at the exact modulation resonance, ωpT= 2πN, N⩾ 1, calculations

yield Ωp1 = Ω̃p1 = 0. Thus, the uniform SDM does not generate OFCs (for comparison, see appendix D
describing a standing along RTM). This is simply explained by the fact that, due to the orthogonality of the
microresonator eigenstates, the matrix elements of a spatially uniform perturbation at the different
eigenstates are zero. In contrast, for the adiabatic modulation, ωp≪ 2π

T and ω̃p≪ 2π
T , we have from

equations (6), (22) and (26):

Ωp1 =
∆n0p1
n0

Tω0, Ω̃p1 =
∆̃n

0

p1

ñ0
T̃ω̃0. (27)

From this equation, for the same refractive indices, n0 = ñ0, modulation amplitudes,∆n0p1 = ∆̃n
0

p1, and

resonant frequencies, ω0 = ω̃0, the SBM modulation index Ω̃p1 can be much greater than the RTM
modulation index Ωp1 due to the slow WGM propagation in an SBM leading to a much greater roundtrip
time T̃≫ T.

Generally, in contrast to RTMs, light propagating in SBMs experiences multiple transverse circulations
around the SBM surface before completing the roundtrip along its axis z. Consequently, the axial propagation
speed of WGMs along the SBM axis is much slower than the speed of light along the RTM waveguide.

9
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Another important difference is that WGMs propagating into the positive and negative directions, E→ (z, t)
and E← (z, t), along the SBM axis spatially overlap and experience the same local effect of the parametric
modulation. For this reason, here we will compare the values of Ωp1 and Ω̃p1 assuming that the SDM of
refractive index in the RTM is L/N-translationally antisymmetric, i.e.∆np1 (z+(L/N)) =−∆np1 (z). This
condition also corresponds to the minimum consumption power (see the discussion below). Then,
equation (6) for Ωp1 at the resonance condition of equation (25) is transformed into

Ωp1 = 2N
ω0

c

L/Nˆ

0

dz∆np1 (z)exp

(
iπN

L
z

)
. (28)

To understand the major difference between OFC generated by the RTMs and SBMs, we assume that the
SBM is rectangular (see appendix H), i.e. its CF is constant within the microresonator length, ω0

cut (z) = ω̃0
c

[45]:

β̃ (z, ω̃0) = β̃0 =
ñ0
c

√
2ω̃0∆̃ω0, ∆̃ω0 = ω̃0− ω̃0

c . (29)

Here ∆̃ω0 is the difference between the unperturbed CF of the SBM and its quasi-eigenfrequency ω̃0 defined
by equation (17). Then, we find for the roundtrip time for the SBM of length L̃:

T̃=
ñ0
c

√
2ω̃0

∆̃ω0

L̃, (30)

while, for the RTM we have

T=
2n0
c
L. (31)

Using equations (22), (25), (28) and (29) we find for the modulation index of the SBM:

Ω̃p1 = (−1)N ω̃0

c

√
2ω̃0

∆̃ω0

L̃ˆ

0

∆̃np1 (z)cos

(
πN

L̃
z

)
dz. (32)

To arrive at the equivalent RTM and SBM we consider, as an example, the parametric resonance with
N= 1 and assume that the central resonance light frequencies, resonance modulation frequencies, and
modulation indices of these microresonators are equal:ω0 = ω̃0, ωp = 2π/T= ω̃p = 2π/T̃, and Ω̃p1 =Ωp1.
We calculate the integrals for the modulation indices in equations (28) and (32) by setting the following
similar SDM amplitudes of refractive index of the RTM and SBM (it will be shown in the next section that
these distributions correspond to the SDMs with the smallest power consumption):

∆np1 (z) = ∆n0p1 sin
(π z
L

)
, (33)

∆̃np1 (z) = ∆̃n
0

p1 cos

(
π z

L̃

)
, (34)

The spatial dependencies of these amplitudes are illustrated in figure 3(a). The SDM of the RTM in
equation (33) is chosen to satisfy the noted above condition∆np1 (z+(L/N)) =−∆np1 (z) for N= 1, so
that it has the opposite polarity at the opposite side of the RTM as illustrated in figures 3(a) and (b).
Generally, the SDM of an RTM can be translated along the closed RTM waveguide as a whole by substitution
z→ z− zt without changing the modulation index Ωp1. In particular, sin(. . .) in equation (33) can be
changed to cos(. . .). Calculation of the modulation indices using equations (28) and (30)–(34) leads to the
following simple relations ensuring the OFC-equivalence of the RTM and SBM:

L̃= g
ñ0
n0
L, ∆̃n

0

p1 =
n0
ñ0

∆n0p1, g=

√
2∆̃ω0

ω0
(35)

The relations given by equation (35) between the dimensions and the amplitudes of refractive index SDMs
are illustrated in figure 3. For the characteristic SBM bandwidth ∆̃ω0 ≃ 2π · 100 GHz and light frequency
ω0 ≃ 2π · 200 THz, we find g≃ 0.03, i.e. that the equivalent SBM is 30 times shorter than the RTM with the

10
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Figure 3. (a) Relation between the SDMs of the refractive indices of the OFC-equivalent RTM and SBM. (b) Relation between the
lengths of the OFC-equivalent RTM and SBM. In agreement with equation (33), the SDM along the lower part of the RTM
waveguide illustrated in figure (b) has the opposite polarity compared to that along the upper part illustrated in figure (a).

same refractive index. For the modulation frequency ω0 ≃ 2π · 100 MHz, and refractive index n0 ≃ 1.5, the
RTM length in this case is L= π c/n0ωp ≃ 1 m, while the length of the equivalent SBM L̃= gL is around
3 mm only.

In the adiabatic case, substituting the expressions for the roundtrip times from equations (30) and (31)
into equation (27), we find the relation between the lengths of the OFC-equivalent microresonators:

L̃= g
∆n0p1

∆̃n
0

p1

L. (36)

This relation shows that for the same lengths, L= L̃, the refractive index modulation amplitude, which is
required to generate similar OFCs, is g−1 times smaller for the SBM than that for the RTM. Alternatively,
similar to equation (35), for the same amplitudes of refractive index SDMs (though not necessarily equal
refractive indices), L̃ is g−1 times smaller than L.

Calculation of the modulation index of an SBM with arbitrary shape can be reduced to the case of
rectangular SBM by substitution of the axial coordinate z by the time variable (equation (16)):

τ (z,ω) =
1

χ

zˆ

0

dz

β (z,ω)
. (37)

Indeed, then the expression for SBM’s modulation index from equation (22) can be written down as

Ω̃p1 =
2

χ

T̃/2ˆ

0

∆ωp1 (z(τ))cos

(
ω̃p

(
T̃

2
− τ

))
dτ . (38)

Here function z= z ′(τ) is the coordinate z found by inversion of equation (37). At resonant or adiabatic
condition, ωpT̃= 2πN, equation (38) is transferred to

Ω̃p1 = (−1)N 2

χ

T̃/2ˆ

0

∆ωp1 (z
′ (τ))cos

(
2πτ

T̃

)
dτ (39)

which is similar to equation (32).
Small values of parameter g ensure small dimensions of the SBM compared to the RTM. This advantage

is achieved at the expense of the OFC bandwidth which may be limited by the bandwidth of the SBM

11
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spectrum ∆̃ωB ∼ ∆̃ω0. To evaluate this limitation, we consider a bottle microresonator, which effective
radius variation is not necessarily small, though possesses dispersionless spectrum of eigenfrequencies, as
required for its effective resonant excitation. It was shown in [46] that such resonator should have the
semi-cosine (rather than semi-parabolic) radius variation illustrated in figure 1(b),

r̃(z) =

{ (
r̃0 +∆̃r0

)
cos(∆kz) 0< z< L̃

r̃0 z⟨0 and z⟩ L̃
, ∆k=

[(
r̃0 +∆̃r0

)
R
]−1/2

, L̃=
1

∆k
acos

(
r0

r0 +∆̃r0

)
,

(40)

possessing equally spaced axial eigenfrequencies with the FSR ∆̃ωFSR = 2cn−10 (̃r0R)
−1/2. Here R is the axial

radius of curvature of this resonator at z= 0. For a shallow microresonator, ∆̃r0≪ r0, the profile defined by
equation (40) becomes semi-parabolic. Generally, the microresonator height ∆̃r0 can be much smaller as
well as of the order of the radius r̃0. The bandwidth of this microresonator is ∆̃ωB = ∆̃r0ω̃0/r̃0 and its length
L̃ is defined in equation (40). From equation (31), the length of an RTM with the same eigenfrequency FSR is

L= π c/
(
n0∆̃ωFSR

)
. As an example, we consider, again, the resonant parametric modulation with N= 1

and ω̃p = ∆̃ωFSR = 2π/T̃. At this condition and for the equal resonance and modulation frequencies of the
RTM and bottle microresonator, ω0 = ω̃0, ωp = ω̃p, the lengths of the RTM and SBM are:

L=
π c

n0ωp
, L̃=

23/2c

ñ0ωp

√
∆ωB

ω0
. (41)

For the maximum (to our knowledge) OFC bandwidth achieved by the parametric modulation of an RTM
∆ωB ∼ 10 THz at ω0 ∼ 200 THz [9], the OFC-equivalent SBM with the same refractive index is still 5 times

shorter than the RTM. Indeed, from equation (41), we have L̃
L =

2
3
2

π

(
∆ωB
ω0

) 1
2 ∼ 0.2.

5. OFC optimization and power consumption

The SDM of RTMs and SBMs can be optimized to arrive at the largest possible OFC at the smallest power
consumption. Here we distinguish the following cases.

