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Thesis abstract 
 
Remote sensing surveyors are tasked with extracting information from aerial landscape images to 
build maps and geospatial models of landscapes. This thesis focuses on four broad hypotheses 
related to this task. First, that the unfamiliar aerial viewpoint is more difficult to process than the 
familiar ground viewpoint, but surveyors are better than novices at processing this viewpoint. Next, 
surveyors are experienced with using binocular disparity cues in stereoscopic aerial images, and thus 
make better use of this cue. Further, surveyors also adapt to the aerial imagery, and this can alter 
perceptual priors for shape-from-shading. Finally, surveyors develop expertise, and this can in part be 
explained by perceptual learning. An initial study established that expert surveyors have a superior 
ability to process the aerial viewpoint, and better recognise aerial-view features, compared to 
novices from the general population. Next, depth perception in stereoscopic aerial images was 
explored with two specific depth cues: binocular disparity, and luminance cues used to interpret 
shape-from-shading. This study required the innovation of a novel version of the classification image 
technique, that can estimate the simultaneous use of binocular disparity and luminance cues. 
Experts and novices classified stereoscopic aerial images, and group differences showed that: 1) 
Experts are better at prioritising and sampling binocular disparity cues, and 2) experts may have 
adapted to diminish the conventional lighting-from-above prior following experience with counter-
conventional light source directions in aerial images. Finally, as a hallmark of expertise is better 
processing of binocular disparity cues, the classification images were employed to explore 
stereoscopic perceptual learning in novices. This study found evidence of learning that characterises 
how observers improve to better sample disparity cues in stereograms. This thesis provides novel 
evidence on the mechanisms involved in interpreting stereoscopic aerial images, and characterises 
expertise in remote sensing surveyors.  
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Chapter 1 

General introduction 

 

1.1 Aims of thesis  

This thesis explores the visual mechanisms associated with expertise in the remote sensing surveying 

of stereoscopic aerial landscape images. The body of literature on expertise for remote sensing 

surveying is rather small, but studies have shown expertise in, for example, visual recognition 

memory (Šikl et al., 2019) and visual search (Lansdale, Underwood & Davies, 2010). An elaboration 

on this body of literature is provided below. The studies in this thesis focus on previously unexplored 

aspects expertise.  

The studies in this thesis were developed following discussions with remote sensing 

surveyors at the Ordnance Survey (OS), who co-funded the work. The OS creates maps and 

geospatial models of the United Kingdom (UK). The discussions with the surveyors were informative 

on the nature of the aerial imagery and tasks, and how the surveyors work with photogrammetry. 

The surveyors also provided multiple examples of challenging landscape features, elaborated in the 

section below. A primary challenge in remote sensing surveying is the use of aerial images, as the 

aerial viewpoint provides an unusual view of landscapes. The first study in this thesis thus sought to 

explore if, and to characterise how, experts perform better than novices when viewing aerial images. 

Two experiments were designed to explore scene processing and object recognition from both the 

ground and aerial viewpoints. Natural images of scenes and objects provided a rich stimulus set, and 

Chapter 2 shows performance measures for e.g., processing scene gist in multiple scene categories, 

and identity matching objects, across both ground and aerial viewpoints. This study also explored 

mental rotation, and whether aerial images of objects have preferred orientations.  

In addition to the general processing of aerial images described above, aerial images are 

provided as stereograms to OS surveyors to aid the perception of 3D shape in the landscape. The 

surveyors are thus very experienced with interpreting stereoscopic cues in aerial images. A primary 

aim of this thesis was therefore to characterise how experienced surveyors use various visual cues to 

support depth perception in aerial images. Chapter 4 describes how experts and novices classify 

landscape features based on different stereoscopic cues. The discrimination of hedges and ditches 

provided a suitable task for this investigation. Discriminating hedges and ditches is challenging 

because they are similar when viewed from above and require stereoscopic judgements based on 

binocular disparity and/or luminance cues. Hedges have crossed disparity and are lighter, while 

ditches have uncrossed disparity and are darker (Chapter 4).  
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In addition to these factors, stereoscopic judgements of hedges and ditches can also be 

influenced by sunlight direction in an interaction with human priors for lighting direction. The 

discussions with OS surveyors also revealed the notable observation that the OS typically orients 

their aerial images to face north-up. This convention is congruent with the traditional orientation of 

maps where the bottom of the page represents south, and the top of the page represents north. The 

UK is in the northern hemisphere, so the sun is always to the south of the camera. This means that 

the direction of the sun is typically from below the line of sight when viewed by surveyors. This 

produces a lighting-from-below structure that conflicts with the well-known prior for lighting-from-

above (Ramachandran, 1988; Sun & Perona, 1998). Given a conflict between lit-from-below images 

and the lighting-from-above prior, aerial images of hedges (convex) and ditches (concave) could lead 

to switched interpretations of their 3D profiles. For example, in terms of shape from shading, hedges 

lit from below will have a ditch-like shading profile if interpreted as lit from above, and vice versa. As 

the typical lighting-from-above prior conflicts with lit-from-below images, it is possible that the 

experts have developed an exception to this prior for the aerial images, to avoid misinterpretations 

of 3D shape from shading. The experts might thus show evidence of interpreting aerial images with 

diminished or switched lighting direction priors. Inverting hedge and ditch images vertically should 

flip their interpretation and, exploiting such inversions, Chapter 4 included measures of lighting 

direction priors to explore any effects of the experts’ unusual experience with lit-from-below images.  

Multiple stereoscopic cues to 3D shape can thus support the discrimination of hedges and 

ditches, i.e., binocular disparity, diffuse luminance (‘dark-is-deep’), and shape-from-shading / lighting 

direction priors. A primary aim was to capture how surveyors use these 3D cues without imposing 

tight constraints on the stimuli and task. A psychophysical technique called classification images (CI) 

affords the possibility of measuring the visual cues that are sampled from stimulus images during 

behavioural tasks. This technique was suitable as it relies on a random component that modulates 

visual cues in the stimulus, and the analysis focuses on how random visual cue patterns influence the 

task. The CI technique is elaborated on in detail below. A novel version of this technique was 

required to simultaneously estimate CIs from binocular disparity and luminance. Thus, an innovation 

supporting this thesis was this novel CI technique that is later implemented to study mechanisms 

involved in visual expertise for remote sensing surveying. The development of this CI technique is 

described in a series of pilot experiments in Chapter 3, and the technique is later applied in the study 

of Chapter 4.  

The results in Chapter 4 suggest that experience with stereoscopic aerial images contribute 

to significant learning for processing disparity cues. Visual expertise can develop through long-term 

engagement with domain-specific stimuli through perceptual learning (PL). The study in Chapter 5 
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was therefore designed to characterise stereoscopic PL for improving novices’ ability to sample 

disparity cues in stereograms. This study used a PL intervention on novice participants to 

characterise learning. Continuing with the CI technique, this study sought to provide a link between 

training to improve processing of stereograms, and how such training might change internal 

templates.  

 

1.2 Studying the world remotely 

Extracting information from photographs is a key component in modern map making and geospatial 

modelling. A primary challenge with making a detailed map or model of the world is that of 

scalability. A neighbourhood can be efficiently mapped in detail by a single on-site observer. But 

mapping a whole city or country would no longer be viable using observers who travel to see 

locations in-person. This solution does not scale up due to logistical restrictions and is now only used 

when aerial photographs cannot resolve the necessary detail. Tasked with mapping an entire 

country, the main strategy employed by the Ordnance Survey (OS) is photogrammetry, where 

countrywide aerial photographs are used for landscape feature classification. The photogrammetric 

tasks require observers, called remote sensing surveyors, who can accurately classify the contents of 

the photographs. Remote sensing is the acquisition of information without physical contact, through 

remote observation.   

At the OS, remote sensing surveyors work to create and update map data of the UK. The 

remote sensing tasks are often difficult, as aerial images are unfamiliar to human observers (Lloyd, 

Hodgson & Stokes, 2002; Loschky et al., 2015). Almost every landscape object appears different 

when viewed from above compared to a normal ground view. Scenes and objects seen from the 

ground viewpoint afford image configurations that we are very experienced with, and our vision 

typically works effortlessly and accurately. For example, we are very experienced with looking at 

common objects such as buildings from a side-view, where the building’s façade is emphasized. But 

in the aerial viewpoint the emphasized feature might be the roof, changing the general appearance 

of the object. Such an ‘atypical viewpoint’ can impair the ability to detect and recognise objects (e.g., 

Center et al., 2022). We are also experienced with the image-statistical regularities in familiar scenes 

seen from the ground viewpoint. For example, we expect the typical view of a beach to contain a 

large stretch of sand or rock in front of our feet, followed by water, and the sky horizon. This view 

contains well-defined horizontal edges, where sand meets water and where water meets the 

horizon, and constitutes the typical image statistics of a beach scene (Oliva & Torralba, 2001). But a 

beach from the aerial viewpoint appears different, as every surface is frontoparallel to the observer 

and the sand-water edge occurs in an arbitrary orientation.  
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In typical ground viewpoints, the ‘gist’ of scenes is processed rapidly despite the complexity 

of natural images, where for example, a basic distinction of ‘natural’ vs ‘man-made’ scenes can be 

discriminated in as little as 8 milliseconds, or one frame of a 120hz monitor (Furtak, Mudrik & Bola, 

2022). But the gist of the scene is processed with more difficulty in aerial viewpoints (Chapter 2; 

Loschky et al., 2015). Objects are also recognised more easily from typical viewpoints, but 

recognition from atypical viewpoints is likely to be slower or more erroneous (Center et al., 2022; 

Lawson, 1999; Tarr et al., 1998).  

To discover the types of remote sensing surveying tasks that can be especially challenging at 

the OS, discussions were held with less experienced surveyors (<1 year of experience) and more 

experienced surveyors (>1 year of experience) on separate occasions. Additional discussions were 

also held with a very senior surveyor throughout the project. These discussions helped to 

characterise how the surveyors work and what is especially challenging with photogrammetry of 

aerial images. The OS places high priority on accurate classification of landscape features. Remote 

sensing surveyors are trained and experienced with classifying features which can be very difficult to 

even detect for untrained observers, such as fences, drainage ditches, culverts, and bus stop stands. 

Surveyors also discriminate between confusable features. According to a common task specification, 

permanent objects should be mapped but temporary objects should be disregarded. Discriminating 

‘permanent vs temporary’ can be difficult in examples such as telling apart a greenhouse and a 

polytunnel, a pile of dirt waiting to be removed and a permanent dirt mound, a lake and a 

temporarily flooded field, or a large tent and a building. Another challenging task specification can be 

to disregard man-made features. Challenging examples of discrimination between ‘natural vs man-

made’ include embankments, rivers and drainage ditches, or hedgerows and natural shrubbery. 

Other challenging discriminations include hedges and ditches, bridges and tunnels, hedgerows and 

Cornish hedgerows (which are built into walls), pavements and bike lanes, sheds and garages, 

pastures and crop fields, and material properties such as asphalt and gravel in roads. Surveyors also 

update existing map data, where differences between an older map and a newer aerial landscape 

image must be detected (Lansdale, Underwood & Davies, 2010). Changes can be subtle in comparing 

an older map and a newer aerial image, and humans are prone to change blindness, where even 

relatively large changes can be missed (Rensink, 2002; Simons & Levin, 1997).  

To make these photogrammetric tasks easier, images are presented stereoscopically, 

providing 3D viewing through binocular disparity cues. An elaboration on depth perception is 

provided below. Both newly recruited and experienced surveyors at the OS self-report a strong 

reliance on stereopsis in images. Stereograms are created by pairing appropriately spaced aerial 

photographs. See Figure 1.1 for an example. The stereogram landscape images are presented to the 
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surveyors via a pair of polarized monitors viewed through a glass frame that provides similar light 

across the monitor pair (3D PluraView Monitor). Polarized glasses are worn for dichoptic viewing, 

separating most of the received light from the two monitors to each eye. The landscape photographs 

are captured by aircraft, providing higher resolution imagery than typical satellite imagery. Individual 

photographs typically cover 2.5 x 1.5 kilometres (450 megapixels), and surveyors zoom in on these 

high-resolution images to reveal features more closely.  

 

 
Figure 1.1: Stereoscopic pair of two houses. Binocular fusion is achievable by crossing the eyes so that the left-
hand and right-hand image is seen by the right eye and left eye, respectively. © Crown copyright and database 
rights 2023 OS, used with permission.  

 

Surveyors with years of experience tend to be better at the various photogrammetric tasks 

compared to less experienced colleagues (Lansdale, Underwood & Davies, 2010; Šikl et al., 2019). To 

help manage the challenging visual tasks, the OS explicitly trains newly recruited surveyors to learn 

how to classify features in aerial landscape images, and difficult tasks are often tackled in 

collaboration with colleagues. Newly recruited surveyors are believed to improve through work 

experience, developing expertise within this domain.  

 

1.3 Introduction overview  

This introduction is organised into topics that reflect four broad hypotheses in this thesis. These 

hypotheses regard the mechanisms associated with expertise in remote sensing surveying of 

stereoscopic aerial landscape images. The first hypothesis states that the unfamiliar aerial viewpoint 

is more difficult to process, but expert surveyors are better at processing the aerial viewpoint. Next, 

surveyors at OS are experienced with using binocular disparity cues in stereoscopic aerial images, 

and they are better able to process this cue. The surveyors also adapt to the aerial imagery, and this 

can alter perceptual priors for interpreting shape from shading. Finally, the surveyors develop 

expertise from experience, and this can in part be explained by PL.  
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This thesis studies expertise in remote sensing surveyors, and this general introduction 

continues with a discussion of visual expertise in general, and in surveyors. The four broad 

hypotheses described above reflect different topics in vision research that will be discussed in this 

chapter. The first topic, relating to processing difficulties with aerial viewpoints, was briefly covered 

in the previous section, and is the subject of the study in Chapter 2. The second and third topics 

relate to depth perception with binocular disparity and luminance cues. These topics will be 

extensively studied in this thesis, and this chapter will contain an elaboration on how these cues 

contribute to depth perception. Cues supporting depth perception will be covered after the section 

on visual expertise. Following this, the fourth topic regards mechanisms of learning that help 

surveyors improve with experience. To conclude this chapter, a discussion focuses on the method 

that is used to study how expert surveyors use binocular disparity and luminance cues. This method 

was the CI technique, and a novel version of CIs was required that could simultaneously estimate the 

use of binocular disparity and luminance cues. The CI technique is a central method to this thesis, 

and later parts of this chapter provide an overview of CIs.  

 

1.4 Visual expertise 

Visual expertise is the experience-dependent development of enhanced perception for domain-

specific images. Example domains involving visual expertise include chess (e.g., Reingold et al., 2001; 

Reingold & Sheridan, 2012), medical imagery analysis (e.g., Fox & Faulkner-Jones, 2017; 

Gegenfurtner, Lehtinen & Säljö, 2011; Krupinski, 2010; Krupinski et al., 2006; Wolfe et al., 2016), pilot 

perception in aviation (e.g., Bellenkes, Wickens, & Kramer, 1997; Kasarkis et al., 2001; Schriver et al., 

2008; Ziv, 2016), and remote sensing surveying (Lansdale, Underwood & Davies 2010; Šikl et al., 

2019). An expert radiologist who is trained and experienced with thousands of hours of searching for 

and diagnosing spots in x-rays has developed visual expertise for this domain-specific task. While 

experts possess expertise within the domain, they typically do not show enhanced visual abilities in 

general (Nodine & Krupinski, 1998; Reingold et al., 2001). Expert chess players process more 

information about chess games in a glance than novices, but the chess players are not likely better at 

general visual tasks outside of chess (Reingold et al., 2001; Reingold & Sheridan, 2012). Performance 

measures tend to find expertise factors such as higher accuracies, shorter response times, and fewer 

gaze fixations on irrelevant items. This goes for tasks within the domain of expertise, but not 

necessarily outside it.  

 Semantic and visual expertise are interlinked in many fields of expertise (Harel, 2016). For 

example, an aircraft mechanic might attend to and describe attributes of an aircraft differently than 

novices (Rosch et al., 1976). The novice might not understand the seen information in the same way 
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as the expert, and therefore use less of it, or miss it completely (Seitz, 2017). Rosch et al. (1976) 

studied conceptual hierarchies and semantic labelling, finding that novices tend to use basic level 

labels (‘bird’) more so than superordinate (‘animal’) or subordinate (‘robin’) labels. Studying expert-

novice differences in labelling, Tanaka and Taylor (1991) showed again that novices rely more on 

basic level concepts, but experts may differentiate subordinate categories as much as basic level 

categories. Experts in some fields have access to a larger lexicon of semantic labels within the 

domain, allowing conceptually more sensitive discrimination of information. Although this is the case 

in some fields of expertise (e.g., mechanics), it may not be the case in all fields. Many fields involve 

looking for features that are conceptually relatively easy to describe to novices, such as available 

moves in chess games, or field boundaries in remote sensing of aerial landscape images. For 

example, novices and experts may both conceptually understand that ‘aerial image’ means an image 

of a scene from the above perspective. However, aerial images are unfamiliar to human observers, 

and experience is key to enhancing visual processing skills in new domains (Chapter 2 and 4; 

Lansdale, Underwood & Davies, 2010; Lloyd, Hodgson & Stokes, 2002; Seitz, 2017, 2020; Šikl et al., 

2019).  

 A major area of research on visual expertise is medical imagery analysis. Medical imagery 

sub-fields, such as radiology, provides images that are unfamiliar to human observers. Radiologists 

working with diagnostic tasks based on such images need years of training and experience with 

supervision to perform the tasks with expert-level performance (Bertram et al., 2013; Fox & 

Faulkner-Jones, 2017; Gegenfurtner, Lehtinen & Säljö, 2011; Krupinski, 2010; Krupinski et al., 2006; 

Wolfe et al., 2016). Expertise in this field is commonly studied in visual search paradigms, as 

radiologists make carefully considered diagnostic judgements based on searching images for 

anomalous spots. Eye-tracking methods have shown that experts tend to make fewer gaze fixations, 

and spend less time attending task-irrelevant information. Radiologists can also gain more 

information from briefly presented (<250ms) images within their domain (Drew et al., 2013; Evans et 

al., 2013; Kundel & Nodine, 1975). Overall, experts are more efficient than novices in processing 

global image structure for guiding initial eye movements towards task-relevant areas.  

 A few studies have explored expertise in photogrammetry of aerial images. Šikl et al. (2019) 

recruited expert image analysts in a study of expertise in visual recognition memory of 2D colour 

aerial images. The task involved recalling previously seen images of four different scene categories 

(historical centers, suburbs, parks and sport fields, and industrial and transportation buildings) and 

two different viewing heights (800m and 1,600m). During the recall task, target images were 

presented with an accompanying distractor item which was either between-category, within-

category, or the target image but rotated. Participants were instructed to respond which image had 
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been previously shown during a learning phase. Accuracy measures showed that experts recognised 

more previously seen aerial scenes than novices. While Šikl et al. (2019) show a memory advantage 

for experts, the processes involved in the expertise remain largely unexplored. For example, we 

might wonder if the experts’ superior recognition memory relies on spatial arrangements of local 

features in the scenes, or colour profile characteristics, or some other image cues that were 

considered particularly useful for memorisation by the experts but not the novices. Further, Šikl et al. 

(2019) did not employ a control condition with ground-view images, which could mean that their 

experts performed better at the aerial images only as a consequence of trying harder at the task in 

general. The study also did not otherwise control for any general memory advantage that the experts 

might have had. Finally, the authors used large-scale images depicting scenes spanning hundreds of 

square meters. This scale is useful to reveal general land-use categorical information such as 

‘residential’ or ‘woods’. However, most remote sensing tasks done at the OS would require a smaller-

scale analysis (‘closer zoom’). Lansdale, Underwood and Davies (2010) used remote sensing 

surveyors from the OS in a study of visual saliency and expertise in photogrammetry of aerial images. 

Participants inspected an aerial image stimulus for 12 seconds, then, after a 2 second delay, they 

searched a changed version for an added target, using a mouse click to identify the target’s location. 

Eye movements were recorded, and experts and novices differed in eye movement patterns. Novices 

were consistently more drawn to visually salient features in the stimulus images, regardless of their 

relevance to the task, but experts were able to discount irrelevant but salient features. A small 

number of other studies have examined categorisation performance and search in aerial images 

using novice participants and geographers, with some authors recommending that future research 

include participants who are directly experienced with photogrammetric surveying tasks (e.g., 

Borders et al., 2020; Lloyd, Hodgson & Stokes, 2002; Pannasch et al., 2014; Rhodes et al., 2021).  

 

1.5 Depth perception 

In this thesis, depth perception is primarily studied with binocular disparity and luminance cues. 

Binocular disparity is a mechanism in binocular vision based on the two eyes receiving inputs of the 

same scene from slightly different angles. Binocular combination of these disparate angles can lead 

to a strong impression of 3D shape in the scene. Luminance cues also contribute to impressions of 

shape, where different light and dark image patterns can be interpreted as having been caused by 3D 

shapes in surfaces. Binocular disparity and luminance cues will be elaborated on below, and this 

section continues with a short discussion on other cues to depth perception.  

Depth perception involves more than disparity and luminance cues. We use additional 

monocular cues that do not depend on binocular vision when perceiving the 3D world (Howard & 
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Rogers, 2002). Some of these cues involve prior assumptions about what 3D-world geometry is most 

likely to cause the appearance of a 2D image (Marr & Nishihara, 1978). In influential work on 3D 

shape perception, Pizlo and colleagues argue that 3D shape perception relies on prior assumptions 

about the nature of shapes in the world (Li & Pizlo, 2011; Li, Pizlo & Steinman, 2009; Pizlo, 2010). 

Perception of 3D shape is a difficult, ‘inverse problem’ which must be solved by the brain using 2D 

inputs from the retina. Inverse problems are difficult as they require inferring a model (3D shape) 

from data (2D retinal image), and there is always more than one model that can account for the data 

(Li & Pizlo, 2011). In visual perception, there are theoretically an infinite number of 3D shapes that 

can produce a given 2D retinal image. Pizlo and colleagues have argued that the visual system relies 

on prior assumptions of simplicity constraints (aligned with the Occam’s razor principle) to limit the 

number of possible interpretations of 3D shape from the 2D data. 3D shapes can be recovered from 

a single viewpoint, without provision of exhaustive viewpoints, that is, without seeing all the sides of 

the object. The simplicity constraints include that: 1) 3D shapes are symmetrical, for example a mug 

or the human body, 2) the surfaces of 3D shapes are planar between their contours, 3) and 3D 

shapes are maximally compact and occupy minimal surface area (Li & Pizlo, 2011; Li, Pizlo & 

Steinman, 2009; Pizlo, 2010). A criticism of Pizlo and colleagues’ shape models is that they tend be 

limited to explaining ‘carpented’ objects with flat surfaces and ‘boxy’ shapes.  

In Figure 1.2, depth is readily perceived in this photograph, despite it being a 2D image with 

no involvement from binocular vision (binocular disparity is involved when viewing, but the whole 

image is presented on a flat page or screen, meaning that binocular disparity only provides a cue to 

flatness for 2D images). Features in the wall texture are assumed to be of similar size and shape 

across the image, and the wall itself is assumed as a planar (flat) surface. As the wall texture 

becomes denser as we look from the right-to-left in the image, the visual system interprets this 

texture gradient as a depth cue which helps perception of the 3D surface orientation. Seeing that the 

left-hand part of the wall is farther away than the right-hand part is a 3D reconstruction. Pictorial 

cues such as linear perspective and texture gradients (Figure 1.2) provide reliable depth perception 

in normal ground-view scenes. But such cues are often scarce, diminished, or missing in aerial-view 

scenes. The visual system can readily achieve depth perception in ground-view images without 

meaningful involvement from binocular disparity. But in aerial images, binocular disparity can 

provide a particularly valuable 3D cue when commonly available pictorial depth cues are diminished.  
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Figure 1.2: A 2D photograph of a slanted surface. Depth is readily perceived in this image with an assumption 
that the wall is flat and with the perception of a changing texture gradient. The top of the image contains 
markers that show the contribution of binocular disparity if this image is seen in the real world with binocular 
viewing. Crossed (near) and uncrossed (far) disparity provides a strong depth cue while viewing such surfaces 
binocularly.  

 

1.6 Stereoscopic judgements  

The view of objects in aerial images often provides less diagnostic information about landscape 

features compared to the usual ground viewpoint (Lloyd, Hodgson & Stokes, 2002; Loschky et al., 

2015). Seeing aerial landscape images stereoscopically, in 3D, affords better depth perception which 

facilitates landscape feature classification. For example, this can be helpful in measuring changes in 

ground height, and in discrimination of mounds and holes, or hedges and ditches.  

Binocular stereopsis, the perception of binocular disparity cues, is a primary mechanism for 

depth perception in binocular vision. The visual system can estimate the binocular disparity between 

the two eyes as they perceive the same scene from slightly different angles. Binocular processing of 

these disparities affords an estimate of depth. A previous section contains Figure 1.1, an example 

landscape stereogram: a stereoscopic pair of aerial images of two houses. Notice how the left- and 

right-hand images in Figure 1.1 are seen from slightly different angles. When fused, these disparities 

are binocularly combined to provide a strong impression of depth.  

Two converging eyes gazing at the same point in space receive the same retinal input along a 

horizontal ring-like area defined by the eyes and the point of convergence called the horopter 
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(Howard, 2002). Surfaces deviating from the horopter cause disparities in the binocularly fused 

image so that the two eyes receive the input at different retinal locations. See Figure 1.3 for an 

illustration of the horopter including example disparities. If binocular deviations are too large, a 

surface or item may pass over the limits of binocular fusion and the observer may experience 

diplopia, or ‘double vision’. Processing of disparities is most efficient horizontally, as the two eyes are 

horizontally arranged next to one another. The geometric horopter is a combination of the larger arc 

of a circle in the fixation plane and a line perpendicular to this (Howarth, 2011). The empirically 

estimated horopter is also different, as alluded to in Figure 1.3 (Howard, 2002). If disparity in the 

binocular image is within and without the horopter, the disparity is ‘crossed’ and ‘uncrossed’, 

respectively (Figure 1.3b). Crossed and uncrossed disparity lead to perceptions that things are near 

and far, respectively. Our visual system constantly processes binocular disparities in objects and 

surfaces, significantly contributing to depth perception. Figure 1.2 illustrates how binocular disparity 

operates to support depth perception of surfaces. Binocular disparity is not a cue to absolute depth, 

but rather relative depth, as it is a cue to relative distance from the horopter along the visual 

direction. An example of absolute depth is: ‘this object is 80 cm away from me’, and an example of 

relative depth is: ‘a point in space is slightly farther away than an adjacent point’. The visual system 

must know the absolute distance to the horopter to achieve a full depth map from disparity. The 

common explanation of how estimations of absolute depth can be achieved is through oculo-motor 

cues to vergence – the angular rotations of the two eyes that allow fixation on a point in space 

(notice in Figure 1.3, the eyes are rotated inwards to fixate on a point in space). However, this 

explanation remains controversial, as Linton (2020) suggests that vergence cues might not be 

available for judgements of absolute depth.  

In stereoscopic aerial images, an example of binocular disparity contributing to depth 

perception is a house appearing tall, standing out in 3D relief above the surrounding ground. The 

arrangement of aerial photographs taken from slightly different angles leads to tall and deep features 

having crossed and uncrossed disparities compared to a surrounding point of reference, respectively.  
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Figure 1.3: An illustration diagram of the horopter. A) The empirical horopter and the theoretical, geometric 
horopter. Binocular fusion does not occur beyond the fusional limit. B) Exaggerated example disparities for 
illustration. The convergence point in space is captured on the same retinal location in both eyes. Notice how 
different disparities cause different retinal locations to be involved.  

 
 Julesz (1971) introduced an influential technique for studying binocular stereopsis called 

random dot stereograms (RDS). RDSs rely on dichoptic fusion of two images, where one image is 

seen by each eye. In careful consideration of how disparities are produced relative to the point of 

convergence on the horopter in Figure 1.3, crossed and uncrossed disparities correspond to nasal 

and temporal displacements, respectively (Blakemore, 1970; Howard, 2002; Julesz, 1971). RDSs 

exploit this displacement pattern with dichoptic presentation of dot arrays, where dots within an 

array can be horizontally displaced nasally and temporally to create crossed and uncrossed disparity, 

respectively. RDSs can create impressions of depth from binocular disparity by displacing dots within 

the two images that are dichoptically fused. If some selected dots are displaced nasally in both 

images, they will be interpreted as being crossed (near), as the dots fall on different retinal locations 

(Figure 1.3). The dots in the images are interpreted as being in a different depth plane due to the 

involvement of different retinal locations compared to the rest of the fused image (Figure 1.3). Figure 

1.4 shows an RDS-like image which contains a small square in uncrossed depth created from the 

above displacement principles. This image is not a classical RDS image, as it is a dense noise texture 

rather than a sparse dot array with empty spaces between dots. RDSs provide a way to study depth 

perception from binocular disparity cues in the absence of any monocular cues to depth. This is a 

powerful technique used to isolate stereopsis mechanisms and create carefully controlled 

experimental images. Howard and Rogers review much of the work using RDSs to probe binocular 

depth perception (Howard, 2002; Howard & Rogers, 2002).  
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Figure 1.4: Crossed fusion reveals a small central square in uncrossed depth (i.e., a central square of dots 
hovering behind the surrounding region). Divergent fusion reverses disparities, making the square appear in 
crossed depth. The image pixels constituting the 3D square have been displaced horizontally by one ‘pixel’ in 
both textures.  
 

1.7 Luminance cues to 3D shape 

Luminance cues can be used to infer 3D shape. Mechanisms include lightness judgements, and prior 

assumptions regarding how lighting directions influence shape from shading. This sub-section 

highlights how luminance cues can support depth perception without involvement from binocular 

vision.  

 Structured variations in image intensity can lead to perception of 3D shape. Such variations 

are commonly light-dark interpreted as highlight-shading caused by 3D surface shape. The visual 

system may recover 3D shape interpretations from simple images merely containing a contoured 

luminance gradient, or images with varying contour intensities (Figure 1.5). By rotation alone, images 

can alternate in perceived relief between convex or concave interpretations (Berbaum, Bever & 

Chung, 1983; Gibson, 1950), as Figure 1.5 demonstrates (Andrews et al., 2013; Ramachandran, 

1988). The visual system can use prior assumptions about the origin of the light source when 

recovering 3D shape from shading. In Figure 1.5, shape from shading is interpreted with the lighting-

from-above prior, where we assume a single global illumination source coming from above; 

ecologically, the sun or ceiling lights being the source (Adams, Graf & Ernst, 2004; Berbaum, Bever & 

Chung, 1983; Brewster, 1826; Koenderink et al., 2003; Langer & Bülthoff, 2000; Pont, van Doorn & 

Koenderink, 2017; Ramachandran, 1988; Rittenhouse, 1786; Schofield, Rock & Georgeson, 2011; Sun 

& Perona, 1998). Ramachandran (1988) introduced the type of stimuli seen to the left in Figure 1.5, 

finding that multiple images with such ambiguities presented next to one another are interpreted 

with one assumed global illumination source. Sun and Perona (1998) showed that the lighting-from-

above prior is not located exactly above on average, but slightly tilted to the left. Mamassian and 

Goutcher (2001) later replicated this. Langer and Bülthoff (2000) tested differences in convex-

concave judgements under diffuse lighting (‘cloudy day’) and punctate lighting (‘sunny day’) 
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conditions. The punctate lighting condition, using collimated beams of light, was further divided into 

source lighting from above-left, above-right, below-left, and below-right. The authors found that 

observers made systematic errors in convex-concave judgements when lighting was from below. This 

suggests that the lighting-from-above prior can act as a dominant cue when resolving convex-

concave ambiguities. This tendency for ‘180° flipped errors’ congruent with lighting-from-above was 

also found by Koenderink et al. (2003) and Pont, van Doorn and Koenderink (2017) when shading 

cues dominated shape judgements in complex textures. As convex-concave judgements can be 

strongly influenced by lighting directions, a later study used such 180° flips with hedges (convex) and 

ditches (concave) to measure how expert surveyors interpret lighting direction cues. For a further 

elaboration on this topic, see Chapter 4.  

Adams, Graf and Ernst (2004) showed that the lighting-from-above prior is malleable with 

experience in humans. The authors used adaptation sessions with multisensory haptic-visual 

feedback, where contoured-gradient visual stimuli like those in the left of Figure 1.5 were paired with 

haptic feedback (‘feels convex or concave’) that was shifted + or - 30°. Participants adapted to shift 

their lighting direction biases slightly based on the shift introduced by the haptic feedback, an effect 

which translated to a visual-only baseline task. In this seminal study, Adams, Graf and Ernst (2004) 

showed that human lighting direction biases are malleable and may be modified by new scene 

statistics. They also noted that their effect on the participants would likely not survive in the long 

term due to the natural environment resetting the baseline prior. Hershberger (1970) found that 

chickens raised in cages illuminated from below still infer shape from shading in a manner congruent 

with lighting-from-above, suggesting an innately encoded prior unaltered by experience in chickens.  

 

 
Figure 1.5: Images providing an interpretation of 3D shape. The lower row contains the same images as the 

upper row, but rotated 180°. Top-left circular luminance gradient is typically interpreted as convex (‘bump’) and 

bottom-left as concave (‘dimple’). The reader may squint their eyes to aid 3D recovery by blur (Ramachandran, 
1988). Right-hand hexagonal lattices (‘honeycombs’) with varying contour intensities lead to an interpretation 
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of highlighted and shaded contours (Andrews et al., 2013). The central hexagon in the top-right and bottom-
right honeycomb are typically seen as a convex bump and a concave dimple, respectively.  

