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Abstract—The identification of linear B-cell epitopes is an
important task in the development of vaccines, therapeutic
antibodies and several diagnostic tests. Recently, organism-
specific training has been shown to improve prediction per-
formance for data-rich organisms. This article investigates the
limits of organism-specific training for epitope prediction, by
systematically quantifying the effect of the amount of training
data on the performance of the models developed. The results
obtained indicate that even models trained on small organism-
specific data sets can outperform similar models trained on
much larger heterogeneous and mixed data sets, as well as
widely-used predictors from the literature, which are trained
on heterogeneous data. These results suggest the potential for a
much broader applicability of pathogen-specific models, which
can be used to accelerate the development of diagnostic tests and
vaccines in the context of emerging pathogens and to support
faster responses in future disease outbreaks.

I. INTRODUCTION

The immune system is a complex network of processes
designed to protect the body against pathogens. One vital
aspect of human immunity is humoral, or antibody-mediated,
immunity. In humoral immunity, B-lymphocytes, also known
as B-cells, are activated when their B-cell receptor (BCR)
binds with an antigen. Activated B-cells then produce anti-
bodies, which are released into the circulatory system to find
and bind with their specific antigens [1]. This antigen-antibody
recognition is a vital process in protecting the body against
pathogens and B-cells are key cells in this process.

A B-cell epitope (or antigenic determinant) is the exact
portion of an antigen that the antigen-binding site of a B-
cell receptor recognises and binds to [2], [3]. B-cell epitope
identification is an essential process in a number of medical
processes; it can help with therapeutic antibody production,
vaccine development and in developing diagnostic tools [4]–
[6]. There are two categories of epitopes: linear and conforma-
tional. Linear or continuous epitopes correspond to contiguous
sequences of amino acid (AA) residues; these epitopes are
recognised by antibodies by their primary structure/linear
sequence of amino acids. Conformational or discontinuous
epitopes are formed by AAs that, although separated in the
primary sequence, are brought together by protein folding [7,
Chapter 3].
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Most current epitope prediction methods are designed to
predict linear epitopes [8]–[18], though the vast majority of
epitopes are thought to be conformational [19], [20]. There are
multiple reasons for this: due to their nature, linear epitopes
can be predicted from protein sequence data alone, which
are readily available in numerous public databases [21]–[24];
conformational epitopes, on the other hand, require structural
protein data for prediction which, historically, has not been as
readily available. Predicting conformational epitopes also takes
more time as it is more computationally expensive than linear
epitope prediction [25] and these epitopes are more difficult to
synthesise in the laboratory [26, Chapter 1]. For these reasons
most epitope prediction studies, including ours, focus on linear
B-cell epitope prediction.

Traditionally, experimental methods were used for B-cell
epitope identification, for example: X-ray crystallography,
peptide arrays, enzyme-linked immunosorbent assay (ELISA)
and phage display [26]–[28]. However, these methods are
time consuming, resource intensive and technically difficult to
execute [6], [26]. Because of this and the current availability
of protein sequence data, the focus is now on computational
methods for epitope prediction. Machine learning algorithms
for epitope prediction are trained to be able to distinguish B-
cell epitopes from non-epitopes. Numerous machine learning
(ML) methods exist for B-cell epitope prediction and these
methods have been shown to generally outperform early
epitope prediction methods based solely on simple amino acid
propensity scale calculations [3], [29].

Examples of machine learning approaches for epitope
prediction include: neural network-based methods such as
ABCpred [12], which uses a recurrent neural network (RNN)
to predict B-cell epitopes from antigen sequences using fixed
length patterns and other amino acid composition-based fea-
tures as input. Other popular ML methods for epitope pre-
diction include Support Vector Machines (SVM) [30] which
have been used in many epitope prediction pipelines [13],
[31]–[39]. One example of this is BCPred [13], which uses
SVM classifiers with string kernels [13]. Random Forest Clas-
sifiers [40] have also been used in multiple epitope prediction
pipelines [17], [41], [42]. Saravanan and Gautham described
an amino acid composition-based feature descriptor, Dipeptide
Deviation from Expected Mean (DDE), and evaluated it using
a support vector machine and an AdaBoost-Random Forest,



