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The satellite ERS-1 was launched in July 1991 in a period of high solar activ-
ity. Sparse laser tracking and the failure of the experimental microwave system
(PRARE) compounded the orbital errors which resulted from mismodelling of
atmospheric density and hence surface forces.

Three attempts are presented here to try and refine the coarse laser orbits of
FERS-1, made prior to the availability of the full altimetric dataset. The results
of the first attempt indicate that by geometrically modelling the satellite shape
some improvement in orbital precision may be made for any satellite; especially
one where no area tables already exist. The second and third refinement altempls
are based on the introduction of data from some second satellite; in these examples
SPOT-2 and TOPEX /Poseidon are employed.

With SPOT-2 the method makes use of the orbital similarities ta prodice
along-track corrections for the more fully tracked SPOT-2. Transferring these cor-
rections to BRS-1 produces improvements in the precise orbits thus determined,
With TOPEX /Poseidon the greater altitude results in a mare precise orhil (grav-
ity field and atmospheric errors are of less importance). Thus, hy compnling
height differences at crossover points of the TOPEX/Poseidon and KR5-1 ground
tracks the poorer orbit of ERS-1 may be improved by the addition of derived
radial corrections.

In the positive light of all three results several potential modifications are
suggested and some further avenues of investigation indicated.

Keywords:

e skin-surface forces,

o along-track acceleration corrections,
e dual-crossovers,
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¢ TOPEX/Poseidon.
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Chapter 1

Introduction

Data generated by earth satellites is very diverse, being concerned both with the
physical environment of the satellite, and with returning information about the
earth around which the satellites orbit. Thus, topics covered mclude atmospheric
studies, the measurement of the earth’s magnetic field, topographical images, alti-
metric information for use in mapping, oceanic studies and other geodetic projects.
There is a certain teleological element to much of this though, since in order to
fully utilise this information, a precise determination of the satellite’s position
is required. Therefore, as the knowledge of the earth’s shape and structure, as
evinced by the gravity field, increases so does the accuracy with which the orbit
may be computed. Similarly, as the orbital accuracy increases, so does that of the
physical constants (for instance the gravity field coefficients).

In addition to the accuracy of the physical constants, the quality of any precise
orbit determination rests upon the accuracy of the model used to plot the course
of the satellite; by far the most common approach being to fit the model to the
observation data by means of some weighted linear least squares minimisation
technique. Currently, this model is relatively weakest in the areas of atmospheric
density and satellite-atmospheric reactions [Renard, 1990]. This is largely due
to the difficulty in either accurately measuring atmospheric density and particle-
surface interactions at the satellite, or correctly simulating the conditions attained
at these locations within the laboratory situation. This weakness is relative since
it is only recently [Klinkrad et al, 1990] that the gravitational component has
been recovered accurately enough so that errors in it are now lower than the

magnitudes of lesser forces, such as drag and solar radiation pressure. However,




now that such accuracy is attainable in the gravity field, it becomes necessary
to either improve on atmospheric models or to somehow circumvent the need for
such improvements.

The aim of this thesis is to address these relative weaknesses by considering
the specific case of the satellite ERS-1. ERS-1 orbits suffer particularly both from
deficiencies in the thermospheric models currently used to determine atmospheric
density and from a general sparsity of and geographical bias in the tracking data.
In this thesis, three distinct but potentially combinable methods are considered, in
order to see if they offer ways of refining the initially poor ERS-1 long-arcs orbits.
In the first of these, the simple drag model currently used is modified to take
account of surface-interaction coefficients in a more complex momentum-exchange
based model. In contrast to this, both the second and third approaches differ from
the first in that they do not directly improve the orbital determination model, but
rather suggest ways of introducing information from some second satellite into
the orbital procedure. In each case the second satellite is more densely tracked
than ERS-1 and possesses other differences which make it suitable for the chosen
method. Thus, the second method uses height differences with TOPEX/Poseidon
which, at an altitude of some 1335 ki, is far less affected by the atmosphere;
avoiding the inherent weakness in thermospheric models. In contrast, the third
method employs the SPOT-2 satellite, which is in a similar orbit to ERS-1 but
does not suffer from the sparse and geographically biased tracking which troubles
ERS-1.

In order to allow these methods to be developed, the main body of the thesis
begins in Chapter 2 with a description of the orbit determination model employed
at ASTON. It must be recognised that this model is continually undergoing minor
alterations, as subroutines are updated and the modifications required by each new
satellites are included. However, the overall technique does not change and the
model employed remains basically the same.

Having elaborated upon the existing model, the first refinement method is
described and tested in Chapters 3 and 4 respectively. The former contains the
theory which elaborates the necessary equations for the forces due to both atmo-
spheric resistance and direct solar pressure. Further, it includes a full description

of the method of determining satellite area tables which may be used to com-
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pute the surface areas required by these equations. This theory is then used to
produce the GUESS software which is used for generating the tables required by
the amended orbital determination routine. Chapter 4 begins by applying this
software to ERS-1 and then continues with a description of the modifications to
the orbital package necessary to employ the GUESS tables. The latter hall of
the chapter then considers several long-arc orbits, comparing the results obtained
between the original and modified approaches.

The second refinement technique is described in Chapter 5, along with the
results of its application to ERS-1 and TOPEX/Poseidon. However, since the
latter satellite had not been launched at the time of the study, simulated data
is employed throughout. Two orbital ephemeris are determined, one for ERS-1
and one for TOPEX/Poseidon, from which the height differences are computed at
points where the two ground-tracks intersect. Two such simulated sets are used
— one representing the observation data (which would be derived from actual
altimeter measurements) and the other the calculated values (as obtained from the
orbital model). The differences between these are then considered as a measure
of the radial error in the two orbits. Whence, by writing the radial error as a
harmonic expansion, it is possible to solve for the harmonic coefficients. These
in turn allow for correction terms to be determined for both satellites at specific
times. By adding such terms to the orbit of the relevant satellite, a refined or
corrected orbit may be obtained. Where, as in this case, the orbit of the additional
satellite 1s much superior to that of ERS-1, it is hoped that the orbital accuracy
of the worse orbit may be improved to the order of the better one.

The third and final method is covered in Chapter 7. However, prior to this,
Chapter 6 first describes both SPOT-2 and its tracking system, together with the
modifications required to determine orbits for this satellite. In addition, this chap-
ter contains the results of running the GUESS software to produce area tables for
SPOT-2 as well as the results of converging several orbits both with and without
these tables. Chapter 7 continues by developing the method of determining along-
track acceleration corrections from SPOT-2, following an idea of Ridgway et al.

[1990]. Then the method is tested for three long-arcs where data was available for

both ERS-1 and SPOT-2.

Having considered all three approaches and the results obtained, it is then

15




possible to suggest where further development or testing of each method may be
useful. In addition, some overall assessment of just how much each technique
can contribute to improving poor orbits may be made, at least in the case of the

satellite ERS-1.




Chapter 2

Precise Orbit Determination

2.1 Stating the problem and summarizing the

solution

The problem of precise orbit determination is to determine the path of an lsarth
satellite by modelling its motion from estimated parameters, such as initial po-
sition and velocity, and observed data, for instance solar flux and geomagnetic
indices. This chapter outlines the method employed by the SATAN-A suite of
programs, as used at Aston University (SATellite ANalysis at Aston), so that
subsequent developments may be related to it.

First, the force model is outlined, by considering the major forces acting upon
an Farth satellite. Secondly, the correction process is explained, by which an
improved set of model parameters is obtained. This process employs a linear
least squares differentiated correction technique which minimises the residuals to
the tracking data in the correction program ORBCORR of the SATAN-A suite.
Finally, the prediction routine is described. This is contained in the program
ORBPRED which integrates ahead using a Gauss-Jackson numerical integrator
to compute ephemeris and partial derivatives over the span of the arc being deter-
mined. Here, arc means the satellite path over some period of time, with long-are
usually denoting an orbit of several days in length.

[t is important to emphasize that the prediction-correction process deseribed
is an iterative one and that the aim is to imprave on rather than fully determine

the many model parameters involved. Thus the whaole of this thesis is anly parl of




a continuing and evolving process, and not a finished or completed idea in itself.

2.2 The force model

The force model I, used by the prediction program, has six components. Three
of these are gravitational in origin: the attraction of the Barth (['g), variations
in this due to solid and ocean tides (/7 p¢) and attractions of other bodies in the
solar system (Fpg). The other three (known as skin forces [Klinkrad el al, 1990],
arising as they do from surface-particle interactions) are atmospheric resistance
(drag and lift, ), divect solar radiation pressure ([75) and Farth-reflected infra-

red and albedo forces (I7415r). These are modelled as follows.

2.2.1 The earth’s gravitational potential

By far the greatest force acting on a low Farth salellite arises [rom the attraction
due to the Farth’s mass. 1t is known that any two paint masses 1 and M exert,

a mutually attracting force of magnitude

-

_ GmM

32

where 7 is the distance between the masses and G is the universal gravitational
constant. From this, using Newton’s second law, it may be deduced that the mass
m experiences an acceleration of magnitude

G/A

2

a4 =
P

due to the attracting force exerted by the mass M. [qually, the acceleration

vector may be written as a potential @ = VV where

am

7

V

Further, it may be shown that this potential satisfies Laplace’s equation — namely
that V? = 0 — and hence is harmonic.
Now for a non-particular mass, such as that of the Earth, the potential may

be expanded as a triple integral

V= / / / P 2) .
eJydz (2, y, 2) iy d (dl)
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where p(z,y, z) is the density at the point (z,y,z) within the Earth’s mass, a dis-
tance r(,y, z) from the external attracted mass m. Since dM = plx,y, z)de dydz
is also a point mass, the total potential of Equation 2.1 also satisfies Laplace’s
equation.

Because of the physical significance, it is more usual to work in a spherical co-
ordinate system rather than a Cartesian one. In such a system, Laplace’s equation
may be written

a [ ,0V 0 oV % .
v - N I A) §
(/)()(/> 4 cos? ¢ OA? =0 (2:2)

or\' or oS (/‘);)_(E

where ¢ and A are latitude and longitude respectively in a geocentric Barth-fixed
coordinate system and 7 is the separation of the attracted point mass m from the
Farth’s centre (the origin of the system).
A solution to Bquation 2.2 is obtained by assuming that it takes the separahle
form
V = ROYPHAN)
and solving the resulting differential equations independently for R(r), ®(h) and

A(A). Such a process vesults in the following expression for the potential V

V =

(Z > ( > P (sin @) (Cpan cos mA + 57, sinmA) (2.3)

{(=0 m=0
[Kaula, 1966, pp.4-6] where M, is the Earth’s mass and R, its mean radius. The
functions P, are the associated Legendre polynomials and €, and 5, are the
harmonic coefficients which collectively define a given gravity field. This is the
form of V most usually employed in expressing the gravitational force I, on an
Farth satellite,

Lo =mVV.

2.2.2 Solid earth and ocean tides

The Earth is not a rigid hody, rather it is deformed hy the atiractions of ather
masses in the solar system: notably the sun and moon. These cause mavements
in both the solid Farth and in the oceans. Such effects are called tides and these
perturb the underlying gravitational attraction as expressed hy /¢

In the SATAN-A suite, the frequency dependent portion of the salid FBarth

tides is modelled by variations in the harmonic coeflicients O, and &, while
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the frequency independent part is modelled as another potential,

GM; R® 3 . 1
[/TZ = Z - J i;—lxz (E COS‘Z S — ;)

PRI
y4
J=sun, J
moon

where s is the angle subtended by the sun/moon and satellite at the earth’s centre,
Iy the second degree Love number and 7; is the geocentric sun/moon distance
[Lambeck, 1980].

Having deformed the solid Earth, the ocean tides are then determined using
a global circulation model such as that due to Schwiderski [1978]. The full tidal
force, I'pr, is the cumulative total of these three components. Tt is worth staling
that, in addition to their contribution to the force model, lidal deformations
displace the positions of the observation stations for satellite tracking data and
hence must also be accounted for during the correction part of the iterative process.
Finally, for this subsection, we note that the SATAN-A suite currently makes no
allowance for ocean loading (the effect of the oceans’ mass on the solid earth

beneath).

2.2.3 Third body attraction

In addition to the Earth, several other bodies in the solar system are sufficiently
massive to exert a significant gravitational attraction on an Farth satellite. How-
ever, unlike the Earth, such bodies are considered only as point masses due to
the distances involved. Other satellite groups such as GSFC/NASA and Texas
University are attempting to determine a low degree harmonic expansion for the
gravitational attraction of the moon and future adaptations of the SATAN-A suite
may also see such changes, together with the inclusion of tidal perturbations, for
this and other bodies. However, at present, the accuracy of the force maodel does
not appear to wholly justify such an elaboration.

The bodies currently included as perturbing point masses are the sun and moon
and the four planets: Venus, Mars, Jupiter and Saturn. Each of these is taken in
turn and, together with the satellite and the Earth, is considered in the manner of
the classic three-body problem [Brouwer and Clemence, 1961, pp.249-251]. The
force of such a body on the satellite may be computed as follows.

Let @, z, and z; be the position vectors of satellite, Rarth and third hady

respectively in some inertial reference frame (see Section 2.4 helow), as iilustrated

20




in Figure 2.1, so that Newton’s laws of motion may be applied. Then the resultant

earth

2 {hird boc ly

satellite

Figure 2.1: The three body system.

satellite acceleration due to all forces arising from point mass atiractions in this

systein 18

_): — GI (MF(.LE ~I) _1_ M](_EJ - 3:)) (24)

2. — x| |lz; — x|
where M; is the mass of the third body, all other variables being already defined.
This acceleration is converted to the geocentric frame by considering the geocentric

satellite position vector, z — z, so that the acceleration in this frame is  — IZ,.

Given an expression for Z, similar to Equation 2.4 the desired acceleration becomes

i = G, +n)( ) (z; —z.) = (z — z.) (:_rf;rm))

- ‘_ - TP |(-':J _Qe) - (:‘1 - ie)lg !J‘_J - ze[a

the first part of which is already accounted by the Cyo term in the harmonic

T -

v am,

expansion of the gravitational potential (Equation 2.3). Thus the required third

body force is

F/B-GZM (l((ﬂ“ —z)—(z-z) (g — ) )

z;—x) = (z—-z) |z )P

where the sum over j is taken over the six bodies listed above.

2.2.4 Atmospheric drag and lift

All Earth satellites moving within the atmosphere experience a force due o the
surface impingement of charged and uncharged particles. This force ia predami-

nantly retarding (drag), acting contrary to the velacity of the satellite relative (o




the atmosphere (v,). However, there is also a component perpendicular to this
(lift) which produces effects in the radial and across track divections.

Before this study, the SATAN-A suite of programs had assumed that the lift
force was negligible, modelling the drag force as a function of atmospheric density

(p) and effective area of the satellite perpendicular to the direction of travel (Ap):

|
Iy= _;{JCDAD'UTQ,.

—_
S
i

—

where v, = |v,| and Cp is a drag (or ballistic) coeflicient which varies with the

[Cook,

surface characteristics of the satellite and the atmosphere’s constituents
1965]. The minus sign indicates that the force opposes the divection of Lravel.
Because of the lack of detailed knowledge of the atmosphere [Ries, 1992] it
is usual to solve for C'p either as a linear function of time (drag and drag-rate)
or a number of parameters forming a step unction over time (as illustrated in
Figure 2.2). A third method, solving for the points of a “saw-tooth” lunetion, is
developed and detailed later in this chapter (see Section 2.5). Much of this (hesis
is centred around ways of avoiding or avercoming this deficiency in knowledge
about the atmosphere, such as using a different force model for drag (see Chap-
ters 3 and 4) or transferring information from a second satellite (as attempted in

Chapters 5 to 7).

2.2.5 Direct solar radiation pressure

The flux emitted by the sun, diminishing (in accordance with the inverse square
law) with increasing distance from its source, gives rise to two skin forces. The
first of these is due to the flux which arrives at the satellite directly from the sun,
known as direct solar radiation pressure.

In addition to the distance factor, this force depends on the relative positions
of the satellite with respect to the Earth’s shadow, and the surface area and
shape as viewed from the sun. To allow for the Barth’s shadow, a variahle »
(the shadow factor) is used, ranging from zerc in the Farth’s umbra to one in fifll
sunlight. The intervening penumbral region is computed for a spherical Barth of
some mean polar radivs. In this area the shadow factar varies smoothly hetwesn

the two extremes.

[
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Given these considerations, the direct solar radiation pressure is modelled as

Fp=-vPCrApe, (2.6)

where P is the solar flux per unit area at the satellite, Ap is the effective satellite
surface area perpendicular to some unit satellite-to-sun vector e, and Cy is Lthe
radiation coeflicient, allowing for the interactions between photons and satellite

=

surface [Aksnes, 1976]. Again, as with the drag force of Equation 2.5, the minus

sign indicates that the force acts in an opposite direction to the vector g,

2.2.6 Farth reflected albedo and infra-red forces

The sixth and final force, modelled in the prediction program (and the secand of
the two forces arising from solar flux) arises from the energy re-emitted (infra-red)
or reflected (albedo) by the Farth.

The infra-red component is always present — even for a satellite in the nmbra
of the Farth — but the albedo force comes only from those regions of the BRarth
which are visible from both sun and satellite al the same instant. [Bffectively
(for a spherical Earth), this implies regions of the Barth visible from the satellite
when the satellite is also visible from the sun. As with the direct solar radiation
pressure force, F'p, a shadow function smooths the albedo contribution in an
idealised penumbral region.

In order to model these forces, the surface of the Earth visible from the satel-
lite 1s divided into a number of areas which are equal when projected into a
plane perpendicular to the geocentric satellite position vector along a line par-
allel to this vector. There are thirteen such areas in the current version of the
SATAN-A package.

If the area of any one such is denoted dA; then the force arising from this
region is

cos nf/h,) dA;

dF; = = (1CRP cos 0 + Pri)

where O and P are as above (Section 2.2.5, Equalion 2.6), v is the alheda aof
the surface element i — incorporating the shadow factar v — and Py is the
emitted infra-red radiation, interpolated {rom tables [Vonder Haar and Suomi,

1971]. Further, 8 is the angle hetween the surface normal and the gencentiic

position of the sun, o that hetween the same normal and the satellite geocentrie
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position vector, Ar the area of the satellite perpendicular to a satellite-to-earth
unit vector e; and d the distance between satellite and earth surface-element.
The sum of these elemental forces provides the total force due to indirect solar
radiation,

13

Lapip = Zﬂz

=1

completing the force model as currently used by the prediction program.

2.3 Least squares minimisation

As has been indicated, the precise orbit determination routine, as embodied by Lhe
SATAN-A package, works by iterating a prediction-correction process. In order
to see the values that the predicting program must produce, it is lirst necessary
to consider what the correcting program requires,

The correction program ORBCORR, developed from ane written hy Andrew
Sinclair and Graham Appleby of the Royal Greenwich Ohservatory (RGO) [Sin-
clair and Appleby, 1986], centres around a least squares minimisation by which
the force model parameters of the previous section can he modilied to produee an
orbital ephemeris more closely matching the observed data. The basic concept is
the minimisation of the weighted square residuals,

Z w; (()1 - Cl‘)Z (27)
-
where w; are the weights and C; are the computed values corresponding to the
observations O; at times ¢;. Thus, the sum is taken over all observations, 1.

We suppose that an orbit may be modelled using a set of true parameters
P* = {pr:p. € P}. In practice these values are not precisely known, hut are
related to an equivalent set of best approximations, P say, where 2 = PY+ AP
Given such a relationship, it may be possible to determine a solution set closer to
the true values than Y, provided AP can he calenlated sufficiently accurately.

Let, C = C; (£7), since the computed values are ideally produced from the
true parameters. Then Bquation 2.7 may he minimised in the usual way hy
differentiating with respect to each model parameter and setting all the resulting
equations identically to zero:

. , BN e L T . N
1 ; (); — (—"i ],J* — = /11, € ,Ji Vpoe
}ﬂw( (7)) i, 0 Vi e [ (4.8)
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The partial derivatives are computed with respect to the variables pp € P, of

which P* and P° are subsets evaluated at fixed values of the py’s. Both 7 (£F)

and —.7-59—(} (£*) must be expanded in terms of P and AP, since P* is not known
Apy — —

and we wish to determine AP, Such an expansion may be achieved using Taylor’s

series, thus:

W) = G20+ AP
o
= i (P°) + d‘z}%—l AP+ O (AP?)

DO PY) oC; (2 +AP)

Opj. Oy

o (B o fdoi(P) s
i, i Dy qP AP O (A(;f)

where terms in AP? and above are multi-dimensional matiices. Linearising the
problem, to avoid dealing with such matrices, results in the [ollowing expressions
Y py v ( po\
Co(l) = G (2%) + AL

gc,(Pry  OC: (£°)

: ~ 2.9
Opy Opye (2.9)

This linearisation also means that a solution to AP may not lead to an exact

value of P and is therefore the reason for the iteration of the two programs
which ideally produces diminishing corrections, AP, so converging on a value as
close to P* as is possible.

By substituting Equation 2.9 into Equation 2.8, neglecting the higher order
terms and assuming equality, we obtain

dC:: ( _fgﬂ)

Zwl— O, — (ﬁ“) Sl 2} ﬂ@

Iy,

AP = () Vp, € P

which must be solved if AP is to be calculated. This system of equations may he

expressed more succinctly in matrix form,

where N = (1) is composed of elements

e () e ()
ik = zﬁ (9}33‘ f)’]));

1

P
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and each element (row) of the column vector b is defined to be

oc; (P°)

by = Ewi (O,' — <£O>> "(—)P“—“_
. i

1

Thus, each b, is a sum of the products of the weighted residuals, w; (O; — (%) and

the partial derivatives 57 C; (ﬂ )
ap,

These equations are known as the normal equations and, by construction,
N is a symmetric positive definite matrix [Sernesi, 1993, p.236] and is therefore
invertible — provided that the model is not over-parameterised; that is there are
no linear dependencies in the row space of N [Chatfield and Collins, 1986, p.16].
So a set of parameter corrections may be determined {rom

AP =N")

and these being added onto the prior set 2, a new hest estimate is produced, {rom
which the whole process may be repeated, heginning again with the prediction

program

i T 503 . . & 7 {} ) [
In order to produce the values of (; (jj') and ;:T‘,f(’i’i ([’ ) e correction ronbine

uses values of w(4), £(4) and, z /7( ) for each ohservation time . Thas, Lhese
variables are the required output of the correction routine. Here x(l;) 1s the
satellite position, Z(t;) its velocity and %1(/,) the partial derivatives of z(t;)
with respect to all the model parameters for which a solution is to be sought. It is
emphasized that the partial derivatives calculated in the prediction stage are for
the force model parameters only. Further, it is possible (and desirable in terms of
saved processing time) not to produce partial derivatives of those parameters for
which a solution is not required.

The correction program determines the required terms for the least squares
minimisation, C; (_f_)()) and 5—C; (/’”)s as follows. Taking each data type sepa-
rately, first O, is obtained by rea,ding the data and, where necessary, adding on
any corrections. The aim is to produce a value which corresponds (in the man-
ner in which it has been obtained) to its computed equivalent. For example, an
observed laser range will be affected by the troposphere. However, the caleulated
range will not show this effect, so the observed range is corrected ta remave Lhe
effect by adding a value stared in the same observation vecord in the data files.
These correction values are computed from models, from metearalogical data, or

measured directly by satellite or station at the ohservation time.
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The calculated value is evaluated from the satellite ephemeris: position and
velocity vectors. In the case of laser data, altimetry and crossovers, the partial
derivatives of the calculated value, required to form the normal equations, are
computed from

= = = el : e 2.10
Opi dx Op,  Ox JIpy, + Ay Opy. T Dz Opy ( )

the values of i (71 beinﬂ; (fif‘ltﬁ}'ﬂ]il](%(l from th(". values of ()z Their (7(')'[]]}NH;H.‘:iOH 1‘1
dx <
Bl

dependent upon the data type. Thus, for example, il the data type is laser range

data, then the value of C; is a range measurement, p say. This may be written
2 N2 (a2 2
pt = (=) (v =)+ (2= =)
where & = (&, ¥, z) and 2, = (@, ys, 2) are the satellite position vector and sta-

tion coordinate vector respectively. Then the partial derivatives of this calenlated

range are of the form

A _dp _ [y 00 _ 180 _am
de dw 2p Jp(i)"?f ; 2p O - f

with similar results for y and z:

respectively; thus determining ==C;. Combining this value, using Iquation 2.10,

Bl
al

with the partial derivatives ﬁg, output by the ORBPRIED program, provides the
full required partial derivative. Both the computation of 7%,(_71- and the combination
of this with the partial derivatives from the ORBPRED routine are carried out
within the ORBCORR program. In contrast, where the parameter p, is nol one
of those in the force model of Section 2.2, the entire partial derivative is computed
within the ORBCORR program: for example, where a sclution is sought to one
or more laser station coordinates, or to the pole position. Having produced the
required components for the matrix N and vector b, the matrix inversion process
— currently a technique due to Choleski is employed [Burden and Faires, 1989,

p.370] — produces the correction vector as described above.

2.4 Integrating the force model

he computation of the satellite ephemeris, z(1;) and E(4), and partial derivatives,

o

aprkti), required by the correction program, ORBCORR of Section 2.3, & carried




out in ORBPRED, using some prior set of model parameters, PP, and the force
model F of Section 2.2.

The prior set of parameters consists of an initial state vector (z(0), £(0)), drag
and radiation coefficients (Cp., Cr) gravity field coeflicients (C,, Si) and all
other model variables. In practice it is not usual to solve for the harmonic coef-
ficients (), and S),, over a single arc since solutions to these generally require
more data to be meaningful. Thus, these coeflicients are more often taken to
be known fixed values. In addition to the prior parameter set (1) the predic-
tion program requires various auxiliary data such as planetary positions (for the
third body force, 'y g), solar flux and geomagnetic data (for atmospheric density
models) and fluctuations in time and polar positions (for converting to an inertial
reference frame). Further, it requires that the user specify which of various madels
should be used (for tides, density ete.) and exactly what output (ground-tracks,
projected state vectors ete.) is desired. Finally, as its main input, the predie-
tion program takes a file of dates at which the ephemeris and ])fi.i“f,ia.l derivatives
are to be computed. These dates must all be in chranolagical order in the same
time-scale.

In order to employ the force model in a Newtonian fashion, all computations

must be carried out in an inertial frame of reference. That is a coordinate system

fixed in both time and space, and uniformly varying coordinates for position and
time. In order to facilitate this, various timescales are next considered and a

uniformly continuous one is chosen. Following this, the spatial frame of reference
that will be used is also defined.

Within the observation data, allowance is made for several timescales ta he
used, but all are variations of universal time (UT) and international atomic time
(TAT). The former is measured from Greenwich mean sidereal time (GMST) and
hence is based upon diurnal stellar motions [Astronomical Almanac, 1987). Con
sequently it is not uniformly continuous due to variations in the Barth’s rotation
rate and axial position. Conversely, TAl is measured in multiples of the atomie
51 (Systeme Internationale) second from a base date an January the 1%V in 1972,
hence is uniformly continuous

UT is further subdivided into UT0, based on lacation and UTT which s

heen corrected for polar-meridian mations and therefore is ahserver independeont,
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though still non-uniform. There is also UTC which differs from UT by at most
0.9 seconds SI and is an integer number of seconds SI different from TAIL This
relationship is maintained by introducing leap seconds (finite discontinuities) in
UTC, usually at the end of December and or June [Astronomical Almanac, 1987},
To produce a uniformly varying timescale with the minimum adjustment, all ob-
servation times are corrected to what is termed ATC. This differs from TAT by a
fixed number of seconds SI and is equal to UTC at the start time of the long arc
being determined.

The inertial reference frame currently in widespread use among the precise
orbit determination community is J2000 which is defined as follows. The Z-axis
is the mean IBarth pole, normal to the equatorial plane while the X-axis points Lo
the vernal equinox (ﬁi‘sl, point in Aries). The time al which these axes are lixed
is Julian Date (JD) 2451545.0 which is noon on the % January 2000 A.D. All
ntegration within the prediction program takes place in this system, though twa
other systems are also used in the computalion process. These are the Earlh fixed
system (with coordinates: latitude, Tongitude and radial distance) and the frame-
of-date system (as for J2000, but fixed al the time ol observation/camputation,
rather than in 2000 A.D.). Clearly the latter one is also inertial for any given
date, but is different for each date considered.

Rotation between these systems is effected by matrix multiplication where the
matrices are determined each time the observation (or computation) date alters.
Briefly, movement between the inertial frames is due to precession and nutation
— the time varying effects of the sun and moon which cause irregularities in the
Earth’s rotation and polar position. On the other hand, movement hetween the
arth-fixed and frame-of-date systems arises from the time of day involved and
also from variations in polar motion.

Having decided upon an inertial reference frame and devised a way in which
to convert to and from it, it is possible to employ Newton’s laws to integrate the
force model

E=Fa(t),&(0), 2, 1)

thus obtaining the satellite velocity,

L Lot N
_f;(/) - E(i(“’)s:’i("")v_i_l_a ") d“’f

T Jig

Do
o




and position,
t
s(t) = [ i(s)ds.
Jta

The partial derivatives are found similarly:

M:/[t i/> 0 Fla(u),&(u), Pyu)du | ds.