(i) Pockels modulation when the refractive index SDM is proportional to the applied electromagnetic field.
In this case, we assume that the power consumption is proportional to PPock = ∫∆np1(z)

2dz for the

RTM and to P̃Pock = ∫ ∆̃np1(z)
2dz for the SBM.

(ii) Kerr modulation when the refractive index SDM is proportional to the absolute value of applied
electromagnetic field squared. In this case, we assume that the power consumption is proportional to

PKerr = ∫
∣∣∆np1 (z)

∣∣dz for the RTM and to P̃Kerr = ∫
∣∣∣∆̃np1 (z)

∣∣∣dz for the SBM.

While the induced parametric modulation may be extended beyond the microresonator area due to the
experimental limitations, in our optimization, only the power consumed within the microresonators regions
is taken into account. The method of optimization detailed in appendices J and K suggests that to arrive at
the strongest OFC for the given input power we have to maximize the following modulation indices, which
are rescaled to fix the consumed power:

ΩPock
p1 =

∣∣Ωp1

∣∣
√
PPock

, ΩKerr
p1 =

∣∣Ωp1

∣∣
PKerr

, Ω̃Pock
p1 =

∣∣∣Ω̃p1

∣∣∣√
P̃Pock

, Ω̃Kerr
p1 =

∣∣∣Ω̃p1

∣∣∣
P̃Kerr

. (42)

The developed method of optimization allows us to find the exact solutions for the optimal SDM for Pockels
modulation which have to be appropriately. In contrast to the optimum Pockels modulation, which is spread
along the axes of microresonators, we find below that the optimal Kerr modulation should be maximally
localized at the RTM and SBM axes.

For the parametric resonant case, ωpT= 2ωpn0L/c= 2πN, N= 1,2, . . ., the optimal refractive index
SDM for the Pockels modulation of an RTM is found in appendix K as
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Figure 4. (a) Optimal SDM of refractive index for an RTM. (b) Optimized partly uniform SDM of refractive index for an RTM.
(c) SDMs of refractive index for an RTM for the model described by equation (48) with different values of parameter σ indicated
on the figure. (d) Optimal SDM of refractive index for a rectangular SBM. (e) Optimized partly uniform SDM of refractive index
for a rectangular SBM. (f) SDMs of refractive index for a rectangular SBM for the model described by equation (49) with different
values of parameter σ indicated on the figure. (g) Optimal SDM of refractive index for a semi-parabolic SBM. (h) SDMs of
refractive index for a semi-parabolic SBM for the model described by equation (53) with different values of parameter σ indicated
on the figure.

∆np1 (z) = ∆n0p1 cos

(
πN

L
(z− z0)

)
, (43)

where the maximum refractive index SDM amplitude∆n0p1 and shift z0 are free parameters. As expected, this
SDM satisfies the condition∆np1 = (z+(L/N)) =−∆np1(z) discussed in the previous section and is
translationally invariant due to the arbitrary parameter z0. For the SBM at the parametric resonance, the
optimal Pockels modulation of the refractive index is found as

∆̃np1 (z) = ∆̃n
0

p1
β (z0,ω0)

β (z,ω0)
cos

 ω̃p

χ

zˆ

0

dz

β (z,ω0)

 (44)

with free parameters ∆̃n
0

p1 and z0. For the case of rectangular SBM, the propagation constant β (z,ω0) is
z-independent and equation (44) coincides with equation (34). For the adiabatic modulation, when N= 0
and ωp, ω̃p→ 0, the optimal solutions of equations (43) and (44) are simplified to∆np1(z) = const for the

RTM and ∆̃np1(z)∼ 1/β(z,ω0) for the SBM.
Since the accurate introduction of optimal refractive index SDMs defined by equations (43) and (44) may

be problematic in practice, it is important to understand the benefit of these SDMs compared to those which
slightly or significantly deviate from them. In addition, it is important to evaluate the power consumption
for the practically available SDMs. Below we present several examples to clarify these questions.

We start with the case of parametric resonance of an RTM with N= 1. For this case, the optimal
refractive index SDM defined by equation (43) is shown in figure 4(a) for z0 = L/2. First, we consider a
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partly uniform SDM, modelling the configuration of two modulated capacitors with opposite polarity
considered in the experiment [9]:

∆np1 (z) =


∆n001
−∆n001

0

zp < z< zp + lp
L+ zp < z< L+ zp + lp

elsewhere
(45)

This configuration satisfies the condition∆np1 (z+ L) =−∆np1 (z) discussed above. We find the following

simple expressions for the normalized modulation indices of capacitorsΘ(cap)
Pock

(
lp
)
andΘ

(cap)
Kerr

(
lp
)
for the

Pockels and Kerr modulations with the fixed power:

Θ
(cap)
Pock

(
lp
)
=

ΩPock
p1

(
lp
)

ΩPock
p1 (L)

=

√
L

lp

∣∣∣∣sin(π lp
2L

)∣∣∣∣ , (46)

Θ
(cap)
Kerr

(
lp
)
=

ΩKerr
p1

(
lp
)

ΩKerr
p1 (L)

=
L

lp

∣∣∣∣sin(π lp
2L

)∣∣∣∣ . (47)

These functions determine the relative values of modulation indices found for the capacitor with length lp
compared to the capacitor with length L and the same power consumption. The absence of the dependence
on shift zp in equations (46) and (47) confirms the translational invariance of modulation. Simple

calculations show that the maximum ofΘ(cap)
Pock

(
lp
)
is achieved at lp = 0.741L (figure 4(b)) for the Pockels

modulation and at lp→ 0 for the Kerr modulation. The dependenciesΘ(cap)
Pock

(
lp
)
andΘ(cap)

Kerr

(
lp
)
are shown in

figure 5(a). For the Pockels modulation, the power benefit of the optimized capacitor length lp = 0.741L
compared to the length lp = L is 7% only. For the Kerr modulation, this power consumption can be π

2
∼= 1.57

times smaller for lp→ 0 compared to lp = L.
Consider now a rectangular SBM with a partly uniform refractive index SDM similar to that described by

equation (45), where now we have to replace L→ L̃/2, zp→ 0, lp→ l̃p,∆np1 (z)→ ∆̃np1 (z), and

∆n0p1→ ∆̃n
0

p1. The optimum SDM in this case following from equation (44) is shown in figure 4(d).
Calculations show that, for the Pockels modulation, the smallest power consumption is achieved at
l̃p = 0.371L̃ (figure 4(e)) with the 7% benefit in power consumption compared to l̃p = 0.5L̃. For the Kerr

modulation, the optimum l̃p→ 0 and the power consumption can be π
2 times smaller, similar to the RTM.

The spatially uniform SDM considered above can be induced by capacitors adjacent to the
microresonators. In a more general case, the refractive index SDM is nonuniformly distributed along the
microresonator length. Such SDM can be induced by electromagnetic field of nonuniform capacitors as well
as other types of electromagnetic field sources. As an example, we consider the following SDMs of refractive
index of an RTM and a rectangular SBM (figures 4(c) and (f)):

∆np1 (z) = n0p1

∣∣∣sin(π z
L

)∣∣∣σsign(sin(π z
L

))
, (48)

∆̃np1 (z) = ñ0p1

∣∣∣∣cos(π z

L̃

)∣∣∣∣σsign(cos(π z

L̃

))
, (49)

with parameter σ. As previously, we consider the case of parametric resonance with N= 1. At σ→ 0, these
SDMs coincide with the previous examples at lp = L for the RTM (compare figures 4(b) and (c)) and

l̃p = 0.5L̃ for the SBM (compare figures 4(e) and (f)). At σ = 1, these SDMs correspond to the minimum
power consumption (see equations (43), (44) and (34)).

We calculate the rescaled modulation indices defined by equation (42) as a function of parameter σ and

introduce normalized modulation indicesΘ(sin)
Pock (σ),Θ

(sin)
Kerr (σ), Θ̃

(sin)
Pock (σ), and Θ̃

(sin)
Kerr (σ) for the Pockels and

Kerr modulations with SDMs defined by equations (48) and (49) similar to those in equations (46) and (47):

Θ
(sin)
Pock (σ) =

ΩPock
p1 (σ)

ΩPock
p1 (0)

, Θ̃
(sin)
Pock (σ) =

Ω̃Pock
p1 (σ)

Ω̃Pock
p1 (0)

, Θ
(sin)
Kerr (σ) =

ΩKerr
p1 (σ)

ΩKerr
p1 (0)

, Θ̃
(sin)
Kerr (σ) =

Ω̃Kerr
p1 (σ)

Ω̃Kerr
p1 (0)

. (50)

These functions determine the ratio of modulation indices with parameters σ and σ = 0 at the same

modulation power. For the Pockels modulation of an RTM, the plots ofΘ(sin)
Pock (σ) andΘ

(sin)
Kerr (σ) are shown in

figure 5(b). It is seen that, as expected, the power consumption achieves minimum atm= 1 with the SDM
shown by the red curve in figures 4(a) and (c). The power benefit of the optimized modulation compared to
the case lp = 0.5L considered above is 11%. Thus, the application of optimized nonuniform capacitors can
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Figure 5. Normalized modulation indices as functions of the refractive index SDM parameters for the Pockels modulation (red
curves) and Kerr modulation (blue curves): (a) for a partly uniform SDM, which models two capacitors with opposite polarity
adjacent to an RTM as a function of the capacitor length lp; (b) for the SDM of an RTM described by equation (48) as a function
of parameter σ; (c)–(e) for the SDM of a semi-parabolic SBM described by equation (53) as a function of parameter σ calculated

for different integration cutoff lengths ∆̃L indicated on the figures.

slightly improve the performance of the system considered in [9]. For the Kerr modulation of an RTM, the
power consumption achieves minimum at σ→∞ (figure 5(b), blue curve), i.e. when the SDM is strongly
localized. Then, the consumed power for the optimized SDM is π

2 times smaller compared to the case lp = L
as in the case of partly uniform SDM considered above.

