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THESIS SUMMARY

The accuracy of altimetrically derived oceanographic and geophysical
information is limited by the precision of the radial component of the satellite
ephemeris. A non-dynamic technique is proposed as a method of reducing the global
radial orbit error of altimetric satellites. This involves the recovery of each coefficient
of an analytically derived radial error correction through a refinement of crossover
difference residuals. The crossover data is supplemented by absolute height
measurements to permit the retrieval of otherwise unobservable geographically
correlated and linearly combined parameters. The feasibility of the radial reduction
procedure is established upon application to the three day repeat orbit of SEASAT.

The concept of arc aggregates is devised as a means of extending the method to
incorporate longer durations, such as the 35 day repeat period of ERS-1. A
continuous orbit is effectively created by including the radial misclosure between
consecutive long arcs as an infallible observation. The arc aggregate procedure is
validated using a combination of three successive SEASAT ephemerides. A complete
simulation of the 501 revolution per 35 day repeat orbit of ERS-1 is derived and the
recovery of the global radial orbit error over the full repeat period is successfully
accomplished.

The radial reduction is dependent upon the geographical locations of the
supplementary direct height data. Investigations into the respective influences of
various sites proposed for the tracking of ERS-1 by ground-based transponders are
carried out. The potential effectiveness on the radial orbital accuracy of locating future
tracking sites in regions of high latitudinal magnitude is demonstrated.
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CHAPTER 1

INTRODUCTION

During the past two decades altimetric satellites have enabled great strides to
be made in the detailed monitoring of the ocean surfaces of the Earth. Since 1973,
when Skylab became the first satellite to include an altimeter in its payload, GEOS-3
(1975), SEASAT (1978), GEOSAT (1985) and presently ERS-1 (1991) and
TOPEX/POSEIDON (1992) have all been successful in providing high quality
altimetric data. Follow-on missions of the latter three are now being planned.

Current altimeter observations are generally accurate to the order of 10cm.
However, precise positioning of the sea surface is limited, primarily by inaccuracies
in the radial component of the computed orbit of the spacecraft. The principal effects
occur as a result of mismodelling of the gravitational field of the Earth, although
significant non-gravitational sources, due to air drag, solar radiation pressure and
initial position errors also contribute. The main objective of the research carried out is
to investigate the possibility of a global reduction of the ephemeris error in the radial
direction, to a level comparable with that of the instrumental measurement.

A non-dynamic analytical radial correction to dynamic long arc ephemerides is
deduced for a satellite travelling in a low eccentric, frozen, repeat orbit, from
consideration of both the gravitational and non-gravitational contributions. A radial
data set is geometrically obtained from ascending and descending ground-track
intersection points of a long arc orbit. This has the advantage of eliminating from the
direct altimeter data both the relatively large geoidal errors and any time invariant
biases. A procedure is proposed whereby each coefficient of the radial correction
expression 1s recovered through a refinement of the crossover residuals. The

crossover data is supplemented by absolute height measurements to permit the
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retrieval of the otherwise unobservable geographically correlated and linearly
combined parameters.

The feasibility of the method is initially established upon application to the
three day repeat orbit of the NASA satellite SEASAT (1978-64A), operational during
three months of 1978. In anticipation of the thirty five day repeat orbit of the
European Remote Sensing satellite, ERS-1, the concept of arc aggregates is devised.
The inclusion of the radial orbital misclosure as an infallible observation enables
successive ephemerides to be effectively amalgamated into a single continuous orbit.
Several non-gravitational radial correction terms are unique to individual arcs of an
aggregate, whereas other purely periodic gravitational constituents are common to
each. The arc-dependent and arc-independent parameters are identified and the
aggregate extension carried out using consecutive SEASAT long arcs.

A complete simulation of the 501 revolution per 35 days repeat orbit of ERS-1
has been constructed, using the creation of a clone of the GEM-T1 gravity field
model. The aggregate technique is applied and the recovery of the global radial orbit
error over the full length of the repeat period is accomplished.

The reduction of the radial orbit error is dependent upon the geographical
locations of the supplementary direct height data. Various proposals for ground-based
transponder sites from which tracking of ERS-1 might be achieved are examined.
Using laser ranging data from an early ERS-1 three day repeat orbit, the respective
effectiveness of each position on the error reduction procedure is investigated and
optimum locations are considered.

Strong evidence of the possible improvement in the accuracy of altimetrically
derived oceanographic and geophysical information is produced. Future employment
of the procedures and recommendations proposed throughout the thesis should

provide considerable assistance in achieving that goal.
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CHAPTER 2

ALTIMETRY

§ 2.1 The Alumeter

The development of the altimeter in the early 1970’s greatly enhanced the
ability to study and monitor variations in the ocean surfaces of our planet. An
altimeter is an electronic measuring device carried on board a satellite which is used to
calculate the distance between the electronic centre of the instrument and the
‘nstantaneous sea surface directly beneath. The altimetric concept involves u
microwave radar pulse emitted by the nadir-pointing altimeter, the spread of the pulse
forming a “footprint”, typically a few kilometres in diameter, on the surface below. as

shown in Figure (2.1).

Altimeter

Figure (2.1)
The altimemc principle
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The pulse is reflected by the surface in a manner dependent upon the surface
characteristics and some of the reflected signal is received back by the altimeter. The
time taken from transmission to reception is recorded together with the returned
waveform. The distance from the satellite to the sea surface is then derived by the on-
board software. By including an altimeter in the payload of artificial satellites,
geodesists can measure the mean sea level and its variability due to ocean currents and
tides. The inaugural altimetric mission was Skylab, launched in 1973, which acted as
proof of the concept. This was followed by GEOS-3 (1975) and then by SEASAT,
which in 1978 became the first state-of-the-art satellite totally dedicated to ocean
observation. Subsequently altimeters have been carried by GEOSAT (1985), ERS-1
(1991) and most recently TOPEX/POSEIDON (1992), with ERS-2, GEOSAT and

TOPEX/POSEIDON follow-ons planned.

$ 2.2 Reference Ellipsoid and Geoid

In order for an altimetric observation to become useful in an absolute sense,
the measurement 1s formed with respect to a convenient reference surface. This is
taken to be an ellipsoid centred at the centre of the Earth, having semi-major axis =
6378 km in the Earth's equatorial plane, semi-minor axis = 6357 km along the
Earth's polar axis, equivalent to a flattening of 1/298.26. This reference surface
closely approximates the actual shape of the Earth. The geoid is then defined to be
that equipotential surface perpendicular to the overall force due to the gravitational and
rotational accelerations as measured at the surface of the Earth. The height of the
geoid, N, coincides with that at which the mean sea surface would lie if the sea was
of uniform density, had no currents or tides and was unaffected by winds and

atmospheric pressure.
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§ 2.3 Altimetric Height Corrections

Having obtained a raw altimeter height measurement, hpay, corrections must
be made in order to derive the final observed height, hyy. Various atmospheric
conditions affect the radar pulse as it travels through the air between the satellite and
the sea surface. Air pressure and humidity at different levels of the atmosphere create
refraction effects which alter the speed of the signal. These meteorological conditions
are measured by other instruments such as on-board microwave radiometers for the
wet tropospheric correction and surface meteorological stations for atmospheric
pressure, from which corrections are determined. Corrections required are the
barometric correction, hpar, 10nospheric correction, hjgn, and the wet and dry
tropospheric corrections, hyrop and hggrop, respectively.

During the first few weeks of the lifetime of a satellite its altimeter undergoes
calibration tests which invariably discover timing or measurement biases. These are
modelled and removed from any observations taken later by applying an instrumental
correction, hjng, to the raw measurement.

Corrections due to solid Earth and ocean tides, hge; and hgy, respectively, are
calculated from existing models to account for dynamic variations of the sea surface
height during the time of travel of the altimetric pulse. Finally a term, hggp, is derived
to take account of the presence of sea surface roughness, known as sea-state bias.

All these corrections are applied to the raw altimeter height to yield the final

altimetric height observation as

hall = hraw + hbar + hion + throp + hdtrop + hins[ + hssb + hsct + hot .

The accuracy of the instrument, i.e. that of hp,y, 1s generally at the few centimetre

level for current altimeters such as that on ERS-1, but the corrected measurement,
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hayi, is dependent on the accuracy of the corrections. An r.m.s. value of 10cm for hyy,

1s typically quoted.

§ 2.4 Altimetric Applications

SATELLITE
A /c’l\
hsot% E ho!t
RN
. “)“g"“\}-\,\?.w \\\\\ geoid
\ ,,,,,,,, - /_x‘ N \ \\\\\\\\\\\\\\\ / f fosog
= : ' Z__reference elipsoi
\\\w,,/ AN P

mean sea surfoce

Figure (2.2)
Alumetric height observation

hay = corrected altimeter observation
£ = sea surface topography height
hey; = computed satellite orbital position

N = geoid height

The difference in height between the geoid and the actual sea surface (due to
the phenomena mentioned in section §2.2) is known as the sea surface topography.
Consider Figure (2.2). Let us assume a precise altimetric measurement (1o within
10cm or less) and an equally accurate knowledge of the position of the satellite with

respect to the reference ellipsoid. Under these conditions alimetric satellnes can
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provide important information about the sea surface topography given that the geoid
is well known (or conversely about the geoid if the sea surface topography is well
known), since, from Figure (2.2),

heat = hay+ N+&+ v, -(2.1)
where v are random errors.

Although the altimeter measurement, hyjy, has been corrected for instrumental,
atmospheric and surface wave height errors, by far the largest uncertainties in satellite
altimetry are the orbital and geoid errors, i.e. errors in hga and N of equation (2.1).
The latter are due to a lack of knowledge of the Earth's mass distribution. Orbital
errors result from errors in the long wavelength gravity field model used to compute
the satellite ephemeris, although they are compounded by other forces, especially
atmospheric drag and direct and Earth-reflected solar radiation pressure (see chapter
3).

In general, given the state-of-the-art in precise orbit determination, it is safe to
assume that for past and present altimetric satellites, the maximum along-track orbit
error rarely exceeds 30m, whilst the maximum cross-track error rarely exceeds 3m.
Over tens of metres along-track and cross-track, the radial component of altimetric
orbits varies by a negligible amount, due to their near-circularity, and so non-radial
orbit errors produce insignificant contributions to the error in hggy. Thus, although the
actual altimeter measurement is assumed normal to the reference ellipsoid, the radial
component is the main contributor to altimetric orbit error, and indeed to altimetric
error altogether, excluding the geoid. As the altimeter measurement error has
components due to the geoid and orbit which are geographically correlated,
differencing two radial height observations above the same point on the Earth will
produce a result exclusive of such geographically related errors. Such differences can
be obtained at crossover points (see chapter 4). The cancellation of the geoid height

correction to altimeter measurement differences at crossovers is fundamental to
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producing a precise data set, but the loss of the geographically correlated radial error
of gravitational origin is a serious deﬁciencgl in the data type.

The following chapters describe in detail a method for using altimetric data in
the form of crossover difference residuals to reduce the global radial orbit error. The
method is then applied to actual measurements taken from the NASA satellite
SEASAT (1978-64A), operational during three months of 1978, and to a simulation
of ERS-1, launched in July, 1991. Both orbits were/are repeat orbits to allow
variations of the sea surface to be observed over an extended period of time. Their
low eccentricity allows minimum altitude variation, thus reducing along-track and

cross-track orbit errors and the relatively high inclination gains good global coverage.
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CHAPTER 3

RADIAL ORBIT ERRORS

A detailed theory of the radial orbit error of an artificial Earth satellite
travelling in a frozen, repeat orbit of low eccentricity is now developed. The final
fundamental expression ascertained is that from which the coefficients are recovered

in the radial orbit error reduction procedures applied 1o SEASAT and ERS-1 in the

following chapters.

§ 3.1 Keplerian Orbital Elements

Figure (3.1)
The orbital ellipse

Consider a satellite at point P in Figure (3.1), in an elliptical orbit around the
Earth, whose centre is at the focus of the ellipse, C. DA is the diameter of a circle of
radius a with centre at O, the cente of the ellipse. This is the auxiliary circle. A 1s the

point on the ellipse nearest t0 C and for antificial Earth satellites is called perigee. B is
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the point on OA such that PﬁA = 90°. BP produced meets the auxiliary circle at Q,
and this defines the eccentric angle, or eccentric anomaly, E, as the angle Q(SA‘ The
ratio 8—%( < 1)is the eccentricity, €, where OC=aecand CA=a(l-¢), abeingthe
semi-major axis. P is the general point ( acosE,a\ 1-e?sinE) and fis the true
anomaly.

Figure (3.2) shows the projection of the orbital ellipse onto a unit sphere

centred at the geocentre and inclined at an angle I to the equatorial plane of the Earth.

v is the point at which the ecliptic, the projection of the orbit of the Sun around the
sphere, intersects the equatorial plane. vis called the vernal equinox which precesses
around the unit sphere with a period of approximately 26,000 years. Orbits are often
derived with respect to the position of the vernal equinox at 0000hrs on st January,

2000. This is known as the J2000 reference frame, in which the x-axis is taken to be

the line from the geocentre to Y, the y-axis is 000 east of the x-axis in the equatonal
plane and the z-axis 1s perpendicular to the other two axes, along the line from the

geocentre 1o the north pole.

Figure (3.2)
Projection of the orbital ellipse onto the unit sphere
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The northwards passage of the satellite intersects the equatorial plane of the
Earth at N, the ascending node, where Q = yéN is the right ascension of the
ascending node. The angle between N and perigee subtended at O, Né\)A, is the
argument of perigee, .

a, e, [, Q and o are five of the six Keplerian elements which can be used to
define the motion of the satellite in its elliptic orbit at any particular time, t. a and e
define the size and shape of the ellipse, I and € the orientation of the orbital plane in
space and @ specifies the orientation of the ellipse in the orbital plane. The sixth
element is the mean anomaly, M. M defines the location of the satellite in the ellipse,
that is the point P in Figure (3.1).

Suppose the satellite completes one revolution in time T. Then the mean

2N
motion, n, is defined as n = 7 and the mean anomaly as
T

Mzn(t—tp), -(3.1)

where t is the time at which the satellite is at perigee, A.

M would be the angular distance travelled by the satellite since passing perigee
as viewed from the centre of the Earth, if the satellite travelled at constant angular
velocity. As the satellite moves in an ellipse, the angular velocity will not be constant
in reality but is averaged out over one complete revolution to be equal to n. Since all
altimetric satellites have a very low eccentricity = O(102), these orbits are nearly
circular. Hence P,Q and O,C of Figure (3.1) approximately coincide, f = E and from
Kepler’s equation [Roy,1982]

M=E-esinE , -(3.2)

Keplerian elements are frequently used instead of Cartesian co-ordinates when

describing satellite motion analytically as they give greater insight into the orbital
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variations. Furthermore, with the exception of M, which increases by 2r radians in
the time taken for one satellite revolution ( = 100 minutes for a satellite of 800km
altitude), the Keplerian elements change slowly during the satellite motion, except

near decay.

§ 3.2 Lagrange Planetary Equations

The Lagrange Planetary Equations are six differential equations which
describe the variation of the Keplerian elements with time in terms of the other

elements, namely [Kaula,1966];

da 2 oR

dt T naoM

de 1-¢29R 1-¢29R

dt naZe oM na’e  Jw

do - cosl _<7_l§+\/1—e28_R
dt naN'1 - e?sinl ol na’e e

-6
dl cosl JR 1 oR

dt nat\1 - e? sin] dw na?yi - e? sinl 0Q

dQ2 ] dR

dt 2T - 62 sinl 9

dM 1-e20R 2 0R

M, £ 9k
dt nale de  nada
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a, e, I, o, Q, M are the Keplerian elements at time t and R is the disturbing
function that gives rise to the force that distorts the orbit away from the ellipse
described in section §3.1.

For example, the gravitational force of the Earth acting on a satellite at a given

time may be written as the gradient of the geopotential, U, where

m
U =T+ Rpr s

R s being that part of the geopotential due to the asphericity of the Earth’s mass

distribution (Rpygp=0 = U :% = Perfectly elliptical orbit ) and u defined by

1L =nZa3, -(3.4)

If no disturbing forces acted on the satellite and 1t moved only under the
influence of a perfectly spherical Earth, then all the elements would remain constant

except for the mean anomaly which would vary according to the equation

§ 3.3 Mean Elements

The Keplerian elements discussed so far have been instantaneous at a given
time, t, and are called osculating elements. Such elements describe the perfect ellipse
a satellite would perform 1f it were subject to no perturbing effects apart from the
central force term of the gravity field. For example, €2 is the angular position with
respect to the vernal equinox at which the satellite would cross the equatorial plane of
the Earth if no perturbatory forces acted on it from time t to the time of the crossing.
Equations (3.3) describe the rates of change of these osculating elements and hence to

determine the perturbations in each element, each equation must be integrated
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analytically or numerically using the appropriate disturbing function. The equations
are difficult 1o solve in this form and so a simplification is made.

If the elements are averaged over many revolutions of the spacecraft, then the
mean elements a, ¢, 1, @, Q and M result. Over the time length of an ephemeris, a, ¢
and I remain almost constant, whereas ®, Q and M vary approximately linearly in
time, at least for e bounded away from zero under the effect of the dominant
oblateness term [King-Hele,1987].

The mean elements are the instantaneous elements with their short-periodic
components removed. For example, ® = @ — 8w , where dw is the short-periodic

perturbation in o at time t. Denoting € to be any of the six elements,

2(t'l0)+&0 for & =0,Q or M

&, for & =a,eorl

where t is the initial epoch of the orbit and £ the value of & at time 1,

Figure (3.3) shows the variations in the osculating elements during the six
day SEASAT orbit, from MJD43764 1o MJD43770. The changes typify those for
altimetic orbits, with a, ¢ and | remaining approximately constant, whereas Qand M
‘vary linearly with time. o remains steady around 90°, since SEASAT performed a
frozen orbit, as described in the next section. As a first approximation, the mean
elements are used to replace the osculating elements in the Lagrange Planetary
Equations, in which a, e and 1 are held fixed on the right hand side with ®, Q and M
assumed to have secular variations, even though for small e, the vanation of o, for

example, tan be non-linear [Cook,1966].
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Figure (3.3)
Osculating element variations during SEASAT 6-day orbit, MJD43764 to MID43770

§ 3.4 Frozen, Repeat Orbits

For an altimetric satellite to monitor dynamic variations of the oceans, it

usually performs a repeat orbit, which results when the ground-track repeats after a

fixed time interval, known as the repeat period, T In addition it is required that the
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radial distances are as repeatable as possible. The argument of perigee, in particular,

must have the same value after time Tp a5 shown schematically in Figure (3.4). Thus

after time o @ must be equal to W, its value at initial time 1 [Colombo,1984].

Hence for a repeat orbit,

. 2m

Ww=—, -(3.6)
1
p

where 1 is an integer.
DRECTION OF SATELUTE DRECTION OF SATELLTE
SOTON HOTION
@1=t,,0=0, (b)y1=1 +Tph 0=,

DRECTION OF SATELLITE

(C)T=1t,+Tp W#* W

Figure (3.4)
To illustrate that, for a frozen orbit, argument of perigee must remain fixed after each
repeat period
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The main variation in  is due to the second order zonal harmonic coefficient

of the gravity field, C,,, namely [Kaula,1966];

. 3nC,, /Ri\2 - 21
i = ”74”29('—}3) 1 -5cos (3.7)

a (1—62)2

The value of Cyq is of the order of 1073, Since a typical repeat period is of
several days, then, for i # 0, equation (3.7) can only satisfy equation (3.6) fore = 1,
which is impossible for low, altimetric orbits. Thus for an altimetric satellite to be in
its repeat orbit requires i = 0, that 1s ® = 0, from equation (3.6).

. . 2 .
One way to ensure @ is constant is to set 1 - 5 cos™I = 0, from equation (3.7).

In this case coszl :% — ] =63.4° or 116.6°. These values for the inclination are

known as the critical inclinations. One example of such a repeat orbit is that of
TOPEX/POSEIDON, which has its inclination set at approximately 669, chosen such
that @ is small. However, inclinations near the critical inclinations give an incomplete
global coverage and are away from the Sun-synchronous orbit required by multi-
instrument satellites such as ERS-1. For ERS-1, the synthetic aperture radar
community requires both constant shadowing for imagery and a Sun-synchronous
orbit to provide the power needed by the instruments on board.

Another possibility for o = 0 exists for low eccentric orbits. As e—0 the orbit
is nearly circular and hence the precise location of perigee is ill-defined. In this case
the non-singular elements e cos®w and e sine must be used to replace e and . If @
~ 90° and e is prescribed a specific value, the combined effect of the zonal harmonic
coefficients is such that e and  are invariant [Cook,1966], so that by “freezing” ® at

900 a frozen, repeat orbit results. This is the case for both SEASAT and ERS-1.
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§ 3.5 Perturbations to Satellite Orbits

Orbits for altimetric satellites at altitudes near 800km, such as ERS-1 and
SEASAT, are usually generated for a duration of about six or seven days, during
which time various disturbing forces act on the satellite. These cause corresponding
disturbances, or perturbations, to build up over this period. The asphericity of the
mass distribution of the Earth, the atmosphere, solar radiation pressure and
gravitatonal attraction from other planets all combine to alter the trajectory of the orbit
away from a perfect ellipse. Each of these effects is modelled when computing a
satellite ephemeris from the tracking data (see chapter 5). However, due to
uncertainties the perturbing forces cannot be modelled exactly and errors occur in the
computed orbit. It is the radial component of this orbit error that is considered here.
As will be revealed, the main contributions come from the mismodelling of the
gravity field of the Earth. The geopotential is expressed as the sum of a series with
each term dependent on a different geopotential coefficient. Errors in these
coefficients then lead to radial orbit errors of gravitational origin.

As well as the gravitational orbit errors there are several non-gravitational
constituents. Drag forces due to the atmosphere act on a satellite as it travels through
the air. Errors in the atmospheric density model are absorbed by solving for daily
drag coefficients. Failure to absorb all aerodynamic mismodelling within these solved
for parameters leads to a corresponding radial orbit error due to drag. Similarly errors
in the force models for solar radiation pressure create additional non-gravitational
radial orbit error.

The gravitational and non-gravitational errors are summed to achieve an
overall error due to both sources. In general, any orbital errors Aa, Ae and AM in a,e
and M will produce a corresponding error Ar in the radial distance. From Figure

(3.1), the geocentric distance, 1, of a satellite from the centre of the Earth is given by
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> = CB%+BP?

= (a cosE - ae )2 + (a \j 1-e2 sinE)2 .
Hence

r=a(l-ecosE). -(3.8)
Thus small changes Aa, Ae and AE produce a change Arinr where

Ar = Aa(1-ecosE) + a(-AecosE+eAEsinE ). -(3.9)

From equation (3.2),
cosM = cos( E -esinE) |
1.e.

cosM = cosE cos(e sinE) + sinE sin(e sinE)

cosE = cosM ,

to zero order in e. Similarly,
sinE = sinM.

Also, by equation (3.2),
AE = AM + AesinE + e AE cosE.
Substituting these results into equation (3.9) leads to
Ar = Aa - aAecosM +ae AM sinM + Of(e).
So for altimetric satellites with e small,
Ar = Aa - aAe cosM + ae AM sinM . -(3.10)

The term in AM is retained although it contains a factor of the eccentricity, e, because

the error AM is generally of order e’.
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§ 3.6 Gravitational Radial Orbit Error

Mismodelling of the gravitational field of the Earth is, in general, the cause of
the dominant error in the computation of a satellite ephemeris for orbits of altitude
800km or more. The gravity field is represented by the set of gravitational coefficients

Cym» Sy The geopotential can be represented in terms of the geocentric distance, T,

the geocentric latitude, ¢, and the geocentric longitude, A, as [Kaula,1966];

L
U=pny ¥ —5P, (sing)[ Cypycos(mh) + Sy sin(md)]
§=0 m=0 &+

where Py is the associated Legendre function of degree £ and order m, and R is the

mean equatorial radius of the Earth. U is the solution in spherical co-ordinates of
Laplace's equation for a point external to the Earth.
The geopotential expansion, U, can be transformed using the method of

Kaula into an expression in terms of the Keplerian elements as

2=0 0
where
uRQE ¢ - )
Ulm = 241 EEOFQmp(I) _2 Gﬁ,pq(e) S(\P’lmpq)
p= g
2-meve -meve
| CQm m even ng ’lrr?c en $~(3.11)
with S(\}‘Qmpq) = -Sp/m COS\PQmpq + Cm SlnLPQqu
2-m odd 2-m odd
and \szpq = (Q-2p+q)(w+M)-qm+m(Q-6g).)
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FQmP(D are inclination functions which rotate the potential from the equatorial to the

orbital plane, Gzpq(e) eccentricity functions to transform from true to mean anomaly,
Bg the Greenwich Mean Sidereal angle, i.e. the angle measured positive eastwards

from the vernal equinox to the Greenwich Meridian in the equatorial plane.

Any errors ACQm, Ang in the coefficients Cy_, SQ will produce a

m
corresponding error, AU, in the geopotential which can be approximated by
fmax 2

=2 m=0

where AU, is given by expression (3.11) with AG,, AS, replacing Cy Sy, and
O max is the maximum degree of the gravity field being used. Substitution of AU for R

in equations (3.3) then yields the rates of change of the Keplerian elements due to
errors in the gravity field model. Integration using the mean orbital ellipse described
earlier will give the relevant gravitational perturbations in the elements. The final
radial error Arf®)(1) due to gravitational field errors is then found by substituting for
Aa, Ae and AM into equation (3.10).