 
With the diffuse lighting assumption, dark image regions appear deep, and light image 

regions appear in relief, or ‘tall’ (Chen & Tyler, 2015; Langer & Zucker, 1994; Langer and Bülthoff, 

2000, Schofield, Rock & Georgeson, 2011; Sun & Schofield, 2012; Wright & Ledgeway, 2004). This can 

be an effective strategy for recovering shape from shading. Langer and Bülthoff (2000) found that 

shape from shading was accurately recovered during diffuse lighting (‘cloudy day’). Judgements of 

brightness correlated with judgements of depth, indicating that a ‘dark means deep’ strategy is 

employed during diffuse lighting conditions (see also Langer & Zucker, 1994). An ecological 

explanation for this effect can be found in natural scene statistics, where the top of a ‘hill’ might 

receive illumination from many sources in the scene, but the bottom of a ‘valley’ might only receive 

diminished illumination due to surface depth occlusion (Langer & Zucker, 1994; Potetz & Lee, 2003). 

Schofield, Rock and Georgeson (2011) highlighted the problem that human vision needs to resolve 

shape from shading in natural environments that provide an ambiguous mixture of punctate light 

from a single-point light source, and diffuse light scattered from the surrounding surfaces. The 

authors found that observers have a strong tendency to expect diffuse lighting, in combination with a 

bias for lighting-from-above.  

The diffuse lighting assumption is commonly exploited in painting, where light and dark can 

accentuate perceived depth. Leonardo da Vinci observed this phenomenon; “among bodies equal in 

size and distance, that which shines the more brightly seems to the eye nearer” (MacCurdy, 1938, p. 

332). Another assumption is the convexity bias, which is a tendency to perceive an ambiguous relief 

as convex (‘tall rather than deep’) (Adams & Elder, 2014; Champion & Adams, 2007; Langer & 

Bülthoff, 2001; Perrett & Harries, 1988). Contrast differences between target and background are yet 

another monocular cue in depth perception, where both light and dark targets can appear closer 

depending on their relationship to the background contrast (Egusa, 1983; O’Shea, Blackburn & Ono, 

1994).  

Remote sensing surveyors at the OS have reported that luminance cues and cast shadows 

are important cues for depth perception in aerial images. Cast shadows in photographs on sunny 

days can be used to infer height differences between tall objects through shadow length. While 

measuring cast shadows might reflect a consciously available strategy, shape inferences from 

luminance cues such as priors are perceptual, and not always consciously available. Chapter 4 

describes an experiment where the task was to discriminate between aerial images of hedges and 

ditches. In this experiment, luminance cues played a significant role in the participants’ judgements, 

and the use of luminance cues varied on the individual level. Data from some participants suggest 
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that they employed a diffuse lighting rule (‘dark-is-deep’) for hedge-ditch discriminations, and data 

from others suggest a punctate lighting rule (‘sunlight strikes from a specific orientation’).  

 

1.8 Cue combination of disparity and luminance 

Multiple cues supporting depth perception tend to combine. Binocular disparity and luminance cues 

tend to coincide in the real world in structured ways. For example, tall ‘hills’ and deep ‘valleys’ are 

encoded with crossed and uncrossed disparity and tend to be lighter and darker, respectively. The 

combination of binocular disparity and luminance cues sometimes results in conflicts which the 

visual system must then resolve. Luminance cues of highlights and shading are also inherently 

ambiguous in many situations. Resolution of convex-concave ambiguities is often handled via biases 

in the system, such as the lighting-from-above bias, the diffuse lighting (‘dark-is-deep’) assumption, 

or the convexity bias, affording quick perceptual heuristics for interpreting 3D relief. Disparity and 

luminance cues typically interact in harmony in the real world, supporting veridical interpretations of 

3D surfaces.  

In studies of cue combination, experimenters may create conditions where cues are 

congruent and incongruent with one another, to measure how the cues combine. Doorschot, 

Kappers and Koenderink (2001) used a surface normal setting task and found that luminance and 

binocular disparity cues combined almost linearly (see also Landy et al., 1995). Lovell, Bloj and Harris 

(2012) independently varied disparity and luminance cues to examine how each cue contributes to 

depth judgements. The authors found that disparity cues were used more, but as disparity cues were 

manipulated to become less reliable, observers tended to shift to luminance cues. Hartle et al. (2022) 

studied convex-concave discriminations with stimuli varying in 3D relief from binocular disparity and 

shading intensity. When the shading cue was weak, binocular disparity was critical for reliable 

discrimination. But when the shading cue was strong, participants tended to show a convexity bias 

even when binocular disparity indicated concavities. Strong shading cues can thus dominate, and 

make observers ignore disparity cues (see also Chen & Tyler, 2015). Hartle et al. (2022) also noted 

individual differences in how the convexity bias influenced relief discriminations. Chen and Tyler 

(2015) showed that luminance cues can make disparity cues redundant in an experiment using 

sinusoidally corrugated luminance gratings. Despite a strong, competing, binocular disparity cue, 

surface relief was interpreted primarily based on the luminance cue, consistent with the diffuse 

lighting assumption where ‘dark-is-deep’. Samonds, Potetz and Lee (2012) studied simultaneous 

excitation from luminance and disparity cues in neurons tuned to both cue modalities in macaque 

primary visual cortex. The authors found neurons that responded more to crossed and uncrossed 

disparities, that also responded relatively better to lighter and darker stimuli, respectively. Other 
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studies have also tested integration of disparity and texture cues to 3D shape, consistently showing 

an additive benefit of cue combination (Hillis et al., 2002, 2004; Johnston, Cumming & Parker, 1993; 

Knill & Saunders, 2003; Vuong, Domini & Caudek, 2006; see also Meese & Holmes, 2004 for a study 

on combining different pictorial cues).  

 

1.9 Perceptual learning 

Another topic of interest for this thesis is the mechanisms involved in how remote sensing surveyors 

learn and improve to better perform their tasks. Visual expertise does not develop at the moment of 

initial conceptual awareness, meaning that a brief lesson on aerial images is not sufficient to develop 

expertise for aerial images. Developing visual expertise requires long-term, experience-dependent 

learning and tuning of the visual system to enhanced processing of domain-specific images. 

Perceptual learning (PL) could account for some aspects of expertise, for example by enhancing 

certain visual processes (e.g., the ability to process binocular disparity) that are important for 

processing domain-specific images (elaborated below).  

PL has often been studied for simpler visual processes using training on simple stimuli, such 

as discrimination of spatial frequencies and orientations (e.g., Fiorentini & Berardi, 1981), or 

hyperacuity in Vernier line discrimination (e.g., Poggio, Fahle & Edelman, 1992). The typical finding in 

such studies is that PL improves performance for the trained stimuli, but does not translate when 

relatively small changes are introduced, such as a 90° rotation. With stimuli that are highly 

homogeneous, the PL can also be expected to have limited transfer. Visual expertise, however, 

appears more general, superseding such highly specific training effects. Training to improve vision 

more generally might help the development of expertise, or benefit recovery for individuals with 

reduced vision, such as in amblyopia (Levi, Knill & Bavelier, 2015; Levi & Li, 2009). Researchers have 

suggested that PL can lead to more general visual learning (e.g., acuity or stereoacuity) in 

neurotypical or neurodivergent adults with sufficient training on a sufficiently diverse set of stimuli 

(Deveau, Ozer & Seitz, 2014; Godinez et al., 2021; Green & Bavelier, 2015; Levi, 2022; Levi, Knill & 

Bavelier, 2015; Levi & Li, 2009; Portela-Camino et al., 2018; Seitz, 2020; Vedamurthy et al., 2016). To 

support generalisable learning, stimuli might need to vary in image configurations such as surface 

orientation, spatial frequency content, and weighted combination with other supporting cues (e.g., 

other visual, haptic, or auditory cues), among other aspects.  

PL is also consolidated by sleep (e.g., Karni et al., 1994; Karni & Sagi, 1993), and promoted by 

trial-by-trial performance feedback which can help observers to home in on diagnostic cues (e.g., 

Herzog & Fahle, 1997; Liu, Lu & Dosher, 2010). The discussion on PL will be elaborated further in 

Chapter 5, which describes a study that focuses on stereoscopic PL.  
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PL is a likely mechanism in developing visual expertise, thus PL interventions could 

potentially augment the development of expertise. In theories on feedforward hierarchical 

processing in vision, higher processes in the visual system, such as object recognition, rely on the 

output of lower visual processes (Serre, Oliva & Poggio, 2007). In such a hierarchical structure, the 

higher processes benefit if the supporting lower processes are enhanced through PL (Dosher & Lu, 

1999; Sagi, 2011). Hypothesising along this line, remote sensing surveyors who are experts at 

stereoscopic photogrammetry might show enhanced processing of binocular disparity cues in 

landscape images, among other expertise factors. Such more basic mechanisms might support the 

broader expertise. From a research standpoint, studying visual expertise can be difficult, as it 

emerges from a natural environment that affords a relatively poor understanding of how isolated 

stimuli and tasks contribute to expertise development. Researchers will therefore commonly apply a 

reductionistic approach by limiting their scopes to singular expertise factors, such as evidence of PL 

for specific cues which are thought to contribute to the broader expertise.  

 

1.10 Selecting a primary method 

Remote sensing surveyors are tasked with creating and updating map data using stereoscopic aerial 

images. Surveyors rely on depth perception from binocular disparity and various luminance cues for 

processing of images seen from the aerial viewpoint. With experience, surveyors develop expertise 

in visual tasks of detection, discrimination, categorisation, and search in images that are unfamiliar to 

the average human observer.  

 A primary aim of this thesis was to uncover expertise involved in depth perception of 

stereoscopic aerial images. The work presented in later chapters thus required experimental 

methods which could uncover sampling of visual cues from images that had both 2D and 3D 

components. An example of a 2D component of an aerial landscape image is luminance cues to 

shape, and a 3D example is height/depth judgements based on binocular disparity. A psychophysical 

technique called classification images (CI) affords the possibility of measuring the visual cues that are 

sampled from stimulus images during behavioural tasks. This technique thus seemed well suited for 

satisfying a main aim of this thesis to uncover visual strategies for stereoscopic aerial images. The 

term CIs encompass a family of related methods, of which ‘reverse correlation’ is the method used in 

this thesis. Reverse correlation uses noise textures that provide a random modulation to a target, 

and for the sake of this thesis, the technique will be referred to as ‘classification images / CIs’. CIs 

have primarily been used with 2D luminance images, but could be extended with the addition of an 

RDS-like manipulation into a novel version that could simultaneously estimate 2D and 3D CIs. This 

novel version of CIs could be suited for studying how experts and novices might differ when using 
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disparity and luminance cues in visual tasks using stereoscopic aerial images. Such a method was 

developed for this thesis project, and its development is described in Chapter 3.  

As a different potential method for this thesis, eye-tracking provides a measure of how 

images are foveated, correlating with how image areas are attended. Eye-tracking is particularly 

useful for studies on visual search. But for this project, information sampling mechanisms (including 

for 3D image aspects) were of primary interest. Eye-tracking seemed unsuitable as it is not directly 

able to measure the use of binocular disparity as a visual cue. Eye-tracking also does not provide a 

measure of how visual cues are used once gaze is directed to their location. For this reason, CIs were 

used as the primary method in this thesis. The CI technique is central to this thesis, and the following 

section will present a summary of the technique and how it has been used in vision research.  

 

1.11 Classification images and the perceptual template 

The CI technique is used to analyse perceptual strategies (Abbey & Eckstein, 2002; Ahumada, 1996; 

Beard & Ahumada, 1998; Murray, 2011). CIs have been used for a diverse range of investigations into 

topics in visual perception. CIs are typically gained through the addition of random noise textures to 

target images in visual tasks of detection, discrimination, or categorisation (Ahumada, 1996; Murray, 

2011). Noise textures have a masking effect on targets, making detection more difficult. But they also 

have a modulating effect, changing the appearance of targets. Noise can sometimes promote and 

sometimes demote detection of targets.  

Take the example of a small, low contrast, white square target overlaid with high contrast 

visual noise covering a larger region than the white square itself. If your task is to detect the white 

square, which is present on 50% of all trials and always located in the middle of the image, you must 

attempt to detect this low-contrast signal despite the high-contrast noise mask making detection 

difficult. Most of the variation in the stimulus images is due to random noise. As you decide whether 

the target was present or not on each trial, you might rely on a strategy of contrast judgement 

centred on the target location. If the target location appears ‘whiter’ with sufficient intensity, your 

response might be ‘yes – there was a white square present’, or if it appears darker, you might be 

inclined to respond ‘no – no white square’. This strategy attempts to detect the expected contrast 

change in the image facilitated by the target acting as a pedestal (Legge & Foley, 1980; Georgeson, 

Yates & Schofield, 2008; Meese, Georgeson & Baker, 2006; Murray, Bennett & Sekuler, 2002). 

Independently of the target, lighter patterns in the noise textures promote, and darker patterns 

demote detection, thus influencing your responses accordingly. CIs are generated from these types 

of noise patterns. By tagging noise textures with the participant’s response on every trial, we can 

sum up all noise textures that yield different responses to construct a CI.  
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CI studies tend to assume that the participants’ stimulus-response relationship is 

approximately linear (Abbey & Eckstein, 2002, 2006; Murray, Bennett & Sekuler, 2002, 2005; Tjan & 

Nandy, 2006). In the above example of detecting the white square, an observer would resemble a 

linear observer with the above response pattern, where lighter and darker patterns increase 

probability of a positive and negative response, respectively.  

Noise textures yielding different responses are typically grouped and summed according to 

four stimulus-response categories as follows: hits (signal present and ‘present’ response), false 

alarms (signal absent and ‘present’ response), correct rejections (signal absent and ‘absent’ 

response), and misses (signal present and ‘absent’ response) (Ahumada, 1996; Beard & Ahumada, 

1998; Murray, 2011). Importantly, only the noise textures are used in the analysis, the signal is not 

included. Noise textures that yielded negative responses (correct rejections and misses) are typically 

subtracted from those that yielded positive responses (hits and false alarms) to form a CI (Equation 

11):  

 

𝐶𝐼 = (∑ 𝐻𝑖𝑡𝑠𝑖𝑗 + ∑ 𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠𝑖𝑗) − (∑ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖𝑗 + ∑ 𝑀𝑖𝑠𝑠𝑒𝑠𝑖𝑗).  Equation 1.  

 

The false alarm trials are illustrative for understanding CIs as, in these trials, the random noise 

texture has mimicked the target to yield a positive response but there was no target present (Abbey 

& Eckstein, 2002; Eckstein, Pham & Shimozaki, 2004; Gold, Sekuler & Bennett, 2004; Murray, Bennett 

& Sekuler, 2002).  

A necessary condition for CIs to be captured is that the noise textures modulate the 

appearance of the target image and thus influence responses. If participants can detect the target 

regardless of any random configurations in the visual noise, the noise cannot influence the task, and 

no CIs will be captured. Experimenters who are preparing a CI study thus need to make sure that the 

signal-to-noise ratio (SNR) is set to a suitable level. Methods include ‘manual staircasing’ by testing 

different SNRs to approximate a desired detection threshold (for example 70% correct responses), or 

adaptive staircasing SNR to a fixed threshold throughout the experiment.  

 CIs can reveal the perceptual strategies, or ‘templates’ of the observers. Templates reveal the 

visual cues that observers use when performing a task. In studying the use of visual cues, this 

method can avoid potential biases from the experimenter when selecting stimuli that might occur 

with other designs. The technique is thus also referred to as a ‘reverse correlation’ approach, as the 

 
1 A CI is a 2D matrix where each element represents a grayscale value, and this matrix is commonly presented 
such that each element occupies multiple pixels on the physical monitor (e.g., 5x5 monitor pixels).  
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determination of what is diagnostic of the target is inferred from the observer’s CI template rather 

than by a pre-determined correct response decided by the experimenter.  

 The CIs approach was originally borrowed from the study of electronic systems, control 

theory, and computer science; fields that have required studying the behaviours of ‘black boxes’. A 

black box refers to a system with unknown internal processes that transforms inputs to outputs. 

Murray (2011) provided an influential review of CIs, where he describes the process of kernel 

analysis (Lee & Schetzen, 1965; Volterra, 1930; Wiener, 1958). A system, such as a retinal ganglion 

cell, can have an intricate internal relationship between inputs and outputs. Volterra (1930) and 

Weiner (1958) showed that, under certain conditions, such a system’s kernels can be approximated. 

Kernels bear similarity to physiological receptive fields or psychophysical spatial filters (Neri & Levi, 

2006; Ringach & Shapely, 2004). For example, a retinal ganglion cell might have a kernel/receptive 

field that resembles a ‘Mexican hat’ function (e.g., Difference of Gaussians or Gabor function), with a 

positive center and negative side-lobes. This is an example kernel with a spatial weighting function. 

Kernels can be characterised by noise inputs that feed through the kernel to produce a response. 

Different patterns in noise produce different responses, and with enough repetitions, certain noise 

patterns can systematically trigger certain responses (Lee & Schetzen, 1965; Murray, 2011; Neri & 

Levi, 2006; Ringach & Shapely, 2004). In analysing these noise patterns that yield different responses, 

kernels can be characterised. Kernel estimation – measuring outputs based on noise inputs – bears 

close analogy to CIs in visual perception that reveal perceptual templates from noise inputs (Neri & 

Levi, 2006; Ringach & Shapely, 2004). A black box system can be a single neuron transforming an 

input to an output, an artificial neural network classifying objects in images, or an observer viewing 

stimulus images on a screen and pressing buttons for responses (Pelli, 1990). CI approaches seek to 

estimate the behaviours of black boxes, to reveal the inner workings of the perceptual templates that 

generate response outputs from random, known, noise inputs. Note however, that physiological 

receptive fields from single neurons are not always sufficient to explain CIs estimated from an 

observer performing a behavioural task. An observer might combine the output of many receptive 

fields to build an overall detection mechanism, and CIs characterise this detection mechanism from 

button-press responses in behavioral tasks. For example, an observer tasked with detecting a white 

square might not necessarily possess and activate a single-neuron receptive field that resembles the 

white square. Rather, the visual system may combine the outputs of many receptive fields in the 

application of a perceptual template that fits the target.  
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1.12 Templates in neurophysiology 

Analysing the behaviours of black boxes has immediate application to biological systems. CIs as a 

technique for kernel analysis inspired application to the study of cell communication and receptive 

field structure in neurophysiology. In a study of auditory neurons, de Boer and Kuyper (1968) 

analysed input-output cross-correlations using noise inputs, which characterised the linear filter of 

their current neuron model. Marmarelis and Naka (1972) studied a three-neuron chain in a catfish 

retina by injection of a random noise current. A horizontal cell stimulated a bipolar cell, which in turn 

stimulated a ganglion cell, and the ganglion cell’s spike-triggered output was recorded. The authors 

were able to use noise to make predictions about the dynamic behaviour of the neuron chain 

(Marmarelis & Naka, 1972; Murray, 2011; Wiener, 1958). Application of noise for the study of 

neurophysiological systems has its own history and body of work which will not be covered in further 

detail in this thesis. See Marmarelis and Marmarelis (1978), and Pinter and Nabet (2018) for books 

on the topic, and Sakai (1992), and Wu, David and Gallant (2006) for review articles. See also Neri 

and Levi (2006), and Ringach and Shapely (2004) for discussions on the similarities between 

templates in neurophysiology and psychophysics.  

 

1.13 Visual psychophysics with classification images 

Ahumada and Beard first developed and popularised the CI technique (Equation 1) for use in visual 

psychophysics (Ahumada, 1996; Beard & Ahumada, 1997; Beard & Ahumada, 1998) many years after 

closely related methods had been used in auditory psychophysics (Ahumada & Lovell, 1971) and 

neurophysiology (Marmarelis & Naka, 1972). In visual psychophysics, the first CI studies showed 

extraction of relevant image features. Ahumada (1996) found differences in visual strategies between 

human and ideal observers for a Vernier acuity task. An ideal observer is a simulated observer that 

performs a given task as well as possible given the information in the stimulus. In a detection task, an 

ideal observer would tell of the optimal strategy for detection, and the ideal template is a perfect 

match to the target (Ahumada, 1996; Beard & Ahumada, 1998; Abbey & Eckstein, 2006). Watson and  

Rosenholtz (1997) showed that when observers discriminated a ‘c’ from an ‘x’, templates from ‘c’ 

responses to ‘x’ stimuli contained a ‘c’ with an inhibited ‘x’, and vice versa. Beard and Ahumada 

(1998) found templates revealing Gabor-like spatial filters involved in making ‘aligned’ and ‘offset’ 

judgements in a Vernier acuity task. Gold et al. (2000) used CIs to study illusory contour effects in 

Kanizsa squares, finding perceptual completion effects in human observers who ‘filled in’ illusory 

contours in Kanizsa squares. An ideal observer did not rely on illusory contour information, as no 

bottom-up signal is present there.  
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Building on the novel approach by Gold et al. (2000), Gosselin and Schyns (2003) further 

tested the idea that CIs reveal properties of internal representations in absence of any bottom-up 

signal by studying what they called ‘superstitious perceptions’. The authors told their participants 

that the letter S was hidden in white noise images, but no signal was ever present. CIs, after 20,000 

trials, showed a significant S shape that looked slightly different for each of the three participants. 

The authors correlated a smoothed version of these CIs with different fonts and found that the S for 

each participant correlated strongest with a different font. As no signal was ever presented, the 

authors concluded that the resulting CIs have revealed an approximation of the internal 

representations of the letter for each participant. Gosselin and Schyns (2003) also tested face stimuli, 

where the contours of a face were presented without the mouth area. When asked to detect a 

smiling mouth, CIs contained templates that resembled a smiling mouth. For templates that contain 

an S, a mouth, or any other more complex shapes, CIs reveal templates that are constructed out of 

multiple receptive fields. These fields combine to produce a perceptual template, which relates to 

the overall detection mechanism of the observer.  

In Gosselin and Schyns (2003), participants showed large differences in response biases. 

Response bias, the tendency to give one response more often than another, can be avoided with a 

two-alternative forced-choice (2AFC) task, where participants are forced to select that the target was 

present in one out of two images. CI studies typically use either a 2AFC or a single-interval binary-

response (SIBR) task where one image is presented, and a yes/no response (or similar) is given. This 

latter design can be faster to perform, as it only requires half the images. SIBR also affords a less 

constrained experience for the participant, as they are freely able to select yes/no for each stimulus 

image. An inherent problem with the SIBR design compared to the 2AFC design is that response 

biases can occur. In Gosselin and Schyns’ (2003) second experiment the two participants responded 

‘yes’ in 48% and 7% of the trials, respectively. CI templates were still reliably found for both 

observers, despite their very different response biases, lending support for the SIBR design. It might 

seem a surprising result that two observers with such differing response criteria should both produce 

robust CIs. The authors note that the more conservative observer had given a positive response only 

when they were certain to have seen the face as smiling, suggesting that their positive-response 

template reflected high-confidence responses. The other observer might have been more focused on 

equally distributing ‘yes’ and ‘no’ responses, as the observers were told that the smile was present in 

50% of the trials. It is likely that less irrelevant noise was added to the positive response category due 

to the conservative observer’s more strict response criterion. The topic of response biases and CIs is 

further explored in Chapter 3: Pilot 1.  
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We may consider the idea of a ‘purely internal’ template, for example an imagined shape or 

object, without any bottom-up influence prior or during the experiment. This template approximates 

the observer’s top-down expectation of what the signal should look like, and can be captured with 

CIs (e.g., Gosselin & Schyns, 2003). The advantage of using no signal is that the stimuli do not 

constrain or lead the observer’s expectation of what to ‘see’ when performing the task. This design is 

less advantageous when experimenters desire more control and constraint in their experiment, 

beyond the observers’ expectations about the stimulus. Another disadvantage relates to the absence 

of any performance measures as there are no ground-truth signals.  

Gosselin, Bacon and Mamassian (2004) extended this ‘superstitious’ or ‘illusory’ CI technique 

to 3D stimuli. CIs of a complex 3D pattern were be found when observers were tasked to look for a 

large ‘+’ sign in RDS with no signal present. RDS are dichoptically presented images of a dot array 

where dots can be displaced to create binocular disparity (Julesz, 1971). In an earlier CI study using 

RDSs, Neri, Parker and Blakemore (1999) found that observers’ ‘yes’ and ‘no’ responses in a 

detection task were supported by dots that contained the same, and opposite, sign of disparity as 

the target, respectively.  

CIs have also been used to investigate PL (Dobres & Seitz, 2010; Gold, Sekuler & Bennett, 

2004; Kuai, Levi & Kourtzi, 2013; Kurki & Eckstein, 2014; Li, Levi & Klein, 2004). A typical finding in 

such studies is that as PL progresses, participants are better able to make use of more relevant 

stimulus information – ‘sampling efficiency’ increases, as revealed by CIs. Gold, Sekuler and Bennett 

(2004) studied PL for discrimination of two faces and abstract textures. CIs showed that observers’ 

templates had higher amplitude and greater spatial extent in the latter half of the experiment 

compared to the first half. The authors paired noise masking with the technique of double-pass 

response consistency, where the same stimulus is shown twice during a session to estimate internal 

noise from response consistency. Gold, Sekuler and Bennett (2004) found evidence that the PL 

improvement comes from increases in the ability to sample relevant visual cues rather than a 

reduction in internal noise. Dobres and Seitz (2010) found higher contrast CI templates post-learning 

compared to pre-learning in a study on PL of oriented gratings. Apart from these template 

improvements, accuracy measures also improved, indicating learning.  

Other research groups have contributed with methodological advancements to CIs. Murray, 

Bennet and Sekuler (2002) discussed a commonality in CI studies that incorrect trials (false alarms 

and misses) tend to carry more of the CI template per trial than correct trials (hits and correct 

rejections). Equation 1 weights all stimulus-response categories equally, but the authors argue that 

optimal template estimation should consider SNR (if it varies throughout the experiment) and 

whether a response was correct or incorrect. For example, if SNR varies, incorrect trials where the 
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target is high in contrast likely contain more of a misleading noise pattern than incorrect trials where 

the target is low in contrast, as noise added to high contrast targets must provide a greater amount 

of misleading information to induce an incorrect response. In a later study, the same authors showed 

that all aspects of a linear observer’s strategy for simple stimuli are reflected in a CI (Murray, Bennett 

& Sekuler, 2005). Observer performance can thus be predicted under limited circumstances. Tjan and 

Nandy (2006) emphasized the problem that if an observer is uncertain about the location of the 

signal, CI templates at different locations can cancel each other out, resulting in no measurable 

template (see also Beard & Ahumada, 1999; Murray, Bennett & Sekuler, 2002). The authors show 

benefits of using higher contrast signals to ‘clamp’ a template to a specific location. Certainty about 

the target location is typical in CI studies, but Abbey and Eckstein (2014, 2021) tasked observers to 

search larger images for small targets with unknown locations using a mouse cursor for localization 

responses. CIs were generated by saving the parts of the noise images that the observers clicked on. 

This alternative design merges the CI technique with visual search. Other studies with a similar 

approach have also combined eye-tracking with CIs in search tasks, studying visual saliency in search 

tasks (Kienzle et al., 2009) and finding differences in foveal and non-foveal processes where 

peripheral features resembling targets attract gaze (Rajashekar, Bovik & Cormack, 2006; Tavassoli et 

al., 2007).  

 

1.14 Classification image analysis 

As CIs come in the form of images, they readily afford direct presentation to the reader, as templates 

are often visible and convincing at first glance. Visual inspection of the raw CI is thus an essential part 

of modern CI research. While such casual inspection is valuable, it is also important to provide means 

of statistical testing for CIs. Chauvin et al. (2005) argued that available statistical tests for CIs were 

underdeveloped in the early years after Ahumada (1996). Studies had sometimes solely based their 

CI analysis on visual inspection by the reader (Abbey & Eckstein, 2002), increasing the risk of false 

positives and a bit of ‘wishful thinking’ from experimenters not relying on any statistical measures. A 

CI is a matrix containing measurable results in the form of pixel intensity values. An obvious starting 

point for analysing significant pixels in the image is by deciding on a luminance intensity threshold 

which filters out pixels that do not reach the threshold. This pixel-wise analysis was used on CIs in 

some early papers. Beard and Ahumada (1998) and Watson and Rosenholtz (1997) zeroed all pixels 

that were less than two standard deviations from the mean in their CIs. These threshold filters 

brought out the templates while zeroing much of the noise from non-template regions in the CIs. CI 

templates can thus be captured through a pixel-wise analysis procedure, but we may question the 

assumption that templates operate on a pixel-by-pixel level. Returning to the example task of 
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detecting a white square, the observer’s template would not likely be operating on a pixel-by-pixel 

level. Receptive fields sum over the image space (over many pixels), which is exploited by the overall 

perceptual template when judging images. Many neighbouring pixels are pooled when determining if 

a region is considered light or dark. Thus, an analysis focusing on correlated neighbouring pixels in 

clusters could efficiently capture lower amplitude but significant template regions. Beard and 

Ahumada (1998) and Watson and Rosenholtz (1997) implicitly included the idea that neighbouring 

pixels were correlated by smoothing their CIs with a Gaussian filter, but they explicitly conducted a 

pixel-wise analysis. Smoothing attenuates high-spatial frequency components, which can help to 

bring out a low-spatial frequency template from white noise textures. By attenuating high-spatial 

frequency components, the authors assumed that their participants had applied templates that 

summed over a larger space, with several correlated neighbours.  

The Kolmogorov-Smirnov test (Sheskin, 2020) can compare sample areas of CIs with a 

normal distribution to examine deviations from normal. A normal distribution in an image would be 

centred at mean luminance and contain an equal distribution of light and dark pixels. The test, used 

on CIs by Kontsevich and Tyler (2004), can detect templates that are dominated by a specific sign 

(such as a skewed distribution of mainly black pixels). The Kolmogorov-Smirnov test treats pixels in 

image regions as belonging to the same distribution, which can be useful for detecting templates 

that sum over multiple pixels.  

Statistical testing of individual pixels can also prove challenging. Chauvin et al. (2005) argued 

that Bonferroni corrections to t-tests can become far too conservative during analyses of CIs, as a 

256x256 pixel image contains 65,536 independent data points. A Bonferroni correction applied to 

this number of data points would filter out much of the template due to an extremely conservative 

estimation of significance. Even a dimensionally reduced image, e.g., 64x64 pixel textures, still have 

4,096 independent data points. Chauvin et al. (2005) instead showed that random field theory (RFT) 

can be applied to CI analysis, drawing parallels to how RFT is used in brain imaging analysis. Data 

from a brain imaging technique such as fMRI share similarities to CI data, as voxel and pixel space are 

both noisy, producing random fluctuations which commonly reach statistical significance, even after 

smoothing. Chauvin et al. (2005) applied RFT to smoothed CIs to analyse the probability that a 

cluster of pixels should exceed a threshold compared to chance. This analysis considers correlations 

between neighbouring pixels, going beyond pixel-by-pixel analyses.  

CI experiments using simple stimuli tend to only require simple detection mechanisms. 

Templates from simple detection tasks can be described through modelling with common functions. 

A task such as detection of a central white gaussian bump in noise might generate a CI template 

containing a positive white bump with surrounding dark negative lobes (Abbey & Eckstein, 2002, 
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2006). Negative surrounds are commonly involved in contrast judgements and are often captured in 

CI studies. Cell receptive fields and spatial filters in early vision commonly have excitatory centres 

with inhibitory surrounds of different configurations (Barlow, 1953; Kuffler, 1953; Marr & Hildreth, 

1980). Inhibitory surrounds enhance the contrast to the excitatory centre. For example, a white 

bump in noise will appear lighter if the noise adds darker pixels surrounding it, or a stereoscopically 

tall feature will appear taller with a deeper surround. Such filters are efficient at signalling sudden 

changes in contrast, such as in detection of edges and lines. Abbey and Eckstein (2002, 2006) showed 

that CI data for circularly symmetric templates can be reduced to a radial average cross-section, 

where the amplitude of the template decreases with increasing distance from the template centre. 

Abbey and Eckstein used this technique to measure template structure, including negative surround 

mechanisms, in different types of gaussian bump stimuli. Simplistic templates can resemble simple 

functions, such as Gaussian, Difference of Gaussians, or Gabor functions, etc. With cross-sectioned 

CIs, we can fit various functions to the cross-sections to explore how best to describe the data, and 

to examine the function parameters that provide the best fit. In our example of a template 

containing a central white bump with negative lobes, a Difference of Gaussians or Gabor function 

might accurately describe the template profile. By parameterising CI data, functions can describe 

e.g., the amplitude, spread, and peak location of the template. Cross-sections and function fitting 

provides reductionistic results about template structure which can be desired when rigorously 

examining subtle differences across conditions.  