Opy. o\ Jig Opr—

In practice, since I7 is not defined analytically but only at a series of points, a
numerical integration technique is used. That currently employed is an eighth
order Gauss-Jackson integrator which predicts one step ahead from the previous
eight steps. In order to start this off at the beginning of the are the first eight

steps must be produced in some other manner. To this end a procedire based
upon difference approximations is used, iterating until the values converge. The
prediction program works by integrating every ‘0’ seconds (where ‘07 takes a value

determined by the user). After each new point has heen found, the observation

dates are considered and the values ol &(4;), 2(4;) anc Q;AJ_([t) are interpalated
at such dates as fall in the central interval of the current eight points. When all

dates and all steps have been considered the prograni terminales,

2.5 Saw-tooth drag modifications

Before proceeding with the main body of the thesis which focuses on three at-
tempts to 1mprove long-arc orbit determination, the basic suite described above
underwent two major modifications. The first of these, already mentioned in Sec-
tion 2.2.4 above, is the implementation of a saw-tooth option for the drag scale
factors, C'p,. It is important to note that throughout this thesis “saw-tooth” refers
Lo the pattern of drag scale factors here described and nol to the discontinuous
waveform referred to as saw-tooth by physicists, engineers, applied mathemati-
cians and their ilk.

As has already been indicated in Section 2.2.4, there were two existing ap-
proaches to solving for drag scale factors in the SATAN-A suite at the start of
this study. A comparison of the two, carried out by Rothwell [1989], indicated
that although solving for just two parameters, namely an initial valne and a rabe
of change, pravided a continuous Cp, a solution invelving multiple factors in ihe

form of a step function (see Figure 2.2) pravided hetter orhits. Here hetler IMEATH
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Figure 2.2: An example of the step function for drag scale factars aver the period
£ I ] £

MJD 48687 ta MJD 48692.

being possessed of a lower RMS value without being distorted towards any par-
ticular geographical region. The RMS, or Root Mean Square, is defined as the
square root of the mean of the squared differences between observed data and

calculated equivalents:

n

w () — ()2
Zwigw,((), )

and is a statistical measure of how well the model fits the data (the sample variance
estimate). A lower RMS is generally associated with a better fit — this does
not always imply a better model. Initial studies which employed multiple drag
scale factors in the step function form, for instance Seasat studies [Rothwell,
1989], solved for Cp values on a daily basis. However, by 1992 the frequency had
increased to as many as eight a day, for instance for the French satellite SPOT-2
[Nouél et al, 1991]. Such a practice leads Lo increasing correlations hetweern
solution parameters, calling into question the quality, or indeed reality, of the
solution. Indeed, where correlations reach a value of ane, linear dependencies
between solution parameters may exist: potentially making the matrix N non-

invertible [Chatfield and Collins, 1986]. Thus, it is nat generally sufficient 1o yse

L)
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the RMS alone as a measure of the absolute quality of the solution, though it may

be able to give indications of a relative improvement.

Early during the work for this thesis, several attempts were made to solve
for continuous drag scale factors in the form of a simple polynomial function,
or as some sinusoidally varying curve. Such attempts proved unsuccessful, since
the resultant RMS values were no better than those obtained using a daily step

function, even when the order of the polynomial was greater than the length of
the arc in days. This failure was traced to the prevalence of negative scale factors
al both ends of the most of the long-arcs tested. The physical significance of these
negative values is that the atmosphere is actually accelerating the satellite in its
direction of motion; clearly an unrealistic event. It was found that the problem

arose because ol the lack of constraints on the curve al either end of the long-are,

there being no data outside the arc to fix the drag scale {actors.

With the need to improve drag modelling, via concepts embaodied later in
this thesis (see Chapters 3 and 7), it became essential to prodiee some farm of
continuous (though not necessarily smooth) model for Cp. The obvious methad,
given the fatlure of an explicitly continuous analytic form, was to use several scale
factors and rates of change which were connected to each other. This resulted in
the saw-tooth regime illustrated in Iigure 2.3. In contrast to the previous failures,
this attempt to model the drag scale factors with a continuous function was found
to work af least as well as the step function approach. The SATAN-A suite was

therefore modified as follows.

First, the initial solution set, P°, was altered by removing all references to a
drag-rate. Then an additional drag scale factor was included at the start epach,
lo = 0, and the ORBPRED and ORBCORR programs were amended to read
this modified parameter set. A major distinction between step and saw-toath
approaches is the difference in which the programs interpret the time values asso-
ciated with each scale factor. Tn the former, the associated time value dictates the
end of the period of validity of the scale factor (the Leginning heing given hy the
expiration of the previous such factor). Conversely, with the saw-tooth technique,
the associated time value is actually the time at which the fixed value pertaing,

since between any two successive associated Lime values, 1; and Lipr say, the drag
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Figure 2.3: The saw-tooth approach to computing drag scale factors over the

period MJD 48464.8 to MJD 48470.8.

scale factor Cp(t) is given by

t— 1 . . .
CD(t) = CD, + <—'-> (C’DHL: — C/D') Vice {t,', If,‘+]). (ZH)
Livy — ti
The necessary partial derivatives, a(?'D—F> are computed [rom Equation 2.11 within

the arbital prediction program, just as was effected before this alteration. How-
ever, for each computation time ¢ there are now fwo partial derivatives, made
with respect to each of the two Cp, values on either side of this time. Since the
only occurrence of C'p within the force /7 acting on the satellite is in the compo-
nent due to atmospheric resistance, ', the required derivatives are obtained by

differentiating Equation 2.5 where ('p is defined by Equation 2.11. Thus,

oF I (i —
ac, — af (ET:7,> Apvrv,
and
or ! L1
9o, " Y (Z{] = t,~> Apvru,

are the required partial derivatives with respect to the two drag scale factors. The

only other changes required by ORRPRED and ORBCORR involved ensuring
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that the indices of these scale factors and their associated time values matched

and that references to them allowed for the removal of the drag-rate parameter.

2.6 Station coordinates

The second major change made to the SATAN-A suite of programs involved the
station coordinates used to determine laser range measurements within the orbital
correction program (ORBCORR). This alteration was necessitated by the increas-
ing accuracy in the predicted orbits. Prior to this study, a single file of station
coordinates had been used for periods of hall a year or more, as for instance in
the case of Seasat [Rothwell, 1989]. However, solutions to stalion coordinales are
sought at regular intervals by various groups (sich as the RGO, NASA ele.) nsing
data sets which include information from higher altitude satellites such as Lageas
(orbiting atb an altitude of more than 6000 ki) which are negligibly affected hy
atmospheric resistance.

Station coordinate solutions are made up ol twa vectors, namely the earth-
fixed location of the monument (or marker) position and a correction for the
displacement between this and the actual point of the laser beam’s beginning (or
radar antenna location for DORIS doppler data). The latter may be measured
locally and values are computed regularly, stored centrally for all types of stations
(not just laser sites) and made available to users around the globe. These values
are then included in the periodic solutions made from observation data, so that
monument solutions may be calculated. The monument solutions will vary due to
[farth deformations and crustal motion. The former are allowed for by computing
the effect of Earth tides due to sun and moon in both the prediction and correction
programs. Crustal motion was hitherto not allowed for, so that arcs heginning
at different epochs were converged with respect to a single fixed set of station
coordinates. 1t is this shortcoming that this modification seeks to address.

[t may be possible that levels of accuracy attained in orhital predictions may
eventually necessitate station coordinates heing computed within the prediction
and correction programs themselves, However, comparing the magnitudes af eip-
rent accuracies in orbit predictions with those of actual crustal motions siggesis

that it is satisfactory to praduce a set of stalion coordinates carrect Lo an apprax-
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imate central date of whichever long-arc is being converged. This should mean
that the errors with respect to the station coordinates are at a minimum at this
central point and increase towards either end of the arc.

Thus, a program was written which took a set of monument solutions pertinent
to the given period (i.e lying before and as close as possible to the start epoch
of a given arc), the correction vector file and a file of station velocities (again
produced by groups such as NASA and RGO and collated centrally). This enables
the station positions to be computed from the relevant monument-correction pair
and then adjusted to a value at the central date of the are, by including a veloeity

term under the assumption that
x(t) = 2(0) 4w

(where v is the stored velocity vector). Further, since this routine is run before
the orbit prediction and correction programs, no maodifications to Lhe latter were

required.
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Chapter 3

Surface Force Modelling

3.1 FErrors in modelled surface-forces

In long-arc precise orbit determination for low Earth satellites, such as [ERS-1,
large errors may occur as a result of mismodelling of hoth the direct solar radiation
pressure and aerodynamic resistance forces. [t has been suggesied by, among
others, Klinkrad ef al. [1990] that any improvements in the gravity field will he
severely restricted in terms of their usefulness — assuming that the determination
of such improvements is not directly impeded — until a similar level of accuracy is
attained in these and other non-gravitational forces. It is further recognised that
despite the sophistication of recent thermospheric models, such as MSIS83 [Hedin,
1983], MSIS86 [Hedin, 1987] and DTM [Barlier et al., 1977], which consider the
number densities of individual atmospheric constituents, little overall progress
appears to have been made in modelling the neutral air density [Renard 1990;
Ridgway et al., 1990; Ries, 1992]. Indeed the simpler Jacchia 71 model [Jacchia,
1972], based primarily on satellite drag data, is considered to be the equal of the
more sophisticated MSIS83 model in most orbit determinations.

Since thermospheric models may produce atmospheric densities which are in
error by as much as 50% to 100%, it is not possible to circumvent this weakness
in these skin forces [Klinkrad et al, 1990] totally. However, the area component
of these and other skin forces may be improved by considering particle-sirface
interactions for the respective incident fluxes [Herrero, 1985; Marshall ef al., 1061,
Maore and Sowter, 1891]. This chapter will focus an the two skin-forces which

are of greatest magnitude, namely aerodynamic resistance (combining hoth the
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drag and lift forces of Section 2.2.4) and direct solar radiation pressure [Klinkrad
et al., 1990, p.2].

Frrors in the aerodynamic resistance force arise from uncertainties in the at-
mospheric density, the area perpendicular to the relative velocity of the satellite
(p and Ap respectively in Equation 2.5 of Section 2.2.4) and the characteristic
behaviour of the atmospheric particles incident on the satellite’s surfaces. Most,
methods currently used to circumvent such uncertainties work by introducing ad-
ditional solution parameters into the force model of Chapter 2. For example,
multiple drag coefficients, Cp, over specified time intervals improve the orbital fit
by reducing the sum of squares of the residuals. However, employed in excessive
numbers, such parameters lose any physical significance by absorbing errors in
density, effective area, and other along-track forces (such as gravity field effects
and solar-radiation pressure) [Rothwell, 1989]. Similarly, errors in the force due
to direct solar radiation pressure arise predominantly from inaccuracies in hoth
the visible area perpendicular to the sun-satellite vector and in the reflectivity
conditions which translate into uncertainties in the product CgAg.

An attempt is made here to model surface areas, and hence skin forces, so that
the derived scale factors Cp will be multiplicative constants for air density alone.
This will only be perfectly achieved if the surface area and interaction coefficients
can be modelled exactly. However, it may be approximated if the areas can be
determined sufficiently accurately. The approach adopted here considers individ-
ual flux units and computes forces from the corresponding differences between
incident and post-impact momentum where the surface interactions are described
along probabilistic lines. The aim is to develop a series of force or area tables
which may then be accessed from the prediction program (which will interpolate
betwen tabulated values), rather than computing the forces directly at every step
of the numerical integration process.

In this chapter the relevant momentum-exchange equations which are to re-
place the previous equations of Section 2.2 are elaborated. Then the theory re-
quired to determine the surface areas for use in these equations is described. -
nally, a brief test of the resulting software is made; further validation of the area
tables and momentum exchange equations being made using several lang-arcs of

the satellites ERS-1 and SPOT-2 in the Chapters 4 and 6 respectively.
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3.2 Surface forces considered in terms of the mo-
mentum exchanged

Satellite skin forces, such as direct solar radiation pressure and atmospheric resis-
tance, may be computed by relating the force to the opposing change in momen-
tum effected by that force. Thus, considering the total force on the satellite as a

result of the sum of momentum changes in all incident flux units, we have

= Z (1w — mau)

incident

flux units
where u and v are the incident and post-impact flux velocities respectively, mea-
sured relative to the satellite; and 0 is the mass of one unit of flux. Assuming
that the flux forms a parallel beam which is not allected by reflected nnits and
that only the first impact of each flux unit need be considered; then the number
ol incident units is proportional to the visible surlace area, A4, and the previons

equation becomes

=k Z A (mu — mp)

visible

suifaces
where the constant of proportionality, £, relates the force to the density of the
incident flow. Given these assumptions, each of the two main skin forces may be

considered in turn.

3.2.1 Direct solar radiation pressure

For any Earth satellite, the assumption that direct solar radiation forms a parallel
flux is immediately jl.lsi;iﬁed by the distance between sun and satellite. The other
main assumption, that only the first impact need be considered, is imposed on the
grounds that inaccuracies in the geometric model of the satellite and uncertainties
in the surface-particle interactions outweigh any potential increase in accuracy
arising from the inclusion of multiple impacts. This justification is employed for
both direct solar radiation pressure and aerodynamic resistance forces.
Now, let Ly be the flux at the Earth’s surface, then the flux emitted fram

the sun is roughly Fod?, | reversing the inverse square law; dy. heing the mean

sun-earth distance. Whence, the flux incident an the satellite is

]4(3(]
11‘3
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where d,, is the sun-satellite distance. This equation is a measure of the absolute
energy of the incident photons, whence the magnitude of the incident momenium

per unit area may be written (for speed of light ¢},

72
Eod:,

d:c’
Now, radiation striking a satellite surface may be absorbed, reflected or transmit-
ted with probabilities a, r and ¢ respectively. Reflection and transmission may
be further separated into specular and diffuse cases providing probabilities 7y, 1,,
rq and 4. These probabilities measure the proportions of flux reacting in a given
way and satisfy

a+7rst+rgtts g =1 (3.1)

where the values of these coeflicients are specific to a given surface, or part surface,
of a satellite.
Next, suppose that the flux has incident direction d, subtending an angle

i

with a given surface normal n, as illustrated in Figure 3.1. Then the total incident

surface normal

|3

post-impact direction incident direction

surface

a, n and d unit vectors
Figure 3.1: Incident and post-impact solar flux on a plane surface.

momentum per unit area is




and the post-impact value may be computed by taking each surface-reaction in
turn.

For absorption the post-impact velocity is zero, whilst for direct transmis-
sion the velocity is unaltered. For the proportion rg, the tangential component
of momentum is unchanged while the normal component is reversed and, from
Figure 3.1, 8, = 6;. Thus, comparing normal and tangential components for this

proportion, the post-impact direction, a, satislies

a-n = —d-n

and a—(a-n)n = d—(d-n)n

whence

o = d=2(d-n)n
= d+ (2cost;)n

nd the post-impact momentum arising (rom the specularly rellected proportion

]()4/
—2Ep, (d+ 2costin).
lﬁsc
FFor the proportion 74, a completely diffuse reaction is assumed, in the sense that
the reflected photons are distributed with a conical beam, centred on the surface
normal, of hall angle /2. The resultant tangential component ol post-impact mo-

mentum is zero by symmetry, while the normal component is given by [Schamberg,

1959, pp.64-67],

]_'70(]3{ 2’/‘(1/
Finally, for diffusely transmitted solar flux the same assumptions are made as
for the diffusely reflected proportion. Thus, since the post-impact direction is
opposite to that of this last case, the same result ohtains but with v, replaced by
—14.

Differencing the sum of these post-impact momenta {ram the incident value,
yields a total flux momentum change per unit area of a given satellite surface. Ta
obtain the momentum change over the whole surface, this expression is simply
multiplied by the visible plane area perpendicular to the incident flow, Ay cos ;.

Thus, by the arguments at the beginning of Section 1.2, the farce an a given
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surface of a satellite, due to direct solar radiation pressure, can be written as

Eod®. - T4 — 1
Ep= 25 Ascos, (0-t-r)d-2 (7‘5 cos 0; + <————“‘ . “)) y_) (32

3.2.2 Free molecular aerodynamics

Analogously to direct solar radiation pressure, derivation of the aerodynamic force
on a satellite may be made from consideration of the incident and post-impact
momenta of the atmospheric flux particles. Consider a single uncharged particle
moving with an average velocity u relative to the satellite. Let this velocity
subtend an angle 8; with some given surface normal, n. Further, assume a post-
impact velocity v subtending an angle 0, with the same normal, as in Figure 3.2,

The resulting force on the satellite, due to this single incident particle, may he
) g | ; )

n, normal t, Langent

plane surface

n and { unit vectors
Figure 3.2: Force from a single acrodynamic particle on a flat plate.

written in terms of its normal and tangential components of momentum (p and
7), or equivalently (in the manner of Section 3.2), in terms of momentum change

where the particle has a mass m, thus:

i

—pn+ 7l

= — (mp— muy). (1.3)
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The values of the momentum components may then be found from scalar products,

p = (mu—mu)-n = m(vcosh +ucosb) = p+pi

7 = —(mp—mu)-t = m(usinb;—vsind,) = T -7

where the subscripts ; and , denote incident and reflected (or post-impact) re-
spectively.

To compute the incident monientum on a given surface, it is first necessary
to find the number of particles striking a unit surface in a unit time. With u
defined as above, let w be the velocity vector of a particular particle, relative Lo
the satellite. Then the number of particles, dN, moving al velocities between w
and w + dw is given by

dN = f(w) dwgdw,dw, (1.4)

for w in some Cartesian coordinate system with components wg, w, and w,. The

function, f{w), given by Schidlovskiy [1967] for conditions of free-malecular flow,

WRTN ™2 [ —|w— uf? L
f(gu_) =T (7) eXp (*‘Q‘ﬁ*]}g‘“) (‘LJ)

where n is the number density of the rarefied gas (in this case the atmosphere),

is

R the specific gas constant, T the absolute temperature and M the gas’s mean

molecular mass.

, normal
flat plate

n and { unit vecitors

i, tangent

Figure 3.3: The incident velocity u and the Cartesian system for the particular

velocity w.

e
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Let the Cartesian system for w be chosen so that the vector u lies in the XY-
plane (as in Figure 3.3) making an angle 8; with the surface normal n (which lies

along the negative X-axis). Then Equation 3.5 becomes

o RTN ~3/? — (wy — ucos Hi)2 — (wy + usin 01‘)2 — w? o
) exp —— (3.6)
M 2RT /M

flw) =n
where u = |u|. From Equations 3.4 and 3.6 it follows that the number of particles
striking a unit area i unit time 1s

/ w, f () dw
wiwg >0

where the restriction on the integral arises from the fact that w, must be positive
in order for the particle to collide with the surface at all. Hence the mcident
momentum may be expressed in terms of the normal and tangential momentum

coefficients, by

I / Wy (Mmw,) f(w) dw
twy >0

ro= () f(@) de
wiwz >0
Evaluating these integrals yields the following [Schaaf and Chambré, 1958, p.701]

pRT 11 (scosb;)
D, =
! M L

(3.7)
pRT X (scosb;)

T, = s5sin 6;

M VT

where the aerodynamic speed ratio, s, is given by

u
J2RT /M

and the functions Il and X are defined by

S =

X(z) = e + /(1 + erf(z))

with the error function

erf(z) =
Just as for direct solar radiation pressure, the proportional coefficients of Equa-
tion 3.1, describing the surface-particle reaction, are used to produce the post-

impact momenta from the incident values of Equation 3.7.
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Taking each proportion in turn, as before, it can be seen that the fraction of
incident particles which is absorbed has a zero post-impact momentum, all its
incident momentum being transferred into an equivalent negative momentum of
the satellite. Conversely, the post-impact momentum of those fractions which
undergo specular reflection or direct transmission give post-impact momentum

coefficients

pr = —rapi
T = TsT
and
Pr = l’sPi
T = 1T

respectively.

Considering the proportion ry which s diffusely reflected, it is again assumed
that this forms a conical beam of half-angle 7/2 centred on the surface normal.
So, as for direct solar radiation pressure, the post-impact tangential component
will be zero (1, = 0). However, the speed of the reflected particles still has to be
determined (whereas photons are assumed to have the same incident and post-
impact speed, namely that of light). 1t is assumed that this speed lies between a

minimum arising as a consequence of the surface temperature (1), i.e.

and the incident value. The actual post-impact momentum of this fraction of the
incident particles may then be obtained by varying the proportions which travel
at each of these two limiting speeds.

Next, suppose a proportion o is reflected at the speed imbued by the sur-

face temperature, then the post-impact momentum of the whole of this diffusely

reflected proportion is

pRT [ory |T 29; . )
pr= T | SE A X (scos )| + ’; (1 —0o)ra. (3.8)

A similar result is obtained for the diffusely transmitted proportion, by simply
replacing 74 in Equation 3.8 with —i,, (exactly as was effected in the case of

direct solar radiation pressure in Section 3.2.1).
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Finally, the values of p and 7 required by Equation 3.3 may now be determined
by combining their respective components from all these gas-surface interaction

modes. Thus, the total normal and tangential components of the aerodynamic

force may be written

pRT ‘ 2 . . M
. [t 5 = o)l — )| — =
o\ry “"t T‘ ‘a4
( > 1) %_\(s cos 0;)
(3.9)
> X (scosb;) .

Whence, from Equation 3.3, the total force on a given surface having visible

effective area Ag cos 8; 1s simply

Iy = Ascost; (—pn + i) (3.10)

with p and 7 defined by the previous equation (3.9).

3.3 The GUESS area-table software

In order to utilise Equations 3.2 and 3.10 in place of the existing equations of
the SATAN-A suite (namely 2.6 and 2.5), their constituent variables must be
estimated, evaluated, or known. In practice, the surface interaction coefficients
(Equation 3.1) fall into the first category with values being a combination of

estimate and theory for a region of space where there is little empirical evidence

[Ries, 1992]. Other values are well known (Fg, ¢ and M), measurable (R and
T, hence s) or modelled (p). For full evaluation of these two equations, the only
other variables required are Ag, 0; and d. The aim here is to produce values of

As, tabulated by d, where d is defined by two angles. In the case of acrodynamic

resistance, it will also prove necessary to consider an additional angle, giving the
rotation of the solar array. A suite of programs, GUESS (Geometry-Utilising
Estimation of Satellite Surfaces) has been developed to produce just such a set of
tables. In addition modifications have been made to the existing SATAN-A suite
to utilise the derived tables in the orbit prediction process.

The GUESS software works from a user-defined geometric model comprising

a discretization of the satellite into planar triangular or quadrilateral elements.
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Each element consists of a surface normal, a given area, the appropriate number
of vertices and the necessary surface interaction coefficients (Equation 3.1). In
addition, the geometric input file contains the satellite’s mass, locations of centre-
of-mass and instrumentation (such as the laser retroreflector array) and solar
panel axis of rotation (given as a point and a direction). The solar array itself is
then stored in any arbitrary position from which the software computes its true
location and orientation.

An advantage of this discretization is that it allows for unrestricted complex-
ity in the geometric model, the only practical restraint being available processing
time. Conversely, despite the fact that errors will undoubtedly increase as the
model increasingly deviates from reality, a more accurate shape incurs correspond-
ingly larger uncertainties in the less well known surface interaction coefficients.
(since a greater number of these will require estimation). Further, the above as-
sumptions of parallel flux and single impact give rise to errors in the modelled
forces. Thus, increasing the model accuracy is only valuable where it results in an
improvement in the computed force which outweighs the errors imposed by these

other himitations.

The satellite model used by GUESS i1s constructed in a system fixed in the

4 0Zs

satellite

Y nadir direction

O

earth

OXs

satellite’velocity

Figure 3.4: The satellite-fixed coordinate system.

satellite (OXsYsZs). Any system would be acceptable in theory but in practice
(to minimise the necessary modifications of the existing software) the following
one was chosen. The OZs-axis lies in the nadir pointing direction, which in the

case of most altimetric satellites will be normal to the satellite surface which most
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closely faces the Earth. Then, the OXs-axis is the vector (or cross) product of
the OZs-axis and the satellite velocity vector. The product is taken in such a way
as to cause the OYs-axis to oppose as closely as possible the satellite’s direction
of travel (velocity vector). The three axes thus obtained form the right-handed
system 1llustrated in Figure 3.4.

The next section describes what goes on in the GUESS package, in particular
detailing how the geometric file is used to compute the visible areas for each

surface element of the geometric model of the satellite over a range of angles.

3.4 Ewvaluation of the area tables: theory

The program begins by rotating the whole model into a coordinate system based

on the solar array axis of rotation which is defined (OX4Y4Z4) as follows,

QZ.A = 4
0OXg ifOYgq|la
OX, = ‘ (3.11)
OY ¢ x a otherwise
oYy, = 0Z,x0X,
where @ is the direction vector of this axis and the origin of the new system is

given by some point on this axis, p say, (given as a position vector in the satellite
fixed system within the geometric input file).
The normals, n, and vertices, v, in the geometric input file are rotated to this

new system using the relationships,

ng = (ng-0X4)O0X 4+ (ng - OY ) OY 4+ (ng-OZ4)0Z 4

N

Vy = ((P_S —-p) 'Q./X.A) OX 4+ ((Qs -p) 'Q.Y,A) OY 4+ ((1)_,5' —p) (LZ_,O OZ 4.

This procedure simplifies the rest of the program as, in this new system, the sun
position need only be defined by one angle: namely that by which the solar panels
must be rotated about the OZ4-axis to move them from their stored position to
a sun-pointing one.

Since the incident flux vector still requires two angles to be fully defined, this

means that the tables will be in at most three angles (one for the sun rotation
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vector and two for the incident flux vector). Indeed, for direct solar radiation
pressure only two angles will be necessary, since one of these is also the required

angle of rotation for the solar array (see Figure 3.5). The solar array is rotated

OZ4

incident flux vector '

Figure 3.5: The angles defining both the sun position (@, ) and the incident flux

vector (,8).

through an angle 8 where

nh. o
§ = a — arctan | —5* |, (3.12)

a being defined in Figure 3.5 and

nh =nh,0X, + 0} OV 4 + 1,024

the normal of the sun-facing side of the solar panels in its stored position in the
axial system (defined by Equation 3.11). Equation 3.12 simply states that the
rotation angle is the difference between the sun angle o and the fixed angle of the
relevant surface normal, measured in a plane perpendicular to the rotation axis.
The model now lies in the OX 4Y4Z4 system, correctly orientated with respect
to the sun. The next step in the GUESS programs is to project this geometry
into a plane perpendicular to the incident flux vector (defined by angles v and &
of Figure 3.5). The projection is carried out by considering the incident unit flux
vector to be the OZy-axis of a third coordinate system, OXy Yy Zy, with
0X 4 ifOY, || 0Zy

OY 4 x0OZ, otherwise

OXV -
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oYy, = 0zZy x0Xy

defining the other two axes, in a manner analogous to the previous coordinate
change. However, as the normals and vertices are now all position vectors, i.e.
given from the same origin, they may be easily converted to this new system using

the single relationship
zy = (24 0Xy)OXy + (24 OYy)OYy +(24-0Zy)0Zy

where z__ .. represents either a normal or a vertex (iysiem=v OF 4 for projected and
axial systems respectively). The origin remains unchanged as any plane perpen-
dicular to the incident flux vector is appropriate.

At this point, the projected surface elements consist of groups of vertices ly-
ing in the OXyOYy-plane of the OXy Yy Zy system, with the OZy coordinate
representing the “height” of the vertex above this plane. In consequence, each
projected surface element may be entirely and closely enveloped by a rectangular
box lying in the same plane and having sides parallel to the OXv and OYy axes.

In addition, all such boxes may be entirely and closely contained within a single

larger rectangle as illustrated in Figure 3.6. The visible area is then calculated by

OYvy A

AV N
VARED=

N
N

N

-
OV OXV

Figure 3.6: Enclosing the projected surface elements in boxes within the projective

OXvOYy-plane.

sub-dividing the larger box into a square-grid of pre-determined mesh size. Each
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square in the grid is centred on some point, ¢ = (¢z, q,) say, which may be asso-
ciated with an incident flux particle travelling on a path parallel to the OZy -axis
and passing through this point. Taking each such point in turn the program tests
whether or not it lies within none, one, or more than one of the projected surfaces
by considering a number of conditions. Each condition must be met before the
next is tested. Failure at any stage means that point does not lie within this
projected surface, hence that the particle associated with this point does not hit
this element. In this event, take the next surface element or, when all have been

considered, the next grid point.

Thus, for any point and any surface element, the program first determies
whether or not the point lies within the relevant small enveloping rectangle of
that element (see Figure 3.6). This is effected by comparing the values of ¢, and
gy with the edges of the rectangle. Secondly, the program deduces whether or
not the point lies inside the wedge defined by two adjacent edges of the projected
surface element (see Figure 3.7). Here the projected vertices have been labelled

u, v, w and z (in an anti-clockwise manner). If the point lies in the wedge then

enveloping rectangle

Figure 3.7: The wedge associated with a projected surface element and the angles

8, ¢, ¥ and QL.
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the angles 8, ¢ and ¥ of Figure 3.7 satisfy 8 + ¢ = 1, hence

arccos <<Q — :‘i) : (L — Q>> = arccos <(g _ 1{) ‘ (Q _ LL))

v — ullz — ul lg — ullv —
+ arccos (Q N C Q)

which actually implies that the point lies in the X-shaped region limited by the

extended edges v — u and z — u (forming two wedges joined at the point u). How-
ever, because of the way in which the enveloping box is chosen, the point cannot
lie in the smaller wedge (on the side of u opposite to the projected surface ele-
ment) since the spacing between u and the edge of the enveloping rectangle is less
than half the grid spacing. Thus, this condition is equivalent to saying that the
point does indeed lie in the wedge of Figure 3.7.