with the latter exhibiting the best performance [42].
ML methods like the ones mentioned above help to bypass

some of the difficulties (e.g. time and resources) usually
encountered by traditional experimental epitope prediction
methods [25], [43], [44]. However, many prediction methods
still exhibit relatively low prediction performance [25]. Cur-
rently, most epitope prediction models are trained on large
heterogeneous data sets made up of observations from multiple
organisms including: prokaryotes, viruses, fungi, protozoan,
humans and other eukaryotes. However, we have recently
shown that training models on smaller organism-specific data
sets can help improve predictive performance [45]. In that
work, organism-specific models were developed for three
different organisms, selected due to the availability of a large
volume of observations – both validated epitopes and non-
immunogenic peptides – in the Immune Epitope Database
(IEDB) [46]. The results obtained showed that, for these
data-rich organisms, organism-specific models outperformed
models trained on much larger heterogeneous data sets as
well as several of the best epitope prediction tools from the
literature, across multiple performance measures.

Unfortunately, large volumes of validated epitope data are
not available for most organisms, which is particularly exac-
erbated in the case of emerging pathogens that may represent
pandemic risk. As an example, at the start of the 2022
global monkeypox outbreak only five LBCEs were listed on
the IEDB for the MPX virus, with no negative examples
[47], a common scenario for emerging zoonotic pathogens
which could preclude the training of models using exclusively
organism-specific data. The aim of this study is therefore to
investigate the limits of organism-specific training, by focusing
on two main questions: (i) How does the number of available
organism-specific training peptides affect prediction perfor-
mance?; and (ii) What is the smallest volume of organism-
specific data that produces models surpassing the performance
of those trained on large, heterogeneous data sets? To answer
these questions, we calculate and compare the predictive
performance of models trained on reduced training sets against
models trained on mixed data as well as on large, heteroge-
neous data sets. We also contrast the observed performances
with four predictors from the literature trained as generalist
(as opposed to organism-specific) models – Bepipred2.0 [17],
LBtope [39], iBCE-EL [48] and ABCpred [6]. We hope that,
by clarifying this critical aspect in the training of tailored
models for specific pathogens, this study can further sup-
port the investigation of better modelling practices for the
development of higher-performance epitope predictors in the
context of emerging pathogens of pandemic potential. Finally,
it is relevant to highlight that, although non-explainable ML
approaches often encounter challenges for adoption in medical
domains [49], the task of epitope prediction is sufficiently
upstream from direct clinical application to not suffer from this
challenge. Computationally discovered targets always need
further experimental validation, at which point biochemical
domain expertise takes over and interpretability of results
becomes straightforward.

II. METHODS

A. Data Sets

Data from three pathogens specific to the organisms: On-
chocerca volvulus (taxonomy ID: 6282), Epstein-Barr Virus
(taxonomy ID: 10376) and Hepatitis C Virus (taxonomy ID:
11102) were used [45]. These data sets were generated based
on the full XML export of the IEDB retrieved on the 10th of
October 2020, and filtered according to the criteria listed by
Ashford et al. [45] (section 2.1, “Data sets”). The available
data were split at the protein level, with entries coming
from the same protein, or from proteins exhibiting sequence
coverage and similarity greater than 80%, always placed in the
same split. Two base sets were derived from the data available
for each organism: a Hold-out set containing approximately
25% of the data; and a second set containing the remaining
observations to be used for all model development activities.
A set of Heterogeneous data was also extracted for each
organism, by randomly sampling observations, grouped by
taxonomy ID, from the full IEDB export (excluding any obser-
vations related to the specific organism). These heterogeneous
sets contain around 6000 labeled peptides, with a 50% class
balance.

We set out to investigate the effect of the size of organism-
specific data sets on prediction performance, and try to esti-
mate rough lower bounds of the required amount of data for
organism-specific training to still represent a good alternative
to models developed on larger, heterogeneous data sets. For
these we extracted several reduced organism-specific and
heterogeneous/hybrid training sets for each organism, based
on the available model development data described above.
For each organism and each desired training set size, we split
the full model development data into smaller non-overlapping
Organism-specific data sets, each containing data from be-
tween 20 and 500 peptides (see figure 1). The same class
balance as the full organism-specific data set was maintained
in all subsets.