In a study on face expressiveness, Skog et al. (2023) found CI templates for the detection of 

‘surprise’ expressiveness using neutral faces. The CIs appeared to contain a high-spatial frequency 

template of eyes (leftmost image in Figure 1.6). In analysis, the Kolmogorov-Smirnov test (used by 

Kontsevich & Tyler, 2004 in a similar face study) did not capture the template, likely because these 

templates were defined by both white and black pixels, and thus did not significantly deviate from a 

normal distribution. As CI templates appeared visible to human observers, Skog et al. (2023) devised 

an analysis method based on a filter bank including Gabor and isotropic filters with spatial frequency 

and orientation bands that resemble channels in human vision (Campbell and Robson, 1968; 

Blakemore & Campbell, 1969; Sachs, Nachmias & Robson, 1971). These decomposed CIs were 

rectified to produce energy maps that could highlight significant regions. See Figure 1.6 for an 

example part of the analysis procedure. Energy maps were analysed pixel-by-pixel with a Bonferroni 

correction. The main results showed that the eye region in multiple conditions (e.g., the example in 

Figure 1.6) contained a significant template. Subsequent confirmation of this result was achieved 

using the cluster analysis technique developed based on RFT by Chauvin et al. (2005). Filters with 
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varying spatial frequency and orientation bands can be applied to decompose CIs. This facilitates 

analysis of templates with Gabor-like spatial arrangements of both black and white pixel clusters.  

 

 
Figure 1.6: Analysis procedure showing example steps for reaching a significance measure, using the most 
pronounced eye-template out of nine conditions. Part of figure reproduced with permission from Skog et al. 
(2023).  

 
 In conclusion, several methods exist for analysing significant pixels and template regions in 

CIs. Different methods specialise in capturing significance in different template shapes. Low-spatial 

frequency templates can be smoothed to reduce high-spatial frequency noise components. 

Significance in such templates can be discovered through e.g., cluster analysis (Chauvin et al., 2005), 

reduction by cross-section and subsequent function fitting (Chapter 4 and 5), and testing distribution 

structure in sub-image areas (Sheskin, 2020). High-spatial frequency templates can be more difficult 

to prove statistically, as they cover fewer pixels. Cluster analysis (Chauvin et al., 2005) might capture 

small templates as a few neighbouring pixels of similar sign might significantly deviate from chance. 

Decomposing CIs via spatial filters can also serve to enhance template structure, increasing the 

sensitivity of statistical tests (Skog et al., 2023).  

 The analysis procedure for the CIs in Chapters 4 and 5 of this thesis included cross-sectional 

reduction and function fitting. Stimulus images contained horizontally arranged targets in the middle 

of the images, and vertical cross-sections of CIs showed template structures that had positive centres 

and negative surrounds above and below the middle, resembling Gabor or Difference of Gaussians 

functions. Fitting Gabor functions to the CI data facilitated analyses of function parameters. The 

templates were lower in spatial frequency, with Gabor wavelengths of ~2.6 degrees of visual angle. 

The Gabor fits were used to describe and analyse the use of disparity and luminance cues, group 

differences, lighting direction priors, and improvements from PL throughout the experiment.  

 

1.15 Bubbles  

Gosselin and Schyns (2001) developed another influential CIs technique called Bubbles. Bubbles are 

based on limiting viewing of the image to a few random locations through Gaussian windows. For 



E. Skog, PhD Thesis, Aston University 2023.   36 

example, if the task is to detect a happy face expression, a window showing a hairline will not likely 

be diagnostic. A window showing the mouth might, however, be diagnostic. In making task 

judgements, certain window locations will promote positive responses and others will promote 

negative responses, similar to how the previously described CIs with noise textures are constructed 

out of positive- and negative-response templates. Bubbles also belongs to the family of related CI 

techniques that ‘reverse correlates’ image parts that promote and demote the task. But the term CIs 

is generally used throughout this thesis to refer to reverse correlation – the ‘classical’ CIs with noise 

textures. The result of combining all window locations for positive responses produces a Bubbles 

image, highlighting the image areas that the observer uses for the task. Experimentally, Bubbles 

require far fewer trials than the classical CIs with noise textures, as it essentially only requires the 

number of trials it takes to discover locations that reliably correlate with positive responses.  

 Gosselin and Schyns (2001) tasked observers with discriminating a face as expressive or not 

expressive, finding that observers relied on the mouth for this task. For discriminating male/female 

gender, observers relied on the mouth and eye regions. Schyns, Bonnar and Gosselin (2002) used 

Bubbles to examine recognition in identity, gender, and expressive (or not) tasks. They calculated 

‘attentional maps’ which showed probabilities that different parts of faces would be diagnostic of 

different task conditions. Smith et al. (2005) used Bubbles to examine emotion categorisation of 

faces expressing six different basic emotions plus neutral. The authors further decomposed the face 

stimuli into different spatial frequency bandwidths to examine which spatial frequency bandwidths 

carry emotion expressive content in different parts of the faces. For example, Smith et al. (2005) 

found that surprise was classified via the mouth region (the face stimulus had an open mouth), but 

high-spatial frequency information in the eyes and eyebrows was also involved.  

There are important differences between Bubbles and the classical CIs using noise textures. 

Bubbles reveal the areas of an image required for the task. CIs can, on the other hand, reveal the 

areas required but also the shape and nature of the template applied for the task. For example, in a 

task of discriminating a smiling mouth from a neutral mouth, CIs could reveal what parts of a mouth 

is used to make this assessment and what changes in the templates between smile and neutral. In 

the same task, Bubbles would only reveal that observers need to see the mouth area of the image, 

revealing less about the information that the observer is using for discriminating between smile and 

neutral. CIs can reveal template location and shape, while Bubbles are limited to template location. 

Bubbles also cannot reveal templates from illusory targets, such as detecting a ‘superstitious’ target 

or an expression in a neutral face (Gosselin & Schyns, 2003, 2004; Jack et al., 2012; Skog et al., 2023). 

This is not to say that the classical CIs with noise textures are a superior method. Bubbles can locate 

information sampling regions more quickly, and has had an impact in areas such as face perception 



E. Skog, PhD Thesis, Aston University 2023.   37 

and brain imaging (not cited in this thesis). The original Bubbles paper by Gosselin and Schyns (2001) 

has been cited more than any other CI methodology paper, and has had widespread impact in 

discussions on how visual information is sampled. An example where Bubbles can bring benefit is 

studies correlating certain Bubbles windows with cognitive or neural processes to discover what 

image parts correlate with what processes.  

Regarding the specific work supporting this thesis, a primary aim was to analyse visual 

strategies for stereoscopic aerial images. CIs are well suited to explore how visual cues are sampled, 

and how experts and novices might differ in internal templates. The options for a CIs technique stood 

between Bubbles and the traditional CIs from noise textures. After a literature overview, the 

traditional CIs from noise textures was concluded to provide a better suited technique for the current 

research questions. In order to study the use of binocular disparity cues, stereogram stimulus images 

were required. CIs with RDS-like noise images can be used to study 3D templates from binocular 

disparity noise (Gosselin, Bacon & Mamassian, 2004; Neri, Parker & Blakemore, 1999). Bubbles, 

providing a technique of analysing 2D Gaussian windows, lacks obvious relation to investigating cue 

sampling in stereograms. Stereograms aside, the project aimed to examine luminance cues and any 

potential cue combination between binocular disparity and luminance. Bubbles remain limited to 

information sampling location, while CIs based on noise textures can examine the types of cues that 

are sampled from locations. Thus, the traditional noise texture CIs were used to study visual 

strategies in stereograms (Chapter 4 and 5).  

 

1.16 Aims of thesis summary 

Visual expertise in remote sensing surveying is an underexplored research topic. This thesis aims to 

provide evidence that contribute to furthering our understanding of the mechanisms involved in 

interpreting aerial images, and how experience can change this ability. This thesis will describe 

expert performance within the domain, and the type of skillset that is associated with expertise in 

remote sensing surveyors. This thesis sets out to prove four broad hypotheses. First, the unfamiliar 

aerial viewpoint is more difficult to process, but expert surveyors are better at processing the aerial 

viewpoint. Next, surveyors are experienced with sampling binocular disparity cues in stereoscopic 

aerial images, and can thus make more use of this cue. Further, the surveyors also adapt to the aerial 

imagery, and this can alter perceptual priors for interpreting shape from shading. Finally, the 

surveyors develop expertise from experience, and this can in part be explained by PL. This thesis 

builds on these broad hypotheses with a set of specific studies elaborated on in four empirical 

chapters (2-5). For an elaboration on the specific research aims, see ‘Aims of thesis’ on page 8, or the 

later chapters which describes the studies in full detail.  
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To conclude this chapter, here follows an overview of the thesis structure. Chapter 2 begins 

with a study that characterises novices and expert surveyors’ ability to interpret the aerial viewpoint. 

This study provides evidence that expert surveyors are better at recognising the configurations of 

features seen from the aerial viewpoint. Chapter 3 continues with the development of a more 

specific method in preparation for the work in Chapter 4 and 5. This method was a novel version of 

CIs that could simultaneously estimate templates from disparity and luminance cues. Chapter 4 uses 

this method to study expert-novice differences in the use of stereoscopic cues for discriminating 

aerial landscape features. As is later shown, Chapter 4 suggests that expert surveyors have learned to 

diminish the influence of the lighting-from-above prior in aerial images, likely as a result of their 

experience with lit-from-below images. This study also provides evidence that experts have a large 

advantage for sampling disparity cues in stereograms. Chapter 5 continues this theme by exploring 

the mechanisms of how such an advantage can be developed with training. This study trained 

novices with a PL intervention to improve their ability to sample disparity cues in stereograms. With 

CIs, the results characterise learning and show how training can change internal templates involved 

in stereopsis. Following this final empirical chapter, Chapter 6 provides a discussion to conclude this 

thesis.  
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Chapter 2 

Expertise for aerial images: Evidence from scene gist and object matching across ground and aerial 

viewpoints. 

 

2.1 Introduction 

This study sought to explore and characterise expertise for classifying landscape features in aerial 

images. For this purpose, two specific experiments were conducted: the first explored categorisation 

of scenes in aerial images, and the second explored object matching across ground and aerial 

viewpoints. To characterise expertise in these tasks, remote sensing surveyors from the OS were 

compared to novices from the general population. A primary challenge with remote sensing 

surveying is the use of aerial images, as the aerial viewpoint provides an unusual view of landscapes. 

Surveyors must become familiar with the configurations of landscape features seen from the aerial 

viewpoint, and they undergo specific training for this, and learn from experience. This study sought 

to explore if, and characterise how, expert surveyors performed better in aerial viewpoints.  

Remote sensing surveyors must resolve difficult classifications in aerial images, which are 

unfamiliar to human observers. The aerial viewpoint radically changes the appearances of landscape 

features compared to the ground viewpoint. Aerial scenes are more difficult to process and classify 

than ground-view scenes (Lloyd, Hodgson & Stokes, 2002; Loschky et al., 2015; Pannasch et al., 

2014), in part because aerial images are more homogenous in spatial structure (Loschky et al., 2015; 

Oliva & Torralba, 2001). Objects can also be more difficult to recognise from such atypical viewpoints 

(e.g., Biederman & Gerhardstein, 1993; Lawson, 1999). Remote sensing surveyors undergo training 

to learn how to perform photogrammetric tasks with aerial images, and gain expertise over time 

which helps to enhance visual processing skills (Harel, 2016; Seitz, 2017, 2020; Chapter 4).  

Expertise for remote sensing surveying of aerial images has previously been explored in a 

small number of studies. Šikl et al. (2019) studied expert aerial image analysts and compared their 

performance to novices from the general population in a task of visual recognition memory for aerial 

images. The authors found a memory advantage where the experts recalled aerial scenes more 

accurately. Lansdale, Underwood and Davies (2010) used remote sensing surveyors from the OS in a 

study of expertise and visual saliency in a visual search task. Novices were consistently drawn to 

salient features in aerial images, while experts were able to discount salient but irrelevant features. 

Lloyd, Hodgson and Stokes (2002) found that geographers who were familiar with aerial images were 

better than novices at categorising land-use in such images. Studies have also shown that training 

can improve novices’ recognition in aerial images (Borders et al., 2020; Lloyd, Hodgson & Stokes, 

2002).  
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Remote sensing surveying requires expertise with scenes seen from the aerial viewpoint. 

Much is previously known about perception of scenes in the literature, and the scene gist paradigm 

is a prominent area of research (Castelhano & Henderson, 2008; Fei-Fei et al., 2007; Malcolm, Groen 

& Baker, 2016; Oliva & Torralba, 2006; Rayner et al., 2009; Rousselet, Joubert & Fabre-Thorpe, 2005; 

Schyns & Oliva, 1994). The ‘gist’ of a scene refers to the basic encoding of scene information, which 

can be achieved even with very brief presentation durations. For example, a superordinate category 

discrimination between ‘natural’ and ‘man-made’ scenes is possible even if stimuli are viewed for 

only 8-20 ms (Furtak, Mudrik & Bola, 2022; Greene & Oliva, 2009; Joubert et al., 2007; Loschky & 

Larson, 2010). Global information regarding scene context and spatial structure may be encoded in 

very early processing stages of perception, even in images with added blur that makes objects 

indistinguishable (Oliva & Torralba, 2001, 2006; Schyns & Oliva, 1994). For example, observers realise 

that they are looking at a forest before processing individual trees. Gist processing has also been 

related to expertise with medical imagery. Radiologists achieve above-chance performance for 

detecting small targets in x-ray images (~70% correct responses at 200 – 250 ms), suggesting that 

local as well as global information can be processed in briefly presented images (Drew et al., 2013; 

Evans et al., 2013; Kundel & Nodine, 1975). Loschky et al. (2015) studied rapid visual categorisation 

for ground-view and aerial images using novice participants. Accuracy was consistently 15-20% lower 

for aerial images compared to ground-view images across a range of short durations (24 – 330 ms). 

The authors also tested ‘natural’ and ‘man-made’ scene categories, and analysed confusions within 

and between scene categories. Within category confusions dominated such that natural scenes 

tended to be confused with other natural scenes more so than with man-made scenes, and vice 

versa. Furtak, Mudrik & Bola (2022) found that background scene contexts were classified more 

accurately than foreground objects. The authors also added natural and man-made objects into 

natural and man-made scene contexts, showing that disrupting the congruency between scene 

context and objects can lead to lower accuracies (see also Davenport & Potter, 2004; Joubert et al., 

2007). Gist processing can thus be influenced by both global context and local objects.  

In Experiment 1 of this chapter, the scene gist paradigm provided a way to study rapid 

categorisation performance in novices and expert remote sensing surveyors using both ground-view 

and aerial images. As we are all experienced with ground-view images, no group differences were 

expected for this condition. However, novices were expected to have difficulty processing aerial 

images, while experts have overcome these difficulties. Experts should therefore make more 

accurate aerial-view scene categorisations than the novices. Although experts are experienced with 

aerial images, both groups were expected to have higher accuracies for ground-view than aerial 

images because aerial images are more homogenous in image structure (i.e., aerial images generally 
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have a diminished global contrast distribution across orientations and the spatial frequency 

spectrum) and thus provide less support for gist processing (Loschky et al., 2015; Oliva & Torralba, 

2001). Experiment 1 used multiple natural and man-made scene categories, and the analysis 

included confusions across scene categories and groups. Here, the experts were expected to make 

fewer confusions than the novices, and be more consistent across viewpoints, owing to their 

familiarity with aerial scenes.  

 Beyond scene gist, this study also sought to explore identity judgements across ground and 

aerial viewpoints. Remote sensing surveyors classify landscape features in aerial viewpoints, but no 

study to date has examined their ability to match identities across ground and aerial viewpoints. 

Perspective switches across the ground and aerial viewpoints are unusual forms of 3D rotations. 

Processing of rotations and unusual viewpoints has commonly been studied in object perception 

(e.g., Biederman & Gerhardstein, 1993; Edelman & Bülthoff, 1992; Lawson, 1999; Newell et al., 2001; 

Tarr et al., 1998). Thus, a second experiment was designed to focus on the perception of objects. 

Here, observers were tasked to match the identities of houses seen from ground and aerial 

viewpoints. Achieving visual object constancy is often easy if all parts are visible from different 

viewpoints, e.g., with a 45° horizontal rotation that does not lead to any parts occlusions or changes 

(Biederman & Gerhardstein, 1993; Lawson, 1999). However, the aerial viewpoint can lead to parts 

changes, and differences in the relative emphasis of parts compared to ground views. The view of a 

house from the ground emphasises the façade features, while the roof may be partially occluded. 

Seeing the same house from aerial view can provide the opposite emphasis, with façade features 

occupying less space in the image while the roof is fully visible. Clearly, matching across these two 

viewpoints can be difficult, as parts can change and be emphasised differently. Further, the aerial 

viewpoint is unfamiliar to most, and atypical viewpoints can make recognition more difficult (Center 

et al., 2022; Edelman & Bülthoff, 1992; Newell et al., 2001; Tarr et al., 1998). Atypical viewpoints are 

often discussed in the context of ‘canonical’ views of objects (Palmer, Rosch & Chase, 1981). 

Recognition is most effective in canonical views, and 3D rotations can cause disruptions to 

recognition.  

 Ground-view images are canonically perceived within a ‘gravitational frame’, where images 

have a preferred orientation, or a ‘perceptual upright’, which is expected to appear congruent with 

gravity (ground down, sky up) (Asch & Witkin, 1948; Dyde, Jenkin & Harris, 2006; Loschky et al., 

2015; Mittelstaedt, 1983). But for aerial images, the gravitational frame is frontoparallel to the 

observer, and house façades are oriented in all directions in the 2D image plane. The façades of 

houses are generally considered the ‘canonical side’, and are visible in all images used in Experiment 

2. As the façades are often diagnostic in Experiment 2’s matching task, the analysis will explore 
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whether participants mentally rotate aerial images to face downwards in the 2D image plane when 

matching with their ground-view counterparts. Mental rotation is a cognitive operation in which 

observers mentally rotate an object to a preferred orientation to better understand its shape 

(Shepherd & Metzler, 1971). Mental rotation tends to require longer response times (RT) with larger 

rotations. The aerial images of houses in Experiment 2 had façades facing in different directions, and 

façades facing downwards in the 2D image plane was hypothesised as a preferred orientation for the 

matching task. Loschky et al. (2015) has previously shown that aerial images are not mentally rotated 

when observers perform a scene categorisation task (as in Experiment 1 of the current study). 

Categorisation of aerial-view scenes can be accomplished in any image orientation, as identifying a 

parking lot from the aerial viewpoint can be done based on features such as cars and parking spaces. 

This feature identification strategy requires no mental rotation of images in the 2D plane. But 

observers might benefit by mentally rotating aerial images when forced to match a ground- and 

aerial-view house if the task is easier to perform when the façade is facing a preferred orientation 

(e.g., downwards) prior to matching.  

 In Experiment 2, participants were tasked with matching identities of houses across ground 

and aerial viewpoints. For novices, the ground view of houses is canonical, but the aerial view is 

atypical and unfamiliar. The surveyors, however, are experienced with aerial viewpoints, and they 

should be better able to perform this matching task compared to novices. Regarding observer 

strategies in Experiment 2, participants might employ one of two competing strategies: 1) a feature 

identification strategy (‘feature ID’) would match features in the house images without mentally 

rotating the aerial image, or 2) a mental rotation strategy would start with a mental rotation of the 

aerial image so that the house façade faces downwards, followed by feature matching. These 

strategies were investigated without explicit predictions about the strategies or any group 

differences.  

Experiment 2 included two control experiments that reflect these two strategies, in the form 

of matching tasks using letters as stimuli. The ‘feature ID experiment’ did not require mental rotation 

as the task could be done on simple feature analysis across same or different letter pairs (Prather & 

Sathian, 2002). In contrast, the ‘mental rotation experiment’ required mental rotation of the letters 

prior to matching to avoid incorrectly matching mirror-asymmetric pairs. These two control 

experiments were used to anchor the results for the main experiment using house images. No effects 

of expertise were expected for these control experiments, as these tasks and images are outside the 

domain of the surveyors’ expertise.  

This chapter focuses on group differences between expert remote sensing surveyors and 

untrained novices from the general population in tasks involving aerial images. Experiment 1 was a 
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rapid scene categorisation task, and experts were expected to have processing advantages for aerial-

view scenes, but not ground-view scenes, compared to novices. Furthermore, the experts were 

expected to show a greater consistency across viewpoints compared to novices in an analysis of 

confusions among scenes. Experiment 2 was an object matching task with images of houses seen 

from ground and aerial viewpoints, where experts were expected to be better at matching across 

viewpoints. This experiment also explored whether observers mentally rotate aerial images of 

houses prior to matching with a ground-view counterpart.  

 

2.2 Experiment 1: Rapid scene categorisation 

 

2.2.1 Method 

2.2.1.1 Stimulus images 

To ensure that a diverse set of scene categories were used, 14 categories were chosen spanning both 

‘natural’ and ‘man-made’ superordinate categories. For each of the 14 categories, 10 ground-view 

and 10 aerial images were selected as stimuli, for a total of 280 images. See Figure 2.1 for examples 

from both viewpoints. The expert participants were recruited from OS, but scene categories were 

not selected and distinguished based on common OS task specifications. For example, the experts 

would be accustomed to categorising both ‘crop field’ and ‘cattle field’ as ‘agricultural’. Ground-view 

images were sourced from the public domain on Flickr (www.flickr.com). Aerial images were sourced 

from OS. The aerial photographs originally covered land areas of approximately 2.5km x 1.5km (450 

megapixels) but were cropped to smaller portions of land to isolate the relevant scene categories. 

Prior to the experiment, all images were cropped to a square, grayscaled, down sampled to 384 x 

384-pixels using bicubic interpolation, and stored in Portable Network Graphics (PNG) format. This 

processing was conducted using MATLAB (The MathWorks Inc). During the experiment, images were 

scaled in PsychoPy (Peirce et al., 2019) using linear interpolation to a square 30% of the participant’s 

monitor height in pixels. Two naïve participants and one experienced psychophysical observer were 

asked to judge all stimulus images based on whether they unambiguously corresponded to their 

supposed scene category. This led to the replacement of two ground-view images and nine aerial 

images (an example exclusion was a ‘parking lot’ right next to ‘industrial buildings’). All 280 images 

used in the experiment were judged to be appropriate category exemplars.  

A pre-experiment survey study was conducted online via Prolific (www.prolific.co) where 20 

experimentally naïve, native English-speaking participants based in the United Kingdom rated the 

image categories from most-to-least natural. The survey provided only the 14 scene category names 

in text, and no images were provided for reference. The survey ranked the scenes most-to-least 
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natural in the following order: woods, beach, mountain/moor, river, lake, cattle field, crop field, park, 

train track, residential houses, urban city, parking lot, highway, and industrial buildings.  

 

 
Figure 2.1: Example stimulus images from all 14 scene categories from both ground and aerial viewpoints. 
(Aerial views © Crown copyright and database rights 2023 OS, used with permission; ground views, public 

domain www.flickr.com).  

 
2.2.1.2 Materials 

The experiment was created using PsychoPy and JavaScript to run on the online experiment delivery 

platform Pavlovia (Pavlovia.org). As the experiment ran online, participants used their own desktop 

computers to access and run the experiment by clicking a hyperlink that would open the experiment 

in their web-browser. PsychoPy handled stimulus timings (PsychoJS, version 2021.2.0). The computer, 

monitor, mouse and keyboard, viewing distance, and testing environment were not otherwise 

controlled. The experiment was advertised via email or Prolific. 

 

2.2.1.3 Participants 

14 expert participants were recruited from OS (7 female; mean age 40 years (SD 12); mean 

experience of remote sensing surveying = 7 years (SD 6, range: 1-25 years)). 15 novice participants 

were recruited from Prolific, but one was excluded based on failing an attention check (7 female; 

mean age: 37 years (SD: 10)). The novices had an average of 737 (SD: 538) total approved 

participations in other studies and surveys on Prolific. All participants were fluent or native speakers 

of English and were based in the UK or Ireland. Participants were compensated at a rate of £10 an 
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hour. The number of recruited participants was limited by the number of experts who would 

volunteer their participation.  

 

2.2.1.4 Procedure 

All participants carried out the experiment during daytime hours, OS employees participated during 

work hours. At the start of the experiment, participants read a participant information sheet and 

gave informed consent by a button press when prompted to either agree and continue or exit the 

experiment. Participants were assured that their data would be confidential and anonymised. The 

project was reviewed by Aston University’s College of Health and Life Sciences Ethical Review 

committee (approval number 1843). After agreeing to participate, participants indicated by button 

press if they had significant experience with aerial images. All experts indicated ‘yes’ and all novices 

indicated ‘no’. The total time for completion was around 25 minutes.  

The experiment started by informing the participants that their task was to identify scene 

categories in briefly presented scenes seen from both ground and aerial viewpoints. Example images 

of scene categories ‘crop field’ and ‘residential houses’ were shown with unlimited presentation 

time, from both viewpoints. This familiarised participants with the appearance of ground- and aerial-

view scenes. This screen also showed the response options and informed participants how to give 

responses via clicking buttons on the screen with the mouse cursor. The buttons were ordered on 

two rows as follows: 1) Top row: Woods, Train track, Crop field, Residential houses, Lake, Highway, 

River, 2) Bottom row: Industrial buildings, Mountain/moor, Parking lot, Cattle field, Park, Beach, and 

Urban city. The instructions promoted careful attention to the task and highlighted that the images 

would be presented very briefly. Participants then continued to the practise trials.  

 The trial structure started with a blank screen / interstimulus interval (1,000 ms), followed by 

a small black fixation cross prompting attention (1,000 ms), followed by a target image (100 ms), 

immediately followed by a noise texture acting as a backwards mask (100ms; white noise with 32x32 

elements). All trial components were presented in the centre of the screen. 100 ms presentation 

time corresponds to 6 frames on a 60 Hz monitor. After a short blank screen period (500 ms), the 14 

response option buttons appeared below the middle of the screen. This task was a 14-alternative 

forced-choice task. Participants had unlimited time to respond2, and each response started a new 

trial. The experiment started with 20 practise trials, 10 ground-view and 10 aerial images from 

different categories in the main experiment. These images were the same for all participants and 

were not used in the main experiment. The 280 stimulus images were presented in a fully random 

 
2 Response times were not analysed due to the requirement of mouse movements and clicks for responses.  
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order. An ‘attention check’ text stimulus was presented four times, after every 70th trial, for one 

second which read ‘Red’, ‘Green’, or ‘Blue’ in the middle of the screen. Following this, three buttons 

would appear with the corresponding response options, prompting a response. Participants were 

then shown a pause screen which afforded a self-timed break and an indication of progress.  

 

2.2.2 Results 

Figure 2.2 shows accuracy results for the two groups and viewpoint conditions. Experts and novices 

were 82.6% and 75.1% accurate for the ground-view images, respectively. For the aerial images, 

experts and novices were 64.9% and 46% accurate, respectively. A 2 x 2 repeated measures ANOVA 

(Group: expert, novice; Viewpoint: ground, aerial) was used to test the results statistically. Viewpoint 

produced a significant main effect (F(1, 26) = 202.0, p < 0.001), as did group (F(1, 26) = 7.98, p = 

0.009). The interaction of viewpoint and group was also significant (F(1, 26) = 11.9, p = 0.002). Post-

hoc t-tests with Tukey corrections showed that, compared to novices, experts gave significantly more 

correct responses for the aerial images (t(26) = 3.18, p = 0.019), but not for ground-view images 

(t(26) = 2.02, p = 0.206). Furthermore, and as expected, the within-group accuracy was significantly 

higher for the ground-view images than the aerial images for both the experts (t(26)  = 7.61, p < 

0.001) and the novices (t(26)  = 12.49, p < 0.001).  
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Figure 2.2: Group average percent correct responses for the two groups and viewpoint conditions. Error bars 
are 95% confidence intervals.  

 
  To provide a detailed description and analysis of scene categorisation performance, 

confusion matrices (CM) were constructed based on the responses given to each scene category. 

Figure 2.3 shows CMs for both groups and both viewpoint conditions. The main diagonal (top-left to 

bottom-right) in the figures show correct responses, and responses outside the main diagonal show 

confusions. An example which caused a relatively high number of confusions is rivers being confused 

with lakes when seen from ground-view (left side in Figure 2.3; row 4, column 5).  

  Inspection of the CMs suggests that novices make more confusions than experts in the aerial 

images, which relates to the lower total accuracy score (Figure 2.2). The distribution of responses 

appears to differ between groups and sections. The CMs were divided into four sections (four 

quarters of equal sizes) to examine if their distributions differed across conditions in some sections 

but not others. Cells on the main diagonal were excluded from this analysis, to focus on confusions. 

The sections were analysed using a repeated measures ANOVA (2 x 2 x 4; Group: expert, novice; 

Viewpoint: ground, aerial; Section: top left, top right, bottom left, bottom right) which was corrected 

with a Greenhouse-Geisser correction following a positive test for sphericity. The four sections 

correspond to different types of image-response relationships. See top of Figure 2.3 for an 
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illustration, where, for example, the top right section of the CMs corresponds to natural scenes and 

‘man-made’ responses (Nat-Man). Results of the ANOVA showed significant main effects for 

viewpoint (F(1, 41) = 16.22, p < 0.001), section (F(2.26, 92.52) = 13.60, p < 0.001), and group (F(1, 41) 

= 42.58, p < 0.001). The interaction between viewpoint and group was significant (F(1, 41) = 7.14, p = 

0.011). This interaction shows almost the same results as in Figure 2.2, but with the exclusion of data 

from the main diagonal. The interaction between section and group was near significant (F(2.13, 

87.16) = 2.96, p = 0.054), but the interaction between viewpoint and section was not significant, nor 

was the interaction between all three factors.  

 



E. Skog, PhD Thesis, Aston University 2023.   49 

 
Figure 2.3: Group averaged confusion matrices for the two groups and viewpoint conditions. Cell values are 
represented in percent responses. Rows indicate the image category, and columns indicate the response given. 
The most natural half of the image category labels is shown in green, and the most man-made half is shown in 
black. A diagram at the top of the figure illustrates the division of sections (Nat = ‘natural’, Man = ‘man-made’). 
Axis labels are coded as: WDS: woods; BCH: beach; MTN: mountain/moor; RVR: river; LAK: lake; CTL: cattle 
field; CRP: crop field; PRK: park; TRN: train track; RES: residential buildings; URB: urban city; PLT: parking lot; 
HWY: highway; IND: industrial buildings.  
 

Motivated by the highly significant differences in distributions of cells across CM sections 

(Figure 2.3), post-hoc t-tests with Tukey corrections provided a piecemeal analysis by individual 

comparisons, while adopting a conservative estimate of significance. Table 2.1 shows selected 
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relevant comparisons, which omits the less meaningful comparisons across sections. Rows 1-4 in 

Table 2.1 show group comparisons for aerial images. One section, Nat-Man, significantly differs 

between the groups. This means that novices tended to give ‘man-made’ responses to natural scenes 

more so than experts. Rows 5-8 show group comparisons for ground-view images. No sections 

significantly differ after correction, suggesting an overall agreement between the groups for ground-

view images. Rows 9-12 show viewpoint comparisons for experts. No sections significantly differ. 

Finally, rows 13-16 show viewpoint comparisons for novices. Two sections significantly differ, Man-

Nat (‘man-made’ responses to natural scenes) and Man-Man (confusions among ‘man-made’ 

scenes). Rows 9-16 reveal that experts had good within-group agreement across ground and aerial 

viewpoints in all four sections of the CMs, but novices had two sections that differed and two that 

did not. Novices thus show worse within-group agreement across ground and aerial viewpoints 

compared to experts.  

While the ANOVA tests for differences between the distributions of responses within 

sections, it does not consider the pattern of confusions within each section. Correlations across 

sections, groups, and viewpoints provide a complementary analysis of the patterns in the different 

sections (right of Table 2.1). Rows 1-8 provide a similar outcome as the above analysis, where experts 

and novices are more consistent with each other in the ground-view images (4/4 correlated sections) 

than in the aerial images (3/4 correlations). Rows 9-16 show that the ground and aerial viewpoints 

were prone to different confusion patterns. This was true for both groups, as both groups had two 

correlated and two not correlated sections each (Rows 9-16).  

Different confusions across ground and aerial viewpoints were to be expected. For example, 

a lake and a river can be more discriminable from aerial view compared to ground view. From the 

ground view, both typically appear as an expanse of water in front of the observer, but from the 

aerial view, lakes may appear as an oval-shaped body of water, but rivers appear as curves or lines 

(Figure 2.1). Another example is cattle fields and crop fields, where cattle fields had a very similar 

appearance to crop fields from the aerial view, with tiny dots of cattle in a large field (Figure 2.1). 