Thirdly, the program determines which three vertices form the smaller wedge
in which the point lies (only necessary for quadrilateral surface elements). Again,
referring to Figure 3.7, it may be seen that the point lies in the wedge formed by
the vertices u, v and w if 8 < Q and in that formed by u, w and z otherwise.

In either event, the three vertices are re-labelled u, v and w so that Figure 3.8

pertains. Referring to this figure, the point of ntersection of a line through u and

(S

3=

v+ Aw —v) A€ 0,1]

Figure 3.8: The vector equation for a point on the edge of a triangle.

g with the edge of the triangle v — w is such that
u+p(g—u) =v+ AMw—2) (3.13)

for real numbers g and A with A € [0,1].
Now, the point g lies within the triangle formed by these three vertices (hence

within the projected surface element) if and only if 4 > 1. Whence, by writing




Equation 3.13 as a pair of simultaneous equations in g and A and substituting in

for A so that

_ (M’L - y—@)(gy - Qy) - (7—1’3/ - Qg/)(ga: - wa:)
(u:zr - QJ)(QU - i)y> - (uy - Q?/)(Qz: - ﬁl;)

© may be evaluated, thus indicating whether or not the point lies inside the

9

projected surface element.

The argument so far will determine which surface elements the path of an
mcident flux particle will intersect but not which of those it will actually strike —
clearly 1t will only strike one. Where a point lies inside more than one projected
surface element, the program considers the OZ, components of the elements in
question. Let ny be normal to a surface element in the OXy Yy Zy system and

let vy, be any of 1ts vertices, then
Dy = 77’V:1:O_XV + ??rVyﬂv + 77'V,70_Z\/
and the equation for the plane in this system in which the surface element lies is
ny.T +nvyy +nv.z =ny - vy.

Hence,

Y — (EV Vy — Nvg(e — nVy([y)
ny:

gives the “height” of the point of intersection of the particle’s path and the surface
element above the projective plane. For a particle associated with the point ¢ in
the manner described above, the incident surface element is that with the greatest
z-value of all those surface elements intersected by the particle’s path.
The number of intersections (N ) and of hits (N, ) are summed over all points
g for each surface element. Then, for any given element, the visible projected area
(A, ,.) perpendicular to the incident flux may be given as a proportion of the
total projected area
Ay pj & —,-J~A] cos b; ; (3.14)
for surface element ; where the actual surface area is A; and 0, ; is the incidence
angle at this surface. Noting that A, ; is the Ag cosl; of Equations 3.2 and 3.10,

Equation 3.14 may be written as

with the level of approximation governed by the accuracy of the model and area

estimation procedure (i.e. Ny and Ny ).
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3.5 Further developments

The previous section described in some detail how the visible areas are determined
for use in the skin force equations (3.2 and 3.10). However, consideration of the
former equation indicates that further computation may be made prior to the
orbital determination procedure (thereby reducing the number of required calcu-
lations within the adapted programs). Indeed, Equation 3.2 may be decomposed

mto two parts, namely

1
Ag cos 0; <[l — ity —1s]d—2 [7‘3 cos 0; + <l;-@>} ﬂ,> (3.15)

and
72
Eyd?,

2 .0
d?.c

the first of which depends only upon the geometry of the satellite model and the
angles of incidence. Hence, Equation 3.15 may be evaluated regardless of specific
values of planetary and satellite ephemeris, and atmospheric conditions. Since the
alm is to tabulate over a range of angles, then interpolate between the tabulated
values within the prediction process, storing values of Isquation 3.15 rather than
the simple areas will greatly reduce both storage size and computation time. The
storage will be reduced because, for each pair of angles, instead of an area for
each surface element of the model only one vector is required. Unfortunately, no
similar decomposition is possible for Equation 3.10 because of the atmospheric
components which are time and space related.

The surface-interaction coefficients (15, 7, tq, 7¢, @) also have to be estimated
in some way, as does the momentum exchange coefficient o. Since these values
are typically satellite dependent, details of their estimation for ERS-1 will be
included in the next chapter (Chapter 4) and for SPOT-2 in Chapter 6, where
the respective orbits and results are discussed. However, the following method for
choosing values for the aerodynamic resistance coefficients may be applicable in
general.

Consider the normal and tangential momentum exchange coefficients given by

Sowter [1989, p.10]

Pi — Pr
o, = ——
Pi— Puw

B




T
where p,, is the theoretical normal momentum arising from the incident surface

temperature T, all the other variables being previously defined (with indices as

above). Then, comparing Sowter’s [1989, p.11] equations for p and 7 with those of
Equation 3.9 above, 1t is possible to obtain a system of simultaneous equations in
the coefficients of Equation 3.1 and the momentum exchange coeflicients o,, and

o.. Indeed, there are in fact two distinct equations for o,, alone:

o = 1 —ty—r
O, = l+ts—?'s—§(l—O’)(’l‘d—-'f,(g)
o, = o(rq—1tq). (3.16)

Now, experimental work (such as that cited by Schaal and Chambré [1958, p.695]

and, more recently, that done on the ANS-1 satellite, [Moore and Sowter, 1991])
indicates that in certain instances, o; may be expected to take a value close to one.
Also, by considering the thermal accommodation coefficient used by Smoluchowsk:
in 1898 and again by Knudsen in 1911 [Schaaf and Chambré, 1958, p.695], it is
possible to infer that o, similarly lies close to unity. Further, for satellites such as
ERS-1, SPOT-2 etc. the proportion of the transmitted aecrodynamic flux is zero.
Thus,

t=1y+1t;, =0
which in turn implies that both 74 and 1, are equal to zero. Hence, using the
simultaneous Equations 3.16,

re =0

in order that o, attaln a value of unity. Therefore, either 1 — o =0 or ry, = 0.
Clearly,

7‘4750

since otherwise o, would also be zero. Thus,

Ty = |
o = 1
a = 0




fully defining the aerodynamic interaction coefficients for use throughout the rest
of this simulation. There is no similar approach for direct solar radiation since
more is known about light-surface interactions and there is more variety in the
way photons react with different satellite surfaces. Effectively, because more is

known, the models used are more involved.

3.6 Verification of the GUESS software

The GUESS software was tested on a number of plane and solid objects to ensure
that the areas produced matched those theoretically expected (given simple geo-
metric considerations). For all shapes tested (plane rectangle and triangle, cuboid
and trapezoid) the results were exactly as theoretically predicted. That is to say,
the software produces true areas for convex solids. The only limitation is that the
grid spacing needs to be smaller than the smallest face of the solid — so that at
least some pomts fall inside each visible surface element. However, it is recognized
and should be emphasized that such accuracy is unlikely to be attained with very
or where there is complicated overlapping.

complex shapes,




Chapter 4

ERS-1 orbits

4.1 The ERS-1 satellite

The first European remote-sensing satellite, ERS-1, was launched on the 16t of
July 1991 into a near circular orbit of inclination 98.5°. Of the on board instru-
mentation, a single frequency radar altimeter provides continuous monitoring of
the ocean surface between latitudes 81.5° N and 81.5° 5. To enable orbit deter-
minations, the satellite was also equipped with a retro-reflector array for precise
ranging from the network of laser stations (illustrated in Figure 4.1). The altime-
ter data can also be used as tracking data, either directly as height measurements
or elaborated to form crossover differences. In addition, [ERS-1 carries a synthetic
aperture radar antenna (SAR), two sun acquisition sensors, three (fore, mid and
aft) wind scatterometer antennae (WSA) and the solar array — which provides
electrical power to the satellite. The ERS-1 satellite is illustrated in Figure 4.2.
For optimal usage of the altimetric data, precise positioning of the satellite is
necessary to an accuracy commensurate with that of the altimeter, particularly
in the radial direction; namely 5 cm or less. However, such a goal is currently
unrealistic since ERS-1 suffers from the problems described in the last chapter,
in that surface forces are often in error by more than the gravitational ones. Fur-
ther, for ERS-1, these errors are compounded by the high solar activity currently
experienced in the early 1990, the low altitude of around 780 ki and the high
surface-to-mass ratio of the satellite. In order to try and alleviate these difficulties,

the method of Chapter 3 has been applied to this satellite.
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Figure 4.1: The network of laser stations ranging to ERS-1.
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4.2 A geometric model of ERS-1

To apply the method of Chapter 3, it is first necessary to model the satellite and
its surface characteristics, also estimating the variables required for the evaluation
of Equations 3.10 and 3.2. Beginning with the area aspect of this problem, the
satellite structure has been reduced to a composite of planar quadrilateral elements
in accordance with the requirements of the GUESS software of Chapter 3. These
surface elements have been chosen to simplify the model as far as is realistically
possible, while retaining the basic shape, dimensions and surface characteristics of
the satellite itself. The minimum extent of this simplification was further governed
by the available processing time.

Essentially, the model adopted for ERS-1 comprises a trapezoidal box sur-
mounted by a number of planes, as illustrated in Figure 4.3. Thus, the box
approximates the satellite module and payload and the planes the WSA, SAR
and solar array. With the exception of the single sloping face, each of the surface
elements of the box lies perpendicular to one of the axes of satellite-fixed coor-
dinate system of Figure 3.4 (Section 3.3). Further, all six box surface elements
are estimated so that, viewed along the relevant perpendicular axis, the modelled
cross-sectional area equals the true value (i.e. of the actual satellite).

The SAR and three WSA antennae are each represented by two surface ele-
ments, of equal area, placed back-to-back. The only difference between the two
elements of such a pair lies n the opposing directions of the outward pointing nor-
mal vectors. The solar array 1s made up of four such surface elements, forming two
perpendicularly intersecting planes (each plane comprising a back-to-back pair of
surface elements as for the WSA and SAR). One of these two planes represents
the solar panel surface (and its back) and the other (far smaller) the thickness
of the central portion which attaches the array to the satellite module, as viewed
along the line of the solar panels. Hence, the minimum end-on area possessed by
the true solar array is also reflected in the geometric model.

Each of the model’s surface elements is stored in a record within the geometric
input file (required by the GUESS software) as four vertices, a full plane area
and an outward-pointing normal vector in the satellite-fixed system of Chapter 3.

Since the solar array rotates, the vertices and normals of this portion of the model
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Figure 4.3: The ERS-1 model and satellite-fixed coordinate system.




will vary. However, for compatability with the GUESS software the solar panel
face 1s nominally fixed in any attainable position (for instance aligned as closely
as possible to one of the system’s axes). This fixes the four vertices and normal
for this element. The vertices and normals of the other three elements may then
be computed relative to the stored position of the fixed solar panel element. Thus,
the geometry of the whole array is internally consistent. From this stored position,
the true position may be attained by rotating the whole array about the axis of
rotation.

For ERS-1, the solar array rotates about a single axis lying parallel to the
O Xs-axis of the satellite-fixed system, OXsYsZs, (illustrated in Figure 4.3) and
passing through a point, O4 say, on the positive O Zs-axis. Thus, the relationship
between the satellite-fixed and axial systems of Chapter 3 is as illustrated in

Figure 4.4. Though the axis of rotation of the solar array, hence OZ 4, is parallel

0Zs
OYa

OYs

Voz,
OXa

OXs

Figure 4.4: Satellite-fixed and axial systems for ERS-1.

to OX ¢ for ERS-1, such a relationship is not necessary to the GUESS software
which may be employed for a solar array axis of rotation pointing in any direction
and lying through any point in the satellite fixed system, OXsYsZs.

In addition to the model’s geometry, the input file for the GUESS software
must include the satellite’s identity, mass and the location (in the satellite fixed

system) of the satellite’s centre of mass, laser retro-reflector array, altimeter and
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any other instrumentation used for tracking data — and therefore necessary to
the programs in the SATAN-A suite. The values of these have been extracted
from ERS-1 documentation [Pieper, 1988 and Renard, 1990]. Furthermore, the

GUESS software requires the coefficients a, ts, tq, 15, 4 and o of Equations 3.1

and 3.8 which describe the behaviour of incident flux particles at the satellite’s

surface. These are derived as follows, drawing largely on values given in the same

documentation as above.

For the atmospheric resistance force of Equation 3.10 these coefficients are
determined just once and are the same for all model surface elements. The method
of determination has already been described in Section 3.5 above. However, for
direct and reflected solar radiation pressure, the necessary coefficients, namely a,
tsy ta, s, and 7y must be computed independently for each surface element of the
model. Further, values are required for both direct and earth-reflected light and
that fraction of the solar flux re-emitted by the earth as infra-red radiation. Since,

as stated by Equation 3.1, these coefficients sum to unity, it is only necessary to

specify four of the five variables within the input file. The values of the four chosen

coefficients (rq4 is omitted), are evaluated for each surface element of the geometric
model from the same documentation as the satellite mass etc. above. However,
since each model element may relate to more than one region on the satellite’s
surface, an average of the coefficients of the relevant contributing regions is made,
weighting each stored coefficient by the proportion of the contributing region’s
area to that of the surface-element being considered.

As well as the area, vertices, normal and interaction coefficients, each record in
the geometric input file is required to contain values of two extreme temperatures
so that a surface temperature Ts may be computed from the formula

Ts="Ts

i

+ v,

where v is a shadow factor describing the position of the satellite with respect to

defining the temperature when fully in shadow and 7

'S max

the earth’s shadow (T, ..
that in full sunlight). For each surface g, the values of the minimum and maximum
are obtained in a similar manner to the solar radiation pressure coefficients (i.e.

as a weighted average) from the same documentation as before.
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4.3 Area tables for ERS-1

Having produced the geometric input file as described above, the GUESS software
was used to determine tables for both the direct solar radiation pressure and
aerodynamic resistance forces acting on ERS-1. In addition to the data held in
the geometric file, the GUESS software requires a grid size to be defined and some
linuts on the possible angles describing the incident flux direction; the choice
of which is further explained below. The erid size adopted for shooting flux
particles/rays at the projected satellite model’s surface elements was 50 mm by
50 mm. This had been found to produce accurate results for the test objects, was
sufficiently small that the WSA would register accurately and yet was also large
enough so that the computation time was less than the available maximum.

In addition, it was necessary to justify the assumptions made in the GUESS
software for ERS-1, namely that the incident atmospheric flux is parallel and
that only the first impact of each particle need be considered. Now, for satellites
orbiting at heights of around 700km to 900km, such as ERS-1, it may be assumed
that the ratio of satellite to atmospheric velocity, together with the rarefaction
of the atmosphere, are concomitant with a state of free molecular flow [Schaal
and Chambré, 1958]. In such a state, the gas acts as a group of independent

particles, where the reflected particles do not impede the incident stream. Thus,
this incident stream may be taken to have a parallel average velocity. Further,
for ERS-1, the single impact approximation is made on the basis of results from
studies carried out by MATRA [Renard, 1990]. These indicate that computing the
forces as a result of single impacts gives a degradation in accuracy of about 5% over
a multiple impact model. However, the computation time is more than halved by
such an approximation. Thus, given the imited accuracy of the geometric model
of the satellite, it was decided that any potential increase in accuracy derived {rom
multiple impacts was outweighed by the decrease in computation time associated
with the single impact assumption.

For direct solar radiation pressure, the sun-to-satellite vector (which defines
the sun’s position required to rotate the solar array to its correct orientation)
is also the incident flux vector. Thus, for each surface element of the geometric

model, the visible areas were tabulated in just two angles, namely o and £ of
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Figure 3.5, over a 5° x 5° grid covering the unit sphere centred on the satellite.
It 1s emphasized that these angles are measured in the azial system of Chapter 3
and not the satellite-fixed system.

The areas thus produced were then employed (along with the normal vectors
and interaction coefficients) in Equation 3.15 of Chapter 3 to produce a quasi-
force for each surface element of the model. For each pair of angles («, /) the
resultant values were summed over all surface elements so that, rather than having
eighteen entries (one for each surface element of the model) there were just three
— describing a quasi-force vector in the axial system. This can then be easily
converted into the direct solar radiation pressure force vector (within the orbit
prediction program) using the scale factor

d?.c
of Section 3.5.

The visible areas (produced above) were also employed to compute the effective
total area perpendicular to the incident flux direction over a more widely spaced
grid (22.5° x 15°). The values of this total area, see Table 4.1, illustrate the
variation experienced over the range of incident flux angles. Table 4.1 also confirms
the variations in total area that are to be expected of ERS-1. First, the total area
18 greatest for small values of #, which is where the solar panels (inclined at an
angle of about 20° to the OZ4-axis) contribute most; up to a maximum of 28
square metres. Further, at such angles the body area is almost 8 square metres,
as opposed to the end-on (along the OZ4-axis) area of just 4 square metres — or
even less. Secondly, there is a corresponding minimum in total area for large values
of /3, for precisely the opposite reasons. Indeed, the lowest areas (in the table) are
obtained for # = —75° because at this point, the incident vector is almost edge-on
to the solar panels — for all values of «. In addition, since the SAR is also inclined
at a similar angle, neither it nor the solar panels contribute markedly to the total
area, which is largely composed of the body component (at a similar low due to
its being viewed almost along its length). Thirdly, the variation with o for any
given f3 is mostly due to the differing contribution of the SAR. This varies from
a maximum of 10 square metres, at values of o which lie along the SAR surface

normal to a minimum of zero, when o = +£90° and the SAR is edge-on to the
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g -90° -75° -60° -45° -30° -15°  0° 15° 30° 45° 60° 75° 90°

Y

0.0° | 13.6 12.1 20.5 31.5 39.3 44.1 46.7 46.9 43.7 37.5 29.4 21.4 13.7
22.5° | 13.8 12.0 21.0 32.3 40.4
7

N
(&2
[

47.9 48.1 44.8 38.4 30.2 21.9 13.7
45.0° | 14.1 11.6 20.1 30.7 38.8 43.5 46.0 46.2 43.1 37.4 29.7 21.9 14.1
67.5° | 14.2 10.5 17.7 27.0 34.1 39.3 41.4 41.8 39.5 350 29.3 21.7 14.2

90.0° | 14.3 9.2 154 23.0 29.2 33.3 34.7 37.6 37.6 34.6 28.7

s
N
—
.
—
S
[

112.5° | 14.2 9.2 15.7 23.2 31.1 37.5 41.4 43.6 42.5 38.2 30.3 22.0 14.2
135.0° | 14.3 8.9 15.3 25.6 34.7 41.9 46.0 47.8 47.0 41.6 31.8 22.2 14.3
157.5° | 14.0 8.4 15.8 26.6 36.4 43.8 47.9 49.6 48.7 42.8 33.6 21.8 13.9
180.0° | 14.9 7.7 15.0 25.8 35.4 42.6 46.7 48.4 47.6 42.0 33.3 22.9 14.9
202.5° | 14.0 8.4 15.8 26.6 36.4 43.8 47.9 49.6 48.7 42.8 33.6 21.8 14.0
225.0° | 14.3 8.9 153 25.6 34.7 41.9 46.0 47.8 47.0 41.6 31.8 22.2 14.3
247.5° | 14.2 9.2 15.7 23.2 31.1 37.5 41.4 43.6 42.5 38.2 30.3 22.0 14.2
270.0° | 14.3 9.2 15.4 23.0 29.2 33.3 34.7 37.6 37.6 34.6 28.5 21.4 14.3
292.5° | 14.2 10.5 17.7 27.0 34.1 39.3 41.4 41.9 39.5 35.0 29.3 21.7 14.2
315.0° | 14.1 11.6 20.1 30.7 38.8 43.5 46.0 46.2 43.1 37.4 29.7 21.9 14.1
337.5° | 13.8 12.0 21.0 32.3 40.4 45.3 47.9 48.1 44.8 384 30.2 22.0 13.7

R
~J
I
[N
o)
e
(S
o

360.0° | 13.6 12.1 20.5 31.5 39.3 44.1 46.7 46.9 43.7 : 13.7

Table 4.1: Cross sectional area for ERS-1 (in square metres) as viewed from the

sun.

incident vector. Finally, it may be noted that the three WSA contribute almost
negligible amounts to the cross-sectional area at all incident angles.

In addition to these general variations it is of interest to note the variation in
area with varying o when g = £90°. Each of these angles represent a theoretical
sun lying along the rotation axis of the solar array. In such a position, the array
cannot meaningfully rotate because the sun vector has no component outside the
array axis with which to define a rotation angle. However, because of asymmetries
in the model, rotating the solar array does in fact give different total areas which,
as can be seen, vary by as much as 0.83 square metres (about 8% of the total
effective area for these values of 4). Since the tables generated by the GUESS

software (not these illustralive tables) were to be used for interpolation, it was
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deemed better to rotate the array, so that the singularity represented by 8 = +90°
could be approached from different directions, and the varying areas thus obtained
for the varying values of o enable meaningful interpolations to be made about
these singularities. Also of interest, though not visible in Table 4.1, is the fact
that for the same values of «, the areas obtained for B = +90° and S = —90° are
only the same, in general, to two decimal places. This gives some measure of error
arising from round off within the computational process — probably as a result
of the overlapping mechanism — since for a fixed «, the total areas obtained from
B = £90° should be identical.

For the aerodynamic resistance force, the visible area tables for the model’s
surface elements were derived in much the same way. However, for these tables,
there were three angles required rather than two. Two of these, (v and § of
Figure 3.5) defined the incident flux vector. The third, & — one of the sun
position angles — was sufficient to determine the necessary rotation angle of the
solar array. The fact that just one angle suffices to correctly rotate the solar array
to a sun-pointing position is a direct result of the seemingly involved approach of

Chapter 3 using an axial coordinate system as well as a satellite-fixed one.

OX4 OY4

\ 4 0OZa

Figure 4.5: Region of interest for the aerodynamic flux incident on ERS-1.

For ERS-1, it was found that the angles v and é never deviated from either

the OX, — OYy4-plane or the OY4 — OZa-plane by more than 5°. Equivalently,

the incident flux vector (defined by these angles) was found to be always within
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£5° of the —OYjs-axis (i.e. the —OVj-axis — see Figure 4.4). This relationship is

equivalent to the statement that the relative velocity of the satellite with respect

to an atmosphere rotating with the earth (assumptions made in the atmospheric

model of the orbital prediction program) never deviates from its absolute velocity

vector (both vectors lying in the same reference frame) by more than about 5°.

This restriction, illustrated in Figure 4.5, was determined empirically by studying

three months of laser tracking data for ERS-1 (from August to October 1991,

inclusive) and confirms the pre-launch results of van der Wenden [1985].

6= —5° 6 =10° 6= +5°

v 265°  270°  275° | 265°  270°  275° | 265°  270°  275°
o

0.0°| 12.45 9.65 11.73 | 11.83 891 11.83 | L11.73  9.66 12.47
22.5° | 22,58 19.29 1883 | 22.056 17.94 17.65 | 21.79 17.87 16.81
45.0° | 30.85 28.10 28.13 | 30.33 26.78 26.97 | 30.04 26.66 26.07
67.5° | 35.94  33.99 34.76 | 35.44 32.68 33.62 | 35.12  32.64  32.71
90.0° | 37.09 36.05 37.71| 36.59 34.74 36.59 | 36.26 34.59  35.66
112.5° | 34.13 33.99 36.56 | 33.62 32.68 35.44 | 33.32 3253 3449
135.0° | 27.51 28.10 31.47 | 26.97 26.78 30.33 | 26.70 26.66 29.43
157.5° | 18.21 19.29 23.21 | 17.65 17.94 22.04 | 17.43 1787 21.18
180.0° | 11.11 9.65 13.07 | 11.83 891 11.83 ] 13.08 9.66 11.13
202.5° | 21.17  17.89 17.43 | 22.04 1794 17.65 | 23.21 19.28 18.22
225.0° | 29.40 26.66 26.70 | 30.33 26.78 26.97 | 31.48 28.10 27.51
247.5° | 34.49 3254 33.31 | 3544 32.68 33.63 | 36.57 33.99 34.13
270.0° | 35.64 34.60 36.26 | 36.59 34.74 36.59 | 37.72  36.05 37.11
202.5° | 32.68 32.54 3512 | 33.62 32.68 3544 | 34.76 33.99 35.96
315.0° | 26.08 26.66 30.02| 26.97 26.78 30.33 | 28.13  28.10  30.85
337.5° | 16.81 17.89 21.79| 17.66 17.94 22.04 | 18.83 19.28 22.59
360.0° | 12.45 965 11.73 ] 11.83 891 11.83 | 11.73  9.66 1247

Table 4.2: Cross sectional area for ERS-1 (in square metres) as viewed along the

incident aerodynamic flux vector.

Analogously to solar radiation pressure, a file contaming the visible areas

for each surface element of the satellite’s geometric model was produced over
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a 5% x 5% x 5% grid in the three angles («, v and 0). However, as was discussed in
Section 3.5, no further elaboration was possible and this file was used as input for
the orbital prediction routine. Again similarly to solar radiation pressure, these
areas were also used to produce a table of total effective cross-sectional areas over
a reduced grid of 22.5° x 5° x 5°, the contents of which are shown in Table 4.2.

Considering this table, it can be seen that (as was the case with Table 4.1, for
direct solar radiation pressure) the effective total cross-sectional areas produced
exhibit variations in a manner that might be expected for ERS-1. Because of the
limited variation in angles v and &, the main constant contribution to the cross-
sectional area is due to the body and measures approximately 8 square metres.
The SAR contributes almost nothing, since the incident flux vector lies almost
parallel to 1t for all angles considered. Similarly, the WSA component of the
cross-sectional area is also negligible. Thus, the greatest part of the variation
evidenced m Table 4.2 arises as a result of the rotation of the solar array and
hence registers as a variation with angle a. Here, as expected, the maximum area
is obtained when the solar panel lies perpendicular to the flux (at a values of 90°
and 270°) and minima occur when the two are parallel (« equals 0° or 180°).

It must be emphasized that both Table 4.1 and 4.2 are for illustrative pur-
poses only, neither of them being employed in the orbital determination process.
However, these tables do allow some confirmation of the credibility of the results

of the GUESS software for ERS-1.

4.4 Precise orbit determinations for ERS-1 us-

ing GUESS tables

Before these tables could be used for precise orbit determination of the ERS-1
satellite, the SATAN-A suite had to be extensively modified. However, despite
the extent of the necessary changes, the actual implementation was reasonably
straightforward and may be summarized as follows.

First, the format of the observation data needed altering, smce from 1989
most laser tracking data was in the MERIT II format, rather than MERIT I

previously used. Secondly, subroutines to read in both sets of tables as well
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as the satellite’s geometric model file were written, storing the area/vector data
in arrays for later use. Thirdly, a second atmospheric resistance subroutine was
written, mitially to be run as an option (instead of using the existing drag routine).
Fourthly, the existing solar radiation subroutine was modified to take the stored
data where this option was chosen. Further, this same routine was modified in the
reflected radiation section where satellite areas were incorporated into the thirteen
element model (see Section 2.2.6). Finally, we note that the partial derivatives
are effectively the same, namely of the form

oF 0Fp
9Cp 9Cp

OF  OF,
oCR dCk

so that no changes to the correction program are required. Having amended the
orbit determination package, it was tested on over three months of laser tracking
data from the launch date in late July until early November 1991, comprising over
twenty distinct long-arcs, each typically six days m length.

Each long-arc was determined using the 50 x 50 GEM-T3A gravity field and
associated tidal models within the J2000 inertial reference system. GEM-T3A was
derived from the GEM-T3 normal equations [Lerch et al., 1992] with additional
DORIS tracking data from the French satellite SPOT2 (see Chapter 6 for more
information on SPOT2 and DORIS). The atmospheric density was modelled using
the MSIS83 model due to Hedin [1983] and combined with saw-tooth drag scale
factors to produce the aerodynamic resistance force. The station monument so-
lutions were derived from three months of Lageos data (August 1991 to October
1991) by the Royal Greenwich Observatory. These, together with the relevant
corrections from the eccentricity vector file were used to compute the station co-
ordinates relevant to the given arcs. Each arc also estimated a number of drag
scale factors, C'p, and a single solar reflectivity coefficient, Cp.

It was found that the saw-tooth approach was less robust than the old step
function. This was because it was far more sensitive to the relative locations of
data and nodal points. Indeed, totally unrealistic scale factors were obtainable,
especially in sparsely tracked orbits, simply by locating the nodal points so that

the slope joining two successive Cp values ran at an extreme angle through the
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intervening clumps of data. Thus, the scale factors were chosen to ensure that
the period between_ any two nodes always contained some laser data and further,
that not all the laser data lay predominantly closer to one node than the other.
In addition, the number of scale factors was limited so as to keep the correlations

between solution parameters as low as possible. This led to a mix of daily and

half-daily values (for the time between nodes), with an occasional quarter-daily
period where such was deemed necessary (and realistic) to converge the orbit.