The results for the SBM modulation are similar. For the Pockels modulation, the optimum refractive
index SDM corresponds to σ = 1 (red curve in figures 4(d) and (f)) with 11% power benefit compared to the
case l̃p = 0.5L̃ considered above. For the Kerr modulation, the power consumption is, again, minimised at

σ→∞ and is π
2 times smaller compared to the case l̃p = 0.5L̃.

Finally, assume that an SBM has a semi-parabolic shape, with effective radius variation

r(z) = r0 +∆̃r0− z2/2R and length L̃=
(
2∆̃r0R

)1/2
, so that its axial eigenfrequency spectrum is

dispersionless having a constant FSR ∆̃ωFSR = 2cn−10 (̃r0R)
−1/2 (compare with equation (40)). Then, at the

parametric resonant condition, ωp = ∆̃ωFSR = 2π/T̃, equation (22) for the modulation index and optimum
refractive index SDM (equation (43)) are simplified to

Ω̃p1 =−
2ω0(Rr0)

1/2

cL̃

L̃ˆ

0

∆np1 (z)G(z)dz, G(z) =

(
1− 2

z2

L̃2

)(
1− z2

L̃2

)−1/2
, (51)

∆̃np1 (z) = ∆̃n
0

p1G(z) . (52)

In derivation of these expressions, we used the rescaling relation, equation (26). In contrast to the
rectangular SBM, with the sine-shaped kernel in the integral for Ω̃p1(equation (32)), the kernel G(z) of the
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integral in equation (51) and the optimal ∆̃np1 (z) (shown in figure 4(g)) are aperiodic and have a singularity
at the turning point z= L̃. In the neighbourhood of this turning point, the WGM propagation speed tends to
zero and the semiclassical approximation used here requires corrections unless the contribution from this
neighbourhood into the integral in equation (51) is small.

To investigate the effect of deviation from the optimal ∆̃np1 (z) defined by equation (52), we consider the
refractive index SDM

∆̃np1 (z) = ∆̃n
0

p1(G(z))σsign(G(z)) (53)

depending on parameter σ and illustrated in figure 4(h) for σ = 0,0.3,1, and 3. This SDM is partly uniform
at σ→ 0, optimal at σ = 1 (when ∆̃np1(z)∼ G(z)), and strongly localized at σ→∞. Similar to
equation (50), we introduce the ratios of modulation indices with parameters σ and σ = 0 at the same
modulation power:

Θ
(par)
Pock (σ) =

ΩPock
p1 (σ)

ΩPock
p1 (0)

, Θ̃
(par)
Pock (σ) =

Ω̃Pock
p1 (σ)

Ω̃Pock
p1 (0)

, Θ
(par)
Kerr (σ) =

ΩKerr
p1 (σ)

ΩKerr
p1 (0)

, Θ̃
(par)
Kerr (σ) =

Ω̃Kerr
p1 (σ)

Ω̃Kerr
p1 (0)

. (54)

We estimate the size of vicinity near z= L̃ where the expressions in equations (51) and (52) fail as having the

order of δ̃L=
(
c2r0R

) 1
3
(
ω2
0n

2
0L̃
)−1/3

. This expression is found from the asymptotic of an eigenfunction of the

parabolic SBM [47] near the turning point z= L̃. Since the integral for the modulation index in
equation (51) calculated with the refractive index SDM of equation (53) diverges at σ > 1

2 , in our

calculations, we cut the integral limit in equation (51) by replacing L̃→ L̃− δ̃L. We estimate the cutoff region

δ̃L, illustrated as a brown area in figures 4(g) and (h), for the parameters of semi-parabolic SBM
experimentally investigated in [27] setting L= 3 mm, r0 = 20 µm, R = 120 m, n0 = 1.46, and

ω0 = 2π · 190 THz, which yields δ̃L= 90 µm∼ 0.03L. Consequently, figures 5(c)–(e) show the plots of

normalized modulation indices defined by equation (54) which are calculated for δ̃L= 0.1L,0.03L and

0.01L. It is seen that, for the Pockels modulation, the optimal SDM only weakly depends on δ̃L. However, the

power consumption for the Kerr modulation can be significantly reduced with δ̃L.

6. Discussion

In this work, we develop the semiclassical perturbation theory which allows us to understand, describe, and
quantify the key effects in multi-quantum parametric modulation of optical microresonators and OFC
generation. In comparison to the theories developed previously (see [9, 10] and references therein), our
approach allows us to directly express the basic parameters describing OFC generation, such as modulation
index, through the SDM of microresonator parameters (e.g. refractive index). In particular, these results
allow us to optimize the SDM along the microresonator length.

In section 2, the semiclassical theory is applied to the description of OFCs generated by time modulated
RTMs. We find the analytical expressions for the OFC amplitudes using the transfer matrix approach and
semiclassical expressions for solutions of the wave equation propagating along the RTM waveguide.
Remarkably, our results confirm the semi-empirical theory [10, 12, 25] where the modulation parameter Ωp1

was assumed as an unknown lumped parameter. The developed theory allows us to express this parameter
though the spatial distribution of the modulation-induced refractive index variation (see equations (2)
and (6)) and thereby understand and quantify the effect of SDM on the OFC generation. In a particular case
of relatively small modulation index,

∣∣Ωp1

∣∣≪ 1 our results coincide with those of the theory developed in
[10]. We show that the asymptotic expression for the OFC amplitudes, equation (12), obtained in [10] under
the assumption

∣∣Ωp1

∣∣≪ 1 is also valid for
∣∣Ωp1

∣∣∼ 1 and remarkably accurately describes the effect of
splitting of the OFC resonances discovered in [9, 10] (figure 2).

In section 3, we develop the semiclassical theory of OFCs generated by time modulated SBMs. In an
SBM, light circulates in the form of WGMs adjacent to the SBM surface and slowly propagates along the SBM
axis. The slowness of WGMs is determined by the proximity of their frequency ω to a CF ωcut(z, t).
Compared to the theory of section 2, where the unperturbed RTM waveguide is assumed to be uniform
along its axis, the SBM properties are described by the axially dependent ωcut(z, t). For this reason, the
developed theory is more complex. However, it allows to determine the expressions for the OFC amplitudes
similar to those obtained in section 2 and, in particular, find the dependence of modulation index Ω̃p1 on the
modulation-induced CF variation (see equations (14), (16) and (22)).

In section 4 we compare the performance of RTMs and SBMs. We introduce the OFC-equivalent RTM
and SBM as microresonators which generate identical OFCs and find simple criterium of this equivalence. In
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an SBM, light is circulating along the microresonator circumference in the process of slow propagation along
its axis. For this reason, light in an SBM can cover much longer distance during one roundtrip along its axis
compared to the distance the light propagates covering a roundtrip along the RTM waveguide. For this
reason, the dimensions of an SBM which is OFC-equivalent to an RTM can be much smaller than those of
the RTM (figure 3). We note in section 4 that the broadband OFC can be generated using a bottle
microresonator with effective radius variation which is not necessarily small as required in the SNAP theory.
As shown in [46], such resonators can still have the dispersionless distribution of axial eigenfrequencies.
Another possibility to expand the OFC spectral band consists in matching the axial and azimuthal
eigenfrequencies, as suggested in [48] for the nonlinear OFC generation.

In section 5, we optimize the spatial distribution of parametric modulation for RTMs and SBMs to arrive
at the smallest consumption power. We distinguish the Pockels modulation, when this power is proportional
to the amplitude of refractive index modulation, and the Kerr modulation, when it is proportional to this
amplitude squared. As shown in appendix K, for the Pockels modulation, the developed theory allows to find
the optimal spatial distributions of modulations analytically both for the RTM and SBM (equations (43)
and (44)). For RTMs, the optimal SDM is determined by a harmonic function (figure 4(a)), which can be
induced by nonuniform capacitors positioned along the RTM waveguide. Modulation of the refractive index
of RTMs is commonly induced by uniform capacitors positioned along a part of the RTM waveguide length
[9]. Then, we show that the optimal SDM is induced by two capacitors with opposite polarities and lengths
0.741L, where L is the half-length of the RTM waveguide (figure 4(b)). Similarly, for uniform SBMs, the
optimal SDMs are determined by a harmonic function (figure 4(d)), while the optimal length of uniform
capacitors with opposite polarities inducing modulation of an SBM with length L̃ is 0.371L̃ (figure 4(e)).
While, for the Pockels modulation, the optimal SDMs are spread along the lengths of microresonators, the
optimal SDM for the Kerr modulation is localized. In practice, the optimal modulation distributions found
in this section are not easy to realize. For this reason, we compare them with other distribution models
(figures 4 and 5). Generally, the developed theory allows to determine and optimize the modulation
distributions with constrains determined by their practical availability.
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Appendix A. Solution of the first order partial differential equation describing
semiclassical propagation of light along the modulated waveguide

We are looking for the solution of the wave equation, equation (1) of the main text, with a source Iin(x, t),

∂2E

∂z2
− 1

c2
∂2D

∂t2
= Iin (z, t) , (A1)

under the condition that the source Iin(x, t) has frequency ω and spatial distribution which smoothly
envelops the wave with propagation constant β:

Iin (z, t) = exp(−iωt+ iβz)Fin (z) , β =
ωn0
c

. (A2)