The gravitational perturbations are derived by direct substitution of AU into

the Lagrange Planetary Equations (3.3). For the semi-major axis,

da 2 d(AU)

dt T na oM

“*EZ—’Z M X Gy ()
na o 2o b Emp ol pq
2-m even f-meven
AC AS
é% bm cos‘I‘Qmpq + bm sin‘}’gmpq
—ASQm ACQm
2-m odd 2-m odd
Hence,
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L

Lmax & & R
da 2 = | HRg
el VD YD VD) —F, (1) G,_.(e) X -2p+q)
dt na (7 20520 qoee 0+t Emp &pq
2-meven 2-meven
-AC AS
tm . tm
X sinW,  + cos't
Pq mpq
ASP,m A tm
2-m odd 2-m odd
-(3.12)
For the eccentricity,
fmax ¢ R 2
de 1-e2 9 H
& T a2 oM 222 mE_: ZFgmp(I) ZGgpq(e)
2-m even 2-m even
AC AS
im im
X cosY¥ in¥
tmpq t Lmpq
'ASQm im
2-m odd 2-m odd
Ml:efd QnﬁaX;“R EF ) 3 Gype(©)
nale Jw| iorm=0attp=0 P tpa
. 2-m even -m even
AC AS
im m
X cosY¥ + sin'V
‘Asam Lmpgq Acgm Lmpq
2-m odd £-m odd
fmax 2 & uR 1 - o2
:2222—” (D Gy (&) =
2=2 m=0p=0 g=-° g 2+1 ’lmp tpq naze
2-m even 2-meven
-AC AS
—_— dm | . m
X \/l-e2 L -2p+ sin¥ + cos¥
( P+Qq) AS, &mpq AC,. Lmpgq
2-m odd £-m odd
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-AC o Mem)
- ( Q - p ) Sin Lmpq + CcOS Qmpq
Asam ACQm
2-m odd 2-m odd
Hence,
d_e B Qniaxé ; § HR FP,mp(I) Gzpq(e)q
d £=2 m=0p=0 g=-20 4 +1 na’e
2-m even -m even
-AC A
L L
X " sm‘PQmpq + " cos‘{’gmpq + O(e)
ASRm A im
2-m odd 2-m odd
-(3.13)
For the mean anomaly,
fmax R L
dM 1-¢29 H
& T 2 £22 mEO ™ EFlmp(I) EGgpq(e)
2-m even -m even
AC AS
X b cosWy g + b sin¥y oq
_ASQm “Im
2-m odd £-m odd
19 5 EL&;FM () 3 Gyl
nada| o = Oaz +1 P p
-m even -m even
AC AS
em Im .
X cos¥ sin'
bmpq T Lmpq
“ASyp, ACyn
2-m odd 2-m odd

Hence,
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= 2 2
dt §=2 m=0p=0 q=—o 4 L+1 )
Qqn even E«‘IT\ even
dG,_(e) | (AC AS
= ” cOs¥ ympq + . SinWppq
¢ o -ASy AC,,.
¢-m odd 2-m odd
&-meven {-m even
m tm |
+2(8+1 ) Gypqle) cos‘]&‘Qmqur sml}'ampq + 0
“ASym ACy,,
2-m odd 2-m odd

-(3.14)

Equation (3.14) is the direct rate of change of the mean anomaly due to the

eITors ACgm , ASQm. However, an additional interaction term also occurs. From
equation (3.4), the rate of change of a, given by equation (3.12), will perturb n and
1

.. ) . . [T L .
hence cause an additional disturbance to M. Since n = (— , the variation in n is

a3
given by
3 H
An = - = — Aa,
2 P
ie.
3n
An = - nga.
Hence the corresponding change in M is
y 3n
AM = - ‘2‘5’ Aa.
Integrating gives
3n
AM’I‘ngddt . -(3.15)
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Any perturbation Aa, including that caused by gravity field coefficient errors AC,__,

AS, . can be substituted into equation (3.15) to provide a corresponding interaction
term AM,_ .

Equations (3.12), (3.13) and (3.14) can be integrated under the assumptions

of linear variations in the angular arguments, using the approximation

AE = J&dt -5 ¥y -(3.16)
S

where ‘i’,lmpqis taken as constant.
Under this assumption, the only variable on the right hand side of equations (3.12),
(3.13) or (3.14) is the argument

. . (o]
\yﬂmpq(t) = lFl’,mpq(t ) \{Jﬂ,mpq ?
o]
where \yg’mpq = \yg’mpq( t= to).
From equation (3.12) and equation (3.16) with § =a,

2
fmax & L o HR Fg’m (I) GQ ((e) (E/ -2p+q)
pa = 2y vy sy b

na 2:2 m:0p=0 g=-oo ag,+1

ql?.mpq
[ {-m even 2-m even A
ACP.m \Pﬂmpq(t) ASP,m \yﬂ,mpq(t)
X % [ cos‘PQmpq] ) + [ sin‘}’gmpq] ) >
_Asﬁm \Pﬂmpq Acgm \yﬂ,mpq
\ {-m odd 2-m odd J

X

fmax & & F, ()G, (e) @ -2p+q)
21 /Ryt Fam 2 pP*q

2=2 m=0p=0 g=e a™n a

Yympg
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o 2-m even
c:os‘l‘,mpq - cos‘PP_mpq

ACQm - . o
Slnqu_mpq - Sml{jﬂmpq 2-m odd
. . o 2-m even
snﬂf‘gmpq - Sln\y?,mpq
+ ASQm o

-cos¥ + cos'¥
tmpg T €O T ampq p_m odd

Since Ggpq(e) is of the order of e!d', only terms with Igl < 1 may be significant for

near-circular orbits, i.e. g =0, 1.

Now [Schrama, 1989},

Gyole) = 1+ 0(e?) )
(-L+4p+1)e
- 3
Gypqle) = P +0(e”) L-(3.17)
(38 -4p+1)e
Gypyle) = 3 + O(e?)
S
Hence only the g = 0 term is retained, that is to order e
fmax ¢ L g F M (L-2p)
2 RE Imp
m- 33y (T
=2 m=0p=0 a™n \%
4mp0
o 2-m even
cosli’zmpo - cos'y, 00
X §AC, . e +
'smli’zmpO - Sln\PQmpO 2om odd
8} Q—m even
Sinqumpo - SinLyP,mpO
ASy
o}

-cos¥ + S
COS T ampo COS\PQmPO 9-m odd

-(3.18)
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It is this expression for the gravitational perturbation in a that creates the

interaction term AM. _ as given by equation (3.15). Substituting equation (3.18) into

equation (3.15) and integrating gives the full expression for the interaction term as

. ir}—ﬁmuﬂ ) 2_LL“(&YFQHIP(I)(P.-2p)
Mint 2a 2 m=0p=0 a’n \ 2 ¥
¢mp0
o ¢-m even
COS\PQmpO - COS\PQme
X ACp'm ) N 0 "
SlI‘l\Pampo - Sm\PQmpO 2-m odd
o 2-m cven
Sinl}lgmpo - Sin\IJP,mpO
AS,. ] dt
—COS\Pp’mpo + COS\PQmpO 2-m odd
l.e.
3 et Rgy¢ Fomp(D (L -2p)
8=2 m=0p=0 a'n 7
2mp0
) ACQmCOS\PQmpO + ASQmSi”\{’Qmpo
ACQmSin\PQmpo B ASQmCOS\PQmPO
o ‘ o 2-m even
- ACycosWy o - ASysinty g
o o dt
- ACy sin'Wy o+ ASycosty g
L-m odd
*gﬂp'maxp, [} 2—u§EQFQmp(I)(p«~2p) X
=55 X XX 5 . 2
2=2 m=0p=0 a’n Y
£mp0

O
ACy . ( sm‘PQmpO - sm‘}‘lmpo)

]
-AC, L ( COS\PP,mpO - COS\PQmpO)
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2-m even

o]
-ASy ( cos‘l’ampo - COS\PP_mpO)
-AS, . ( sin‘{’zmpo - sin‘szpo)

2-m odd

o 0 2-m even
. ACchos‘PunpO + ASQmsin‘PQmpo
_(t“to)\ylmpo ) o o
ACQmsm\Pampo - AsszOS\PQmpo b odd

Hence,
3n9,max L L 21 REaFﬁmp(I)(Q—zp)
AMimz_ig 2 2 anld 2
§=2 m=0p=0 a‘n P
4mp0
f-m even
ACP,mSin\PP,mPO - ASQmCOS\PQmpo
X
_ACchos‘{’Qmpo - ASQmSin\PQmpO
2-m odd
o . o 0-meven
) ACycosy o + ASynsin¥yrno
- (-t W0 O y °
ACLmsm‘I’QmpO - ASQmCOS\{ Lmp0 Jy.m odd
' o o -m even
—ACQmSln\Pmeo + ASQmCOS\mepO
+
) (8]
ASy sin'¥y oo + ACy oYy 100 dpm oad
-(3.19)

To obtain the full perturbation in the mean anomaly, this term must be added to the
term for AM due directly to gravitational field mismodelling which, from equation
(3.14) and equation (3.16) with § = M, is given by

3
tmx £ 0 . pRFy (D )

AM = | 3 XY X

=2 m=0p=0 g=-o a£+1

na \'Pgmpq
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£-m even {-m even h
1 a—_Gqu(C) ACen cos'¥ ASem sin'¥
e de ¢mpq * MY 9mpq
© -AS, AC,
™ &-m odd m ¥ -m odd
L-m even ' -m even
Acam ASQm .
+2(L+1)Gy  (e) cosWy gt Sin'¥ o aw,
b -ASy AC, mpq
m odd M ®-m odd
fmax & £ HRQ F, (D)
_ g mp <
9=2 m=0p=0 q=-o0 a9,+1
na ‘Pampq
£-m even 2-m even -
3Gy (@) (AC, ) . Ay, p
e AS (sinWy  o-siny 000 - AC, (cosWy,q-cosWy g )
™ Jm odd ™ Jo-m odd i
&-m even -m even 7]
2L+1)G St | oy’ ASum o
+2(8+1)Gy (e AS sm‘}’gmpq—smlf’gmpq) " lAC cos'y g cosy g )
¢m Pm
¢-m odd ?-m odd 3

Only the terms with the eccentricity divisor will be important in terms of the radial

orbit error because of the e factor of equation (3.10). Also, by equations (3.17),

%—8@0(6) = 0(e). Hence to order ¢!

I}
fmax ¢ & 1 RCF (I)
9 Gopq(e) Mg “tmp
M=-3 33 3 aegpq(e)_af{_f ’
-2 m=0p=0 q=-1 a na‘ eV
e Lmpq

-m even

o] ]
Acgmsm‘{’gmpq - ASchos‘I‘gmpq - ACQmSIHlPP,mpq+ ASchos‘PQmpq

o] o]
—ASQmsm‘PQmpq - ACchos‘Pgmpq + ASQmsm‘PQmpan ACQmCOS\PQmpq Lo odd

To this expression must be added the interaction term of equation (3.19), only the

secular part of which is retained, since the others become insignificant when

47



multiplied by e. Hence the full gravitational perturbation in the mean anomaly,

including the interaction terms, can be approximated by

3
fmax L 2 R_Fy (D
AM = - E E %{a&g_ﬁm(e)bam—p_ X
) m:Op:0 =1 (V] 4+ 2 .3
‘ilio na e‘{’gmpq
. ‘ ° o -m even
ACQmsm‘PQmpq - Angcos‘{’Qmpq - Aszsm‘{’gmpq+ ASchos‘Pgmpq
o 0
"ASQmSIH\{JQmpq - ACchos‘Pgmpq + ASQmsm‘Pampqu ACchos‘PQmpq 8o odd
fmax & ¢ ]
3n 2u (Rg I
* 23 agz mEOPEO ;;(7) FympD (L-2p)(t-t) /\{JQmpO
° ‘ 0 2-m even
X ACQmCOS\yP,mpO + ASEmSIanQmpO
o] o]
ACamSIH\PQmpO ) ASQmCOSkIJQmPO 2-m odd
-(3.20)

It is now left to obtain the expression for the eccentricity perturbation.

Integrating equation (3.13) gives

[}
max & & LR Fﬂm (D GE (e) g
Ae= 3 Yy y £ P M

=2 m:Op:O q=-o o

241

naze‘llgmpq
o 2-meven
cos‘PQmpq - cos‘{’ampq
Acﬁ,m _ ) o
Sm\yﬁmpq ) Sm\ylmpq 2-m odd
) o L-m even
sm‘{’zmpq - sin‘}’ﬁmpq
+ ASQm

(6]
-cos¥ +
O3 ampq Coskyimpq 2-m odd
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The q = 0 term disappears due to the factor q. Also, from equations (3.17),

Gppur(e) _ Otert(®

e
Hence,
¢max £ L 3 Gioele) uRi: Fymp(D
R
t=2 m=0p=0 a naz‘ljgmpq
o £-meven

oWy nq - €OV 00
ACQm i . fe)
Smk}lkmpq ) Sm\p’lmpq L-m odd

) . o 2-m even
sin - sin'¥
Lmpq Lmpq
+ Ang

[
-cos¥ + cos¥
0S¥ pmpq Lmpq Jp.m odd

-(3.21)

Equations (3.18), (3.20) and (3.21) are the perturbations Aa, AM and Ae,
respectively, due to errors in the gravity ficld coefficients. Substitution into equation

(3.10) results in an expression for the gravitational radial orbit error given by

bmax & ¢ e Fy (D) (L-2p)
v 2 RE P,mp
a = 3 3 3 ()
=2 m=0p=0 a"n N
£mp0
o 2-m even
(:os‘{’QmpO - cos‘l’zmpo
X Acﬂm 0 *

sm‘}’gmpo - sm‘l’kmpo o odd

) . o 2-m even
Sm‘{fzmpo - qujzmpo
ASQm

o]
‘cos‘I’QmpO + cos‘l’gmpo o odd
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max & L R m (M
-cosM ¥ Y S EaGqu(e)q“ E_Q_E____.

=2 m=0p=0 g=_§ 2+1 1 ‘Pp'
mpq

o 2-m even
. cos\I’Qmpq - cos‘l‘ampq
ACQm o *

in - sin
S qjﬁmpq S \Pﬁmpq 2-m odd

o] P,»Iﬂ even
sin‘PQmpq - sin\PQmpq
ASQm 0
'COS\PEmpq + COS\PEmpq 2-m odd

Lmax £ ¢ uR FP. €))
fM Y 3 sy o) el
=2 m=0p=0 g=. 1 ol .
0 na \.Pp.mpq
. . o 0 L-meven
-ACQmsm‘PQmpq + ASchos\PQmpq + ACQmsm‘Pgmpq- ASchos\PQmpq
Q [s]
ASQmsm\PQmpq + ACchos\Pgmpq - ASQmsm‘Pampq— ACy cos'V 2mpa oo odd
fmax & L [}
L, 3n 2u (Rg ;
23 = 5T 5] R (L-2p)
23 125 m=0p=0 d N a Lmp &mp0
o ‘ ) 2-meven
i ACQmCOS\PP,mpO + AS?.xns”]qj?,mpo
X (t-1,)aesinM o o
ACP,msmqu.mp() - ASP.mCOSqJP.mpO 0-m odd

fmax & F I -2
b RAEFy (D (L-2p)
- 3 s (]

2=2 m=0p=0 an

\PP,mPO

0 2-m cven
cos\PQmpO - cos‘}’ampO
X ACgm +

8]
qujampo - Slnl}lﬁmpo 0orn odd
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) ) o 2-m even
sm‘PQmpO - sm\}’gmpo
AS,

“COS\szpo + COS\Pampo 0o od

Q-m even

o]
cosMcos\PQqu - cosMcos‘Pgmpq

(o]
cosMsin¥ - Msin¥
2mpq cos Empq p.m odd

. ) o L-m even
cosMsm‘PQmpq - cosMsm\I‘Qmpq
AS,

0
'COSMCOS\PQmpq + COSMCOS\PQqu 2-m odd

3
+ 3 3G HRg Pamp (D)
- de a24-1 .
420 na \PP,mpq
—ACQm sinM sin‘{‘ampq + ASQm sinM COS\PQmpq
X
AS, .. sinM sin‘{‘Rmpq +AC,  sinM cos‘i‘gmpq
. ‘ o ) o 2-m even
+ AC,  sinM Sln\P’lmpq - ASQmsmM cos‘{‘gmpq
Q O
- ASQmsmM sml}‘gmpq - AC, sinM cos‘{‘gmpq Do odd
3 n 2“ RE P, .
+ igaz—n(”é—) Fl’,mp(l) ( ¢ - 2p )/\Pﬁmp()
(e} 0 p,~m ecven
ACamcos‘PQmpO + ASzmsin‘szpo
X (t-t,)aesinM o o
ACQmsm‘PQmPO - ASchos‘PQmpo o odd

1.e.
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fmax L 2 F, (D)(L-2p)
) Re\t omp P
A0 - 5 3 s 3 (F)
4=2m=0p=0 | a’n ¥
£mp0
o L-m even
cosWy 0 - cosy 00
X Ackm . . ° *
Sln‘yﬁmp(} B sm‘lepO 2-m odd
. . o f-m even
sin'y o0 - sin' g0
Asi’,m w ®
’COS\PQmpO +cos IJi’fmp() £-m odd
9 I
N 1Z 9 Gipy(©) " (R—aFf) Qmp( )
=1 24
qq;t() na \Pampq
° £-m even
- q [cos( M-q'¥ypg) - €OS(M - 9%¥ gmpq )}
X ACP,m o
sin(M - gV, ) - sin(M - gy, .0) ¢-m odd
. ) 0 2-m even
Sln(M - ql{jgmpq) - Sln( M_quﬁmpq)
+ ASQm o]
q [COS( M_q\yﬂ,mpq ) - cos( M—qugmpq) } £-m odd
3n2p (Rey ]
+ ia”az—n(?) FP,mp(I) (L-2p) /lPQmpO
o ‘ o L-m even
_ ACchos‘}’ﬂmpo + ASQmsm\PgmpO
X (t-to)aesmM o o
ACQmsm‘PampO - AS chos‘{’ Lmp0 o.m odd
Now,
M+W&np—1 =M+(L-2p-1 )(M+oo)+(o+m(Q-6g)
= (Q-2p)(M+w)+m(Q-9g)
= lP«ﬁmp() :
Similarly,
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lPP,mpO = (\Pln‘xw'M) = ’(M_\yﬁm;ﬂ ).

Hence

cos(M = ‘{j’lmprﬂ ) = cos \{jlmpo

and

Using these results, a full series expansion is obtained for the global radial orbit error

of gravitational origin. This can be written

fmax & ¢ L - 2
' 2 R F, (D) (L -2p)
Ar(grdV)(t) ~ Z Z Z _2}'_1',_ (_E) lmp
=2 m=0p=0] a'n a \{J
£mp0
° 2-m even
cosWy 0 - cOsWy, o
X ACP,m . . o '
. . o f-meven
Sln\}lampo - Sln\PQmpO
AS, o
—COS‘PQmpO + C()S\lep() 2-m odd
L0 Gype) , (Reyt Fome®
+ Z ae H a
2
10 na Lmpq
o £-m even
- q |cos qj’lmpo - cOos \ygmpoJ
X ACQm o o
- q ~sin qlgmp() - 8in \Pﬂ,mpo} 2-m odd
_ ' ‘ o {-m even
- q [S]n \Pﬂmpo - Sin l}lgmpo]
+ ASzm [}
| q [cos ‘I‘Qmpo - €OS \PQmPO} £-m odd
3u (R ¢ ;
. 3_3(?) Fumo® (£-2p) [0y, o
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o ) o £-m cven
. AC, COS\PQmpO +AS, sin¥ Lmp0
X (t-t,)aesinM o o
Acﬂ,m Sml}lﬂmpo B ASP,nlcoslPQmpO 0-m odd

-(3.22)

Equation (3.22) reveals the full spectrum of periodic terms of gravitational

origin with angular arguments \PP,mpO . All the periodic terms on the right hand side

contain ‘.{’Qmpq, q=0, £1, in the denominator, where
‘i‘ampq=<@-2p+q><M+6>)-q6>+m(Q—ég>. -(3.23)

Therefore terms in which ‘Pkmpqis small will produce large contributions to

A (1), Any term with frequency greater than about 2 cycles per revolution ( or 2
x M ) turn out to be insignificant. From equation (3.23), the frequencies of the

periodic terms in equation (3.22) are

Fo = (£-2p) M+ m (Q-6,), -(3.24)

for @ = 0.
Consider the right hand side of equation (3.22). ArT™ (1) is made up of three
main constituents: a periodic part in which q = 0, a periodic part in which q =+1 and

a secular-periodic part. Both periodic components include the divisor ‘Pgmpq .Now,

the mean anomaly increases by 27 radians in the 100 minutes or so that SEASAT or
ERS-1 takes to complete a revolution of the Earth. ég ~ 21 radians/day and Q takes a

full year to complete one revolution for ERS-1 and six months for SEASAT. Hence,

since @ = 0, the dominant term in the divisor ‘}’tmpqis that associated with M. Terms

exclusive of M thus provide the smallest values for ‘i’ampq and hence the largest

contributions to Ar8®Y(t). By equation (3.23), these are given by combinations of ¢,
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p, q such that & - 2p + q = 0. Since only values of q such that Iql < 1 are considered,
this requires £ - 2p =0, £1. For the first main constituent on the right hand side of
equation (3.22), in which q = 0, the principal contribution would therefore occur
when £ - 2p = 0. However, the presence of the multiplicative factor (£ - 2p )
ensures that there exists no contribution from this term for small ‘i‘ampq . For the
second constituent, however, in which | q | = 1, the main contribution to Ar8™)(p)

occurs when £ - 2p = +1, by equation (3.23). From equation (3.24), the

corresponding frequencies of these terms are given by ‘.I’Qmp() ~ +M. The magnitude

of the secular-periodic term is restricted by the factor e. Hence Ar®*(1) is dominated
by the central term on the right hand side of equation (3.22), with the dominant
frequencies centred around one cycle per revolution.

The orbits of SEASAT and ERS-1 are frozen repeat orbits, with ® held at g

radians, in which the satellites perform an integral number of revolutions, k’ say, in

the time taken for the Earth to revolve an integral number of times, £’ say, relative to

the ascending node. Hence,

Time taken for satellite to complete k’ revolutions

= Time taken for Earth to revolve £’ times with respect to the ascending node

. 21k’ 2nd’
l.e. =
M ( eg -Q)
..M
Or eg— Q = T -(3.25)
Thus by equation (3.24),
. m L’ .
‘szpo =1 k- © M, -(3.26)
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where k =2 - 2p.

The frequency terms present in equation (3.22) are those spanning all the
multiples of 1 cycle per revolution as given by equation (3.26). Note that the

interaction term consists of a secular variation superimposed on the sinusoidal 1 cycle

per revolution sinM factor, to produce a secular-periodic constituent (t - t_ ) sinM of
A&y,

The theory developed so far has assumed that \ijkmpq # 0. However, for
certain combinations of £,m,p,q this is not the case. This situation is now dealt with
separately. By equation (3.23),

¥y

W=0 = (8-2p+q) (M+ @) -qo+m(Q-8,) = 0.

Therefore, for W =~ 0,
(8-2p+q)M+m(Q-8,) = 0. “(3.27)
For m # 0, from equation (3.25), equation (3.27) is satisfied when

(L-2p+q)
m

0
=7 -

The gravity field models used here are of degree and order 36. Thus the
maximum value of m is 36. Since the orbits analysed are 43 rev/3 day and 501 rev/35
day repeats, that is k’=43 or k’=501, resonance has been ignored. In practice
resonance can be incorporated simply by the addition of a quadratic term in time
modulated by a 1 cycle per revolution term [Rapp et al., 1991].

The alternative solution of equation (3.27) is for m = 0, in which case

m=2-2p+q=0. -(3.28)
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Hence, for ‘PQqu = (, the only contribution to Ar will come from errors in the zonal

coefficients. The contributions are from Aa, Ae and AM, so they are the elements of

interest here.

By equation (3.12), %—?— contains the factor (£ - 2p + q ), which is zero in this

case. Hence

¥y =0 = Aa=0.

From equation (3.13),

I} . Q even
de Qniax ; 1 pRE onp(l) Ggpq(e) q “Sm\PQOpq

o = L0 .

dt {2 pm0 oo gt na’e cos¥ 000 g oad

But, by equation (3.11) and equation (3.28),

Hence

i

{ 0 for q (3.20)

b =9q_
t0pq +o for q ==l

Moreover, for q =+1, £-2p = F 1, which is odd, hence & is odd. Similarly, q = 0

— { iseven. This leaves

= ¥ 2 X

]
de tmax ¢ HREFQOp(I) Ggpq(e) q
dt £=2p=0 g1 g**! nae

ACQO cos‘Pwpq

By equation (3.29),

oA

cos‘Pwpﬂ = cos(+W) = cos® = coS

Hence
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This is expected as for a frozen orbit e and ® are invariant under the effect of the odd

zonal harmonics. Finally, by equation (3.14),

1}
dﬂ~&§u§ éuREM{_Lw+2(Q+I)G (C)}
dt =2 p=0 g=-1 N na? e de Lpq
COS\PQOPQ 0 even
x ACy | . ” _
ST 00pq b odd

Using equation (3.28) and equation (3.29) gives

'} =0
fmax ¢ uR F (I){ dG,_ (e) cos 0 18
dM g 0p 17
~ = +2+DG,_ (e) ACO{ o } .
dt 3:"2 pgo q§f1a2+1 na? (e e tpq W sin(Fw) qmt1
Therefore

o bt pRE Py (D) 3Gy, 1(e) 3G, (e)
aI ACyq| -

= - +
022 p=0 4+ ena? de de

-(3.30)
There is no interaction term between the semi-major axis error and the rate of

change of M this time since there is no variation in a. Equation (3.30) can now be

integrated to leave the AM contribution as
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L

fmax ¢ uREF'EOP(I) O{ ath_](e) aG£p1(e) }
AM = - gl _
z‘s'::z p§0 L+ ena’ ¢ de T Je (t-t)

-(3.31)

Since this is the only contribution to the radial orbit error for ‘Pwpq = 0, equation

(3.31) can be substituted directly into equation (3.10) to leave

bmax L IR Fyop (D 3Gy, 1(e) 3Gy, (e) .
Ar = - Z I ae + ae (t"to) SInM.

na

-(3.32)

From equation (3.22), (3.26) and (3.32), a final result for the gravitational
radial orbit error is obtained. Gathering together terms of like frequency, the
expression can be written as

fmax &max . .
AEY)= 3y 3 {Akmcos Yot + By,sin ¥t }+ go + g¢(t - 1)sinM,

k=-£max m=0

-(3.33)

where ‘Pkm is defined by the right hand side of equation (3.26) with k replacing -

2p and A, _, B, ., g, and g, can be assumed constant, since a and i vary little.