For each arc, the orbit was converged both with and without the GUESS
tables. Where such tables were used, the aerodynamic resistance and direct solar
radiation pressure forces were computed using Equations 3.10 and 3.2 respectively.
Where these tables were not used, constant values for Ap and Agr were used 11
conjunction with the original Equations 2.5 and 2.6 of Chapter 2.

Before attempting any detailed analysis of the results, a simple check was

carried out on each orbit with the GUESS tables in use. This check consisted
of printing out the total area which lay perpendicular to the direction of travel
at any time. An example of this for just one long-arc is illustrated in Figure 4.6

which clearly shows the expected two-cycle per earth-revolution variation that is

40
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time after MJD 48628 (days)

Figure 4.6: An example of the variation in the effective cross-sectional area of

ERS-1 over part of the long-arc from MJD 48628 to MJD 48633.
a result of the solar panel rotation. As such it confirms the pattern already seen
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in the illustrative Table 4.2 and further suggests that the model solar array 1s

effectively mimicking reality.

A further elaboration of the solution process enabled the results to indicate

the existence of any geographical bias that occurred in the converged orbits. This

elaboration consisted on simply considering the tracking data both as a single

Arc Dates N(Cp) Data used: stations/passes/observations
(MJD) total area A area B area O
48459.80 - 48463.60 5 8/19/277 | 6/17/259 2/2/18 0/0/0
48464.80 - 48470.80 10 13/48/678 | 8/36/541 | 3/7/100 2/5/37
48468.80 — 48474.80 10 14/48/663 | 9/39/550 3/7/93 2/2/20
48474.80 — 48481.60 | 12 | 16/49/570 | 9/32/355 | 5/12/158 2/5/57
48481.50 - 48486.90 9 17/51/678 | 11/38/502 4/8/99 2/5/71
48486.90 - 48492.90 16 15/54/660 | 10/38/505 | 4/11/94 1/5/61
48492.90 — 48498.90 | 13 | 15/55/723 | 9/42/524 | 4/9/130 2/4/69
48496.80 — 48502.80 | 11 | 12/54/742 | 9/45/607 |  2/5/64 1/4/71
48500.80 — 48506.80 | 11 | 14/61/855 | 9/48/722 | 4/10/95 1/3/38
48506.88 - 48512.80 7 12/34/448 | 7/19/240 | 3/12/155 2/3/53
48512.80 - 48518.80 10 16/50/701 | 9/30/452 | 5/14/153 2/6/96
48515.30 - 48521.30 10 16/60/760 | 9/34/430 | 5/18/209 2/8/121
48522.60 — 48525.60 5 10/24/363 | 6/12/211 3/9/90 1/3/62
48525.50 ~ 48532.00 7 12/34/512 | 7/21/367 | 4/11/131 1/2/14
48532.00 - 48538.00 11 12/42/542 | 7/26/270 | 4/14/236 1/2/36
48537.80 — 48543.80 | 11 | 11/37/434 | 6/25/277 | 4/11/145 1/1/12
48543.80 — 48549.80 8 10/23/277 | 5/15/168 4/5/55 1/3/54
48546.80 — 48552.90 9 6/21/260 | 3/15/159 2/3/35 1/3/66
48553.40 ~ 48560.30 | 9 9/21/316 | 5/13/179 | 3/7/113 1/1/24
48560.37 — 48566.80 8 8/15/201 4/6/67 3/6/7T 1/3/57
48566.80 - 48573.80 7 6/13/146 3/8/91 2/4/30 1/1/25

Table 4.3: Solution details for converged ERS-1 long-arcs, July to October inclu-

sive, 1991.

set and as arising from three mutually exclusive geographical regions. For this

analysis the chosen regions were (A) Europe and the Mediterranean, (B) the USA
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and the north Pacific and (C) the southern hemisphere. All these stations are
clearly illustrated in the SLR network map (see Figure 4.1). The main reason for
this subdivision into distinct regions is that where all or most of the tracking data
for a given arc lies within one region, the orbital solution is often pulled so as to
minimise the residuals over this region — at the expense of accuracy elsewhere.
By considering the relative RMS values for different arcas and relating these to the
overall RMS value, it should be possible to monitor such bias, should any arise. In
addition, by watching for this eventuality, it may prove possible (for instance by
judicious choice of nodal points for the drag scale factors) to constrain or decrease
any such geographical bias.

The solution details for each long-arc determined are presented in Table 4.3.
This table contains the dates of the start and end of each arc, the number of nodal
Cp values solved for, and the data accepted in the solution (some observations
are necessarily rejected in the convergence process — the numbers given refer to
the final data values accepted by the process). The accepted data are tabulated,
both for the whole dataset and for each geographical region, as the number of
contributing SLR tracking stations, the number of passes tracked and the number
of normal points provided. These normal points are derived and provided by
the RGO from the full dataset (which would be to large to use without such
preprocessing). A pass of SLR data is simply a series of normal points from a
single station’s observations, the latter arising from a single “overhead” pass of
the satellite.

Having converged the long-arcs, a comparison of the RMS obtained for each arc
from the two approaches was made, the results of which are tabulated in Table 4.4.
It is clear from this table, that in all but two of the twenty-one converged long-
arcs the use of GUESS tables has reduced the RMS of fit. Further, for these
two exceptions, the differences between the results obtained with and without
GUESS tables are very small. Thus, it would seem that the use of GUESS tables
really does result in a better orbital prediction model than simply using a constant
area-to-mass ratio for the ERS-1 satellite.

Looking at the results for the three geographical regions, it appears in general
that the orbits where GUESS tables have been used show less variation in RMS

between each region than the equivalent solutions without GUESS tables. The
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obvious exception to this is the arc from MJD 48525.5 to MJD 48532.0 where

region C attains a vastly different RMS value both from the other regions and

Arc Dates
(MJD)

RMS of fit (cm), total (A,B,C)

with GUESS tables

without GUESS tables

48459.80 - 48463.60
48464.80 - 48470.80
48468.80 — 48474.80
43474.80 - 43481.60
48481.50 ~ 43486.90
48486.90 — 48492.90
48492.90 - 48498.90
48496.80 — 48502.80
48500.80 — 48506.80
48506.88 — 48512.80
48512.80 - 48518.80
48515.30 - 48521.30
48522.60 - 48525.60
48525.50 - 48532.00
48532.00 - 48538.00
48537.80 - 48543.80
48543.80 — 48549.80
48546.80 — 48552.90
48553.40 - 48560.30
48560.37 - 48566.80
48566.80 — 48573.80

26.50 (24.7, 45.3, —
27.68
26.09
28.36
28.29

32.9, 28.6, 35.8
34.5,40.7, 33.6
47.85 4.6, 38.3, 32.7

6
49.1, 74.7, 53.5
17.7, 62.6, 19.2

61.29
32.61

—~~

C

25.05 93.3 —)
6.99 (4 )
34.55 (307, 48.7, 51.5)
0.40 (329, 47.2, 58.5)
3771 (265, 47.8, 70.8

2. 38.1, 50.9

~

55.63  (44.9, 76.3, 88.7
53.67 (6.2, 46.8, 99.3
60.98  (40.4, 68.0, 144.1

(34.1, 62.4, 79.8

(47.1, 80.7, 83.
3124 (26.5, 39.8, 35.9

(23.6, 36.2, 67.

(25.2, 43.3, 27.8
69.16  (65.2, 67.6, 101.0
36.41  (40.2, 25.7, 51.4
75.30 (78.1, 64.4, 76.8
96.59  (105.2, 79.0, 82.3
169.23 (165.1, 163.1, 220.3
191,88 (94.8, 124.8, 144.1
33.51  (20.4, 62.7, 18.4

mean

o

35.10

(47
(
(
(5
87.35  (87.2,85.9, 94.6
(
(
(3
16.70 (16

46.93  (49.4, 60.7, 79.4

)
)
)
)
)
5)
)
0)
)
69.63  (67.5, 69.1, 114.4)
)
)
)
)
)
)
)
)
21.24  (35.2, 32.7, 47.8)

Table 4.4: The Root Mean Square of fit (in centimetres) for the converged ERS-1

long-arcs by solution method and geographical location.

between the two solutions.

This is easily explained by considering Table 4.3

which shows that for this arc there is only one contributing station in this region

providing just two passes of data. Thus, the solution is largely determined by the
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other laser tracking stations in both cases — which is why the RMS is so different

between regions. The vast difference between the value of 0.1 cm where GUESS

tables are used and 114.4 cm is merely due to chance, since this station does little

to affect the solution, so is an exception in each case.

Secondly, in most cases, the European/Mediterranean group seems to have

the smallest RMS of the three regions. This implies that the resulting orbit is

Arc Dates
(MJD)

Value of coefficient Cg

with GUESS tables

without GUESS tables

48459.80 — 48463.60
48464.80 — 48470.80
48468.80 ~ 48474.80
48474.80 - 48481.60
48481.50 ~ 48486.90
48486.90 - 48492.90
48492.90 — 48498.90
48496.80 - 48502.80
48500.80 - 48506.80
48506.88 - 48512.80
48512.80 - 48518.80
48515.30 — 48521.30
48522.60 - 48525.60
48525.50 - 48532.00
48532.00 - 48538.00
48537.80 - 48543.30
48543.80 — 48549.80
48546.80 — 48552.90
48553.40 - 48560.30
48560.37 — 48566.80
48566.80 — 48573.80

1.01
1.03
1.00
1.04
1.04
1.05
1.02
1.02
1.02
1.04
1.06
1.05
0.99
1.06
1.08
1.06
1.06
1.06
1.39
1.17
1.48

l -<5(S

1.69
1.64
1.61
1.60
1.64
1.71
1.64
1.66
1.69
1.69
1.74
1.64
1.65
2.51
1.76
2.67

Table 4.5: The value of the solar radiation coefficient, C'r, solved for both with

and without GUESS generated tables.

probably biased towards this area, at least to some extent — an observation which

T4




is further corroborated by the relevant means and standard deviations. However,
the differences between this and the second group (USA and north Pacific) are
small and in several cases where GUESS tables have been used the situation is in
fact reversed. Further, there is no correlation between these occurrences and those
instances where the second group contributes a larger proportion of the accepted
tracking data (see Table 4.3). So it is unlikely that the variations in RMS between
these two groups can be attributed to the orbit being pulled over a region. Rather,
it is probable that they simply reflect the differing fit of the data between these
two areas.

In addition to the RMS of fit, the solution factors C'p for drag and Cp the
solar reflectivity coefficient, were also considered. Table 4.5 illustrates the solution
values of the variable Cr for the twenty-one long-arcs, both with and without
GUESS area tables. It is immediately clear that the value of Cr is significantly
diminished in all arcs where GUESS tables have been used. Further, in all but the
last three long-arcs considered the value of Cr where such tables have been used
is very close to 1 — indicating that the modelled radiation forces are potentially
closer to the true value, since they require little or no scaling. All three exceptions
fall in the period when the quantity of tracking data for ERS5-1 was diminishing,
towards the end of 1991. This is illustrated further by the relevant values in
Table 4.3. Considering further the RMS of fit of these three arcs (Table 4.4), it
is clear that the converged orbits are not as well defined as those lying earlier in
1991.

As a final consideration, the values of the solution drag scale factors, C'p were
plotted for each arc, so that the differences arising from the use of GUISSS area
tables could be seen. A selection of the twenty-one graphs thus obtained is shown
in Figure 4.7. The only consistent factor in all these graphs, is that the C'p values
obtained in those arcs where GUESS tables have been used are lower than those
where they have not. A few arcs do not display this general trend, but only at
the ends of the relevant long-arc period.

It would thus seem, from the evidence of these twenty-one converged long arcs,
that the use of GUESS area tables may diminish the RMS of fit of the residuals to
the data and may also result in solar reflectivity coefficient, C'r, that is consistently

close to one. In addition, the drag scale factors, Cp, attained are also lower
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than the corresponding values where the GUESS generated tables have not been
employed. From these results, it is suggested that, for ERS-1, GUESS tables may
produce 1mproved orbits in terms of the general fit of the data, the consistency
of the scale factor C'r and the diminished Cp values. However, given the similar
variations obtained by these drag scale factors, comparing arcs converged with
and without GUESS tables, it is not clear to what extent the tables have removed
error in the surface areas. Nor is it clear that the remaining scaling factors absorb

errors due solely to mismodelling of the atmospheric density.
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Chapter 5

Long-Arc Refinement using

Dual-Crossover Data

5.1 Non-dynamic long-arc refinement

It has been seen, in Chapter 2, how precise orbit determination is effected at
Aston. It has also been shown, in Chapter 4, how some improvement may be
achieved in the determination of long-arc orbits for ERS-1 by using a dynamic
force model based upon momentum changes. In this chapter, an alternative, non-
dynamic, method for improving ERS-1 orbits will be considered. This approach
derives the radial heights empirically, rather than from the dynamic equations of
motion upon which the force model of Chapter 2 is based. For this reason the
technique has been termed non-dynamic.

The aim of this chapter is to simulate the refinement of the ERS-1 orbits by
using height residuals from a second satellite, namely TOPEX/Poseidon. These
residuals are then used to solve for coefficients in an analytic expression for radial

orbit error, so that corrections may then be added back into the long arc orbits.

5.2 Altimetry and dual-crossovers

For ERS-1 the principal tracking data types are laser-ranging and radar-altimetry.
In contrast to the range recovered from laser data, altimetry provides a normal
height between the satellite radar antenna and some closest point on the earth’s

surface. Since steep slopes can be the cause of non-normal measurements, as the
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beam width at the earth’s surface may be measured in square kilometres, this
data type 1s more accurate over level surfaces, such as the sea and, until recently
its use as a measurement was restricted to such areas. However, it is also now
used to discover topographical and other information about certain areas of ice
sheets, flat land and inland water, see for instance Rapley et al., [1992]. The major
advantage of altimetry over laser-range data is its greater geographical density,
which arises from its not being constrained to fixed sites on land masses, while its
main weakness arises from this same lack of precision in the point on the earth’s
surface at which the measurement is made.

To partially circumvent this problem of geographically related error, it is pos-
sible to difference pairs of altimeter measurements which occur over the same
ground point. This is achieved by differencing the altimeter measurements at the
intersection of an ascending and a descending ground-track. Each such difference
is called a (single-) crossover and does not suffer from geoid error which, being
constant at a given point, cancels out. Indeed, all such time-independent geo-
graphically related error terms cancel, leaving only time-varying errors [Sandwell
et al., 1986]. This cancellation also extends to those solution parameters which
are similarly geographically related. Thus, such parameters cannot be determinecd
from this data source alone but require some additional constraints for solution.
The relevant deficiencies are elaborated upon in Section 5.6 below.

Dual-crossovers extend the concept of the single-crossover to points where
the altimeter measurement of two satellites are differenced. Thus, the ascending
ground-track belongs to one satellite and the descending one to another. One ben-
efit of dual-crossovers is that several parameters which were insoluble (Section 5.6)
using solely single-crossover data become soluble with dual-crossover data. [ur-
ther, these dual-crossovers may enable the accuracy of the more poorly determined
orbits of one satellite to be improved relative to the more accurate ones of the
other. In the case of ERS-1 and TOPEX/Poseidon, the latter orbits the earth at
a much higher altitude and is therefore not subject to the same atmospheric or
gravitational problems as ERS-1. Thus, it is hoped that TOPEX/Poseidon will
provide more accurate orbits by which those of ERS-1 may be refined.

Several authors have discussed dual-crossovers including Born et al. [1986]

who examined improvement in the radial ephemeris of the planned U.S. Navy

79




satellite N-ROSS, whilst Shum et al. [1990] outlined a procedure for refining ERS-1
orbits using TOPEX/Poseidon. However, both these studies were undertaken
prior to the launch dates of the satellites involved, when the exact period of
simultaneous operation and orbital characteristics were still unknown. With both

ERS-1 and TOPEX/Poseidon operational, it became opportune to examine the

dual-crossover technique as pertinent to the repeat cycles of their orbits.

5.3 Simulating the crossover data

For the purposes of this study simulated data were used, since at the time of
writing no TOPEX/Poseidon and ERS-1 altimetry data were available for the
same period. For each satellite the method of simulation was first to estimate a
start vector, comprising position and velocity at some epoch, from known observed
orbital elements. These were then used to produce true and perturbed ephemerides
m the following manner.

For ERS-1 the true ephemeris were produced by iterating the usual parameter
set (the method is described in Chapter 2) using the MS1583 atmospheric density
model [Hedin, 1983], half-daily drag coefficients, the area tables derived in Chap-
ter 3 and the GEM-T3 gravity field which is complete to degree and order fifty
[Lerch et al., 1992]. Ocean tides were modelled using the GEM-T2 tide model and
all other forces and models are as outlined in Section 2.2. The ephemeris were
calculated at thirty second intervals over the six days from MJD 48500 to MJD
48506, during which time ERS-1 was treated as if in its thirty-five day repeat
mode. 1t is to be stressed that this assumption was made solely for the purposes
of this simulation and that it does invalidate any results. In this mode the satellite
makes 501 complete earth orbits in the time the earth takes to make 35 complete
revolutions. In addition, the inclination was assumed to have an actual value of
98.53 degrees and the right ascension at MJD 48500 was taken to be 247.07002
degrees.

In comparison, the satellite TOPEX /Poseidon has an altitude of around 1335
km, thus, for simplicity, atmospheric drag was eliminated. Otherwise the true
ephemeris were derived using exactly the same conditions as for ERS-1 except for

a constant value for the surface area (required to compute the solar radiation pres-
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sure). The ephemeris were again computed every thirty seconds, but over the ten
days from MJD 48498 to MJD 48508. This period just exceeds the 9.91553 days
(approximately) required for TOPEX/Poseidon to make one complete ground-
track, comprising 127 revolutions, during which time the earth revolves 10 times.
The values of inclination and right ascension at MJD 48498 were fixed at 66.039
degrees and 99.92398 degrees respectively.

These two sets of true ephemeris were used to produce two sets of simulated
laser data using coordinates of the ten actual laser-ranging stations which observed
ERS-1 during the simulation period in September 1991. The procedure assumes
(1) a given number of passes for each station, (ii) full visibility throughout each
station’s range and (iii) that the laser observations also occur at thirty second
intervals — like the true ephemeris. Given these assumptions, preliminary points
were generated for each satellite using the true ephemerides. These preliminary
points were then used as input for the prediction-correction routine of Chapter 2
and were subsequently adjusted by adding on the residuals thus obtained. For
TOPEX /Poseidon the number of laser points was left unrestricted under the above
assumptions. However, for ERS-1 they were limited to a set where the numbers
of passes and observations for each station matched those actually obtained over
the simulation period (as illustrated in Table 5.1).

A second set of ephemeris was then derived using these laser points as input
observations. The gravity field was altered to the PGS4591 model field (based on
the GEM-T3 normal equations plus some DORIS Doppler tracking of the SPOT-2
satellite), also complete to degree and order fifty, though it was restricted to terms
of degree and order of thirty or less for the satellite TOPEX/Poseidon. Such a
restriction was made necessary by the fact that the two gravity fields are almost
identical for satellites at the inclination of TOPEX/Poseidon. Thus, in order
to produce a sufficiently different set of perturbed ephemeris some alteration or
limitation of PGS4591 was required. In addition, for ERS-1 the atmospheric
density model was altered to the Jacchia 71 model [Jacchia, 1972}, though half-
daily drag coefficients and the same GUESS generated area tables were used.

These new models were converged against the simulated laser-range data from
the true ephemeris using the orbital determination package. This produced two

new state vectors, each comprising satellite position and velocity, at MJD 48500
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Station ID number Number of Passes Number of Observations
1953 3 o7
1884 5 75
7831 4 51
7542 9 156
1181 7 123
7839 9 164
7835 1 4
7090 3 38
7840 10 112
1863 4 20
7105 | 11
7110 2 18
7939 ! 13
7810 2 24
7210 2 12
7046 1 7
total 64 855

Table 5.1: Numbers of laser-range passes and observations for ERS-1 between

MJD 48500 and MJD 48506.

for ERS-1 and MJD 48498 for TOPEX/Poseidon. From these vectors two sets
of perturbed ephemeris were evaluated and, for each satellite, the true and per-
turbed ephemerides were then compared in the radial, along-track an d cross-track
directions (as illustrated in Figures 5.1 and 5.2).  The ephemeris comparison
resulted in radial root-mean-square differences of the order of 58 c¢m for ER5-1
and 13 cm for TOPEX /Poseidon which are comparable with early results achieved
for ERS-1 and with expected values for TOPEX/Poseidon. However, for ERS-1,
later developments have shown some nmprovement (see Chapter 4).

Using the t{rue and perturbed ephemerides, single and dual-crossovers were
then derived as follows. First, from each ephemeris file approximate equator
crossings were found. These points were then used to produce first estimates

of the actual crossover locations. These, in turn, were employed as the starting
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17 radial (RMS = 13 cm)
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21 along-track (RMS = 74 cm)

11 cross-track (RMS = 15 cm)

48498 time (MJD) 48508

Figure 5.1: A comparison of simulated true and perturbed ephemerides for the

satellite TOPEX/Poseidon.
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2 = radial (RMS = 58 c¢m)

19 along-track (RMS = 305 cm)

3 1 cross-track (RMS = 97 cm)

48500 time (MJD) 48506

Figure 5.2: A comparison of simulated true and perturbed ephemerides for the

satellite ERS-1.
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values for iterative schemes which interpolate within the ephemeris to produce
more accurate crossover points consisting of a radial difference, two times and the
latitude and longitude of the point in the earth fixed reference frame. The actual
details of this process vary from single to dual-crossovers as follows.

For both types of crossovers, the equator crossings are determined by lin-
ear interpolation between pairs of successive ephemeris points which straddle the
equator. These may be easily picked up since an equator crossing results in a
change in the sign of the Z-coordinate in the earth-fixed system. From here the
methods differ somewhat.

For single-crossovers, taking each hemisphere and every pair of ground-tracks
in that hemisphere in turn, a first approximation of the crossover longitude is

given by
MAXF A+ A
4

where the )\; denote the longitudes of the equator crossing points. From this
first approximation, a more precise crossover location is made by iterating within
the ephemeris until latitude and longitude match, as follows. Let (4,A) be the
desired latitude-longitude pair at the crossover point. Further, let (¢(4;),A(1;)) and
(6(t;),A(t;)) be the best available approximations at times ¢; and £; respectively.
Then

i Ay d0(t)
¢ o~ o)+ Ali—p
~ (/)('/23')+N3%2

with similar expressions for A [Rowlands, 1981]. By writing this in matrix nota-

tion,

dolt) i) At ) _ d(t;) — B(L)

A A ARAY At;) = A(t:)
we may solve for refinements Af; and At; to t; and t; respectively. This procedure
is iterated to convergence, using values of ¢, ‘-(11'7/’ etc. derived by interpolating within

the satellite ephemeris.

Next the normal height was calculated at this point for each of the true and
perturbed ephemerides. These four values were then combined to produce one
simulated single-crossover difference. The single-crossover differences were then

stored for each satellite, along with the two crossover times and both the latitude
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and longitude. These data subsequently became input for the adopted orbital
refinement procedure. The differences between the crossover times found for the
true and perturbed orbits were negligible in all computed crossovers.

The initial estimates for dual-crossover locations are made using a geomet-
ric method where each of four cases is considered in turn (Northern/Southern
hemisphere, descending/ascending ERS-1 arc). The first case will be explained in
detail below and the general form of all the relevant equations (thus covering the
other three cases) will then be given in Equation 5.1.

At a time tI the ground-track of the satellite TOPEX /Poseidon intersects the
equator at longitude AT in an ascending manner. It passes through the crossover
point at a time At later by which time the earth has revolved about its axis by
an angle AtTw; w being the rotation rate of the earth. Therefore, the great circle
formed by the orbital plane of this satellite intersects the equator at longitude
AT — AtTo, making an angle ¢ (the inclination angle of TOPEX /Poseidon) with
the same. The angle of arc of this great circle, between equator and dual-crossover
point, is UT.

Similarly, at time t& — At the ground-track of ERS-1 passes through the dual-
crossover point, descending to intersect the equator at longitude AE a time At

later. By this time the earth has again rotated through an angle AtFo so that

(¢, A) — dual crossover point

equator

A 4 AtEG
Figure 5.3: Geometric estimation of a dual-crossover point (Northern hemisphere,
ERS-1 descending arc).

the great circle formed by the orbital plane of ERS-1 through the crossover point
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intersects the equator at longitude /\f + AtES with an angle i (the corresponding
inclination of ERS-1). The angle of arc between dual-crossover point and equator
is U¥ (see Figure 5.3). Using trigonometric relationships on spherical triangles the
times At® and AtT may be computed to give first estimates of the dual-crossover
times 7 + AtT and tF — AtE as follows.

Let the initial values of Atf and At be zero and define A to be the angle be-
tween the points where the relevant great-circles of ERS-1 and TOPEX/Poseidon

intersect with the equator. Then, considering Figure 5.3, the angle A is given by

A = (A4 AR - (0T - ATw)

= Af — AL F@(A 4+ AT

and UF and U7 are fully determined by

cot UX = (cos 17 sin i + cos A cos 1L) /sin A
cot U" = (cos Fsing? + cos A cos i’ ) /sin A
since both are less than 7 radians. New values of At? and AtT are then computed e
co
from cil
Usperiod’
Af,s = ————~—-—-1 &
O
2

where s = F or T and the process is repeated until the values of ALE and AT

converge.

From the converged values, the longitude of this crossover point may be de-

termined by considering its sine and cosine which are:

oS ()\ — (Af + A'LELL)>> = ———(S;:/(/)L
sin ()\ — ( A A'/,ELL)>> = —coti”tan¢

whence the longitude may be uniquely determined as

—cosUEsinUE L
E ‘

A= (AdE + AtEd)> + arctan

cos 1z

The latitude is determined from the spherical sine rule and consideration of the

hemisphere of the current case. Thus,

¢ = arcsin(sin UP sin i)
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and for each dual-crossover the first estimate consists of latitude ¢ and longitude
: E .

A at times 17 + AtP for ERS-1 and tz — AtT for TOPEX/Poseidou, The other

three cases require a similar set of equations, with minor variations, and the

general equations which may be used for all four cases are given by

A= bem (/\d” /\Z‘> +w (AtT — (g,[irA‘{;E)

c7TE A
cot U = <cos 10 sine” — 44y cos A cos ? ) /sin A
T ~ ‘B K A
cot U+ = <—é(h-7. cos1¥ sini’ + cos A cos 7,7) /sin A
o TTE & E
_ \E E- —cos U” sin U
A= /\({ir - 6(ii7' 6/187?1 At7w + arctan —
cos %
B
t - (lm + 6![17 6/L<m A?
T E T
t - t(iir + 6hem At
where (5.1)
1 Northern hemisphere
6lmm - )
—1  Southern hemisphere
_ 1 ERS-1 ascending
6(lir =

—1  ERS-1 descending

From first approximations of the dual-crossover points determined in this manner
more precise locations are found by iterating within the ephemeris until latitude
and longitude match using a similar method to that for single-crossovers [Row-

lands, 1981]. As above this may be written in matrix notation,

H(tE (T o 4T ey
W) N LB (T - g(iF)
dA{(ltLE)7 ‘dxg’f‘) A¢T /\(17‘) — A7)

where (¢(tF),\(tF)) and (¢(t7),A(#7)) are the best available approximations to
the true dual-crossover point, (¢,A). The matrix equation yields refinements to
the respective crossover times, t£ and tT. By interpolating within the satellite
ephemeris and partial derivatives at the new times 2 4+ AtE and 17 + AtT new
best values for (¢(t%),A(tF)) and (¢(17),A(t7)) are obtained. lteration of the
scheme converges upon the true latitude and longitude.

Having determined the dual-crossover points, the crossover heights were cal-
ulated at each point for both the true and perturbed orbits. These values were
differenced to produce one simulated dual-crossover residual and all such differ-

ences were stored, along with the two epochs and the latitude and longitude. The
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variation between the dual-crossover epochs for the true and perturbed orbits were
negligible m all cases. The simulated crossover points were then sorted into those
that lay over the oceans and those that lay over land. The latter group were elim-
inated and the remaining data retained for the solution procedure. The retained

simulated data is summarized in Table 5.2. 1t is important to note that no time

Satellite period (MJD) | repeat period | data type number
days
single
ERS-1 48500 to 48506 35 crossover 42838

differences

single
TOPEX/Poseidon | 48498 to 48508 10 crossover 10013
differences
ERS-1 and union of dual
TOPEX/Poseidon | the above e crossover 13664

differences

Table 5.2: Summary of simulated crossover data used.

restriction was placed on the separation of the epochs used to calculate either
dual or single crossovers. Further, the geographical distributions of single satellite
crossovers for ERS-1 and TOPEX/Poseidon and of dual satellite crossovers are
illustrated in Figures 5.4 to 5.6. The incomplete ERS-1 distribution (Figure 5.4)
is a result of the fact that all data lies in just six days of the thirty-five day repeat
cycle assumed in the simulation process. In comparison, the TOPEX/Poseidon
dataset (Figure 5.5) represents all crossovers in a complete repeat period of that
satellite. Further, these figures show that all crossovers are concentrated towards
the higher latitudes, being sparser in the equatorial regions. This is simply a result
of the geometry of the repeat ground-tracks forcing closer spacing when an equal
number of tracks crosses the circumference of a smaller circle (as occurs as the
latitude deviates increasingly from the equator). Residuals for the crossover dif-
ferences, as input to the non-dynamic refinement procedure detailed in Section 5.5
below, were computed by differing the normal height measurements relative to the

WGS84 reference ellipsoid from the true and perturbed simulated ephemerides.
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latitude

longitude

Figure 5.4: Geographic location of simulated single-crossovers over the oceans for

ERS-1.

latitude

longitude

Figure 5.5: Geographic location of simulated single-crossovers over the oceans for

TOPEX/Poseidon.
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Figure 5.6: Geographic location of simulated dual-crossovers over the oceans for

ERS-1 and TOPEX/Poseidon.