Table I details the information on the reduced organism-
specific data sets generated for each pathogen. Based on these
variable-sized organism-specific training sets, we assembled
two groups of hybrid data sets:

• Hybrid-A, composed of the organism-specific peptides
plus an equal amount of peptides sampled from other
pathogens. Consequently, Hybrid-A data sets were always
composed of twice as many peptides as their correspond-
ing organism-specific ones, and the balance between
organism-specific and “other” peptides was always 50-
50%.

• Hybrid-B, composed of the organism-specific peptides
plus the required amount of peptides sampled from other
pathogens to complete a data set size of 1, 000 training
peptides (e.g., 20 organism specific + 980 “other” pep-
tides, 40+960, etc.). Hybrid-B data sets had a fixed size,
but a varying level of balance of data from the target
pathogen vs. other organisms.



Fig. 1. Experimental protocol for testing the limits of organism-specific model training for linear B-cell epitope prediction. (A) For each pathogen and each
desired data size (in terms of number of peptides from the target pathogen), the model development data set is split into non-overlapping subsets of the desired
size, each maintaining the original class balance of the data. (B) Two sets of hybrid data sets are composed based on the organism-specific reduced-data
replicates: Hybrid-A maintains a fixed 50-50 balance between organism-specific and heterogeneous data at all data set sizes; Hybrid-B adds the required
number of non-target organism observations to complete a data set of 1,000 peptides, and therefore results in sets with variable proportions of organism-
specific peptides. (C) Baseline data sets composed of 1,000 exclusively non-target pathogen peptides are also generated based on different sub-samplings
(without replacement) from the heterogeneous data. All data sets are used to train Random Forest models, which then have their performance assessed on
organism-specific hold-out data.

For each data size tested (defined in this experiment as
the number of organism-specific peptides in the data sets)
both the Hybrid-A and Hybrid-B groups had the same number
of replicates as the organism-specific sets of that size. The
number of replicates at each size is documented in Table I.

Besides the hybrid data sets, for each target pathogen
we also fit models on 30 samples of 1, 000 peptides from
“other” organisms. In the results this is analysed as the limit
case of the Hybrid-B data sets (as a “0+1000”-peptide set).

Figure 1 illustrates the full experimental pipeline, including
the generation of all relevant data sets.

B. Modelling and Performance Assessment
Epitope prediction models were developed by training Ran-

dom Forest (RF) predictors on each of the training data sets
outlined above, using Scikit-learn version 0.24.1 [50] under
standard hyper-parameter values. The choice of Random For-
est was based on preliminary experimentation, as documented
[45], and also to make this work more directly comparable



TABLE I
SUMMARY OF ORGANISM-SPECIFIC DATA SETS: NUMBER OF POSITIVE /

NEGATIVE PEPTIDES IN EACH SET, AND NUMBER OF REPLICATES FOR
EACH SET SIZE (SET SIZE = NUMBER OF ORGANISM-SPECIFIC PEPTIDES IN
THE SET). HYBRID-A AND HYBRID-B SETS WERE GENERATED BASED ON
THE SAME SUBSETS OF ORGANISM-SPECIFIC PEPTIDES, AND THEREFORE

HAVE THE SAME NUMBER OF REPLICATES AT EACH SIZE.
HETEROGENEOUS SETS WERE GENERATED SEPARATELY, WITH 30

REPLICATES OF 1,000 NON-TARGET PATHOGEN PEPTIDES USED IN THE
EXPERIMENTS.