From the ground view, however, the cattle were more noticeable, and individual bodies of sheep or 

cows occupied more space in the images (Figure 2.1). Examples such as these motivated an implicit 

expectation that confusions may differ across viewpoints, and thus be poorly correlated across 

viewpoints (Rows 9-16).  
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Row 

Comparison Post-hoc t-test Correlation 
Group View- 

point 
Section Group View- 

point 
Section Mean  

diff. 
SE t(41) p p(Tukey) r p 

1 Experts Aerial Nat-Nat Novices Aerial Nat-Nat -1.89 0.86 -2.19 0.034 * 0.698 0.705 < 0.001 *** 

2 Experts Aerial Nat-Man Novices Aerial Nat-Man -1.62 0.29 -5.59 < 0.001 *** < 0.001 *** 0.132 0.367 

3 Experts Aerial Man-Nat Novices Aerial Man-Nat -0.44 0.4 0.28 0.281 0.999 0.850 < 0.001 *** 

4 Experts Aerial Man-Man Novices Aerial Man-Man -2.07 0.65 -3.18 0.003 ** 0.148 0.731 < 0.001 *** 

5 Experts Ground Nat-Nat Novices Ground Nat-Nat -1.63 0.48 -3.41 0.001 ** 0.088 0.936 < 0.001 *** 

6 Experts Ground Nat-Man Novices Ground Nat-Man -0.15 0.1 -1.55 0.13 0.969 0.728 < 0.001 *** 

7 Experts Ground Man-Nat Novices Ground Man-Nat -0.24 0.2 -1.19 0.24 0.997 0.889 < 0.001 *** 

8 Experts Ground Man-Man Novices Ground Man-Man -0.46 0.3 -1.53 0.135 0.972 0.823 < 0.001 *** 

9 Experts Aerial Nat-Nat Experts Ground Nat-Nat 2.62 1.38 1.89 0.065 0.864 0.160 0.311 

10 Experts Aerial Nat-Man Experts Ground Nat-Man 0.15 0.14 1.12 0.269 0.999 0.535 < 0.001 *** 

11 Experts Aerial Man-Nat Experts Ground Man-Nat 1.38 0.75 1.84 0.073 0.887 0.174 0.230 

12 Experts Aerial Man-Man Experts Ground Man-Man 1.46 0.7 2.1 0.042 * 0.757 0.366 0.017 * 

13 Novices Aerial Nat-Nat Novices Ground Nat-Nat 2.87 1.46 1.96 0.056 0.828 0.242 0.122 

14 Novices Aerial Nat-Man Novices Ground Nat-Man 1.62 0.29 5.61 < 0.001 *** < 0.001 *** 0.137 0.347 

15 Novices Aerial Man-Nat Novices Ground Man-Nat  1.58 0.72 2.18 0.035 * 0.703 0.317 0.026 *  

16 Novices Aerial Man-Man Novices Ground Man-Man 3.08 0.81 3.79 < 0.001 *** 0.035 *  0.526 < 0.001 *** 

Table 2.1: Results of statistical testing of sectioned confusion matrices. Post-hoc t-test results are shown for 
selected comparisons in the 2 x 2 x 4 repeated measures ANOVA. Correlations show Pearson’s r. Sections are 
labelled according to image-response category (Nat = ‘natural’, Man = ‘man-made’). SE = standard error. * p < 
0.05, ** p < 0.01, *** p < 0.001.  

 
2.2.3 Discussion  

In a rapid visual categorisation task with ground-view and aerial images of landscape scenes, expert 

surveyors trained on classification of aerial landscape images had higher accuracy than novices for 

aerial but not ground-view images (Figure 2.2). A within-group analysis showed that both experts 

and novices were better at ground-view than aerial images, likely due to ground-view images being 

richer in spatial structure (Loschky et al., 2015; Oliva & Torralba, 2001).  

 Confusion matrices showed that experts and novices made similar confusions in ground-view 

images, but differed in the aerial images such that novices more often confused natural scenes with 

man-made scenes. Within-group, experts were consistent across ground and aerial viewpoints, but 

novices differed in two out of four CM sections. Novices more often confused natural scenes with 

man-made scenes, and made more confusions among different man-made scenes. The novices thus 

showed a greater tendency to be confused with aerial images, and tended to give more man-made 

responses. These differences in confusions reveal group differences for aerial but not ground-view 

images, and suggest that experience with aerial images improves consistency across ground and 

aerial viewpoints. Previous studies have trained novice participants on aerial images, suggesting that 

experience can improve the consistency between ground and aerial images (Borders et al., 2020; 

Lloyd, Hodgson & Stokes, 2002). The current study supports these findings, as the experts show 

greater consistency across the viewpoints.  

 

2.3 Experiment 2: Object matching 

Continuing from gist processing of aerial scenes, Experiment 2 investigated identity matching across 

aerial and ground viewpoints using images of houses. Such perspective switches can lead to 

difficulties in recognising objects, but as experts are familiar with aerial viewpoints, they were 
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expected to perform better in this task. This experiment also included an investigation into whether 

aerial images of houses were mentally rotated in the 2D image plane prior to matching with ground-

view counterparts. Furthermore, to anchor the results regarding such strategies, two control 

experiments were based on letter stimuli, where participants could perform the task based on 

feature identification (‘feature ID experiment’), or where the task required mental rotation of the 

letters (‘mental rotation experiment’).  

 

2.3.1 Method 

2.3.1.1 Stimulus images 

Ground-view images of houses3 were collected through ground photography in a suburban district of 

Birmingham, UK, using a 48-megapixel camera. The street and location of each house image was 

recorded. Aerial images were sourced from the OS, and cropped to small portions focusing on 

individual houses in the same city. Ground-view and aerial photographs were captured in October 

2022 and July 2022, respectively. Vegetation and movable objects such as cars could vary across 

viewpoint images, meaning that some ‘non-house’ features could be inconsistent across images.  

 100 houses were selected to create ‘Same’ pair stimulus images by pairing ground-view and 

aerial-view images of the same houses. 100 houses were selected to create ‘Different’ pair stimulus 

images by selecting a ground-view image of a house and finding an aerial image of a different house. 

The process of finding a different house from aerial-view followed some constraints. The different 

house had to be similar in one or two, and differ in one or two, of the following factors: 1) house 

shape outline, 2) roof shape (e.g., gabled or hipped roof), or 3) façade and roof features (e.g., bay 

windows, chimneys, or dormer windows). The different house was always of similar size and sourced 

from the same street, or a similar-looking, nearby street. Façades were visible in all ground and aerial 

images of houses. In some aerial images of houses, the back of the house was cropped out, but no 

diagnostic information would be lost due to this as the backs of the houses were never visible in the 

ground-view images.  

 Prior to the experiment, images were processed in MATLAB and were cropped to a square, 

grayscaled, resized to 300 x 300-pixels using bicubic interpolation, and stored in PNG format. Images 

in a stimulus pair were then arranged next to one another with a 300-pixel wide empty space 

between them to create stimulus images (300-pixel tall and 900-pixel wide). See Figure 2.4a for 

example house stimulus images. Ground- and aerial-view images were arranged left-right and right-

left equally often. During the experiment, images were scaled in PsychoPy (Peirce et al., 2019) using 

 
3 Many of the houses were conjoined pairs of semi-detached homes that appear as one building. Such 
structures are also referred to as houses.  
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linear interpolation to a height of 30% and a width of 90% of the participant’s monitor height in 

pixels. Ground-view images were higher than 300 pixels in resolution prior to resizing, but aerial 

images were lower in resolution (mean square pixel area: 122, SD: 25). The resolution of the aerial-

view houses was limited by the resolution of the aerial photographs once cropped to the desired, 

small space depicting individual houses. This meant that aerial-view houses had a grainier 

appearance than the ground-view houses.  

 To create rotation conditions, aerial-view houses were categorised based on their 

orientation, with a definition that 0° orientation is houses with façades facing downwards in the 2D 

image plane (see Figure 2.4a for example rotations of the aerial images of houses). Houses were 

categorised into five rotation conditions: 0°, ±45°, ±90°, ±135°, and 180°. House images were 

counterbalanced for: rotation, street, general appearance, house size, shading, and sunlight 

direction. Within the 200 stimulus images, there were 40 images per rotation, divided evenly and 

counterbalanced across the same/different stimulus images. Only the aerial-view houses had varying 

orientations, and the ground-view houses were always in their original orientation (Figure 2.4a).  

Control experiments were used to anchor the results of the main house experiment, 

reflecting two different strategies that observers might use: 1) a feature identification strategy 

(‘feature ID’), or 2) a mental rotation strategy (see Introduction). In the control experiments, letters 

were paired to create stimulus images. Capital letters F, G, J, L, P, and R were presented in the ‘Calibri’ 

font. Letters were displayed with a height of 9.5% of the participant’s monitor height in pixels, and 

were arranged and spaced apart similarly to the house images (Figure 2.4). The letter pairs were 

rotated similarly to the house images (0°, ±45°, ±90°, ±135°, and 180°). Both letters could be rotated, 

and the rotation condition of the stimulus was defined by the difference in rotation across the letter 

pair.  

In the feature ID control experiment, a ‘same’ pair was defined as the same letter appearing 

in both locations (Figure 2.4b). A ‘different’ pair was defined as two different letters. The letters were 

rotated in a counterbalanced order, creating 12 stimulus images in each of the five rotation 

conditions, counterbalanced across the same/different trials, for a total of 60 trials.  

The mental rotation control experiment introduced mirror-reversals (x-axis inversion; Figure 

2.4c). In this experiment, a ‘same’ pair was defined as the same letter appearing twice with the same 

mirror-reversal status (neither mirrored or both mirrored). A ‘different’ pair was defined as the letter 

appearing with different mirror-reversal status (mirrored differently). Stimuli were counterbalanced 

across rotation conditions for a total of 60 trials.  
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Figure 2.4: Example stimulus images for: a) the house experiment, b) the feature ID experiment, and c) the 
mental rotation experiment. Examples include 0° and 90° rotation conditions.  

 
2.3.1.2 Participants 

12 expert participants were recruited from OS (7 female; mean age: 40 years (SD: 10); mean 

experience with remote sensing surveying = 10 years (SD: 5), range: 1-25 years). All 12 experts had 

previously participated in Experiment 1. 13 novice participants were recruited from Prolific, but one 

was excluded based on failing an attention check criterion (8 female; mean age: 38 years, SD: 12). 

The novices had an average of 440 (SD: 439) total approved participations in other studies and 

surveys on Prolific. No novice had previously participated in Experiment 1. All participants were 
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fluent or native speakers of English and based in the UK or Ireland. Participants were compensated at 

a rate of £10 an hour.  

 

2.3.1.3 Procedure 

Experiment 2 was identical to Experiment 1 in terms of materials, access to the experiment, and 

ethical considerations. All experts, and none of the novices, reported having significant experience 

with aerial images.  

 For the sake of counterbalancing block orders, the main ‘house experiment’ and the control 

‘letter experiments’ were treated as two different parts of the experiment, where half of the 

participants started with the house experiment followed by the letter experiments, and vice versa for 

the other participants. Furthermore, the letter experiments were counterbalanced in order such that 

half the participants did the feature ID experiment first and the mental rotation experiment second, 

and vice versa. Four different block orders were thus possible, and these were counterbalanced 

among the 12 participants in each group.  

 The instructions for all parts of the full experiment stated that the task would be a ‘same or 

different’ judgement where the ‘s’ and ‘d’ keys would be used for ‘same’ and ‘different’ responses, 

respectively. Text was permanently present at the top of the screen throughout the full experiment 

reminding participants how to respond with these buttons. Participants were instructed to respond 

accurately and quickly. The instructions for the house experiment included examples of a ‘same pair’ 

and a ‘different pair’ of houses. Participants were instructed that two houses would appear next to 

one another from ground and aerial viewpoints, and that they should judge if the houses are the 

same house or different houses. After these instructions, participants did six practise trials before 

starting the house experiment. Throughout this experiment, text reminding participants how to 

respond read: “’S’ key: Same house, ‘D’ key: Different houses”. The instructions for the feature ID 

experiment stated that the ’same or different’ judgement regarded letters, where a same pair was 

the same letter, and a different pair was different letters. Three same and three different pair 

examples were shown in the instructions. Participants continued with five practise trials. Throughout 

this experiment, text reminding participants how to respond read: “’S’ key: Same letter, ‘D’ key: 

Different letters”. The instructions for the mental rotation experiment stated that the ’same or 

different’ judgement regarded mirror-reversal status. Three same pairs examples (with text stating: 

‘Both not mirrored’ or ‘Both mirrored’) and three different pair examples (with text stating: ‘Mirrored 

differently’) were shown. Participants continued with 10 practise trials where the correct answer was 

given to them in text instructions, for the purpose of aiding task learning. Throughout this 
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experiment, text reminding participants how to respond read: “’S’ key: Looks the same, ‘D’ key: 

Mirrored differently”. No practise stimuli were repeated in the main section of any experiment.  

 Trials started with a 1,500 ms blank screen interstimulus interval, followed by unlimited 

presentation time of the stimulus. A response started the next trial. All images in all experiments 

were fully randomised in order. The house experiment included four attention check questions, after 

every 50th trial, which were similar to Experiment 1. The letter experiments included one attention 

check question at the end of each block. Following the attention check question, participants were 

shown a pause screen with either an indication of progress, or the next block would start with 

instructions for a new experiment.  

  

2.3.2 Results 

Individual trials where the RT was more than two standard deviations from the mean for the 

respective participant were removed from the data. This mainly had the effect of removing very slow 

trials.  

The accuracy results (Figure 2.5) were converted to the sensitivity measure d’ to avoid 

response bias between Same and Different responses. In this stimulus-response task, Same and 

Different images and responses were recorded as hits (Same-Same), misses (Same-Different), false 

alarms (Different-Same), and correct rejections (Different-Different). The Same and Different images 

are thus used in conjunction to derive the d’ sensitivity measure displayed in Figure 2.54. The RT 

results (Figure 2.6) are displayed in seconds, and split by whether the images were a Same image pair 

(solid lines) or a Different image pair (dashed lines). Only correct responses were used in the RT data. 

Both accuracy and RT results are split by rotation conditions in Figures 2.5 and 2.6. Repeated 

measures ANOVAs were used to test results statistically (2 x 5; Group: expert, novice; Rotation: 0°, 

45°, 90°, 135°, 180°). The RT data further included another factor (Image type: same, different). 

Results of the ANOVAs are displayed in Table 2.2.  

The results from accuracy (Figure 2.5) and RT (Figure 2.6) are shown in separate figures, and 

the details of the results are elaborated below.  

 

 
4 Some participants had a hit proportion of 1.0 and a false alarm proportion of 0.0, producing an infinitely high 
d’. This mostly occurred in the feature ID experiment. To avoid using infinite d’s prior to averaging across 
participants, proportions that were 1.0 or 0.0 were recalculated so that: proportion 1.0 = 1.0 – (1/number of 
trials in condition), and proportion 0.0 = 0.0 + (1/number of trials in condition). For example, in the house 
experiment (Same image pairs), the number of trials was 100, and the d’ value corresponding to infinity was 
thus set at 4.65. In the letter experiments (e.g., Feature ID: Same pairs), the number of trials was 30, and the d’ 
value corresponding to infinity was 3.67.  
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Figure 2.5: Accuracy data for the: a) House experiment, b) Feature ID control experiment, c) Mental rotation 
control experiment. Infinite sensitivities (corresponding to 100% hits and 0% false alarms) were capped at d’ = 
4.65 for the house experiment (not included in scale) and d’ = 3.67 in both letter experiments (‘Inf’). ‘Averaged’ 
is the average across the rotation conditions. Error bars are 95% confidence intervals.  
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Figure 2.6: Response time (RT) data for the: a) House experiment, b) Feature ID experiment, c) Mental rotation 
experiment. ‘Averaged’ includes data from both Same and Different. Error bars are 95% confidence intervals. 
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Regarding accuracy in the house experiment (Figure 2.5a), experts and novices were 84.8% 

(d’ = 2.45) and 71.1% (d’ = 1.30) accurate, respectively. The results of the repeated measures ANOVA 

are displayed in Table 2.2: House accuracy. These results show that the experts were significantly 

more accurate, and that different rotations did not affect the accuracy results for either group.  

 For RT in the house experiment (Figure 2.6a), experts and novices took on average 4.99 and 

3.13 seconds to respond, respectively (Table 2.2: House RT). These results show a low-powered 

significant main effect between groups, and no evidence of rotations affecting the RTs. Looking more 

closely at the RT results, the novices’ RTs ranged from 1.47 to 6.27 seconds, and the experts ranged 

from 1.95 to 10.11 seconds. But three experts had notably slower RTs than the rest (these were: 

10.11, 9.05, and 8.03 seconds), and the other nine experts’ RTs ranged from 1.95 to 5.97. The 

relationship between speed (RT) and accuracy in the expert population was examined by removing 

these three experts and repeating the above analyses for both accuracy and RT. For accuracy, the 

outcome remained largely unchanged (Table 2.2: House accuracy), with a significant main effect 

between groups (F(1, 19) = 7.47, p = 0.013), with no other significant effect or interaction. But for RT, 

the main effect between groups changed, and was now not significant (F(1, 19) = 0.66, p = 0.425), 

while the other outcomes remained largely unchanged (Table 2.2: House RT). Overall, removing the 

three slowest experts produced only a small change in the accuracy results, but a large change in the 

RT results5. All results in Figures 2.5 and 2.6 thus include data from both the selected 9 experts (gold) 

and all 12 experts (silver). In comparing these gold and silver data, notice a relatively small change in 

Figure 2.5a: ‘House Accuracy’, but a relatively large change in Figure 2.6a: ‘House RT’. This suggests 

that the speed-accuracy relationship in the expert population might not follow the ‘standard model’ 

of speed-accuracy trade-offs, where longer RTs lead to higher accuracies.  

The letters control experiments (see Figure 2.4b, c for example stimuli) were analysed with 

the same ANOVAs as above. In both control experiments, removing the three slowest experts 

produced little change in the results. The results for both accuracy and RT thus regard all 12 experts 

compared to the 12 novices (Table 2.2). In the feature ID experiment, both groups completed the 

task with almost perfect accuracies (Figure 2.5b) and similar RTs of around 700-750 ms (Figure 2.6b). 

This shows no group differences in this baseline identification task using same or different letter pairs 

(Table 2.2; Figure 2.4b). Furthermore, as expected, no effect of rotation was found, as this task could 

be performed on features.  

 
5 The accuracy of 9 experts was 82.9% (d’ = 2.24), and 12 experts was 84.8% (d’ = 2.45). The RT of 9 experts was 
3.63 seconds, and 12 experts was 4.99 seconds. Apart from a large change in mean RTs, the homogeneity of 
variances across groups for RT improved notably from using 12 experts (Levene’s F(1, 22) = 9.15, p = 0.006) to 
using 9 experts (Levene’s F(1, 19) = 0.21, p = 0.652).  
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In analysis of the mental rotation experiment, highly significant main effects of rotation were 

seen for both accuracy and RT (Figure 2.5c and 2.6c; Table 2.2), showing that mental rotation was 

engaged in this control experiment which used letters that could be mirror-asymmetric (Figure 2.4c). 

This outcome affords a contrast to the main house experiment, where no effect of rotation was 

observed for the aerial house images (Figure 2.5a and 2.6a; Table 2.2). Regarding group differences, 

the experts were slower (Figure 2.6c; Table 2.2) but more accurate (Figure 2.5c; Table 2.2) compared 

to novices in this experiment. Furthermore, the effect of mental rotation was significantly more 

present in the same compared to the different images for both groups (Figure 2.6c; Table 2.2).  

 

Main effects 
and 
Interactions 

House 
Accuracy (d’) 

House RT † Feature ID 
Accuracy (d’) † 

Feature ID RT † Mental rotation 
Accuracy (d’) † 

Mental rotation 
RT † ‡ 

Rotation  F(4, 88) = 1.6, p 

= 0.182 
F(2.89, 63.47) = 

2.01, p = 0.124 
F(2.61, 57.42) = 

2.14, p = 0.113 
F(1.45, 31.85) = 

2.32, p = 0.128 
F(3.04, 66.83) = 

5.85, p = 0.001 ** 
F(2.53, 55.65) = 

16.97, p < 0.001 *** 
Group F(1, 22) = 12.8, 

p = 0.002 ** 
F(1, 22) = 4.33, 
p = 0.049 * 

F(1, 22) = 0.69, p 
= 0.416 

F(1, 22) = 0.46, p 
= 0.503 

F(1, 22) = 7.17, p 
= 0.014 * 

F(1, 22) = 6.05, p = 
0.022 * 

Same/Diff. - F(1, 22) = 0.56, 

p = 0.461 

- F(1, 22) = 0.10, p 

= 0.753 

- F(1, 22) = 5.42, p = 

0.030 * 

Rotation X 
Group 

F(4, 88) = 0.06, 
p = 0.993 

F(2.89, 63.47) = 
1.13, p = 0.344 

F(2.61, 57.42) = 
0.74, p = 0.517 

F(1.45, 31.85) = 
0.34, p = 0.645 

F(3.04, 66.83) = 
0.88, p = 0.458 

F(2.53, 55.65) = 2.3, 
p = 0.097 

Same/Diff. X 
Group. 

- F(1, 22) = 1.08, 

p = 0.309 

- F(1, 22) = 1.89, p 

= 0.183 

- F(1, 22) = 1.76, p = 

0.199 

Rotation X 
Same/Diff. 

- F(2.81, 61.88) = 

2.77, p = 0.052 

- F(2.68, 59) = 

3.00, p = 0.043 * 

- F(2.78, 61.22) = 

13.09, p < 0.001 *** 

Rotation X 
Group X 
Same/Diff. 

- F(2.81, 61.88) = 
1.4, p = 0.253 

- F(2.68, 59) = 
0.32, p = 0.787 

- F(2.78, 61.22) = 
0.78, p = 0.501 

Table 2.2: Results of repeated measures ANOVAs to accuracy and response times (RT) in all three experiments. 
Significant cells are shaded in green. * p < 0.05, ** p < 0.01, *** p < 0.001. X = interactions. † Greenhouse-
Geisser corrected column following a positive sphericity test (except for Group, Same/Diff., and Same/Diff. X 
Group). ‡ Analyses of RTs were always based on correct responses, but in the mental rotation experiment, 
some participants (one expert and five novices) provided no correct responses in at least one image category 
(e.g., Same image, 45° rotation). Such image categories consisted of six trials each. To avoid excluding data 
from participants on this basis, 13 out of 240 cells were filled in with the average of the other available 
participants in the same group and condition.  
 

2.3.3 Discussion 

The house experiment showed that experts were more accurate than novices for object matching 

across ground and aerial viewpoints. The experts further displayed a ‘nonstandard’ relationship 

between speed and accuracy, where three experts were notably slower than the rest of the 

participants but did not produce much higher accuracy than the other experts. After removing these 

three experts, accuracy results maintained the experts’ advantage (Figure 2.5a), with RTs not 

significantly differing between groups (Figure 2.6a). The expert surveyors are trained to prioritise 

accuracy over speed in remote sensing surveying tasks at the OS. Due to this main occupational task 

where errors are potentially costly, some experts may spend time confirming an already correct first 

impression. As the results show a performance advantage for the experts, this could explain why the 
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experts were generally more accurate instead of faster. The study was followed up by asking one very 

experienced surveyor if this task was familiar. This surveyor reported that surveyors have experience 

with matching vertical aerial images from airplane photography with oblique-angled drone 

photography. These imaging techniques have been paired to register and update landscape changes. 

While the experts are not accustomed to matching ground-view images (from e.g., Google Street 

View) with aerial images, this experience could be directly relevant to the experts’ advantage in the 

house experiment.  

The results across the rotation conditions showed that participants do not mentally rotate 

the aerial images of houses in the 2D image plane prior to matching, and that this was true for both 

groups. These results suggest that participants start identifying and matching features immediately 

at the start of each trial, regardless of the aerial house image’s orientation. This suggests that the 

expert surveyors had greater facility to identify and match features in the images. Studies that find 

strong effects of mental rotation commonly involve judgements of rotated abstract shapes, such as in 

the traditional cube figures of Shepherd and Metzler (1971), in which local features are not 

diagnostic but the spatial relationships between them are. In the current experiment, mental 

rotation was likely not necessary for the aerial-view houses because features provided enough 

diagnostic information (e.g., roof features). The task in the house experiment was also more complex 

a standard mental rotation experiment as some features were not visible in both images (e.g., a full 

view of the roof was only visible from the air).  

 Results from the feature ID control experiment showed that experts and novices performed 

this simple feature identification task with almost perfect accuracies (Figure 2.5b) and similarly short 

RTs (Figure 2.6b). As the participants used a feature identification strategy in the house experiment, 

these results suggest that group differences observed in the house experiment are not explained by 

the experts having a generalised performance advantage, outside of their area of expertise. 

Furthermore, these results afford an important indication that both groups, despite not doing the 

experiment with controlled equipment or environment, performed similarly in a baseline task. 

However, these results might be subject to a ceiling effect, masking any group differences.  

 The mental rotation control experiment shows that both groups did mental rotation of the 

letter stimuli (Figure 2.5c and 2.6c). As letters but not aerial images of houses were rotated, this 

further supports the conclusion that mental rotation was not utilized as a strategy in the house 

experiment. Regarding group differences, experts were more accurate but slower compared to 

novices. Experts and novices may have been motivated differently by their experiences and how they 

were recruited. Experts are trained to prioritize accuracy over speed, and thus may have wanted to 

perform well. Novices, who were recruited from an online platform and have participated in many 
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previous studies and surveys, may be experienced with performing studies quickly and thus 

prioritized speed over accuracy. Overall, the accuracy in this experiment was lower than what would 

be desired. Ideally, participants can be supervised and trained to perform with close to perfect 

accuracy, thus leaving only RT as a variable, which could have increased the clarity of the results for 

this group comparison. The lack of supervised training in this experiment could account for the highly 

variable accuracy scores across participants and groups in this experiment.  

 

2.4 General discussion 

Expertise in remote sensing of aerial landscape images is associated with higher accuracy in rapid 

categorisation of aerial-view scenes, and higher accuracy in an object matching task across ground 

and aerial viewpoints. The results further demonstrate that experts are more consistent across 

ground and aerial viewpoints, and that aerial images are not rotated in the 2D image plane prior to 

matching with a ground-view counterpart. These results provide novel evidence of expertise in 

remote sensing surveyors, who are professionally dedicated to photogrammetry of aerial images.  

Lloyd, Hodgson and Stokes (2002) tasked participants with categorising land use in aerial 

images. The authors geographers as an ‘experienced’ group, but the expertise for photogrammetry 

of aerial images within this group is less clearly defined, likely more heterogenous, and was not made 

explicit by the authors. Šikl et al. (2019) used both psychology and geography students, defining 

them as novice and intermediate groups, respectively. Geography students, who had some anecdotal 

experience with aerial images, did not rival experienced remote sensing image analysts in their 

study’s memory task. The authors studied visual recognition memory using a condition with aerial 

images, but did not provide any control conditions using e.g., ground-view images. The current study 

can complement Šikl et al. (2019), albeit in a different set of experiments, by finding effects of 

expertise with control conditions for both experiments. Previous studies have also shown that 

novices can be trained on aerial images and that this can reduce the gap between the ability to 

process ground and aerial viewpoints (Borders et al., 2020; Lloyd, Hodgson & Stokes, 2002). 

Experiment 1 supports these findings, as experts are better than novices at categorising aerial but 

not ground-view scenes, and the CMs show a greater consistency across viewpoints for the experts 

compared to the novices.  

 Humans are known to have processing difficulties with aerial images, which is clearly 

reflected in the current results obtained from novices. Initial fixations tend to be longer for aerial 

than ground-view images, suggesting a higher processing difficulty for the gist of the scene 

(Pannasch et al., 2014). Aerial images are also more homogenous in spatial structure, which is 

generally associated with worse processing in brief presentations (Loschky et al., 2015; Oliva & 
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Torralba, 2001). These are factors which make initial processing of aerial images difficult. The results 

of Experiment 1 suggest that experts have overcome some of this difficulty with experience, but that 

ground-view images are still easier to process. Studies of expertise in medical imagery could inform 

how expertise is related to the first fixations in aerial images, as medical images are, like aerial 

images, unusual to most humans. Radiologists show evidence of early-stage visual processing 

advantages compared to novices, with more efficient gist processing leading to earlier detection of 

targets using fewer fixations (Bertram et al., 2013; Drew et al., 2013; Evans et al., 2013; Fox & 

Faulkner-Jones, 2017; Krupinski et al., 2006; Kundel & Nodine, 1975). Using a visual search task in 

aerial images, Lansdale, Underwood and Davies (2010) showed that experts can ignore irrelevant but 

salient features, while novices were drawn to saliency. This further suggests that we have processing 

difficulties with aerial images which can be improved with experience. Experts can suppress items 

with higher visual saliency in favour of more meaningful items during search. Furthermore, the 

results of Experiment 2 in the current study suggest that novices struggled to process features when 

object matching across ground and aerial viewpoints. Large changes in object appearances due to 3D 

rotations are known to impair object recognition and constancy (Biederman & Gerhardstein, 1993; 

Center et al., 2022; Edelman & Bülthoff, 1992; Lawson, 1999; Newell et al., 2001; Tarr et al., 1998). 

The experts’ improved accuracy suggests that experience with aerial viewpoints might improve the 

ability to maintain object constancy across unusual viewpoints, despite large changes in object 

appearances. In terms of future directions, a study could explore whether this expertise is robust to 

other 3D rotations beyond the ground-to-aerial viewpoints.  

Remote sensing surveyors have had time and training to learn about the regular appearances 

of landscape objects and image-statistical regularities in aerial images. However, the development of 

this expertise in the surveyors’ natural workplace environment remains largely unexplored. In terms 

of future directions, a further study could follow surveyors longitudinally from the beginning of their 

careers (perhaps testing throughout the first year of work), or define intermediate stages with 

surveyors who have different levels of experience. Studying remote sensing surveyors poses logistical 

challenges as there are only a relatively small number of surveyors that work in specialised 

organizations. This is likely why some previous studies have recommended the use of experts, but 

not included them in their experiments (e.g., Borders et al., 2020; Pannasch et al., 2014; Rhodes et 

al., 2021). In the current study, both experiments ran online to gain easier access to OS remote 

sensing surveyors. Running PsychoPy online via Pavlovia is known to provide reliable visual timing 

durations, with variability and lag varying by only a few milliseconds across operating systems and 

web browsers (Bridges et al., 2020). Furthermore, the results of the feature ID experiment in 

Experiment 2 suggest that, despite non-laboratory control over equipment and environment, both 
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accuracy and RT were similar in both groups in a simple baseline task. While these factors speak in 

favour of the current methods producing reliable results, the online procedure of this study remains 

a limitation.  

 

2.4.1 Summary and conclusions 

Aerial images are more difficult to process than ground-view images, but evidence from expert 

remote sensing surveyors show that some of this processing difficulty can be overcome with 

experience. In two experiments, experts were more accurate in tasks involving analysis of aerial 

images. In a rapid scene categorisation task (Experiment 1), experts and novices performed 

comparably with ground-view images, but experts were more accurate with aerial images. Experts 

also tended to be more consistent in scene categorisations across ground and aerial viewpoints. In an 

object matching task (Experiment 2), experts were more accurate when matching houses across 

ground and aerial viewpoints. This experiment also showed that neither experts nor novices mentally 

rotate aerial images prior to matching with ground-view images. This result suggests that experts are 

better at identifying features and their specific configurations in aerial images. The theme of feature 

identification in aerial images is investigated further in Chapter 4, which examines the features that 

experts and novices use when classifying stereoscopic aerial images. Overall, this study highlights the 

benefits of experience for processing aerial images, and provides novel and complementary evidence 

on expertise for human remote sensing surveying.  
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Chapter 3 

Pilot studies 

 

The previous chapter established that remote sensing surveyors have expertise for processing 

features seen from the aerial viewpoint. This chapter continues with the development of a more 

specific method that is later used to characterise expertise for stereoscopic features in aerial images.  

This chapter describes preparatory work and pilot studies to extend the CI technique to allow 

simultaneous estimation of CIs for luminance and binocular disparity. This novel version of CIs was 

required for a later study which used CIs to estimate how expert surveyors use different 3D cues, 

such as luminance and disparity, in stereoscopic aerial images. This method was developed in three 

stages, described here in three experiments (Pilot 1-3). The first experiment in this series was an 

introductory CI study that used a detection task of a luminance target in luminance noise. This 

experiment further served to evaluate two different experimental designs that are commonly used in 

CI studies. The second experiment in the series continued with using a similar detection task but in 

3D images defined by binocular disparity. Here, a novel version of CIs was developed that was based 

on RDS but used dense textures as stimuli rather than sparse dot arrays. Finally, the third experiment 

in the series used these novel stimulus images to explore a novel task where observers detected 

luminance and binocular disparity targets simultaneously to generate both types of CIs.  

The data presented in this chapter are not used in other thesis chapters, and was acquired 

from compensated participants who signed informed consent. The projects were reviewed by Aston 

University’s College of Health and Life Sciences Ethical Review committee.  

 

3.1 Pilot 1: Evaluating experimental designs for classification image studies 

 

3.1.1 Aims 

As a first step for this project, an introductory experiment used luminance targets and noise to 

generate luminance CIs. This experiment was basic as it involved replication of previous similar CI 

studies that have found perceptual templates for targets with simple shapes (e.g., Beard & Ahumada, 

1998; Watson & Rosenholtz, 1997).  

 This experiment also served to evaluate two experimental designs to measure potential 

differences in efficacy for generating CIs. The first design was a SIBR design, where one stimulus 

image was presented that contained a target on 50% of the trials, with ‘yes or no’ detection 

responses. The second design was a 2AFC design, where two stimulus images were presented in 
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temporal sequence on each trial, one with and one without the target. In the 2AFC condition, 

participants were forced to select one image that contained the target.  

 The two designs each have some strengths and weaknesses. The relative benefits of SIBR and 

2AFC designs for CI studies were previously discussed in Chapter 1 (page 29), based on the results of 

Gosselin & Schyns (2003). The SIBR design is beneficial as it is quick to perform, with just one image 

and one response, and it affords a less constrained experience for the participants as they are freely 

allowed to respond ‘yes or no’ to all images. The SIBR design, however, allows response biases, 

where participants can provide uneven distributions of responses that could impact the quality of 

the results. For example, in extreme cases, CIs cannot be generated from participants who give only 

one type of response. The 2AFC design prevents response biases as, in each trial, one image is 

selected as containing the target and another image is selected as not. This benefit of avoiding 

response bias should be weighed against the fact that the 2AFC design requires participants to 

evaluate twice as many images, which requires longer time commitments for the experiment. The 

2AFC design can also be experienced as more constrained for the participants, as they must select 

one image as ‘yes’ and another as ‘no’ on each trial, without having the options to respond ‘both’ or 

‘neither’.  