5.4 The determination of an analytic expression
for the radial error

It is desired that the error in the radial direction, Ar, be expressed in an analytic
form in order that the chosen non-dynamic method for refining long-arc orbits of
ERS-1 can be tested. This error may be considered to arise from errors in the
various modelling coefficients used in the force model of Section 2.2. By deriving
expressions for the error due to each contributory factor in turn, an equation for
the general form of the total radial error may be determined.

Let the radial distance r be expressed in Keplerian elements

a(l —é?)
(1+ecos f)

where « is the semi-major axis, e the eccentricity and f the anomaly of the in-

stantaneous orbital ellipse [Kaula, 1966, p.21]. This may be writen more simply

in terms of the eccentric anomaly £ as follows
r=a(l—ecosk)
[Rosborough and Tapley, 1987]. Now the mean anomaly M is related to E by
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Kepler’s equation,

M=F—¢csinE

e 3 I3Y3 . . .
[Kaula, 1966, p.22] and it is possible to express cos F as an infinite series in terms

of cosnM as follows,

cos £ = ~—§ + Z ,’L(ne) cosnM

where J,, 1s a Bessel function of the first kind and the ’ indicates differentiation
with respect to e [Smart, 1953]. It is thus possible to express the radial distance
7 in terms of this mean anomaly M and, up to and including terms in order ¢, r
is given by

. | A ,

r=all —ecos/\/]%—;—;cosZM +0 (e )
[Moore and Rothwell, 1990, p.190]. Now, making small changes in «, ¢ and M,
namely Aa, Ae and AM respectively, results in a small change Ar in the radial

distance r. After some computation this may be expressed as

2 2
Ar = Aall—ecosM + %— — % cos 2M | 4+ aeAM sin M — aAecos M
+ aeAe + ac’AM sin2M — aelAecos2M + O (63) . (5.2) 2 :

Taking each force acting on the satellite in turn (these were considered in some

detail in Section 2.2) and considering errors in the model coefficients, it is possible

to derive an analytic form for Equation 5.2 as follows.
From Section 2.2.1 the gravitational force may be expressed as arising from a
potential V, written as a sum of frequency terms. Separating this into central and

perturbing components provides the following expression for the total potential V

v=L1nr
"
where R is given by
'L[, (o9} o¢] oC —h
= — Yem \ Ly, COS 1/)/0 mg T S 5”1 7/}!,,/11(
(2 e e )

—=k —k . . ; . ter it at e drana
Cnf and 5'7: being functions of the real-valued inclination functions [7,,,(z) and

the eccentricity functions Gy4(e) [Kaula, 1966, pp.34-37]. In addition, i, is

given by




and Ir/)k,m,q by

| =

Vrmg = w + (k+ )M + m(Q—0)+ (k—m)—-. (5.3)

N

8

From the above expression for the perturbing force R, the error in the gravity
field coefficients may be considered to result in an error AR in this force. This
error may also be expressed in terms of the Keplerian elements a, ¢ and M by
considering the relevant planetary equations of Lagrange (as given for example by

Kaula [1966, p.29]), namely:

da 2 oF

dt  nadM

de (1 —e*) OF (1—-e*)or

D . — : - (5.4)

dt na*e OM na*e  Ow
-(17]\_4 _ —(1 —€*)oF 2 0F

dt na’e Ode  na da

where F' =V — T is the force function, T' being the kinetic energy. Substituting

for V and T gives F' in terms of R,

F=L 4R
2a
whence Equations 5.4 may all be written in terms of R by replacing /7 with R in

all but the last. For the variation of M with respect to time, %, noting that

—2 0 (/J):i:n

na da \2a na*
(from Kepler’s third law, for example [Borowitz and Beiser, 1967, p.187]) we have

the expression

= - o
dt na’e de  na da

M (1-€¢)IR 2 9R

These equations may now be solved for Aa, Ae and AM using the method of

linear perturbations [Kaula, 1966, pp.39-41] which assumes the existence of a

mean ellipse described by the elements @, €, and M on a mean precessing plane
defined by  and 7. These mean elements may be determined from the osculating

values with short periodic oblateness terms removed using the method of Gooding

[1981]. Further, where the eccentricity is small @ is ill-defined so that the required

linearity of diZJ and ;—ﬂﬁ/f_ does not occur. In this case the approach taken by Cook
t
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[1966] may be employed which uses the fact that w + M is well defined. Hence,

;tw and &£ £ M may be found indirectly from

where the orbit 1s frozen, or where 7 is equal to the critical inclination, 63.4° [Cook,

. o — - _ -
1966], then Sw=0 and £ o M = dtw + M. From here on the mean elements will be

used unless otherwise specified, but the bars will be dropped for ease of notation

(for example @ will be written simply as a).

N N
Now, using the method of linear perturbations the error Az, for any element

x, may be expressed as

¢ a
As :/ dAx it
o dt

and replacing R, M, a and e in Equations 5.4 by AR, AM, Aa and Ae gives

2 [t OAR
Aa = — di
¢ na Ji, oM
\/ (1—e¢? ()Ah’ OAR
_ 2 [
na2e /to ) oM Ow (5:5)

! _ .
AM = Ap_ L [H{0=€)oAR L OAR

. dt
na Ji, ae de da

where An may be derived in a similar manner

tdAn 3
An = & = *(nA(l,.
o dt 2a

If z is any of the terms R, M, a, or e, then Az may be expressed as a sum of
terms, each arising from one frequency component in the expansion for V:
Z Azk,m,(y
kyom,g
In addition, the partial derivatives of AR with respect to a, ¢, w and M may be
also be expressed in this way. Thus, for the terms w and M which only appear in

the expansion of ¥y m.q,

OAR \
_ = k + ¢ ARv,m,
oM k%q( 1) kym,g
?TZX—PE = Z kARk,m,q'

dw k,m,g

Next, considering the semi-major axis a, we see that it only occurs as an inverse

power of [ in the coefficients U:f and 'S“f,f [Wnuk, 1990]. Similarly, the eccentricity
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e only appears in the eccentricity functions Gipq(e). Hence, for a and e, the

required partial derivatives of AR are given by

OAR _ _(Z + 1) X
5(1 - Z Aﬁ'k,m,q
kym,q a
and
OAR _
' -0 Z 07 T cos ) +~€“'kq sin 1/
06 Tkan \ & COSPhom g Do S Wk g ) -
km,g

Still using the method of linear perturbations, it is assumed that @, e and 7,
hence n also, are constant over the time period of interest. So the only time-
varying parts of ARy, . are the sine and cosine of the angle vy,,,. Now by
regular manoeuvring, the orbit of ERS-1 is effectively frozen, hence for ERS-1
w = 0 and, without loss of generality, it may be assumed that w = /2. Similarly,
the argument of perigee of TOPEX/Poseidon’s orbit is maintained at 90° [Marshall
et al., 1992], so that it too is in a frozen orbit and again w &~ 0. Hence the terms
w, M, 0 and §) are all constant, whence so is 'z/;k,7,L,q. Thus, temporarily dropping
the subscripts k. 4, the following relationship results:

OAR
Dz

= Asiny + Bcos
for suitable constants A and B. This expression may be integrated:

L t ) I
/ (Asin + Beosy)dt = / (Asinp + B cos ':/))% di
i . L)

0 to

t Asintp + Beosp
= / : dvp
to ’l/)
| t
= — |Bsiny(l) — Acosp(t)
P .

enabling solutions of Aa, Ae and AM to be found, since all are sums of the terms

/' aA-lec,'/n,q

dz
and hence of
/(A sint + Bcosp).
It follows that the desired solutions to Aa, Ae and AM are formed as sums of
terms [Moore and Rothwell, 1990, p-190]

2w (D)) (=(4) - 2(t0)]

Al 162k m.q(to)
Fkym,q 0

(A faion e SRR g B
PP -

i

e

ST




Aepmg = <Wm( 29(1 - ¢*) — kez)) [Z(t) — Z(to)]

2na3 ez/)k,m,q(%)

AMy, = <3M7A (k4 q)t > i ( WYk m > y

(131/)k m q(tO) a® 7/)k m,q TO

3(k + P
l:('l/)k mq(f;]; 77(1) (nae dc n jaﬂ (Y(t) — Y(to)]

respectively, where

— —k )
=(t) = <( 7: COS P m o (1) + '3' sin z/)k,,,w(t))

—kg —=k .
and T(t) = (5,0 cos iy g(t) = Oy sinihi (1))

define the functions Z(¢) and Y(¢). The partial differential operators in this equa-
. —kg .
tion act solely on 57, and C as there are no a or e terms in by, 4(1).

By including the assumption that w = 0, the derivative of Equation 5.3 with

respect to time gives the following result,
1/.)k,m,q = (]‘/ + Q) M +m (&), — 0) .

Next, the sum in k,m,q may be simplified by gathering all terms with similar
(k + ¢) and resetting k to equal this new summation variable (i.e. k + ¢ — k).

Further, by measuring 1 relative to its initial position (1) we may write

7,/)k,771(t) = (l/)k,m(t{)) + 7/')15,7':1 X1

— (kM +m (Q — 0)) X 1. (5.6)

Then, if Are denotes the radial error contribution from this source (gravitational
potential) it can be shown that (combining the relevant terms and writing n a

more accessible form — see also Moore and Rothwell [1990, pp.191-192])

A"’G(t) = 2 (Alc,m cos wk,m( ) + Bk m sin ¢l« m( )) + (/' (57)

kam
measured relative to some value Ara(to), where the secular term Uyt arises from

those instances when 1/;k)m,q(to) = 0.
The force due to atmospheric drag was given by Equation 2.5 of Chapter 2.
In order to determine the error in this model it was further assumed that (i) the

drag scale factor, Cp, cross-sectional area, Ap and satellite speed, v, are constant
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in the region of interest, (ii) lift forces are negligible and (iii) the density error

may be expressed by

.y
Ap = Ap, | exp (—’H—”

where the subscript ,, denotes the perigee and H is some constant representing

the density scale height [Moore and Rothwell, 1990, p.193]. Now
r—r, =ae(l — cos )

and so, expanding the exponential as a power series in 5 (1 = cos ) results in

e cos BN\ CpApv?
AF — A )(l_gf ae cos ) pAp
D Py H+ H 9

+ O(e).

This equation may [Moore and Rothwell, 1990, p.193] be elaborated in a similar
manner to Equation 5.2 for the gravitational error by using the Gaussian form
of Lagrange’s planetary equations and deriving equations for Aa, Ae and AM
in terms of Ap,, H, a, e and E. Given a small eccentricity, say ¢ < 0.002, the

relevant expression for Arp is

. a2 I nl e 1 _S’Em ae
Arp(t) = —a*CpApAp, (E(t) — E(to)) (1 T

oS E('[‘))

(plus periodic terms of n cycles/rev) where [ increases by 2m for each revolution
[Moore and Rothwell, 1990, p.194]. This error may thus be re-written in the
following general form:
Arp(t)y = Cy + Cs(t —t.)sin M(t) + > (Apocosihuo(t) + Buosing,o(t)) (5.8)
7,0
for some suitable epoch t,.

The final force to consider (Section 2.2) is that due to solar radiation pres-
sure. This force is complicated by the satellite geometry, making the f’_ollowil,lg
assumptions necessary [Aksnes, 1976]. The cross-sectional area, Ap, is assumed
constant, the force is taken along the sun-earth line, the penumbra is referred to
by the eccentric anomalies of the umbral entry and exit points with respect to the
sun-centre and the mismodelling is represented by

D 2
AFy = AC’R%% (?f)
where C'g is the solar reflectivity coefficient, m the satellite mass and P the force

per unit area exerted at the earth by the sun when its geocentric distance rg equals
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its mean distance ag. Then the components Aa, Ae and AM may be determined
with respect to the number of satellite revolutions from some initial epoch [Aksnes,
1976). Thus, given that much of the secular along-track error is absorbed into the
drag coefficients [Moore and Rothwell, 1990], the dominant form of the radial error
due to the mismodelling of solar radiation pressure is a sinusoidal variation in £
or M of increasing amplitude superimposed upon a secular change as evidenced
by the bow-tie pattern of error seen when estimating the solar coefficient (Vr in
orbit determinations [Colombo, 1984]. Thus, the resulting general form of the

radial error from this force is
Arg(t) = Cs(t —t.)sin M (1) + Cy (t — 1..) cos M (1) (5.9)

for some suitable epoch t,.

The only other source of radial error considered here is that due to errors
in the state vector which may be considered as errors in the initial Keplerian
elements ag, eg, etc. Thus, simply substituting small changes in these elements

into Equation 5.2 provides the following

Ar; = Aag(l —ecos M) — aleg(cos M — e + ecos2M )
3n
2a

+ ae (AMO — —Aay(t — 1‘,0)> (sin M +esin2M) + O ((32> .

Now the terms cos M and cos 2M are equivalent to the terms cos by g and cosipy g
respectively and there is a similar relationship between the sinnM and sin, o
terms. So the general form of the contribution of this term to the radial error is
2
Ari(t) = Z (Agosintheo(t) + Bip cos Pro(t))
k=0
+ C

L Cs(t—to)sin M (1) 4+ Cs (E — L) sin2M (L) (5.10)

Totalling Equations 5.7, 5.8, 5.9 and 5.10 gives the following general analytic form

for the radial error:

A'I(t) = Z (Ak;m sin 7/)/c,'m(i) + Bk,m COs 7/)k,m(t))

k,m

+Cy + Cyt

st —t.)sin M(t) + Ca(t — t.) cos M (1)

+ Ot —t.)sin2M (1) (5.11)
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for some switable epoch .. This expression is the simplest form for the radial error;

several contributing effects being subsumed into the same terms. For instance,

the dominant one cycle-per-revolution orbital error arising from gravitational and
initial state vector errors (Arg and Ar, above) is contained within the frequency
dependent summation. Also, unlike Rapp et al. [1991], no additional term is added
to absorb resonance effects.

Equation 5.11 may be used to provide expressions for single and dual-crossover
differences. For a single-crossover with epochs #; and ¢, respectively, the radial
ervor (crossover residual) is simply the difference in the value of Equation 5.11 at
these two times. This is given by

Ar’jSXO - Z (Ak',m [Sil] 'l/)k,m(t-z) — sin II/)k,m(h )]

km

4+ B [€08 pm(t2) — cos g (11)])

+ Coty — t)

+ C3[(ty — t.)sin M (ty) — (£ — 1) sin M (1))

+ Cy[(ty — 1) cos M () — (11 — t.) cos M (1))

+ Cs [(ty — t.)sin 2M (t3) — (£ — t.) sin 2M ()] (5.12)
for some suitable epoch ¢, which, in this simulation, was taken to be the mid-point
of the period of interest. Thus, secular effects will be at a minimum at this point,
and reach maxima at those times furthest from ¢,. This should give rise to a
bow-tie pattern corresponding to that caused by the element of error in the solar
radiation coefficient C'r. For dual-crossovers the equation for the modelled radial

error 1s

Arpxo = Z (AkT,m sin 1/)21,,7L(1,T) — Al”m sin '(/),{?’m(tb)

km

v BY cos il (17) = BE, cosobf, (17))

+cl - CF

+CTTy = Co(tF)

+ T (T — D) sin M(ET) = G (17 — 1) sin M(17)

+ CT (7 = i) cos M(T) = G (17 — 1) cos M(17)

+ CT(T —T)sin2M (7)) = CP (15 — 17)sin2M (17)  (5.13)

where the superscripts E ;1nd T refer to ERS-1 and TOPEX/Poseidon respectively.
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Further, smce the two epochs 7 and £ refer to different satellites, the constant

terms, Cy, do not cancel.

5.5 Method of solution

Having simulated the data (Section 5.3) and obtained expressions for the radial
error (Equations 5.12 and 5.13), the refinement process solves for the unknown

parameters of Equation 5.11 using simultaneous equations of the form
Ax=b (5.14)

where b contains the simulated values, z the best estimates of the unknown coef-

ficients and each row of A is the transpose of

cos 1, (t7) o
A, = TOPEX/Poseidon frequency terms
sinpl (t7)

b
tr
(tT —tT)sin MT(17) other TOPEX/Poseidon terms
(tT —tT) cos MT(2T)
(tT — Ty sin2MT(¢7)

Ki COS 1/)571 (iE)

ki sin i, (17)

k6 as above for ER5-1
kit?

ki (tE — t5) sin ME(tF)
ki (tE — 15) cos ME(1F)

wi(tF —tE) sin IME (¢8)

where §6; is 0 for single-crossovers and 1 for dual-crossovers and k; is 1 for single-

crossovers and —1 for dual-crossovers.
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In practice 1t may be impossible to determine z precisely, due to noise in the

data, thus the final solution 2 may be of the form
E=2-Ax

where & 1s the best attainable solution and Az is an error term. In addition, it

may require more than one iteration to determine such a best solution:

~

£y =0 + Az

(5.15)
Loy = I, + __AIEn—H
E?H—i - "_i:n-{—] \Vl 7/ € IN

In order to solve Equation 5.14 the effect of a prior solution is first removed,

Then the least squares solution for a set of m equations in n unknowns, where
m > n, is given by

A'AAz; = A (b— AZ,_,),

where the normal matrix N = A*A is symmetric positive definite and thus invert-

ible. Whence, the following expression for Az, pertains:

Az, = <ALA> s (b—AZ; y)
- <A1A>_] A'b — &

which may be added to the previous best solution to obtain the new version as
in Equation 5.15. In this simulation the quantity of data was large in proportion
to the number of solution parameters and, more importantly, entirely noise free.
Thus, a converged solution was found in a single run of the program, with a zero
starting vector.

In order to calculate the matrix A all values of 1y ., together with the mean
anomaly M must be determined at every observation time. These values were
computed as follows. First, for each pair of integers (k,m), .. was evaluated
using Equation 5.6. This in turn required that a/')k,m first be determined as follows.

A satellite orbiting the earth with period T performs some Ny revolutions while
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the earth rotates some N, times relative to the ascending node §). Hence, [Moore

and Rothwell, 1990, p.188],

MT =2zN,
and
(60— )T = 27N, (5.17)
SO
(0 —9Q) N,
M N,
whence

. . N
Vim = M <k — nz,/\—;) .

s
From error analysis it can be seen that some of the frequencies, 7/}k),,L, do not make
significant contributions to the radial error and, further, that the magnitude of
their contribution decreases as the frequency departs from the dominant value of
one cycle-per-revolution. For the purposes of this simulation an upper limit was
set at two cycles-per-revolution which (at the time of this study) was a gener-
ally accepted value for analytic expansions of this type (see, for instance, Wagner
[1985]). The relevant (k,m) pairs may then be determined by restricting Equa-
tion 5.18 to this limit and noting that M alone gives a one cycle-per-revolution

frequency. Given integers k and m several distinct pairs may produce the same

frequency, yet only one of these is required. A search through increasing values of

m, where k is limited by the value of m was made, until all the frequencies below
two cycles per revolution were found. Only the lowest (k,m) pair which produces
a given frequency was stored, along with that frequency. Since the expression for

M is simply

1,/');6!771 is now fully determined for all (k,m) of interest and hence, by Equation 5.6,
SO 1S g ().

[t remains necessary only to compute M(t). Now, as noted above, w = n/2
whence
T

;M

Usw+[frwtM=7

and thus,
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crossover point (@,A)

equator

Figure 5.7: Computation of the length of arc U.

So to determine U is to determine M. Considering Figure 5.7 and applying

spherical trigonometry to the right-angled triangle [Todhunter and Leathem, 1903]

provides
cosU = cosgcos(A— (2 —0))+singsin(A—(Q—9)) cosg— ey
i
= cos¢cos(A—+6). =f
Also {‘ :
cot ¢sin (A — QL+ 6) = coté 2
and
51‘n ~ = sin U,
sini
whence

. cos ¢sin (A — Q +0)
simlU = .

cos 1

Now, i was assumed to be fixed and both A and ¢ are retained, along with the
crossover times, within the input file of Section 5.3. So U may be determined when

Q) and 8 are evaluated which is effected by the single determination procedure:
ww:wo—nm:m%yww@+@xt

the value of § = 86 — Q being derived using Equation 5.17. Hence, the matrix

N = A'A is now fully determined.
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5.6 Modifications to the solution procedure

This section outlines further restrictions which need to be placed on the matrix
inversion procedure, outlined in the previous section. They fall into two categories:
those which were expected from crossover theory and those which arose from the
experimental process.

It is recognised [Moore and Rothwell, 1990] that using single-crossovers as the
sole data type means that several harmonic terms cannot be solved for, either
because they are geographically dependent, or because they are members of a set
which are linearly dependent. Thus, the constant or 1y term and the cos by
terms cannot be solved for since they are geographically dependent. So, in a
crossover difference these terms cancel, resulting in rows or columns of zero ele-
ments in the matrix N. This means, in turn, that the matrix is non-invertible
and hence no solution can be found for these terms. Similarly, where linear de-
pendencies exist between the parameters, then the number of these exceeds the
row space of the matrix N [Sernesi, 1993] which again becomes singular (non-
invertible), thus preventing a solution from being found (since no unique solution
exists). For the adopted upper limit on the frequencies, namely two cycles-per-
revolution, the linearly dependent sets for single-crossovers are the groups of sines

and cosines of the following (bracketed) sets of 1y ,,:

("/)1,1a ?/)—1,1),
(2,15 o1, P-2,1),5

and  (1ha2, o2, P-22),

as established by Sandwell et al. [1986]. 1t is not possible to solve for all the terms
of a single group, rather, to allow solution of any of them, one term must be fixed
and the others may then be determined. For example, if it is desired to solve
for cos 1y then either costpgy or costh_p; must be fixed by setting the relevant
row/column in the matrix A to zero and the diagonal element of the same to one.
This effectively suppresses the solution of the fized coefficient. Alternatively, ad-
ditional data from, for instance, precise altimeter measurements over non-oceanic
reference surfaces (such as transponders, inland lakes etc.) may be used to re-
solve these deficiencies. However, using such a process still does not allow for the

accurate evaluation of the defective frequencies [Wagner and Melchioni, 1989].
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A ~ - ~ . * . . .
There are equivalent limitations when using dual-crossover data. For instance,

T E : .
only one constant (cos g or cos Yoo or CF or CT) may be solved for, since any
two or more constants must by necessity be linearly dependent, thus giving rise to
singularities in the matrix N. The same situation arises with the cos i o terms.

Here, for any integer k, it can be shown that there is a linear relationship between

the values for the two satellites. First, considering Figure 5.3,

. E - .E . L
sin UP sin+? = sin U7 sin 7

whence, since w = 1/2,

. .']‘
- sin g
cos ME =

— cos MT = K cos M7,
s o

Thus, the cosines of the one cycle-per-revolution terms of each satellite are linearly
dependent and only one of them can be solved for. A similar dependency arises

with the cosines of the two cycle-per-revolution terms:

cos2ME = 92cos? MF —1
= 9K%cos*MT —1

= K?cos2MT + (1&'2 — 1)

where the cosines of the two cycle-per-revolution terms and the constant are lin-
early dependent, so only two of these can be solved for. Higher values of k provide
other cos 1hy o terms which display similar dependencies. However, such values here
give rise to frequencies which lie above the adopted upper limit. Further deficien-
cies in the solution may be isolated as follows, using an approach based on that
developed by Sandwell et al. [1986] for single-crossovers.

Considering a set of dual-crossovers, any radial form which 1s solely a function
of the geographic ground-track position, i.e. latitude and longitude, 1s unobserv-
able. Let such a form be Ar,uu = Arpun (6, A). Expanding this form in spherical
harmonics we have

o |
Arpur = 3 3 (CrimcosmA + Spmsin mA) Py, (sin ).
(=0 m=0

This expression may then be converted into Keplerian elements [Moore and Ehlers,

1993] as follows. First define the term
Arpn = (Chm cos A+ Sty ST mA) P (sin @) .
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Then, using Kaula’s transformation, [Kaula, 1966, pp.34-37]

i
A N - * y e - .
Tlm Z Flm% (2) (Arm cos mapy, + By sin miapy o)
k=—1
where
y

A (-’l,m [ —m even
A =

—Stm —m  odd

Stm L—m  even
Bl m =

v
lm [—m odd

" ‘ bl . . . . . . ] . . e . ~
the Flm% (¢)’s being the real-valued inclination functions of Kaula and ¥ denot-
ing that the summation be made incrementing & by 2 each time. To see how this

links in with the frequencies, consider the case where [ = m = 1. Then

A'I'])] = F’],]’] (?) ((7])] COS ?/)_])] + S],] Sil] ‘I/)_]}l)

4+ Fi10(2) (Cracostpyy + .5y 1sinahy )

where the (1,1) surface harmonics map completely into the (k,m) = (1,1) and
(-1,1) orbital frequencies for both ERS-1 and TOPEX/Poseidon. Conversely, the
solution for the (1,1) and (-1,1) frequencies for both satellites is thus restricted
since there are linear dependencies between them (multiple rows of the matrix
being connected by identical solution coefficients 4, and 5y,). The solution
procedure is therefore deficient if all coefficients of the sine (or equivalently cosine)
of
(7/);f,1a "/)Tm» "/”fla "/)1—31,1>

are sought simultaneously. Extending this analysis for other values of k and m
permits further deficient combinations to be identified. Consideration of such com-
binations, for instance [Moore and Ehlers, 1993] shows that in all other deficient
frequency groupings, one or more elements is outside the two cycle-per-revolution
limit. Since, for a solution, it is sufficient to fix one element of a group in order
to solve for the others, this limit effectively excludes other deficiencies from being
a hindrance to this study.

Given all these considerations, certain terms were suppressed in the solution
rsion procedure described in Section 5.5 above could be

so that the matrix mve

employed successfully. The necessary suppressions were effected by setting all

. . e P . P T s
elements in the row and column relating to the suppressed variable to zero. Then
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the diagonal element was set to unity and the relevant parameter in the right hand

side of Equation 5.16 to zero, i.e. (b — AZ;); = 0 where ; denotes any prior solution
and ; 1s the parameter suppressed. Where terms from only one satellite needed
suppression, those from TOPEX/Poseidon were chosen, since the primary purpose
of this simulation was to refine ERS-1 long-arc orbits to accuracies comparable
with those of TOPEX/Poseidon.

Thus, the complete list of suppressed variables consisted of, the constants

arising from the frequency terms where (k,m) = (0,0),
Afo, By, Abe, Bl
the TOPEX/Poseidon explicit constant (in most cases),
o
the cosine coefficients of the (k,0) terms for TOPEX/Poseidon,

T T
A—l,Oa A 2,0

and the sine and cosine coefficient of one of the set discovered by the Sandwell

method (again for TOPEX/Poseidon),
AT B

After these suppressions, there remained just 253 distinct frequencies for the satel-
lite TOPEX /Poseidon, giving rise to a total of 504 sine and cosine terms requiring

solution.

5.7 Discussion of results

Solutions were sought for three situations: (S1) using dual-crossover data only and
solving for just the ERS-1 parameters (i.e. suppressing all the TOPEX/Poseidon
parameters), (S2) solving for the same ERS-1 parameters buf increasing the
dataset to include ERS-1 single-crossover data and (S3) further expanding the
dataset with TOPEX /Poseidon single-crossover data and then solving for all pa-

rameters of both satellites. In all three cases the CT constant was suppressed

and the CF constant solved for. For all three cases, where solutions were sought
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converged values were obtained in just one iteration of the software routines, due
to the fact that the simulated input data was, of course, noise free. For output,
each such iteration produced a set of solution parameters, the correlations between
them, the square roots of the eigenvalues of the matrix N=! and a set of calcu-
lated ephemeris from the solution parameters. Since the matrix N7! is also the
variance-covariance matrix of the solution parameters, the variance estimates of
these parameters are simply the eigenvalues of the matrix [Bomford, 1980, pp.712
— 720]. Thus, the equivalent standard errors may be obtained by taking the square
root of each eigenvalue. In addition to these factors, the root-mean-square (RMS)
of fit of these calculated ephemeris to the input values was computed, giving a
measure of the improvement obtainable in ERS-1 long-arc orbits by adding radial

corrections derived from dual-crossover data.