O. volvulus Hepatitis C virus Epstein-Barr virus

Hold-out peptides (832+ / 777−) (218+ / 358−) (625+ / 315−)
Model dev. peptides (2441+ / 2378−) (919+ / 783−) (1746+ / 811−)
20-peptide sets (N20) 237 83 124
40-peptide sets (N40) 118 41 62
60-peptide sets (N60) 79 27 42
80-peptide sets (N80) 59 21 31
100-peptide sets (N100) 47 17 25
150-peptide sets (N150) 32 11 16
200-peptide sets (N200) 24 8 12
250-peptide sets (N250) 19 6 10
300-peptide sets (N300) 16 5 8
400-peptide sets (N400) 12 4 6
500-peptide sets (N500) 9 4 5

with the results reported in that earlier one. The trained models
were then used to generate predictions for the organism-
specific hold-out data sets and prediction performance was as-
sessed using multiple different performance measures, namely:
Balanced Accuracy (BAL.ACC), Matthew’s Correlation Coef-
ficient (MCC), Area Under the Curve (AUC), Positive Predic-
tive Value (PPV), Negative Predictive Value (NPV) and Sensi-
tivity (SENS). As these measures were calculated on the hold-
out data sets (which were not seen by the models at any point
other than testing) it can be assumed that these values represent
a reasonable estimate of the generalisation performance of the
models used for epitope prediction on proteins coming from
each of the pathogens. The estimated mean performance and
standard errors for each quality indicator were calculated from
the replicates at each pathogen and data set size.

The new results are compared to a series of baselines
[45]: the observed performance of Bepipred2.0 [17], LBtope
[39], iBCE-EL [48] and ABCpred [6], on the hold-out set of
each pathogen; the results obtained by Random Forest models
trained on the full model development data and on a set of
6000 non-target pathogen peptides, for each organism.

III. RESULTS

Figures 2 and 3 display the mean performance results from
each set of models on the hold-out data set of each pathogen.1

Each figure plots the number of organism-specific peptides in
the training data set versus the estimated mean performance
according to different indicators.

For Onchocerca volvulus (the largest data set in this
study), the highest scores on the hold-out set are from
the full organism-specific model (except for sensitivity), as
documented earlier [45]. The next highest scores are from
the split-sampling organism-specific models (for data sizes

1Tables containing the numerical performance estimates and standard error,
as well as all experimental and analysis code, the data sets and results are
available at https://github.com/fcampelo/orgspec LBCE limits.

≥ 40 peptides), which approach the full organism-specific
performance after about 150 peptides. A clear pattern can
be seen across all performance measures: models trained on
the organism-specific data sets consistently and uniformly
outperform those trained on Hybrid-A (double size) data sets,
which in turn outperform the models trained on Hybrid-
B (1,000-peptides) data sets.2 Within each group of tested
models (trained on organism-specific, Hybrid-A and Hybrid-
B) the pattern of performance improvement as the training
set becomes larger was observed, as expected. The small-
sample organism-specific models outperform those trained on
the large heterogeneous (Heter 6k) and large hybrid (OS-
full+6k) models (for ≥ 40 peptides), and also all models
from the literature across all performance measures – except
sensitivity, where Bepipred2.0 had the highest score; and NPV,
where Bepipred2.0 outperformed the models trained with ≤ 40
organism-specific peptides.

A similar pattern can be noticed for the Epstein-Barr Virus
data. Figure(s) 2 and 3 again show that, across all performance
measures, the highest scores on the hold-out set are from the
full organism-specific model, with the exceptions of positive
predictive value (where LBtope has the highest score) and
sensitivity, where the full organism-specific model and the
reduced split-sampling organism-specific models have very
similar scores across all training data sizes. The second highest
scores across all performance measures are almost always the
split-sampling organism-specific models (down to the smallest
size: 20 peptides) apart from for AUC, where LBtope ap-
proaches the performance of the full organism-specific model.
The overall pattern of our reduced data set EBV models is the
same as that of the Onchocerca volvulus models: organism-
specific > Hybrid-A > Hybrid-B. The performance of the
models also generally decreases as the training data become
more scarce, as expected. The EBV small-sample organism-
specific models outperform all the tested models from the
literature, as well as the OS-full+6k & Heter 6k results, across
all performance measures except AUC and PPV, where LBtope
yields better performane values.