Figure (3.5) and Figure (3.6) illustrate the behaviour of the gravitational radial
orbit error in SEASAT. Two orbits were constructed from the same initial starting
conditons, one in the presence of the GEM-T1 gravity field, the other using the clone
field described and employed in the ERS-1 simulations of chapter 7, for the six day

period MJD43764 to MJD43770. The difference in the radial heights is plotted in
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Figure (3.5). A spectral analysis, a breakdown of the individual frequency

components, of these differences was carried out and is plotted in Figure (3.6).
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Figure (3.6)
Spectral analysis of gravitational radial orbit error
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The obvious characteristic in both diagrams is the large 1 cycle per revolution
signature due to the strong Mfrequeney dependency. Being in its 43 revolution/3 day

orbit, SEASAT will have revolved 6 x 432 = 86 times during the six days. This

accounts for the 86 main peaks of 1 cycle per revolution appearing in the plot of
Figure (3.5). Figure (7.3) and Figure (7.4) show the same pattern for ERS-1,
although the orbit was a 501 revolution/35 day repeat, hence the appearance of
[7 X 5—%} = 100 peaks in the seven day Ar plot, where [-] denotes the integral part.
For very low values of , the coefficients Cy,, are relatively well known, so

that AC,, is small. For satellites of high altitude, such as Lageos, the attenuation

]
factor (_ag) significantly reduces the effects of the other zonal and tesseral

coefficients for large £, but with ERS-1 and SEASAT in low orbits of near 800km,

the attenuation factor is less prominent and gravitational perturbations are significant

for £ as large as 70, say.

§ 3.7 Non-Gravitational Radial Orbit Error

Although the largest component of the radial orbit error is of gravitational
origin [Tapley and Rosborough,1985], as given by equation (3.33), there is also a
significant non-gravitational influence, mainly due to mismodelling of air drag and
solar radiation pressure forces and errors in the initial state vector of the orbit. Errors
in the calculation of tidal forces and third body attraction also contribute to a lesser

extent.
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§ 3.8 Mismodelling of Air Drag

A satellite moving with velocity v relative to the surrounding atmosphere will
experience an atmospheric drag force, F, acting in the opposite direction to its
motion, which can be expressed as [King-Hele,1987]

2
Fz—lpv-A—

where m is the satellite mass, A its cross-sectional area, p the air density and C the

drag coefficient.

It has been found experimentally [King-Hele,1987] that plots of air density
against geocentric height show that the density decreases approximately
logarithmically with radial distance in the regions through which SEASAT travelled,

that 1s at r = 800km. Hence
Inp o -1,

or
T

Inp = “H
where H is the approximately constant density scale height. Therefore
RS p
lnp—lnpp = (H)( H)
where p is the air density at perigee height T Hence
r -T
Thus density mismodelling may be approximated by

r-rT
Ap = App cxpl: - —Hp{i , -(3.35)
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where Ap, App are the errors in the air density at heights r and T respectively. On

using equation (3.8) and from Figure (3.1),

r-r
__p _

a EH—C(I»COSE),

which upon substitution into equation (3.35) gives

ae (1-cosE
Ap:Appexp[— ( O )J.

ae . L
For small e, H ¢ 1, the exponential series gives

bp = Ap, [ I %_—IC—COSE} + 0@ . -(3.36)

Thus by equation (3.5) and equation (3.2),

dM _ d(E-esinE) _tdE _ 1,4/}
dt — dt T adt T a a
1.e.
dE 1
x =\ (337

for a perturbed ellipse.

An alternative form of the Lagrange Planetary Equations given by equations
(3.3) is achieved by expressing the rates of change of the elements in terms of the
components of an overall disturbing force in directions tangential and transverse to
the orbital motion and perpendicular to the orbital plane. From [King-Hele,1987] and

[Aksnes, 1975] this leads to

. -(3.38)

where f.. is the tangential component of the disturbing force.
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(drag)
The disturbing force due to drag mismodelling, AFD , acts tangentially and
IST

opposite to the satellite motion. By equation (3.34) and equation (3.36) it is given by
(drag)

1 ae ae
~ -=8vZA [1‘——+—‘—COSEJ,
DIST 2 Po H H

where & = A Cp.
m

Substituting this into equation (3.38) leads to the error in a due to drag mismodelling,

namely

2.3
Agldree) ~Jangpp[l -z + zcosEJ]dt ,
M

wherez-g“:c-
T

Or, using equation (3.37),

3
A48 _326Appfu 2 11-2+zcosE]dE
H H
1.e.
E
Axldrae) -a26App[( 1—Z)E+zsinEJ )
Eg

where E = Eq at time ty. Since M = E and e = 0 for low eccentric orbits,

AaE®) -aQBApp(M—MO),

where M = Mg at time to. Similar expressions can be derived for Ae“* and AM ¥

[Moore and Rothwell, 1990];

Aeldae) -aSApp[ sinM - sinMg + %( M - Mg )}

and

A
AME®) g 6—52 [ cosM - cosMg ] .
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Upon substitution back into equation (3.10) the radial orbit error contribution due to

drag mismodelling is derived as

Ar(drag)(t) ~ _aZSApp[ (M - My ) - %(M—Mo) cosM - Sin(M‘MO)}.

-(3.39)

Since M increases linearly in time by equation (3.1), Al *8)(t) consists of a

secular part proportional to time, t, a secular-periodic part proportional to t cosM as
well as a term of frequency 1 cycle per revolution. M increases by 2w radians each

(@r28) is dominated by the secular

orbital period, so that Mis relatively large, hence Ar
term. Atmospheric conditions vary over relatively short lengths of time such that this
model for radial orbital drag error becomes unrealistic if applied over the whole length
of an orbit of several days. For this reason the drag terms are solved for daily, or
even twice daily in the event of severely changeable conditions on any particular day.
Figure (3.7) displays the radial variation due to drag error. A six day
SEASAT ephemeris was converged between the dates MJD43764 and MJD43770.
Each of the six daily drag coefficients within the initial state vector was changed to 3
whilst all other parameters, that is the position, velocity and solar reflectivity
coefficient, were left unaltered. Using this state vector a second ephemeris was
generated over the same time span. The drag coefficients used for each orbit are given
in Table (3.1). The diagram depicts the radial differences between the two orbits at
each ephemeris epoch. The daily linear trend is clearly visible along with the 1 cycle

per revolution signature, which increases steadily due to the secular-periodic terms of

equation (3.39).
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Figure (3.7)
Radial orbit error due to drag mismodelling
MJD C, (arc 1) C, (arc 2)
43764 - 43765 3.77080473450 3.0000000000
43765 - 43766 3.28768688134 3.0000000000
43766 - 43767 2.92881197582 3.0000000000
43767 - 43768 2.96105603672 3.0000000000
43768 - 43769 2.37762479766 3.0000000000
43769 - 43770 1.94292945333 3.0000000000

Table (3.1)

Drag coefficients employed in the derivation of Figure (3.7), to illustrate radial orbit
error due to drag mismodelling

§ 3.9 Initial State Vector Error

From given initial conditions, an orbit of a satellite is fitted to the tracking data
by solving for several parameters. During the procedure, a new estimate of the initial
state vector is derived from which a new orbit will give an improved fit to the racking
data in the least squares sense. The initial state vector is repeatedly adjusted until no

more significant improvement can be made.
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From equation (3.10), the radial orbit error at a future time, t, due to errors in

the initial values of the Keplerian elements Aa,, Ae;, AM, at initial time t; is given by

A = Aa, - a Aey cosM + a e AM sinM . -(3.40)

As in the case of the gravitational interaction term, the initial error in the semi-
major axis, Aag, is substituted into equation (3.15) to give the interaction term
between the rate of change of M due to the gravity field and the perturbation in a due
to initial state vector error as

AMSP

int

® = %2 Aag(t-ty) .

Thus the overall orbital error in the geocentric distance due to initial state vector error

is given by

AV = Aao_aAeocosM+ae[AM0 - %—%Aao (t-tg )}sinM .-(3.41)

The overall radial orbit error is given by the sum of the errors due to the
various perturbations described in this chapter [Moore and Gray,1991]. This means,
for example, that any constant part of the error can be reduced by a suitable selection
of initial value of the semi-major axis by making Aa, in equation (3.41) numerically
equal to the negative of the sum of the constant errors due to other perturbations.
Similarly, 1 cycle per revolution error and the secular-periodic sinusoidal terms can
be reduced by affixing certain values to Aa,, Aejy and AM,,.

The orbit computation minimization is carried out with respect to all three
directions; radial, along-track and cross-track. Thus reducing an error term in, say,
the along-track direction by adjustment of the initial starting values and other

parameters, such as scale factors for drag and solar radiation pressure, may actually

manufacture a larger error term in the radial direction. For example, a particular AM,,

may reduce a term in the along-track direction but increase the radial part aeAMsinM
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of equation (3.41), resulting in a large contribution to the radial 1 cycle per revolution

perturbation.

DELTA r / metre
5

[N)

Lmere

e

—i

1 T 1 i T 1
43770 43771 43772 43773 43774 43775 43776
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Figure (3.8)
Radial orbit error due to inital state vector error

Figure (3.8) shows the effect on a radial orbit of a change in the initial starting
conditions. Two SEASAT orbits were constructed using the same drag coefficients
and solar radiation pressure coefficient, under the influence of the GEM-TI gravity
field, for the six day period MJD43770 to MJD43776. One used the converged
starting vector to give the best fit, the other used the end vector from the MJD43764
to MJD43770 orbit employed in the SEASAT analysis as its initial conditions. The
two most striking characteristics are the relatively large 1 cycle per revolution
signature due to the cosM term of equation (3.41) and the constant offset of

approximately 12cm, mainly as a result of the difference in the semi-major axes, that
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is the Aa; term of equation (3.41). A slight increase in amplitude of the 1 cycle per

revolution signature is noticeable, due to the secular-periodic sinM term.

0.74

D\a .
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Figure (3.9)
Spectral analysis of radial orbit error due to initial state vector error

Figure (3.9) is the spectral analysis of the same radial differences and as
expected shows little amplitude at any frequencies except 1 cycle per revolution.

where the 41cm amplitude is consistent with Figure (3.8).

§ 3.10 Solar Radiation Pressure Mismodelling

During the sunlit portion of the orbit of a satellite, photons incident from the

Sun impart momentum to the spacecraft as they strike its surface, collectively

producing a perturbatory force known as the solar radiation pressure force, FORPY

) . . . A
This depends on the cross-sectional area to mass ratio of the satellite, poe the solar

radiation pressure, P, of the Sun on the Earth when the geocentnic distance of the

Sun, Tgun is equal to the mean distance of the Sun from the Earth, g, and a solar
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reflectivity constant, Cy. The error in the force model, AF(SRP), due to corresponding

errors in the solar reflectivity constant, ACy, is given by [ Aksnes, 1975]

1. \2

L AFSRD) _ ACR%P (rss““) . (3.42)
un

The Lagrange Planetary Equations can be re-written in terms of the direction

cosines of FCRP) 4 perigee in the radial direction and perpendicular to the radial

direction in the orbital plane, S and T, respectively, to give the elemental variations

due to solar radiation pressure force mismodelling. For example, for the semi-major

axis,

da _ _2na’ ARCSRP)

N

[esinM(ScosM+TsinM)+

X

a2
M—ri—)-( SsinM+TcosM)}

2
~ 2nal AF(SRELa——(—lr——e——)(S sinM + T cos M)

Hence the error in a due to solar radiation pressure mismodelling as the satellite

travels through sunlight from M =M, to M = M, is given by

M,

Aa = 2 a3 AFGRP (S sinM + Tcos M) dM

M,

= 223 AFCRD [ U5 cosM + T sinM |

My

Over k revolutions of the Earth, the total perturbation can be approximated by
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k

A = Z 2 a3 AFSRD [ L cosM + T sinM ]

J=1

M,

M,

Similar expressions hold for Ae® and AM®, which can be substituted into

equation (3.10) to produce the overall error in the geocentric distance of the satellite

. : . SRP .
due to solar radiation pressure mismodelling, AR The dominant effects are cosM
and sinM variations superimposed on a secular trend, although there are also

significant constant and purely secular variations. That is,

AR = Sp+S, (t-1g) +S,(t-tg)cosM + S (t-t5) sinM -(3.43)

where So, Sv 52 and SBarc constants.

.
o

~ e L

: Iy gitg
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e e

Figure (3.10)
Radial orbit error due to solar radiation pressure mismodelling

ArSRP) is illustrated by Figure (3.10). Two orbits were generated using the

GEM-T1 gravity field model over the six days from MJD43764 10 MJD43770.
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Identical starting conditions were used in both cases, except for different solar
reflectivity coefficients. The first arc is the GEM-T1 derived ephemeris of section
§6.6 and therefore used the solar reflectivity coefficient obtained during the orbit
determination procedure over the six days, whereas the second orbit used the
coefficient derived during the derivation of the ephemeris for the next six days.
Although the constants differ by only 4.1% (1.555 v. 1.494), a marked secular-

periodic one cycle per revolution signature exists.

§ 3.11 Third Body Attraction and Tides

Satellites move in the gravitational fields of the Sun, the Moon and planets of
the solar system as well as that of the Earth, which not only act directly upon the
spacecraft but also indirectly through tidal forces. The Earth is gravitationally attracted
to the Sun and Moon which, depending on their relative positions, alter the mass
distribution of both the Earth and the water of its oceans, causing ocean and solid
Earth tidal forces to act on the satellite. Errors in these force models and in the third
body attraction model in the orbit determination procedure (see section §5.2 ) lead to
perturbations in the radial direction, although these are insignificant compared to
those from the geopotential error, initial state vector error and drag and solar radiation

pressure mismodelling, and are consequently ignored.

§ 3.12 Overall Radial Orbit Error

The required expression for the global radial orbit error is given by the
summation of all the terms described in this chapter, that is of equations (3.33),

(3.39), (3.41) and (3.43). Additional terms occur from interaction between
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perturbations already described and the radial perturbation due to the C,, harmonic

term of the geopotential, which is given by [Gooding,1981]

Rpy?
o = -Zczo (T) a sin’l cos 2w+ M)
Hence
R 2
1 EY . 2, .
A(dr) = —2-aC20 Y sin“Isin2(w+M) (Aw+ AM ) ,

where AM is given by the term due to the particular source concerned and Aw is

assumed negligible since o = 0. This gives rise to 2nd order effects of the form
already derived, plus periodic terms of 2 cycles per revolution of not purely
gravitational origin.

Thus the overall expression consists of purely periodic terms of varying

frequency, along with secular, secular-periodic and constant contributions. That is,

Ar () = ArF* 0+ Ar ) + AR () + AP + 2nd order effects

= Ar(t) =
Lmax &max ) .
> ¥ {Akmcos ¥, t+ B, sin ‘Pkmt}+c0+cl cosM + ¢, sinM
k=-Lmax m=0

+c3cos2M+c4sin2M+c5(t—to)cosM+c6(t~t0)sinM+c7(t~t0)sin2M

NDAY(1)+6 NDAY(1)>1

2
k=8

0

)
+ Cnpayas7 (-t )+

NDAY(1)=1

-(3.44)

t) - . .
where €, ..., Cypay()47 &€ constants and t 8) is the epoch at the beginning of the

fmax dmax
NDAY(t)th day within which t falls. The summations Y. include all
k=-£max m=0

combinations except for the one and two cycles per revolution frequency terms, (k,m)
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= (1,0) and (k,m) = (2,0), which are included separately to demonstrate that they are

of both gravitational and non-gravitational origin.

74



CHAPTER 4

CROSSOVERS

§ 4.1 Crossover Residuals

The ground-track of a satellite is the projection of the sub-satellite points onto
the surface of the Earth, as the satellite moves in its orbit. The revolution of the Earth
about its axis underneath the orbit results in ascending arcs and descending arcs.
those sections of the ground-track over which the satellite is travelling northwards
and southwards respectively, to intersect at certain points. These points are known s

Crossover points.

FOSSOVG/

point \

ground—trock 1 ground—track 2

Figure (4.1)
Crossover point formed by intersecting arcs
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Suppose two arcs, namely arc 1 and arc 2, intersect to form a crossover point,

as shown in Figure (4.1), the satellite travelling over the crossover point on arc 1 at

time t; and on arc 2 at time t,. Then the crossover height difference is defined as the

difference between the altitude of the satellite on arc 1 and its altitude on arc 2, at the
crossover point. Thus the altimetrically measured observed crossover height

difference is given by
Ch = by -h -(4.1)

where h{ is the observed height on arc i, i=1,2.

Similarly, the calculated crossover height difference is
Ch, = by -hy -(42)

where hiC is the calculated height on arc i1, i=1,2.

Further, the crossover difference residual, AC,,, is the difference between the

observed and the calculated crossover height differences. That is, from equation (4.1)

and equation (4.2),
AC), = (RS- - (hS-h5)

1.€.
ACy, = (h}-h]) - (h3-h3) . -(4.3)
The observed heights, h?, will include errors in the modelled geoid height

(see chapter 2) at the location of the crossovers. However, the geoid error can be

assumed time independent for t; = t,, being reliant only on the position considered,

and hence is common to both h(f and hg. Thus the geoid error will cancel in the

crossover difference residual equation (4.3). A data set of crossover residuals will

therefore contain no error due to the geoid whilst similarly other geographically
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correlated errors will cancel in the same manner [Engelis,1988]. As a result,
crossover differences form a more accurate radial data set than altimetric
observations, containing none of the geoid errors present in altimetry, which can
exceed 1m in places. Moreover, the crossover difference residuals are dominated by
the radial orbit error, although there is some contribution from dynamic sea surface
topography and ocean tidal mismodelling. Crossover residuals are thus a powerful
datatype for use in the modelling of radial orbit error and are used in the least squares

minimizaton described here to reduce the global radial orbit error.

§ 4.2 Geocentric Height Approximation

The alimetric height, h, is taken to be perpendicular to the reference ellipsoid
defined in section §2.2. This is known as the geodetic height. The radial height, r,
however, is the geocentric height as defined in section §3.5. To a high degree of
accuracy, the crossover difference residual as defined in terms of geodetic heights by
equation (4.3) can also be defined in terms of geocentric, or radial heights, as will

now be illustrated.

Figure (4.2)
Crossover point relative to the reference ellipsoid
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8 reference elipsoid

O

Figure (4.3)
Geocentric and geodetic representation of the crossover point of Figure (4.2)

Consider Figure (4.2) and Figure (4.3), which illustrate the geometry at a
crossover point. It should be noted that the angles marked in the diagrams are

exaggerated for clarity. By the definition of a crossover, the geodetic latitude is the

same on both arcs = @, say. In Figure (4.3), @, and @, denote the geocentnc
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latitudes of the first and second crossover epochs, that is when the satellite is at A and

B, respectively. Hence,

BOA = @, - @,
and
A
OBA = @’ - O,
Applying the sine rule to triangle BOA,
Ah B I B 0

sin (&, - &) sin (@’ - @) sin (&’ - &)

whence
sin (&, - )
r, = : 2 (4.4)
sin (@ - D)
and
sin (&, - P7)
I, = - -(4.5)
sin (@, - D,)
Subtracting equation (4.5) from equation (4.4) gives
[ sin (P, - D7) -sin (P, - D) ]
- = .
sin (@, - D)
[ (D, + D) } A [((bz—CDI) }
cos| &’ - sin | ———=——
2 2
= Ah
(Py-D)) | | (@ -Dy)
cos 5 sin 5
Hence
(b, + D)
COS{ o - '““l—i—z—'
|Ar] = |1, - r,| = Ah -(4.6)
==
cos | — 5
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Let @, be the geocentric latitude of P, the point of intersection between the reference

ellipsoid and its normal through B. Then
A
OPB = 1 - @ + D,

Applying the sine rule to AOBP,

sin (Pp-D7) sin (P’ -, )

Iy I'p

where r}, is the geocentric distance of P. Hence

r
P . , . ,
asm(Cbp—Cb) = sin (P’ -D,) . -(4.7)
Now [Bomford, 1980]
2 | 2 2
b, = P - sin 2d” + 5| ————| sin 4d° + ..,
P (2 - e%) 2[(2 - 82)}

where e (= 0.082 ) is the eccentricity of the reference ellipsoid. Hence @p, - @’ =
O(e®) = 0.0067.

Also, using small angle approximations, equation (4.7) becomes

r
P : y
r—z‘(@p-@) = (P -D,)

, Tp ,
By = B - (D D)

Since 1, <r,, the second term on the night hand side is negligible. A similar

expression holds for @, and r;. Thus @, = d, = O’ and
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(@, + D) J
2

el
COS | ———=

cosI:Cb’ -

=~ 1,
2

as illustrated by Table (4.1), which shows this ratio calculated from every 100th
crossover obtained from the SEASAT long arc spanning MJD43764 to MJD43770.
The error incurred in the crossover differences as a result of approximation of the

geodetic height differences to geocentric is given, from equation (4.6), by

b, + P
cos iid)’ - (lfz) }
Ah - Ar = Ah}| 1 -
{(@2 @) }
COoS >
@, @, O’ Ah ratio |Ah - Ar]
/deg /deg /deg /m
10.373 10.375 10.436 138.451  0.9999994 0.000080
-65.34] -65.341 -65.470 -44.308  0.9999975 0.000112
-61.668 -61.668 -61.811 -157.024  0.9999969 0.000487
52.743 52.744 52.908 77.118  (0.9999959 0.000319
-52.748 -52.748 -52.912 77.796  0.9999959 0.000319
63.669 63.670 63.805 -48.902  0.9999972 0.000137
-20.234 -20.233 -20.344 42.852  0.9999981 0.000080
-61.667 -61.668 -61.811 -9.282  0.9999969 0.000029
71.927 71.928 72.028 29.206  0.9999985 0.000045
71.936 71.930 72.031 -37.674  0.9999985 0.000055
-29.062 -29.065 -29.210 68.624  0.9999967 0.000224
71.263 71.262 71.366 135.523  0.9999984 0.000220
56.313 56.311 56.469 -87.701  0.9999963 0.000328
52.744 52.745 52.910 58.263  0.9999959 0.000242
-63.674 -63.674 -63.809 -115.251  0.9999972 0.000321
Table (4.1)

Geocentric approximation to geodetic crossover residuals

Taken over all 1,547 residuals derived between the above dates, the maximum

magnitude is less than 1 millimetre and 0.042% of the original geodetic value of
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approximately 229.951m. Clearly the accuracy of the approximation is sufficient to

allow the crossover difference residual equation (4.3) to be re-defined as

ACy, = Ar(t) - Ar(t) . -(4.8)

This definition shall be henceforth assumed. A crossover residual is therefore

the difference between the radial errors. Thus differencing equation (3.44) at t = t,

and t = t, will produce an analytical expression for a crossover difference residual. As

for the radial error model, the expression is comprised of both gravitational and non-

gravitational effects.

§ 4.3 Periodic Gravitational Crossover Difference Error

The purely periodic gravitational contribution to AC,, of equation (4.8) is

given by the difference between the purely periodic gravitational contribution to the

radial orbit error at the two crossover epochs, that is

(p) (p)
AC = Ar (Il) - Ar (LZ) R

()
where the Ar  (t)), i=1,2 are expressed by all periodic terms of equation (3.44) of

purely gravitational origin. Thus

()]
AC =
12

fmax fmax . .
DD { A (cos Wity - cos ‘Pkmtz)

k=-Lmax m=0

+B, (sm\Pkmt1 - sin ‘Pkmt2)}

-(4.9)
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Figure (4.4)

Arc 1 and arc 2 intersect to form the crossover point, C

Figure (4.5)
Projection of crossover point of Figure (4.4) onto the Earth-fixed unit sphere
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The aldmetric satellites SEASAT and ERS-1 are in frozen orbits with perigee

fixed at 90°. Thus the sub-satellite point corresponding to mean perigee is always at

the point of maximum latitude, and apogee corresponds to the point of minimum, or

maximum southern latitude, as shown in Figure (4.4) and Figure (4.5), in which P,
is the point on the ground-track of arc i at which the satellite is at perigee, A; the point

on the ground-track of arc i at which the satellite 1s at apogee, N; and Nid the

ascending and descending nodes of arc i, respectively, and G the point of intersection

between the Greenwich meridian and the equator.

Let o; be the argument of perigee on arc 1. Then

radians.

S

(Dl:(sz

Now the inclination, I, can be considered fixed for a particular satellite. Hence

A A
CN)G = n-CNJG = 1.

Therefore, assuming a near circular orbit,

CN: = CN|
and
P,C = CP,
i.e.
M, =2n-M,, -(4.10)

where M. is the mean anomaly at C for arc i.