When such solutions were initially attempted it was found that the matrix
became ill-conditioned, as a result of the closeness of the solution frequencies of
ERS-1 (of which there were 1002 between zero and two cycles-per-revolution).
This is because, for a satellite completing N, revolutions in 1ts repeat period T,
the frequencies are effectively multiples of a common value [Moore and Ehlers,
1993]; namely ]—\1; cycles-per-revolution. Thus, the ERS-1 frequencies take values
5%)1 for integers 7. These are clearly closer together than the corresponding values
of %= for the satellite TOPEX/Poseidon (which did not exhibit this problem).
This was further exacerbated for ERS-1, as the period considered was only part
of the repeat cycle (6 days out of 35). Because of the closeness ol the solution
frequencies for ERS-1, pseudo-dependencies arose as a result ol computational
approximation. So the matrix inversion procedure produced high correlations
between several of the solution parameters Ag,, and By, (notably for higher
values of m) as the matrix N approached an approximately singular state (i.e.

tended to a non-invertible matrix).

This problem was circumvented by reducing the number of ERS-1 solution
frequencies through a restriction of the value of m, and hence of k, in the frequency
determination process. A limit of m = 492 was chosen empirically after attempts
to produce a full solution for higher values of m had failed. As a result of this

limit, just 170 of the possible 1002 ER5-1 frequencies lying below two cycles per

revolution were solved for, giving rise to 340 sine and cosine terms.
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A second factor which came to light after initial solutions were found was the

high standard error of 47 cm attached to the C.ZT term (i.e. the time term for

TOPEX/Poseidon). This is illustrated in Figure 5.8. This error, determined from

0.50
0.40
» 0-307
[]
]
<
:
0.20-
0.10- .
0.00 T T : T
835 840 845 850

eigenvalue number

Figure 5.8: Some of the higher standard errors for the solution 53, prior to sup-

pressing the parameter C7.

the variance-covariance matrix N~! indicates a weakness in the solution. This
is particularly true since (i) the corresponding eigenvector had only the one cr
term as a major contributor and (ii) the standard error is greater than the initial
13 cm radial error estimate for TOPEX/Poseidon. Indeed, it is almost as great
as the corresponding 58 cm a priori radial error estimate for ERS-1. As a result
it was decided to suppress the C7 term in solution. It was noted that this did
not degrade the root-mean-square (RMS) of fit of the solution but did result in a
decrease in the correlations between parameters and removed the 47 cm standard
error. Having made these modifications (limiting m for ERS-1 and suppressing the
CT term for TOPEX/Poseidon) there were just 345 solution parameters sought
for the ERS-1 solutions (S1 and S2 above) and 852 for the joint case (S3).

For each solution, the radial correction was recovered by employing the solution
parameters within Equation 5.11 and removed from the simulated or a prior:
values that are illustrated in Figures 5.1 and 5.2. This removal provided residuals

of fit of the correction procedure to the simulated radial error, the RMS of which

109

2
g
I |
v
a
e
Wl
i
;
P




a7 - 1 K :
are presented in Table 5.3. In all instances, there has been a marked mmprovement

RMS (cm)
radial residuals dual-crossover
solution ERS-1 TOPEX/Poseidon residuals
a priort 58.38 13.50 59.53
S1 6.82 — 12.00
52 4.64 — 12.21
S3 4.87 3.09 2.69

Table 5.3: RMS of fit of the calculated radial error, from the unconstrained solu-

tions, to the simulated values.

after modelling for a radial correction. The dual-crossover column indicates the

diminution in the difference between true and perturbed dual-crossover heights,
T _E T _E
(n = hf) = (b2 — BE) .

This occurs as a result of the smaller difference between h, and h, after the
computed corrections have been included.

Considering solution set S1, Figure 5.9 illustrates the radial residuals alter
correction. As indicated in Table 5.3, this has an RMS value of 6.82 ¢m corre-
sponding to the 12.0 cm RMS of fit of the corrected set to the dual-crossover data.
The value of 6.82 cm is significantly lower than the 13.50 ¢cm a priori estimate
for the error in the TOPEX/Poseidon radial ephemeris. This would appear to
mean that the inaccuracies in the TOPEX/Poseidon ephemeris have not totally
contaminated the ERS-1 solution parameters. Also, evident in Figure 5.9 is a
three day beat (which results from the close proximity in ground-tracks after this
period) and a number of arcs where the residuals still exceed 20 cm. Consider-
ation of Figure 5.10 also shows a number of standard errors in excess of 6 cm.
Thus while the RMS of fit after refinement is acceptable, there is clearly a level of
uncertainty in the solution parameters, indicating that the solution is potentially
Inaccurate in certain circumstances.

By including ERS-1 single-crossovers in the dataset, but again only solving for
the ERS-1 parameters, the RMS of fit is further reduced to some 4.64 cm. The

radial residuals of this solution (82) are depicted in Figure 5.11, which again sug-

110




0.50
0.25
n
o
< 000 }éﬁk
=
—-0.25
—0.50 T l T | T
48500 48501 48502 48503 48504 48505 48508
time (MJID)
Figure 5.9: ERS-1 radial residuals after correction for the solution S1.
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Figure 5.10: The highest standard errors for solutions to ERS-1 parameters.
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Figure 5.11: ERS-1 radial residuals after correction for the solution S2.

gests a three day repeat pattern and still possesses some points where the residuals
are larger than 15 cm. The addition of the single-crossover data appears, from
the improved results, to overcome some of the deficiencies in the dual-crossover
dataset. Any future work with real dual-crossover data ought to consider the
reasons behind this improvement; the geographical expansion of the dataset not

necessarily providing the only explanation.

Further, some measure of the amount of absorption of TOPEX /Poseidon radial
error into the ERS-1 solution is deduced by considering the 12.0 em RMS of fit
after correcting for the dual-crossover data. Taking the value of 4.64 cm achieved
for ERS-1, a simple differencing of squares implies that the remaining error in
the dual-crossovers (due to TOPEX/Poseidon) is approximately 11 cm — close
to the a priori value of 13.5 cm. This indicates that there is a low incidence
of absorption of the TOPEX/Poseidon error, opening up the potential to solve
sitnultaneously for parameters of both satellites. The improvement in solution
as attained by S2 over Sl is also illustrated in the diminished standard errors

of Figure 5.10. A uniform improvement is displayed with only three such errors

exceeding the 6 cm mark. The eigenvector connected with the 11 c¢m standard

error was investigated through analysis of its component parameters, but no single

contributing frequency or other value dominated; rather the vector was composed
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of a large subset of the set of solution parameters,

The third Solutipn, 53, added the TOPEX /Poseidon single-crossover data to
the existing dataset and attempted the simultaneous solution suggested by this
previous result. As stated above, this solution procedure solves for the previ-
ously specified 852 parameters to avoid singularities in the matrix N. The ra-
dial residuals after solution are depicted in Figure 5.12 for ERS-1 and 5.13 for
TOPEX/Poseidon.  The residuals for ERS-1 have increased slightly from those

R

I T I I 1
48500 48501 48502 48503 48504 48505 48508
time (MJD)

Figure 5.12: ERS-1 radial residuals after correction for the solution 53.

obtained for solution S2. However, none of them now exceed 20 c¢m, and the
increase in RMS from 4.64 cm to 4.87 cm is reflected in slightly greater varia-
tion elsewhere. The TOPEX/Poseidon radial residuals exhibit an RMS of just
3.09 cm, indicating a significant improvement over the a priori 13.5 cm value.
The residual plot for TOPEX/Poseidon also shows a clear daily cycle — giving
ten almost jdentical occurrences of the same pattern over the simulation period.
In addition to the improvement in the TOPEX/Poseidon residuals, the RMS of
fit to the dual-crossover data has diminished to 2.69 cm. The standard devia-

tions of the dominant eigenvectors are plotted in Figure 5.14. Investigating these

eigenvectors indicated that those associated with the greatest uncertainties were
largely composed of ERS-1 parameters; the dataset being adequate to resolve the

TOPEX/Poseidon parameters.
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Figure 5.13: TOPEX/Poseidon radial residuals after correction, for the solution
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Figure 5.14: The highest standard errors for the simultaneous solutions.
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So far the matrix N ha ral :
d been unconstrained. However, certain of the standard

errors (illustrated in Figures 5.10 and 5.14) are relatively large when considered

in relation to adjacent values. Further, in contrast to the case of the 47 cm

standard error attained prior to the cocciom of T .
standa tained prior to the suppression of the C parameter, none of

the associated eigenvectors show significant contributions from any given solution

parameters. Thus, in order to reduce these values and so improve the level of

confidence in the solution the matrix N was constrained.

Reduction m correlation between solution frequencies has been achieved by,
among others, Wagner and Melchioni [1989] and Moore and Gray [1991], with the
addition of mild constraints. The form of constraints adopted here was employed
in a least squares collocation technique. Since it is generally accepted, for example
Wagner [1985], that the greatest contribution to the radial error arises from the one
cycle-per-revolution term, 1y o, this parameter is given the greatest freedom and all
other frequency terms are constrained to a greater extent. Thus, those frequencies
farthest from one cycle-per-revolution (zero and two cycles-per-revolution in this
case) are given the least freedom. The parameters for each satellite are weighted
independently which enables a distinction to be made between the confidence held
in orbits of the two satellites.

The constraints for the frequencies were selected by considering the achieved
or expected variations in the orbital standard deviations. Thus, it was assumed
that the orbit of ERS-1 had a sample standard deviation of between 10 cm and
50 cm (based upon converged RMS values using GEM-T2) as compared with a
range of 4 cm to 20 cm for TOPEX/Poseidon (from predicted estimates). These
ranges were converted to minimum and maximum constraints by first dividing
throughout by a value of 201/2 — taken to be a typical crossover weight —
and then using the constraint formula w = 1/0? (see Figure 5.15). 1t must be
noted that all these values are merely suggested values, since this study is only a
simulation. However, within this study at this time, it was felt that the constraints
thus obtained matched orbital RMS values achieved for ERS-1 six-day arcs, using
the same gravity fields as used for the simulated data. The overall effect 1s to
restrict the solution, by encouraging absorption of ill-determined signatures into
frequencies close to the dominant one cycle-per-revolution term.

The constraints were further adapted to include some measure of the relative
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Umar =

Omin -

T
0 1 2

frequency (cycles per revolution)
Figure 5.15: Illustrating the triangular weighting procedure.

number of data points included by multiplying them by the factor

Nobs
Nparum

where N5 is the number of observations (for a given satellite) and N,uram is the

K

5}

were also constrained to give some measure of the relationship between the two

number of solution parameters sought. The non-frequency terms {C; 11 = 1,

satellites. These constraints reflected the estimated relationship between ERS-I
and TOPEX/Poseidon, given that the latter is considered to possess more accurate
orbits. Thus, the non-frequency terms of ERS-1 were left unconstrained, whereas
those of TOPEX/Poseidon were constrained to 2 em. The principle here is that
ERS-1 error dominates and by constraining the parameters of the two satellites in
this way, the ERS-1 parameters are forced to absorb errors which might otherwise
corrupt the better known TOPEX/Poseidon values.

The RMS of fit attained using the constrained versions of solution techniques
S2 and S3 (presented in Table 5.4) were obviously not as low as those of the
unconstrained set, since the constrained parameters are less free to find a min-
In addition to this, there was another cause of the higher RMS

imising solution.

values, which becomes clear when considering the residual plots, as 1llustrated in

Figures 5.16 and 5.17. These figures both have large tails at either end of the

simulation period. If these tails are removed, the RMS is diminished to values
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RMS (cm)

radial residuals dual-crossover
solution ERS-1 TOPEX/Poseidon residuals
§9 8.02 — 14.13
S3 6.53 3.73 4.35

Table 5.4: RMS of fit of the calculated radial error, from the constrained solutions,

to the simulated values.
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Figure 5.16: ERS-1 radial residuals after correction, for constrained version of the

solution S2.

of 5.66 cm and 5.33 cm for solutions S2 and S3 respectively; still larger than the
equivalent unconstrained results. The different RMS values for the ERS-1 solu-

tions with and without the tails, are probably due to the lack of data beyond

the simulation period; meaning that the solution at the ends of the period is not

restricted to realistic values. In the unconstrained solution, there are no visible

tails since the errors are absorbed throughout the solution, due to the minimising

process. However, when seeking a constrained solution, these errors cannot be so

freely absorbed and the tails become apparent. In contrast to the RMS increase in

the constrained solution, the standard errors achieved (illustrated in Figures 5.10

and 5.14) show a uniform improvement (decrease). Thus there is more confidence
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Figure 5.17: ERS-1 radial residuals after correction, for constrained version of the

solution S3.

in the constrained solution; at least in that portion of the period lying between

the tails exhibited by the residuals.

5.8 Conclusions

In conclusion, these results indicate that a conceptually simple technique is able
to reduce the radial orbit error of ERS-1 through the addition of dual-crossover
residuals with TOPEX/Poseidon. The addition of ERS-1 single-crossovers fur-
ther improves the solution, resolves some of the remaining outlying points and
improves confidence in the solution, as measured by the standard errors of the
covariance matrix. The use of the mild constraint approach detailed above (which
characterises the known form of the radial error) also reduces the formal uncer-

tainty in the solution. However, the presence of tails in the residuals may indicate

that the real uncertainty has increased despite the greater confidence in individ-

ual coefficients. Conversely, as these tails hie at the ends of the simulation period,

they may simply indicate a problem with the simulation technique, possibly one

of over-constraining certain frequencies. Clearly, one solution to this problem

would be to exclude the arc ends — a procedure which 1s already in common
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use in orbital convergence work. In addition, this simulation shows that solution

of parameters for the simultaneous refinement of ERS-1 and TOPEX/Poseidon

is possible, though certain parameters have to be suppressed due to dependen-

cies and geographic unobservables within the parameter set. These unrecoverable

components have been identified under the assumptions of the simulation.

A further development may be to replace the simple constraint model used here

with a more complex approach. In particular the variance of the gravitational
component of the radial error at a specific frequency can be derived from the
covariance matrix of the global gravity field model used in the long-arc analyses
to derive the crossovers.

The study has implicitly assumed that the temporal errors associated with
crossovers are negligible or random in nature. More specifically, it has been
assumed that errors due to atmospheric corrections (dry and wet troposphere,
ionosphere, inverse barometer effect) and dynamic ocean topography make no
net contribution to the radial refinement. For TOPEX/Poseidon, the microwave
radiometer (TOPEX) allows a water vapour induced delay to be determined.
Further, the ionospheric correction may be derived for TOPEX from the dual
frequency altimeter, and for Poseidon from the solid state altimeter (using the
DORIS tracking network — see Chapter 6). Thus, the source of major error in
the crossover data is likely to be in ocean tides and other ephemeral ocean dy-
namic features, e.g. eddies. It may be that refining the ERS-1 orbit only will be
preferred by users of this technique to avoid any possible contamination of the

more precise TOPEX/Poseidon dataset.
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Chapter 6

Tracking the French satellite
SPOT-2

6.1 Introducing the next two chapters

In the previous two chapters attempts have been made to improve ERS-1 orbits.
In Chapter 4 this was effected by adopting the techniques of Chapter 3; modify-
ing the aerodynamic and direct solar radiation pressure components of the force
model and utilising the GUESS area table generating software. Subsequently, in

Chapter 5, an approach was made using transferred data from a second satel-

lite (in this instance, TOPEX/Poseidon — which is not affected by atmospheric
density to the same extent as ERS-1). Thus, each attempt aimed to reduce the un-
certainties that arise from errors in atmospheric modelling combined with sparse
tracking data. In this and the following chapter a further attempt is made, using
information from the SPOT-2 satellite. In contrast to the previous approach, this
does not avoid the atmospheric problems of ERS-1, but rather, by possessing a
far denser tracking dataset, aims to correct for along-track errors.

This chapter is purely preparatory. 1t begins with a brief outline of the SPOT-2
satellite and the DORIS tracking system. Following this, the modifications re-
quired by the SATAN-A suite, in order to enable it to process the DORIS Doppler
range-rate data, are described. Thirdly, using the GUESS software of Chapter 3,
odel of SPOT-2 (in a similar manner

area tables are produced from a geometric m

to those obtained for ERS-1 in Chapter 4) and
d 1992. It is intended that this will provide a

several precise long-arc orbits are
determined for periods in 1990 an
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further example of the ability of area tables produced by the GUESS software to

improve the fit of long-arc precise orbits. Then, in the next chapter, the third

attempt to refine ERS-1 orbits will be made using SPOT-2 data.

6.2 SPOT-2 and the DORIS system

The French satellite SPOT-2 was launched in March 1990 from an Ariane launch
vehicle into a sun-synchronous orbit of low eccentricity (e < 0.01) at an inclination
of 98.6° and an approximate altitude of 832 km. It repeats its ground-track every
twenty-six days and is maintained in this orbit by manoeuvres whenever necessary.

The satellite module and solar array attachment (illustrated in Figure 6.1) are
identical to those of ERS-1, though the actual solar panel dimensions are slightly
smaller (about 19.5 square metres as opposed to a value of 28.5 for ERS-1). The
payload consists of two high resolution visual imagers and the on-board segment
of the DORIS tracking system (developed by CNES at Toulouse); the latter being
experimental at the time of launch [Nouél, 1991]. This segment, now confirmed as
being fully operational by over two years of successful tracking, comprises an ommni-
directional antenna, an ultra stable oscillator (USO) and storage and processing

facilities.

The ground segment of DORIS is made up of a network of beacons each of

which falls into one of two categories: either an orbit determination beacon (ODB)
or a ground location beacon (GLB). ODBs are all sited at fixed, well known
locations and are used to determine the orbit of SPOT-2. As Figure 6.2 illustrates,
these provide an almost uniformly global coverage; the system being programmed
to receive at an elevation of just 10° [Dorrer, 1991]. The GLBs, on the other hand
are not used for orbit determination but rather to locate positions on, and hence
movements of, the earth’s surface. Such measurements are relative to the satellite
orbit, as determined by the ODBs. In addition to these two groups, there is a
master beacon at Toulouse, used to update the on-board processor for each orbit,
and a receiving station at Aussaguel which downloads the stored data (once every

twelve hours for SPOT-2) and transfers it to Toulouse for further processing.

Each ground station (ODB or GLB) comprises three meteorological sensors as

well as its own USO and the DORIS antenna. These sensors measure the local
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Figure 6.1: The SPOT-2 satellite.
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atmospheric pressure, air temperature and relative humidity, to provide informa-

tion for the meteorological messages which are sent to the satellite. Every ODB
transmits continuously at two frequencies of 401.125 MHz and 2036.125 MHz

(mainta,ined by the stability of the USO), interrupting these signals every 10 sec-
onds to broadcast the current meteorological information. In contrast, the GLBs
may not transmit continuously but have to be operated on a pre-selected time
slot basis. The reason for this is that if two GLBs were to transmit at the same
time from a similar location they would interfere at the satellite in such a way
as to prevent proper reception and processing. Thus, only one such beacon may
transmit a signal at any one time and the satellite must have been informed which
beacon is sending by a message from the master beacon at Toulouse. This prob-
lem does not occur with the ODBs because their spacing is such that where two
signals do reach the satellite, the Doppler effect causes them to be so dissimilar
that they do not disrupt the operation of the on-board segment.

The on-board processor works by comparing the received frequencies, which
differ from the emitted ones due to Doppler effects, with those of its own USO,
namely 401.25 MHz and 2036.25 MHz respectively. The higher of these is then
used to compute the beacon-spacecraft range-rate and, in the same way, the lower
is employed to eliminate errors due to the ionospheric propagation effect. The

theory and methodology of such a technique is explained in the next section.

6.3 The Doppler effect and beats: some theory

The Doppler effect is a well known phenomenon relating the difference between

emitted and received frequencies to the relative motions of source and receiver.

: : ecel is ‘o from the source (i.e. their separation is
For example, if the receiver is receding f (

increasing), the apparent wavelength ‘hcreases as the number of complete waves

received in any given time interval decreases (the velocity of the signal remaining

: ; i v which is lower than the
unchanged). This corresponds to a received frequency

emitted one [Borowitz and Beiser, 1967, p.435]. For mutually approaching source

and receiver the opposite result pertains, as illustrated in Figure 6.3.

For electromagnetic radiation, such as the radar signal of the DORIS system,

the speed is equal to that of light, ¢. Thus, the relationship between received (f,)
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Figure 6.3: The Doppler effect.

and emitted (fy) frequencies is given by

where u is the magnitude of the relative velocity of the receiver with respect to N

the source, measured positive for an increasing separation and negative otherwise

fr=0 (—L—-i/—c——) (6.1)

[Borowitz and Beiser, 1967, p.437]. ¢ ,f
|

Expanding Equation 6.1 in terms of powers of u/c by means of the binomial

theorem, gives

from which, by consideration of the rel

fo (1 —ufc) <1 + ur‘)/‘Zc2 —{-3u"/8c4 +)

= f (1 —ufc+u/2c’ —u?f2c’ +)

Jr

ative magnitudes of fy, u and ¢ (noting

that u < ¢ for SPOT-2), terms of order (u/c)* and above may be neglected.

Indeed, even the term in (u/c
levels of precision currently availab

Chapter 2). In practice, t

)3 produces negligible computational effect at the
le within the SATAN-A suite (as described in

he DORIS system simplifies even this and, neglecting

all non-Newtonian terms, employs the expression

which is corrected for relativistic effects

within the adapted orbital correction program

fo=fr(1—ufc) (6.2)

(thereby including the (u?/2c*) term)

(see Section 6.4).
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The received frequency is not measured directly, but rather by comparison with

the on-board reference frequency, fs. This is effected by considering the compos-

ite wave, created by the interference between received and reference frequencies

se interact to give a wav . . . .
These & e of constant frequency (f, + f+) /2 and varying am-

plitude. The amplitude varies from zero, when the interference 1s destructive to

some maximum value. Thus, we may consider a second wave of constant ampli-
tude which envelopes the composite one, as illustrated in Figure 6.4, [Borowitz

and Beiser, 1967, p.431]. The frequency of this enveloping wave is | f, — f+| and,
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Figure 6.4: An example illustrating how two frequencies may interact to produce

beats.

where the two interfering frequencies which produce it are sufficiently close, 1t

provides an audible pulsating signal, from which the name beats is derived. Even

in the non-audible range, beats are still detectable by instrumentation and it is

. . : - some measured
the number of such beats which the DORIS system counts, over some mea

. . . . 1cé casts.
time interval, At, lying between successive meteorological broad

By careful choice of f; and fy 1t is possible to ensure that either the received

frequency exceeds that of the on-board USO (fs > fr) or vice versa (fs < fr) ot

¢ t
all times. In addition, by maintaining the beacon frequency close to that of the

satellite (f, ~ f,), the magnitude of the number of beats (V) may be restricted,

126

€f 5 perea A i@l LN ¥

T Lo

I semma g



increasing the ease of countmg. This number s given by the expressio
, X pression

to+At
N:-/to |fs“f7|d?l

where the frequencies of the USOs on the SPOT-9 satellite and in the DORIS

beacons satisfy fs > f,.. Substituting for f. in this eSS ‘ on 6.4
fi g for f, in this expression, using Equation 6.2,

results in the following equation for N,

N=(f-f)+ fl/tﬁmudi (6.3)

¢ Jig
which is the equation used by the on-board DORIS segment to evaluate N and
hence the observed values to be used as data for orbit determinations. Further, by

the definition of u above (as the rate of change of the satellite-beacon separation,

‘fi—’t’) it is possible to expand the final integral term of Equation 6.3 as follows,

N = (fi—f) +%At°+Atp(.s)(z.s
= (= )+ L oo+ 20— p (1) (64

Now, each record of the data files produced by CNES for SPOT-2 contains the

values of

to,

c
oAt

(N - (fs - [b))

and

where the last of these represents the observed range-rate value, O;(ty) — the sub-

script ; denoting the sequential record number and %o being the observation time.

Further, the corresponding calculated value Ci(to) — required by the weighted

least squares procedure of Section 2.3 — 15 found from Bquation 6.4 to be

7{@0) _ [)_@j%ﬂ (6.5)

thus completing the description of and theory behind the DORIS Doppler system.

, s to th bital deter-
The next section elaborates upon the necessary amendments to the or

: - : ; ¢ se observed and
mination package and the corrections which must be made to thes

calculated values for precise orbits to be calculated.
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Figure 6.5: The satellite-beacon range vector.

6.4 Amending the SATAN-A package

It may be recalled from Chapter 2 that the prediction program (ORBPRED)
takes as its basic input a file of observation times, ¢, and determines both a
position, z(t), and velocity vector, &(t), as well as partial derivatives, —a%:_g(t), for
each of the input times and all the model parameters, p, for which a solution is
being sought. From these values, the correction program (ORBCORR) computes
a calculated value, Ci(1), and its partial derivatives, %C;(i), corresponding to
every observation, O;(t). These are then used to form the normal equations and

hence correct the prior parameters.

For DORIS Doppler data, the basic calculated value, C; is defined by Equa-

tion 6.5, which corresponds to an observed range-rate measurement. Thus, 1n

order to evaluate C;, the range vector p (illustrated m Figure 6.5) must first be

determined from
p(t) = z,(t) —z(t = 7)
and beacon position vectors respectively (in

where z_ and z, denote the satellite

j : ' ime is the time
some inertial reference frame) and 7 18 the propagation time (that

taken for the signal to travel from the beacon to the satellite). In its existing form

the prediction program already produces the satellite position vector, z,(t) and

] i ithi orrection
z(t — T), 18 determined within the corr

the equivalent value for the beacon,
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progratil, by iterating in 7 until the range p and the propagation ti botl
’ ime 7 oth

satisty
p=Tc.
Having produced both these position vectors, the range may be

computed at times

+ and t + At using
plt) = |olt)]
whence, by substitution into Equation 6.5, the range-rate may be found.

From a consideration of this equation, it is clear that two dates are required to
obtain one calculated range-rate. Thus, the input file of dates must contain two
records for every one observation record in the Doppler data file; namely the time
at the start of the beat count, ¢ say, and that at the end of the same, t + At (given
a count duration At, as above). If this condition is met, the prediction program
requires no alterations other than those normally incurred for the inclusion of any
new satellite; namely determining area tables, including satellite specific data such
as mass, and so forth. More importantly, the adoption of the DORIS Doppler data
does not, by itself, result in any change in the prediction program (all changes
arising solely from satellite variations rather than tracking-data differences).

Conversely, the correction routine, which is structured in a manner that takes
each type of tracking data in turn, requires several adjustments. These must
enable it to read and process (adding the stored corrections to the raw values)
the new observation format, add several additional computed corrections to both
observed and calculated values and produce the partial derivatives of the range-
rate for use in the normal equations. Each of the necessary amendments will be
considered in turn.

The first alteration was simply effected by changing a format statement. Thus,

the DORIS Doppler data records could be read and the corrections (ionospheric,

o o ser 3d
tropospheric and phase centre effect) added where necessary to the raw observe

e. the ionospheric corrections are computed
2

(Section 6.3) and the

value. As has been mentioned abov

from the Doppler effect on the lower beacon frequency

1 ‘ection 6.2). The phase
tropospheric corrections from the meteorological message (Section 6.2). The ph

Lo . -3 P : fOl‘
centre effect is the DORIS equivalent of a centre-of-mass correction, allowing

a satellite antenna
the offsets between beacon location and antenna and between s

] h a way that it may
and centre-of-mass. This correction has been computed 1n suc y
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be added directly to the observed range-rate, requiring no further computat;
putation.

the modified correction program.

There are three other corrections made, all of which are added to the basi
> c Dasic

calculated range-rate of Equation 6.5. One of them, the relativistic correction
- correction,

could equivalently be removed from the observed value: the effect on the residual
(0; — C;) being the same. The other two corrections made are constant offsets
for the error in the USO frequencies and that in the tropospheric correction term
from the data record. Both these corrections must be added to the calculated

range-rate as they will be solved for in the correction program (thus requiring

partial derivatives of the calculated range-rate with respect to each correction).

Because each USO (of both satellite and beacons) does drift slightly from its
nominal value, the true emitted and satellite reference frequencies will differ from
the nominal values which are used to determine the beat count (Equation 6.3).
However, it is not possible to solve directly for all the drifts in both satellite and
beacon USO’s at once. Indeed, analogously to the solution of station coordinates,
one frequency error must be fixed in order to solve for the drifts in the others.
Thus, it is assumed that the satellite reference frequency, fs, is true and that all
the error lies in the beacon USOs. This will mean that any correction obtained
also includes the error in the satellite USO frequency. Current practice indicates
that solving for a constant drift in each pass (computed as a ratio of the error in
beacon frequency to the nominal frequency) is a satisfactory way of dealing with
this error [Nerem et al., 1991].