Here Fin(x) varies slowly compared to exp(ikx). The semiclassical solution of equation (A1) is found as

E(z, t) = exp(−iωt+βz)Ψ (z, t) (A3)

whereΨ (x, t) satisfies the first order partial differential equation

∂Ψ

∂t
+

c

n0

∂Ψ

∂z
− iω

n0
∆n(z, t)Ψ =

exp(−i∆ωt)

2iω0
Fin (z) , ∆n(z, t) = n(z, t)− n0. (A4)

Solution of equation (A4) can be found analytically in the form [49]:
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Ψ (z, t) = U(z, t)

Φ
(
t− n0

c
z
)
+

n0
2icω

zˆ

0

dz ′
Fin (z ′)

U(z ′, t)

 ,

U(z, t) = exp

iω
c

zˆ

0

dz ′∆n
(
z ′, t− n0

c
(z− z ′)

) , (A5)

with arbitrary function Φ (t). In the absence of source Iin(x, t), equation (A5) is simplified to

Ψ (z, t) = U(z, t)Φ
(
t− n0

c
z
)
,

U(z, t) = exp

iω
c

zˆ

0

dz ′∆n
(
z ′, t− n0

c
(z− z ′)

) . (A6)

Appendix B. Solution of the functional equationΦ (t) = A(t)Φ (t− T)+ B(t)

We solve equation

Φ (t) = A(t)Φ (t−T)+B(t) (B1)

by substitution

Φ (t) = C(t)Φ 1 (t) (B2)

which yields

Φ 1 (t) =
A(t)C(t−T)

C(t)
Φ 1 (t−T)+

B(t)

C(t)
. (B3)

We determine function C(t) so that the coefficient in front of Φ 1 (t−T) in equation (B3) is equal to unity:

C(t) = A(t)C(t−T) . (B4)

It is easy to verify by direct substitution that one of solutions of this equation is

C(t) = D1 (t)
∞∏
n=0

A(t− nT) . (B5)

Here D1(t) is an arbitrary periodic function with period T. Thus, equation (B3) takes the form:

Φ 1 (t) = Φ 1 (t−T)+
B(t)

C(t)
. (B6)

Solution of this equation is:

Φ 1 (t) =
∞∑
n=0

B(t− nT)

C(t− nT)
+D2 (t) (B7)

where D2(t) is an arbitrary periodic function with period T. Note that solution of equation (B6) can be
found from the solution of equation (B4) by taking the logarithm of both parts of equation (B4).

Combining equations (B2), (B5) and (B7) we find:

Φ (t) = B(t)+
∞∑
n=1

B(t− nT)
n−1∏
m=0

A(t−mT)+D(t)
∞∏
m=0

A(t−mT) (B8)

where D(t) is an arbitrary periodic function with period T.
The general solution of equation (B1) can be found by adding the general solution of the uniform

equation

Φ 0 (t) = A(t)Φ 0 (t−T) (B9)
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to the particular solution Φ (t) of equation (B1) defined by equation (B8). Since function A(t) of our
concern has the period Tp =

2π
ωp

and, therefore, can be presented in the form

A(t) = exp(ia(t)) , a(t) =
∑

am exp
(
imωpt

)
, (B10)

we are looking for solution of equation (B9) in the form of the Floquet solution

Φ 0 (t) = D0 (t)exp(iαt+ if(t)) , f(t) =
∞∑

m=−∞
m ̸=0

fm exp
(
imωpt

)
, (B11)

where D0(t) is an arbitrary T-periodic function of t. Equations (B9)–(B11) yield:

α=
a0 + 2π q

T
, q= 0,±1,±2, . . .

fm =
am

1− exp
(
−iωpT

) form ̸= 0.. (B12)

Finally, solution of equation (B1) is a sum of solution (B8) and (B11) with parameters defined by
equation (B12).

Appendix C. Solution of the functional equation for the field in a RTM coupled to a
waveguide

From equation (3) of the main text, we find

Eout (t) = τEin (t)+κE(2L, t) (C1)

E(0, t) =−κEin (t)+ τE(2L, t) . (C2)

Substitution of the input field Ein (t) = exp(−iωt) and functions E(0, t) and E(2L, t) from equation (D2)
into equation (C2) yields the functional equation for Φ (t):

Φ (t) = τA(t)Φ (t−T)−κ,

A(t) = exp

[
iωT− 2ηωL

c
+ iΩp0 + i

∣∣Ωp1

∣∣cos(ωp (t−T)+ arg
(
Ωp1

))]
. (C3)

This equation is a particular case of equation (B1). Taking into account that, for finite η,
∞∏
m=0

A(t−mT) = 0

and that the solution of our concern tends to zero for κ→ 0, we find from equations (B8) and (C3):

Φ (t) =−κ−κ
∞∑
n=1

τ n
n−1∏
m=0

A(t−mT) . (C4)

Combining equations (C1), (D2), and (C4) we find:

Eout (t) = Ein (t)τ (1+κA(t)Φ (t−T))

= Ein (t)τ

{
1−κ2A(t)

[
1+

∞∑
n=1

τ n
n−1∏
m=0

A(t− (m+ 1)T)

]}

= Ein (t)τ

{
1−κ2A(t)

[
1+

∞∑
n=1

τ n
n∏

m=1

A(t−mT)

]}

= Ein (t)τ

{
1−κ2

∞∑
n=0

τ n
n∏

m=0

A(t−mT)

}
. (C5)
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Next, we calculate

n∏
m=0

A(t−mT) = exp

[
(n+ 1)

(
iωT− 2ηωL

c
+ iΩp0

)]
exp

[
i
∣∣Ωp1

∣∣ n∑
m=0

cos
(
ωp (t−T−mT)+ arg

(
Ωp1

))]

= exp

[
(n+ 1)

(
iωT− 2ηωL

c
+ iΩp0

)]
exp

[
iσn+1 cos

(
ωpt−

(n+ 2)

2
ωpT+ arg

(
Ωp1

))]
,

σn =
∣∣Ωp1

∣∣ sin( n2ωpT
)

sin
(
1
2ωpT

) . (C6)

In the derivation of the latter expression, we used the identity [50]:

n∑
k=0

cos(kx+ a) =
sin
(

(n+1)x
2

)
sin
(
x
2

) cos
(nx
2

+ a
)
. (C7)

Combining equations (C5) and (C6), we find:

Eout (t) = Ein (t)τ

{
1−κ2

∞∑
n=0

τ n exp

[
(n+ 1)

(
iωT− 2ηωL

c
+ iΩp0

)
+ iσn+1 cos

(
ωpt−

n+ 2

2
ωpT+ arg

(
Ωp1

))]}
. (C8)

Application of the Jacobi-Anger formula to exp(iσn+1 cos(. . .)) in equation (C8) allows to determine the
comb spectral components Em of Eout(t) given by equation (4) of the main text.

Close to the condition of parametric resonance or adiabatic modulation, ωpT= 2πN+ ε,
N= 0, 1, 2, . . ., ε≪ 1, we have

σn+1 = (−1)Nn (n+ 1) |Ωp1|, (C9)

so that in equation (C8)

σn+1 cos

(
ωpt−

n+ 2

2
ωpT+ arg

(
Ωp1

))
= (−1)Nn (n+ 1) |Ωp1|cos

(
ωpt−πNn+ arg

(
Ωp1

))
= (n+ 1) |Ωp1|cos

(
ωpt+ arg

(
Ωp1

))
. (C10)

Then, the sum in equation (C8) becomes a geometric series easy to calculate. In this case, function A(t) is a
T-periodic function, A(t−T) = A(t) and we have from equation (C5):

Eout (0, t) = Ein (2L, t)τ

(
1−κ2

∞∑
n=0

τ n
n∏

m=0

A(t−mT)

)
= Ein (2L, t)τ

(
1−κ2

∞∑
n=0

τ n
n∏

m=0

A(t)

)

= Ein (2L, t)τ

(
1−κ2A(t)

∞∑
n=0

τ nA(t)n
)

= Ein (2L, t)τ

(
1−κ2 A(t)

1− τA(t)

)
= Ein (2L, t)

τ −A(t)

1− τA(t)
(C11)

where the identity κ2 + τ 2 = 1 was used. This result coincides with equation (9) after introducing the
resonance frequency ωq satisfying equation (10).