Equation (4.10) leads to the following fundamental results:

cosM, = cos(-M;) = cosM, -(4.11)

H

sinM, = sin(-M,) -sin M, -(4.12)
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Substituting M, = - M, into equation (4.9) and using equation (3.25) and equation
(3.26) gives the purely periodic contribution to the crossover difference error due to

gravity field mismodelling as

) fmax &max

AC = ¥ %
12 k=fmaxm=0

{ Agm(cos[ kM, + m(Qaty) - 6,(1))) | - cos[ kM, + m(Q,) - 6,))])

ey, (sin[kM, + m(Qaty) - 0,0,0) | - sin[ v, + m(Q) - 6,00) ] ) |

-(4.13)

§ 4.4 Other Crossover Residual Contributions

Differencing each of the other radial orbit error effects given by equation

(3.44) yields the other significant contributions to AC ,. Now, from equation (4.11),

the 1 and 2 cycles per revolution cosine contributions cancel, as

cos M1 - COS M2 = COS 2M1 - COS 2M2 = 0.

By equation (4.12), the 1 cycle per revolution sine contribution is

cy[sinM; -sinM, | = 2¢,sin M. -(4.14)

Similarly the 2 cycles per revolution sine contribution is

2¢,sin2M; . -(4.15)

The constant term will cancel.

By equation (4.12), the secular-periodic sinM contribution is
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C6[(t1—t0)sian-(tz—to)sian]
= Cé[(tl-to)sinM1+(t2-t0)sinM1]
= co (1, +1,-2ty) sin M, -(4.16)

The effects modelled by terms (4.13), (4.14), (4.15) and (4.16) are due
primarily to gravitational mismodelling. Other effects, due to drag and solar radiation
pressure, are the secular-periodic cosine contribution which, using equation (4.11), 1s

given by

c5[(tl-to)cole-(tz-tO)cosMQ] = C5(ty-1)cos M; , ~(4.17)

the secular-periodic sin2M contribution,

cqy (tp +1, -2ty ) sin 2M, | -(4.18)

and a secular contribution given by

NDAY(t,)
NDAY(L,)+6
1) (ty) (i #NDAY(L))
(tl -t 0 ) CNDAY([I)+7 - (tz -t 0 ) CNDAY(l2)+7 - ch
k=NDAY(1,}+7
CNpAy(+7 (1) NDAY(,)
=NDAY(1,))
-(4.19)

As in the case of the radial error formula given by equation (3.44), an overall
crossover difference error model is obtained by addition of all the above terms, (4.13)

to (4.19). That 1is,
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fmax {max
Acn = Y S

k=-{max m=0
{Akm ( cos[le + m(Q(tl) - Gg(tl))]
~cos[-kM, + m( Q) - 8,() | )
+ By, (sin[kM, + m( Q@) - 8,(1)) ]

- Sin[-le + m(Q(tz) - eg(tz))] ) }

+ 2¢c,sin M, + 2c, sin 2M, + c6(t1+t2—2t0)sin M,

+ cs(tl-t,z)COSMl + C7(t1+t2-2t0)sin2M1 +

NDAY(,)
NDAY(L,)+6
(tp) (Ly) D lNDAY(L,)
([1 -1 0 ) CNDAY(t1)+7 - (t2 -t 0 ) CNDAY(12)+7 - ch
K=NDAY(1,)+7
CNDAY(t))+7 (t,-1t) NDAY(,)
=NDAY(,)

§ 4.5 Unobservables and Linear Combinations

It is apparent that several periodic terms of the radial orbit error are
unobservable in crossover residuals. The constant term will vanish along with all
zonal ( m = 0) cosine contributions. Thus an important consequence is that all purely
periodic terms of zonal origin are unobservable in crossovers.

The least squares minimization of the crossover residuals described in chapter
5 involves the solution for each cosine and sine frequency coefficient A, , B, of
equation (4.13). However, several frequency terms will be seen to be linear
combinations of others, which leads to singularity of the normal equation matrix if an

atternpt is made to simultaneously estimate all coefficients of the combination.
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Let the Earth-fixed longitude and latitude of the crossover point C of Figure

(4.5) be A and ¢, respectively. Then

ae = 5 oNt e anNg]

- [ew -6 ]+ [ @uy - 0,1 ] }
- {ewp oy e | (4.20)

where ®(t,) = Q(t) - eg(ti)’ i=1,2.

Let N be the point of intersection between the meridian through C and the equatorial

plane. Then

3r

CN = ¢. and  N,C =M -5~

a
Applying the cotangent rule to the spherical triangle N;CN, in which

NN! = ®@) - Ac .

a
A T
CNN, = 5,

A
and NN;C = 7 - I

gives

cot (Ml - ?322) sin (Cb(tl) - XC) = cot (g>sin(n - I)

+ cOS (Cb(tl) - KC) cos (n - I)

tan(CD(tl) . Xc) = tan(Ml - 3—271) cos(m - 1),
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D (1)) - D(t,)
tan{ —~—]~—2-—2~+3—;—[—} = cotM, cosl ,

using equation (4.20). That is

B (1)) - B(1,) }
_— = cos!l . -(4.21)

tan Ml cot { 5

Employing compound angle formulae, a particular k,m term of equation (4.13) is

(p) . <I>(t2) - d(1y)
AC 2(k,m) = 2sin]y - le tm |y
1

o ) o o
{Akm sin ‘: m (———d—(tz); ) ):l - B, cos { m (_(,_t2); (t)) j:‘ }

Consider the term for which (k,m) = (1,1). That 1s

(p) d(t,) - D(ty)
AC 2(1,1) = Zsin{ - M, + (—Lz———tj}
1

C(D(1) + D) D () + (1)
All S1n ——‘_‘2_“—" - B]] COS ‘—"—‘—2‘—“

-(4.22)
Now,

(6} -
sin{- M1 + (__(F%._(Q)} =

(6} -d b -
- sin M, cos (—(Eii—@) + COoS M1 sin (_(9)_2_&]

(6} -d b -
= cos M, sin (—(—tz)j—(tl—)){ 1 - tan M, cot (——Qi—(t’ﬁ) }

Therefore, by equation (4.21),
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“

O -0 o} -0
sin{- M, + (ﬁ—z—iﬁj} = cos M, sin((t;)?w(t—l)){ 1 -cosl}.

Substituting this into equation (4.22) gives

P [ P(1y) - (1)
AC @, = 2sin —
12

o o b b
{ A, sin [——*———(tz); ) ) - By, cos ("‘(tz); ) j }

-(4.23)

)cole{ 1 -cosl} X

Similarly for the (k,m) = (-1,1) term yields

® (D) - D)
AC ¢1,1) = 2sin — cole{ 1 +cosl} X
12

o[ D(ty) + D(r)) D(t,) + O(1)
A_;, sin — 5 - B_,; cos N S .

-(4.24)

Hence, by equation (4.23) and equation (4.24),

(P) 1 -cos | )
AClz(l,l)A = (m )AC12(-1,1)A

and

() 1-cosl ()
ACIZ(I,I)B = (m )Aclz(—l,l)B ,

® (P)

where AC &ma and AC (km)B represent terms associated with A and Bkm,
12 12

) A AC(p) B AC(p)

(k,m) = (k,m)A + (k,m)B.

o km 5 )N km 2

P
respectively, i.e. AC
1

Thus the (k,m) = (1,1), (-1,1) frequency terms are mutually linearly

dependent and the corresponding coefficients cannot all be simultaneously resolved.
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Table (4.2) verifies the linear combinations discussed when applied (o the crossover
residuals examined in section §4.3 and Table (4.1). The arguments of the (k,m) =
(1,1) and (k,m) = (-1,1) frequency terms of equation (4.13) were calculated for every
100th crossover residual. The inclination of SEASAT remained steady at around
108.0°, so that

] -cosI _ 1-cos108.0°
I +cos I 1 + cos 108.0°

= 1.894,

the value about which the ratio of the (k,m) = (1,1) to (k,m) = (-1,1) arguments
remains approximately constant.

Other such combinations exist for the (k,m) = (-2,2), (0,2), (2,2) frequencies
and for (k,m) = (-2,1), (0,1), (2,1). In order to overcome the problem and recover
the unobservable and linearly dependent combinations of frequency terms, a number

of direct radial height measurements must be included [Sandwell et al.,1986].

(1,1) (1,1) (-1,1) (-1,1) (1,1)/ (1,1)/
coSs sin coSs sin (-1,1) (-1,1)
coSs sin

0.341 0.364 0.185 0.198 1.893 1.893
-1.525 -0.887 -0.809 -0.470 1.886 1.886
-1.699 0.921 -0.901 0.488 1.886 1.886
-1.713 -0.996 -0.902 -0.525 1.899 1.899
1.669 -1.068 0.877 -0.561 1.903 1.903
-1.842 0.241 -0.977 0.128 1.885 1.885
0.118 -0.939 0.063 -0.497 1.890 1.890
-1.860 0.529 -0.977 0.278 1.905 1.905
-0.119 -0.147 -0.059 -0.073 2.015 2.015
-0.173 0.078 -0.086 0.039 2014 2.014
1.106 -0.709 0.579 -0.371 1.912 1.912
0.703 0.223 0.366 0.116 1.923 1.923
1.906 0.606 1.011 0.321 1.886 1.886
-1.840 -0.736 -0.969 -0.387 1.899 1.899
0.366 -1.822 0.193 -0.965 1.889 1.889

Table (4.2)

Linear combinations of the (k,m)=(1,1), (k,m)=(-1,1) frequency terms
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§ 4.6 Attainment of the Crossover Data Set

To construct the crossover data sets used in the analyses, the calculated
crossover differences were found by first separating the calculated ephemeris into its
northern and southern hemisphere arcs, then comparing each arc with all others in the
same hemisphere. A geometrical method was applied to achieve an initial estimate of
the longitude of each crossover point, from which approximations for the epochs

were derived. These were then refined using Lagrangian interpolation.

Consider one such crossover for which approximate positions P, and P, on
arc 1 and arc 2, respectively, have been estimated by this process. Suppose P, is the
point (A,,9,), P, is the point (A,,4,) and the epochs at which the satellite is at P; and
P, are tp, and tp,, respectively. Let C be the true position of the crossover point
sought, at the position (A,d). Assuming that P, and P, are sufficiently close estimates

of C that the variations of the longitude and latitude of the ground-track with time

over the distances CP, and CP, can be considered constant, then [Rowlands,1981]

A

- A )
= t—i,1=l,2,

where t;, t, are the epochs at which the satellite is at C along arc 1 and arc 2,
respectively. Hence,
dA.
A= K- Up-)gr s
wherei=1ori=2.
Equating the two expressions for1 =1 and 1 =2 gives

a, dx,
A -t gr T A - (-

l.e.
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i dry
(- - ) gr = M- X -(4.25)

Similarly for the latitudes,

do dé
(tp1-t) 5 - (pp-t) g = &1 - &, - (4.26)
Expressing (4.25) and (4.26) in matrix form,
dA, dA,
R O 7‘1’}‘2}
do,  doy |Lram2d T Loy g, |
dt ot
i.e.
dh,  dk, |
l:tl] :{IPI}' dt T de Ay - Ry
b tp2 do, do, O, -0, |
dt Codt

Thus new estumates are made for t; and t,, and hence for the latitude and longitude of

C. The process 1s repeated until convergence.

On finding accurate locations, interpolation in the ephemeris at the epochs
leads to a value for the crossover height, which is differenced at both times to
produce the calculated crossover height difference. The observed crossover height
differences are similarly determined by interpolation in the GDR altimetric height
measurements, applying the appropriate corrections as described in chapter 2, at the
same epochs. Subtraction of the two measurements yields the crossover height
residual.

Altimeters take a measurement over the area of the footprint on the surface

beneath. Measurements over land are of downgraded accuracy, if available at all and
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precise comparison of the waveform is essential. Although altimetry over land is
currently under investigation by several authors [Katsgris and Dixon,1990], the
methodology is still at a preliminary stage and in this study was discounted. The land
altimetry has been filtered out of the SEASAT data set. Observations taken over
deserts or inland lake regions could be used, but since the number of such crossovers
is small relative to the total number over the oceans, their inclusion would have only a
marginal effect at best.

Another improvement in the accuracy of the data set is made by the elimination
of spurious data points. Some individual residuals are unusually large, especially
those due to the altimeter readings being taken over sea ice. A large proportion of
such points are found near to the southern extremes of latitude, as discussed later in
section §6.11. To diminish the problem, any crossover residuals taking a numerical
value greater than a particular threshold magnitude were discarded.

For the ERS-1 simulations, in which a derived ephemeris is assumed to
represent the true satellite orbit, a simulated set of observed crossover differences was
constructed in a manner analogous to the calculated values and a continental global

map was computed to eliminate any crossover points deemed to have fallen over land.
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CHAPTER 5§

SOFTWARE SUMMARY

The theory and methods behind some of the software employed in the
research are outlined in this chapter. All programs are written in FORTRAN and

applied using a VAX 8650 mainframe computer.

§ 5.1 Radial Orbit Error Recovery

The possibility of global radial orbit error reduction has been investigated
under a number of different circumstances. This is achieved by the creation of
software for the simultaneous retrieval of all coefficients contributing to equation
(3.44). A least squares fit is carried out through a set of crossover residual data
supplemented by direct radial height measurements in order to produce a solution for
each coefficient.

Equation (4.10) is applied to estimate the mean anomaly of the second epoch
and the assumptions of a single revolution of the right ascension per year in the case
of the Sun-synchronous ERS-1 orbits and a near twice annual rate for SEASAT are
made in order to calculate the right ascension. The Greenwich Mean Sidereal angle is
calculated at each epoch and thus the angular arguments of all significant periodic
terms are determined for every residual. Hence estimates are made for all coefficients
of the radial orbit error formula.

Measures of the accuracy and of the ill-conditioning of the overall solution are
made by determination of the standard error of each coefficient and of the eigenvalues

of the inverse normal equation matrix, respectively.
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§ 5.2 Orbit Determination

The satellite ephemerides determined throughout the following chapters have
been generated using the satellite analysis package of programs currently in use at
Aston University, known as SATAN-A.

Orbits are computed by integrating the equation of motion of the satellite using
an 8th order Gauss Jackson numerical method, beginning from an initial estimate of
the position and velocity of the spacecraft. A least squares differential correction
procedure is applied in order to minimize the discrepancies between the derived
ranges and observations of ranges from laser ranging stations, by solving for new
estimates of the starting vector and drag and solar reflectivity coefficients. Another
orbit is generated from the updated parameters and the process is repeated in an
iterative procedure until no more significant improvement is observed in terms of
fitting the calculated ephemeris to the observational tracking data.

The equation of motion of a satellite is given by

X = -t5 + E,
where x is the position of the spacecraft in an inertial reference frame and r is its
geocentric distance.

The first term on the right hand side occurs from the inverse square law of
attraction due to the gravitational field of the Earth and F comprises all other forces
acting on the satellite. Several parameters are included in F and modelled within the
orbit generation program.

The non-spherical geopotential components create a gravitational force on the

satellite which is expressed in terms of the coefficients of the gravity field model

being used.
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Retarding drag forces due to air resistance of the atmosphere are given by
equation (3.34) and a solar radiation pressure force arising from the bombardment of
the spacecraft by photons incident both directly from the Sun and indirectly after

reflection from the surface of the Earth is modelled by equation (3.42) with FORP)

and Cg replacing AFSRP) and ACy, respectively.

planet
P

S
satelite

0
geocentre

Figure (5.1)
Third body gravitational attraction configuration

The presence of other planets within the solar system create gravitational third

body attraction forces, Eqg . given for each in terms of the relative distances between

the planet, Earth and satellite by the equation [Brouwer and Clemence,1961]

(QP -0S OP
ETBAZGMP{ sp3 )' op3 }

where O, S, P are defined by Figure (5.1), M is the mass of the particular planet
concerned and G is the Universal Gravitational Constant. Venus, Mars, Jupiter and
Saturn have significant effects, as well as the Sun and Moon. Finally, solid Earth and
ocean tidal forces are included. These are found from existing standard sources

[Lambeck,1977].
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Thus E is dependent on a number of parameters, several of which may be
corrected for during the least squares differential procedure that immediately follows
the orbit calculation. The corrections are determined in a manner similar to that in
which the constant radial, along-track and orbit normal corrections are derived during
the short arc determination described later in section §6.4, except that for the long arc
orbit determination, the laser ranges are minimized with respect to the parameters that
affect the orbit described above. For the SEASAT studies and the ERS-1 orbits
derived from laser ranging data, these were the six position and velocity components
of the initial state vector, daily drag coefficients and a solar reflectivity constant. The
simulations of ERS-1 did not involve drag and solar radiation corrections as no data
was available pertaining to the atmospheric density or incident solar radiation and the

simulations are purely gravitational.

§ 5.3 Spectral Analyses

Several spectral analyses of residual data sets are illustrated throughout.
Frequency signatures present can be estimated by separating out and determining each
individual term. Ignoring linear and secular-periodic effects, it can be reasonably
assumed that a radial residual at epoch t can be expressed by [Ponman,1979]

mmax
Ar (1) = N(t) + mz_l { o cos ( 2v(m™) 1) + B, sin ( 2mu(m) ¢ )}

-(5.1)
where N(t) 1s random noise, v™) are the frequencies of the periodic terms present in

the data, mmax is the maximum significant value of m and o and 3  are the

amplitudes of the terms required for solution.
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In the case of the 43 revolution/3 day repeat orbits of SEASAT and ERS-1,
mmax is taken as 107 and for the ERS-1 simulations of the 501 revolution/35 day
repeat orbit, mmax = 1072, If v’ is the reciprocal of the number of revolutions of the

Earth during one repeat period, then (™ is given by

I SEASAT and ERS-1 43 rev/3 day repeat orbits
v = my =9 B
% ERS-1 501 rev/35 day repeat orbit

Suppose there are NRES residuals in the data set and t_ 1s the epoch of the nth

residual. Let
NRES
> Ar (1) cos (2mvot )

n=1

T : (5.2)

Z cos?(2nvut )

n=1

A() =

Then, from equation (5.1),

A(v) =
NRES

S {N(tn)cos(ZZm)tn)
n=1

+ o, cos(2muV ) cos(2mut, ) +..+ o cos(2mu(Mmax ) cos(2mut, )

sin(ro™madt ) cos2rut,) }

mmax

+ [31 sin(ZnU(l)tn) cos(2mvut ) +...+ Bmmax

NRES

2
2 cos (2mnvut, )
n=]

-(5.3)

Taken over all NRES residuals, for any particular frequency v, it can be assumed that

N[

cosz( 2not, ) =

i.e.
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NRES

2
2(:05 (27wtn) = % . -(5.4)
n=1
Also, in general,
0 XzY
cos(X) cos(Y) = %{ cos(X+Y) + cos(X-Y) } = 1 ,
5 X=Y
l.e.
0 X=zY
NRES
Y cos(X)cos(Y) = N -(5.5)
n=1 7 X:Y

Applying equations (5.4) and (5.5) to equation (5.3) and assuming N (t )= 0 gives

A(v) = ,

with a similar expression holding for B(v) and B, where B(v) is given by equation

(5.2) with sines replacing the cosine terms.

(m)y (m)y i s niante ,
Hence A(U ) and B(U ) are estimates of the coefficients o and B,

respectively. These expressions are derived from the radial residuals to produce the

final spectrum of amplitudes given for each frequency o™ by

P(v™) = \ AG™)? 4 B(v™) |

The theory so far has been carried out assuming a data set of radial residuals.
However, an extension of the method is now developed to accommodate spectral
analyses of crossover residuals, for use during this study.

It is assumed that each of the two radial residuals that make up a crossover

can be expressed in the form of equation (5.1). The ith crossover residual, AC;, 1s

given by the difference between the two at each crossover epoch t;, and t,. That is,

100



AC, = [N(t,) -N(tp)]
mmax

+ 3 { o, [ cos ( 21{1)(“‘)[il ) - cos ( 2nu<m)ti2 )]
m=1
+ B [ sin( 21:1)(‘“)til ) - sin ( 2nu(‘“)ti2) ] }

-(5.6)

where o, and B, are the amplitudes of the frequency terms as before. Solving for
o, and B, using crossover residuals will produce an estimate of the power spectrum

from crossover data. Let

NRES
ZACn { cos (2mut,; ) - cos (27U, ) }

n=1

NRES

Z { cos2( 2mut_, ) + cos?( 2mut, )}

n=1

A(v) =

Then, by equation (5.6),

A(v) =
NRES

3 { NG, - Ng)) (cos@mut,)) - cos(2vt,y) )
+ o, [ cos (2HU(1)tn1 ) - COS (2nu(1)tn2 )] ( cos(2mut ;) - cos(2mut,,) ) + .
+ O L €08 ( 2n0(mma")tm ) - cos ( 2nn(mmax)tn2 )]

X (cos(27wtn]) - cos(2m)tn2))

+ By [ sin( 2n0(1)tn1 ) - sin ( 2m)(1)tn2)] (cos(2m)tnl) - cos(2mut ) ) + ..
¢ B [ sin (2mommeny ) - sin (2mo™medy ) ]

X (cos(ZnUtnl) - COS(ZKUth))}

NRES

2
D {cos’(2muvr,, ) + cos’(2mvt, )

n=1
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From equation (5.5) and since for all n, t_; #1t_,,

mmax mmax
Z o, cos2mu™t ) cos(2mut,,) = 2 o, cos(2mu™ ) cos(2mut_,) = 0
m=1 m=1

for all v.

Hence the only non-zero terms remaining are given by

NRES
2
Z o | cosz( 2711)("‘)tn1 ) + cos ( 2nu(m)tn2 )}

A(U(m)) = n:nles ’

Z { cosz( 2711)(”‘)(“1 ) + cosz( 27t1)(m)tn2 ))

n=1
i.e.

A(vm™) = o .

Similarly, B(D(m)) = B, where

NRES
D ac, { sin(2rvt,, ) - sin (2nv1,) )
n=1
B(V) = ~ges
> { sin2(2mve, ) + sin?(2mor, ) |
n=]

Hence calculation of A(v™)) and B(v™) for each frequency V™) produces

estimates of o and 8 and the power, P(D(m)), can be deduced for each term as for
the radial residuals. Unobservable frequency terms will not contribute to the power
spectra as no crossover data will be present at those frequencies, a fact demonstrated

by crossover spectral analyses depicted within this study, derived from the above

analysis.
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CHAPTER 6

SEASAT ANALYSIS

The radial error reduction procedure developed in the preceding chapters is
now applied to SEASAT, in order to demonstrate the validity of the method.
Crossover observations derived from SEASAT alumetry are employed and problems
encountered with the data set discussed. The concept of arc aggregates is introduced

and applied to successive six day orbits.

§ 6.1 SEASAT Mission

o
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On June 16th, 1978, SEASAT was launched by NASA to become the first
satellite entirely devoted to the study of the oceans of the world. As shown in Figure
(6.1), it carried on board five main instruments for use in measuring atmospheric and
oceanographic phenomena, including a radar altimeter, the data from which is of most
interest here.

SEASAT initially performed a near 17 day repeat period, until being
manoeuvred into its 3 day repeat orbit on September 10th, 1978. On October 9th, a
disastrous electrical power failure occurred, terminating its operational lifetime
months earlier than anticipated. Throughout the last month of operation, SEASAT
performed a near perfect repeat orbit with negligible drift of the ground-track between
successive points 43 revolutions apart. Altimetric readings were taken approximately
every second, so that much useful information has still been gathered and a good
global coverage was achieved. This is shown in Figure (6.2), which displays the

derived ground-track for the three days from MJD43764 to MJD43767.
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Figure (6.2)
SEASAT 3-day repeat orbit ground-track
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The data analysed is that returned between 13th September (MJD43764) and
1st October (MJD43782), during which time SEASAT performed six full repeat
cycles. Values for the eccentricity of the near circular orbit, semi-major axis and
inclination were approximately 0.001, 7163km and 108°, respectively. Its repeat
period was approximately 3.008859 days in which time it performed 43 complete
revolutions of the Earth.

Before proceeding to analyse real observational data, it is necessary to
establish the credibility of the method. An initial investigation 1s made here to show
that the coefficients of equation (3.44) can be retrieved with reasonable certainty
whilst approximating the radial orbit error due to atmospheric density mismodelling

by daily linear drag coefficients.

§ 6.2 Non-Gravitational Solution

A non-gravitational solution has been attempted. A SEASAT ephemeris was
converged between the dates MJD43770 and MJD43776 under the influence of the
GEM-T1 gravity field, using all existing laser ranging data. The CIRA72 model
[Jacchia,1972] was assumed to represent the atmospheric density. A second
ephemeris, also using the GEM-T1 field, was generated between the same dates, this
time with the MSIS83A atmospheric density model [Hedin,1983]. The radial
differences at each common epoch between the two arcs have been derived over the
region of study and are plotted in Figure (6.3). The differences are due entirely to
non-gravitational causes since both arcs were generated using the same gravity field.
Thus, eliminating all purely gravitational contributions, from equation (3.44), the
radial orbit difference between the two arcs at any epoch t, where t €

(MJD43770,MJD43776], is given by
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cos2M + a, sin2M +a; (t- ¢ ) cosM

Ar (1) = ao+a1cosl‘\r‘[+2125ir1M+a3
NDAY (0+6 NDAY(1)>1
ay

+ ag (t- t. )sinM +a, (t- t ) sin2M + ANDAY(1)+7 (t- tg) ) + k=8
0 NDAY(1)=1

-(6.1)

- ANDAY(+7 ATC the constant coefficients to be found and t is a fixed

where a,, ..

epoch within the arc.

0.6

0.6 T I
43770 43772 43774 43776
MJD

Figure (6.3)
Radial differences between orbits generated from CIRA72 and MSIS83A atmospheric
density models

A set of crossover differences was derived for each arc in tum by the method
described in section §4.6. The epochs of the crossover points will be approximately

the same according to both sets. Consider a particular crossover, the earlier epoch of

which is t; and the later t. Then, if the subscripts CIRA and MSIS represent values
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associated with the arcs derived from the CIRA72 and MSIS83A density models,

respectively, from equation (4.8) the crossover difference residuals are given by

OBS OBS

AChsrs = [T (1) -Tyspst) ] - [1777(1) - rygrs(ty) ] -(6.2)

and
OBS OBS

= [r ([1) - rClRA(tl) ] - [r (Lz) - rCIRA(t’Z) ] H ‘(63)

ACCIRA

OBS,. | . D . .
where (1) is the observed geocentric distance at time (t)), 1= 1,2.