Now, because the nominal observed range-rate Of 1s obtained from using the
true beat count but nominal values of the USO frequencies fi* and f}', 1t differs

from the true observed value OF as follows:

o = (-ur-R)g |

o L I oy
= ((fst“flf)_(,sﬂfb)"*'—f()i) fr

1| the error lies in the beacon frequency,

then simplified by the assumption that a
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e [T = ft, thus resulting in the equation,

O?:< fb+fb )i
I

Whence Of may be written

- f n ¢ n
O = fb ( bO (fb_ b)>
. 7 f
= O b~
<fb>+c< fb >
— On_+_(n Jbo fb
<fb 1>+< fi )

= O+ Ayso

. lzl—fbt ft_~n
i =07 (B2 ) e (2 FE)

is the required correction to the observed value to allow for the frequency drift in

the USOs.

where

Since it is the calculated value which requires correcting, this term must be
modified and then removed from the uncorrected variable C;. Thus, retaining the

above superscript conventions,

C{ = Ci—Auo

X
Q2
|
O
TN
3
ca| |
o2
~———
+
o
TN
o3
sz |
el

where

_ __b_;fi>
ﬂ”( i

' : ars is solved for once per
is the required frequency bias correction. The parameter f is solved { I

. : i z * Gection 2.3. The
pass over the long-arc, within the orbit correction program of e

R ; ill be absorbed
approximation used in Equation 6.6 18 justified since any error will

by the solution parameter, f.
. 1 pass 1s far more
The computation of the tropospheric correction term for each pass 1s 1ar
. Cd Lction term in
straightforward. It is simply provided by scaling the existing correction
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the data records, A, by a parameter Ko, and adding this to ¢
O

w he calculated
value (C),

YLy
=it KA, (6.7)

with the parameter K., being solved for in the usual manner (see Section 2 3)

N v 1191 P Ay . : . .
The sole remaiing correction term is a relativistic one. This is required to

allow for the fact that Equation 6.2 was limited to Newtonian mechanics. whereas

the velocities involved necessitate the inclusion of the effect of relativity. This
correction term is given by Boucher {1978] in terms of an adjustment to the beat

count V:

N p—i << GM. GMe>_ (I;@xt)rz—@b(t—ﬂl‘z
& \ml— " In0)] )

where G and M, are the gravitational constant and mass of the earth respectively

(as in Chapter 2) and all other variables are already defined in this chapter. As
with the frequency bias above, this equation results in a correction to the observed

value O, given by

cAN
foAt

. L R I W 4RO - A ks
Oi_c@“(\u(t—ﬂt I%(M) ( 2 ))

which translates to a correction to the computed value by replacing O; with C; in

o = O -

Il

this last equation and altering the first minus after the equality to a plus term.

Thus the required correction is,

(o 1 1\ (leOF - e =Dl
& o () ()

. o sone whi ade to the observed
This concludes the description of all corrections which are made to the obs

and calculated range-rates.

The next step in amending the SATAN-A suite, 1s to evaluate and include the

; 1 "OPT¢ Using the
] : i oC;  withi bital correction program. USiLg
;. = 1 the orb1
relevant partial derivatives, TR withir o
: ‘ essed as TOLOWS
range-rate definition of Equation 6.5, these may be expresse )

oc; _ 0p _ Q&@iﬁﬁgw)
At Opk Opk

—_— =

opi Ope A

dp
artie ivatives of the range, 3 -

which requires the further evaluation of the partial derivative | , ﬁ'm
y expanding the derivative

at times ¢ and ¢ 4+ At. These in turn call be found b
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. ‘milar fashion as is used for other partial derivy ves w
m a simil s 15 used for other rtial derivati s within the
p e correction

prograin; namely

where z, = (Zs,5 sy, Ts,) 18 the satellite position vector. Thus the partial ders
: ) - b deriva-

tive of the range-rate with respect to any parameter P is given by

—_—

EL B L 3 < .0p (t + At) azz:sj (t+ At) Ip(t) Ous, (1)
P dzs, (L + At) Opp Oz, () Opy >

apk N At‘v:

. 253 . 2\ : oL
Further, p* = 2.7 (‘Esj - »Ubj> , so the partial derivative of the range with respect

to an element in the satellite vector is just

dp (%‘ —;c;,])
8:ES]- N P

and then the desired partial derivative of the range-rate can be written

o 3 ((ocsj(t + At) —ay, (t+ At)) Oz, (1 + At) (»’cs](i) - ifb}(f')> 0:1;31»(1))
Opr. B j=1 :

Atp(t 4+ At) Opi Atp(1) opy,

where the values of %L are determined, as usual, within the orbit prediction
program (ORBPRED). This completes the determination of the necessary partial
derivatives for all the force model parameters of Section 2.2.

In addition to these, the correction program requires expressions for the partial
derivatives of the additional parameters; namely the tropospheric and frequency
bias scale factors, K., and § respectively. Since these do not contribute to the
force model, they are calculated entirely within the correction program, unlike
those which have just been determined.

The partial derivative of the range-rate with respect to the frequency bias £,
is provided by differentiating Equation 6.6:
dC; - Gi
op ¢

to one, due to the relative m

ich i senitudes of C; and c.
which is approximately equal agnitude

‘ : recti av be obtained
The partial derivative with respect to the tropospheric ol rection may be obtall

similarly from Equation 6.7 and is found to be
ﬁ@; = Avop-
OK irop

' : i ivatives.
Which completes the determination of all the partial derivatl
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e 1L
lhe final amendment to be made to the correction routipe arises f I
'1ses from the

large number of factors produced when solving for both tropospher df
reric and fre-

quency bias corrections on every pass. The number of these terms means t}
se te ans

the time taken for the matrix inversion is significantly

hatb

mcreased over sol utions

re such parameters are not ~ .
whe p . sought. However, it was found that this increase

in computation time could be diminished by noting that each of these correcti
ac :se correction

terms contributes solely to the diagonal elements of the normal matrix. Whence
Fayy - »,A,7

the inverse of the relevant portion of the matrix might be found by inverting the

individual diagonal elements. The following method of decomposing the matrix

into diagonal and non-diagonal blocks was thus adopted.

1 - " : ot T . o e
Consider the following partitioning of a symmetric positive definite matrix
: X,

A B ¢ £ p
Bt D] E E = Q
ct E Dy )\ z r

where Dy, Dy and F are all diagonal matrices and the superscript ¢ here denotes

the matrix transpose. Further, z. y and z are subsets of the unknown solution
, z, y and z

parameters and p, ¢ and r are known. This gives rise to an equivalent system of

simultaneous vector equations:

Az +By +Cz = p (6.8)
B'z+Diy+Ez = ¢ (6.9)
C@%—EQ +Dyz = 1 (6.10)
whence, from Equation 6.10,
2= D’ (g—c‘g_—Eg). (6.11)
Substituting this expression for z into Equation 6.9 we have
(B'- ED;'CY) 2+ (D1 - ED;'E)y =g~ EDy'r (6.12)
which provides the following equation for y
y= (D — BD;'E)” (g Bz (B~ ED;'C")z). (6.13)

. 2t by which Equa-
Combining Equations 6.11 and 6.8 in a manner analogous to that by which Ivq

tion 6.12 was determined, the following result holds

(A- BD;'C)z + (B~CD;1E>E:B~CD;]£ (6.14)
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and by combining these last two expressions, F ;
» quations 6.13 and 6.14 i
14, we obtain

an equation of the form
M_.]Z =3

where
M= (A-CD;'CY) - (B- CD;'E) (D; - ED;'E)” (B - ED; ¢
and
s=p—CD;'r~ (B~ CD'E) (D)~ ED;'E) ™ (4 - ED;'y)

which allows z to be determined by inverting M (which is only as large as the
matrix A). Then, by substituting back into Equations 6.12 and 6.11 in turn, hoth
y and z may also be found.

While this may seem a more involved technique than inverting the full matrix,
the actual computations employed are in fact far simpler, since the inverse of a
diagonal matrix is simply another diagonal matrix composed of the inverses of
the original elements. Thus, not only are all the matrices which require inverting
far smaller than the full matrix, but also only one of the six distinct sub-matrices
needs inverting as a unit rather than through simple element inversion. This is
due to the fact that most of the necessary inversions are of the diagonal matrices,
their transposes, or products of these two types — all of which are still diagonal

matrices.

6.5 Producing area tables for SPOT-2

Having completed the amendments to the SATAN-A package, detailed in the pre-

vious section, the next step in incorporating DORIS tracking data was to produce
area tables for SPOT-2 from the GUESS software of Chapter 3. In order to com-

pute these tables, the SPOT-2 satellite (illustrated in Figure 6.1 above) was firs
; olar arre sed of two

modelled geometrically as a trapezoidal box with a solar array composed O

I . , - 4t thus very similar

Intersecting planes, as depicted in Figure 6.6. As such, 1t 18 thus very

neter antennae and

to the ERS-1 model (Figure 4.3), lacking only the scatterol

hat the sloping face is oriented 1n the

the SAR. The other major difference is t

‘ i iates more from a
opposite way to that of ERS-1 and the slope is greater (i.e. deviate
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Figy :
re 6.6: The geometric model of SPOT-2 in the
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cuboid). The whole of the geometry of SPOT-2 (both areas and normal vectors)

was determined from this model.

The other variables which are required by the GUESS software (i.e. surface

mmteracti fhici it . : : :
1on coefficients, satellite mass and instrument locations) were estimated
S COT ) M . . N . . . ~ "y . -
or computed in a manne; analogous to their derivation for ERS-1 in Chapter 4.
The aerodynamic coefficients employed were the same as those used for ERS-1,

as suggested by the discussion at the end of Chapter 3, while the solar radiation
coefficients were derived using data received from CNES.

N el . -
The GUESS software was run on the mput file and area tables were produced

B -90° -T5° -60° -45° -30° -15° (0° 15° 30° 45° 60° 75° 90°

«
0.0°1 89 6.9 104 17.3 222 257 274 28.1 27.0 24.0 20.1 15.1 8.9
22.5° | 8.8 7.3 11.5 185 23.8 274 292 29.9 28.5 253 21.1 15.6 8.8
45.0° 1 8.7 7.3 11.7 186 23.9 27.6 29.4 30.0 28.7 25.5 21.5 15.7 8.7
67.5° 1 84 7.0 11.2 17.6 22.6 26.1 27.9 28.6 27.6 25.5 21.2 15.0 8.4
90.0° | 86 6.3 9.9 155 20.1 23.3 24.9 26.6 26.6 24.6

112.5° | 8.5 6.8 104 16.3 21.1 25.2 27.9 29.5 29.1 26.3 21.0 14.2 8.5

135.0° 1 9.0 6.9 10.5 16.3 22.2 26.7 29.4 31.0 30.4 27.0 21.1 14.2 8.9

157.5° 1 9.2 6.6 9.9 16.0 22.0 26.5 29.2 30.8 30.3 26.6 20.7 14.2 9.2

180.0° | 9.3 6.1 88 14.8 20.5 24.8 274 29.1 28.7 25.2 20.0 14.2 9.3

202.5° | 9.2 6.6 9.9 16.0 22.0 26.5 29.2 30.8 30.3 26.6 20.7 14.2 9.2

225.0° 1 9.0 6.9 10.5 16.3 22.2 26.7 29.4 31.0 30.4 27.0 21.1 14.2 9.0

247.5° | 85 6.8 10.4 16.3 21.1 25.2 27.9 29.5 29.1 26.3 21.0 14.2 &.5

&9

270.0° | 86 6.3 9.9 155 20.1 23.3 24.9 26.6 26.6 24.5 20.0 14.2 8.6
2025° | 84 7.0 11.2 17.6 22.6 26.1 27.9 28.6 27.6 25.5 21.2 15.0 8.4
315.0° | 8.6 7.3 11.7 18.6 23.9 27.6 29.4 30.0 28.7 25.5 21.5 15.7 8.6
337.5° | 88 7.3 11.5 18.5 23.8 27.4 29.2 29.9 28.5 25.3 21.1 156 8.8

360.0° | 8.9 6.9 104 17.3 22.2 25.7 27.4 28.1 27.0 24.0 20.1 15.1 8.9

Table 6.1: Cross sectional area for SPOT-2 (in square metres) as viewed from the

sun.

which were then used by the ORBPRED program to determine the relevant forces.

Since the SATAN-A suite had already been adapted to accept these tables (Chap-
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0.0° 945 823 9.03| 890 791 8.91 9.04  8.23 9.45
22.5° ] 16.28 1438 13.62 | 15.79 13.58  12.83 | 1548 13.28 12.25
45.0° 1 21.86  20.33  19.90 | 21.37 19.53 19.12 | 21.04  19.21 18.48
67.5° 1 25.28 2429 2438 | 24.82 93.5] 23.60 | 24.46 23.16 22.94

90.0° | 26.06 25.68 26.36 | 25.59 24.90 25.59 | 25.23 24.54  24.92
112,51 24.07 2429 2559 | 2324  23.16 24.15 | 23.59 92351 924.81
135.0° 1 19.60  20.33 2216 | 19.11 19.53 21.37 | 18.79 19.21  20.73
157.5% | 13.31 14.38 1659 | 12.83 1358  15.79 | 12.55 13.30  15.17
180.0° 8.72 822 975 890 7.9I 8.91 9.75  8.23 8.73
202.5° 1 1518 13.28 1255 | 15.79  13.58  12.84 | 16.59  14.38  13.31
225.0° 1 20.73  19.20 1879 | 21.38 1953 19.11 | 22.17  20.33  19.60
247.5° | 2416 23.17 2325 | 24.81  23.51 2359 | 2559  24.29  24.06
270.0° | 24.92 2454 2523 | 25.59 24.90 25.59 | 26.37 25.68 26.06
292.5° | 2294  23.17 2446 | 23.59 2351 24.81 | 24.37 2429 25.29
315.0° | 18.48 19.20 21.04 | 19.11 19.53 21.37 | 19.90 20.33 21.86
337.5° | 12.24 13.30 1549 | 12.83 13.58 15.79 | 13.62 14.38 16.28
360.0° 9.45 823 9.03| 890 791 8.91 9.04  8.23 9.45

Table 6.2: Cross sectional area for SPOT-2 (in square metres) as viewed along

the incident aerodynamic flux vector.

ter 3), only minor alterations (involving the identification of SPOT-2 as an ac-
ceptable satellite) were required. As a quick visual confirmatory check that the
geometry was credible and the GUESS software valid for a second satellite (hav-
ing previously tested it on ERS-1 alone), tables analogous to Tables 4.1 and 4.2
were produced. These tables, 6.1 and 6.2 respectively, display the total effective
cross-sectional area perpendicular to the incident flux vector over the range of
angles attained in the case of SPOT-2.

“onsidering first the table for solar radiation (displayed over a 22.5° x 15° grid
in Table 6.1), the observed and expected variations again correspond (as was the

case for ERS-1) — thus providing more confirmation that the GUESS software
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works satisfactorily. For instance, the total area 1s smallest for those values of f

nely f = —70° : e . o
(namely 3 70°) which are farthest from the value of 20° which is the angle
. 7 L S > . N N . . .
between the solar panels and the axis of rotation of the solar array. In contrast,
w re & i [es 1 o . . .
here 3 approximates this angle, the cross-sectional area reaches its maximum,

since at this value the solar panel is contributing its largest amount; namely its

full plane area.

In addition, there is a variation in area with the angle o. However, this is
less marked for SPOT-2 than for ERS-1 since there is no SAR. Thus, only that
component of the total area which is contributed by the main body of SPOT-2
varies in « for any given value of 8. Given the shape of the SPOT-2 geometric
model (as illustrated in Figure 6.6), this variation means that the maximum values
of the cross-sectional area will be attained when a = 0° or 180° — since the
trapezium edges offer the minimum area when rotating about the body in a for
a fixed . Corresponding minima thus occur at « values of 90° and 270°. Finally,
we note that this table shows similar variations to those displayed by Table 4.1
for ERS-1 when g = £90°. As for ERS-1, these points correspond to a sun
position lying on the solar axis of rotation, and the cause of this variation has
been considered already in Chapter 4.

Again, similarly to ERS-1, it was found that the —OYjs-axis of SPOT-2 did
not deviate from the incident atmospheric flux vector by more than £5°. Thus,
for the aerodynamic resistance force, the visible areas are illustrated in Table 6.2
over a 5° x 5° x 22.5° grid in the three angles a, v and 6 of Figure 3.5. As in the
case of direct solar radiation pressure, this illustrative table displays the variations
that would be expected for SPOT-2.

The constant contribution to the total area, just over 7 square metres, arises
from the body of the model. The variability is almost all due to the rotation of the
solar array, hence (as for ERS-1) registers as variation with the angle a. Thus, as
expected, the maximum area is obtained when the solar panel lies perpendicular
to the incident flux vector (for instance, @ = 90° or 270° for 6 = v = 0) and

corresponding minima occur when these two are most nearly parallel (o = 0°
or 180° for the same & and 7). It is again emphasized that these tables are for

illustrative purposes only and that they were not used in this form within the

orbit determination program.
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6.6 Precise orbit determinations for SPOT-2

In order to confirm that the SATAN- A adaptation works, several long-arc SPOT-2

orbits were ¢ o or Ber 1
converged over periods within May 1990 and January and February

1992. Table 6.3 g ar -
> 6.3 summarizes the time span of each arc as well as the numbers of

Arc Dates m Data included

(MJD) Cp’s sought stations passes | observations
48016.0 - 48021.0 21 27 435 16729
48021.0 - 48026.0 21 27 425 16465
48628.0 - 48633.0 20 37 525 17219
48633.0 ~ 48638.0 21 37 573 18513
48638.0 ~ 48643.0 21 37 593 19219
48645.0 - 48650.0 20 36 526 17390
48667.0 - 48672.0 20 40 hT3 18843
48672.0 - 48677.0 20 40 593 19523

Table 6.3: Solution details for converged SPOT-2 long-arcs, May 1990 and January
and February 1992.

DORIS tracking beacons, passes and range-rate measurements included in the so-
lution. Each arc was converged relative to the GEM-T3A gravity field, associated
ocean tide model and MSIS83 thermospheric model in the J2000 inertisl reference
system. Values of solar activity [F10.7 and geomagnetic indices Ky, have been plot-
ted for the relevant months in Figures 6.7 and 6.8 respectively; highlighting the
long-arc periods. In addition, each arc was converged both with and without the
area tables (described above) in order to further confirm that the GUESS soft-
ware works. In each case, the drag scale factors were solved for using the linear
variation (saw-tooth) approach described in Section 2.5. In most instances twenty
or twenty-one nodal values were solved for, the first two being separated by either

six or twelve hours and the rest lying just six hours apart.

It is possible to solve realistically for so many drag scale factors for SPOT-2

due to the density of the DORIS tracking data combined with the almost global

coverage that this system offers. DORIS Doppler data does not suffer from either

the sporadic nature of laser range data, nor the geographical bias that arises
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Figure 6.7: Solar Flux F10.7 for May 1990 and January and February 1992

emphasizing the converged long-arc periods.
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from the fewer laser stations. There was therefore no point in dividing the ODBs

imio separate geographical groups (as had been done for ERS-1 in Chapter 4).

Every long-arc orbit was converged by solving for the standard initial state vector

(position and velocity), multiple drag scale factors (as indicated in Table 6.3),

station frequency offsets per pass, and a single solar reflectivity coefficient. The

tropospheric pass corrections, K,,,,, were not sought, since it had been found that
the gain in fitting the model to the data did not reflect the increased expenditure
of time taken for their solution. Further, there is no real indication that this
correction satisfactorily explains the error in the tropospheric adjustment in the
data records. So the model may better fit, the data, but does not necessarily offer
a more satistactory explanation of the satellite’s behaviour,

The RMS values presented in the column headed “with GUESS tables” of Ta-

ble 6.4 may be further diminished through more rigorous rejection criteria (i.c. by

Arc Dates Root Mean Square of fit (mm/second)
(MJD) with GUESS tables without GUESS tables
48016.0 — 48021.0 1.74 1.64
48021.0 - 48026.0 1.68 2.19
48628.0 - 48633.0 1.82 3.51
48633.0 - 48638.0 1.71 2.62
48638.0 — 48643.0 1.16 1.20
48645.0 - 48650.0 1.76 2.33
48667.0 ~ 48672.0 1.14 1.68
48672.0 - 48677.0 2.02 3.75

Table 6.4: The Root Mean Square of fit for the SPOT-2 long-arcs both with and

without GUESS generated tables in millimetres per second.

rejecting a larger number of observations). Such an approach allows RMS values
of about 1.1 millimetres per second to be attained — comparable with results pre-
sented at the DORIS Day conference in Toulouse in October 1991 [Nouél, 1991].
In addition, when the tropospheric correction was solved for (once every pass), the

RMS was further reduced to around the 0.7 millimetres per second range — again

comparable with the results of other groups [Nouél, 1991]. This comparability of

results verifies the modifications to the SATAN-A suite. Further, Table 6.4 indi-
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cates that in all but the first long-arc (in May 1990) the use of Guess generated

tables reduces the RMS of fit of the data to the model. Considering also the C'p

coefficients for each long-arc, Figure 6.9 illustrates clearly that the same pattern

of drag scale factors pertains for both solution procedures. Though the absolute

values of the scale factors obtained with GUESS tables are less than those without
the tables, the relative variations (with respect to the mean Cp value) are very

similar. The only deviations from this pattern occur at the ends of the long-arc
periods where the solution is not as well constrained. The existence of this pattern
reflects the fact that the underlying modelled density varies in the same manner
for both solution procedures. Further, the area is probably being modelled more
accurately with the GUESS tables, but the two-cycle-per-revolution variation in

the modelled area does not show in the (p values, obtained linearly over several

revolutions.

As a further consideration, the use of GUESS tables for SPOT-2 orbits leads

to lower values of the solar radiation coefficient Cx. Indeed, as is illustrated in

R sy

Arc Dates Value of coefficient Cp
(MJD) with GUESS tables without GUESS tables
48016.0 — 48021.0 1.063 1.998
48021.0 - 48026.0 1.050 2.001
48628.0 — 48633.0 1.224 2.269
48633.0 — 48638.0 1.063 1.998
48638.0 — 48643.0 1.096 2.072
48645.0 — 48650.0 1.197 2.235
48667.0 — 48672.0 1.141 2.133
48672.0 — 486717.0 1.237 2.320

Table 6.5: The value of the solar radiation coefficient, Cr, solved for both with

and without GUESS generated tables.

Table 6.5. the resultant values are all approximately equal to unity, indicating
]
that the modelled solar radiation pressure force required little or no scaling in the

orbital determination process. Also, the Cr coefficient often absorbs along-track

181 : ic force mismodelling (as well as along-track error
error arising from aerodynamic force mism g ( g

from other sources) Thus, the fact that Cr & 1 may imply that the modelled along-
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track force has seen some improvement — due to the inclusion of GUESS tables

and the momentum exchange approach of Chapter 3 — in the components arising

from the aerodynamic resistance force and the direct solar radiation pressure force.
However, these results do show that the orbital determination process has
been successfully converted for use with SPOT-2 DORIS Doppler tracking data.
Thus, the third suggested technique for refining ERS-1 long-arc orbits may now

be tested; as is the aim of the next chapter.
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Chapter 7

Improving ERS-1 orbits with
SPOT-2 tracking data

7.1 Correcting for density mismodelling

Having modified the orbital determination programs of Chapter 2 so that SPOT-2
orbits could be determined and having produced area tables for this satellite using
the GUESS software described in Chapter 3, another attempt to improve ERS-1
orbits can be made. As was discussed in Section 3.1, precise orbit determination
for ERS-1 suffers from the limited available knowledge and models of atmosphere.
Further, at least during the early stages of its life, during 1991 and 1992, there is
a sparsity of laser tracking data, which exacerbates this problem.

Many of the techniques currently practised in an attempt to overcome both

these factors involve solving for additional parameters. For example, multiple

drag scale factors may be sought at diminishing intervals, often every six hours or
less [Ries et al., 1991]. Another example is the increasingly common approach of
solving for an explicit one-cycle-per-revolution term, often as factors of the sine

and cosine of this variation,

Ap = [CD+§sin(w+M)+€COS(W+M)} (7.1)

[Shum et al., 1990]. Here, S and C are the scale factors, w is the argument of

perigee of the satellite orbit and M is the mean anomaly of the same. Equation 7.1
i o
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gives a correction to the modelled atmospheric density in the form of a scale factor,

p = pmode]led A)O

but the correction may also be applied directly to the force model by solving for

slightly modified values of the coefficients, S and | for instance,
1, o _
F= ““)(/DAI[)'UQ + Ssin(w+ M) + Ccos(w + M) (7.2)

[Ehlers and Moore, 1993]. However, for ERS-1, the unfavourable spread of track-
ing data, often combined with an overall sparsity of the same, may mean that
solution of such additional parameters is unrealistic. It is a fact that satellite
laser range (SLR) data is concentrated in the northern hemisphere; mainly the
U.S.A. and western Europe. This geographical bias allows the determination pro-
cedure to minimise errors around the SLR tracking stations at the expense of
errors elsewhere along the arc; the existence and magnitude of which cannot be
properly assessed using SLR tracking data alone. Further, where the SLR. data
are sparse, this problem is exacerbated by solving for additional parameters as
described above. Thus, for ERS-1, it is often the case that with SLR data alone,
credible drag scale factors may only be solved for on a daily, or at most half-daily,
basis.

In order to ameliorate this problem for ERS-1, a recent feasibility study was
conducted by CNES [Deleuze and Nouél, 1992]. This established that drag scale
factors derived from the satellite SPOT-2 could be utilised to improve ERS-1
long-arc orbits. As is evident from the descriptions of ERS-1 and SPOT-2 given
in Chapters 4 and 6 respectively, their orbits have many similarities. In particu-
lar, their inclination angles (98.5° for ERS-1 and 98.6° for SPOT-2) and orbital
eccentricities (0.001 or less) are extremely close and the major difference lies in
the 50km that separates their altitudes. For a first approximation, these orbital
similarities mean that both satellites experience similar variations in the atmo-
spheric density over a given long-arc period. Further, the quantity and spacing of
the DORIS Doppler tracking data for SPOT-2 is such that drag scale factors may
be realistically estimated at intervals of six hours or less.

In this chapter, a method is presented which attempts to recover information

about the effect of atmospheric resistance on SPOT-2 and then to use this to
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mprove ERS-1 precise orbits. However, unlike the study made by CNES, this
improvement is realised through employing along-track acceleration corrections;
the dominant portion of the aerodynamic resistance force lying in this direction.
The corrections are first verified on SPOT-2, before appropriate modifications
(which allow for density variations due to the differences in position of the two

satellites) are made and the corrections applied to ERS-1 orbits.

Because of the way GUESS generated tables have been seen to improve the
orbits of both ERS-1 and SPOT-2, they will be used throughout this chapter
as part of the usual orbital determination procedure. Thus, it will be assumed
that the along-track acceleration correction represents density mismodelling rather
than miscalculation of the surface area, or gas-surface interaction. The next two
sections deal with the method by which the along-track acceleration corrections
are derived, together with the results obtained when the derived corrections were
applied to SPOT-2. The fourth section then utilises these results to Improve on

current ERS-1 orbits.

7.2 Along-track acceleration corrections

Various authors have attempted to improve on aerodynamic force modelling by
the extraction of information from long-arc analyses. Moore and Rothwell [1990]
and Ridgway et al. [1990] examined laser range and Doppler range-rate residuals
from Seasat tracking data as a possible method of recovering relative atmospheric
density corrections to an underlying thermospheric model. Alternatively, Rothwell
and Moore [1991] and Nuth et al [1991] attempted to modify selected parameters
within such a model, but with only limited sucess due to the relative insensitivity of
near circular orbits to thermospheric variability and the coarseness of the model’s
atmospheric input parameters (i.e. solar activity F10.7 and geomagnetic indices
Kp ). Given the near continuous temporal tracking of SPOT-2 from the DORIS
network, the methodology of Ridgway et al. [1990] has been modified, as detailed
below.

If 7 denotes the along-track acceleration due to the atmospheric resistance,

i e. the acceleration due to drag, then the change in the semi-major axis, «, arising
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from this acceleration may be expressed [King-Hele, 1987] as

where 1 1s - .
here 4 is the product of the gravitational constant and the earth’s mass. Thus,

. . ' bl . . K v
Dler - o203 . . .
using Kepler’s third equation: n*a” = u where n is the mean motion of the

@ B <3n> da
dt 2a) dit

In 3n .
an <372av) i
dt U

where v is the velocity. By restricting the theory to a circular orbit, a not unrea-

satellite,

and hence

sonable approximation for ERS-1 and SPOT-2 given their low eccentricities, the

orbital radius becomes equal to the semi-major axis i.e. « = r. Thus, v = an and

g = via, so the derivative % may be written
dn 3n\ -
5 ()
dt v
3\ s .
= -z 1 (7.3)

[t follows that, by taking small changes in both sides of Equation 7.3 (and denoting
these changes by the A function) we may express the along-track acceleration

correction, AT, in terms of an along-track position correction, AT', as follows:

. 1 d
AT = —g(iaA!l

— ——AT. (7.4)

Continuing to follow Ridgway et al, the along-track position correction AT

may be determined empirically from tracking data residuals. In the context of

SPOT-2, these are just range-rate residuals, Ap(te), and may be expressed as the

difference between the observed (y5) and calculated (cor) range-rates. Thus,

A[)(to) = pobs(t0> - pcal(tg)
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where 1 is the epoch of the observed range-rate p., and the along-track correction

1s 1dentified as a timing error &t in the epoch ¢ for the derived range-rate, i.e.

to = 15 + 6t. Hence,

Ap(10) = poss(to) — pear(to) + plio)dt (7.5)

and the residual may be approximated by an offset and timing error, 1.e. a bias and
tilt. The required timing error is in fact the gradient of best fitting straight line
through the points gained by plotting Ap against p for each pass. One example of
such a plot, taken from a single pass in the middle of a five day SPOT-2 long-arc

MJD 48628 to MJD 48633 (January 7 to the 11th inclusive, 1992), is illustrated

0.00

‘o...
)
LY

—0.04

—0.08-

range-rate residual (Mm/day)

—-0.12 T T T T
0.0 01 0.2 0.3 0.4 0.5

rate of change of range—rate (m/day®)

Figure 7.1: Example slope for a single pass of range-rate residuals.

in Figure 7.1.
In order to compute ét the value of the rate of change of range-rate, 5 must
first be determined. To this end, the file of range-rate residuals, produced by the

b record contained

orbit determination procedure, was constructed so that the it
an epoch, t;, a residual, Ap(t;), a range-rate value, p(t;) and the satellite’s relative
velocity in the along-track direction, v;. For each pass the mean values of time, t,
and satellite velocity, v, were determined by taking the sample mean of the values

of t; and v; respectively over all the records in that pass. In addition, the value of

p(to) was computed by means of a linear approximation between adjacent values

T et



of the range rate,

. d
~ ptizr) — p(t:)

Liyr — 1
Similarly, the corresponding residual at this same average epoch was determined
by averaging over the same two records,
= 5 .
For each pass thus treated, the slope, §¢, was then obtained by solving Equation 7.5
using a matrix inversion method. The value of §¢, combined with the average
velocity of the same pass, o, may then be used to produce the desired along-track
correction

AT = vét

which is associated with the epoch 7. Thus, a set of points of the form (£, AT) is
obtained over the whole of the long-arc; one for each pass within that arc. By fit-
ting some curve through these points a second derivative may be determined which
can then be used to evaluate the required along-track acceleration correction, A7’

from Equation 7.4.