 

3.1.2 Method 

Three participants (including the author) were recruited for a CI experiment where the task 

was to detect a centrally located white square target pedestal (20x20 texture elements) in a white 

noise texture (64x64 texture elements), with a static SNR that was the same for all participants. The 

target pedestal added 10 (out of 256) grayscale values and the noise ranged from 0-246 on the 

grayscale, giving an average SNR of 0.081 when the target was present. The SNR was determined in 

preparatory work using two observers to approximate ~70% correct responses. The experiment was 

informally controlled, and performed from the participants’ own computers outside of a laboratory 

environment6. Stimulus image sizes were scaled to a 30% ratio of the participants’ monitor heights, 

but viewing distance was not controlled. Two participants were compensated at a rate of £8.33 an 

hour.  

The two experimental designs described above were evaluated for potential differences in 

efficacy for generating CIs. Each new trial in the SIBR condition generated a random noise texture. 

The 2AFC condition used two independent noise textures that were presented in temporal sequence 

with a 500 ms interstimulus interval. Stimulus images were presented for 200 ms. The experiment 

was generated and run using PsychoPy (Peirce et al., 2019), and the participants had access to the 

 
6 During this stage, in-person testing was restricted as part of the response to covid-19.  
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full Python version of PsychoPy on their own computers. Each participant completed 20,000 trials, 

10,000 in each condition (SIBR and 2AFC). CIs were generated according to the typical procedure of 

subtracting the sum of all noise textures which led to negative responses from the sum of all noise 

textures which led to positive responses (Ahumada, 1996; Beard & Ahumada, 1998; Murray, 2011). 

For the 2AFC condition, this procedure meant saving the selected noise texture as a positive 

response, and the other noise texture as a negative response.  

Prior to the experiment, simulated ideal observers were used to evaluate the noise textures 

generated by PsychoPy (version 2020.2.10). PsychoPy’s noise textures have a zero mean (at mid-grey 

luminance), meaning that a CI template consisting of lighter pixels must be accompanied by a 

surround consisting of darker pixels. Zero mean noise produces a confound to any estimate of 

inhibitory surround mechanisms that might be implied by a negative (dark) surround in CI templates. 

To prevent this confound, PsychoPy’s noise generating component was modified to have a non-zero 

mean. Ideal observer simulations showed that the standard zero mean noise necessarily produced a 

negative surround when a positive centre template was applied. But with the modified non-zero 

mean noise, the ideal observer could apply a positive centre template without any negative 

surround. Thus, with non-zero mean noise, evidence of negative surrounds reflects the observer’s 

template rather than inherent structure in the noise. For this reason, all CI experiments in this thesis 

used a modified version of PsychoPy’s noise component that had a non-zero mean.  

 

3.1.3 Results and discussion 

Participants were between 67-75% accurate in this experiment. Results show that both the 

SIBR and 2AFC experimental design conditions produced CIs that contained obvious templates  

(Figure 3.1). The CI templates appear different in character between participants, where ES’s 

template is offset to the top-left of centre, AP’s is more centralised, and OS’s is smaller, covering 

fewer pixels in total. Note that these are participant initials, and OS does not refer to Ordnance 

Survey here. Notably, these template characteristics were highly similar within-participant across the 

SIBR and 2AFC condition (Figure 3.1). Templates generally had the characteristics of a white bump, 

suggesting that lighter and darker noise patterns promoted and demoted detection of the white 

square target, respectively. Some templates also have subtle negative (dark) surrounds.  

The SIBR condition was ~33% faster to complete, as the 2AFC condition required the 

participants to evaluate twice as many images. As the results clearly show similar CIs across the 

conditions, the SIBR condition was considered to be superior as it reduced experiment duration with 

little if any cost to the quality of the CIs. Reducing the time spent within the experiment is beneficial, 
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as CI studies usually require thousands of trials and several hours of commitment. Following these 

results, every following CI experiment in this thesis used a SIBR rather than a 2AFC design.  

Response biases can typically be tolerated without much cost to CI quality (Gosselin & 

Schyns, 2003). But studies that use the SIBR design should carefully instruct participants of the 

presence of the target (e.g., 50% likelihood of target presence), and encourage participants to 

provide an even distribution of responses throughout the experiment.  

 

 
Figure 3.1: Classification images from three participants (initials in columns, note that ES is the author) and two 
conditions (rows): SIBR: single-interval binary-response design, 2AFC: two-alternative forced-choice design. To 
the right is an illustration of where the target was located (blue outline).  

 

3.2 Pilot 2: Developing and evaluating a novel method for generating 3D classification images 

 

3.2.1 Aims 

Pilot 1 recorded 2D luminance CIs and evaluated experimental designs. Pilot 2 continues by 

developing a 3D CI from binocular disparity noise. CIs from disparity cues were required to meet the 

later aims of this thesis, which involved estimating the use of stereoscopic cues in classification of 

stereoscopic aerial images. The details of this later study are the subject of Chapter 4, which used the 

noise textures and subsequent CIs that were developed in the current pilot experiment.  

Previous studies have demonstrated disparity CIs with RDSs (Gosselin, Bacon & Mamassian, 

2004; Neri, Parker & Blakemore, 1999). But as later studies required masking of natural images, a 

sparse array of dots (Julesz, 1971) seemed unsuitable, as images would be visible through sparse 

noise. This project thus required dense noise to provide a sufficient masking effect, that could also 

produce CIs.  
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3.2.2 Method 

RDS provide a simple method for generating horizontal shifts that cause binocular disparities 

in dichoptic images. With a sparse array of e.g., black dots on a white background, dots can simply be 

moved horizontally over the empty background, as the dots do not have to compete for space with 

other dots (Howard, 2002; Julesz, 1971). But with a dense noise texture, horizontal shifts of pixels 

will compete for space with their neighbouring pixels. By introducing sub-pixel shifts, this problem 

can be mitigated, as the ‘centre of mass’ of the pixels can be moved horizontally in steps that are 

smaller than the size of the pixels. These shifted pixels might still compete for sub-pixel space, but 

this problem can be mitigated with a competition rule where the pixel with the most crossed 

disparity occludes its competitor. That is, the ‘nearer’ pixel is shown. This algorithm for creating 

horizontal sub-pixel shifts in dense textures was initially inspired by Georgeson, Yates and Schofield 

(2009), who introduced sub-pixel disparity shifts in noise textures via phase shifted sinusoidal 

gratings. The algorithm in the current study is based on horizontally expanding the texture, and 

horizontally shifting pixel values across the image, followed by down sampling to the original image 

dimensions. This image now contains sub-pixel shifts that cause binocular disparities in dichoptic 

viewing. Figure 3.2a provides an example of how this algorithm works to introduce disparity noise by 

introducing horizontal sub-pixel shifts. Figure 3.2b shows an example stimulus image containing 

disparity noise but no target. The method for creating disparity noise is further expanded on in 

Chapter 4: Methods: Dual-noise classification images.  

To determine how the shifts should be introduced, a ‘disparity map’ was created on each 

trial that mapped the application of disparity noise in both crossed and uncrossed directions across 

the carrier textures. In this experiment, the disparity map was lower in spatial frequency, to 

introduce smoother transitions between patches of crossed and uncrossed disparity (white noise 

texture with a Butterworth filter with a cut-off frequency of 9 cycles per image). See Chapter 4: 

Figure 4.2 for an illustration of a disparity map. The carrier textures were white noise textures that 

were subject to horizontal shifts as determined by the disparity map (Figure 3.2b). The disparity 

maps were saved on each trial, and tagged based on the participants’ responses, to generate 

disparity CIs. Note that, as is always the case in CI studies, only the noise is used to generate CIs.  
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Figure 3.2: a) Disparity noise algorithm for introducing disparity noise by horizontal sub-pixel shifts. b) 
Stereogram pair of stimulus images containing disparity noise, without any target. Dichoptic fusion reveals 
disparity noise in both crossed and uncrossed directions, arranged for crossed fusion, and divergent fusion 
reverses disparities.  

 
Viewing images in a mirror stereoscope, three participants (two female, mean age: 24.5) 

were tasked to detect a ‘near’ square (14x14 texture elements, 1.44 degrees of visual angle) defined 

as a centrally located static pedestal projecting 3.7 arcminutes of crossed disparity in a white noise 

texture (64x64 texture elements, 6.58 degrees of visual angle). This target was present on 50% of the 

trials. Stimulus images were presented for 750 ms. Participants were screened for the ability to 

discriminate the difference between crossed and uncrossed disparity with a similar target, in the 

absence of external noise. See Chapter 4 for further details on screening procedure, equipment, and 

how vergence control was supported in the stereoscope with a fixation cross and a surrounding 

border.  

An adaptive staircase procedure was used to vary SNRs by, unconventionally, manipulating 

the disparity noise level rather than the signal. This could provide psychophysically more granular 

step sizes in the experimental software than if the signal level was manipulated, as the signal was 

defined by fewer sub-pixel steps than the total noise range. SNRs were varied in a 1-up, 2-down step 

procedure, designed to estimate a 70.7% threshold (Levitt, 1971). When the procedure determined 
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that the SNR should go up, the noise level was reduced, and vice versa. Two such staircases operated 

in parallel. Step sizes were linear, and would change the range of external disparity noise by 

increasing or decreasing its range by 37 arcseconds of disparity. The experiment followed the SIBR 

design and participants responded ‘yes or no’ with button presses on a keyboard. In this experiment, 

monitors were not corrected to linearised gamma for the carrier textures, but this was the case in all 

later experiments using CIs. The experiment consisted of 10,000 trials and participants completed it 

in two or three days. Participants were compensated at a rate of £10 an hour.  

 

3.2.3 Results and discussion 

Figure 3.3 shows CIs generated from the influence of disparity noise in detection of the 

crossed target (‘near’ square). All three participants produced a noticeable CI template in the target 

location which roughly corresponded with the target shape. Light and dark pixels represent crossed 

and uncrossed disparity, respectively (which is the presentation structure for disparity throughout 

this thesis). CIs generally contained templates with a central positive peak (light pixels) in the target 

location, with surrounding negative side-lobes (dark pixels). Differences in amplitude between 

participants were observed (Figure 3.3 and 3.4), suggesting that participants varied in their ability to 

sample disparity cues. To aid in visualisation of individual differences, Figure 3.4 shows a horizontal 

cross-section taken by averaging the 14 central rows, corresponding to the target’s location at the full 

width of the image.  

This pilot experiment validated the novel algorithm for generating disparity noise and CIs 

from dense textures. This technique is developed further in the following pilot experiment, where 

the method is extended to simultaneously include luminance targets and luminance CIs. The 

technique is also used in Chapter 4, in a study of stereoscopic judgements of aerial images, and in 

Chapter 5, in a study of PL for stereopsis in stereograms.  
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Figure 3.3 Classification images from 3D binocular disparity. Light and dark pixels represent crossed and 
uncrossed disparity, respectively. Images were scaled individually so that the lightest pixel is at full contrast.  
 

 
Figure 3.4: A horizontal cross-section of the disparity classification images. 0 on the x-axis indicates the image 
centre.  
 

3.3 Pilot 3: Novel method for generating simultaneous 2D and 3D classification images 

 

3.3.1 Aims 

The previous experiment captured disparity CIs from dense stimulus images using a pedestal target 

in disparity noise. The current experiment sought to extend this novel technique with an experiment 
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consisting of three different conditions: 1) luminance, 2) disparity, and 3) both simultaneously. The 

novel contribution of this experiment was to show that CIs can be captured from both luminance and 

disparity cues simultaneously. This method is developed further in the next chapter, where this ‘dual-

noise’ CI technique was applied to stereoscopic aerial images to discover the contribution of 

luminance and disparity cues for a discrimination task with aerial landscape features.  

 

3.3.2 Method 

Six undergraduate participants (five female, mean age: 23) were recruited and compensated 

at a rate of £10 per hour and/or course credits (at Aston University). Five of the participants were 

naïve and inexperienced with psychophysics experiments. Participant AP was informed about the 

study and experienced with the stimulus images, having participated in the previous experiment.  

Before the start of the experiment, participants were told that they would be searching for a 

small central square in noise. The square would be defined either by binocular disparity, luminance, 

or both, varying between sessions but not within sessions. Text was always visible on the top of the 

screen reminding participants of which condition they were in. The text prompted a response, and 

read “Did you see a NEAR square?” for the disparity condition, “Did you see a WHITE square?” for 

the luminance condition, and “Did you see a WHITE and NEAR square?” for the compound condition. 

The participants completed 5,000 trials per condition over three or four days. The luminance and 

disparity conditions only contained the luminance and disparity targets, respectively. Luminance and 

disparity noise was always present in all conditions. The compound condition (‘White and Near’) 

presented both the luminance and the disparity targets together. The three conditions constituted a 

block and the orders inside the blocks were counterbalanced throughout the experiment. Monitors 

were corrected to linearised gamma.  

This experiment used similar methods as the above experiment on 3D CIs (Pilot 2). Targets 

were present on half of the trials in all conditions. Two staircases were used in parallel to estimate a 

75% threshold (1-up 2-down, estimating 70.7%, and 1-up 3-down, estimating 79.4%). The disparity 

target was a static pedestal (3.7 arcminutes of crossed disparity), and external noise was increased to 

make detection harder, and vice versa. The luminance target operated differently from the disparity 

target, by varying in intensity rather than being static. A pedestal of luminance was added in the 

target area which varied in luminance intensity depending on detection threshold. Detection was 

made harder by reducing the intensity of the target via the staircases, and vice versa. The luminance 

aspect was thus treated differently than the disparity aspect. As the luminance texture is a carrier for 

the disparity noise, varying the contrast of the luminance carrier would alter the carrier for the 

disparity noise, creating a complicated relationship between levels of external luminance and 
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disparity noise. The luminance target was thus staircased by altering the target contrast, but the 

disparity target was staircased by altering the external disparity noise. Despite these differences, 

both techniques serve to increase or decrease SNR depending on the staircase adjustments that 

track fixed thresholds.  

In the disparity and luminance conditions, the mean of the two staircases provided an 

empirical estimate of how much the external disparity noise or luminance target contrast needed to 

change from an estimated 70.7% threshold to an estimated 79.4% threshold. This was used to 

estimate two points on the participants’ psychometric functions for the luminance and disparity 

elements when setting the SNR for the compound stimulus (‘White and Near’). Equivalent step sizes 

were estimated so that both the luminance and disparity aspects of the compound stimulus 

remained approximately equally detectable when staircased together. The SNR for the compound 

stimulus was determined throughout the experiment for each participant based on their most recent 

disparity and luminance thresholds.  

 

3.3.3 Results 

Results replicate the previous experiments in showing that participants produced both 

luminance and binocular disparity CIs in separate conditions (Figure 3.5: ‘Disparity: Near’ and 

‘Luminance: White’). Extending these results, the compound condition shows that the two cue 

dimensions were combined and sampled simultaneously to produce CIs (Figure 3.5: ‘White & Near’ 

for both disparity and luminance). The luminance CIs were generated from the carrier textures, 

which were white noise textures (e.g., Figure 3.2b). But the disparity CIs were generated from 

smoother, low-pass filtered textures (see Pilot 2 for a description of the disparity maps). These 

differences account for the apparent spatial frequency differences between the luminance and 

disparity images seen in Figure 3.5.  

Visualising the CIs generated from binocular disparity, Figure 3.6 shows cross-sectioned 

disparity CI data from the disparity and compound conditions. As in the previous experiment, 

participants varied in their ability to sample disparity cues, as shown by apparent individual 

differences in CI template amplitudes. Figure 3.7 shows cross-sectioned luminance CI data from the 

luminance and compound condition. Overall, most participants displayed at least marginal use of 

both cue dimensions in the compound condition (Figure 3.5, 3.6 and 3.7).  
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Figure 3.5: Classification images from all three conditions. Images are presented similar to Figure 3.3. Left side: 
classification images from binocular disparity, split by disparity (‘Near’) and compound (‘White & Near’) 
conditions. Right side: classification images from luminance, split by luminance (‘White’) and compound 
(‘White & Near’) conditions.  
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Figure 3.6: Horizontal cross-sections of disparity classification images as in Figure 3.4. Solid and dashed lines 
represent the disparity condition and the disparity aspect of the compound condition, respectively. Black 
curves indicate the average of the conditions.  

 

 
Figure 3.7: Horizontal cross-sections of luminance classification images similar to Figure 3.6.  
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3.3.4 Discussion 

The results of this experiment satisfied the aims of producing simultaneous CIs from 

binocular disparity and luminance, as participants generally show the tendency of using both cues in 

the compound condition. The average result is that participants tended to sample each cue 

dimension less in the compound condition compared to the ‘unidimensional’ conditions (compare 

the solid and dashed black lines in Figure 3.6 and 3.7). This might seem to be an obvious effect, but 

the details regarding why and how this might have occurred can have two non-exclusive 

explanations: 1) differences in SNRs between the unidimensional and compound conditions, or 2) 

attention was solely focused on the one cue in the unidimensional condition, but shared among the 

two cues in the compound condition.  

To expand on these different explanations: 1) The compound condition afforded two 

diagnostic cue dimensions rather than one, meaning easier detection consistent with some kind of 

probability summation, thus the staircase adjusted the SNR accordingly. Two cue sources afford 

lower detection thresholds: An example of summation is binocular summation where binocular 

contrast sensitivity is greater than monocular (Blake & Fox, 1973). In this condition, participants 

would start at a level estimated from the unidimensional conditions, but the staircase would typically 

reduce the SNRs of both cues to track a 75% threshold that would be suited for the compound 

stimulus. Such differences in SNRs could affect the CIs, as the noise had a different modulating effect 

on each cue dimension. 2) Differences in attentional focus between single-cue and two-cue 

conditions. Only the relevant cue was prioritized in the unidimensional conditions, but attentional 

weighting was shared between both cues in the compound condition, thus reducing priority of either 

one cue. This is another effect that could reduce the CIs in the compound condition, as cues must 

share priority. An extended study with further conditions, including controls for SNR differences 

between the compound and unidimensional conditions, could provide details for how cue sampling 

differed across the unidimensional and compound conditions.  

The CIs show visual strategies to sample both cues simultaneously (Figure 3.5, 3.6 and 3.7), 

but some uncertainty remains regarding how this was achieved. Possible strategies that could explain 

these results include: 1) Cue combination within sessions, where ‘White and Near’ were weighted 

together on all trials, but one cue could dominate in some trials if sufficiently persuasive. 2) Cue 

disjunction within a session, where ‘White’ and ‘Near’ detection was prioritized separately on 

different trials, i.e., participants switched between cues but did usually not combine them within a 

session. A follow-up study might discover more details about such strategies in the compound 

stimulus condition with the addition of confidence ratings for each cue dimension, or with a three-
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alternative response design where participants are afforded the response options: ‘White’, ‘Near’, or 

‘White and Near’ to the compound stimuli.  

 Furthermore, this experiment suffered from an error in the staircasing of the luminance 

target signal for some participants. The staircase would sometimes reach a ceiling for some 

participants in some parts of sessions where they required a higher contrast luminance target than 

the software would allow. This would result in an underestimation of the participant’s luminance 

target threshold, biasing the compound stimulus so that the disparity target was more detectable 

than the luminance target. For example, this occurred with participant CP, who used relatively more 

disparity than luminance cues in the compound condition (Figure 3.5), likely because the disparity 

target was more detectable than the luminance target owing to this error in the experimental 

software.  

  

3.4 Conclusions on classification images 

These three pilot experiments provided insights and practical guidance for directing the use of the CI 

technique in the two following chapters. Pilot 1 showed that the SIBR task design affords a faster, yet 

effective, method for capturing CIs compared to the 2AFC design. Pilot 2 validated a novel version of 

stereoscopic CIs which uses dense stereogram textures with binocular disparity noise. Pilot 3 showed 

a novel result that luminance and disparity CIs can be captured simultaneously with these stimulus 

images.  

 In discussion of Pilot 3, two additional experiments are proposed for uncovering more details 

about how participants were simultaneously able to sample both cue dimensions in the compound 

condition. These follow-up experiments were not conducted. Instead, priority was designated to 

applying these CIs to the main aims of this thesis – studying mechanisms involved in expertise for 

remote sensing surveying. The following chapter describes a study using this 2D and 3D CI method to 

study expert-novice differences in visual information sampling from stereoscopic aerial images.  

In conclusion, this series of pilot experiments provide practical guidance for using the CI 

method in the later chapters of this thesis. These pilot experiments provided insights into the risks of 

experimental flaws to be avoided in the later studies. They also show that the method can provide 

the desired outcome, and the two following chapters develop this novel method further and apply it 

to meet the research aims of this thesis. These pilot experiments together provide a novel method 

that can simultaneously estimate CIs from binocular disparity and luminance cues. The benefits of 

this novel method are discussed in all the following chapters, where it is used to bring new insights 

into the mechanisms associated with visual information sampling.  
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3.5 Post-hoc analysis of perceptual learning for disparity targets 

 

3.5.1 Aims 

Remote sensing surveyors learn and improve from their experience with stereoscopic aerial images. 

An aim of this thesis sought to characterise stereoscopic PL, where experience with stereogram 

imagery might improve processing of disparity targets. Later in this thesis, Chapter 4 shows indirect 

evidence of PL for disparity targets in an expert-novice comparison. Following this study, Chapter 5 

directly attempted to characterise learning for disparity targets. As two pilot experiments in the 

current chapter (Pilot 2 and 3) used stereograms with disparity targets, a supplementary analysis of 

these data was of interest to discover if the participants showed any evidence of PL throughout the 

pilot experiments. Here the level of external noise required to maintain fixed thresholds throughout 

the experiment is an indication of PL.  

 

3.5.2 Results and discussion 

 In Pilot 2, which captured disparity CIs with three participants (Figure 3.3), participants 

required different levels of external noise to provide a sufficient masking effect to maintain the 

70.7% threshold, as seen in Figure 3.8. This relates to the template amplitude differences seen in 

Figure 3.4, where the participant with the strongest CI template also required the most external 

noise (red curves), and vice versa with the participant who produced the lowest CI amplitude (blue 

curves). This can be interpreted as individual differences in the ability to sample disparity cues 

leading to differences in both CI and noise-threshold measures.  

In this experiment (Pilot 2), two participants demonstrated evidence of PL in Figure 3.8. On 

the y-axis, disparity noise range indicates the average level of noise in each session. Note that, as the 

adaptive staircase adjusted the level of external noise, and not the target contrast, evidence of 

learning should be seen with increasing rather than decreasing thresholds in Figure 3.8. Increased 

noise implies a lower SNR and thus greater ability to detect the target signal. As the step sizes were 

linear in this experiment, the y-axis scale is also displayed in linear units. These data were fitted with 

linear regression models to examine significant slopes that could reveal improvements from PL. Two 

participants (US and KP) required increasing levels of external noise as the experiment progressed 

(Figure 3.8). Furthermore, fitting the linear regression model to the average of these three 

participants also produced a modest but highly significant slope (slope = 0.16, R2 = 0.576, t = 4.94, p < 

0.001). This effect is consistent with PL, where learning improves the ability to detect the target, thus 

requiring more external noise to maintain the threshold.  
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PL may be considered surprising given that no feedback was provided, and the participants 

who showed significant PL completed the experiment in only two and three days. Feedback and 

division of the experiment across multiple days (usually over four days), with sleep consolidating 

learning, is known to contribute to PL (Aberg & Herzog, 2012; Herzog & Fahle, 1997; Karni et al., 

1994; Liu, Dosher & Lu, 2014; Sasaki, Nanez & Watanabe, 2010). But PL can occur without structured 

trial-by-trial feedback (Liu, Lu & Dosher, 2010, 2012; Lu et al., 2011), as seen in this experiment which 

was not specifically designed to induce PL.  

In Pilot 3, PL in the disparity condition was analysed with a similar method, and the results 

are shown in Figure 3.9. This condition differed in three ways from Pilot 2: 1) The threshold tracked a 

75% correct response rate rather than 70.7%, 2) it was half as long, with 5,000 instead of 10,000 

trials, and 3) this disparity condition was interleaved with the luminance and compound conditions. 

The linear regression models show that the external noise required to maintain thresholds in the 

disparity condition increased across sessions for two participants (Figure 3.9). This is again consistent 

with PL for disparity cues in the absence of feedback. Fitting the average of these data with the linear 

regression model produced a positive but non-significant average slope in this experiment (slope = 

0.12, R2 = 0.178, t = 1.31, p = 0.225).  

Regarding luminance thresholds in the luminance condition (Pilot 3), no significant slopes 

were observed across sessions, suggesting no PL for detecting the white square (data not shown). No 

PL for the luminance target was expected, and can be understood in terms of luminance contrast 

judgements being primitive and close to the sensory origins of the visual system. No PL was observed 

because most humans are already ‘experts’ at detecting intensity changes (Adini, Sagi & Tsodyks, 

2002; Dorais & Sagi, 1997; Westheimer, 2001).  
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Figure 3.8: External noise required to maintain 70.7% thresholds for the three participants in Pilot 2. Solid 
curves show the mean level of added disparity noise across each session (500 trials). Dashed lines show a 
linear regression model fit to each participant’s data (slopes and statistical outcomes indicated in legend). 
Disparity noise range indicates the highest possible crossed and uncrossed disparities in the noise, in 
arcminutes.  
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Figure 3.9: External disparity noise required to maintain 75% threshold in the disparity condition in Pilot 3, 
similar to Figure 3.9. Participant AP also participated in Pilot 2.  

 

3.5.3 Conclusions 

The results show stereoscopic PL for disparity targets in four out of eight participants (Figure 

3.8 and 3.9) (AP participated in both experiments, and is thus not counted in the second). PL 

occurred despite no provision of feedback, and with a small number of participation days. These 

results suggest that experience can be important for improving the ability to process stereograms, 

consistent with well-established literature (e.g., Ramachandran, 1976; see also Chapter 5 for further 

discussion of relevant literature).  

The results of this post-hoc analysis of PL strengthen the motivation for the study in Chapter 

5, as these results suggest that PL can be present for this task. Chapter 5 directly aimed to induce PL 
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for disparity targets in stereograms. Further details regarding stereoscopic PL are discussed in 

Chapter 5. Furthermore, the potential future directions and implications of PL interventions for 

remote sensing surveying are discussed in Chapter 6.  
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Chapter 4 

Classification images for aerial images capture visual expertise for binocular disparity and a prior 

for lighting from above  

 

Collaboration acknowledgement 

The author wishes to acknowledge that much of this chapter was written in collaboration with 

Andrew J. Schofield and Timothy S. Meese in preparation for a joint publication. The introduction, 

method and results for the main experiment described below were written in collaboration, whereas 

the general discussion and follow-up experiment were written more independently. 

 

4.1 Introduction  

Continuing with the CI method developed in Chapter 3, the current study aimed to compare visual 

strategies of novices and expert remote sensing surveyors. This was examined with the task of 

discriminating two landscape features that have similar visual textures but dissimilar 3D relief: 

hedges and ditches. In principle, these can be discriminated from luminance and/or binocular 

disparity cues. The details of these depth cues are further considered below.  

 The experimental approach for this investigation is novel and based on the pilot studies in 

Chapter 3. By imposing spatial noise made from luminance textures and random binocular disparities 

onto stereoscopic landscape images, simultaneous pairs of CIs were generated for each observer. By 

examining and quantifying these, the analysis established how observers used disparity and 

luminance cues when performing hedge/ditch classifications. The image treatments involved a 2x2 

manipulation which flipped: 1) the disparity of half the images (to produce pseudoscopic viewing), so 

that hedges had ditch-like disparity profiles and vice-versa, and 2) the orientation of half the images 

(mirror-reversed around a horizontal axis) to change the lighting and shading cues (see below). The 

prediction was that experts would make more use of disparity cues than novices, and thus have 

more clearly defined disparity CIs, for two reasons. First, an informal preliminary report from a very 

experienced remote sensing instructor at the OS, advised that hedges and ditches are typically 

identified according to their perceived stereoscopic relief (i.e., their 3D quality from binocular 

disparity cues). Second, the expert surveyors who participated in the current study were more 

experienced than novices in making photogrammetric judgements involving disparity cues. Even so, 

participants were also expected to combine disparity and luminance cues instead of completely 

ignoring one of them because cue combination tends to support stronger stereoscopic perception 

(Doorschot, Kappers & Koenderink 2001; Hartle et al., 2022; Lovell, Bloj & Harris, 2012; but see Chen 

& Tyler, 2015 where luminance cues made disparity cues redundant).  
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Regarding the form of the CI templates, crossed and uncrossed disparities were expected to 

promote ‘hedge’ and ‘ditch’ responses, respectively, regardless of the ground truth of the image 

owing to the unambiguous 3D relief of tall hedges and deep ditches in the real world. Luminance was 

also expected to be an influential factor because luminance contrast is important for depth 

perception (Egusa, 1983; O’Shea, Blackburn & Ono, 1994) under two different assumptions about 

shape from shading. On the assumption of ‘diffuse lighting’, surface peaks and troughs align with 

light and dark image regions, leading to the perception that ‘dark-is-deep’ (Langer & Zucker, 1994; 

Langer and Bülthoff, 2000; Schofield, Rock & Georgeson, 2011; Sun & Schofield, 2012). On the 

assumption of ‘punctate lighting’, a single-point light source means luminance peaks are perceived as 

surfaces facing the light source, such as a hedge with a highlight on the side facing the sun (Adams, 

Graf & Ernst, 2004; Berbaum, Bever & Chung, 1983; Brewster, 1826; Koenderink et al., 2003; Pont, 

van Doorn & Koenderink, 2017; Ramachandran, 1988; Rittenhouse, 1786; Schofield, Rock & 

Georgeson, 2011; Sun & Perona, 1998; Sun & Schofield, 2012). These assumptions invoke subtly 

different relationships between luminance and shape. In the experiment, a diffuse lighting prior 

predicts a strategy of ‘hedges are light, ditches are dark’ (dark-is-deep), with luminance peaks 

(hedges) and troughs (ditches) aligned with the centre of the landscape feature. On the other hand, 

if the lighting is assumed to be punctate then this predicts luminance peaks that are offset from the 

centre of the landscape feature in the direction of the assumed light source. For example, consider 

an observer who assumes lighting-from-above, meaning light coming from the top of the 2D image 

plane. (Note that to avoid confusion of terminology with top/bottom and above/below in 3D, this 

direction will be referred to as ‘north’, meaning the top of the page regardless of what a compass 

would say). This observer would expect convex hedges to have a highlight towards the ‘northern’ 

part of the feature, with darker luminance in the ‘southern’ part, representing a shadow or internal 

shading. Similarly, this hypothetical observer would expect a concave ditch lit from the ‘north’ to be 

lighter towards the ‘south’ of the feature, as light would not reach the ‘northern’ concave region 

owing to surface depth occlusion. As will be seen, these asymmetries are important for the details of 

the luminance CIs.  

The predicted outcome under the punctate lighting hypothesis is complicated further by the 

OS’s practice of presenting aerial imagery with geographical north at the top of the image, consistent 

with most geographical maps. However, in the UK the sun shines predominantly from the south. This 

produces aerial images that are lit from the ‘south’, in this case meaning from the bottom of the 

page/screen. Expert remote sensing surveyors are thus accustomed to viewing aerial images as if lit 

from below their line of sight, which conflicts with a well-known bias in the population known as the 

lighting-from-above prior (Adams, Graf & Ernst, 2004; Ramachandran, 1988; Sun & Perona, 1998). As 
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the experts have spent many years working with aerial imagery lit this way, these natural lighting 

biases might have diminished, or even switched direction. No predictions were made on whether 

either of the two lighting assumptions (punctate or diffuse) would dominate in the experiment, 

accepting that both might be seen. Under the punctate lighting prior, the luminance peaks in the CI 

were expected to be offset ‘north’ of the perceived centre line of hedges for novices, as per the 

conventional prior, but ‘south’ of them, or with smaller offsets, for the experts. Similarly, under this 

hypothesis, bi-lobed luminance CIs were expected for the reasons to do with lighting and shading 

outlined above. More generally, because novices and experts have potentially different priors, the 

two groups were expected to have different sensitivities to image orientation (lighting direction in 

the hedge and ditch images) and to have qualitatively different luminance profiles in their 

classification images.  

 

4.1.1 Overview and hypotheses 

A novel variant of the CI technique was introduced, designed to provide simultaneous 

estimation of luminance and disparity templates (see Chapter 3 for the development of this 

method). This was employed for a feature identification task using aerial images to address the 

research questions developed above and summarised below as five specific hypotheses. Largely, 

these are about expected differences between experts and novices and are listed here to scaffold the 

results. However, observations and conclusions do extend beyond these a priori expectations.  

Hypothesis 1 (stereo, CI): The stereo fidelity hypothesis: Compared to novices, experts will be 

better in sampling relevant information from stereoscopic aerial images. This will be shown by 

greater amplitudes and greater spatial extents of the disparity CIs for experts compared to novices.  

Hypothesis 2 (stereo, CI): The cue strategy hypothesis: it is possible that experts and/or 

novices will prioritize one type of noise-cue (e.g. disparity cues) over the other type (e.g. luminance 

cues). This would be demonstrated by greater amplitudes and/or spreads across the two types of CI.  