Subtracting equation (6.3) from equation (6.2) gives

ACysis - ACcra = [Tera() - Tusis(t) ] - [Teralla) - Tysis() 1
-(6.4)
If the crossover difference residuals according to each separate arc are
differenced, then equation (6.4) is analogous to equation (4.8), where the CIRA72
derived arc can be considered as an observed ephemeris and the MSIS83A derived
arc the calculated ephemeris. Equation (6.1) is an expression for non-gravitational

radial orbit error and equation (6.4) can be re-writien as

AC = Ar(t) - Ar(ty)
where Ar (t), i=1,21s as in equation (6.1) and
AC = ACygs - ACciga -

Each crossover residual was differenced in this way and a data set comprising
2.849 crossovers was obtained. From equation (6.4) and using equation (6.1), each

1s given by

AC = Za,ZsinM+2a4sin2M+a5(tl-LZ)COSM

+a6(t1+t,2-2t*)sinM+a7(tl+L2-2t*)sin2M +
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NDAY(,)
NDAY(L,)+6
(t, -t (4 (1) Y #NDAY(L,)
| 0 ) ANDAY(t)+7 ~ (ty-ty, ) ANDAY (1,)+7 ~ Eak
K=NDAY () }+7

NDAY(t,)

anpavaps? (-2 )
=NDAY(1,)

The a,, 3, and a, coefficients, associated with the constant, cosM and cos2M

terms, respectively, are thus unobservable in the crossover data set. No deficient
linear combination of coefficients exist since those are caused by gravitational effects.
Figure (6.4) and Figure (6.5) show the spectral analyses of the radial differences of
Figure (6.3) and the crossover data, respectively. The main aspect of Figure (6.4) is
the large 1 cycle per revolution signature due to the cosM and, to a lesser extent, sinM
coefficients of equation (6.1). Although the cosM term cancels out of the crossover
differences and is not present in Figure (6.5), there is a significant purely periodic
term of frequency 1 cycle per revolution within the radial error due to the sinM
contribution. Additional direct radial heights need 10 be included for the resolution of

the cosM coefficient.
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Figure (6.4)

Spectral analysis of radial differences of Figure (6.3)
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Figure (6.5)

Spectral analysis of crossover differences generated between orbits derived from
CIRA72 and MSIS83A atmospheric density models

The direct radial measurements required were found by selecting a particular

epoch, ., say, and interpolating linearly in each of the two ephemerides, to find the

respective radial distances of each. These were then differenced such that
Ar(t,) = Terallep) - Tusis(tep)

to produce the required radial correction. A wide spread of epochs and mean
anomaly, which was also derived by interpolation in one of the ephemendes, was

chosen, as shown in Table (6.1).

MJD Ar /m s.e./m M/deg
43770.381597 -0.005 0.05 197.1
43771.796181 -0.036 0.05 274.9
43773.560764 0.278 0.05 3533
43774.690972 0.349 0.05 48.0
43775.196528 -0.158 0.05 129.1

Table (6.1)

Direct radial measurements for SEASAT non-gravitational analysis
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A standard error of 5cm was assigned to each direct measurement, compared
with 50cm for each crossover residual, corresponding to weights of 400 and 4,
respectively, to reflect the relative accuracies of the data types and the fourteen
coefficients of equation (6.1) were determined. The results are displayed in Table
(6.2), Figure (6.6) and Figure (6.7). The square roots of the eigenvalues of the
inverse normal equation matrix give a guide as to how accurately the system of
coefficients as a whole has been determined and represent the combined effects of the

individual standard errors of the estimated coefficients on the overall solution.

associated estimated standard
coefficient term value error
(cm) (cm)
1 constant 2.1 0.4
2 cosM 22.9 0.3
3 sinM 5.3 0.1
4 cos2M 2.1 0.4
5 sin2M 0.0 0.1
6 At cosM 2.1 0.1
7 At sinM 1.5 0.1
8 At sin2M -0.1 0.1
9 At -1.6 4.8
10 At 1.3 3.6
11 At -0.3 3.2
12 At -1.7 3.3
13 At 6.9 4.0
14 At -21.9 5.6
Table (6.2)

Calculated coefficients and standard errors of SEASAT non-gravitational solution
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Standard errors of estimated coefficients of SEASAT non-gravitational solution
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Figure (6.7)
Eigenvalue square roots of SEASAT non-gravitational solution

By substituting the values of the estimated coefficients into equation (6.1). a
derived value for Ar (1) is obtained which was subtracted from the radial difference

Teira® - Iysis(D at each epoch t within the three day time span. The residuals that

remain are the radial orbit errors after application of the method and are plotted in

Figure (6.8).
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Figure (6.8)

Radial orbit error after fit of SEASAT non-gravitadonal solution

The error has been substantially reduced, from an rms value of 18.0 cm and
maximum value of 55.3 cm (see Figure (6.3)) to an rms of 4.4cm and maximum
value of 13.6cm. The diminished one cycle per revolution signature shows that, like
the constant coefficient, the cosM term has been well resolved by the direct height
measurements, evidence of which is borne out in the spectral analysis of these final

radial residuals shown in Figure (6.9).
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Figure (6.9)
Spectral analysis of radial orbit error after fit of SEASAT non-gravitational solution
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The geographical distribution of the radial orbit error is worthy of
investigation. The surface of the Earth was subdivided into 288 15° x 15° regions.
The Jatitude and longitude of the radial differences before application of the reduction
method, that is those shown in Figure (6.3), were calculated at each epoch and sorted
into their relevant geographical bin. Figure (6.10) and Figure (6.11) plot the mean
and rms about the mean of the differences in each section, respectively.

All descending SEASAT arcs have approximately the same value of mean
anomaly, M, at a particular latitude, at which all ascending arcs have mean anomaly
-M. From Figure (6.4) and Table (6.2), the dominant frequency term of the radial
error is the cosM term. From equation (6.1), taken over all latitudes, in any particular
15° x 15° section, the cosM term will tend to dominate when calculating the mean
values. This is clearly seen in the north to south sloped effect apparent in Figure
(6.10), where the cosM term changes with M from a high value down to a similar
value but of opposite sign. | cosM | is highest at the latitudinal extremes, diminishing

around the equator where the mean anomaly, M = 90° and cosM = 0.

o /™

Figure (6.10)
Geographical distribution of mean radial orbit error before fit of SEASAT non-
gravitational solunon

113



Figure (6.11)
Geographical distributon of radial orbit error rms about the mean before fit of
SEASAT non-gravitational solution

Figure (6.12)
Geographical distribution of mean radial orbit error after fit of SEASAT non-
gravitational solution
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Figure (6.13)
Geographical distribution of radial orbit error rms about the mean after fit of SEASAT
non-gravitational solution

Figure (6.9) shows the amplitudes of the remaining frequency terms after

application of the method, with all frequency terms reduced 1o less than 2.7cm. The
p)
slight signatures that remain, at 73 cvcles per revolution. or 1 cycle per 1.5 days,

which is not well resolved and at 1 cycle per revolution, manifest themselves in the
peaks and troughs of Figure (6.8). The 1 cycle per revolution signature is also visible
in the post-solution geographical plot of radial residuals of Figure (6.12).in which
slight increases in magnitude of the mein values after solution at the extremes of
latitude are present. Figure (6.8) shows that the solution holds good over the tull
length of the time span, and the low values in Figure (6.12) and Figure (6.13) venfy
that it is entirely global. Thus it appears that each coefficient has been well
independently determined and the theoretical model for the non-gravitational radial
orbit error seems to hold up well experimentally. It remained to investigate the

validity of the gravitational model by moving on to complete real solutions.
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§ 6.3 SEASAT Tracking Network

SEASAT was tracked by eleven laser ranging stations over the eighteen day
period of study. However, several of the stations produced insufficient data, or data
of poor quality. During the calibration phase of the mission, observations were taken
that enabled numerical values to be placed on the accuracies of the readings from
each. The stations involved and the standard errors assigned to each are shown in
Figure (6.14) and Table (6.3).

The most accurate stations are those with an assigned standard error of 0.15m
and all are in North America. This is most problematical in terms of achieving a
highly accurate global set of tracking data. The weights applied to each observation
used in the orbit determination procedure are given by the reciprocal of the square of

the standard error given to the station concerned.

LATITUDE

-150 =100 =50 0 50 100 150
LONGITUDE

Figure (6.14)
SEASAT laser ranging station network
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station number longitude(deg) latitude(deg) s.e.(m)

7062 243.2 32.6 0.15
7063 283.2 39.0 0.15
7067 295.3 324 0.15
7068 288.9 21.5 0.15
7069 279.4 28.2 0.15
7833 5.8 52.2 0.70
7834 10.0 50.0 0.70
7907 288.5 -16.5 0.50
7921 249.1 31.7 0.70
7929 324.8 -5.9 0.70
7943 149.0 -35.6 0.70
Table (6.3)

SEASAT laser tracking stations

§ 6.4 Short Arc Direct Height Observations

The unobservable constant, cosM and cos2M coefficients require direct radial
measurements for their determination and separation. Direct radial data also permits
determination of those coefficients of the mutual linear combinations in the crossover
equations. The direct heights were found for SEASAT by the method of short arc
determination. The differences between laser range observations obtained from a pass
over a tracking station and the calculated ranges obtained from the corresponding arc
of the global ephemeris, are minimized over the pass in the least squares sense.
Another arc is thus generated over the short time span during which the satellite is
within the viewing circle of the station. This new arc is known as a short arc. In this
SEASAT analysis, constant corrections Ar, Aa and An were made to the original
calculated ephemeris at each epoch of the short arc, the minimization having been
carried out with respect to the three mutually perpendicular radial, along-track and
cross-track directions r, a and n, respectively.

Consider one such pass over a station in which NOBS observations were

taken. Let R?BS and RiCAL be the ith observed and calculated ranges, respectively,
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where i = 1,..., NOBS. In the short arc determination procedure, I is minimized

where

NOBS

[ = ;( R?Bs ) RCiAL )2

It is desired to find RS such that

wherepje {r,a,n}.

1.e.

oR.
3 R?BS _ RCAL )_1_ = 0. -(6.5)

CAL
Suppose the new short arc calculated range values are Ry 7(sh) and the

.. C .
originals R; AL(orig). Then the constant corrections Ar, Aa and An are sought such

that

3
R4 = R{M(orie) + 3V (RTY) Apy

)=1

-(6.6)

where V is the operator

A0 A d A9
,V.=(23;+2_1.§‘;+Q'a—n),

Ap_j,j =1,2,3 is the jth term of the vector of desired corrections

Ar
Ap = | Aa |
An
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CAL

and it is assumed that V (R;"7)is constant over the length of the short arc. That is

R R AR (orig) .
5 | 67)

Substituting equation (6.6) and equation (6.7) into equation (6.5) gives

NOB 3 IR (orig)
s | R9®S - RAMGorg) - TV (RS Ap [ = 0,
B ‘ k=1 ' Pj
i.e.
L
NOBS 3 ORSM(orig) _ caL NOBS, oc calL IR (orig)
! VR ap, = 5 (RS- REA M (org) ) —=—
=1 k§1 J J ' k 1=1 ! ' ) ap_]
Or, in matrix form,
NAp = b ,
i.e.
Ap = N'b
where
NOBS
N _ aR?AL(orig) aRCiAL(orig)
jk 2:: op; Ip, ’

1=1
NOBS

aRC-AL(ori )
_ E OBS CAL, . i 8

i=1 ]

The standard errors of the calculated corrections are found by the usual

method of estimating standard errors using the least squares procedure, that is
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NOBS
S
1
1=1 -1
o; = NOBS -4 Nij

NOBS

1. g -1 2. .
where ijl is the jth diagonal element of N'* and 2 v’ is the post-solution sum of
i=1

squares of the range residuals.

The correction Ar in the radial direction is used in the direct radial height
observations. Note that Ar is the difference between the new calculated short arc
radial position of SEASAT and the original position according to the calculated
ephemeris. Thus, for the purposes of this analysis, it is assumed that the new short
arc positions are those of observational data, so that the value estimated in the short
arc determination can be directly substituted for Ar(t) in the direct height equations of
the form of equation (3.44) as used to supplement the crossover data set. The epoch

of the short arc correction was assumed to be its mean epoch.

§ 6.5 Gravitational Coefficient Recovery

The analyses that follow seek the simultaneous recovery of all the significant
coefficients included in equation (3.44), both gravitational and non-gravitational. All

the orbits generated have been computed using the GEM-T1 model of the gravity

field. This is complete up to degree and order 36. That 1s, £max = 36. The arguments

put forward in section §3.6 suggest that the significant contributions arise from terms

of frequency less than about 2.5 cycles per revolution. That is

\ika < 25M
Or, by equation (3.26),

kk» -m& < 25k . -(6.8)
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SEASAT was in a 43 revolution per 3 day repeat orbit, that is k'=43 and

0°=3. Thus the significant gravitational coefficients and therefore those sought in the

following radial error reduction analyses are those for which k and m are such that

43k - 3m < 2.5x43 = 1075

.

These are shown in Table (6.4). All discrete values of ¥ _ in steps of 21% cycles per

revolution, up to and including ‘Pkm = 1—4%7— M, are covered.
k m fq k m fq k m fq k m fq
1 14 1 1 5 28 -1 4 55 -1 13 82
1 15 2 2 19 29 2 10 56 2 1 83
0o 1 3 0 10 30 0 19 57 3 15 84
1 13 4 1 4 31 -1 5 58 -1 14 85
1 16 5 2 18 32 2 9 59 2 0 86
0 2 6 0 11 33 0 20 60 3 14 87
1 12 7 1 3 34 -1 6 61 -1 15 88
1 17 8 2 17 35 2 8 62 2 1 89
0 3 9 0 12 36 0 21 63 3 13 90
1 11 10 1 2 37 -1 7 64 -1 16 91
1 18 11 2 16 38 2 7 65 2 2 92
0 4 12 0 13 39 3 21 66 3 12 93
1 10 13 1 1 40 -1 8 67 -1 17 94
1 19 14 2 15 41 2 6 68 2 3 95
0 5 15 0 14 42 3 20 69 3 11 96
1 9 16 1 0 43 -1 9 70 -1 18 97
1 20 17 2 14 4 2 5 71 2 4 98
0 6 18 0 15 45 3 19 72 3 10 99
1 8 19 -1 1 46 -1 10 73 1 19 100
1 21 20 2 13 47 2 4 74 2 5101
0o 7 21 0 16 48 3 18 75 3 9102
1 7 22 -1 2 49 -1 11 76 -1 20 103
2 21 23 2 12 50 2 37 2 6104
0 &8 24 0 17 51 3 17 78 3 8105
1 6 25 -1 3 52 -1 12 79 -1 21 106
2 20 26 2 11 53 2 2 80 2 7107
0 9 27 0 18 54 3 16 81
Table (6.4)

Frequencies of the periodic gravitational coefficients recovered in analyses of 43 rev/3

day repeat orbits. fq is in units of 21% cycles per revolution.
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§ 6.6 Six Day Long Arc Analysis

Crossover residuals from the full six days from MJD43764 to MJD43770
were obtained from an ephemeris generated using the GEM-T1 gravity field model of
degree and order 36. All crossovers with epochs separated by more than the precise
SEASAT period of 3.008859 days were discarded, to avoid using the same altimetric
measurements more than once. The short arc determination for direct height
observations was carried out using the laser passes over the time studied. It was
found that most of the arcs were not well determined. Only four have been derived
with standard errors of less than 10cm. Previous studies [Sinclair,1988] have shown
that unless the satellite passes almost directly overhead of a station, then a well
determined short arc is never achieved using the data from one station alone. No such
passes OVer one station were recorded. Thus, in order to obtain reasonable reliability,
the satellite must have been tracked simultaneously by two or more stations. This
compounds the problem of lack of global distribution of the stations mentioned
earlier.

From Figure (6.14), the only reliable stations whose viewing circles overlap
are also those confined to North America. The spread of available short arcs is thus
limited to this relatively small area. For the six days analysed, only five such passes
occurred, of which one was rejected due to its high standard error being above the
threshold value used here of 10cm. This left only those displayed in Table (6.5) to be
included as the direct radial height observations. The corresponding short arcs are

shown in Figure (6.15), which highlights the global deficiencies.
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Figure (6.15)
Short arcs derived from SEASAT laser ranging data, MJD43764 10 MJD43770

epoch long. lat. Ar s.e. weight M
(MJD) (deg)  (deg) (m) (cm)  (em’l)  (dep)
43764.127480 292.8 273 -0.012 2.7 0.14 60.9
43765.109862 2439 45.6 -0.148 9.4 0.01 75.1
43767.139197 286.6 13.5 -0.331 3.3 0.09 75.6
43767.602342 286.4 269 -0.138 2.2 0.21 298.5
Table (6.5)

SEASAT short arc data, MJD43764 10 MJD43770
Each crossover was assigned an a priori standard error of 0.5m, that is a
weight of~—15— - 4 was applied to each of the 1, 547 residuals generated. The direct

height weights, shown in Table (6.5). were derived during the short arc

determination.



The error reduction procedure was carmied out in an attempt to recover the 224
coefficients required. The standard errors of the derived coefficients and the square
roots of the eigenvalues of the solution, shown in Figure (6.16) and Figure (6.17).

‘lustrate the extent of the ill-conditioning.
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Figure (6.16)
Srandard errors of estimated coefficients of unconstrained SEASAT 6-day solution
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Figure (6.17)
Eigenvalue square roots of unconstrained SEASAT 6-day solution
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The terms unobservable in the crossover data have been particularly poorly
determined. This is due partly to the fact that the short arcs used are all situated in a
region in which the mean anomaly, crucial in solving for the cosM and cos2M terms,
takes a similar value in all four, which means that little new information is gleaned
from each additional observation. The difficulty in separating out the combination
terms and frequencies close together reveals the need for constraints to be applied to
the coefficients. These have the effect of weighting the solutions in a manner

dependent on the constraints imposed.

§ 6.7 Frequency Dependent Weights

It is well known that a typical frequency spectrum of radial orbit error for
altimetric satellites using current knowledge takes the general form of a peak of the
order of 1 metre at one cycle per revolution, gradually diminishing at higher and
lower frequencies to around 10cm [Wagner and Melchioni, 1989]. Thus a frequency
dependent constraint weighting scheme was devised to mirror the general shape of the
expected distribution. The errors in the frequency terms before fit were assumed to
take the form of Figure (6.18), which is a linear increase from 10cm for the constant
term to 1m at one cycle per revolution, then decreasing linearly to 10cm at two cycles
per revolution. All frequency terms above this were given the minimum a priori
standard error of 10cm. The weighting system was applied by adding the inverse of
the square of the assumed standard error of each coefficient to the appropriate

diagonal element of the normal equation matrix. Each weight, W, is given by

1
W o=,
G

where
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0.9 ‘i’km+ 0.1 for O0¢< \.Pkm< lcyc/rev
G = -0.9 {{ka+ 1.9 for lcyc/rev s ‘i‘km< 2cyc/rev
0.1 for \i’kmz 2cyc/rev

All drag terms were assigned a standard error of 10cm.
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Figure (6.18)
Constraints applied to periodic frequency coefficients
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The application of the constraints had a dramatic effect on the solution, as
Figure (6.19) and Figure (6.20) illustrate. The cosM term s still not satisfactorily
recovered, due to the lack of global short arcs, but the frequency terms have been
well separated, apart from the (k,m) = (1,1), (-1,1) combinations, the inseparability
of which remains unaffected by the weighting strategy which places the same

constraints on both frequencies.

126




5 (-1,1)sin
e

L1)si
( )sm,‘(-l.l)cos

STANDARD ERROR /

5 * (l.l)COS‘ “ .‘

Figure (6.19)
Standard errors of estimated coefficients of constrained SEASAT 6-day solution,
using real short arc derived direct radial heights
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Figure (6.20)
Eigenvalue square roots of constrained SEASAT 6-day solution, using real short arc
derived direct radial heights

§ 6.8 Fictitious Short Arcs

Future altimetric missions should have a far better global network of accurate
tracking stations than available for SEASAT. This should help to overcome the
problems experienced here, especially in the recovery of the cosM frequency term.
The introduction of fictitious short arc observations at this stage gives some insight
into the possible improvement of the solution if a wider geographical spread of shor
arc data was available.

Several locations were selected to give 4 wide range in time and in the mean

anomaly. Fictitious direct heights were positioned at each. Anticipating that good



short arcs will become available, a value of Scm was assumed to be realistic for the
standard error of the radial correction.

Successive single fictitious short arcs were added to the real short arc data.
The effect of the additional observation on the solution was monitored in an atempt to
gain insight into the maximum number of direct height measurements necessary 1o
improve the solution beyond which any extra data become superfluous. The standard
error of the worst determined coefficient and the square root of the maximum
eigenvalue of the inverse normal equation matrix were recorded each time. These are
plotted in Figure (6.21). The results suggest that after the addition of approximately
five or six extra terms, no really significant improvement is observed. The fact thatall
four real short arcs are situated in the same geographical area probably implies that
more are required in this study, since the first four provide similar information about

the crucial mean anomaly and cannot be assumed independent.
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Figure (6.21)
Effect on constrained SEASAT 6-day solution of additional direct height data
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Six fictitious values were introduced to supplement the short arc determined
radial corrections and crossover residuals used to obtain the results of Figure (6.19)
and Figure (6.20). The locations of the direct heights, both real and fictitious, are
plotted in Figure (6.22). The frequency dependent constraints were applied as before.
The solution, plotted in Figure (6.23) and Figure (6.24), has been strikingly
improved. The coefficients have all been simultaneously well determined while at the
same time the spectral analyses of the crossover residuals shown in Figure (6.25) and
Figure (6.26) verify that error terms at all frequencies have been reduced from those
initially present. Figures (6.27) to (6.30) illustrate that the error has diminished in all
geographical regions. |

Thus, given a good global distribution of high quality tracking data and
applying a prion frequency dependent constraints 0 the solutions, the proposed radial
orbit error reduction method has been demonstrably vindicated. The original
crossover residual rms error has been reduced globally from 70.8cm before fitto a

post-solution rms error of 23.9cm. This represents a radial orbit error reduction of

from 50.1cm rms 10 16.9cm, the radial rms being approximately equal toa factor of—\[%

less than the crossover equivalent for a large sample of data [Rothwell, 1989].
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Figure (6.22)
Locations of direct height data employed in SEASAT 6-day analyses
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Figure (6.23)
Standard errors of estimated coefficients of SEASAT 6-day solution, using real and
fictitious direct height data
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Figure (6.24)
Eigenvalue square roots of SEASAT 6-day solution, using real and fictitious direct
height data
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Figure (6.25)
Spectral analysis of crossover residuals before fitof SEASAT 6-day solutions
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Figure (6.26)
Spectral analysis of crossover residuals after fit of SEASAT 6-day solution, using
real and fictitious direct height data

Figure (6.27)
Geographical distribution of mean crossover residuals before fit of SEASAT 6-day
solutions

Figure (6.28)
Geographical distribution of crossover residual rms error about the mean before fit of
SEASAT 6-day solution
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Figure (6.29)
Geographical distribution of mean Crossover residuals after fit of SEASAT 6-day
solution, using real and fictitous direct height data

’ o Figure (6.30)
Geographical distribution of crossover residual rms error about the mean after fit of
SEASAT 6-day solution, using real and fictitious direct height data
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§ 6.9 Importance of the Direct Radial Height Observations

The crucial role played by the radial height data is demonstrated by
investigating a crossovers-only study. The constant, cosM and cos2M terms are not
present in the crossover data, but it is difficult, even with the frequency dependent
constraints applied, to separate out the linear combination terms. Figure (6.25) shows
the amplitudes of the frequency terms present within the initial crossover residuals.
212 frequency coefficients need to be retrieved for a complete solution, plus the six
daily drag coefficients and three time dependent terms, making a total of 221. The
(badly determined) solution obtained without constraints is shown below in Figure

(6.31) and Figure (6.32).
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Figure (6.31)
Standard errors of unconstrained SEASAT crossovers-only solution
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Figure (6.32)
Eigenvalue square roots of unconstrained SEASAT crossovers-only solution
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Figure (6.33)
Standard errors of constrained SEASAT crossovers-only solution

B Wi #* #*
[ T T T T T 1
0 5 0 5 20 25 30

Figenvolue square roots / cm

Figure (6.34)
Eigenvalue square roots of constrained SEASAT crossovers-only solution

Although Figure (6.33) and Figure (6.34) verify that a meaningful solution is
obtainable using the constraints, the inclusion of the short arcs, the sole purpose of
which in this instance of no constant, cosM or cos2M coefficients to be found is to

aid separation of the frequency terms, both for similar frequencies and the linear
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combinations, produced far better results. These are displayed in Figures (6.35) to
(6.37) and include the fictitious data used earlier.

Hence it is concluded that not only are the direct height observations the only
information available to resolve the three unobservable terms, but their aid in
overcoming the ill-conditioning of the periodic frequency coefficients 1s

indispensible.
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Figure (6.35)
Standard errors of SEASAT crossovers-only cocefficient solution using direct height
data to separate the frequency terms

Eigenvolue square roots / cm

Figure (6.36)
Eigenvalue square roots of SEASAT crossovers-only coefficient solution using direct
height data to separate the frequenCy terms
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Figure (6.37)

Spectral analysis of residuals after fit of SEASAT crossovers-only coefficient
solution using direct height data to separate the frequency terms

§ 6.10 Double Arc Aggregate

The results derived in the previous sections, in which the crossover residuals
are generated from one single six day ephemens, imply that the proposed radial orbit
error reduction procedure appears to work well over the length of two successive
repeat periods. After this time span, errors are gradually built up in the force model
used in the orbit determination and the derived ephemendes are of insufficient
accuracy. In order to span longer periods, separate orbits are generated. An
investigation is now undertaken to determine the feasibility of extension of the
method to reduce the global error over the complete length of two successive
ephemerides, that is four successive repeat penods.