Appendix D. Quasi-states of a standing along (uncoupled) RTM

From equation (A5), in the absence of source, Fin (x) = 0, the general solution of equations (1) and (A1) is

E(z, t) = exp

−iωt+ iβz+ i
ω

c

zˆ

0

dz ′∆n
(
z ′, t− n0

c
(z− z ′)

)Φ (t− n0
c
z
)
, (D1)
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with β = ωn0
c and∆n(z, t) = n(z, t)− n0 where n(z, t) is defined by equation (2). We find from

equation (D1):

E(0, t) = exp(−iωt)Φ (t) ,

E(2L, t) = exp(−iωt)A(t)Φ (t−T) ,

A(t) = exp

[
iωT+ iΩp0−

2ηωL

c
+ i
∣∣Ωp1

∣∣cos(ωp (t−T)+ arg
(
Ωp1

))]
T=

2n0L

c
. (D2)

where parameters Ωp0 and Ωp1 are defined by equation (6). For a free RTM, this solution and its spatial
derivative should be continuous along the resonator length, i.e. satisfy the conditions: E(0, t) = E(2L, t) and
dE
dz (0, t) =

dE
dz (2L, t). In the semiclassical approximation considered, function Φ is a much slower function of

z than exp(iβz) in equation (D1). Therefore, these two conditions coincide and lead to the functional
equation for Φ (t):

Φ (t) = A(t)Φ (t−T) . (D3)

We introduce the quasi-eigenfrequency ω0 by the quantization rule:

ω0T+Ωp0 = 2πn0, n0≫ 1, integer. (D4)

Solution of equation (D3) is found in appendix B. For A(t) defined by equation (D2) with frequency ω = ω0,
parameters in equation (B12) are:

a0 =
2ηω0L

c
i, a1 =

Ωp1

2
, a−1 = a∗1 , am = 0 for |m|> 1. (D5)

Solutions given by equations (D1), (D4), (B12) and (D5), allow us to find the general expressions for the
quasi-eigenfrequencies and quasi-states. Here, for briefness and without loss of generality, we assume that
∆n(z, t) = 0 in the neighbourhood of z= 0 in the region 0< z< zp and 2L− zp < z< 2L shown in
figure 1(a). In this region we find for the normalized at t= 0 quasi-states:

Eq (z, t) = (2L)−1/2 exp
[
−iω0

(
t− n0z

c

)]
Ψ q (z, t) ,

Ψ q (z, t) = exp

[
−i2π q

T

(
t− n0z

c

)
− η

n0
ω0t+ i

∣∣Υp

∣∣cos(ωp

(
t− n0z

c

)
+ arg

(
Υp

))]
. (D6)

The eigenfrequencies of these quasi-states are determined as

ωq = ω0 +
2π q

T
, q= 0, ± 1, ±2, . . . , ω0 =

2π s−Ωp0

T
, |q| ≪ s. (D7)

The integer s≫ 1 in equation (D7) is chosen so that the eigenfrequency ω0 is close to the frequency of our
interest and the quasi-state modulation index Yp in equation (D6) is expressed through the modulation index
Ωp1 as

Υp =
Ωp1

exp
(
iωpT

)
− 1

. (D8)

Similar expressions for the quasi-states can be obtained if we introduce complex-values
quasi-eigenfrequencies by substitution ωq→ ωq− iηω0/n0 and remove the attenuating factor
exp[−(ηω0/n0)t] from equation (D6). In this equation, we ignored the attenuation along the RTM axis z due
to the relatively large Q-factor of RTM leading to ω0ηT

n0
≪ 1. However, the latter attenuation contributes to

the widths of transmission resonances and cannot be ignored in the consideration of an RTM coupled to the
input–output waveguide.

Quasi-states Eq (z, t) in equation (D6) are presented as a product of fast oscillating exponent
exp(−iω0t+ iβ0z) and relatively slow function of time and spaceΨ q (x, t) which contains the key
information about the quasi-state behaviour. For the microresonators of our interest, the intrinsic quasi-state
Q-factor, Q= n0

2η , is large, Q≫ 1 (typically, Q∼ 105− 1010). The attenuation of Eq (x, t) in time assumed

here is relatively slow, ω0Tη
n0

= ω0T
2Q ≪ 1. The latter condition follows from Q≫ 1 for the cases we are primary

interested in this paper: the resonant modulation, ω0T∼= 2πN, N= 1, 2, 3, . . ., and adiabatic modulation,
ω0T≪ 1.
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Figure D1. Variation of the real part of the quasi-states (a1), (b1), and (c1) and comb line amplitudes (a2), (b2), and (c2) of a
standing along RTM for different values of the modulation indices (|Υp|= 1,10, and 100).

Slow functionΨ q (x, t) in equation (D6) is a product of two periodic functions with periods T= 2n0L
c and

Tp =
2π
ωp
, where T determines the time of circulation of light along the full microresonator length 2L and Tp

is the parametric modulation period. As follows from equation (D6), the effect of modulation is
characterized by the quasi-state modulation index Yp determined by equation (D8). In order to find the
frequency comb spectral components of quasi-states Eq (z, t), we expand it into series of harmonics using the
Jacobi-Anger formula:

Eq (z, t) =
∞∑

m=−∞
E0m exp

{
−i
[
ω0 +

2π q

T
−ωpm

](
t− n0z

c

)
− η

n0
ω0t

}
,

E0m = (2L)−1/2 exp
[
im
(π
2
+ arg

(
Υp

))]
Jm
(
|Υp|

)
. (D9)

Near the condition of parametric resonance, ω0T= 2πN, N= 1, 2, 3 . . ., and for the adiabatically slow
modulation, ω0T≪ 1, the modulation index magnitude

∣∣Υp

∣∣ is large. Then, the characteristic frequency of
oscillations ofΨ q (z, t) increases and becomes much greater than ωp. This results in growth of the power and
bandwidth of the equidistant comb spectrum of Eq (z, t) determined by equations (D8) and (D9). To
illustrate this, figures D1(a1), (b1) and (c1) show the plots of Re(Ψ 0 (z, t)) for

∣∣Υp

∣∣= 1, 10, and 100.
Respectively, figures D1(a2), (b2) and (c2) show the power spectra of |E0m| for the same parameters. It is seen
that, provided the modulation index and, consequently, the quasi-state frequency of oscillations grow
significantly, the comb spectrum becomes wide and nicely flattened.
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Generally, the field inside a weakly-coupled driven microresonator can be presented as a linear
combination of its quasi-states. For sufficiently weak coupling and losses, a coherent external source can
excite a single quasi-state provided that the eigenstates are not degenerated, i.e. under the condition that
there are no identical frequencies among frequencies ω0 +

2π q
T −ωpm of harmonics in equation (D9). At

modulation resonances and adiabatic condition, ωpT→ 2πN, N= 0, 1, 2, . . ., the eigenstates become
degenerated while the magnitude of modulation index

∣∣Υp

∣∣→∞. Then, the field excited inside the
microresonator by the external coherent source strongly depends on the spatial distribution of the source.

Special situation occurs in the case of a uniform SDM when∆np1 (x) = ∆n0p1 = const along the whole
resonator length. Then we find from equations (D8) and (6) that the quasi-state modulation index is equal to

Υp =−
2iω0∆n0p1
n0ωp

. From this equation, we find that thoughΥp tends to infinity in the adiabatic limit ωpT→ 0,

it does not have singularities at modulation resonances.

Appendix E. Asymptotic calculation of the comb amplitude for the RTM coupled to a
waveguide

Taking into account that for small coupling κ≪ 1 considered here we have τ = 1− κ2

2 , the comb line
amplitude in equation (4) form⩾ 1 can be written down as

|Em|= κ2

∣∣∣∣∣
∞∑
n=0

Jm
(
σn+1

∣∣Ωp1

∣∣)exp[(n+ 1)

(
− im

2
ωpT+ iωinT−α+ iΩp0

)]∣∣∣∣∣ ,
α=

κ2

2
+

2ηωL

c
. (E1)

We are interested in situations when the amplitude of |Em| with large numbersm≫ 1 is resonantly
enhanced. This can be achieved only if many terms with numbers n≫ 1 contribute to the sum in |Em|. We
suggest the interval where these terms have close phases (and, thus, contribute constructively) is within the
interval 0<m< σn+1

∣∣Ωp1

∣∣ since Bessel functions in equation (E1) vanish with growingm form> σn+1. We
assume that ωpT in equation (E1) is resonant or adiabatically small, i.e. ωpT= 2πN+∆ωpT, n

∣∣∆ωpT
∣∣≪ 1,

N= 0, 1, 2, . . .. Then

σn+1
∼= (−1)Nn (n+ 1) . (E2)

Since the number of terms contributing to the sum in equation (E1) is∼ α−1, the condition of validity of
equation (E2) is

∣∣∆ωpT
∣∣≪ α. First, we exclude the adiabatic case, i.e. assume N> 0. Substitution of

ωpT= 2πN+∆ωpT, equation (E2), and the asymptotic expansion for the Bessel function with large order
and argument,

Jm
(
σn+1

∣∣Ωp1

∣∣)∼= ( 2

π

)1/2(
σ2
n+1

∣∣Ωp1

∣∣2−m2
)−1/4

eiπNmn cos

(√
σ2
n+1

∣∣Ωp1

∣∣2−m2−m · acos
(m
x

)
− π

4

)
(E3)

into equation (E1) yields:

|Em| ∼= (2π )−1/2κ2

∣∣∣∣∣∑
±

exp

(
∓ iπ

4

) ∞∑
n=1

(
n2|Ωp1|2−m2

)−1/4
exp
(
iφ± (n)

)∣∣∣∣∣ ,
φ± (n) =±

√
n2|Ωp1|2−m2∓m · acos

(
m

n
∣∣Ωp1

∣∣
)
+ n

[
(ωin−ωs)T−

1

2
m∆ωpT+ iα+

]
. (E4)

Here we introduced the resonant frequencies ω = ωs satisfying the quantization condition

ωsT+Ωp0 = 2π s, s>> 1, integer. (E5)

This equation is identical to equation (10). The resonant condition takes place when a sufficiently large
number of terms in equation (E4) behave smoothly as a function of n, have close phases, and, thus,
contribute constructively to Im. This happens near the stationary point n= n±m determined by the equation

dφ± (n)

dn
=±1

n

√
n2|Ωp1|2−m2 +(ωin−ωs)T−

1

2
m∆ωpT+ iα= 0, (E6)

23



New J. Phys. 25 (2023) 103047 M Sumetsky

which formally results in equal complex-valued saddle points

n±m =
m∣∣Ωp1

∣∣√1−Λ2
m

, Λm =
(ωin−ωs)T− 1

2m∆ωpT+ iα+∣∣Ωp1

∣∣ . (E7)

Here, the required positive value of the real part of n±m can be ensured by selecting the appropriate signs+ or
− in equation (E6) (and, thus, terms corresponding to sign+ or− in the sum Σ± in equation (E4))
depending on whether the deviation of ω from ωs is negative or positive, respectfully. Next, choosing the
appropriate sign of the square roots, we find:

φ±
(
n±m
)
=m · acos

(√
1−Λ2

m

)
=−i ·m ln

(√
1−Λ2

m + iΛm

)
,∣∣∣∣∣d2φ± (n)dn2

|n=n±m

∣∣∣∣∣=
∣∣∣∣∣ m2

n2
√
n2|Ωp1|2−m2

|n=n±m

∣∣∣∣∣=
∣∣Ωp1

∣∣ ∣∣1−Λ2
m

∣∣3/2
m |Λm|

. (E8)

Using these equations, we calculate the sum in equation (E4) by the saddle point method and finally get:

|Em| ∼= κ2
∣∣Ωp1

(
1−Λ2

m

)∣∣−1/2∣∣∣Λm− i
√
1−Λ2

m

∣∣∣|m|. (E9)

For the weak modulation index,
∣∣Ωp1

∣∣≪ 1, equation (E9) can be found directly from equation (9) of the
main text by replacing exp(i|Ωp1|cos(. . .)) by 1+ i|Ωp1|cos(. . .)and expanding the denominator in
equation (9) into Fourier series [50]:

1

a+ bcos(x)
=

1√
a2− b2

∞∑
n=−∞

(√(a
b

)2
− 1− a

b

)|n|
exp(inx). (E10)

Appendix F. Solution of the first order partial differential equation describing
semiclassical propagation of light along an SBM

Our analysis of the quasi-states and frequency comb generation by SBMs is based on the solutions E⇄ (z, t)
andΨ⇄ (z, t) of equation (15) where indices→ and← correspond to the propagation of light along the axis
z into the positive and negative directions along z, respectively:

E⇄ (z,ω, t) =
1√
β (z)

exp [−iωt± iS(z,ω)]Ψ± (z,ω, t) ,

Ψ⇄ (z,ω, t) =
1√
β (z)

exp
(
±i∆S± (z,ω, t)

)
Φ⇄ (t∓ τ (z,ω)) . (F1)

Here ω is an arbitrary constant, Φ⇄ (t) are arbitrary relatively slow function of time t, and propagation
constant β(z), propagation time τ(z), action S(z), and action increments∆S⇄(z, t), are determined by
equations [42]:

β (z,ω) =

√
2

χ
(∆ω−∆ωcut (z)), ∆ω = ω−ω0, ∆ωcut (z) = ωcut (z)−ω0, χ =

c2

n20ω0
,

τ (z,ω) =
1

χ

zˆ

0

dz

β (z,ω)
, S(z,ω) =

zˆ

0

β (z,ω)dz,

∆S⇄ (z,ω, t) =
1

χ

zˆ

0

∆ωp (z
′, t∓ τ (z)± τ (z ′))

dz ′

β (z ′,ω)
+ i

γ

χ

zˆ

0

dz ′

β (z ′,ω)
.

(F2)

The general solution defined by equations (F1) and (F2) is valid for∣∣∆S⇄ (z,ω, t)
∣∣≪ |S(z,ω)| . (F3)
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Appendix G. Uncoupled SBMwith semiclassical boundary conditions at the edges

We look for the quasi-states of the uncoupled SBM numerated by quantum number q in the form of a linear
combination of fields E→ (x, t) and E← (x, t) defined by equations (F1) and (F2):

Eq (z,ω, t) = E→ (z,ω, t)+ E← (z,ω, t) . (G1)

Assuming that the CF is smooth along the whole SBM length including edges, we determine the semiclassical
boundary conditions for E⇄ (z, t) at the SBM edges corresponding to the semiclassical turning points at
z= 0 and z= L: E← (0,ω, t) = E→ (0,ω, t)exp

(
iπ
2

)
and E← (L,ω, t) = E→ (L,ω, t)exp

(
− iπ

2

)
[7]. Then we

find from equations (F1) and (F2):

Φ← (t) = Φ→ (t)exp

(
iπ

2

)
,

Φ→
(
t+

T

2

)
exp [−2iS(L,ω)− i∆S(L,ω, t)+ γT] = Φ←

(
t− T

2

)
exp

(
− iπ

2

)
,

∆S(L,ω, t) = ∆S→ (L,ω, t)+∆S← (L,ω, t) , T= 2τ (L,ω) .

(G2)

Here T is the full roundtrip propagation time. Equation (G2) leads to the functional equation:

Φ→
(
t+

T

2

)
=−Φ→

(
t− T

2

)
exp [2iS(L,ω)+ i∆S(L,ω, t)− γT] . (G3)

For the harmonic modulation determined by equation (14),

∆ωp(z, t) =−iγ+∆ωp0(z)+∆ωp1(z)cos(ωpt), |∆ω(z, t)| ≪
∣∣∆ω0

cut(z)
∣∣ ,

we have

∆S(L,ω, t) = Ω̃p0 +Ω̃p1 cos
(
ωpt
)
+ iγT

Ω̃p0 =
2

χ

Lˆ

0

∆ωp0 (z)
dz

β (z,ω)
, Ω̃p1 =

2

χ

Lˆ

0

∆ωp1 (z)cos

(
ωp

(
T

2
− τ (z)

))
dz

β (z,ω)
. (G4)

It is convenient to fix ω0 in the vicinity of CF ωcut (z, t) by the quantization rule [7]:

2S(L,ω0)+Ωp0 = 2π

(
n0 +

1

2

)
, n0≫ 1, integer. (G5)

Here the integer n0 is chosen to minimize the magnitude of∆ω0
cut (z). In the absence of modulation,

Ω̃p0 = Ω̃p1 = 0 and material and scattering losses, γ = 0, this rule determines the actual axial
eigenfrequencies of the SBM. For small deviation of frequency ω from ω0, we have

S(z,ω) = S(z,ω0)+∆ωτ (z,ω0) , ∆ω = ω−ω0. (G6)

Combining equations (G3), (G5) and (G6) we have

Φ→
(
t+

T

2

)
=Φ→

(
t− T

2

)
exp
(
i∆ωT− γT+ iΩ̃p1 cos

(
ωpt
))

. (G7)

To solve equation (G7) we introduce function f→ (t) so that

Φ→ (t) = exp(if→ (t)) (G8)

and rewrite equation (G7) as

f→
(
t+

T

2

)
− f→

(
t− T

2

)
= (∆ω+ iγ)T+Ω̃p1 cos

(
ωpt
)
+ 2π q, q= 0, ±1, ±2, . . . . (G9)

Solution of this equation is

f→ (t) = f0 sin
(
ωpt
)
+ ξ t, f0 =

Ω̃p1

2sin
(

ωpT
2

) , ξ =∆ω+ iγ+
2π q

T
. (G10)
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It follows from equation (G10) that

Φ→ (t) = exp(if→ (t)) = exp
(
f0 sin

(
ωpt
)
+ ξ t

)
, Φ← (t) = Φ→ (t)exp

(
iπ

2

)
. (G11)

Substitution of these expressions for Φ⇄ (t) into equation (G1) leads to the exclusion of undefined
frequency shift∆ω = ω−ω0 and yields the expression for normalized quasi-eigenfrequencies ωq and
quasi-states Eq (z, t) of a free SBM:

ωq = ω0 +
2π q

T
, q= 0, ±1, ±2, . . . ,

Eq (z, t) =
C√
β0 (z)

exp

−i(ω0 + iγ+
2π q

T

)
t+ i

Ω̃p1

2sin
(

ωpT
2

) sin(ωp (t− τ0 (z))
)

× cos

(
π

4
+ S0 (z)+

2qπ

T
τ0 (z)+∆S0 (z, t)

)
, (G12)

where

C=
√
2

 Lˆ

0

dz

β0 (z)

−1/2, S0 (z) =

zˆ

0

β0 (z)dz, β0 (z) =

√
− 2

χ
∆ωcut (z), τ0 (z) =

1

χ

zˆ

0

dz

β0 (z)
,

∆S0 (z, t) =
2

χ

zˆ

0

∆ωp0 (z)
dz

β0 (z)
+

2

χ
cos
(
ωpt
) zˆ

0

∆ωp1 (z)cos

(
ωp

(
T

2
− τ0 (z)

))
dz

β0 (z)
,

∆S0 (L, t) = Ω̃p0 +Ω̃p1 cos
(
ωpt
)
,

Ω̃p0 =
2

χ

Lˆ

0

∆ωp0 (z)
dz

β0 (z)
, Ω̃p1 =

2

χ

Lˆ

0

∆ωp1 (z)cos

(
ωp

(
T

2
− τ0(z)

))
dz

β0(z)
. (G13)

Appendix H. Rectangular SBM

We consider an SBR with a rectangular CF which is uniform in the region between its edges 0< z< L,

∆ωcut (z)≡∆ω0
cut, (H1)

and has abrupt and sufficiently large negative breaks at edges z= 0 and z= L leading to the boundary
conditions Eq (0, t) = 0 and Eq (L, t) = 0. We look for the quasi-states in the form given by equation (G1) so
that these boundary conditions are equivalent to conditions E← (0,ω, t) =−E→ (0,ω, t) and
E← (L,ω, t) =−E→ (L,ω, t). The expressions given by equations (16), (18) and (22) for the propagation
constant, circulation time, and modulation parameters are now simplified to

β (z,ω0) = β0 =

√
2

χ
∆ω0

cut =
n0
c

√
2ω0∆ω0

cut, τ (z) =
z

χβ0
, T= τ (2L,ω0) =

n0L

c

√
2ω

∆ω0
cut

,

Ω̃p0 =
2

χβ0

Lˆ

0

∆ωp0 (z)dz, Ω̃p1 =
2

χβ0

Lˆ

0

∆ωp1 (z)cos

(
iωp

(
T

2
− z

χβ0

))
dz, χ =

c2

n20ω0
.