7.3 Application of the above method to some
SPOT-2 long-arcs

The preceeding methodology was tested on three five-day SPOT-2 long-arcs in
January and February 1992. The time span of each arc was chosen to avoid both
SPOT-2 and ERS-1 manoeuvres so that the corrections derived for these three
periods could later be modified for ERS-1 orbits. The number of DORIS tracking
beacons, data passes and range-rate measurements imcluded in the converged solu-
tions are summarized in Table 7.1. For the sake of consistency, points which were
rejected in the initial convergence of each SPOT-2 long-arc were removed from

the observation file to ensure that they were not included in any of the subsequent

variations.
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Arc Dates Data included
(MJD) stations passes observations
48628.0 - 48633.0 37 526 16994
48645.0 - 48650.0 36 526 17390
48667.0 - 48672.0 40 573 18843

Table 7.1: Summary of contributing stations, passes and range-rate measurements

from SPOT-2.

As for the ERS-1 arcs of Chapter 4, the orbits were all converged relative to the
GEM-T3A gravity field, associated ocean tide model and MSIS83 thermospheric
model in the J2000 inertial reference system. Values of solar activity F10.7 and
geomagnetic indices Ky, for the relevant periods, may be seen in Figures 6.7 and 6.8
respectively of Chapter 6. The three long-arcs periods considered in this chapter
lie within the highlighted regions of these figures, since they are three of the eight
arcs converged in that chapter. Surface force modelling tables for SPOT-2 were
derived using the GUESS software (again effected in the previous chapter). The
drag scale factors were solved for using the linear variation, or saw-tooth, approach
(Section 2.5) as was also used the ERS-1 long-arcs of Chapter 4. In each case,
twenty nodal values were solved for, the first two separated by a twelve hour
interval and the rest lying just six hours apart. All long-arc orbits were converged
by solving for the standard initial state vector (for range-rate data): position and
velocity, multiple drag scale factors, station frequency offsets per pass, and a single
solar reflectivity coefficient.

To determine appropriate along-track acceleration corrections, the drag scale
parameters for each arc were replaced by their statistical mean value, C'p; the
orbits being re-computed holding all parameters fixed to obtain a set of range-
rate residuals. These residuals reflect the actual difference between the modelled
density scaled by the factor C'p and that experienced by the satellite. Each pass of
data was then analysed as described above to determine the set of points (1, AT)
for the whole of the long-arc. These are illustrated in Figure 7.2 for each of the
three five-day SPOT-2 long-arcs converged.

Having obtained ¢ and AT for each pass over the whole arc, these data were

smoothed in a two stage process to reduce noise prior to fitting a curve through
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the resulting data. Initial attempts to fit a curve to the unsmoothed data had met
with little success due to the distorting effects of outlying data points, hence the
need to reduce the dataset in this way. In the first stage outliers were removed by

fitting a polynomial of the form
A]ﬂ = ])(f) = Qp + CY]t 4+ ... + anin

to all remaining points and excluding values beyond a specified rejection level.
The process of fitting a polynomial and rejecting outliers was repeated, for a fixed
rejection level and polynomial order, until no further points were excluded.

When fitting a polynomial to a set of points, 1t 1s found empirically that the
RMS of the fitted curve to the data decreases in a continuous manner with a num-
ber of sharp step-like drops separated by regions of slower change, as the order of
the fitted polynomial increases. Eventually, one of two situations pertains: either
a sudden increase in the RMS occurs for an increase in order, implying that the
polynomial is no longer well defined, or the decreases in RMS are of a magnitude
smaller than is of interest (or of benefit) when compared with the increase in con-
puting time taken to solve for the coefficients of the fitted polynomial. The order
of the rejection polynomial, used to remove the outliers in the manner described
in the previous paragraph, was either the greatest value before the RMS began to
increase, or some lesser value lying just after one of the sharp decreases in RMS.

The rejection level, used to determine which points were outliers, was deter-
mined by considering the data (illustrated in Figure 7.2) and picking a value which
removed those points clearly lying outside the main stream. In practice, too low a
rejection level tended to reject so many points, especially at the end of a long-arc,
that the polynomial determined by each subsequent iteration was substantially
different from the previous solution. This again led to another large number of
rejected points, so the subsequent solution again differed extensively. In the worst
cases, a situation arose where no points were left in the last twenty percent of the
arc, effectively preventing the remainder of the method from being implemented.
The choice of rejection level was made so that this event did not occur, while the
worst of the outliers were still removed.

Simply removing the outliers in this manner, did not prove sufficient to satis-

factorily reduce noise in the data; some further smoothing being necessary. The
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method chosen consisted of averaging all remaining accepted points over each or-
bital revolution to produce a single point (¢, AT') for each orbital period through-
out the long-arc. This reduction eliminated the concern about extracting a smooth
second derivative from a function described by noisy discrete values exhibiting a
strong once per revolution signature. The smoothed data are plotted in Figure 7.3
for the same three five-day SPOT-2 long-arcs as previously.

The next step in the process, consisted of fitting a curve through these aver-
aged points. The main consideration was that the second derivative (required by
Equation 7.4) be continuous and, preferably, smooth. Thus, each trial curve was
composed of a number of polynomials or splines (of cubic order or higher). Where
multiple polynomials were tested, they were spliced at the connection points by
setting the first three derivatives equal, thus ensuring the required smooth second
derivative. In addition, the value of the fitted curve and its first derivative were
both set to zero at the start of the long-arc; since at this point it is assumed that
the along-track position is correct, any errors having been absorbed into the initial
state vector. Figure 7.4 shows a detail of Figure 7.3, along with two curves, one
an 110 order polynomial, the other a section of the spliced polynomial solution
to the first test arc (from MJD 48628 to MJD 48633). This figure illustrates the
mmprovement in fit that may be obtained by splicing polynomials, as against using
a single polynomial.

Having fitted a curve to the along-track position correction points, the second
derivative, %AT, was found and hence the along-track acceleration correction
function derived using Equation 7.4. This function was then compared with the
along-track acceleration corrections derived by differencing the actual along-track
accelerations due to drag from the two SPOT-2 orbits; namely the converged
orbit and that employing the fixed drag scale factor, C'p. These differences were
termed the ezpected along-track acceleration corrections, denoted A'j'ex,)mcd, and
are illustrated in Figure 7.5 (again for all three test arcs).

Given the method used to derive the along-track acceleration function, it was
unrealistic to expect that the once-per-revolution variations in Aﬂxpcmd, would be
matched. Indeed, a comparison of the expected acceleration corrections achieved

both with and without GUESS tables, shows that this once-per-revolution varia-

tion, (exhibited by both curves, see Figure 7.6) is exacerbated by the twice-per-
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Figure 7.4: Detail of smoothed data showing single versus spliced polynomial fits

from the SPOT-2 arc of MJD 48628 to MJD 48633.

revolution variation in the satellite area. Thus, in order for a solution curve to be
judged satisfactory (prior to testing it on a SPOT-2 orbit), it had not only to fit
the along-track position correction data but also needed to possess a complemen-
tary along-track acceleration correction curve that matched the general trends
exhibited by the expected corrections. Once such a fit was obtained, a set of
along-track acceleration values, Aio,u“m, was computed from the fitted curve, at
the times required by the orbital prediction routine. These computed corrections

were saved for testing in that same routine.

The orbital prediction routine, already modified slightly in various stages of
this thesis, was then further adapted to read in a file of along-track acceleration
corrections and to add these corrections onto the computed along-track acceler-
ation due to drag. For each arc tested, the computed acceleration corrections
were output and stored at thirty second intervals; this being the integration step
length employed in the orbit determination process. In addition, the along-track
acceleration due to drag was output and stored both for the initial converged or-
bit and for that where the drag scale factors had been set to a mean value. This
enabled the computation of Aixpec,:d which was used to check that the adapted

orbit program actually worked by adding the expected corrections back on to the
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Figure 7.6: Comparison of expected corrections obtained with and without the

use of GUESS tables from the arc starting on MJD 48628.

orbit produced from the average Cp scale factor.

For the first arc (MJD 48628 to MJD 48633) the outliers were rejected using
an 110 order polynomial and a rejection level of 60 metres which resulted in five
of the initial set of 526 points being excluded after just two iterations (and no
further points when a larger number of iterations was used). After averaging,
taking the mean motion of SPOT-2 to be 14.208377 revolutions per day, there
were just 71 data points. The solution curve chosen as best fitting these data was
made up of three polynomials: one of order seven, valid for the first 1.75 days,
then two of order six, with the connecting point 3.75 days after the start epoch.
This particular combination of polynomials was chosen after considering several
variations. It was found to produce a curve which more closely matched the data
(see Figure 7.4) than any other of greater simplicity (i.e. lower order polynomials,
or a lesser number of polynomials).

For the second arc (MJD 48645 to MJD 48650), the rejection polynomial was
of the IOth order and the rejection level was just 20 metres. There were eight
points rejected from an initial 526 and, averaging over the same period again
resulted in 71 smoothed values. For this second arc, the rejection polynomial was

found also found to provide a satisfactory solution curve, with correspondingly
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adequate along-track acceleration corrections, A& uon-

For the third arc (MJD 48667 to MJD 48672), the rejection polynomial was
of the 12'0 order and the rejection level was just 7 metres. There were thirteen
points rejected from an initial 573 and, averaging over the same period resulted
m 73 smoothed values. For this third arc, the solution curve was made up of four
polynomials: one of order five, valid for the first day, then two of order seven,
ending 3.75 days and 4.0 days, respectively, after the start epoch and finally one
of order six.

The final RMS of fit of the initial SPOT-2 orbits, together with subsequent
variations and confirmatory tests using both expected values and solutions for the
along-track acceleration corrections, are given in Table 7.2. 1t should be empha-
sized that the addition of along-track corrections occurs after scaling so the cor-

rections themselves remain unaltered by the re-convergence process. Considering

RMS of fit (millimetres/second)

Arc dates (MJD) 48628 — 48633 | 48645 — 48650 | 48667 — 48672
converged orbit 1.82 1.76 1.14
replacing C'p with Cp 1092.31 894.36 345.83
then adding AT, eee 1.85 2.20 13.16
then re-converging 1.82 1.75 1.14

replacing C'p with Cp
then adding AT, e 25.81 18.53 8.98

0 1.74 1.11

ot

Do

then re-converging 2.

Table 7.2: RMS of orbital fits for SPOT-2 (millimetres/second).

this table, the first point to note is the RMS for the orbit where C'p was replaced
with C'p which indicates just how much the drag scale factors absorb density and
other variations in an orbit. This table also indicates that the addition of Aixpmm
to the force model produces an orbital solution which is very close to the origi-
nal converged solution, confirming again that the amended program works and,
further, the validity of this along-track correction procedure. In addition, it is
clear from the table that the level of fit obtained in the original converged solu-

tion cannot quite be matched by adding on the simple curve approximation for

the along-track acceleration corrections, AT, .0, Rather, it proved necessary to
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re-converge the orbit, effectively solving for Cp again, to produce similar RMS
values. This re-convergence process does not affect the along-track acceleration
corrections, since these are added affer scaling the uncorrected accelerations by
Cp. It is for this reason that Table 7.4 gives differing values for the re-converged
RMS of fit when differing along-track acceleration corrections are employed (one
set 1s scaled for the height variation between ERS-1 and SPOT-2). Otherwise, if
drag-scaling occurred after the corrections had been added, it might be expected
that all re-converged orbits would give the same RMS of fit.

Figure 7.7 illustrates that adding on the along-track corrections resulted in
a diminished variation in the drag scale factors over the long-arc period. This
may 1mply that the variation in the error in the modelled aerodynamic resistance
force is removable, with the GUESS tables providing more accurate areas and the
along-track corrections absorbing the varying errors in the density model (known
to be significant [Klinkrad et al., 1990]). Thus, this approach may prove useful in

separating the error components even if it did not directly benefit ERS-1 orbits.

7.4 Employing these SPOT-2 corrections within
ERS-1 orbits

The analysis of SPOT-2 in the previous section has verified that the recovered
along-track acceleration correction is a fair representation of the required ac-
celeration. This section utilises the derived acceleration time series to improve
along-track modelling of ERS-1. The same three five-day long-arcs were analysed

for ERS-1, Table 7.3 summarizing the SLR data employed in converging these

Arc Dates Data included
(MJD) stations passes observations
48628.0 - 48633.0 11 21 276
48645.0 — 48650.0 8 19 236
48667.0 — 48672.0 7 27 507

Table 7.3: Summary of contributing stations, passes and SLR measurements from

ERS-1.

arcs. The first two arcs with epochs M.JD 48628 and MJD 48645 were resolved
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with both twelve and twenty-four hour separations for the nodal drag scale fac-
tors (thus resulting in six and eleven such factors, respectively). The third arc,
start epoch MJD 48667, was determined with the twenty-four hour separation
only. This was because the correlations between solution parameters indicated
that the twelve-hour separation over-parameterised the model; effectively leading
to a non-determinable solution set. Other than this difference in the number of
drag scale factors employed, the model components used for the ERS-1 precise
orbit determinations were exactly the same as for SPOT-2; namely the GEM-T3A
gravity field, the MSIS83 atmosphere and GUESS surface force tables.

Again analogously to the treatment of SPOT-2, each arc was first converged
on 1ts own, then re-converged with unscaled and scaled SPOT-2 along-track ac-
celeration corrections respectively. The scale term employed was the ratio of the
mean modelled (MSIS83) atmospheric densities (p),

Ponsa
Pspor2
which approximates the density height variation between the two satellites. One
alternative to scaling in this manner may be to solve for an explicit scaling term
i the determination process [Ehlers and Moore, 1993].
The RMS of fit of the several solutions for ERS-1 are displayed in Table 7.4. It

1s important to emphasize that these values have been obtained using satellite laser

RMS of fit (centimetres)

Arc dates (MJD) 48628 — 48633 | 48645 — 48650 | 48667 — 48672
scale factors solved for 6 11 6 11 6
converged orbit 87.28 | 39.65 | 73.09 | 20.69 38.88

replacing Cp with Cp

then addlng A solution

then re-converging 55.02 | 34.20 | 40.88 | 20.68 35.42

the same, after first scaling

AT vion DY Panes /Perora 43.83 | 3481 | 27.25| 20.8] 98.19

Table 7.4: RMS of orbital fits for ERS-1 (centimetres), using only SLR tracking

data in the convergence process.

range (SLR) data only and thus may suffer from geographical bias. Indeed, the
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main reason why the eleven drag scale factors could not be solved for on the third
arc, despite this arc possessing nearly twice as many observations as either of the
other two, was due to the smaller number of stations (and hence the greater bias).
Considering Table 7.4, it appears that where a daily drag-scale factor is solved
for, the correction procedure works well — indeed, rather better than might have
been anticipated. This is evidenced by the much diminished RMS values obtained
where scaled along-track corrections are added to the converged orbit. That the
procedure does not give such vast benefits for the solutions where half-daily drag
scale factors are employed, may be attributed to the fact that the RMS involved

are already much lower.

However, it does not do to put much faith solely in the diminished RMS since
this is an automatic consequence of applying the least-squares differential correc-
tion procedure to SLR data and increasing the number of solution parameters.
Indeed, a decrease in the RMS of fit, given the limited geographical spread of the
laser data is a poor indicator of radial accuracy, over-parameterisation leading to
biased orbits with unrealistic fits over the laser sites at the expense of orbital ac-
curacy elsewhere. A test of radial accuracy may be provided by the use of ERS-1
altimeter data, both as a height measurement relative to some reference ellipsoid
and as a crossover difference. The latter provide the more exact measure, given
reliance of altimetric heights on the accuracy of the geoid adopted. However, for
ERS-1 in its three day repeat cycle, the number of useful crossovers is small, as
they occur predominantly over land or ice at high latitudes.

Altimetry for the three arcs was acquired from NOAA where geophysical cor-
rections were added to the ERS-1 fast delivery data supplied by ESA. The al-
timeter measurements were corrected for ionospheric and tropospheric refraction,
instrumental effects and solid earth and ocean tides. An altimeter bias of -70
cm was added relative to an earth radius of 6378.1363 km and flattening [ where
1/f = 298.257. The geoid heights were derived from the JGM-1 gravity field com-
plete to degree and order 70. JGM-1 is near state-of-the-art and is to be preferred,
in general, to the previous GEM-T series. However, it was not available during the
SPOT-2 analyses, hence the adoption of GEM-T3A for dynamic modelling. Sea-
surface topography to degree and order 15 was taken from the GEM-T3 Geosat

solution. An altimetric height database relative to the adopted reference ellipsoid
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was achieved by incorporation of the geoid height, sea-surface topography height
and altimeter bias into the corrected measurement. To reduce this dataset, 15
second normal points were then evaluated. Both altimeter and crossover data
were added to the laser data to assess the orbits.

The results of fitting both crossover and altimeter data to the ERS-1 orbits are

presented in Table 7.5, along with the RMS of the same fits when the original orbit

RMS of fit (centimetres)

Arc dates (MJD) 48628 — 48633 | 48645 — 48650 | 48667 — 48672
scale factors solved for 6 11 6 11 6
using only SLR data

fit of altimetry 73.5 | 102.5 80.8 67.6 52.5
fit of crossovers 62.8 | 102.9 97.2 79.0 45.6
also mecluding crossovers

fit of altimetry 78.5 e 77.0 — 52.2
fit of crossovers 61.7 — 83.4 — 42.1

Table 7.5: RMS of fit of altimetry and crossover data for ERS-1 (centimetres) for

the original converged orbits.

was converged with crossover data as part of data contributing to the solution.
The first thing to note is the apparent ambiguity of the results. For instance, using
SLR data only, the first arc is poorer radially with half-daily drag scale factors
than with daily ones. However, the converse is true for the second arc — and no
conclusion possible at all for the third. Further, the use of crossover data in the
solution obviously improves the RMS of fit of crossover data, but has a similar
effect on the fit of the altimetry only for the second and third arcs.

In conclusion, several points emerge from this study. Firstly, it is clear from
the above results that SPOT-2 derived along-track acceleration corrections can be
used to improve sparsely tracked ERS-1 precise orbits. The ERS-1 results may be
improved by scaling explicitly for density variations and also by including direct
altimetric or derived crossover data in the solution process. It is suggested that
the lack of a one-cycle-per-revolution signal in the derived curve may be overcome
by using an additional term such as is given in Equation 7.2, solving for S and

C typically once over a six day long-arc. Further, it may prove advantageous to
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solve for the density height scaling factor in solution. As a final point, the method
itself may prove amenable to improvement also. Thus, for instance, the rejection
and smoothing procedure may be automated and the curve fitting process may
be similarly adapted by using quartic or higher order splines (cubic splines having
been attempted with no success). Given the vast improvement to initial RMS of
fit, with no degradation of radial accuracy, it would seem that this method was

worthy of such further study.
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Chapter 8

Conclusions

8.1 Modifications to the SATAN-A suite

This thesis contains three main attempts to refine ERS-1 long-arc orbits as well
as additional modifications to the SATAN-A suite to facilitate these attempts.
The alterations to the SATAN-A suite may be summarized as follows. First, the
solution of drag scale factors was altered from the previous drag and drag-rate
(Cp and Cp) or step function options to a single saw-tooth method (incidentally
retaining the drag and drag-rate option, given two nodal points). In the saw-
tooth method, each drag scale factor is a node, connected to the two adjacent
nodes by straight lines. This enables the scale factors to be defined continuously,
thus facilitating both the dual-crossover and along-track acceleration refinement
methods of Chapters 5 and 7 respectively. Indeed, the use of discontinuous drag
scale factors had previously been seen to adversely affect both methods of refine-
ment due to the production of finite discontinuities in the residuals. These jumps
compromised the solution of the harmonic coeflicients of Equation 5.11 and totally
precluded the matching of the second derivative (of the derived solution curve) to
the expected along-track correction curve as described in Section 7.3.

Secondly, an alternative model for both the aerodynamic resistance and direct
solar radiation pressure forces was introduced. This was based on momentum
exchange considerations (see also Klinkrad et al. [1990] and Sowter [1989]) rather
than the simple deceleration approach previously employed. In order to adopt
this model the GUESS area generating software was devised; the results of which

could either be used to produce a total effective cross-sectional area (for use in the
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original force models) or be employed with the momentum exchange approach.
the application of area tables also constituted the first attempt to refine ERS-1
long-arc orbits.

Thirdly, the SATAN-A software was modified to include DORIS Doppler data
which required an additional section in the correction program. Lastly, the fourth
major alteration allowed the addition of explicit along-track acceleration correc-
tions to be added during the prediction stage of the predictor-corrector process,
within the skin-force subroutines. Together, these last two adaptations permitted
the third attempt at ERS-1 long-arc precise orbit determination refinements to

be made and tested.

8.2 A re-iteration of the main results obtained

The GUESS software was confirmed on several convex solids with ideal results,
though such levels of accuracy were not expected with the more complex satellite
geometries. However, the software did provide area tables for both ERS-1 and
SPOT-2 which reflected the expected variations with sun position and viewing
angle. Further, when employed in precise orbit determinations, these tables re-
sulted in lower values of the RMS of fit in almost all long-arcs considered. Despite
this, 1t 1s unclear exactly how accurate the tables are.

Though the variation in the drag scale factors was less with the GUESS tables
for SPOT-2, this was not the case for ERS-1. However, the sparsity of the laser
data for ERS-1 means that the change in pattern seen in the SPOT-2 scale factors
was not really expected to be seen in those of ERS-1. This is because the drag scale
factors are much more responsive to the positioning of the nodal points for ERS-1
where the data can be best described as occurring in discrete clumps. While the
products CpAp (for drag) and CrAR (for direct solar radiation pressure) appear
to be better determined with GUESS tables than without, it is still unrealistic
to hope that the scale factors themselves (i.e. Cp and Cg) no longer absorb any
errors due to mismodelling of the satellite areas. However, such errors should be
small in relation to other errors e.g. those due to mismodelled density.

Regardless of these considerations, it does seem from the results of the use

of GUESS tables that some form of satellite area tables can effectively reduce
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the orbital RMS in long-arcs. So, one should either employ any existing satellite
specific tables (e.g. those for Seasat and TOPEX /Poseidon) or generate tables by
some other manner, for example using the GUESS software described in Chapter 3

(as has been done for ERS-1 and SPOT-2).

Considering next the dual-crossover simulation of Chapter 5, it was shown that
by equating the radial residuals with the radial error, which may be expressed as a
harmonic series plus a number of secular terms (see Equation 5.11), the coefficients
of such an expression could be successfully solved for. TFurther, the resultant
solutions could be substituted back into this same equation to provide corrections
to the satellite ephemeris in the radial direction. The simulation showed that
such a process effectively improved orbits of both ERS-1 and TOPEX/Poseidon.
Indeed, the RMS of the ERS-1 orbits was reduced to below the initial level of
that for TOPEX/Poseidon. It was also seen that by considering the standard
errors arising from the covariance matrix, terms which weakened the solution (for
mstance by being heavily correlated with other terms) could be identified and

suppressed.

The results of converging several SPOT-2 long-arcs in Chapter 6 indicated
that the modifications for the inclusion of DORIS Doppler data were effective, at
least 1n the case of this satellite. This chapter further confirmed that the GUESS
software was beneficial to more than one satellite (as measured by the reduced

RMS of the several converged long-arcs).

Given the capability of the SATAN-A suite to process this data type (the pur-
pose of Chapter 6 being to provide just such a capability), it was then possible to
apply the along-track acceleration correction method of Chapter 7, which method
also proved successful in 1mproving ERS-1 orbital determinations. The level of
improvement attained from this method was seen to be governed largely by the
number of solution parameters sought for ERS-1 and the presence or lack of al-
timetry in the solution. Thus, given the sparse laser tracking for the ERS-1 orbits,
where half-daily drag scale factors were sought, the initial RMS was lower. and

?

the improvement with along-track acceleration correction less. However, it was
found (from the altimeter residuals) that in fact solving for daily scale factors

was more realistic — and even then the orbit was probably biased towards the
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laser stations. It seems clear from the results of using DORIS Doppler range-rate
data that if PRARE had worked, ERS-1 orbits would not have required as much

refinement as they undoubtedly have.

8.3 Directions of future work

Each of the attempts to refine ERS-1 orbits has been shown to work, either in
practice or in simulation. However, taking each of them in turn, several sugges-
tions for further modifications may be made.

First considering the GUESS software, it may prove necessary to employ three
angles for the direct solar radiation pressure tables (as is already the case for the
aerodynamic resistance force). This is due to the fact that the solar panels do not
always point as closely to the sun as is possible, but rather may be slightly off-
pointing. Reasons for this variation include pre-determined mechanical movement,
only approximating the a sun-pointing position, and decisions to use an alternative
scheme (as with TOPEX/Poseidon where the complex pattern of yaw and solar
panel rotation was designed to maximise battery life). In order to employ new
tables the orbital subroutines will need changing, as will some of the GUESS
routines. However, the main GUESS program will be unaltered since it already
accepts three varying angles. For the SATAN-A suite, the practical application
will be possible with the “sun-pointing” angle determined from the equations of
motion of the solar panels (such equations must exist where the panels are moving
in a preset manner). 1t may also be possible to incorporate a thermal radiation
element, to allow for forces arising from temperature differences, particularly those
experienced by the solar array.

Considering next the dual-crossover simulation, the first necessity will be to
test this procedure with real data. Such studies are in fact already underway
and preliminary results are mixed. Some indicate similar levels of achievement,
while others find that the improvement is not as marked as in the simulation
[Carnochan et al., [1993]. Further, there is potential for solving for more of the
ERS-1 frequencies below the limit of two-cycles-per-revolution. Indeed, by using
the covariance matrix for a constraint, rather than the elementary triangular pro-

cedure adopted in the simulation, and by considering a full thirty-five day dataset
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(the ground-track repeat time), it is hoped that the high standard errors arising
from the closeness of adjacent frequencies will be overcome. Further, the increas-
ing body of work on dual-crossovers (for example Carnochan et al. [1993] and le
Traon et al. [1993]) indicates yet other avenues of investigation — for instance, the
possibility of their inclusion as part of the dynamic orbit determination process is
also being investigated. It is hoped that such inclusion will improve sparse orbits
just as altimetry was shown to by Rothwell [1989]. It should also be emphasized
that the temporal problems of dual crossovers (i.e. problems arising from large
time differences between intersecting groundtracks) have not been considered in
the simulation, a fact which will have to be considered in dealing with real data.
At the very least some restriction will need to be placed on the time difference
between the ascending and descending arc. Similarly, any future work with real
dual-crossover data ought to investigate the reasons behind the improvement ob-
tained by including single-crossovers in the solution; the geographical expansion

of the dataset not necessarily providing the only explanation.

Finally, the along-track acceleration correction method may be adapted so
that the scaling factor is solved for, rather than given as was the case above
— the ratio of the experienced average densities. In addition, the method of
fitting the rejection polynomial may be automated by using an algorithm which
determines the polynomial at which any further increase in order does not produce
a sufficiently large decrease in the RMS of fit to merit its use. This automation
could also include the choice of the rejection level (say three sample standard
deviations — a common statistical measure of an outlier [Mood et al., 1982])
so that a sufficient number of outlying points be rejected without distorting the
remaining dataset and without allowing outlying points to remain. In addition to
these considerations, the method of fitting the solution curve ideally requires less
subjectivity. This could either be attained by attempting to automate the current
approach — quite difficult given the number of options (how many polynomials to
use and of what order and where to splice them together) or using some variation
of the spline technique. If the latter was adopted, the spline functions would
need to be quartic or quintic as the second differential of the cubic spline fit
provides a ragged curve, thereby providing sudden jumps in the magnitude of the

computed acceleration corrections. It should not be forgotten, that however much
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the method 1s improved its final usefulness is limited by the availability of the
SPOT-2 tracking data.

In conclusion though, each method has been shown to offer a successful way to
refine ERS-1 orbits, though they all offer scope for further improvement through

some additional modifications.
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