A second six day orbit was computed from MJD43770 to MJD43776. All the
crossover residuals within this arc were found as for the previous six days. Since
both ephemerides were of six days duration (twice the SEASAT repeat period), the

satellite will pass over each crossover point four times during the course of each

ephemeris. Suppose these times are t, 1y, t3 and t,, respectively, for the first six day
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arc. Then the repeat period, T, = ty -t = ty - t, . Three crossover residuals are
given by Ar (1)) - Ar (4,), Ar (t,) - Ar (t;) and Ar (4y) - Ar (t,). At first glance an
additional possibility might appear to be Ar (t,) - Ar (t,). However, since
(Ar(t)-Ar(y)] + [Ar(y) - Ar ()] + [Ar () -Ar ()] = Ar (1)) - Ar (1),
this last residual is already implicitly included through the other three and its addition
to the data set is unnecessary. For this reason, any such crossovers with epochs
greater than the repeat period of SEASAT are discarded.

Suppose the next epoch at which the satellite passes the crossover point is tg.
This epoch falls within the second six day arc. The problem arises of calculating such
crossover residuals whose epochs straddle the discontinuity between the two
ephemendes.

A third six day ephemeris was generated, over the period MID43767 w0
MJD43773, to overlap the other two. All the times of crossovers within this orbit
having epochs either side of MJD43770 were logged, to form the set of crossover
epochs that straddled the discontinuity. Their crossover residuals were found by
interpolation using epochs t, and i, to find the calculated geocentric distances
required. In this manner a complete crossover residual data set of 5,439 crossovers,
comprising of 1,034 across the discontinuity and 2,858 within the second six days to

be added to the original 1,547 of the first six days, was generated.

Figure (6.38)
Direct height locations derived from SEASAT short arcs, MJD43770 to MJD43776
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epoch long. lat. Ar s.e. weight M

(MJD) (deg)  (deg) (m) (em)  (em?)  (deg)
43770.611840 284.8 300  -0.238 5.5 0.03  301.7
43771.129604 291.1 4.1  -0.067 8.5 0.01 85.5
43771.732873 239.1 37.0  0.014 3.9 0.07  309.2
43772.639197 280.8  20.9 0.414 6.5 0.02  292.1
43773.153821 293.4 285  -0.217 3.2 0.10 59.6
43773221867 273.4 377 -0.107 9.5 0.01 49.7
43773.293411 244.1 30.2 0.292 4.4 0.05 57.8
43773.620091 2863 27.1 0.073 3.2 0.10  298.6
43774.740413 2426 307 -0.148 6.0 0.03 3024

Table (6.6)

SEASAT short arc data, MJD43770 to MID43776

Short arcs were found using the later ephemeris in the same way as for the
earlier orbit in the single arc study. There were more reliable arcs recorded this time,
with nine having a derived post-solution standard error of less than 10cm, although
the problem of lack of global coverage remained. Those used are shown in Figure
(6.38) and Table (6.6) and were added to the original four used in the single arc
studies.

The fact that the two ephemerides were derived with respect to two different
starting vectors implies that several coefficients to be recovered in the analysis are arc
dependent and separate parameters must be recovered for each orbit. Any coefficients
arising due to errors in the initial state vector will be different for each arc. Also six
daily, linear drag terms need to be resolved for each ephemeris. Hence, by equation

(3.44), the total radial orbit error expression to be estimated is given by

fmax Lmax . .
Ar(t) = ¥ X {Akmcos Yot + Bypsin Wt }
k=Lmax m=0

+ aO(i) + al(i) cosM + az(i) sinM + a3(i) cos2M + a4(i) sin2ZM + as(i) (t- t*(i) ) cosM

+a (- Dy sinM + 2, (-1 sin2M
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NDAY()+6 "JNDAY(0)>1

(i) © 2l

+ (t-ty )+ o

a
NDAY()+7

0 NDAY(t)=1

-(6.9)

where the (i) superscripts denote arc dependent parameters forthe ith arc,1=1, 2.

Hence 238 coefficients need to be found for the complete radial recovery; 210
frequency coefficients, 12 drag terms and 16 other arc dependent coefficients. The
one and two cycles per revolution cosine and sine parameters are considered as arc
dependent although they are contributed to by gravity field mismodelling, an error
common to both ephemerides, since the coefficients due to non-gravitational sources
will absorb the gravitational terms at these frequencies in the least squares coefficient
recovery.

By equation (6.9), each crossover residual is given by

Qmax Q,max . .
AC = ¥ 3 {Akmcos W, 0+ B, sin ', ot }
k=-2max m=0
+ [aom - ao(j)] + [a](i) - al(p] cosM + [ag(i) +a,%) sinM + [ag(i) . 336)] cos2M
+1a,” + 2,97 sin2M + [a,P (1, - D) - 20 (1 - )] cosm

Flag? (410 o (- O sin M+ 3, (1 -0 42, - D) sin 2M
) )

1) )
+ (-t )a - (L, -t a
G-t ) NDAY(t)+7 (& 0 ) NDAY(L))+7
NDAY( 6 TP F NDAY()6 NDAY(Lp)>1 13 i
) 0) Ea(”
& . Zak _ k
* k=8 k=8 k=8 ’
0 NDAY(t))=1 0 NDAY(t,)=1 0 i=]
~(6.10)

where t;, t, fall within arc i and arc j , respectively.
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Note that although for i = j, that is when both crossover epochs lie within the
same ephemeris, three of the coefficients present in equation (6.9) are unobservable
in the crossover residuals given by equation (6.10) (the constant, cosM and cosZM
terms for that arc), there will be some signature at the usually unobservable
frequencies this time when the epochs are from different arcs. This is because the
appropriate radial orbit error coefficients are different for each orbit.

The radial misclosure, Ary;qc between the two calculated orbits 1s given by
the difference in the geocentric distances at MJD43770 according to each ephemeris.

Before application of the correction procedure, this was

Arypsc = Tro76 (MID43770) - Tqag (MID43770) = -0.498metres

where ¢, denotes values associated with the ephemeris covering the time span from

MJID43764 to MJD43770, etc.
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Figure (6.39)
Standard errors of estimated coefficients of unconstrained SEASAT 12-day solution
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Figure (6.40)
Eigenvalue square roots of unconstrained SEASAT 12-day solution
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The coefficients were estimated, initially without constraints, using the 13
short arcs from Table (6.5) and Table (6.6). The unreliable solution is depicted in
Figure (6.39) and Figure (6.40). The extra crossover residuals have proved
insufficient to separate the ill-determined coefficients, whose poor standard errors
have combined to produce the square root eigenvalue of over 73cm. The solution is
barely an improvement on the unconstrained single arc results of Figure (6.16) and

Figure (6.17). Therefore the frequency dependent constraints were applied as before.

Figure (6.41)
Standard errors of estimated coefficients of constrained SEASAT 12-day solution,
using real short arc derived direct height data only

TR ik 8 W &

| S S B A A A A B A
c 2 4 8 8 VUV W ¥ B B 20 22

Eigenvdus square roots / om

Figure (6.42)
Eigenvalue square roots of constrained SEASAT 12-day solution , using real short
arc derived direct height data only

The desired effect was achieved. Figure (6.41) and Figure (6.42) show that

an adequate solution has been returned. The frequency terms have all been well

resolved, except the two cosM coefficients, the solutions of which are again impeded
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by the lack of global distribution of the direct radial height data and which once more
combine to corrupt the solution. This accounts for the relatively large value of around
20cm for the maximum square root eigenvalue.

It was deemed necessary at this point to produce extra fictitious short arc data,
in order to discover how the arc aggregate solution would improve if a better global
distribution was available. Six extra terms were assumed to be ample to separate out
the coefficients, judging from Figure (6.21) and bearing in mind the extra crossover
data. Three were included for each ephemeris; a total of nineteen direct radial heights
were now included, with a wide spread in the mean anomaly. With the additional data
the solution is seen to improve as anticipated. The final coefficient standard errors and

square roots of eigenvalues are shown in Figure (6.43) and Figure (6.44).
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Figure (6.43)
Standard errors of estimated coefficients of SEASAT 12-day solution, using real and
fictidous direct height data
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Figure (6.44)
Eigenvalue square roots of SEASAT 12-day solution, using real and fictitious direct
height data
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Figures (6.45) and (6.46) show spectral analyses of the pre- and post-
solution crossover residual data, respectively. All frequency terms have been well
recovered and reduced. The initial crossover residual rms error of 71.7cm has been
reduced after fit to 25.4cm, equivalent to a radial reduction of from 50.7cm to 17.9cm
over the whole length of the two arcs, that is a 64.7% reduction. The extra data
included has served to increase the stability of this solution still further than for the

single ephemeris solution.
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Figure (6.45)
Spectral analysis of SEASAT crossover residuals, MJD43764 1o MJD 43776
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Figure (6.46)
Spectral analysis of crossovers after solution of SEASAT 12-day analysis, using real
and fictifious direct height data
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Figure (6.47)
Geographical distribution of mean crossover residuals for SEASAT, MJD43764 10

MJID43776
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Figure (6.48)
SEASAT crossover residual rms error about the mean,

Geographical distribution of
MJD43764 10 MID43776 -
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(6.49)
Geographical distribution of mean crossover residuals after fit of SEASAT 12-dav

Figure

solution, using real and fictitious direct height data

Figure (6.50)

Geographical distribution of crossover residual rms error about the mean after fit of

I and fictitious direct height data

using rea

SEASAT 12-day solution,
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The fact that the overall rms error has fallen substantially globally, as shown
in Figures (6.47) to (6.50), reinforces the suggestion that the method is even more

reliable for two arcs than for the single arc solution. Now

ATyrisc = Ty076(MID43770) - 1 474(MID43770)

[OBS BS
= (MID43770) - T4470(MID43770) - r° (MJD43770) + T;(7,(MID43770)

ATg470(MID43770) - Arg,,(MID43770).

This is the difference in the radial orbit errors of each arc at the misclosure epoch.
Hence subtracting the estimated radial orbit error differences from the original radial
height differences at the discontinuity will yield the final, after fit, misclosure value.
Ar(M1D43770) for each arc is found by substituting the calculated coefficients
into equation (6.9). The frequency dependent terms will cancel and the estimated
misclosure equation becomes
Anyse = [ao(l) - 30(2)]
S a3(2)] cos2M,, + [34(1) - aa(z)] sin2M,, + 3 [as(l) (2) ] cosM70

(1 (2)]

1,V g, M, @)

cosMyy + [a, 7 - a, 7'} sinM,

+ [a3

+3 [36(1) + 36(2) Jsin M, +3 [a7(1) + a7(2 ] sin 2M,,+ Z (i

-(6.11)

where M, is the mean anomaly at the misclosure epoch MJD43770.

The relevant recovered coefficient values are given in Table (6.7). The mean
anomaly at MJD43770 is calculated to be approximately 33.84° = 0.59 rad. Equation

(6.11) is applied to these values to give the estimation of the radial orbit differences as

= -0.627m. Hence the misclosure has been reduced from -0.498m before fit down to
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-0.498 - (-0.627 ) =

procedure.

coefficient

M

0.129m

after application of the radial error reduction

associated estimated

term value/cm
constant -21.3
cosM 28.5
sinM -0.8
cos2M 3.1
sin2M -10.8
At cosM -15.5
At sinM -1.6
At sin2M -1.0
At -13.1
At 16.6
At -0.1
At 1.0
At 3.1
At -18.6
constant -4.4
cosM 25.6
sinM -2.6
cos2M 6.2
sin2M -13.4
At cosM -0.8
At sinM -2.3
At sin2M -0.1

Table (6.7)

Coefficients esumated in SEASAT 12-day analysis using real and fictitious direct

height data
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The radial misclosure can be removed altogether by inclusion in the data set as
an infallible observation. This forces the solution to precisely satisfy the misclosure
equation and has the desirable effect of providing a continuous, smooth running orbit
over the full twelve day time span.

Suppose the misclosure equation can be expressed in matrix notation by
A,x = b, -(6.12)

where x consists of the 238 coefficients of equation (6.9), b, the misclosure value
and A, the design matrix for the misclosure equation. If A is the normal equation
matrix for all other residuals and b, the vector of residuals, then the misclosure
equation can be introduced as infallible in the least squares procedure by minimizing {

with respect to  and all the coefficients in x, where [Bomford, 1980]

G (Ao b)) WAL - by 2( Ak - o) X

d . . . .
with y being such that é_£ =0 and W being the diagonal weight matrix of constraints.
X

Then

o=

T T T
5 = 2AWA X -2A Wb, - 2477,

Setting this to zero for minimum  gives

T T T
ATWA x - A{/Wb, - Ay = 0

x = (Awa) [aATwe, +alx] . <6

Substituting equation (6.13) into equation (6.12) gives

AQ(ATW Al)'1 [A‘;WQI + ATy ] = b,
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X = [AZ (ATwa,)" Agf{_b_2 A, (ATw A ) AT W, } .

-(6.14)

Finally, substituting equation (6.14) into equation (6.13) yields the solution of the

coefficients as

x = (ATwa,) { AT wh,

+ AT [Az (ATwa) A'QT [bz A, (ATw A ) ATwW b, } } .

This solution satisfies equation (6.12), so that the misclosure is removed and the two
orbits become continuous after solution.

The infallible observation was incorporated into the analysis and the radial
error reduction method otherwise carried out under the same conditions as those that
produced the results shown in Figures (6.39) to (6.44). The solutions are similar,
with the most reliable being those in which the six fictitious direct heights were
employed. In this instance, the crossover residual rms has fallen from 71.7cm to
25.4cm, equivalent to a radial reduction of approximately 64.5%, from 50.7cm
initially to 18.0cm after fit, with a continuous final radial ephemeris over the full
twelve days. Figures (6.51) to (6.56) depict the final standard errors and square roots
of eigenvalues of the solution and Figure (6.57) is a spectral analysis of the post-

solution crossover residuals.
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Figure (6.51)
Standard errors of estimated coefficients of unconstrained SEASAT 12-day solution,
incorporating infallible misclosure expression
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Figure (6.52)
Eigenvalue square roots of unconstained SEASAT 12-day solution, incorporating
infallible misclosure expression

Figure (6.53)
Standard errors of estimated coefficients of constrained SEASAT 12-day solution,

using real short arc derived direct height data only, incorporating infallible misclosure
expression
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Figure (6.54)
Eigenvalue square roots of constrained SEASAT 12-day solution, using real short arc
derived direct height data only, incorporating infallible misclosure expression
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Figure (6.55)
Standard errors of estimated coefficients of SEASAT 12-day solution, using real and
fictitious direct height data, incorporating infallible misclosure expression
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Figure (6.56)
Eigenvalue square roots of SEASAT 12-day solution. using real and fictitious direct
height data, incorporating infallible misclosure expression
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Figure (6.57)
Spectral analysis of crossover residuals after fit of SEASAT 12-day solution, using
real and fictitious direct height data, incorporating infallible misclosure expression

§ 6.11 Tnple Arc Aggregate

If the procedure can be applied successfully to a third six day arc. then itcan
be reasonably assumed that the possibility would exist of producing a complete.
continuous solution for a longer repeat period, such as the 35 day repeat of ERS-1.
with better racking data. Bearing this ultimate goal in mind, a third successive six
day arc, from MJD43776 10 MJD43782, was generated. All the crossover residuals
within the eighteen day time span from MJD43764 to MJD43782, including those
across both discontinuities, at MJD43770 and MJD43776, were calculated. A total of
9,188 crossovers was obtained.

The radial residual equation for the whole eighteen days consists of both arc
independent and arc dependent contributions, as before (see Figure (6.69)). Owing 1o
a severe geomagnetic storm that occurred between MJD43780 and MJD43781, a far

greater variation in atmospheric density took place during this day than usual . This
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LATITUDE

prompted the derivation of two linear 12-hourly drag coefficients instead of one daily
term, both in the orbit generation and the radial error reduction process.

The radial error and crossover residual equations are of the form of equation
(6.9) and equation (6.10), respectively, with i and j running from 1 to 3. A total of
253 coefficients were found. The short arcs from the ;449 ephemeris were derived
and a further four fictitious heights created. Figure (6.58) and Table (6.8) show the
locations of direct radial height observations for the three arc study. The positions of
the fictitious data are unrealistic. Their inclusion has served only to illustrate the
potential of the error reduction procedure and is not intended to be taken as a literal

example of possible data points.

+ = REAL SHORT ARCS

s = FICTITIOUS

T T T
-%00 0 100
LONGITUDE
Figure (6.58)

Direct radial height data locations for 18-day SEASAT analyses
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T T T T

epoch long. lat. Ar s.e. weight M
MJD /deg /deg /m /lem Jem:2 /deg
43764.127480 -67.2 273 -0.012 2.7 0.14 60.9
43765.109862 -116.1 45.6 -0.148 9.4 0.01 75.1
43766.310069 -1549 -37.8 0.000 5.0 0.04 130.0
43767.139197 -73.4 13.5 -0.33] 33 0.09 75.6
43767.602342 -73.6 26.9 -0.138 2.2 0.21 2985
43768.895486 4.7 -20.5 0.000 5.0 0.04 111.4
43769.405208 33.5 -52.2 0.000 5.0 0.04 213.7
43770.611840 -75.2 30.0 -0.238 5.5 0.03 301.7
43771.129604 -68.9 4.1 -0.067 8.5 0.01 85.5
43771.732873 -120.9 37.0 0.014 39 0.07 309.2
43772.639197 -79.2 20.9 0.414 6.5 0.02 2092.1
43773.153821 -66.6 28.5 -0.217 3.2 0.10 59.6
43773.175000 -141.7 -68.9 0.000 5.0 0.04 168.7
43773.221867 -86.6 37.7 -0.107 9.5 0.01 49.7
43773.293411 -115.9 30.2 -0.292 4.4 0.05 57.8
43773.620091 -713.7 27.1 0.073 3.2 0.10 208.6
43774.100000 130.9 -21.2 0.000 5.0 0.04 247.5
43774.740413 -117.4 30.7 -0.148 6.0 0.03 302.4
43775504167 21.0 1.7 0.000 5.0 0.04 271.8
43776.629994 -76.3 32.1 -0.033 6.5 0.02 304.0
43777.213000 -85.0 25.0 0.521 5.8 0.03 63.3
43778.192495 -76.4 25.7 -0.255 6.2 0.03 62.7
43778.656272 -77.8 17.8 0.331 3.5 0.08 28%.8
43779.510069 -113.2 71.9 0.000 5.0 0.04 1.4
43780.230208 -102.1 -15.8 0.000 5.0 0.04 106.4
43780.675000 -64.1 -33.2 0.000 5.0 0.04 2347
43781.780208 249 -64.1 0.000 5.0 0.04 160.9
Table (6.8)

Direct height data employed in 18-day SEASAT analyses. (F = Ficutious value).

The results of the triple arc analysis are displayed in Figures (6.59) to (6.64).

Figure (6.59)
Standard errors of estimated coefficients of unconstrained SEASAT 18-day solution,
incorporating infallible misclosure expression
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Figure (6.60)

Eigenvalue square roots of unconstrained SEASAT 18-day solution, incorporating
infallible misclosure expression
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Figure (6.61)
Standard errors of estimated coefficients of constrained SEASAT 18-day solution,
using real short arc derived direct height data only, incorporating infallible misclosure
expression
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Figure (6.62)
Eigenvalue square roots of constrained SEASAT 18-day solution, using real short arc
derived direct height data only, incorporating infallible misclosure expression
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Figure (6.63)
Standard errors of estimated coefficients of SEASAT 18-day solution, using real and
ficttious direct height data, incorporating infallible misclosure expression
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Figure (6.64)
Eigenvalue square roots of SEASAT 18-day solution, using real and ficutious direct
height data, incorporating infallible misclosure expression

Although the additional crossover residuals in the full triple arc aggregate
have gone some way towards separating out the periodic frequency terms, the
coefficients are still badly determined and constraints are required. Figure (6.61) and
Figure (6.62) plot the resolution of the coefficients after all the real short arc data has
been included, with no fictitious short arcs. Derived entirely from real data, the cosM
coefficients from each of the three arcs are not well resolved; the large square root of
eigenvalue of around 23cm is due to the combination of the three badly resolved

cosM coefficients. Figure (6.63) and Figure (6.64) provide encouraging evidence of
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the success of the method. Again a full global solution has been achieved, as deduced

reliable in terms of the resolution of the coefficients.

¥

from Figures (6.65) to (6.68)

SEASAT, MJD43764 10

MJD43782

Figure (6.65)

Geographical distribution of mean crossover residuals for

al rms error about the mean,

Figure (6.66)

Geographical distribution of SEASAT crossover residu

MJID43764 to MJD43782

157



0C / on

Figure (6.67)

Geographical distribution of mean crossover residuals after fit of SEASAT 18-day

solution, using real and fictitious direct height data
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Figure (6.68)
Geographical distribution of crossover residual rms error about the mean after fit of
SEASAT 18-day solution, using real and fictitious direct height duta
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Figure (6.70)
Spectral analysis of SEASAT crossover residuals. MJD33764 to MJD 43782
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Figure (6.71)
Spectral analysis of crossover residuals after fit of SEASAT 18-day solution, using
real and fictitious direct height data

The rms error of the crossover residuals has fallen from 72.1cm initally to
27 8cm after final convergence of the procedure, while at the same time producing a
smooth, continuous 18 day radial ephemeris. The equivalent reduction in the radial
orbit error is from 51.0cm rms to 19.6cm (= 61.6% reduction). Figure (6.70) and
Figure (6.71) show that terms of all frequency have been substantially reduced.
Figure (6.69) summarizes the 3 arc aggregate solution, illustrating the breakdown of
the crossover residuals and short arc data, the misclosures included as infallible
observations and the nature of the 253 coefficients recovered.

Table (6.9) and Figure (6.72) compare solutions obtained for the single,
double and triple arc studies. The fictitious data has been included in each. The
equivalent radial orbit rms error is reduced in all cases to below 20cm, including the
complete 18 day triple arc analysis. At the same time all coefficients have been

accurately resolved. The extra crossovers in the arc aggregates provide more

160




information with which to separate out gravitational terms of similar frequency and
accounts for the gradual reduction in the standard error of the worst determined
coefficients. It follows that each solution overall will have greater reliability, hence
the reduction in the square roots of the maximum eigenvalues. The final radial
reduction to 19.6cm for the triple arc solution is as good as can be reasonably

expected by fitting data obtained from three separate arcs to the same radial orbit error

model.
NO. OF ARCS 1 2 3
Crossovers Total 1,547 5,439 9,188
Rejected 165 755 1,339
Retained 1,382 4,684 7,849
Direct Heights Real 4 13 17
Fictitious 3 6 10
Total 7 19 27
Max. standard
error of ) 7.0 4.9 4.1
solution/cm
Max. 11.5 10.7 7.8
v eigenvalue/cr
AC,, before 70.8 71.7 72.1
solution/cm
AC, after 23.9 25.4 27.8
solution/cm
Equivalent Ar_ 50.1 50.7 51.0
before solution/
Equivalent Ar__ 16.9 18.0 19.6
after solution/cr
Table (6.9)

Comparison of SEASAT arc aggregate solutions
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Figure (6.72)
Comparison of SEASAT arc aggregate solutions
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The SEASAT studies have been hampered not only by the disappointing
returns from the laser ranging stations, but also because a relatuively large percentage
of the altimetry used in the derivation of the crossover heights is inaccurate due to the
presence of sea ice. Prior to the month of September, over which the analyses were
carried out, winter had fallen on the southern hemisphere. The locations of the 1,339
data points rejected during the triple arc analysis from which Figure (6.63) and Figure
(6.64) were derived, namely those having a post-solution crossover residual greater
than 0.75m, are plotted in Figure (6.73). As expected, most appear over the southern

oceans where sea ice has contaminated the aliimeter returns.

LATITUDE

LONGITUDE

Figure (6.73)
Crossover residuals rejected during SEASAT triple arc analysis

§ 6.12 Conclusions

Using the radial reduction arc aggregate techniques introduced, the SEASAT
analyses have served to validate the proposed radial orbit error reduction procedure.

Given a greater spread of direct radial height observations and altimetnic data less
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corrupted by sea ice, it should be possible to reduce the global radial orbit error of
similar altimetric satellites to less than 20cm over a prolonged period of time, such as

the 35 day repeat orbit proposed for ERS-1.
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CHAPTER 7

ERS-1 SIMULATIONS

§ 7.1 ERS-1 Mission
SAR Antennc

Wind Scatterometer
Antennoe T

~ AISR - infro-red
Rodiometer

Figure (7.1)
ERS-1

Figure (7.1) shows the European Remote Sensing satellite, ERS-1, launched

on July 17th, 1991. The main mission objectives of the most highly sophisticated

remote sensing satellite ever launched are to monitor the environment, ice and oceans

of the Earth, using the five active microwave instruments on board.
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A radar altimeter is employed in the study of the sea surfaces, as for

SEASAT, although the satellites differ in that the high inclination of the polar orbit of
ERS-1 enables an unprecedented global distribution of data to be gathered, with the
spacecraft reaching extremes of latitude 82° north and 82° south. This is 10° further
north and south than SEASAT, from which many of the observations of the southern
regions were rejected due to the prevalence of sea ice, as described in section §6.11.
For precise orbit determination ERS-1 carried a laser retroreflector array and an on-
board microwave tracking system, PRARE.