(H2)

We fix ω0 in the vicinity of CF ωcut (z, t) by the quantization rule (compare with (G5)):

2S(L,ω0)+Ωp0 = 2πn0, n0≫ 1, integer. (H3)

Then, the equations for functions Φ→ (t) and Φ← (t) become:

Φ← (t) =−Φ→ (t) ,

Φ←
(
t+

T

2

)
exp [−2iS(L,ω0)− i∆S(L,ω0, t)] =−Φ→

(
t− T

2

)
. (H4)
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Equations (H4), (H3), (G4) and (G6) lead to equation (G7) for Φ→ (t) which solution determines Φ→ (t)
and Φ← (t) by equations (G8), (G10) and (G11). Finally, the expression for the quasi-states of the
rectangular SBM is

Eq (z, t) =

√
2
L
exp

−i

(
ω0 + iγ+

2π q
T

)
t+ i

Ω̃p1

2sin
(

ωpT
2

) sin

(
ωp

(
t− z

χβ0

))cos

(
β0z+

2qπ z
χβ0T

+∆S0 (z, t)

)
,

(H5)

where

∆S0 (z, t) =
2

χβ0

zˆ

0

∆ωp0 (z)dz+
2

χβ0
cos
(
ωpt
) zˆ

0

∆ωp1 (z)cos

(
ωp

(
T

2
− z

χβ0

))
dz. (H6)

Appendix I. An SBM coupled to the input–output waveguide

We rewrite equation (19) as

Eout (t) = τEin (t)+κE− (0, t) (I1)

E→ (0, t) =−κEin (t)+ τE← (0, t) . (I2)

Substitution of the input fields

Ein (t) = exp(−iωt) , (I3)

Eout (t) = exp(−iωt)E0out (t) (I4)

and

E⇄ (0, t) = exp(−iωt)Φ± (t) (I5)

into equations (I1) and (I2), yields the functional equations for Φ± (t):

Eout (t) = τ +κΦ− (t)

Φ+ (t) =−κ+ τΦ− (t)

Φ− (t)exp=Φ+ (t−T) Ã(t) ,

(I6)

where

Ã(t) = exp

2i

Lˆ

0

β (z)dz+ iΩ̃p0 + iΩ̃p1 cos

(
ωp

(
t− T

2

))
− iπ

2

 . (I7)

The functional equation for Φ+ (t) following from equation (I6) is:

Φ+

(
t+

T

2

)
= τ Ã(t)Φ+

(
t− T

2

)
−κ. (I8)

Introducing Φ̃ (t) = Φ
(
t+ T

2

)
, we reduce equation (I8) to the one identical to equation (C3)

Φ̃+ (t) = τ Φ̃+ (t−T)exp

[
2iS(L)+ i∆S

(
L, t− T

2

)
− iπ

2

]
−κ (I9)

and find the solution of equation (I8) similar to that given by equation (C4):

Φ+ (t) =−κ

(
1+

∞∑
n=1

τ n
n−1∏
m=0

Ã(t−mT)

)
,

Ã(t) = exp

[
2iS(L)+ i∆S

(
L, t− T

2

)
− iπ

2

]
.

(I10)
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After substitution of equations (I1)–(I5) into equation (I10), we find

Eout (t) = Ein (t)τ

{
1−κ2

∞∑
n=0

τ n exp

[
(n+ 1)

(
iωT− 2ηωL

c
+ iΩp0

)
+ iσn+1 cos

(
ωpt−

n+ 2

2
ωpT+ arg

(
Ωp1

))]}
. (I11)

Expanding exp(iσn+1cos(. . .)) in this equation into series using Jacobi-Anger formula leads to equation (21)
of the main text.

Appendix J. Optimization of the power consumption: formulation

First, we describe the method of optimization of power consumption for the RTM. We consider the resonant
parametric modulation when ωpT= 2ωpn0L/c= 2πN, N= 1, 2, . . . having the modulation index (see
equation (6) of the main text)

Ωp1 =
ω0

c

2Lˆ

0

dz∆np1 (z)exp

(
iπN

L
z

)
. (J1)

Then, for the Pockels modulation the power consumption can be presented as

PPock =WPock

2Lˆ

0

dz∆n2p1 (z) (J2)

with constant proportionality coefficientWPock.
Presenting the modulation amplitude of refractive index as np1 (z) = n0p1f(z), expressing n

0
p1 through

PPock from equation (J2) as np1 = P1/2Pock

(
WPock

2Ĺ

0
dzf 2(z)

)−1/2
and substituting it into (J1), we have:

∣∣Ωp1

∣∣= ω0

c

√
PPock
WPock

∣∣∣∣2Ĺ
0
dz∆np1 (z)exp

(
iπN
L z
)∣∣∣∣√

2Ĺ

0
dz∆n2p1 (z)

. (J3)

Thus, to maximise the modulation index
∣∣Ωp1

∣∣ for the fixed power consumption PPock, we have to maximise
the last fraction in this expression, which, within a constant factor, coincides with the expression for ΩPock

p1 in
equation (42).

Similar, for the Kerr modulation we have

PKerr =WKerr

2Lˆ

0

dz
∣∣∆np1 (z)

∣∣ . (J4)

Similar to the Pockels modulation, after the substitution np1 (z) = n0p1f(z), expressing n
0
p1 through PKerr from

equation (J4) and substituting it into (J3), we have:

∣∣Ωp1

∣∣= ω0

c

PKerr
WKerr

∣∣∣∣2Ĺ
0
dz∆np1 (z)exp

(
iπN
L z
)∣∣∣∣

2Ĺ

0
dz
∣∣∆np1 (z)

∣∣ . (J5)

For the fixed power consumption PKerr, we have to maximize the last fraction in the expression which, within
a constant factor, coincides with the expression for ΩKerr

p1 in equation (42).
For the SBM with arbitrary shape, the expression for the modulation index can be written down as (see

equations (22) and (26) of the main text)

Ω̃p1 =

L̃ˆ

0

∆̃np1 (z)G(z)dz, G(z) =
2ω0

χn0β (z,ω0)
cos

ω̃p

 T̃

2
− 1

χ

zˆ

0

dz

β (z,ω0)

 , (J6)
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and the optimization is performed similarly to the RTM using equations analogous to equations (J2)–(J5). In
particular, to find the optimum ∆̃np1 (z) in the case of the Pockels modulation, we have to maximize the last
fraction in the expression (compare with equation (J3)):

∣∣∣Ω̃p1

∣∣∣=√ PPock
WPock

∣∣∣∣∣ Ĺ̃0 ∆̃np1 (z)G(z)dz

∣∣∣∣∣√
Ĺ

0
dz∆n2p1 (z)

. (J7)

Appendix K. Optimization of the power consumption for Pockels modulation: exact
solution

The optimized spatial profile of parametric modulation determined in appendix J can be found analytically.
For this purpose, starting with an SBM, we find the optimum ∆̃np1 (z)maximizing the absolute value of
modulation index defined by equation (J7) using the Cauchy–Schwarz inequality: L̃ˆ

0

∆̃np1 (z)G(z)dz


2

⩽
Lˆ

0

dz∆n2p1 (z)

Lˆ

0

dzG2 (z). (K1)

It immediately follows from this inequality and equation (J7) that the maximum of
∣∣∣Ω̃p1

∣∣∣ is achieved for
∆̃np1 (z)∼ G(z) . (K2)

For the Pockels modulation of an RTM, the approach based on the inequality in equation (K1) fails since
then the function similar to G(z) in equation (J6) is proportional to the complex exponent (see equation (J1)
for Ωp1) and the Cauchy–Schwarz inequality is reduced to a trivial relation. In this case, we solve this
problem as follows. Assume that∆np1(z)is the SDMmaximizing

∣∣Ωp1

∣∣defined by equation (J3) with fixed
power P. Then we can always find a shift zt such that

s(zt) =

2Lˆ

0

dz∆np1 (z) sin

(
πN

L
(z− zt)

)
= 0. (K3)

Obviously, s(0) =−s(L/N). Therefore, since s(zt) is continuous, there exists zt such that f(zt) = 0 (Bolzano’s
intermediate value theorem). For this zt we have

Ωp1 =
ω0

c

2Lˆ

0

dz∆np1 (z)cos

(
πN

L
(z− zt)

)
. (K4)

Now, using the Cauchy–Schwarz inequality 2Lˆ

0

dz∆np1 (z)cos

(
πN

L
(z+ zt)

)2

⩽
2Lˆ

0

dz
(
∆np1 (z)

)2 2Lˆ

0

dzcos2
(
πN

L
(z+ zt)

)
, (K5)

we conclude that the SDM which maximizes
∣∣Ωp1

∣∣ in equation (J3) is

∆np1(z) = ∆n(opt)p1 (z) = ∆n0p1 cos(πN(z+ zt)/L). However, for an arbitrary shift z0, we have∣∣∣∣∣∣
2Lˆ

0

dz∆n(opt)p1 (z+ z0)exp

(
iπN

L
z

)∣∣∣∣∣∣=
∣∣∣∣∣∣
2Lˆ

0

dz∆n(opt)p1 (z)exp

(
iπN

L
z

)∣∣∣∣∣∣= 1

2
∆n0p1. (K6)

Therefore, the general solution maximizing
∣∣Ωp1

∣∣for the given power consumption P is

∆np1 (z)∼ cos

(
πN

L
(z− z0)

)
(K7)

with arbitrary shift z0.
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Figure L1. An SBM coupled to a waveguide positioned at z= zc away from the WGM turning points z= 0 and z= L. Inset:
parameters of S-matrix in equation (L7).