Hypothesis 3 (stereo, categorical): The stereo accuracy hypothesis: Compared to novices, 

experts will show greater sensitivity to the stereoscopic profiles of targets, as revealed by their 

accuracy in the categorical ratings.  

Hypothesis 4 (lighting, categorical): The lighting sensitivity hypothesis: regardless of their CI 

structures, experts and novices will show different sensitivities to lighting direction, with novices 

having a greater tendency to respond according to an assumption of lighting-from-above.  

Hypothesis 5 (lighting, CI): The lighting bias hypothesis: Compared to novices, experts will 

show different or diminished lighting direction biases in their CIs and by this token, novices will show 
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a greater tendency to lighting-from-above compared to experts. A relationship is expected between 

this and the lighting sensitivity hypothesis (H4) outlined above.  

 

4.2 Methods 

4.2.1 Visual stimuli and the image generation pipeline  

High-resolution aerial-view landscape photographs covering land areas of approximately 

2.5km x 1.5km were sourced from the OS. Stereogram pairs were created using two images that 

covered overlapping landscape areas, spaced apart along the aircraft’s flight path. Six landscape 

features were isolated: three landscape features were hedges, found in Cambridgeshire, UK, and 

three features were ditches, found in Somerset, UK. Features were selected based on the following 

criteria: 1) The levels of shadow/sunlight were moderate. 2) The features were horizontally aligned 

within 15° of the aircraft’s flight path to facilitate horizontal binocular disparity. 3) The features were 

of a similar vertical extent and spread across the width of the image segment selected. 4) The 

features were straight. 5) The features had usable stereoscopic information: shallow ditches were 

excluded7.  

The six image pairs were processed with MATLAB and Python to create landscape stimuli. 

Each image was: 1) rotated to horizontal alignment using bicubic interpolation (Mean rotation: 7.35°, 

range 0–14.5°); 2) resized so that features had the same vertical extent using bicubic interpolation 

(Mean scale factor: 0.85, range: 0.52–1.2); 3) linearized to undo a compressive nonlinearity applied 

in the OS image pipeline; 4) converted to grayscale using Equation 1:  

 

𝐿 = 0.2125 ∗ 𝑅 + 0.7152 ∗ 𝐺 + 0.0722 ∗ 𝐵,    (Equation 1) 

 

where L = luminance, R = red colour channel, G = green colour channel, B = blue colour channel; 5) 

cropped to 128x128 pixels; 6) standardized to have the same mean luminance and average root-

mean-square contrast as the 12-image set. The images were processed and stored at 16-bit greyscale 

resolution throughout to prevent losses. These transformations were designed to produce 

horizontally oriented target features of similar sizes while removing colour and luminance variations 

in the original photographs that may have varied due to the feature types being sourced at different 

locations, time of year, and time of day. Figure 4.1 shows the final images used in the study.  

 

 
7 The exact quantity of binocular disparities in the features are unknown due to the unavailability of data on 
camera separation and height from the ground.  
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Figure 4.1: The landscape features used to make stimulus images (see Figure 4.3) after the minor rotation 
needed to achieve a visually horizontal feature. The top and bottom three pairs are hedges and ditches, 
respectively. The images are stereogram pairs arranged for crossed free-fusion, and divergent fusion reverses 
disparities. These images are shown with geographic north at the top of each image as per OS practice (see 
text for details). In these images, the terms ‘north’ and ‘south’ refer to the upper and lower halves of the 
images (and their parts), respectively, and also, to a first approximation, the compass. Notice subtle lighting 
cues owing to sunlight originating as if from the ‘south’ in these images. © Crown copyright and database 
rights 2023 OS, used with permission.  
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4.2.1.1 Dual-noise classification images 

In a novel step, both luminance and disparity noise was imposed onto the test images 

allowing the simultaneous estimation of luminance and disparity CIs (see also Chapter 3). A unique 

white noise texture (range ±1.0, 128x128 pixels) with randomly varying, non-zero mean was 

generated on each trial. This texture was low pass filtered with a first-order Butterworth filter with a 

cut-off frequency of 9 cycles per image. The noise texture was then added to the two landscape 

images in each stereoscopic pair to create noise+feature images (noise and image contrasts were 

normalised to 35% and 65% of their original contrasts, respectively).  

Another low pass filtered noise texture (with properties as above) was generated on each 

trial to create a random disparity map describing disparity offsets (see Figure 4.2 for an example 

image). Pixels in the two noise+feature images (one for each eye) were displaced horizontally by an 

amount determined by the random disparity map, thus adding disparity noise. Each image in the 

stereo pair bore half the required shift so that the images for the two eyes were transformed equally 

but in opposite directions. When presented in the stereoscope (described below) this produced a 

range of 0-296 arcseconds of random disparity (quantised to 8 levels) in the stimulus image pair and 

required sub-pixel shifts in the position of each pixel in the noise+feature images.  

 

 
Figure 4.2: Example Z-coordinate texture used to map random disparities.  
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Figure 4.3 illustrates the procedure for adding noise to the stimulus images, including the 

process for producing sub-pixel shifts, which was similar to the one used by Georgeson, Yates & 

Schofield (2009). Each noise+feature image was first upsampled in the horizontal direction by a 

factor of 10 to produce a 128x1280-element image. The upsampled luminance elements were then 

displaced based on values taken from the equivalent location in the disparity map (Figure 4.2). The 

amount of displacement applied varied horizontally across the image meaning that two or more 

luminance elements in the original image could be displaced to the same location in the transformed 

image. To address this problem, the competing luminance element that was subject to the least 

crossed disparity (i.e., the one that would appear furthest from the observer) was discarded and only 

the element subject to the most crossed disparity (i.e., closest to the observer) was retained. The 

disparity shifts could also result in gaps where no luminance element was assigned to a location in 

the transformed image. These gaps were filled with random luminance values sampled from a white 

noise texture. The image array was then downsampled in the horizontal direction by averaging, 

thereby recreating the original image resolution. Where determined by the disparity map, this 

procedure resulted in sub-pixel disparity shifts by virtue of subtle variations of luminance between 

the two eyes such that the ‘centre of mass’ of the grey values comprising features in the stereo pair 

was subtly shifted in each eye. Note that the random/noisy disparity shifts were applied in addition 

to the existing disparities between features in the original landscape images. Thus, the original 

disparities were retained but were heavily distorted by the disparity map analogous to the distortion 

of the original luminance features by the luminance noise.  
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Figure 4.3: Dual-noise procedure for making stimulus images on each trial using the hedge and ditch images in 
Figure 4.1. Paired images are arranged for crossed fusion with the low signal-to-noise ratios used in the 
experiment. This means that the cross-fusing reader is unlikely to witness much meaningful signal. See text for 
further details. Top image pair, © Crown copyright and database rights 2023 OS, used with permission.  

 

Finally, the inverse gamma functions of the monitors were applied to the stereo image pairs 

to ensure that luminance was linear for the displays. The bottom part of Figure 4.3 shows an example 

stimulus pair. Stimulus images were intentionally masked heavily with both luminance and disparity 

noise because the CI technique benefits from the strong influence of noise on behavioural responses.  

 

4.2.1.2 Disparity and lighting direction 

Before applying the luminance and disparity noise described above the stimuli were treated 

in each of two ways. In one manipulation, the landscape images were swapped between the two 

eyes, so that the disparity of the hedge or ditch was inverted and incongruent. A hedge image thus 
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changed from having substantially crossed disparity to substantially uncrossed disparity and 

appeared ditch-like, and vice versa for the ditch images. In a second manipulation, the landscape 

images were inverted about their horizontal axis, maintaining horizontal disparities but inverting the 

spatial relations of light and dark image features. In principle, these features can provide cues to 3D 

relief from highlights and shading. For example, most people report that the middle hexagon in the 

honeycomb stimulus in Figure 4.4a looks like a bump while the same image region in Figure 4.4b, 

rotated by 180°, looks like a dimple (Andrews et al., 2013). See also Chapter 1 for further details on 

lighting direction priors for interpreting shape from shading. Underpinning these perceptions is an 

assumption that lighting comes from above. Therefore, image orientation might also influence the 

perception of hedges (convex) and ditches (concave) in the same way as the honeycomb (Figure 4.4).  

Each of the two image treatments was performed on a trial-by-trial basis with an 

independent probability of 50%. This created a stimulus set with an overall 2x2x2 design 

(hedge/ditch; correct/inverted disparity; original/inverted orientation).  

 

 
Figure 4.4: Honeycomb stimulus, as previously seen in Chapter 1, where the light and dark parts of the image 
can be interpreted as highlights and shading owing to 3D shape. (A) is the same as (B) but rotated by 180°. 
These images are included to demonstrate the point about lighting direction and the perception of 3D shape, 
and were not used in this experiment.  

 

4.2.2 Equipment 

 Participants were seated in a dimly lit and secluded room with their chins on a chinrest in 

front of a mirror stereoscope. The monitors provided the primary light source in the room, apart 

from in the testing room in Southampton (see below), where window blinds allowed low levels of 

diffuse daylight to enter the room. This light applied equally to both viewpoints in the stereoscope. 

Two front-surface mirrors angled at 45° were mounted 6cm in front of the participant. These directed 

images to the observer from two ASUS ProArt PA329C monitors (3840 x 2160 pixel, 710x405 mm 

active screen region) placed on either side of the mirror mount with a total viewing distance of 990 

mm. Each monitor pixel subtended ~0.01 degrees of arc. Images were scaled in PsychoPy (Version 

2020.2.10; Peirce et al., 2019) so that a single element from a stimulus image occupied 5x5 pixels on 

the monitors. Thus, images subtended 6.58 degrees of visual angle. Apart from the pre-processing 
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noted above, stimuli were generated and presented using PsychoPy with a modified version of the 

noise component.  

 

4.2.3 Participants and ethical considerations 

Twelve participants (Mean age: 38.7, range: 23-62) were recruited by targeted email 

advertisement or direct communication. Participants were categorized as experts or novices 

depending on their level of experience with remote sensing surveying. An expert was defined as 

someone with two or more years of experience with remote sensing photogrammetric tasks. A 

novice was someone with no experience with remote sensing photogrammetry. Six participants were 

experts (Mean age: 43.8, range: 23-62) and employees at the OS with an average of 8 years of 

experience (range 2-20 years). The six novices (Mean age: 33.5, range: 25-45) comprised two non-

surveying staff at the OS, one staff member at Aston University, and three PhD students. The eight OS 

employees were tested at their offices in Southampton, UK, and the other four participants were 

tested on the Aston University campus, Birmingham, UK. Both groups had an average of 4 years of 

completed university-level education. No participant was experienced in creating or participating in 

psychology or psychophysics studies. Participants gave informed consent and were compensated 

with payment at a rate of £10 an hour. All participants were assured that their data, including 

screening data, would be confidential and anonymised. The project was reviewed by Aston 

University’s College of Health and Life Sciences Ethical Review committee (approval number 1843).  

 

4.2.4 Screening and exclusion procedure  

A screening procedure assessed the eyesight and binocular stereopsis of each potential 

participant for the main experiment. Participants wore their normal optical correction where 

appropriate. They were tested for standard visual acuity using a Snellen test and given a ‘gold 

standard’ (Garnham & Sloper, 2006) TNO test for stereoscopic vision, based on random-dot-

stereograms that provide no monocular cues to the target.  

The results of the TNO test are shown in Table 4.1 and are within normative bounds of a 

sample of 1058 participants who had a median TNO stereoacuity of 60 arcseconds (Bosten et al, 

2015). No exclusion criterion was set for this test. Expert 5's relatively high TNO threshold will be 

discussed later in the chapter, but note that Bosten et al (2015) reported that 8.9% of their sample 

had a TNO stereoacuity measure of ≥480 arcseconds.  
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 TNO threshold 

Participant Experts Novices 

1 15 120 

2 30 60 

3 30 15 

4 30 30 

5 450 15 

6 30 60 

 
Table 4.1: TNO thresholds for all 12 observers who took part in the main experiment. TNO threshold describes 

stereoacuity threshold in arcseconds from the TNO test.  

 

Participants were familiarised with the stereoscope by observing ten images that contained 

either a ‘flat’ texture or a stereoscopic texture with a square target defined by crossed disparity. 

Participants then carried out a discrimination task (40 trials) where a central disparity-defined square 

(740 arcseconds of disparity, side length 1.44 degrees of visual angle) had either crossed or 

uncrossed disparities. The task was to report whether the square was in a ‘near’ or ‘far’ depth plane 

compared to the surround. Responses were made by pressing a button on a keyboard. Participants 

had to score above 90% correct to pass this test. Those who failed were thanked for their time and 

given £5. Two potential novice participants and no experts were excluded by this process.  

 

4.2.5 Experimental procedure 

4.2.5.1 Preliminary procedure: general familiarity 

To familiarise all participants with the concept of aerial stereoscopic imagery, they were 

shown the same ground view photograph of two houses followed by an OS aerial stereogram pair of 

the same houses viewed through the stereoscope. They were told that these were different views of 

the same scene, the second one from above, and that they would be viewing aerial images 

containing stereoscopic depth like the houses but showing hedges and ditches. Participants were 

then shown ground-view images of a hedge and a ditch and told they would be looking for these 

features but from an aerial perspective. They were not shown any aerial-perspective images of 

hedges and ditches as part of the familiarisation procedure.   

 

4.2.5.2 Preliminary procedure: familiarity and instructions 

At the start of their first experimental session, participants practised for ~20 trials under the 

supervision of the experimenter following the main procedure below. They were instructed to press 

the left and right arrow keys on a keyboard for ‘ditch’ and ‘hedge’ responses, respectively. While 
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these button press responses were not ‘yes or no’, they follow a SIBR design as the task design uses 

one image and a binary choice per trial. Participants were told that the task would often feel very 

difficult, but they should make their best estimates to find hedges and ditches. They were also told 

that various hedge and ditch stimuli would be presented, and that these were always in the same 

location and had the same size. The experimenter gestured with his hand to highlight the shape 

outline and the size of the hedges and ditches over the monitor.  

To ensure appropriate vergence control, between each trial a black fixation cross was 

presented in the centre of the screen. The vertical bar of the cross was split across the two eyes. To 

achieve good convergence, participants were instructed to fuse the cross to make it appear 

‘complete’, like a ‘+’. If the cross appeared to drift apart, participants were instructed to close their 

eyes or look away for a moment to ‘reset’ their convergence and on returning attention to the 

display, to wait until the cross appeared fused before making their response which would also start 

the next trial. To further aid fusion, a high contrast border featuring white rectangles on a black 

background surrounded the image presented to each eye.  

 

4.2.5.3 Main procedure 

Stimuli were presented for 750ms and participants were allowed unlimited response time. 

No feedback was provided. A response triggered a new trial after a 630ms delay. The high contrast 

border surround and the fixation cross were always present, except the fixation cross was removed 

when the stimuli were displayed. 

The stimuli were presented with congruent (original) or incongruent (inverted) disparities 

and original or inverted orientation (see above) with equal probability on each trial. The third 

stimulus factor (original target feature = hedge or ditch) was blocked (i.e., a block of trials contained 

either only original hedges or only original ditches) but participants were not informed of this. This 

was done so that differences in visual textures across hedge and ditch images that were extraneous 

to 3D feature identification (e.g., the type of grassland in the scene) could not influence decisions 

within each block. The disparity reversals applied within each block ensured that the stimuli were 

presented as hedge-like and ditch-like with equal probability on each trial regardless of the block 

type. Sessions alternated between blocks of hedge and ditch targets, with the starting order 

counterbalanced across participants. Each session (block) contained 500 trials and there were 20 

sessions lasting about 15 minutes each giving a total of 10,000 trails per participant. Breaks were 

permitted between sessions and sometimes this was overnight. Eleven participants completed the 

experiment over three days, for one it took four days. The total experimental time for each 

participant was about six hours.  
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Following their final session, participants were asked to describe what they had been looking 

for when deciding whether stimuli were hedges or ditches. Participants were also asked whether 

they were aware of sunlight and/or shading influencing their decisions.  

 

4.3 Results and discussion 

4.3.1 Debriefing 

Expert 3 and Novices 2 and 4, reported a decisive luminance strategy supposing that hedges 

would look lighter and ditches darker (i.e., a ‘dark is deep’ strategy). Five out of six experts and four 

out of six novices reported using stereoscopic depth as a primary strategy. These five experts also 

stated that luminance cues (consistent with ‘dark is deep’) could be used mainly as a secondary 

strategy, but occasionally this would become primary. No participant mentioned that sunlight 

direction (from above or below) or shadow location influenced their decisions when quizzed about 

the direction of the light source. This suggests that participants were unaware of using a punctate 

lighting assumption.  

 

4.3.2 Organisation of main results 

Results will be described in the order of the hypotheses set out in the Introduction, which is 

to deal mainly with issues around disparity first followed by those around lighting and luminance. 

This involves starting with CIs, progressing to the details of the categorical data, then returning to CIs. 

However, the section begins with overall observations of the CIs, followed by a description of how CIs 

were quantified, before turning to interpretations and the five hypotheses.  

 

4.3.3 Classification images and informal observations  

Luminance noise textures were treated as the average across the stereo pair as presented to 

the participants on each trial. Disparity noise textures were the Z-coordinate maps for depth (see 

Figure 4.2), where light pixels represent crossed (‘near’) disparity, and dark pixels represent 

uncrossed (‘far’) disparity. (The convention here means that the CI grey levels relate to implied 3D 

relief in the same way for both types of CI.) For each participant, noise textures for luminance and 

disparity were tagged according to the ‘hedge’ or ‘ditch’ response on each trial and compound 

images were generated by summing the images for each tag. To generate a CI from all 10,000 trials, 

‘ditch’ response compounds were subtracted from ‘hedge’ response compounds (Ahumada 1996; 

Murray, 2011). Figure 4.5 shows CIs for each of the twelve participants revealing individual decision 

templates for luminance and disparity.  
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The higher contrast CIs tend to be in the left and right columns for the experts and novices 

respectively (H1 & H2), suggesting that different classification strategies were being used across the 

two groups. The centre regions of the disparity CIs in Figure 4.5 are white, indicating that ‘hedge’ 

responses were promoted by crossed disparity and ‘ditch’ responses by uncrossed disparity, as to be 

expected. Individual differences in lighting assumptions are observed in the luminance CIs consistent 

with the lighting bias hypothesis (H5), as follows. For some participants, the template centres are 

white, indicating that ‘hedges’ were promoted by lighter patterns and ‘ditches’ by darker patterns, 

consistent with a diffuse lighting assumption in shape from shading (e.g., Expert 3 and Novices 2 and 

4). For other participants, the luminance CIs show centrally offset positive and negative peaks, 

consistent with the influence of a punctate lighting assumption on the identification of hedges and 

ditches (e.g., Novices 1, 3 and 5). Further discussion of individual differences is provided below.  

From casual inspection of the partial CIs from each of the six original hedge and ditch images 

(Figure 4.1), no systematic differences were observed across the different images (results not 

shown), confirming that participants were consistent in their use of visual strategies across the six 

images. This was also the case for the two image manipulations of disparity congruency and vertical 

image inversions. These CIs, representing partial CI data split by the different image manipulations, 

can be found for disparity CIs in Appendix A and luminance CIs in Appendix B. They show that 

participants applied similar templates throughout the experiment regardless of per-trial image 

manipulations.  

 



E. Skog, PhD Thesis, Aston University 2023.   98 

 
Figure 4.5: Classification images (CIs) for disparity and luminance where ‘ditch’ response textures were 
subtracted from ‘hedge’ response textures. For both types of classification image, lighter and darker pixels 
represent mounds and troughs, respectively. Thus, for the disparity CIs, the light regions derive from observers 
responding ‘hedge’ and ‘ditch’ when there were crossed and uncrossed disparities in those image regions, 
respectively. For the dark regions, the disparities were uncrossed and crossed, respectively. Similarly, for the 
luminance CIs, the light regions derive from observers responding ‘hedge’ and ‘ditch’ when there were light 
and dark pixels in those image regions, respectively. For the dark regions, the pixels were dark and light, 
respectively. The bottom of the figure shows group-average CIs.  
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4.3.4 Quantifying the CIs 

To facilitate quantitative visualisation of the differences between the experts and novices, 

plots of cross-sections of the CIs for disparity (Figure 4.6) and luminance (Figure 4.7) are provided. 

Figure 4.6a shows the vertical cross-sections produced by averaging all the pixel columns in the 

disparity CIs (recall that the target features were horizontal) and has a profile like a Difference of 

Gaussians with a central positive lobe and two flanking negative lobes (sometimes called a ‘Mexican 

hat’). Figure 4.6b shows the horizontal cross-sections produced by averaging the 20 central rows of 

pixels (±10 from the centre) corresponding with the target location. Only this central region was used 

for the horizontal cross-sections to avoid cancellations from the outer regions (Figure 4.6a) with 

opposite sign. Figure 4.6b reveals a curved profile with a peak in the centre of the CI. The solid red 

and black curves in Figure 4.6 are for the novices and experts, respectively, and illustrate large group 

differences for disparity.  

 The treatment of the luminance CIs in Figure 4.7 is similar to that for the disparity CIs in 

Figure 4.6, but the outcome is different. Figure 4.7a shows that all observers have distinct positive 

lobes and several also have negative lobes but often weighted more heavily on one side than the 

other. Furthermore, while several observers have central peaks, others have peaks offset from the 

centre, the most prominent of which are to the left. This corresponds with 'north' (up) in the stimuli, 

though in some cases the offset is in the other direction. These differences necessitated special 

treatment for the averaging in Figure 4.7b. As the negative lobes in Figure 4.7a were offset for some 

observers, they were prone to cancel the positive lobes when averaged across the central 20 rows. 

Therefore, to preserve amplitude, these rows were full-wave rectified before averaging.  

 The cross-sections defined above were characterised by fitting Gaussian (Equation 2) and 

Gabor (Equation 3) functions to the horizontal and vertical cross-sections, respectively: 

 

𝑓(𝑥) = 𝐴𝐻exp (−
(𝑥−𝜇𝐻)2

2𝜎𝐻
2 ),      (Equation 2) 

𝑓(𝑦) = 𝐴𝑉exp (−
(𝑦−𝜇𝑉)2

2𝜎𝑉
2 ) cos (2𝜋

𝑦

𝜆
− 𝜓) ,    (Equation 3) 

 

where x, y are column and row numbers (in pixels units, with 0 in the centre), A is amplitude,  is 

spatial offset (in pixels),  is spread (standard deviation in pixels),  is wavelength (in pixels) and  is 

the absolute phase offset (in radians) of the co-sinusoidal component of the Gabor function. To 

separate the three shared parameters (A,  ) in Equation 2 and 3, subscripts H and V indicate 

horizontal and vertical data, respectively. Absolute phase offset () was subtracted rather than 
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added (Equation 3) to harmonise the signs between spatial and absolute phase offsets. For 

convenience, absolute phase offsets were converted to pixel units,pix (Equation 4):  

 

𝜓𝑝𝑖𝑥 = 𝜆𝜓/2𝜋,        (Equation 4) 

 

This makes the absolute phase offset parameter, pix, directly comparable to the spatial offset of the 

Gaussian, . Absolute phase () changes the peak position of the cosine component, and spatial 

offset () changes the peak of the Gaussian envelope. The asymmetry of the Gabor function depends 

on the relative values of these two offsets. This was captured by a relative phase parameter (φ pix), 

derived by subtracting the spatial offset () from absolute phase (pix) and converted back to radians 

to give, φ. Thus, , expresses the lateral shift of the entire Gabor function and φ (and φ pix) expresses 

the phase shift relative to this.  

 Equation 2 (the Gaussian) has three free parameters (A,  ) and Equation 3 (the Gabor) has 

five (the same as the Gaussian plus  and  (or pix) (or alternatively,  and φ (or φ pix))). In addition 

to these parameters, the location of the Gabor peak (which depends on   and φ pix) was 

determined using a MATLAB implementation of the Nelder-Mead simplex algorithm to find the 

lateral position, P,  of the function maximum (Figure 4.8, Table 4.3).  

 The fits of Equations 2 and 3 to the group averages from Figures 4.6 and 4.7 are shown in 

Figure 4.8, and their parameter values are reported in Tables 4.2 and 4.3, respectively. The Gabor fits 

to individual observers are shown in Appendix C and D for the disparity and luminance CIs, 

respectively.  The aim was to use whichever of the parameters above served us best in evaluating the 

three CI hypotheses (H1, H2 & H5). As will be illustrated, these proved to be: A, φ, P and  By 

comparison,  and , did less to distinguish between the factors of interest. They are included in 

Tables 4.2 and 4.3 for completeness but were not considered further. The spatial offset of the 

Gaussian, , was arguably more valuable, but for the vertical cross-sections it was subsumed by P. 

For the horizontal cross-sections,  was always significantly negative meaning the fitted Gaussians 

were shifted a little to the left. This leftward shift remains unexplained, but given the variability of 

the data around the fitted profile (Figures 4.8c & d), the shift likely conveys little or nothing of value 

and thus  is not considered further.  
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Figure 4.6: Cross-sections of disparity classification images. A) Vertical cross-sections. Left of centre 
corresponds to ‘north’ in the hedge and ditch images. B) Horizontal cross-sections of the central 20 rows. 
Experts and novices are shown by solid black and red curves, respectively. Different colours are for individual 
observers; the thick black curves are for group averages.  
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Figure 4.7: Cross-sections of luminance classification images. The details are as for Figure 4.6. A) Vertical cross-
sections. B) Horizontal cross-sections of the central 20 rows after full-wave rectification (see text for further 
details).  
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Figure 4.8: Fits of descriptive curves to the group averaged cross-sections of the CIs (Figures 4.6 and 4.7). A) 
Vertical disparity results fitted by Gabor functions. B) Vertical luminance results fitted by Gabor functions. C) 
Horizontal disparity results fitted by Gaussian functions. D) Full-wave rectified (see text for details) horizontal 
luminance results fitted by Gaussian functions. The origin of the x-axis is the stimulus centre. In the top row, 
left-to-right along the x-axis corresponds with top-to-bottom in the vertical CIs.  

  

 Fitted Gaussian parameters to 
horizontal disparity CIs  
(with 95% confidence bounds) 

Fitted Gaussian parameters to 
horizontal luminance CIs  
(with 95% confidence bounds) 

Group Experts Novices Experts Novices 

Amplitude A  5.33   
(5.19, 5.48) 

1.07   
(0.98, 1.15) 

2.06   
(1.96, 2.15) 

3.68   
(3.46, 3.90) 

Spread 𝜎 29.58   
(28.61, 30.55) 

27.78   
(25.1, 30.47) 

38.63   
(35.98, 41.27) 

26.82   
(24.9, 28.75) 

Spatial offset  -7.35   
(-8.26, -6.43) 

-5.21   
(-7.79, -2.62) 

-3.74   
(-5.92, -1.56) 

-4.02   
(-5.89, -2.14) 

Adjusted R2 0.937 0.663 0.682 0.715 

 
Table 4.2: Gaussian parameters (Equation 2) for fits to the group average horizontal CIs (Figure 4.8c, d). Non-
overlapping confidence intervals between groups are shown in bold. (Confidence intervals were estimated by 
the Matlab fitting procedure). Goodness of fit is shown by adjusted R2. Parameter values that belong to the x-

axis in the figures (𝜎, ) are in pixel units. Negative spatial offsets indicate leftward lateral shifts of the peaks in 
Figures 4.8c, d. 
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 Fitted Gabor parameters to  
vertical disparity CIs  
(with 95% confidence bounds) 

Fitted Gabor parameters to  
vertical luminance CIs  
(with 95% confidence bounds) 

Group Experts Novices Experts Novices 

Amplitude, A  6.69   
(6.44, 6.95) 

1.33   
(1.24, 1.42) 

3.55   
(3.37, 3.73) 

6.65   
(6.41, 6.9) 

Spread, 𝜎 17.59   
(16.84, 18.33) 

20.49   
(18.85, 22.13) 

10.64   
(9.95, 11.34) 

11.56   
(11.05, 12.07) 

Spatial offset,  2.19 
(1.32, 3.06) 

0.92 
(-0.8, 2.64) 

3.02 
(2.17, 3.88) 

0.44 
(-0.12, 0.1) 

Wavelength,  53.1 
(51.94, 54.26) 

50.32 
(48.7, 51.95) 

48.08 
(46.08, 50.09) 

46.76 
(45.52, 48) 

Absolute phase, 

pix  

0.89 
(0.60, 1.18) 

1.03 
(0.56, 1.51) 

-1.07 
(-1.51, -0.63) 

-4.78 
(-5.01, -4.55) 

Absolute phase, 

 (in radians) 

0.03π 
(0.02π, 0.4π) 

0.04π 
(0.02π, 0.6π) 

-0.04π 
(-0.06π, -0.03π) 

-0.20π 
(-0.21π, -0.19π) 

Relative phase, φpix -1.3 
(-1.59, -1.01) 

0.11 
(-0.36, 0.58) 

-4.09 
(-4.53, -3.65) 

-5.22 
(-5.44, -4.99) 

Relative phase, φ 
(in radians)  

-0.05π  
(-0.06π, -0.04π) 

0.0π 
(-0.01π, 0.02π) 

-0.17π 
(-0.19π, -0.15π) 

-0.22π 
(-0.23π, -0.21π) 

Peak location, P 1.13 1.02 0.31 -3.26 

Adjusted R2 0.966 0.898 0.954 0.977 
Table 4.3: Gabor parameters (Equation 3) for fits to the average vertical CIs (Figure 4.8a, b). Bold text shows 
non-overlapping confidence intervals between groups. Goodness of fit is shown by adjusted R2. Several of the 

function parameters that relate to the x-axes in the figures (𝜎,  , pix, φpix) are in pixel units, as is the (lateral) 
peak location (P). Negative spatial offsets and phase indicate lateral shifts to the left.  
 

4.3.5 Interpreting disparity CIs (including evaluation of H1 & H2) 

In support of the stereo fidelity hypotheses (H1), the amplitude (A) of the average disparity 

CIs (Figure 4.8) was about five-times greater for the experts than for the novices (left of Tables 4.2 

and 4.3; red and black curves in Figures 4.8a & c), confirmed by an independent samples t-test 

(Welch’s t(5.59) = 3.79, p = 0.005; one-tailed). However, for the vertical cross-sections (Table 4.3), the 

Gabor spread () for the novices was slightly greater than for the experts, though no reliable 

differences for the Gaussian spreads () of the horizontal cross-sections were found (Table 4.2). Thus, 

the disparity CIs suggest that experts were better than novices at picking up disparity cues for depth 

(H1), but contrary to expectations (H1), did not sample this information over a greater spatial extent 

than novices.  

The cue strategy hypothesis (H2) was also supported. Both groups reportedly attempted to 

use disparity cues (see Debriefing, above) but experts prioritized them over luminance cues, 

particularly by comparison to novices. Seeing this in the group fits (Table 4.3) is problematic since 

there is no measure of noise equivalence across noise types (disparity and luminance), and no signal 

amplitude-to-noise ratios can be derived to make the relevant comparisons. This was addressed by 

dividing the amplitudes from the fits to the n=12 individual observer results (Appendices A and B) by 
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their mean for each noise type. A 2 x 2 repeated measures ANOVA (Group: expert, novice; Cue type: 

disparity, luminance) on these normalised results revealed a significant interaction between 

participant group and cue type (F(1, 5) = 15.61, p = 0.011)8: on average, experts prioritised disparity 

over luminance but this was the other way around for novices (see Figure 4.9).  Note also that the 

luminance amplitudes (A) for the novices were higher than for the experts (Tables 4.2 and 4.3). This 

means the expert superiority with disparity cannot be attributed simply to greater engagement with 

the task since under that account, novices would not be expected to outdo experts on luminance 

cues.  

Notably, the CI disparity difference for experts and novices did not derive from stereoacuity 

because the two groups did not differ in their TNO test scores (Table 4.1) (One-Way ANOVA; Welch’s 

F(1, 5.53) = 0.430, p = 0.538). When Expert 5 was removed as an outlier (Table 4.1), the difference 

remained non-significant (Welch’s F(1, 5.34) = 1.93, p = 0.220). Furthermore, Expert 5 had a TNO 

threshold (450 arcseconds) fifteen times higher than the median and modal TNO threshold in the 

current sample (30 arcseconds) but produced a higher contrast disparity CI than any novice 

nonetheless (Figure 4.6a). A further observation is that the side-lobes in the disparity templates were 

more apparent for experts than for novices (Figures 4.6a & 4.8a). This shows that with experience, 

decisions about a feature’s stereoscopic profile are influenced more by the surrounding context.  

 

 
Figure 4.9: Interaction of CI amplitudes across cue type and groups. The amplitude, A, for each of the twelve 
participants (Appendices A & B) was normalised for each noise type (disparity and luminance) by dividing by 
their relevant mean. Error bars are ±95% confidence intervals.   

 
 

 
8 The fit to Expert 5’s luminance CI was unusual, bringing the estimate of their amplitude (A) into question. The 
details and solution are outlined in Appendix D. It is also noted that when Expert 5 was removed as an 
anomaly, the conclusion from the ANOVA was unchanged (F(1, 4) = 13.16, p = 0.022).  