On April 14th, 1992, ERS-1 entered its 35 day repeat orbit, during which the
satellite performs 501 nodal revolutions of the Earth in the time taken for the Earth to
revolve 35 times relative to the precessing orbital plane. This large number of
revolutions coupled with the polar orbit ensures that a dense and almost complete
coverage of the ocean surfaces is achieved. This is demonstrated by Figure (7.2),
which compares the ground-tracks of the 501 rev/35 day ERS-1 repeat orbit, obtained
by amalgamation of the five GEM-T1 derived arcs used in the arc aggregate of section
§7.7 and the 3 day SEASAT repeat orbit of Figure (6.2), over the United Kingdom
and a section of the North Sea. The highly dense coverage of the ERS-1 orbit is well

llustrated.

§ 7.2 Obtaining the Initial Orbit

In order to be able to generate simulated orbits, an initial estimate must be
made of the position and velocity of the satellite. The orbit chosen for analysis was
the 501 rev/35 day repeat, so it was necessary to construct an orbit that would
perform this motion as precisely as possible. That 1s, over the léngth of an ephemeris,

it was required that the average mean motion, n = 53%1 =~ 14.314 revolutions per
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day. An estimate can then be made, using equation (3.4), for the initial semi-major

axis from this value, i.e.

1
b3
a = (——\J = a = 7.165097 MM.

LATITUDE

(1) SEASAT 3-day repeat orbit
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(b) ERS-1 35-day repeat orbit

Figure (7.2)
Ground-track comparison of 43 rev/3 day SEASAT and 501 rev/35 day ERS-1
repeat orbits
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The low eccentric, frozen, Sun-synchronous orbit of ERS-1 was planned to

have a near circular orbit with values of argument of perigee and right ascension of
ascending node given approximately by 90° and 247.07°, respectively, at the
beginning of its 35 day repeat orbit. Taking these values as initial estimates and
setting the mean anomaly to zero at time t = 0, a value for the inclination was
calculated by consideration of the gravitational influence of the Earth on the right

ascension {Kaula,1966] and using

. 2
- ~ 0.0172 revs/d:
Q = Ses2axgeann - L0172 revsiday,

appropriate to a Sun-synchronous orbit, that is an annual revolution of the orbital
plane. Expressions for each of the Keplerian elements [Gooding,1981] were then
used in an iterative procedure to obtain the initial osculating values given in Table

(7.1) for the elements of the simulated orbit.

element initial
value
7.1503768 MM
0.0019
98.53°
90.00°
247.07°
0.00
n 14.359 revs/day

ZDS"‘W“’

Table (7.1)
Inital osculating elements for ERS-1 simulated orbit

An initial state vector was formed in terms of the position and velocity of the
satellite by transforming these elements to rectangular co-ordinates, from which a
simulated seven day ephemeris was computed using the GEM-T1 gravity field model.

No drag or solar radiation pressure was modelled for this gravitational simulation.
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The time elapsed during each complete revolution was recorded. By averaging

these over the full seven days, the mean value of the mean motion was obtained.
9959.26 minutes were taken to complete 99 full revolutions of the Earth, with the
satellite orbiting at an average mean motion of approximately 14.3143 revs/day =
501.001 revs/35 days, a close approximation to the actual 501 revs/35 day orbit
proposed. The duration of individual orbits varied between 100.59 minutes and

100.60 minutes.

§ 7.3 Derivation of the GEM-T1 Clone Gravity Field Model

A simulated data set was completed by calculation of a second ephemeris over
the same seven day period, using a different gravity field model, but starting from the
same initial conditions and again ignoring drag and solar radiation pressure. The
difference between the two orbits is thus due entirely to gravitational effects.

Firstly it was necessary to establish a second gravitational field model. In
order to make the simulation as realistic as possible, a clone of the GEM-T1 model
was sought which reflected the known covariances of GEM-T1. The standard errors
of all the GEM-T1 coefficients up to degree and order 36 were considered. Random
perturbations were applied to each, then added to the original coefficient concerned to
produce a new set of coefficients which represent the clone gravity field model. Each

coefficient is given by

COE, = COEgr + RO, -(7.1)

where COE 5, and o are the value and standard error, respectively, of a coefficient of

the GEM-T1 field model, COE ; is the new derived value of the corresponding

coefficient of the clone field and R is a random number.
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By creating the clone in this manner, the coefficients that are the source of the
greatest gravitational orbit error in arcs derived from real data are likely to be the main
contributors to the radial orbit error of the simulation. The perturbations applied to the
GEM-T1 field coefficients were adjusted by scaling R such that the radial differences
between the new ephemeris derived from the clone and that derived from GEM-TI
reflected values that could realistically be assumed to simulate radial orbit errors.

Idendcal initial elements to those of Table (7.1) were used to construct a 7 day
ephemeris using the clone field model. The average time over all complete revolutions
of the Earth of the clone derived orbit was calculated in the same way as for the
GEM-T]1 derived orbit and was found to be such that the satellite performed an
average mean motion of approximately 501.001 revs per 35 days, again a close
approximation to the desired orbit.

Two orbits had now been generated. The clone orbit was assumed to
represent a calculated ephemenis, while the GEM-T1 represented the corresponding

observed orbit The radial differences between the two over the seven day penod are

plotted in Figure (7.3).

DAYS ELAPSED

Figure (7.3)
Radial orbit error of 7-day simulation of ERS-1 501 rev/35 day repeat orbit
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The (gravitational) radial differences are modelled by equation (3.33) plus a

2nd order secular periodic At sin2M effect. Using equation (6.8), the significant
periodic frequency terms less than 2.5 cycles per revolution present for ERS-1in its

501 rev / 35 day orbit are all those for which k, m sausfy

501k - 35m < 25x501 = 1250.

This consists of 179 discrete frequencies.
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Figure (7.4)

Spectral analysis of radial differences before fit of 7-day ERS-1 simulation solution

A specural analysis is plotted in Figure (7.4), which was carried out through
the radial differences of Figure (7.3) solving for terms at each of these frequencies.
As expected the main term present is that al 1 cycle per revolution. No significant
contribution is made to the radial differences by terms of frequency greater than
approximately 2.14 cycles per revolution, so it was decided that solving for any
frequencies above J%ITZ cyc/rev would be trivial. Thus 308 periodic gravitational
coefficients, at the frequencies given in Table (7.2), remained to be recovered by the
radial error reduction procedure, plus the constant and two secular periodic terms,

making a total of 311 in all. Note that, from Table (7.2), not all periodic frequency

muloples ofg& cycles per revolution are present.
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34
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Table (7.2)

fq

372
374
383
385
396
407
409
418
420
431
442
444
453
455
466
477
479
488
490
501
512
514
523
525
536
547
549
558
560
571
582
584
593
595
606
617
619
628
630
641
652
654
663
665
676
687
689
698
700
711
722

P
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fq

724
733
735
744
746
757
768
770
779
781
792
803
805
814
816
827
838
840
849
851
862
873
875
884
886
897
908
910
919
921
932
943
945
954
956
967
978
980
989
991
1002
1013
1015
1024
1026
1037
1048
1050
1059
1061
1072

Frequencies, fq, associated with the periodic gravitational coefficients recovered in

analyses of 501 rev/35 day repeat orbits. fq is in units of%f cycles per revolution.
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§ 7.4 Simulated Crossovers

The crossover residuals were found in a similar manner as for the non-
gravitational SEASAT analysis of section §6.2. The crossover heights derived within
each arc were differenced at each crossover epoch to leave a set of residuals of the

form of equation (4.8), with

Ar([i):rGTl(ti)'rcl([i)’ 1=1,2,

and

AC = AC, - ACqr,

where the cl and GT1 subscripts represent values associated with the clone
(“calculated”) and GEM-T1 (“observed”) derived ephemerides, respectively.

The crossovers generated are spread across the whole globe. In reality, when
crossovers are found from altimetric data, only those over the ocean regions are
retained. In order to further increase the realism, it was decided that only points
where real altimetric crossovers could become available should be used in the
simulation, that is only those over the seas. Hence the results obtained give guidance
as to the possibility of obtaining solutions from real data available from similar
regions.

Various coastal points over the surface of the Earth were connected along
lines of constant latitude or longitude to give an approximate guide as to the location
of the continental regions. Thus an approximate map of the world was constructed.
Any crossover points falling within the continental boundaries of the map were
considered to represent unreliable crossover residuals over land and consequently
discarded. Of the 5,731 residuals originally calculated, 4,269 marine crossovers

rematined.
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Prior to launch it was anticipated that ERS-1 would be tracked using PRARE,

a satellite-ground-satellite system developed in order to provide a comprehensive
global coverage of high quality data. However, shortly after launch the PRARE
system failed. Since this study was undertaken before the launch, it has focused on
the possibility of using PRARE data to produce the direct radial measurements
required to supplement the crossover data. As a result, the locations of the ground
stations were selected from those included in the PRARE network. A much better
coverage of the Earth would have been achieved using PRARE than that obtained
from the laser stations that tracked SEASAT. Six stations were chosen for the
simulation, those situated at the Falkland Islands, Greenbelt (U.S.A.), Hartebeestoek
(South Africa), Townsville (Australia), Tromsoe (Norway) and Ulan Bator
(Mongolia). These are widely distributed to eliminate the problems that arose in the
SEASAT study. Ulan Bator in particular was taken deep into the continental regions,
where the crossover data had been eliminated. Figure (7.5) and Table (7.3) show the

sites selected.

Site Location Long. Lat.
/deg /deg

1 Falkland Is. -57.8 -51.5
2 Ulan Bator 107.1 47.7
3 Hartebeestoek 27.7 -25.7
4 Greenbelt -76.8 38.8
5 Townsville 146.8 -19.2
6 Tromsoe 18.9 69.5

Table (7.3)

Direct height data sites used in ERS-1 35 day repeat orbit simulations
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LATITUDE

Figure (7.5)
Direct height data sites used in ERS-1 35 day repeat orbit simulations

Figure (7.6) shows the configuration of a satellite at Pg,p and PRARE site at
A
P relauve to the centre of the Earth, O. Angle OPgpPsay ( =B, say ) was derived

for each ephemeris epoch whenever the satellite passed within the vicinity of a staton

of Table (7.3). The ephemeris epochs for which the zenith angle ( 180° - ) was

minimum for each station over the seven days was recorded. The radial distancesr

and rp, were calculated at each. Then the radial height difference, Ar = 15y - Ty WS

l

taken as the direct radial height measurement. Those derived are given in Table (7.4).
The six observations, one from each stanon. were used with an assumed a priorl
standard error of 5cm to supplement the crossover residuals, to which was applied a

standard error of 50cm.
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0

Figure (7.6)

Geometrical configuration used to obtain direct radial height data for ERS-1 35 day
repeat orbit simulations

Site Days

Elapsed
2 0.007986
4 0.968403
5 1.376042
3 2.188194
1 2.402778
6 6.290972

Ar/m

-0.049
-1.144

1.103
1.169
0.270

-0.101

s.e.
/m

0.05
0.05
0.05
0.05
0.05
0.05

Table (7.4)

Long.
/deg

105.4
-76.8
146.4
26.9
-56.9
17.6

Lat.
/deg

47.8
39.6
-19.2
-26.2
-51.4
69.7

Direct radial height data derived for ERS-1 7-day simulation analysis

§ 7.6 Seven Day Long Arc Radial Error Reduction

M
/deg

49.9
-51.5
-102.3
117.1
141.9
18.3

The 4,269 crossovers and six direct radial height observations were taken as

the residual data set and each of the 311 coefficients estimated using the radial error

reduction procedure. The results of the converged solution are displayed in Figures

(7.7) 10 (7.14). A good solution has been achieved in terms of the reliability of the
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recovered coefficients, with the largest standard error of any derived coetticient beiny

less than 1.5¢m.
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Figure (7.7)
error remaining after fitof ERS-1 7-day simulation solution
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Figure (7.8)

Spectral analysis of radial orbit error remaining after fit of ERS-1 7-day simulation

solution
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Siandard errors of esimated coefficients of ERS-1 7-day simulation solution
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Figure (7.10)
Eigenvalue square roots of ERS-1 7-day simulaton solution

Figure (7.11)
Geographical disibution of mean radial residuals before fit of ERS-1 7-day
simulation solution
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Figure (7.14)
Geographical distmbution of radial residual rms error about the mean, after fit of
ERS-1 7-day simulation solution

The estimates of each coefficient were substituted back into the radial
correction formula and added to the radial differences at each ephemeris epoch of
Figure (7.3) to produce the final post-solution radial residuals shown in Figure (7.7).
The radial error has been greatly reduced at all frequencies, as demonstrated by
comparison of the spectral analysis of the post-solution residuals of Figure (7.8) with
that of the pre-solution residuals of Figure (7.4). The radial residuals have been
reduced from a pre-solution rms of 1.09 metres before applying the method to only
11.8cm afterwards, with the maximum of 3.58m reduced to 38.4cm. The
geographical plots of Figures (7.11) to (7.14) illustrate how well reduced the errors
are over all regions of the world. Although more coefficients were recovered than for

the SEASAT single arc analysis, that is 311 instead of 224, the extra crossover data
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and the lack of corrupt data points provided by the 35 day repeat orbit simulation have

served to produce an even more stable global solution over the seven days.

§ 7.7 Arc Aggresates

In order to extend the simulations to more than one arc, further ephemerides
were derived in the same manner as before. The initial state values used to generate a
successive “observed” ephemeris using the GEM-T1 gravity field model were taken
as the final state values from the previous GEM-T1 arc. Thus continuous
observational arcs were simulated. The absence of drag modelling means that a
successive generation can be carried out in which the simulated orbit under the
influence of the GEM-T]1 field will still result in a close approximation to the 501 rev /
35 day repeat orbit.

A similar situation would arise using the “calculated” clone derived orbit.
However, a misclosure was introduced to simulate the misclosure that would
invariably arise using real data, by taking the initial state vector of the second clone
derived ephemeris to be the mean of the differences in position and velocity between
the endpoints of the GEM-T1 and clone derived ephemerides of the earlier arcs, that
1s the initial position and velocity, respectively, of the second clone derived orbit, are
given by

(X * Xg11 )

e
l
oo —

and

. 1/ - .
§ = §(id+lc;ﬂ) ,

where x ; and x;, denote the final satellite positions of the previous arc

according to the clone and GEM-TI1 derived orbits, respectively. The radial

differences over the full 14 days are depicted in Figure (7.15), which includes the
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radial misclosure after 7 days. Figure (7.16) is a spectral analysis through these
residuals. The equation of the misclosure is found by substituting the appropriate
values into an expression of the form of equation (6.11) and is included as an
infallible observation in a similar manner to that of the SEASAT analysis. Seven days
afier the start of the analysis, the radial misclosure was calculated to be approximately

~0.203m and the mean anomaly approximately 70.2°.
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Figure (7.15) '
Radial orbit error before fitof ERS-1 14-day simulation solution
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Figure (7.16)
Spectral analysis of radial orbit error before fit of ERS-1 14-day simulation soluton
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A second direct radial measurement was derived from each of the sites

included in Table (7.3). The crossover residuals within the second arc were produced
in the usual manner. In order to obtain the crossovers that straddle the misclosure, the
successive ephemerides were compared by effectively superimposing the complete
global ground-track from which the first seven day orbit was derived onto the
corresponding ground-track for the following seven days. Any points of intersection
between the two separate ground-tracks represent the positions of crossover points
across the discontinuity between the successive orbits. The radial height differences
according to the clone and the GEM-T1 derived ephemerides were calculated, then
differenced to produce the desired residuals of the form of equation (4.8). Those over
land areas were filtered out as before to leave 7,386 across the misclosure to be added
10 the 4,269 from the first seven day simulation and the 4,297 within the second
seven days, a total of 16,952 crossovers altogether, supplemented by the 12 direct
radial height measurements derived. An additional seven arc dependent coefficients

were included in the 318 terms sought by the radial error reduction carried out.
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Figure (7.17)
Radial orbit error after fit of ERS-1 14-day simulation solution
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Figure (7.18)
Spectral analysis of radial orbit error after fit of ERS-1 14-day simulation solution
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Figure (7.19)
Standard errors of esumated coefficients of ERS-] 14-day simulanon solution
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Figure (7.20)
Eigenvalue square roots of ERS-1 14-day simulation solution
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Geographical distribution of mean radial residuals before fit of ERS-1 14-dav

Fioure (7.21)

simulaton solution

(7.22)

Figure
Geographical disuibution of radial residual rms error about the mean, be

fore {11 of

ERS-1 14-dav simulation solution
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Figure (7.23)
Geographical distnbution of mean radial residuals after fit of ERS-1 I4-dav
simulation solution

Figure (7.24)
Geographical distribution of radial residual rms error about the mean, after fit of
ERS-1 14-day simulation solution
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The results displayed in Figures (7.17) to (7.24) confirm the success of the

double arc aggregate. Over the full 14 days, the radial orbit error after fit has fallen by
86.2%. from 100.5cm to 13.9cm. Terms at all frequencies have been resolved
globally and the standard error of the worst determined coefficient is only 1.3cm. The
square root of the maximum eigenvalue is 6.8cm, due 10 the cumulative effects of the
errors from each of the 318 coefficients.

The extension of the arc aggregate method to three arcs results in a relatively
poor recovery of the global error. After convergence of the solution, the rms has
fallen from 94.1cm to 27.3cm, a less dramatic reduction than was the case for two

arcs (see Figure (7.25) and Figure (7.26)).
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Figure (7.25) A ' _
Radial orbit error before fit of ERS-1 21-day simulation solution
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Figure (7.26)
Radial orbit error after fit of ERS-1 21-day simulaton solution
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Figure (7.27) and Figure (7.28) portray the spectral analyses of the pre- and
post-solution radial residuals, respectively. Significant signatures remain at several
frequencies after solution. In particular, coefficients of terms at the frequency of the
linear combinations described in section §4.5 have not been well retrieved.
Confirmation of this is provided by Figure (7.29), which shows that the coefficients

of these frequencies are ill-determined.
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. . Figure (7.27)
Spectral analysis of radial orbit error before fit of ERS-1 21-day simulaton solution
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. Figure (7.28)
Spectral analysis of radial orbit error after fit of ERS-121-day simulation solution
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Figure (7.29)
Standard errors of estimated coefficients of ERS-1 21-day simulation soluton
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Figure (7.30)
Eigenvalue square roots of ERS-1 21-day simulation solution

Consequently it was suspected that the extra six direct radial height
measurements introduced have provided insufficient information to combat the
problems associated with the linear combinations arising from the additional 21,091
crossovers. Therefore the procedure was repeated with the (k,m) = (0,2) frequency
terms suppressed. This had the desired effect and as Figures (7.31) to (7.38)

illustrate, a good solution has been achieved, with all coefficients well determined.
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Standard errors of estimated coefficients of ERS-1 21-day simulation solution, with
(k,m) = (0,2) frequency terms suppressed
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Figure (7.35)
Geographical distribution of mean radial residuals before fit of ERS-121-day
simulation solution
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Figure (7.38)
Geographical distribution of radial residual rms error about the mean, after fit of
ERS-1 21-dav simulation solution, with (k.m) = (0.2} frequency terms suppressed

The quadruple arc aggregate analysis was similarly problematical with
suppression of the (0,2) frequency terms again necessary 10 overcome the ill-
conditioning. Eventually the solution is comparuble with the previous results
involving one. two and three arcs. The eventual results for the four successive are

aggregate are shown in Figures (7.39) 10 (7.48).
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Figure (7.39)
Radial orbit error before fit of ERS-1 28-day simulation solution
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Spectral analysis of radial orbit error before fit of ERS-1 28-day sumulation solution.
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Figure (7.41)
Radial orbit error remaining after fit of ERS-1 28-day simulation solution, with (k.m)
= (0,2) frequency tenms suppressed
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Figure (7.43)
Standard errors of estimated coefficients of ERS-1 28-day simulation solution. with
(k.m) = (0.2) frequency terms suppressed
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Figure (7.44)
Eigenvalue square roots of ERS-1 28-day simulation solution, with (kom) = (0.2)
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Geographical dismbution of mean radial residuals after fit of ERS-1 28-day
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Figure (7.48)
Geographical distribution of radial residual rms error about the mean, after fit of
ERS-1 28-day simulation solution, with (k.m) = (0.2) frequency terms suppressed
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Finally, the full 35 day repeat orbit, incorporating 4 misclosures, was
analysed. This time there was no requirement for suppression of any coefficient and
the full solution is shown in Figures (7.49) to (7.58). A highly reliable reduction of
the radial orbit error to 16.4cm (= 82%) has been achieved.
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Figure (7.49)
Radial orbit error before fit of complete ERS-1 35-day repeat orbit simulation solution
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Figure (7.50)
Spectral analysis of radial orbit error before fit of complete ERS-1 35-day repeat orbit
simulation
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Radial orbit error remaining after fit of complete ERS-1 35-day repeat orbit simulation
solution
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Figure (7.52)
Spectral analysis of radial orbit error remaining after fit of complete ERS-1 35-day
repeat orbit simulation solution ’
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Standard errors of esimated coefficients of complete ERS-1 35-day repeat orbit
simulation solution
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Figure (7.54)
Eigenvalue square roots of complete ERS-1 35-day repeat orbit simulaton solution

Figure (7.55)
Geographical distribution of mean radial residuals before fit of complete ERS-1
35-day repeat orbit simulation solution
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Figure (7.58)
Geographical distribution of radial residual rms error about the mean, after fit of
complete ERS-1 35-day repeat orbit simulation solution

The arc aggregate solutions are summarised in Table (7.5) and all the
solutions culminating in that of the complete repeat orbit of 35 days are compared in
Figure (7.59). The overall stability is improved as more crossover residuals are
introduced to the data set. The full 35 days is one repeat period and thus all
crossovers are not included until the final five arc aggregate. Progressively more time
will have elapsed between crossover epochs as more arcs are added. Therefore the
tesseral frequency terms which, through the right ascension of the ascending node,
Q, and the Greenwich mean sidereal angle, Gg, depend on the time elapsed between
the crossover epochs and the explicitly time dependent terms of the radial correction
expression will benefit not only from the additional data but because any slight

miscalculations in individual crossover epochs, € or Gg should become less

significant over longer time spans and when more data is included. The solutions
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shown for the 3 and 4 arc aggregates are those obtained upon suppression of the

(k,m) = (0,2) frequency terms.

Arcs  Total Direct Ar__ Aroo osee. o Nev
Crossovers Heights /em /em /em /ecm
é (before) (after)
1 4,269 6 109.4 11.8 1.5 7.4
2 16,952 12 100.5 13.9 1.3 6.8
3 38,043 18 94.1 9.3 0.8 3.8
4 67,827 24 91.3 9.7 0.5 3.4
5 106,026 30 90.9 16.4 0.6 3.5
Table (7.5)

ERS-1 simulated five arc aggregate summary

§ 7.8 Conclusions

The ERS-1 simulations have been a resounding success. All 35 days of the
repeat period have been analysed and the simultaneous recovery of each of the 339
coefficients has been achieved with high accuracy, using only six of the proposed
sites anticipated for use in PRARE. The spacial distribution and magnitude of the
residuals employed in the study are realistic and should be agreeable with actual data
when it becomes available. Therefore it can be reasonably assumed that application of
the radial orbit error reduction procedure will produce similar results to those derived

here, over the whole continuous time span of lengthy repeat orbits.
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CHAPTER 8

ERS-1 TRANSPONDER ANALYSIS

The altimeter on board ERS-1 can be programmed to receive altimetric radar
pulses returned by transponders placed at known locations about the surface of the
Earth. Transponders are electronic instruments that receive radar signals, amplify and
then re-transmit the signal. Previously only employed on board communication
satellites for the purposes of tracking from radars on Earth, ground-based
transponders were originally intended for use with ERS-1 primarily as an experiment
to provide tracking data to compare range measurements with PRARE and laser
ranging observations and to observe slippage of the ground-track over successive
repeat orbits. The experiment 1s being used to demonstrate the basic concept of
making precise observations of satellite altitude by “reflecting” the ERS-1 altimeter
pulse as the spacecraft passes overhead, as shown in Figure (8.1). Given the lack of
short arc data, a study is now undertaken to provide comparisons of the effects of
different geographical locations of transponders on the global radial orbit error
reduction procedure.

ALTRETER ALTRETER

Figure (8.1)
Principle of using a transponder to obtain direct radial height observations




§ 8.1 Short Arc Solution

Phase Dates Repeat Period
1 Launch and Early Orbit July 1991 - Sept 1991 3 days

2 Commissioning Sept 1991 - Dec 1991 3 days

3 IstIce Dec 1991 - April 1992 3 days

4 Multi-Disciplinary April 1992 - Dec 1993 35 days

5 2nd Ice Jan 1994 - March 1994 3 days

6 Geodetic April 1994 - end of mission 176 days

Table (8.1)

ERS-1 mission schedule

The different phases of the ERS-1 mission are given in Table (8.1) [Vass and
Handoll,1991]. Following the Launch and Early Orbit Phase, during which various
instrument calibrations were carried out, ERS-1 entered its commissioning phase, in
which it remained until 12th December, 1991. Early in this period laser ranging data
was available from the network of tracking stations. Data from six days during
August, 1991, from MJD48469 (1st August) until MID48475 (7th August) has been
considered. Two six day orbits were generated over this time, the first using the
GEM-T1 gravity field model and the second using a clone field similar to that
included in the 35 day repeat orbit simulations. The GEM-T1 derived ephemeris was
considered as the observed orbit and the clone derived ephemeris as the calculated
orbit throughout the quasi-simulated analyses that follow.

One of the main purposes of the commissioning phase was to ensure the
consistency of oceanographic and meteorological data returned from ERS-1
instruments with those from other sources. As the first new experiments commenced
during the first ice phase, including in particular Arctic and Antarctic ice
investigations, it was decided to manipulate the data to produce compatibility with that

period.