Appendix L. An SBM coupled to the input–output waveguide positioned away from the
SBM edges

We consider an SBM coupled to an input–output waveguide arbitrarily positioned along the SBM axis as
illustrated in figure L1. Solutions of equation (15) in the left- and right-hand sides of the SBM can be
presented in the form defined by equations (F1) and (F2). After application of the boundary condition at the
turning point z= 0 the waves propagating towards positive (→) and negative (←) directions along the SBM
at its left-hand side, z< L/2, are found in the form:

E⇄left (z, t) =H± (z, t)Φ left (t∓ t̃c (z)) , E⇄right (z, t) =H± (z, t)Φ right (t∓ t̃c (z)) ,

H± (z, t) =

√
β (zc)

β (z)
exp

−iωt± i

zˆ

zc

β (z)dz± i
1

χ

zˆ

zc

∆ωp (z
′, t∓ t̃c (z)± t̃c (z

′))
dz ′

β (z ′)
∓ γ t̃c (z)

 ,

t̃c (z) =
1

χ

∣∣∣∣∣∣
zˆ

zc

dz ′

β (z ′)

∣∣∣∣∣∣ .
(L1)

Here Φ left (t∓ t̃c(z)) and Φ right (t∓ t̃c(z)) are arbitrary functions. It follows from equation (L1) that at the
coupling point

E⇄left (zc, t) = exp(−iωt)Φ±left (t) , E⇄right (zc, t) = exp(−iωt)Φ±right (t) . (L2)

The semiclassical condition of vanishing of the field to the left of the turning point z= 0 and to the right
from the turning point z= L yields [7]

E→left
(
0↙, t

)
= E←left

(
0↙, t

)
exp

(
− iπ

2

)
, E→right

(
L↖, t

)
= E←right

(
L↖, t

)
exp

(
− iπ

2

)
. (L3)

Here we denote the asymptotics of solutions near the right hand side of z= 0 and left hand side of z= L by
0↙ and L↖, respectively. From equations (L1) and (L3) we find

H−
(
0↙, t

)
=H+

(
0↙, t

)
Ãleft (t) ,

Ãleft (t) = exp

 iπ

2
+ 2i

zcˆ

0

β (z)dz+ iΩ̃left
p0 + iΩ̃left

p1 cos
(
ωpt
)
− 2γTleft

 ,

Ω̃left
p0 =

2

χ

zcˆ

0

∆ωp0 (z)

β (z)
dz, Ω̃p1 =

2

χ

zcˆ

0

∆ωp1 (z)cos
(
ωp (Tleft− τ (z))

) dz

β (z)
, (L4)
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and

H−
(
L↖, t

)
=H+

(
L↖, t

)
Ãright (t) ,

Ãright (t) = exp

− iπ
2
− 2i

Lˆ

zc

β (z)dz− iΩ̃right
p0 − iΩ̃right

p1 cos
(
ωpt
)
− 2γTright

 ,

Ω̃
right
p0 =

2

χ

Lˆ

zc

∆ωp0 (z)

β (z)
dz, Ω̃p1 =

2

χ

Lˆ

zc

∆ωp1 (z)cos
(
ωp

(
Tright− τ (z)

)) dz

β (z)
.

(L5)

It follows from equations (L1), (L4) and (L5) that

Ãleft (t)Φ
+
left (t−Tleft) = Φ−left (t+Tleft) , Tleft = t̃c (0) ,

Ãright (t)Φ
+
right

(
t−Tright

)
=Φ−right

(
t+Tright

)
, Tright = t̃c (L) .

(L6)

As in sections 2 and 3, we describe coupling between the input–output waveguide and SBM with the
transfer matrix approach. The relations between the input wave, Ein (t) = exp(−iωt), the waves inside
the SBM defined by equation (L1) at the waveguide position z= zc, and the output wave Eout (t) =

E(0)outexp(−iωt) are defined by the matrix equation: Eout (t)
E←left (zc, t)
E→right (zc, t)

= S

 Ein (t)
E→left (zc, t)
E←right (zc, t)

 , S=

 τ κ κ
−κ χ r
−κ r χ

 . (L7)

The physical meaning of elements of S-matrix is illustrated in the inset of figure L1. As in the previous cases,
without loss of generality we assume that these elements are real [23]. It follows from the unitarity of
S-matrix that

τ 2 + 2κ2 = 1,

κ2 +χ 2 + r2 = 1,

r− τ +χ = 0,

κ2 + 2χ r= 0.

(L8)

These relations allow to express all elements of S-matrix through one of them. For example, for the assumed
small waveguide-SBM coupling, κ≪ 1, we have:

r=−κ2

2
, τ = 1−κ2, χ = 1− κ2

2
. (L9)

Using equation (L2), we reduce equation (L7) to

E(0)out (t) = τ +κ
(
Φ+

left (t)+Φ−right (t)
)

Φ−left (t) =−κ+χΦ+
left (t)+ rΦ−right (t)

Φ+
right (t) =−κ+ rΦ+

left (t)+χΦ−right (t). (L10)

The last two equations in equation (L10) together with two equations equation (L6) are four functional
equations which determine the four unknown functions Φ+

left (t),Φ
−
left (t),Φ

+
right (t), and Φ−right (t), while the

first equation in equation (L10) determines the output field. The analytical solution of these equations has
not been found here. However, these equations can be solved for the important case when the SBM is axially
symmetric with respect to its centre z= L/2, i.e. when∆ω0

cut

(
L
2 − z

)
=∆ω0

cut

(
L
2 + z

)
. We assume the

excitation of SBM to be symmetric as well, so that∆ωp

(
L
2 − z, t

)
=∆ωp

(
L
2 + z, t

)
and the input–output

waveguide is positioned at the SBM centre, zc = L/2. Then, the field in the SBM can be ether axially
symmetric or antisymmetric with respect to z= L/2. We are interested only in symmetric solutions since the
antisymmetric solutions vanish at the SBM centre and, therefore, do not couple to the waveguide. From
equation (L2), the latter condition requires that Φ±left (t) = Φ∓right (t) and equations (L6) and (L10) are
simplified to:

E(0)out (t) = τ + 2κΦ+
left (t)

ÃleftΦ
+
left

(
t− T

4

)
=−κ+(χ + r)Φ+

left

(
t+

T

4

)
. (L11)

The latter equation here is simply reduced to equation (B1) which is analytically solved in appendix B.
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AppendixM. An RTMwith an internal light source

The parametrically excited RTM with a light source is described by equation (A1). Then, the general solution
of equation (A1) is determined by equation (A5) with arbitrary function Φ (t). For the harmonic
modulation of refractive index determined by equation (2), the continuity condition E(0, t) = E(2L, t) yields
the functional equation for Φ (t):

Φ (t) = A(t)Φ (t−T)+B(t) , (M1)

where

A(t) = exp

[
iωT+ iΩp0−

η

n0
ωT+ i|Ωp1|cos

(
ωpt+ arg

(
Ωp1

)
−ωpT

)]
(M2)

and

B(t) =
n0c

2iω
A(t)exp [−i∆ωin (t−T)]Fin, Fin =

2Lˆ

0

dxexp

(
−iωpn0

c
z

)
Fin (z) . (M3)

Function Φ (t) satisfying equation (M1) is found as (see appendix B):

Φ(t) =
n0c

2iω0
Fin exp[−i∆ωin(t−T)]

{
exp[2i|Ωp1|cos(ωp(t−T)+ arg(Ωp1))]

+
∞∑
n=0

exp(i(n+ 1)∆ωinT)exp(2i|Ωp1|σn+1 cos(ωpt+ arg(Ωp1)−
n+ 2

2
ωpT))

}
,

σn =
sin( n2ωpT)

sin( 12ωpT)
. (M4)

Taking into account that E(0, t) = exp(−iω0t)Φ(t), we find:

E(0, t) =
n0c

2iω0
Fin exp(−iωint+ i∆ωinT)

{
exp[2i|Ωp1|cos(ωp(t−T)+ arg(Ωp1))]

+
∞∑
n=0

exp

(
(n+ 1)

(
i∆ωinT−

2ηωL

c

))
exp

(
2i|Ωp1|σn+1 cos

(
ωpt+ arg(Ωp1)−

n+ 2

2
ωpT

))}
.

(M5)

We note the similarity of this expression for the field and equation (C8) for the output field for the RTM
coupled to an input–output waveguide. This result justifies the approximation of a realistic input–output
waveguide coupled to microresonator by an internal source used in several publications (see, e.g. [10,
17–19]).
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[2] Duclos P, Soccorsi E, Št′ovíček P and Vittot M 2008 On the stability of periodically time-dependent quantum systems Rev. Math.

Phys. 20 725–64
[3] Holthaus M 1995 On the classical-quantum correspondence for periodically time dependent systems Chaos Solitons Fractals

5 1143–67
[4] Shvartsburg A B 2005 Optics of nonstationary media Phys.-Usp. 48 797–823
[5] Platero G and Aguado R 2004 Photon-assisted transport in semiconductor nanostructures Phys. Rep. 395 1–157
[6] Landau L D and Lifshitz E M 1976Mechanics (Butterworth-Heinemann)
[7] Landau L D and Lifshitz E M 1977 Quantum Mechanics (Pergamon)
[8] Kohler S, Lehmann J and Hänggi P 2005 Driven quantum transport on the nanoscale Phys. Rep. 406 379–443
[9] Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R, Kahn J M and Lončar M 2019 Broadband electro-optic
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