E. Skog, PhD Thesis, Aston University 2023.   106 

4.3.6 Signal detection analysis (d' and bias) 

 Beyond CI measures, this experiment included three different manipulations to the images, 

such as inversions of disparity profiles, elaborated below. Thus, the observers’ responses to these 

manipulated image factors (signals) can provide another performance measure and show how 

different factors influenced responses. The observer’s sensitivity to signals can be estimated with the 

bias-free sensitivity measure d’, based within signal detection theory (Green and Swets, 1966; 

Macmillan & Creelman, 2004). In a traditional yes/no procedure, the signal is the stimulus the 

observer is trying to detect, and the ground truth is whether the stimulus was presented. In this 

experiment, trials followed the SIBR design but always contained a stimulus feature, that was either a 

hedge or a ditch. Note that this bears similarity to the second experiment in Chapter 2 where ‘Same’ 

and ‘Different’ house images were assigned to target-distractor categories in generating d’ measures 

reflecting accuracy results. In the current stimulus-response task, hedges were assigned to the target 

category and ditches to the distractor category. This was used to record stimulus-response 

categories: hits (hedge-hedge), misses (hedge-ditch), false alarms (ditch-hedge) and correct 

rejections (ditch-ditch), and d' was derived in the conventional way.  

When performing the task, differences between hedges and ditches can be characterised by 

different image aspects, such as 3D relief. The sensitivity analysis focused on how three manipulated 

image factors influenced responses: 1) the original image (hedge or ditch), 2) binocular disparity 

(crossed or uncrossed) and 3) lighting direction cues (inversions of highlights and shading from 

vertical flips, associated with the lighting-from-above prior). The first image factor reflects the 

contents of the original photographs, such as texture features (Figure 4.1). But in the second and 

third image factors, the ground truth does not relate to whether the image was a photograph of a 

hedge or a ditch, but to binocular disparity and lighting direction cues for 3D relief interpretations, 

respectively. The sensitivity analyses were performed on each of the three assumptions about 

ground truth. The results are elaborated below, and they show how observers used the three image 

factors in their judgements.  

 

4.3.6.1 Bias 

 The analysis of bias covers all three image factors as it simply relates to the two response 

categories ‘hedge’ and ‘ditch’. Bias (Figure 4.10) has no relation to the current hypotheses, but the 

presence of bias in the data motivates the use of the bias-free sensitivity measure (d’), rather than 

percent correct responses. Biases are shown in Figure 4.10 for each observer where the bias 

measure is given by the number of ‘ditch’ responses subtracted from the number of ‘hedge’ 

responses. Biases were normalised by the total number of trials and expressed as percentages. All 
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observers responded ‘hedge’ more often than ‘ditch’ (all bars are above 0% in Figure 4.10). This 

direction of the bias is consistent with the well-known convexity bias (Adams & Elder, 2014; 

Champion & Adams, 2007; Langer & Bülthoff, 2001; Perrett & Harries, 1988). In some cases the bias 

was fairly strong (e.g. a bias of 30% indicates a 65:35 split for hedges:ditches).  

These biases could be caused either by response bias, where observers tended to press one 

button more often, and/or a perceptual convexity bias. Liu and Todd (2004) suggest a perceptual 

origin to the convexity bias, and the current results are consistent with ambiguous 3D relief being 

more likely seen as a convex than a concave feature.  

 

 
Figure 4.10: Individual biases (100 x (n ‘hedge’ responses - n ‘ditch’ responses)/(n ‘hedge’ responses + n ‘ditch’ 
responses)). All observers made more ‘hedge’ responses than 'ditch' responses (all bars are above 0%). 
Observers are rank ordered by bias within group (left to right). Error bars show 95% confidence intervals 
(Clopper-Pearson method).  

 

4.3.6.2 Initial observations of d' analysis  

Figure 4.11 shows individual sensitivities (d') where the ground truth was defined by: a) the 

original image, b) the binocular disparity profiles (crossed or uncrossed), and c) the assumption of 

lighting-from-above. Although results from hedge and ditch images can be shown separately, they 

produced a highly similar outcome and were thus combined in Figure 4.11. Individual differences are 

seen across the three plots in Figure 4.11, where sensitivity measures varied as observers applied 

different assumptions of ground truth.  

The original image content (Figure 4.11a) was the least valuable image factor (Figure 4.11). 

This shows that observers generally relied on disparity profiles and lighting direction cues more than 

other content (e.g., texture features) in the original images (Figure 4.1). This is a satisfactory result as 

judgements based on original image content were considered spurious, and the strong levels of noise 

were meant to completely mask such content in the images. Novices (red) used more of the original 
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image content than experts (dark grey), but sensitivities were overall low, and are not considered 

further. Novice 6’s higher sensitivity to original image is notable. This participant might have detected 

some content in the original images, for example texture features, that other participants mostly 

ignored. Novice 6 is generally an outlier, who also had the strongest bias (Figure 4.10). Bias and 

sensitivity to original image might in part explain the absence of structure in their CIs (Figure 4.5) and 

the generally weak sensitivities to other ground truth aspects (Figures 4.11b, c).  
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Figure 4.11: Individual sensitivities (d’) to: A) original image, B) disparity profiles, and C) lighting-from-above. 
Observers are rank ordered within group (left to right) according to their sensitivity in each plot. Error bars 
show 95% confidence intervals (Macmillan & Creelman, 2004).  

 

4.3.6.3 Sensitivity to disparity profiles (including evaluation of H3) 

Figure 4.11b reveals a clear difference across groups for sensitivity to disparity profiles. The 

average expert sensitivity was d’ = 0.264 for the three hedge images and d’ = 0.277 for the three 

ditch images (not shown). Overall, novices were less sensitive than experts for both hedges (d’ = 
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0.046) and ditches (d’ = 0.051) (not shown), and within each ranked pair of observers across groups, 

the expert always had a greater sensitivity to disparity than the novice. These observations confirm 

the stereo accuracy hypothesis (H3) for categorical results (t(10) = 3.51, p = 0.003; one-tailed), where 

the experience of experts would expectedly allow for better use of disparity cues compared to 

novices. Furthermore, 1) the similar accuracies for the hedge and ditch images within group confirms 

that the stereoscopic profiles of the two image types were perceived equally well, and 2) the 

generally low performance levels indicate that the disparity noise was an effective mask. (For an 

unbiased observer, a d' of 0.3 corresponds with 56% correct in a single interval yes/no task.)  

 Figure 4.12 shows that across observers, d' sensitivity for disparity correlated strongly with 

the amplitude of the disparity CIs (A from the Gaussian fits to the individual cross-sections in Figure 

4.6b) (Pearson’s r2 = 0.919, p < 0.001). This reaffirms the observations regarding H1 and H3: that 

overall, experts had higher scores for both measures compared to novices. This was to be expected 

since a high amplitude in a CI (in this case disparity) indicates a high global sensitivity for the relevant 

cue which is therefore identified/detected more reliably. On the other hand, d' for disparity did not 

correlate with TNO thresholds (Table 4.1) (r2 = 0.01, p = 0.755). This is similar to the earlier, and 

presumably related, observation that TNO thresholds did not explain group differences in disparity 

CIs. This will be discussed further below.  
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Figure 4.12: Relation between the amplitude of the disparity classification images (Figure 4.5 and 4.6b) and 
sensitivity (d’) for classifying stimuli as a hedge or a ditch according to whether the landscape feature was 
presented with crossed or uncrossed disparity (Figure 4.11b). Individual participants are numbered (nominally) 
within the groups.  

 

4.3.6.4 Sensitivity to lighting-from-above (including evaluation of H4) 

Figure 4.11c shows sensitivities (d') to lighting direction, where values greater than and less 

than zero indicate perceptual priors for lighting-from-above and -below, respectively. This shows 

that: 1) novices were generally more prone to directional biases (were more distant from zero) than 

experts, and 2) novices had stronger biases towards lighting-from-above than experts, where some 

experts were biased towards lighting-from-below (t(10) = -1.92, p = 0.042; one-tailed). Within each 

ranked pair of observers across groups, the novice always had a greater sensitivity to lighting-from-

above than the expert. This supports the lighting sensitivity hypothesis (H4), where the experts’ 

experience with OS images lit from below the line of sight would expectedly diminish the 

conventional assumption for lighting-from-above.  

 Finally, Figure 4.11 shows that across the three different assumptions for ground truth, the 

greatest sensitivities were for lighting direction (Figure 4.11c), and this was for the novices. This point 

is expanded in the General Discussion.  
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4.3.7 Interpreting luminance CIs and individual differences (including evaluation of H5) 

The differences between groups for the luminance CIs were smaller than for the disparity CIs 

(see Figure 4.5), but several comparisons are worthy of note. First, novices produced larger 

amplitudes (A) than experts (right of Tables 4.2 and 4.3; red and black curves in Figures 4.8b & d; 

Figure 4.9). No a priori prediction was made for this result, but it is consistent with the cue strategy 

hypothesis (H2) which stated that prioritisation of cues might take place differently across the 

groups. However, the experts had greater spreads () in the horizontal direction than novices (Table 

4.2). This shows that experts sampled luminance over a greater spatial range of the landscape 

feature despite giving it lower priority. The group level results from the luminance CIs show that this 

cue was used by both novices and experts in the task (Figure 4.5 and 4.7).  

The lighting bias hypothesis (H5) predicted that patterns in the luminance CIs would relate to 

lighting direction biases and reveal group differences. The average luminance CIs for both groups 

(Figure 4.8b) show asymmetries, as revealed by the positional offset of the peak (P) and relative 

phase (φ) (Table 4.3), consistent with lighting-from-above. These effects were larger for the novices 

than the experts (Table 4.3), consistent with the expectation (H5). For the expert group the peak was 

located much more centrally than for the novice group (Figure 4.8b), suggesting that the assumed 

light source was more diffuse for the experts. However, the luminance CIs were less marked overall 

for this group (Figures 4.5 & 4.7), with less asymmetry (smaller relative phase shifts) and (as noted 

above) lower amplitude (Table 4.3). This suggests that the expert group was less prone to lighting 

priors and to luminance cues in general. This is consistent with the earlier observations of the 

categorisation results (Figure 4.11c) and provides the expected link between H4 and H5.  

The analysis above is for group trends but as Figure 4.7a shows, there were marked 

individual differences in amplitudes, peak locations, and phase asymmetries within both the novice 

and expert groups. This suggests individual differences for assumptions about lighting in terms of 

both direction (above/below) and source (punctate/diffuse). To examine this, Gabor functions 

(Equation 3) were fitted to the individual luminance CIs from Figure 4.7a (see Appendix D for the 

fits). In all cases but one, the amplitude was positive, and the absolute value of the relative phase 

shift was less than 0.5  radians, overall consistent with hedges being lighter and ditches darker. The 

exception was Expert 6, for whom the relative phase shift was -0.88  radians, placing dark and light 

pixels more centrally for ‘hedge’ and ‘ditch’ responses, respectively (see Figure 4.5, bottom left). No 

explanation is provided for this participant's switch in polarity from the expectations, but they were 

one of only two experts who had a lighting-from-above prior (Figure 4.11c).  

To visualise the individual differences and to show the relationship between the luminance 

CIs and the categorical results, the d' sensitivity for lighting direction (from Figure 4.11c) was plotted 
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against the two indices of asymmetry: 1) the lateral offset of the function peak in the vertical cross-

sections (P), and 2) a metric related to relative phase (φ) which tells us about the asymmetry of the 

shape of the CI. These are shown in Figures 4.13a and 4.13b, respectively. (See figure caption for 

details of how the relative phase metric was derived to accommodate Expert 6). In both cases the 

correlations were good (Pearson’s r2 = 0.537, p = 0.007; Pearson’s r2 = 0.516, p = 0.009 in Figures 

4.13a and 4.13b, respectively). These relationships further affirm the expected link between H4 and 

H5. The division across participant groups (different coloured symbols in Figure 4.13) illustrates the 

lighting bias hypothesis (H5), where conventional lighting cues were expected to be a more 

important factor for novices than for experts. These are most marked at the extremes (red symbols, 

top right; black symbols, bottom left). However, there is marked overlap in the central regions of the 

plots, showing that the two groups do not differ as strongly on this measure (see also Figure 4.5) as 

they did on disparity (Figure 4.12). Some of the details are highlighted below.  

Observers with the strongest perceptual biases for lighting-from-above (e.g., Novices 1, 3 

and 5; Figure 4.11c) also had an asymmetric CI with a negative side-lobe ‘south’ of the positive peak 

(Figure 4.5, 4.7a and 4.13b). This suggests that a shadow was inferred ‘south’ in hedge features, 

and/or a highlight ‘south’ in ditch features, consistent with a lighting-from-above bias and an 

assumption of punctate lighting. The opposite inferences of highlights and shadows is seen for 

observers with a bias for lighting-from-below (e.g., Experts 2 and 4; Figure 4.5, 4.7a and 4.13), but 

less strongly, presumably due to their weaker biases (Figure 4.11c). The observers with centralized 

luminance peaks (e.g., Expert 3 and Novices 2 and 4; Figure 4.5 and 4.7a) also showed weaker 

lighting direction biases (Figure 4.11c and 4.13). This is consistent with the diffuse lighting 

assumption where ‘dark-is-deep’ is the identification rule, where lighter and darker textures prompt 

‘hedge’ and ‘ditch’ responses, respectively.  

 



E. Skog, PhD Thesis, Aston University 2023.   114 

 
Figure 4.13: Relationships between sensitivities to lighting-from-above (Figure 4.11c) and peak location offsets 
(a) and relative phase (b) in individual luminance classification images. In (b), a phase of 0π radians indicates 
perfect cosine phase symmetry, and ±0.5π radians is maximally asymmetric sine phase (vertical dashed line). 

Individual participants are numbered (nominally) within the groups. In panel (b) Expert 6 was unusual in that φ 

> |0.5. Since the aim was for this figure to illustrate asymmetry in the CI, the result for Expert 6 was folded 

back across -0.5 The result is a value of -0.12 under this metric but with opposite sign (light/dark; not 
depicted in this figure) compared with other participants. 

 

In summary, lighting direction biases are implied by d' sensitivities to lighting-from-above 

(Figure 4.11c), and peak offsets and asymmetries in the luminance CIs (Figures 4.8b and 4.13). 

Novices showed a greater tendency for lighting-from-above, and lighting direction biases for experts 

tended to be diminished by comparison, or switched to lighting-from-below. Novices and experts 

thus differ in their assumptions about lighting and the influences these have on their luminance CIs, 

though there was much overlap between the two groups (Figure 4.13).  

 

4.4 General discussion  

The current study investigated judgements of stereoscopic aerial images and how novices and expert 

remote sensing surveyors might differ in their use of visual cues. This study applied the CI technique 

that was developed in the pilot studies of Chapter 3. New insights are brought with this novel CI 

technique that simultaneously estimates templates from luminance and disparity cues. The current 

study takes a novel methodological step in applying luminance and disparity noise to stereograms of 

natural images. Results show clear differences in the perceptual templates used by experts and 

novices when discriminating stereoscopic aerial images of hedges and ditches, under five specific 

hypotheses (H1-H5; see Introduction). The results showed that, compared to novices, experts made 

better use of binocular disparity cues (H1). Differences were also found in cue strategies, where 
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experts prioritised disparity cues over ‘dark-is-deep’ luminance cues9 (H2). Conversely, novices 

prioritised luminance cues over disparity cues (H2), and had higher amplitudes in their luminance 

CIs. Sensitivity to stereoscopic profiles (d’) was greater for experts than novices (H3), but this did not 

relate to stereoacuity. The results from analyses of peak locations and asymmetries show individual 

differences in the interpretation of lighting direction cues, with experts less likely to adopt the 

conventional lighting-from-above prior (H4 & H5). This tendency of experts to have diminished 

lighting-from-above priors for aerial landscape features can be attributed to their experience with 

the counter-conventional lit-from-below imagery used by the OS.  

 

4.4.1 Experts and novices 

4.4.1.1 Stereoscopic judgements 

The expert surveyors have years of experience with stereoscopic aerial landscape images. 

Confirming a primary hypothesis for this study, and this thesis, the current study shows that experts 

made better use of disparity cues than novices, and that this group difference was notably large. This 

result reveals a mechanism involved in interpreting stereoscopic aerial images that is strongly 

associated with expertise in remote sensing surveyors.  

This expertise likely reflects learning from experience, and the CIs capture aspects of this 

expertise. Previous studies have used 2D CIs to study PL, finding learning effects for luminance CIs in 

detection of oriented gratings (Dobres & Seitz, 2010), face and texture identification (Gold, Sekuler & 

Bennett, 2004) and position discrimination (Kuai, Levi & Kourtzi, 2013; Kurki & Eckstein, 2014; Li, Levi 

& Klein, 2004). The current study is the first to demonstrate evidence of learning/expertise using 

disparity CIs. For an elaboration on stereoscopic PL following the results from disparity CIs in the 

current study, see Chapter 5.  

 Stereoacuities were measured using the TNO test. Perhaps surprisingly, disparity CI 

amplitudes were not correlated with the stereoacuity thresholds, and stereoacuities did not explain 

group differences. Expert 5’s disparity CI was clearly defined and had greater amplitude than any 

novice, despite Expert 5 having a far higher stereoacuity threshold than all novices. Furthermore, 

TNO thresholds did not correlate with d' sensitivity for disparity profiles. Taken together, this shows 

that the ability to sample disparity cues in the CI task did not depend on stereoacuity. To elaborate 

on this disparity mechanism; stereoacuity concerns the smallest detectable difference (threshold) 

across binocular retinal images. But the current task required observers to extract a meaningful 

disparity signal in noise, where both the signal and noise might be detectable (above-threshold). 

Here, relevant disparity signal must be pooled against a background of disparity noise to contribute 

 
9 See Chapter 6 for a discussion on mechanisms associated with template shapes.  



E. Skog, PhD Thesis, Aston University 2023.   116 

to the perception of a stereoscopic surface. Carrillo, Baldwin & Hess (2020) used disparity noise-

masking and found no relation between stereoacuity thresholds and the level of external disparity 

noise that could be tolerated. Consistent with the current study, this suggests that detection of 

binocular disparities across the two eyes (stereoacuity threshold) operates at a different stage than 

spatial pooling of relevant disparity signal against a background of disparity noise. The current study 

shows that experts have a greater facility to extract a relevant disparity signal, but their stereoacuity 

thresholds are not better than novices.  

 

4.4.1.2 Cue strategy 

Experts prioritised and sampled disparity cues over ‘dark-is-deep’ luminance cues more so 

than novices. The results also show that, less expectedly, the novices had a greater luminance CI 

amplitude than the experts. This outcome was not reflected in the verbal debriefing, where most 

experts and novices reportedly used disparity cues as a primary strategy and ‘dark-is-deep’ 

luminance cues as a secondary strategy. Furthermore, the debriefing clearly showed that none of the 

observers were aware of using lighting direction cues (a punctate lighting assumption). That is, 

observers reported using luminance cues where ‘dark-is-deep’, but did not relate this to any 

asymmetries or shifts in peak locations consistent with punctate lighting-from-above or -below. This 

was rather surprising considering that the novices had relatively large d' sensitivities for the 

detection of lighting-from-above, and this sensitivity was greater for this cue/group combination 

than any other (Figure 4.11). This might suggest that some (novice) observers were aware of using 

lighting direction as a ground truth signal, but this was not the case.  

Thus, CIs revealed group differences that the verbal reports did not: that the experts were better 

able to prioritise and use the disparity cues, and that the use of luminance cues varied across groups 

and individuals. This suggests that CIs can be a powerful technique for revealing visual strategies that 

observers are unaware of using, and this topic is elaborated further in Chapter 6.  

 A feature of the experimental design was that the sign of disparity and lighting direction 

were inconsistent in about half the trials (and consistent in the remainder). This means that for 

observers who detected both cues conventionally (e.g., Experts 5 and 6) these two cues would have 

been in conflict about 50% of the time, diminishing the performance that would otherwise be 

achieved. Note that in general, on removing the conflict trials from the analysis, d' equals the sum of 

those measured when each of the disparity and lighting from above cues were treated as ground 

truth. For Expert 6 this is quite a benefit; when hedge and ditch images are lit from above and have 

consistent disparity, this observer would benefit from both cue types. Note that this is not specific to 

observers who show a bias to lighting from above. Expert 4, for example, shows evidence for 
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detecting lighting from below (Figure 4.11c). Since the sign of d' in Figure 4.11c depends only on 

what was deemed to be the correct direction for lighting, Expert 4 would also benefit from the 

combined performance across cues (the sum of the absolute values of the d' measures) when hedge 

and ditch images were lit from below. Cue conflict arises when there is 1) inconsistency between the 

observer's lighting prior and the lighting direction in the image and 2) there is sensitivity to both cue 

types. The greatest d' sensitivities were found for an assumption of lighting from above for the 

novices. In similar tasks, but where images are presented without conflict, novices would benefit 

from lighting from above and would benefit further on being trained to use binocular disparity.  

 Furthermore, the separation of hedge and ditch images across blocks likely contributed to 

increasing the participants’ reliance on the image manipulations as other image content was 

consistent within blocks.  

 

4.4.1.3 Lighting direction priors 

Lighting direction can be a strong cue to 3D shape from shading, as seen with the 

honeycomb stimulus (Figure 4.4 and 4.14a, b). But for hedges and ditches that are unmasked or have 

weaker noise masks, the lighting direction is likely less important for identification. For example, 

Figure 4.14c-f shows the effect of rotating an unmasked hedge and ditch. The reader is encouraged 

to try to ignore the labels in Figure 4.14 and decide which images are hedges and which are ditches. 

Further, the reader might directly reflect on the lighting direction structure, and decide which lighting 

direction makes hedges appear more ‘hedge-like’, and ditches appear more ‘ditch-like’. Recall that 

the OS imagery are originally lit from the ‘south’, from below the line of sight. The impression shared 

by the author and colleagues is that the impact of inverting the hedges and ditches is small 

compared to the honeycomb (Figure 4.14a, b), but that there is some benefit for the impression of 

3D relief when light comes from above (Figure 4.14c-f).  
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Figure 4.14: Images that might change in interpretations of 3D relief when inverted. A and B display the 
honeycomb stimulus with 0° or 180° orientations. C-F display hedges and ditches with either original or 
inverted orientations. Note that the hedges and ditches are in their original orientation when they are lit from 
below. Images c-f, © Crown copyright and database rights 2023 OS, used with permission.  

 

The results, particularly from novices, show that such lighting direction cues provided an 

important cue to the hedge/ditch discrimination when images were heavily embedded in noise. With 

the approach of using extremely strong noise to mask the targets (Figure 4.3), the CIs reveal the 

perceptual strategies and/or the expectations that the observer brings to the task. See also the 

‘superstitious’ method, where the stimulus is not presented, and a CI template reflects the 

observer’s top-down expectations (Gosselin & Schyns, 2003). The current study reveals how 

perceptual strategies differed for the experts and novices, and the experts show evidence of having 

overcome the conventional prior for lighting-from-above (in 4 out of 6 cases; Figure 4.11c)10. 

 
10 The likelihood of having no lighting-from-above bias was estimated based on previous literature, to explore 
whether the current sample could have occurred by chance. An estimate from Schofield et al. (2011) suggest 
that two out of nine participants do not have the conventional lighting-from-above bias (probability of 0.22). In 
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Previous studies have shown that experience can shape lighting direction priors. Adams, Graf and 

Ernst (2004) trained participants to shift their lighting-from-above priors by ~15° with cue-conflicting 

haptic training. However, the authors concluded that these shifts would most likely revert back to 

baselines after the experiment. It is unknown how the counter-conventional lighting assumption 

found with the experts in the current study would transfer to the real world. This research question is 

addressed below in a follow-up experiment which attempted to characterise this using the 

honeycomb image. The current study does suggest that experts’ lighting direction priors are more 

permanently altered, as their experience with counter-conventionally lit aerial images impacted their 

strategies in a perceptual task (detecting signal in noise) that is different from their usual tasks. The 

current perceptual task was different from classifying features in natural images, but importantly, the 

observers brought the expectations of classifying domain-related aerial images.  

 

4.4.2 Summary and conclusions 

The current study tasked six expert remote sensing surveyors and six novices with 

discriminating expert-domain related stereoscopic aerial images of hedges and ditches with added 

luminance and binocular disparity noise. This novel method provided a new way to measure visual 

expertise by producing CIs for luminance and binocular disparity simultaneously. Compared to the 

novices, experts produced disparity CIs with five-fold greater amplitudes and detection sensitivities 

(d’) to stereoscopic targets, revealing their advantage for sampling disparity cues. The study also 

shows that CIs can characterise lighting direction priors, and that experts were less likely to show the 

conventional lighting-from-above prior, which can be attributed to their counter-conventional 

experience with lit-from-below aerial imagery. These results are an important part of this thesis, and 

they suggest how visual mechanisms for interpreting aerial images can change with experience.  

The methods and results of the current study have practical potential for directing visual 

training in remote sensing surveying, and for investigating basic perceptual mechanisms of human 

early vision. The CI technique can continue to bring insights into other domains of early vision, and 

into the development of visual expertise, in harmony with other approaches.  

 

 

 

 
the current study, the probability of having four or more such observers in a sample of six is statistically 
unlikely (p = 0.0248). Furthermore, this is a conservative estimate, as Pickard-Jones, d’Avossa and Sapir (2020) 
found that all of fifty-eight children (ages 7-11) showed a bias for lighting-from-above with the honeycomb 
stimulus. Sun and Perona (1998) also found that twelve adults all had lighting-from-above biases with shaded 
bubble stimuli. It is thus concluded that, although the sample is small, this result is reliable and reflects the 
surveyors’ lighting direction biases.  
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4.5 Follow-up experiment on lighting direction priors in expert surveyors 

 

4.5.1 Aims 

An online follow-up experiment was designed with two aims: 1) To explore if a different and shorter 

experiment can be used to capture lighting direction priors for aerial images of hedges and ditches, 

and 2) to explore how the experts use lighting direction priors outside of the domain of expertise. 

This experiment also used noise-masked hedges and ditches in different orientations, similar to the 

main experiment of this chapter, described above. See the above introduction to this chapter for an 

elaboration on how lighting directions can be used to discriminate hedges and ditches. This 

experiment used 2D images rather than stereograms. As the previous experiment in this chapter 

shows that binocular disparity can be a primary cue for discriminating hedges and ditches, the 

removal of this cue might increase the reliance on luminance cues such as lighting direction cues to 

shape from shading.  

Owing to their unusual experience with lit-from-below imagery, expert surveyors were 

expected to show switched lighting direction priors for the hedges and ditches. The priors for these 

features will be compared to the prior for a well-established psychophysical stimulus – the 

honeycomb image, which is an image outside of the surveyors’ domain of expertise. It is possible 

that surveyors might show different priors for the two types of images, which might suggest that 

they have context-specific priors for the domain-specific aerial images. The comparison across the 

aerial images and the honeycomb remains for open exploration.  

As the below results and discussion will show, this follow-up experiment successfully 

captured lighting direction priors for the honeycomb image but failed to reliably capture lighting 

direction priors for the aerial landscape features. This was not the desired outcome in this 

experiment, and it is discussed in detail below. The current follow-up experiment was an online 

experiment, and further differences between it and the main experiment of this chapter are 

discussed below.  

 

4.5.2 Method 

The psychophysical stimulus was the honeycomb image (Andrews et al., 2013), constructed 

out of a hexagonal lattice with highlighted and shaded edges (Figure 4.14a, b). This image commonly 

elicits a strong impression of 3D shape, with the lighting-from-above prior leading to interpretations 

of 3D surface convexities and concavities from the highlighted and shaded edges (see also Chapter 1 

for further details on this prior). With the lighting-from-above prior, the central hexagon in Figure 

4.14a appears to contain a convex bump, and Figure 4.14b appears to contain a concave dimple.  
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The natural images from OS aerial landscape imagery were of hedges and ditches (Figure 

4.14c-f). Hedges and ditches, being convex and concave, respectively, have opposing 3D profiles, 

causing directional lighting to create opposite shading patterns. For example, hedges lit from below 

(Figure 4.14c) are shaded on the top side in the image, but hedges lit from above are shaded on the 

bottom side in the image (Figure 4.14d). The opposite pattern is seen for ditches (Figure 4.14e, f). 

With the lighting-from-above prior, the hedges and ditches can look slightly more congruent in their 

3D interpretation when they are lit from above (Figure 4.14d, f) than when they are lit from below 

(Figure 4.14c, e). Thus, lighting direction can be a primary cue to resolve the 3D profiles of these 

features. This experiment used image rotations to capture different response tendencies to different 

image orientations. Images were rotated in 15° steps, for a total of 24 rotations.  

In the experiment, the honeycomb image was displayed as it is seen in Figure 4.14a and b, 

with no noise mask, for a total of 240 trials. But the hedges and ditches were masked with noise 

textures to prevent participants from basing their classifications on other features in the images, 

such as textures. The noise could serve to increase the reliance on directional lighting cues, leading 

the participants to judge the 3D profiles of the targets based on directional lighting and shading cues. 

The noise was weaker in this experiment compared to the main experiment, as pilot testing indicated 

that the noise mask had to be weaker for the observers to use lighting direction priors when the 

images could be presented in many orientations. See Figure 4.15 for example stimulus images 

containing two different hedges and two different ditches with added noise textures generated in 

PsychoPy. These four hedge and ditch images were used in the experiment to create 120 stimulus 

images per original image (480 total), all of which had different random noise textures. These hedge 

and ditch images were split across the 24 rotations, so that there were ten hedges and ten ditches 

per orientation.  

The honeycomb and the aerial images (hedge and ditch) were separated into different 

conditions. Hedges and ditches were interleaved in the aerial image condition. There were five 

repeats of each condition, with 96 trials of the hedge/ditch and 48 trials of the honeycomb per 

condition. The conditions were randomly interleaved so that some participants always did the 

honeycomb condition first, followed by the hedge/ditch condition, and vice versa for other 

participants. In the honeycomb condition, participants responded ‘bump’ or ‘dimple’ to the central 

part of the honeycomb using buttons on their keyboard. In the hedge/ditch condition, hedges and 

ditches were interleaved, and participants responded ‘hedge’ or ‘ditch’ with button presses.  

Prior to starting the experiment, participants were instructed that aerial images of hedges 

and ditches would be used, and they were shown images of a tall hedge and a deep ditch from the 

ground viewpoint. Instructions also showed a house from both the ground and aerial viewpoints, 
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illustrating the perspective switch that occurs from ground-to-aerial viewpoints. Participants were 

also shown example stimuli of hedges and ditches with noise masks, like the ones in Figure 4.15. No 

unmasked aerial images of hedges and ditches were shown. Before starting the experiment, 

participants were familiarized with 10 honeycomb and 20 hedge/ditch practise trials.  

 

 
Figure 4.15: Example hedge and ditch stimulus images with two example orientations.  
 

The experiment was created with JavaScript and PsychoJS and ran on the online platform 

Pavlovia (www.pavlovia.org). The experiment was advertised via email to remote sensing surveyors 

at the OS who had over one year of experience with surveying. Eleven surveyors participated and 

were compensated with £5. These were new participants compared to the previous experiment in 

this chapter, except one who volunteered in both experiments. The participants accessed and ran the 

experiment via a web browser on their own desktop computers in a quiet office environment during 

daytime hours. The computer, monitor, viewing distance, and testing environment were not 

otherwise controlled. Total time for completion was around 20 minutes. Participants provided 

informed consent by button press. The project was reviewed by Aston University’s College of Health 

and Life Sciences Ethical Review committee (approval number 1843).  
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4.5.3 Results 

The honeycomb is a well-established stimulus that is expected to capture lighting direction 

priors (Andrews et al., 2013; Pickard-Jones, d’Avossa & Sapir, 2020). In Figure 4.16, the black lines 

show the results of the honeycomb condition. Most participants classified the honeycomb as being 

convex when it was in orientations of around 0°, and concave when around 180° (Figure 4.14a, b). 

This is consistent with lighting-from-above, and the typical interpretation of Figure 4.14a and b. But 

one participant, Expert 3, show the opposite tendency, where the honeycomb was classified 

consistent with a lighting-from-below prior. In two other participants (Expert 5 and 8), the 

honeycomb failed to capture a lighting direction bias. Expert 5 showed an unexpected tendency to 

only respond ‘concave’ to the honeycomb stimulus in all orientations, and Expert 8 responded mainly 

‘convex’ (Figure 4.16). Furthermore, the honeycomb data is slightly tilted to the left of upright (0°) in 

many participants, which is consistent with a known effect in lighting direction priors discovered by 

Sun and Perona (1998).  
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Figure 4.16: Polar plots for each individual participant showing the impact of image orientations on the three 
different image types. As indicated in the grids of each plot, the outer grid circle shows a rate of 100% convex 
responses, the middle grid circle shows an equal rate of convex and concave responses (i.e., unbiased), and the 
inner grid circle shows a rate of 100% concave responses. Note that, for hedges and ditches, a 0° orientation 
means that they were lit from below, and a 180° orientation means lit from above (Figure 4.14). Participants 
are ordered nominally, and the numbering is unrelated to the previous experiment.  
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Regarding the hedge/ditch condition, lighting direction priors were often not captured, as 

seen with the overall noisy data in Figure 4.16 for hedges (green lines) and ditches (tan lines). Note 

that the original orientation (0°) in the hedge and ditch images had light coming from below. Expert 

4 provided data consistent with lighting-from-above for hedge/ditch as well as the honeycomb. To 

aid in interpretation of responses across orientations, the reader is encouraged to look at Expert 4 as 

a reference for lighting-from-above. Expert 2 shows an interesting tendency to classify the 

honeycomb according to lighting-from-above, but the hedge/ditch images more according to 

lighting-from-below, although these data are also noisy. This type of pattern was a priori expected in 

more participants, as it shows a context-specific lighting direction prior where stimuli outside the 

experts’ domain, such as the honeycomb, is interpreted with lighting-from-above, but stimuli within 

the experts’ domain are interpreted with lighting-from-below. Overall, this shorter online experiment 

failed to reliably capture lighting direction priors for the hedges and ditches in most participants.  