206




Epoch
/MJD

48469.00941
48469.04425
48469.07918
48469.11401
48469.14895
48469.18378
48469.21872
48469.25355
48469.28849
48469.32332
48469.35825
48469.39309
48469.42802
48469.46285
48469.49779
48469.53262
48469.56756
48469.60239
48469.63732
48469.67216
48469.70709
48469.74193
48469.77686
48469.81169
48469.84663
48469.88146
48469.91640
48469.95123
48469.98616
48470.02099
48470.05593
48470.09076
48470.12570
48470.16053
48470.19547
48470.23030
48470.26523
48470.30007
48470.33500
48470.36983
48470.40477
48470.43960
48470.47454
48470.50937
48470.54430
48470.57914
48470.61407
48470.64890
48470.68384
48470.71867
48470.75361
48470.78844
48470.82338
48470.85821
48470.89314
48470.92798
48470.96291
48470.99774

Long.
/4

334.13
141.59
309.02
116.47
283.90
91.36
258.78
66.24
233.67
41.12
208.55
16.01
183.43
350.89
158.32
325.78
133.20
300.66
108.08
275.54
82.97
250.43
57.85
225.31
32.73
200.19
7.62
175.08
342.50
149.96
317.39
124.85
292.27
99.73
267.15
74.61
242.04
49.50
216.92
24.38
191.80
359.26
166.69
334.15
141.57
309.03
116.46
283.92
91.34
258.80
66.22
233.68
41.10
208.56
15.99
183.45
350.87
158.33

mO.n:O.n:O.mQ.mQ.mo.mo.mO.mo.ma.mQ.mQ.mo.mQ.n:Q.n:o.mo.mQmamamawamamamamamamawa

Epoch
/MJD

48471.03268
48471.06751
48471.10244
48471.13728
48471.17221
48471.20705
48471.24198
48471.27681
48471.31175
48471.34658
48471.38152
48471.41635
48471.45128
48471.48612
48471.52105
48471.55588
48471.59082
48471.62565
48471.66059
48471.69542
48471.73035
48471.76519
48471.80012
48471.83496
48471.86989
48471.90472
48471.93966
48471.97449
48472.00942
48472.04426
48472.07919
48472.11402
48472.14896
48472.18379
48472.21873
48472.25356
48472.28849
48472.32333
48472.35826
48472.39309
48472.42803
48472.46286
48472.49780
48472.53263
48472.56756
48472.60240
48472.63733
48472.67216
48472.70710
48472.74193
48472.77687
48472.81170
48472.84663
48472.88147
48472.91640
48472.95123
48472.98617

Long.
/1

325.76
133.22
300.64
108.10
275.52
82.99
25041
57.87
225.29
32.75
200.18
7.64
175.06
342.52
149.94
317.40
124.83
292.29
99.71
267.17
74.59
242.05
49.48
216.94
24.36
191.82
359.24
166.70
334.13
141.59
309.01
116.47
283.90
91.36
258.78
66.24
233.66
41.12
208.55
16.01
183.43
350.89
158.31
325.77
133.20
300.66
108.08
275.54
82.96
250.42
57.85
225.31
32.73
200.19
7.62
175.08
342.50

Table (8.2)
Equator crossings of 6-day ERS-1 "observed" orbit. a,d signify ascending and

207

o.n:&:aQ.n:a.mc-wo.n:o.n:a.mQ.mo.me.me.ma.wa.wa.wa.wQ.ma.:»c.n;Q.me.ma.mo.mo.ma.:ao.mo.:»a.mo.

descending crossings, respectively.

Epoch
/MJD

48473.02100
48473.05593
48473.09077
48473.12570
48473.16054
48473.19547
48473.23030
48473.26524
48473.30007
48473.33501
48473.36984
48473.40477
48473.43961
48473.47454
48473.50937
48473.54431
48473.57914
48473.61407
48473.64891
48473.68384
48473.71868
48473.75361
48473.78844
48473.82338
48473.85821
48473.89315
48473.92798
48473.96291
48473.99774
48474.03268
48474.06751
48474.10245
48474.13728
48474.17221
48474.20705
48474.24198
48474.27681
4847431175
48474.34658
48474.38152
48474.41635
48474.45128
48474.48612
48474.52105
48474.55588
48474.59082
48474.62565
48474.66058
48474.69542
48474.73035
48474.76519
48474.80012
48474.83495
48474.86989
48474.90472
48474.93965
48474.97449

[ I VR~ R o W ] O.mQ.mo.mc.mQ.mQ.mQ.mo.mc.mQ.mQ.mO.mQ.mQ_nzo.mamamamamamamamamamamam




Throughout both phases ERS-1 transcribed a 43 revolution per 3 day repeat
orbit. Table (8.2) shows the equator crossing times and longitudes of the “observed”

orbit generated from the commissioning phase laser ranging data. The tenth crossing
occurs with the satellite travelling northwards at an Earth-fixed longitude of 41.12°
east of the Greenwich Meridian. This is approximately 1.88° further east than the
proposed ice phase northwards crossing of longitude 39.24° east. Hence the
ephemerides were both effectively rotated from the commissioning phase to the first

ice phase by applying a 1.88° eastwards rotation. That is, new ice phase ephemeris

values X;cg, Yicpr Zicp Were derived at each epoch from the original commission

phase values X op» Yeom Zeom USIng

Xice XcoM
Yice | = R| Ycom | .
Zice Zcom

where R is the rotation mamix given by

cos 8 -sin 6 0

R = sin 8@ cos © 0
0 0 ]
and 6 = 1.88°.
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The radial differences between the new ice phase observed and calculated

orbits are illustrated in Figure (8.2), with the typical spectral analysis and

geographical distributions of these residuals depicted in Figures (8.3), (8.4) and

(8.5). Both orbits were generated from the same initial state vector using identical

daily drag coefficients. Thus no linear drag terms were resolved in the orbit error

reduction process, although secular peniodic terms and small periodic one cycle per

revolution terms with amplitude proportional to the square of the time elapsed, which

arise from resonance, were solved for. That is, the radial residual equation was given

by

tmax  &max . .
Ar () = y ¥ {Akmcos Yot + B, ,sin h P
k=-Lmax m=
+a10+alcos.‘v1+a,25in1\1+a3cos2M+a4 sin2M+a5(t-t')sinM
° . « 2 s 2 .
+ag(t-1t ysin2M +a, (t-t ) cosM+a;(t-t) sinM .
-(8.1)

0.4

0.35

0.0 ’ T y —MT,—\/\AQ.@T__
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FREQUENCY (CYC PER 3 DAYS)

Figure (8.3) ‘
Spectral analysis of radial differences of ERS-1 6-day orbits before solution
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Fioure (¥.4)

Geographical distribution of mean radial residuals before fit of ERS-1 6-day solutions

Figure (X.5)
radial residual rms error about the mean before fit of

ERS-1 6-day solutions

Geographical distribution of

210



A more detailed map of the global continents was applied than for the 35 day
repeat orbit simulations in order to separate the crossovers into marine and land
residuals. The map used and crossover positions are shown in Figure (8.6). After the
derivation each of the 3,279 marine residuals was given a random perturbation of

berween -20cm and +20cm to take account of any noise that would be present in real

alumetrically denved crossovers.

xxxxxxxxxxxxx<
xxxxxxxxxy\

XXXXXXX/;’

T T T T T T T
-150 ~100 -50 0 50 00 150
LONGITUDE

Figure (8.6)

Crossover locations for ERS-1 6-day analysis

The laser station network of ERS-1 is far more comprehensive than for
SEASAT, with the 26 stations shown in Figure (8.7) viewing over the ume span
analysed. Six of these sites were chosen to provide a realisuc simulation of short arc
determined radial corrections that might be obtained from data extracted from the ice
phase. Their positions were selected where simultaneous tracking by more than one
station is probable and to supply a reasonable global distnbution. Direct radial height

measurements were derived in the same manner as for the 35 day repeat simulations

and these are given in Table (8.3).




LATITUDE

Figure (8.7)
Laser ranging station tracking network for ERS-1

Station Epoch Ar Long. Lat. M

MJD 'm /deg /deg /deg
7517 48469.386111 0.011 22.8 35.6 53.8
7834 48470.429861 -0.656 11.0 49.6 39.6
7109 48471.249653 -0.756 238.8 39.1 3098
7105 48472.664583 0.007 2833 38.6 50.7
7086 48472736111 0.153 2555 29.7 59.8
7840 48473.903125 -0.875 359.9 50.8 321.7

Table (8.3)

Direct radial height measurements used in ERS-1 6-day analyses

Each direct height was assigned an a priori standard error of 10cm, after a
random perturbation of magnitude up to 5cm was added to each. The crossovers and
direct height data were amalgamated and the radial error reduction procedure applied

10 solve for the 219 coefficients of equation (8.1).
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A good solution was achieved, with the radial rms falling to 10.4cm, that is
approximately 23% of its original value of 44.6cm. The results are displayed in

Figures (8.8) to (8.13).
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Figure (8.8)

Radial orbit error remaining after fit of ERS-1 6-day soluton, using direct height data
from laser station locations only
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Figure (8.9)
Spectral analysis of radial orbit error remaining after fit of ERS-1 6-day solution
using direct height data from laser station locations only
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Figure (§.10)
Standard errors of estimated coefficients of ERS-1 6-day solution using direct height
data from laser station locations only
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Figure (8.11)
Eigenvalue square roots of ERS-1 6-day solution using direct height data from laser
station locations only

Figure (8.12)
Geographical distribution of mean radial residuals afier fit of ERS-1 6-day
solution using direct height data from laser station locations only




Figure (8.13)
Geographical distribution of radial residual rms error about the mean, after fit ot
ERS-1 6-day solution using direct height data from laser station locations only

§ 8.2 Transponder Observauons

Several locations were proposed as possible sites for the transponder
deployment with ERS-1. Having obtained a solution using realistuc short arc
estimates, the effects of the various propositions on the radial orbit error reducuon are
now explored.

Of the initial proposals, one transponder would be placed at Venice (laly) for
use in calibrations throughout the commissioning phase, with others at Scott Base.
Ross Island (Antarctica), Bulawayo (Zimbiabwe), and Fairbanks (Alaska) for polar
experiments and (0 MONItOr passes over Antarctica and Greenland. An additional site
at Easter Island was also under consideration for use in the firstice phase. When used
in conjunction with the short arc locations. a cood global distribution of tracking sites

is achieved. The positions of the proposed sites are given in Figure (8.14) in additon

[
—
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LATITUDE

to those of the laser ranging stations used and the fictitious transponder locations

described later (see section §8.4).

— = LASER STATIONS

-150 -0 -50 0 50 100 150
LONGITUDE ‘

Figure (8.14)
Direct radial height data locations used in the ERS-1 6-day analyses

In order for the illumination of a transponder by the alimeter radar pulse to be
sufficient for a reliable reading, the spacecraft must pass almost directly overhead.
Thus the transponders must all be located in the vicinity of the ground-track. The
epoch of a ransponder reading is here estimated by assuming a linear vanation in the
position of the satellite between successive ephemeris epochs.

Consider Figure (8.15), which depicts the spacecraft passing a transponder at

T by moving from position A at ime t; 10 B at time t,. Let the satellite be at P, 1ts

closest position to T, at ime L.
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Figure (8.15)

Geometrical configuration used in obtaining the simulated transponder observatuons

By the cosine rule,

AL AT + AB®- BT’ N BT? + AB - AT’
cos A= 2 AT AB and cosB = 7 BT AB
A AP ~ _ BP
But, COs A = AT and cosB = BT
Hence
2 2 2 2 2 2
AT + AB"- BT BT+ AB° - AT
AP = — 7 AB and BP = AR
Therefore

AP AT! + AB%- BT®

BP  pTl4 AB?- AT?

Hence, under the assumpton of linear variation in position over AB,

t- AT: + AB?- BT?

,-U  BTZ4 AB2-AT®

%(AT2+ABZ-Hﬁ)+[,(BT2+A82—AT3

2 AB*

which is the epoch required.
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The radial distances at time t were calculated by interpolation in each
ephemeris, then differenced to obtain an estimate for the radial residual over a
transponder. Creating the observations in this manner ensures that the estimate is
derived when the satellite position on the ground-track is close enough to the
transponder location for a realistic observation to have been taken. Table (8.4) gives
the derived values. During the two repeat orbits made over the six days, the satellite
passes over each transponder twice, the second pass three days after the first, so that
a pair of observations is obtained from each transponder. Note that the three
transponders at Zimbabwe, Italy and Alaska have been situated such that their
observations are taken from the same arc as the satellite travelling northwards passes
Bulawayo and Venice, then back southwards over Fairbanks. A random noise

perturbation of between 5cm has been applied to each transponder residual.

Site Location Epoch/MJD Ar/m M/deg

Easter Is.  48470.723681 0.710 115.8
Scott Base 48471.575095 -0.084 189.0
Bulawayo 48471.866226 0.336 251.2
Venice 48471.878619 0.153 315.2
Fairbanks  48471.892202 -0.183 25.2
Easter Is. 48473723680 0.599 115.8
Scott Base  48474.575096 -0.049 186.6
Bulawayo 48474.866228 0.616 251.2
Venice 48474878619 0.353 315.3
Fairbanks  48474.892203 -0.358 25.3

wWwhnh—tNhwun— NS

Table (8.4)
Direct height data from transponder locations

§ 8.3 Transponder Solutions

Each pair of transponder observations was added in turn to the original short
arc data set and assumed an a priori standard error of 5cm in the radial error reduction

procedure. The solutions are compared in Table (8.5) and Figure (8.16).
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Solution Site Ar s.e. Vev

rms meax meax
no. /em lem /em
1 1 10.4 3.6 9.5
2 2 10.0 2.1 5.8
3 3 9.8 3.0 8.1
4 4 9.8 33 8.6
5 5 11.9 3.7 9.7
Table (8.5)

ERS-1 6-day solutions using single transponder locations

centimetres

SOLUTION

Figure (8.16)
Comparison of single transponder solutions

In Figures (8.16) to (8.19), bars represent Ar asterisks standard errors

rms’
and stars Yeigenvalue. The solution numbers in the tables correspond to those in the
diagrams. The outstanding feature is the improvement made upon introduction of the
Antarctic transponder, in terms of the resolution of the coefficients. Although the
radial rms error is barely affected, the solution is of far greater reliability, with the
standard error of the worst determined parameter being reduced to 2.1cm, nearly half
the value of that derived in the short arc only analysis. Further, the value of the
square root of the maximum eigenvalue is reduced from 10.2cm 10 5.8cm. Scott Base

is located at the most extreme latitude of all the transponder sites, where the radial
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orbit error is particularly dependent on the cosM term, which tends towards its
maximum value in this region. Figure (8.10) has shown that the cosM coefficient is
the worst determined in the short arc only analysis. Hence high resolution of this
parameter, from the heavily cosM dependent radial data supplied at the Scott Base
site, has not only reduced the standard error of the cosM term, but in the process has
reduced the aliasing of this term into the other coefficients.

Conversely, the Bulawayo transponder, which is close to the equator and
therefore provides data which is less dependent on cosM, adds little to the resolution
of the cosM term and is thus relatvely ineffectual. Venice is situated close to three of
the European laser ranging stations. Consequently its latitude, and therefore the mean
anomaly of the orbit of the passing satellite, is similar to all three. Hence little new
information is acquired from the Venice site over that achieved from short arc
estimations.

The simultaneous inclusion of two transponders (i.e. four extra observations)
in the data set further improves the solution. Comparisons of the solutions obtained
using each of the ten possible pairs appear in Table (8.6) and Figure (8.17). Any pair

inclusive of the Antarctic site produces the greatest improvement.

Solution Sites Ar S.€ .y \}evmux
no. /cm /em /em
1 1,2 9.9 2.0 5.6
2 1,3 9.8 2.9 7.7
3 14 9.8 3.2 8.2
4 1,5 12.9 3.2 8.5
5 2.3 9.8 1.7 4.7
6 2.4 9.9 2.0 5.5
7 2.5 10.2 2.0 5.7
8 34 9.8 2.7 7.3
9 3.5 10.3 2.8 7.7
10 4.5 10.1 3.2 8.3
Table (8.6)

ERS-1 6-day solutions using pairs of transponder locations
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centimetres

Figure (8.17)
Companson of solutions obtained using pairs of wansponder locations

The three transponders originally plunned for the first ice phase orbit were
near to Scou Base, Fairbanks and Bulawavo. The solution in which all these are
included is given in Table (8.7) and Figure (8.18), along with all other triple
combinations. The marked improvement on the short arc only solution provides some

guidance as 1o the results that could have been expected from actual readings.

Solution Sites Ar se. .. Nev .
no. /cm /em /em
] 1,2,3 9.7 1.7 4.6
2 1.2.4 9.9 2.0 5.3
3 1.2.5 10.3 1.9 5.3
1 1,3.4 9.7 2.6 7.1
S 1,35 111 2.5 7.0
6 1.4.5 10.7 2.8 7.5
7 2.3.4 9.9 1.7 1.6
g 2.3.5 9.% 1.6 4.6
9 245 10.1 2.0 5.4
10 3.4.5 9.9 2.6 7.1
Table (8.7)

ERS-1 6-day solutions using three transponder locations

2
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SOLUTION

Figure (8.18)
Companison of solutions obtained using three transponder locations

Although 1t 1s unlikely that ERS-1 will be tracked using four or more
transponders, solutions derived from each combination of quartets and using all five
transponders are included to complete the compansons. These are shown in Table

(8.8) and Figure (8.19).

Solution Sites Ar s.e. \féTm“
no. /em /em /em
] 1,2.3.4 9.9 1.6 4.4
2 1,2,3,5 9.8 1.5 1.1
3 1,2,4.5 10.2 1.8 5.0
4 1,3,4.5 10.1 2.3 6.4
5 2,3.4.5 9.9 1.6 4.4
6 1.,2,3.4.5 9% 1.5 39
Table (&.8)

ERS-1 6-day solutions using four and five ransponder locations
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Figure (8.19)
Comparison of solutions obtained using four and five transponder locations

§ 8.4 Fictitious Transponders

Considering the impact of the Scott Base site, extra fictitious polar
transponders were created to emphasize the importance of readings available from
high latitudes. All the locations considered thus far will generate one observation per
repeat peniod. However, placing a transponder under a crossover point will double
this number as the satellite passes overhead on both ascending and descending tracks
during each repeat orbit. One fictitious site was set up beneath the land crossover
point at latitude 81.3° south, longitude 30.8° east and a second was introduced in the
Arctic region. The positions are shown in Figure (8.14). Observations were derived

from each, as given in Table (8.9).

Site Epoch/MJD Ar/m M/deg
1 48469.062075 -0.108 181.9
1 48469.131116 -0.342 178.1
2 48470.215625 -0.341 14.1
1 48472.062075 -0.108 181.8
1 48472.131116 -0.296 178.1
2 48473.215625 -0.405 14.1
Table (8.9)

Direct height data from fictitious transponder locations
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Adding all three polar transponders (the fictitious sites plus Scott Base) to the
short arc data produced the highly reliable results of Figures (8.20) to (8.25), whilst
the radial orbit error rms reduced to 10.0cm. In fact, Figures (8.10), (8.11), (8.26)
and (8.27) show that using only the data returned from the crossover site produced a
considerable improvement on the short arc only solution in terms of the resolution of

the coefficients, while reducing the radial orbit error to 10.6cm rms.
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Figure (8.20)
Radial orbit error remaining after fit of ERS-1 6-day solution using direct height data
from laser station locations plus all three polar ransponder locatuons
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Figure (8.21) .
Spectral analysis of radial orbit error remaining after fit of ERS-1 6-day solution
using direct height data from laser station Jocations plus all three polar ransponder
locations
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Figure (8.22
Standard errors of esumated coefficients of ERS-1 6-day solution using direct height
data from laser station locations plus all three polar ransponder locations
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Figure (8.23)
Eigenvalue square roots of ERS-1 6-day solution using direct height data from laser
station locatons plus all three polar transponder locations

Figure (8.24)
Geographical distribution of mean radial residuals after fit of ERS-1 6-day
solution using direct height data from laser station locations plus all three polar
ransponder locations
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Figure (8.25)
Geographical distnbution of radial residual rms error about the mean, after fit of
ERS-1 6-day solution using direct height data from laser station locations plus all
three polar transponder locations
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Figure (8.26)
Standard errors of estimated coefficients of ERS-1 6-day solution using direct heicht
data from laser station locations plus the sub-crossover polar transponder location
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Figure (8.27)
Eigenvalue square roots of ERS-1 6-day solution using direct height data from laser
station locations plus the sub-crossover polar transponder location



Finally, Figures (8.28) to (8.33) display the results of inclusion of all
wansponder locations, real and fictitious, in the data. The excellent solution has been

achieved in reducing the radial orbit error 1o 9.6cm.
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Figure (§.28)
Radial orbit error remaining after fit of ERS-1 6-day solution using direct height data
from laser station locations plus all ransponder locations
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Figure (8.29)
Spectral analysis of radial orbit error remaining after fit of ERS-1 6-day solution
using direct height data from laser station locations plus all wansponder locations
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Figure (8.30)
Standard errors of estimated coefficients of ERS-1 6-day solution using direct height
data from laser station locations plus all transponder locauons
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Figure (8.31)
Eigenvalue square roots of ERS-1 6-day solution using direct height data from laser
station locations plus all ransponder locations

Figure (8.32)
Geographical distribution of mean radial residuals after fit of ERS-1 6-day
solution using direct height data from laser station locanons plus all transponder
locations

Figure (8.33)
Geographical distribution of radial residual rms error about the mean, after fit of
ERS-1 6-day solution using direct height data from laser station locations plus all
transponder locations
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§ 8.5 Conclusions

The results accentuate the strong dependence of the radial orbit error reduction
on the position of the radial data and illustrate the value of placing transponders in
polar regions. Although the short arc solution is improved by inclusion of any of the
transponders, the Antarctic location is clearly the most influential due to its high
latitudinal magnitude. Indeed, the solution involving only the Scott Base transponder
is better than that achieved from the simultaneous inclusion of all the other four.
These analyses, coupled with the relative robustness, low cost and manoeuvrability
of transponders strengthens the case for their installation in hostile polar regions in
the future, from where vital radial data could be obtained and where the deployment

of other tracking devices is impractcal.
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CHAPTER 9

CONCLUSIONS

A non-dynamic procedure for reducing the global radial orbit error of dynamic
long arc altimetric ephemerides has been proposed. This involves the refinement of a
set of crossover difference residuals derived from the long arcs.

An overall global radial correction expression due to both gravitational and
non-gravitational causes has been analytically developed. Mismodelling of the
gravitational field of the Earth provides the main component, although corrections due
to air drag and solar radiation pressure mismodelling and initial state vector errors are
also significant. The separate effects of each of these constituents has been illustrated.
The one cycle per revolution frequency term has been identified as supplying the
principal contribution to the overall correction.

A crossover difference residual expression has been formulated by
differencing the radial expressions at the two ground-track points of intersection. The
important one cycle per revolution cosine parameter is included in those of the radial
correction unobservable in crossover data. Particular sets of other frequency terms
have been established as mutual linear combinations. The unobservable and linearly
combined coefficients require for their recovery a number of direct radial height
observations.

The feasibility of the method has been vindicated upon application to data
from the three day repeat orbit of the NASA satellite SEASAT (1978-64A). An initial
check was successfully carried out using orbits generated from separate atmospheric
density models, thus validating the non-gravitational part. Using short arc derived

radial corrections as the direct height data, it was found that frequency dependent
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constraints are required for the simultaneous recovery of all gravitational coefficients.
The inclusion of the constraints produced an adequatc solution, although the
deficiency of globally distributed SEASAT tracking data was found to be an
impediment. Several additional fictitious direct measurements were consequently
added. The results are most promising, with the crossover residual error reduced to
less than 34% of its initdal value. An equivalent global radial orbit error reduction of
from 50.1cm to 16.9cm was achieved, which gives insight into the possible reduction
that could be reasonably expected from a more extensive global coverage of tracking
data.

The concept of arc aggregates has been devised. Including the radial
misclosure between successive arcs as an infallible observation effectively creates a
continuous smooth orbit over the whole time span. Having identified arc-dependent
and arc-independent parameters within the radial correction expression, the arc
aggregate technique was successfully applied to several consecutive SEASAT three
day repeat periods. The reliable eighteen day global solution has substantially reduced
the equivalent radial orbit error from 51.0cm to 19.6cm, a highly satisfactory
resolution for fitting data from three separate arcs to a single radial correction model.

A clone of the GEM-T1 gravity field model was constructed and employed in
a full simulation of the 501 revolution per 35 days repeat orbit of ERS-1. Using the
arc aggregate procedure, the reduction method was progressively applied until the full
repeat period was covered. Highly promising results were returned, using six of the
sites originally anticipated for use in PRARE. The final 35 consecutive day radial
reduction was from 90.9cm to 16.4cm, or 81.9%.

The validity of the radial orbit error correction method has been firmly
established. Given the comprehensive spread of high quality tracking data that should
become available, the possibility exists of reducing the global radial orbit error of

similar altimetric missions using the techniques proposed. A global reduction to less
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than 20cm rms over periods of time spanning several long arc orbits should be
achievable.

The effects of varying the geographical locations of the direct height
observations has been investigated. Laser ranging data from an early ERS-1 three day
repeat orbit was employed and various proposed locations for ground-based
transponder sites considered. The results accentuate the strong dependence of the
radial ephemeris correction on the positions of the direct height data. The site at Scott
Base, Antarctica, situated at the most extreme latitude, was found to have the greatest
influence. Fictitious transponders were set up in other polar regions in order to
provide data which was heavily dependent on the fundamental cosM coefficient of the
radial orbit error expression. The solutions obtained have served to illustrate the
potential impact of tracking data situated in positions of high latitudinal magnitude.
Hence the future installation of transponders in hostile polar territory could provide
vital data from regions where the deployment of other less manoeuvrabie tracking

devices such as lasers is impractical.
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