The results for the Hepatitis C Virus reinforce the per-
formance patterns observed for the other two pathogens. As
documented [45], the apparently excellent performance of
LBtope for this pathogen across all performance indicators
can be partially attributed to the fact that several of the hold-
out peptides used in this work are also part of LBtope’s
training data3. With the exception of LBtope’s results, the
pattern we observe for the Hepatitis C models closely mirrors
the results on the other two pathogens, with organism-specific
models generally outperforming the literature predictors tested
even when trained with a very modest amount of peptides
between 40 and 100, depending on the performance indicator.

2The largest data sets from both Hybrid-A and Hybrid-B always have very
similar scores, which is expected, as in both cases the sets contain 500 peptides
coming from the target pathogen data and 500 coming from the non-target
pathogen data.

3https://webs.iiitd.edu.in/raghava/lbtope/data/LBtope Variable Positive
epitopes.txt



Fig. 2. Mean performance (AUC, balanced accuracy, MCC) and standard errors for all models tested. Blue triangles indicate the scores from models trained
on organism-specific data sets, red crosses are from those trained on the Hybrid-A (“doubled data”) data sets, and green squares refer to models trained on
the Hybrid-B (“1000 peptides”) data sets. Horizontal lines indicate reference values extracted from [45]: models trained on the full training set (’OS-full’),
on a large heterogeneous set (’Heter 6K’), and on a large hybrid set (’OS-full+6K’), as well as the scores of several predictors from the literature on the
same hold-out sets. For all pathogens tested, organism-specific training resulted in uniformly better performance across all data sizes when compared to
models trained on hybrid or purely heterogeneous data, even when as few as 20 organism-specific peptides are used in the training set. Notice also how the
performance of organism-specific models quickly surpasses that of most of the comparison predictors tested, even when very few organism-specific peptides
are available to fit the models. (Note: standard error bars are in most cases shorter than the size of the point estimate markers)

For this pathogen, the performance difference within each
group is considerably smaller than the differences that can
be seen for the other organisms tested, albeit still with a
clear trend of organism-specific models presenting the best
performances and those trained with Hybrid-B the worst, for
all performance indicators except PPV, where the three training
regimens generally overlap across all data sizes.

When comparing all organism-specific reduced-data models
scores to the heterogeneous model scores, across all organisms
and for all performance measures, Figures 2-3 clearly show
that almost all organism-specific models score considerably
higher than the purely heterogeneous models (left-most point

in the Hybrid-B group), as well as the hybrid models (Hybrid-
A & Hybrid-B); the larger hybrid model from the previous
study (OS-full+6k) and the generalist predictors from the
literature, even when the organism-specific models are trained
on modest-sized data sets. In all cases, prediction performance
decreases as the number of organism-specific peptides used is
reduced, even if the total number of peptides in the training
set is kept fixed (Hybrid-B). For the organisms in this study,
the organism-specific models also appear to be the most
robust, with smaller performance decreases as the amount of
organism-specific data is reduced when compared to Hybrid-A
and, in particular, Hybrid-B.



Fig. 3. (Continuing from Figure 2) Mean performance (PPV, NPV, Sensitivity) and standard errors for all models tested. The same pattern observed in figure
2 – uniform superiority of organism-specific training, when compared to models trained on bigger, but hybrid/heterogeneous, data sets – is also observed in
the case of the three performance metrics shown here. As documented in [45], the apparently excellent performance of LBtope on the Hepatitis C data across
all quality indicators can be partially attributed to the fact that several of the hold-out peptides used in this work are also found in LBtope’s training data [39].

IV. DISCUSSION

The results from this study indicate that, when compared to
heterogeneous and hybrid training, organism-specific training
produces higher linear B-cell epitope prediction performance
scores, even for very small data set sizes. The number of
organism-specific peptides in the training set is shown to
strongly affect the predictive performance of organism-specific
models across multiple performance indicators, particularly
up to about 100 peptides, after which performance continues
to increase with more data but with diminishing returns,
asymptotically approaching that of models trained on the full
available training data for each pathogen [45]. The results also
show that organism-specific training outperforms generalist
training (predictors from the literature, trained on peptides
from a wide variety of pathogens) even when very small

organism-specific data sets are available. The only systematic
exception was the high observed performance of LBtope for
the Hepatitis C Virus; However, as mentioned earlier, “part of
the hold-out examples used to asses the performance of the
models is present in the training data of LBtope (9.59% of the
Hep C hold-out sequences are present in the LBtope training
data set)” [45], which in the case of our experiments would
result in some level of information leakage and an artificial
inflation of that predictor’s estimated performance. In addition
to showing that organism-specific training outperforms het-
erogeneous and hybrid training, this work shows that adding
unrelated data to organism-specific training sets decreases the
generalisation performance of the resulting model when tasked
with predicting epitopes for the target pathogen. It is also
apparent that the more heterogeneous data is added to the



training set, the poorer the prediction performance becomes,
which can be clearly seen from the comparison between
Hybrid-A and Hybrid-B results in Figures 2-3. This suggests
that, when training models for organism-specific predictions,
the training data sets should be as specific (containing only
labelled peptides from that organism) as possible.

Taken together, the results presented here provide a strong
indication that organism-specific models trained on data sets
beyond around 100 peptides provide very competitive predic-
tive performance when compared to the generalist predictors
tested. Additionally, the point at which organism-specific
models start to outperform generalist predictors depends on
the organism. For O. volvulus and Epstein-Barr Virus mod-
els the performance of organism-specific models compared
favourably to that of generalist models down to the smallest
organism-specific data set tested (20 peptides), while for
Hepatitis C more peptides were required for the organism-
specific training to become competitive.

This highlights the strengths of organism-specific training
and extends the conclusions and scope of application of
the methods described in our previous study [45], which
were limited to data-rich organisms. In contrast, this study
has shown that organism-specific training improves epitope
prediction performance for data-poor organisms as well. As a
comparison, the number of labelled peptide examples in the
full training sets used in [45] were: 8,819 for O. volvulus,
2,557 for Epstein-Barr Virus, and 1,702 for Hepatitis C Virus.
These are three of the most data-rich organisms on the IEDB.
Currently, most organisms have far fewer labelled epitope
examples available to them, and this work has shown that,
for many if not most of these organisms, organism-specific
training can provide significant improvements in prediction
performance.

V. CONCLUSIONS

In a previous work, we showed that organism-specific
training improves linear B-cell epitope prediction performance
for data-abundant organisms. This work extends the scope of
organism-specific modelling by showing that, contrary to our
initial assumptions, organism-specific training is also a viable
option for relatively data-poor organisms. However, it is clear
that there are limits to organism-specific training for epitope
prediction. The results documented in this study suggest that
organism-specific models trained with more than about 100 la-
belled peptides will generally compare favourably to generalist
predictors trained on substantially larger, but heterogeneous,
data sets. It also confirms that predictive performance, across
a wide variety of indicators, tends to increase monotonically
with the number of organism-specific peptides included in the
training data. It should be noted, however, that the results
documented in this work have only been validated for rea-
sonably class-balanced data sets. We have not tested models
trained on strongly imbalanced data - the worst case among
the pathogens tested was the Epstein-Barr virus data with
a 2:1 balance of classes, which does not configure extreme
class imbalance. While a further investigation of imbalanced

classification approaches for epitope prediction would poten-
tially help extend the scope of the organism-specific training
framework even further, the results presented here, coupled
with the increasingly cheap availability of computing power,
already indicate a promising new direction for the development
of bespoke predictors for pathogens under study, even for
relatively data-poor organisms such as neglected pathogens or
emerging health threats. Although synthetic data generation
approaches such as SMOTE [51] could be potentially used
to yield more balanced datasets, row dependencies emerging
from the sequential nature of the data would require adapta-
tions to enable SMOTE to perform better than simple minority
oversampling, as indicated in preliminary computational ex-
periments. Another promising line of research is to perform a
more comprehensive investigation of the approach utilized in
this work, not only in terms of testing on more pathogens but
also investigating the effect of training models using data from
phylogenetically-related (and potentially more well-studied)
pathogens, which carries the potential of further extending the
scope and applicability of tailored models to detect epitopes
of understudied pathogens.
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