 

4.5.4 Discussion 

This follow-up experiment was exploratory and examined whether lighting direction priors 

could be captured for the honeycomb image and aerial images of hedges and ditches with a shorter 

online experiment. The honeycomb condition captured lighting direction priors in nine participants 

out of eleven. Out of these nine participants, all showed lighting-from-above priors except one who 

showed a lighting-from-below prior. The honeycomb is, however, not a domain-specific image to the 

expert surveyors, and the surveyors might apply a different bias for lighting directions in aerial 

images. But for the aerial images of hedges and ditches, the data are generally noisy and did not 

capture lighting direction priors, except in a few cases. These results suggest that directional lighting 

and shading cues mostly did not influence judgements in the aerial images, in contrast to the desired 

outcome in the current experiment.  

This null result for the aerial images could be due to insufficient masking, where differences 

in e.g., textures between hedges and ditches could have driven responses, rather than directional 

lighting and shading cues. Ten images per orientation could also have been too small a number, and 

participants might have benefited from more task learning in each orientation in order for directional 

lighting cues to further influence judgements. Furthermore, this experiment ran online, without 

using a controlled lighting environment. This could have negatively impacted the ability to use subtle 

directional lighting cues in the hedges and ditches. But the honeycomb was able to capture lighting 

direction priors (Figure 4.16), likely because it provides a stronger directional lighting cue than the 

more subtle hedge/ditch stimulus images (Figure 4.14).  
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The current follow-up experiment differed from the main experiment in this chapter in some 

important respects. In the main experiment, participants classified aerial images of hedges and 

ditches that were either lit from above (180°) or below (0°) for 10,000 trials. This provided a large set 

of trials where participants had more chances to use subtle lighting direction cues that could vary 

between the images. Compared to the current follow-up experiment, the main experiment also used 

stronger noise (lower SNR), to decrease the influence of features such as textures in the original 

images. This, paired with many more trials on only two image orientations, could have served to 

increase the influence of directional lighting cues. The main experiment furthermore used a testing 

environment in a dark room, which is likely beneficial for discriminating subtle lighting direction cues.  

 To conclude, this follow-up experiment did not reliably capture lighting direction priors in 

aerial-view hedges and ditches, in contrast to the results of the main experiment where experts 

showed diminished or switched priors. However, this follow-up experiment does show that expert 

surveyors mostly interpret the honeycomb image with a lighting-from-above prior. This suggests that 

surveyors interpret the world outside of their domain according to lighting-from-above, but results 

from the main experiment suggest that this interpretation is diminished for aerial images. This might 

suggest that surveyors are combating the lighting-from-above prior when classifying aerial images, 

but use the lighting-from-above prior elsewhere. This topic is further discussed in Chapter 6.  
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Chapter 5 

Characterising perceptual learning for stereopsis with stereoscopic classification images 

 

5.1 Introduction 

In Chapter 4, experts had a clear advantage over novices for sampling disparity cues in stereograms, 

showing visual expertise that likely developed from experience working with stereoscopic aerial 

images. The current study explored if such an advantage could be recreated in novices with a 

laboratory training intervention aimed to improve the ability to sample binocular disparity cues in 

stereograms. PL is the ability of perceptual systems to change depending on perceptual experiences, 

where experience with a particular array of stimuli improves processing of such stimuli (Gibson, 

1963). In laboratory environments, PL interventions have been used to improve several aspects of 

early vision, and to examine how visual systems change with learning (Dosher & Lu, 2017; Goldstone, 

1998; Lu & Dosher, 2022; Sagi, 2011; Seitz, 2017). Improvements in early visual processing have been 

found with, for example, visual acuity (Fahle, Edelman & Poggio, 1995), stereoacuity (Levi, Knill & 

Bavelier, 2015), orientation and spatial frequency (Fiorentini & Berardi, 1981), and motion (Ball & 

Sekuler, 1987). The current study used a PL approach, with a novel method to study PL in 

stereoscopic vision.  

Some previous studies have examined PL with 2D CIs to examine how observers learn to use 

certain image cues. These studies have shown that PL is associated with improvements in internal 

templates, as observers become better at sampling relevant cues with learning (Gold, Sekuler & 

Bennett, 2004; Li, Levi & Klein, 2004). Such improvements have manifested as increases in template 

amplitude and/or spatial extent (Dobres & Seitz, 2010; Gold, Sekuler & Bennett, 2004; Kurki & 

Eckstein, 2014). The novel approach in the current study is based on examining stereoscopic PL with 

a 3D version of CIs based on stereograms (see Chapter 3 and 4).  

Previous studies have investigated PL for stereoscopic vision, but not with CIs. Studies have 

investigated the efficacy of using PL interventions to recover stereopsis in participants with poor 

binocular vision (Birch, 2013; Ding & Levi, 2011; Godinez et al., 2021; Levi, 2022, 2023; Levi & Lee, 

2009; Levi, Knill & Bavelier, 2015; McKee, Levi & Movshon, 2003; Rodán, Marroquín & García, 2022; 

Vedamurthy et al., 2016; Xi et al., 2014). In infancy, we learn to coordinate the inputs between the 

two eyes to develop binocular vision and a primary mechanism of depth perception – binocular 

stereopsis, which relies on the binocular disparity of images across the eyes (Howard, 2002). The 

ability to process binocular disparity is important for normal depth perception, but this can be 

impaired in those who suffer from amblyopia. Amblyopia is a neurodevelopmental abnormality 

associated with neural alterations in the visual pathways that usually originates from suppression of 
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one eye during a developmental period. Eye conditions such as strabismus, anisometropia, or 

cataracts can cause this suppression, as the developing brain prioritizes the development of neural 

pathways for one eye over the other. Amblyopia is associated with worse monocular vision (e.g., 

acuity in the affected eye), but also worse binocular vision and stereopsis as the two eyes can be 

poorly coordinated (Baker et al., 2007; Levi, 2020). Ding and Levi (2011) attempted to recover 

stereopsis in five human adults with subnormal binocular vision and stereopsis in a PL experiment. 

The authors combined monocular cues showing depth positions that were perfectly correlated with 

binocular disparity cues in gratings. The monocular cues helped to inform the participants of the 

disparity cues. These Stereodeficient participants significantly recovered stereopsis after many hours 

and thousands of training trials. Vedamurthy et al. (2016) also trained Stereodeficient participants 

using binocular disparity cues that could be in harmony or conflict with monocular texture cues. 

Their test required haptic interaction with a slanted surface seen through a virtual reality headset. 

After thousands of training trials across multiple weeks, most participants developed a greater 

reliance on binocular disparity cues relative to the texture cues. Individuals who learned to rely on 

disparity cues also tended to improve their stereoacuity. The results obtained by Vedamurthy et al. 

(2016) were stable at a 2-month follow-up after the training. In a review of different types of PL tasks, 

Levi, Knill and Bavelier (2015) found that stereoscopic tasks produce the highest recovery rate for 

stereopsis in Stereodeficient participants. Emerging evidence suggests that stereoscopic PL tasks can 

be based in immersive extended reality devices to stimulate recovery of stereopsis while providing a 

more tolerable task setting via video games or gamification of behavioural tasks (Coco-Martin et al., 

2020; Foss, 2017; Godinez et al., 2021; Levi, 2023; Rodán, Marroquín & García, 2022; Vedamurthy et 

al., 2016). CIs, affording a method to study how visual cues are used, might provide another way of 

measuring improvements with PL in Stereodeficient observers. 

The beneficial effect of stereoscopic PL has also been shown in neurotypical and stereo-

normal observers (Fendick & Westheimer, 1983; Frisby & Clatworthy, 1975; Levi, 2022). Li et al. 

(2016) showed that stereoscopic PL with Gabor patch stimuli can transfer across the spatial 

frequency spectrum and across orthogonal orientations in the Gabor carriers (horizontal and 

vertical). These results suggest transfer of learning, but previous studies have highlighted transfer 

limitations in stereoscopic PL across orientations and retinal locations (Fahle, Edelman & Poggio, 

1995; O’toole & Kersten, 1992; Ramachandran, 1976; Ramachandran & Braddick, 1973; Sowden et 

al., 1996). The issue of transfer and generalisability of stereoscopic PL for stereo-normal observers 

remains debated (Levi, 2022). Overall, evidence of PL from Stereodeficient and stereo-normal 

observers suggests that laboratory training can improve stereopsis, but we are yet to understand 

how generalised transfer of learning can be achieved.  
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The current study combined CIs with stereopsis training. The primary research question 

aimed to explore if and how stereo-normal participants improve their ability to sample binocular 

disparity cues, with the novel application of stereoscopic CIs. The stereoscopic CI technique 

developed in Chapter 3 was adapted for the current study. This technique relies on classification of 

targets defined by binocular disparity, embedded in random disparity noise. A primary goal of the 

experiment was to characterise CI template changes between the early and late parts of the 

experiment (Dobres & Seitz, 2010; Gold, Sekuler & Bennett, 2004). The CIs could capture details 

about how internal templates are associated with improvements from PL. There are two main 

possibilities regarding how templates might reveal improvements: 1) Increases in template 

amplitudes would suggest that more relevant binocular disparity cues are sampled from a location, 

or 2) Increases in spatial extent would suggest that disparity cues are sampled from a larger area. PL 

should lead to increases in one or both aspects of template shape.  

In addition, the main experiment below used an adaptive staircase procedure to estimate a 

fixed rate of correct responses (Levitt, 1971). This technique maintains a constant rate of correct 

responses by adaptively manipulating the SNR throughout the experiment. Thresholds were 

estimated from response accuracies across different levels of SNRs. Thresholds were expected to 

change with learning throughout the experiment, where evidence of learning would be seen with 

increased tolerance to external noise (decreased SNRs). This would indicate learning as the staircase 

procedure must provide a more difficult task by adding more external noise to maintain the fixed 

rate of correct responses (see Procedure for further details). SNRs at threshold were thus analysed to 

provide an additional, and more conventional, measure of PL.  

To promote learning, testing was divided over five different days, as sleep can consolidate PL 

(Karni et al., 1994; Karni & Sagi, 1993; Stickgold, James & Hobson, 2000). Participants were also 

provided with trial-by-trial feedback (auditory), which can increase learning by guiding participants to 

home in on diagnostic cues (Aberg & Herzog, 2012; Herzog & Fahle, 1997; Liu, Dosher & Lu, 2014; 

Liu, Lu & Dosher, 2010, 2012; Shibata et al., 2009).  

 

5.2 Pilot experiment 

This chapter includes two experiments on stereoscopic PL, the first of which is briefly described here 

under the label of a pilot experiment. This initial experiment produced a null result, but was 

informative to the design of the second experiment (Main experiment).  

 

 

 



E. Skog, PhD Thesis, Aston University 2023.   130 

5.2.1 Method  

A PL intervention was designed based on the hedge-ditch discrimination experiment in 

Chapter 4, with some additional manipulations aimed at promoting learning. As in Chapter 4, CIs 

could be generated from binocular disparity and luminance. The static SNR used for the hedge and 

ditch images with noise in Chapter 4 was increased by ~25%, increasing discriminability. In 

preparatory evaluation with this SNR, a very experienced psychophysical observer provided 60-65% 

correct responses. SNRs were constrained with these hedge and ditch images, as: 1) sufficient 

modulating disparity noise was required to provide disparity CIs, and 2) luminance noise had to 

sufficiently mask the original images to prevent participants from judging images based on features 

such as textures in the hedges and ditches. Auditory feedback was provided to half the participants, 

and correct responses were defined based on detecting the disparity profiles of the targets. The 

experimenter specifically instructed participants to try to judge disparity profiles, described to the 

participants as height and depth. The increased discriminability of the hedge and ditch images 

(compared to Chapter 4), provision of trial-by-trial response feedback, and division of the experiment 

across multiple days are factors which should help to promote PL (see Introduction). Apart from 

these factors, the stimulus images, screening procedure, experimental procedure, equipment, and 

ethical considerations were largely identical to those of Chapter 4.  

Eight psychology undergraduate students enrolled at Aston University, Birmingham, UK, 

signed informed consent and were compensated at a rate of £10 an hour (three participants), or with 

credits in a research participation scheme (five participants). Participation required five visits on 

different days, within a 10-day period. Each visit took around 50 minutes. Participants completed 

7,000 trials in total, which were split into 28 shorter sessions of 250 trials each.  

The experiment further included an orthogonal transfer task, with new hedges and ditches 

that were vertically arranged in the images, to examine transfer of learning from the horizontal 

(Chapter 4) to the vertical targets. The experiment began and ended with two transfer sessions.  

 

5.2.2 Results and discussion 

The main results of this experiment are displayed in percent correct responses across 

sessions (Figure 5.1). The accuracy did not improve across sessions, as shown by a linear regression 

model fit to the averaged data, excluding the transfer sessions (Figure 5.1: Average; slope estimate = 

0.044, t = 1.36, p = 0.187). This was also the case in comparison between the transfer sessions 

(before and after) (t(1) = -9.00, p = 0.070). This unexpected null result was likely due to the difficulty 

of discriminating the target images, as all participants were at, or close to, chance level accuracy 

throughout the experiment (Figure 5.1). As participants struggled to reliably discriminate the 
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disparity profiles in the hedge and ditch targets, their performance level was likely below a level 

required to promote learning. PL involves learning how to exploit diagnostic target cues, but in this 

experiment, targets were likely too corrupted by external noise for the participants to reliably learn 

from their cues, with and without feedback.  

This null result was similarly found with CIs. Disparity CIs were constructed for comparison 

across the beginning and end parts of the experiment to examine effects of learning (Dobres & Seitz, 

2010; Gold, Bennett & Sekuler, 2004). However, most participants produced CIs with templates that 

were too weak to characterize, and thus could not be used to estimate differences across different 

parts of the experiment.   

   

 
Figure 5.1: Correct responses across sessions for individual participants (coloured dashed lines), and their 
average (solid black line). A rate of 50% correct responses is chance. Sessions 1, 2, 27, and 28 are transfer 
sessions (T), which used vertical rather than horizontal targets. Error bars are SEM.  
 

This null result inspired a further experiment, which is the main subject of this Chapter. The 

main experiment followed a similar procedure as the pilot experiment, but with some stimulus and 

procedural changes aimed at securing a higher correct response rate. A primary difference between 

the pilot experiment and the main experiment is the use of targets defined as pedestals in the noise 

textures themselves, rather than landscape images added to noise textures. This change facilitated 
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the use of stronger disparity signals, which were more discriminable than those of the hedge and 

ditch images with added luminance noise textures (Chapter 4). A lesson from the pilot experiment 

was that the targets were too difficult to discriminate (Figure 5.1). To ensure a higher and balanced 

rate of correct responses, an adaptive staircase procedure balanced the SNR to achieve a threshold 

of 70.7% correct responses, described below (Procedure). This staircase procedure ensured that a 

suitable SNR would be used throughout the experiment.  

 

5.3 Main experiment 

 

5.3.1 Method 

5.3.1.1 Stimulus images 

A unique white noise texture, with a non-zero mean, was generated on each trial (128x128 pixels). 

This texture was low pass filtered using a Butterworth filter with a cut-off frequency of 9 cycles per 

image. These textures were generated in the same way as those of Chapter 3 and 4. Targets and 

noise defined by binocular disparity were imposed onto the luminance textures. Figure 5.2 shows the 

disparity-defined targets and the process for adding disparity noise. Chapter 3 and 4 describes in 

detail the procedure for generating disparity noise by random horizontal displacements within carrier 

textures. The targets were disparity pedestals analogous to the disparity profiles of the stereoscopic 

images of hedges and ditches in Chapter 4. The 20 central rows of the noise images were 

manipulated to have 37.5 arcseconds of crossed or uncrossed disparity, and the rest of the image 

had 37.5 arcseconds of the opposite sign of disparity. A crossed (‘tall’) target with an uncrossed 

background (Figure 5.2a) therefore had 75 arcseconds more crossed disparity than its stimulus 

surround, and vice versa with uncrossed (‘deep’) targets (Figure 5.2b). These targets were 

horizontally oriented, with a height and width of 1.04 and 6.66 degrees of visual angle, respectively. 

The width corresponds to the full width of the stimulus images.  

A transfer task was included to investigate transfer of learning to a new stimulus orientation. 

The effects of PL interventions are more useful for translational benefits if they can transfer to, for 

example, different retinal locations and orientations. This transfer task used vertical rather than 

horizontal targets to investigate transfer of learning to orthogonal targets. Apart from a changed 

orientation, the vertical targets were otherwise identical to the horizontal targets. This vertical 

transfer target was located in the 20 central columns (rather than the 20 central rows). This target 

had a height and width of 6.66 and 1.04 degrees of visual angle, respectively.  
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5.3.1.2 Equipment 

 Participants were seated in front of a mirror stereoscope with their chins on a chinrest. Two 

front-surface mirrors angled at 45° were mounted 6 cm in front of the participant. These directed 

images to the observer from two ASUS ProArt PA329C monitors (3840 x 2160 pixel, 710x405 mm 

active screen region) placed on either side of the mirror mount with a total viewing distance of 100 

cm. These monitors provided the only light source in the room. Stimulus images subtended 6.66 

degrees of visual angle and were scaled in PsychoPy (Version 2020.2.10; Peirce et al., 2019) so that a 

single element in the stimulus occupied 5x5 pixels on the monitors. Noise textures were generated 

and presented with PsychoPy with a modified version of the noise component. Stimulus images were 

linearised with inverse gamma functions for each display to ensure that luminance was linear in the 

displays.  

 

5.3.1.3 Participants  

Eight participants completed the experiment (4 female; Mean age: 22.25, SD: 3.5), but one 

was excluded from analysis (see below). Three other potential participants failed to pass a screening 

test prior to starting (see below), and one other withdrew from the study after starting. Participants 

were undergraduate optometry students enrolled at Aston University, Birmingham, UK. They were 

recruited via email advertisement and were compensated at a rate of £15 per visit (£75 for 

completing the five days). Participants gave informed consent, and the project was reviewed by 

Aston University’s College of Health and Life Sciences Ethical Review committee (approval number 

1843).  

 

5.3.1.4 Screening and exclusion procedure  

The participants self-reported having normal or corrected-to-normal eyesight, and wore their 

normal eyewear where applicable. No participant used bifocal or varifocal lenses. A three-stage 

screening procedure assessed the stereopsis of potential participants. The first part involved the TNO 

test for stereoscopic vision, which is based on random-dot stereograms that provide no monocular 

cues to the target. No exclusion criterion was set for TNO thresholds. TNO thresholds varied between 

15 and 120 arcseconds across participants (Median: 60; Mean: 54, SD: 30). Participants then carried 

out a discrimination task using images in the mirror-stereoscope (40 trials) where a central disparity-

defined square (750 arcseconds of disparity, side length 1.04 degrees of visual angle) had either 

crossed or uncrossed disparities. The task was to report whether the square was in a ‘tall’ or ‘deep’ 

depth plane compared to the surround. Responses were made by pressing a button on a keyboard. 

Auditory feedback was provided after each response via a headset where a beep or buzz would 
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indicate a correct or incorrect response, respectively. Participants had to score above 90% correct to 

pass this test and three potential participants were excluded based on this. The last part of the 

screening procedure involved familiarisation with the experiment’s stimulus images which contained 

disparity targets without disparity noise (Figure 5.2a, b). Participants responded ‘tall’ and ‘deep’ with 

the right and left arrow keys, respectively, with the same auditory feedback. Participants had to give 

10 correct responses in a row to pass. No participant was excluded based on this.  

One participant who completed the experiment was excluded due to having failed to reliably 

reach a required rate of correct responses (~70%), despite the absence of external noise in most of 

their experiment sessions (see below regarding staircase procedure). Because the staircase set their 

noise level to zero, there was no noise that could contribute to a CI, thus data was missing for this 

participant.  

 



E. Skog, PhD Thesis, Aston University 2023.   135 

 
Figure 5.2: Procedure for generating stimulus images by introducing disparity noise. Images are arranged for 
crossed fusion: a) tall target without noise, b) deep target without noise, and c) an example deep target with 
added noise. Divergent fusion reverses the disparity profiles. The plots on the right of a) and b) display vertical 
image elements on the x-axis, where left-right corresponds to top-down in the image, with 0 as the centre. See 
text for further details.  

 

5.3.1.5 Procedure 

 Participants were familiarised with the stereoscope and with responding to noise-free 

stimulus images during the screening procedure (Figure 5.2a, b). Familiarity with stereoscopic images 

can be important in inexperienced observers (Ramachandran, 1976). Prior to starting the 
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experiment, participants were informed that the experiment consisted of the same targets and 

button press responses, but that the task would be more difficult to perform. The experimenter 

explained that the stimulus images would appear noisier, and that these otherwise obvious targets 

would be masked by noise such that the participant should expect to give 70% correct responses. 

Trial-by-trial auditory feedback was provided to all participants throughout the experiment.  

To ensure appropriate vergence control in the mirror-stereoscope, the fixation cross and 

fusion border described in Chapter 4 were used. A small black fixation cross was presented in the 

centre of the screen between each trial. The vertical bar of the cross was split across the two eyes. To 

achieve good convergence, participants were instructed to fuse the cross to make it appear 

‘complete’, like a ‘+’. Participants were instructed to wait with responses and to attempt to ‘reset’ 

their convergence if the cross appeared malformed due to imperfect fusion in the stereoscope. The 

fixation cross was removed when stimuli were displayed. To further support fusion, a zero-disparity 

high contrast border comprising white rectangles on a black background surrounded the stimulus 

images.  

An adaptive staircase procedure was used to vary SNRs by, unconventionally, manipulating 

the disparity noise level rather than the signal. This could provide psychophysically more granular 

step sizes in the experimental software than if the signal level was manipulated, as the signal was 

defined by fewer sub-pixel steps than the total noise range. SNRs were varied in a 1-up, 2-down step 

procedure, designed to estimate a 70.7% threshold (Levitt, 1971). When the procedure determined 

that the SNR should go up, the noise level was reduced, and vice versa. Two such staircases operated 

in parallel. Step sizes were logarithmic, and the smallest step size was 1 decibel (dB). At the 

beginning of each session, the staircases used larger steps to help track thresholds more quickly. 

These steps started with three iterations of three 1dB steps, followed by three iterations of two 1dB 

steps, and the rest of the session used 1dB steps. Staircase reversals would trigger the change in step 

sizes. In the experiment software, steps were defined as a range of disparity noise in arcseconds. 

Prior to generating a stimulus image on each trial (Figure 5.2), steps were quantised to units of 37.5 

arcseconds of disparity. The quantised and logarithmic nature of the step sizes meant that, when 

external noise was low, the SNR might be unaltered by a single step in the staircase. Conversely, 

when external noise was high, the SNR could move across multiple quantised steps in one staircase 

step. The threshold estimate from each session was carried over to the next session, except that at 

the start of each day the noise level was approximately halved to help participants see the targets 

again.  

 The main part of the experiment was structured into shorter sessions of 256 trials, and 

participants did up to six of these in one day, which took around 50 minutes. Across five days of 
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testing, each participant completed 26 sessions for a total of 6,656 trials and a total completion time 

of around 4 hours. In the transfer task, participants did 256 trials of the same task with the same 

feedback but with the vertical targets. To allow for initial learning (familiarity and learning how to do 

the task), only the second half of this data was used in analysis, and the first 128 trials of the transfer 

task were treated as practise trials, both before and after the main experiment. The first day of 

participation consisted of signing informed consent, the screening procedure, the transfer task, and 

two sessions of the main experiment. The second, third, and fourth day each consisted of six sessions 

of the main experiment. The fifth and final day consisted of four sessions of the main experiment, 

followed by the transfer task, and finishing with a debrief from the experimenter. Participants had to 

complete the experiment within ten days of starting.  

 

5.3.2 Results 

5.3.2.1 Thresholds   

Each 256-trial session employed different levels of external noise depending on the staircase 

adjustments of SNRs. Thresholds were estimated from the participant’s percent correct responses at 

the six different noise levels where the most responses occurred in each session. These noise levels 

were the quantised noise levels that correspond to what was displayed on the screens. For each 

session, an inverse Weibull function was fitted to these data:  

 

𝑥 = 𝛼 (−log (
1−𝑦

0.5
))

1

𝛽
,    (Equation 1) 

 

and the noise level corresponding to 70.7% correct responses was estimated from the fitted curve. 

These noise levels at thresholds were recorded for each session and participant, and are shown in 

Figure 5.3. Note that, as the adaptive staircase adjusted the level of external noise, and not the 

target contrast, evidence of learning should be seen with increasing rather than decreasing 

thresholds in Figure 5.3. Increased noise implies a lower SNR and thus greater ability to detect the 

target signal. Some participants failed to achieve responses at the 70% correct level in the first 

transfer session, and the staircase thus tended to add no external noise. The fits to the staircase data 

thus tended to estimate their thresholds at close to zero noise in this session (Figure 5.3: “session 1 

(T)”).  

 On average, threshold noise levels increased between the first and last sessions (Figure 5.3). 

Increases in threshold noise levels suggest improving performance, as more noise is required to 

maintain the threshold. These data (excluding the transfer sessions) were fitted with linear 

regression models to examine slopes, where positive slopes show a performance increase across 
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sessions. Table 5.1 shows the individual slopes for each participant. On the individual level, these 

varied in statistical outcomes, and were significant for some and non-significant for other 

participants. These individual slopes were further tested as a distribution in a one-sample t-test, 

which was significantly above zero (t(6) = 2.90, p = 0.027). The average of all participants (Figure 5.3; 

Table 5.1) produced a highly significant positive slope (t = 6.01, p < 0.001). Overall, threshold 

estimates across sessions show improvements, indicating learning.  

To examine transfer of learning to the vertical targets, results suggest that the threshold 

improvements throughout the experiment transferred to the orthogonal targets. In Figure 5.3, the 

transfer sessions (1 and 26) significantly differed (t(6) = -3.48, p = 0.039). The last session of the main 

experiment (session 25) was also compared to the transfer sessions, showing a significant difference 

from the first transfer session (t(6) = -5.25, p = 0.006), but not the last transfer session (t(6) = 1.76, p 

= 0.384). These paired samples t-tests were Bonferroni corrected for three comparisons.  

 

 
Figure 5.3: Thresholds across sessions for all seven participants. Sessions are ordered in temporal order. 
Sessions 1 and 26 were transfer task sessions (T), which used vertical rather than horizontal targets. Transfer 
task sessions only show the average for display purposes, as individual data were sometimes close to zero thus 
falling far outside the y-axis (log1dB). Error bars are SEM.  
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Participant Slope 
estimate 

R2 t p 

CA 0.350 0.568 5.38 < .001 

FV 0.0669 0.163 2.07 0.051 

KK -0.00795 0.001 -0.157 0.877 

KM 0.174 0.359 3.51 0.002 

MF 0.253 0.471 4.42 < .001 

YH 0.114 0.112 1.66 0.111 

ZH 0.0303 0.026 0.763 0.454 

Average 0.140 0.621 6.01 < .001 

 
Table 5.1: Individual slopes estimated from linear regression model fits to the threshold data in Figure 5.3, 
excluding data from the transfer sessions.  
 

5.3.2.2 Classification images 

CIs were generated from disparity noise textures. Noise textures were saved based on the 

response given on each trial, and these were combined into compound images for each response 

category. ‘Deep’ response compounds were subtracted from ‘tall’ response compounds to generate a 

disparity CI for each participant (Ahumada 1996; Murray, 2011). Partial disparity CIs are shown in 

Figure 5.4, where CIs from the first eight sessions of the main experiment can be seen next to the CIs 

from the last eight sessions. These batches of eight sessions correspond to the first and last thirds of 

the experiment, excluding transfer sessions. Light and dark pixels represent crossed and uncrossed 

disparity, respectively. CIs generally contain templates with a central positive peak (light pixels) in the 

target location, with negative side-lobes above and below the peak (dark pixels). Although difficult to 

discern in the raw CIs, templates appear generally stronger with the last sessions’ CIs compared to 

the first sessions’ CIs (Figure 5.4).  

To quantify such differences in template shapes across the first and last sessions, these 

partial CIs were decomposed into vertical cross-sections by averaging the columns in the CIs. These 

vertical cross-sections were then characterised by fitting with Gabor functions:  

 

𝑓(𝑦) = 𝐴exp (−
(𝑦−𝜇)2

2𝜎2 ) cos (2𝜋
𝑦

𝜆
− 𝜓) ,    (Equation 2) 

 

where y are vertical image elements (in pixels units, with 0 in the centre). A is amplitude,  is spatial 

offset (in pixels),  is spread (standard deviation in pixels),  is wavelength (in pixels) and  is the 

absolute phase offset (in radians).  

Figure 5.5 shows cross section and function fitting results. The data and curves generally 

contain central peaks with negative side-lobes. Templates significantly increased in amplitudes from 

the first to the last sessions (t(6) = -3.09, p = 0.021). Amplitude parameter, A, values are thus 

included in the plots in Figure 5.5. Amplitudes were overall larger in the last compared to the first 
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sessions, but participants FV and YH did not show this tendency. This increase suggests that 

participants learned to better sample disparity cues in the stimulus images.  

Templates remained more uniform from the first to the last sessions in terms of parameters 

related to spatial extent: wavelength  (t(6) = 0.06, p = 0.954) and spread  (t(6) = 1.85, p = 0.114). 

Increases in such parameters could otherwise have suggested that participants develop an ability to 

sample a larger area in the images, but this was not seen. The other two parameters, spatial offset 

() and absolute phase offset (), relate to template offsets captured by the Gaussian and cosine 

components of the Gabor function, and carry no direct relevance to the current research questions. 

Note, however, that the positive peaks in Figure 5.5 coincided with the middle of the images (0 on 

the x-axis). This shows that all participants sampled disparity cues within the bounds of the target 

location (±10 on the x-axis).  

In examining the relationship between the two different measures of learning, CI amplitude 

improvements (Figure 5.5; ALast – AFirst) did not correlate with estimated slopes from thresholds 

across sessions (Table 5.1) (r = 0.277, p = 0.548). This outcome was surprising, as we might expect 

two different measures that both indicate PL to be correlated. Three participants (CA, KM, and MF) 

showed both significant improvements in thresholds (positive slopes) across sessions and increased 

CI amplitudes. But two participants (KK and ZH) showed no threshold improvements yet 

demonstrated increased CI amplitudes. Curiously, these two participants showed a tendency to 

better sample binocular disparity cues without a decrease in their threshold SNR.  

CIs from luminance textures were also generated, and are presented in Appendix E. Although 

luminance cues carried no diagnostic information for the task of discriminating tall and deep 

disparity profiles, three participants (CA, KM, and ZH) used luminance cues to some extent, 

producing CI templates that were observable with the above cross-section and function fitting 

procedure (not shown). This can be understood in terms of cue combination of disparity and 

luminance. As light and dark textures appear stereoscopically near and far, respectively, these cues 

can be combined with crossed and uncrossed disparity cues to support a stronger impression of 

depth (Chen & Tyler, 2015; Doorschot, Kappers & Koenderink 2001; Egusa, 1983; Hartle et al., 2022; 

Langer & Zucker, 1994; Langer and Bülthoff, 2000; Lovell, Bloj & Harris, 2012; O’Shea, Blackburn & 

Ono, 1994; Schofield, Rock & Georgeson, 2011; Sun & Schofield, 2012). This experiment required 

discrimination of disparity profiles, and all participants used disparity cues, but three participants 

also used luminance cues to some extent. The tendency to use luminance cues for some participants 

bears similarity to the results of Chapter 4, although less so, as the hedges and ditches in Chapter 4 

carried usable luminance cues to support depth perception. In this experiment, the targets carried 
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no usable luminance cues although three participants still used luminance cues in combination with 

disparity cues.   

 
Figure 5.4: Partial disparity classification images for each participant, generated from the first and last thirds of 
the main part of the experiment. See text for details.  
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Figure 5.5: Vertical cross-sections of partial disparity classification images, from the first and last eight sessions 
of the main part of the experiment. Curves show the fitted Gabor function, and amplitude parameters are 
given in each plot legend.  
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5.4 Discussion 

The primary aim of the current study was to explore if and how stereo-normal participants improve 

their ability to sample binocular disparity cues. The stereoscopic PL intervention led to 

improvements in both main outcome measures. Firstly, thresholds estimated with an adaptive 

staircase procedure showed that, as the experiment progressed, more external noise was generally 

required to maintain a fixed rate of correct responses (Figure 5.3). That is, signal detection 

performance improved. Secondly, CIs generated from binocular disparity cues showed improved 

templates from the first to the last thirds of the experiment (Figure 5.4 and 5.5). Templates increased 

in amplitudes but not spatial extent11, suggesting that participants learned to better sample 

binocular disparity cues from a select location.  

The stereoscopic CIs showed novel evidence that links stereoscopic PL to improvements in 

internal templates. This link has previously been demonstrated in different 2D tasks (Dobres & Seitz, 

2010; Gold, Sekuler & Bennett, 2004). The combination of threshold estimation and CIs affords two 

routes to studying learning. Taken together, the results from these two measures suggest strong 

evidence of PL for stereopsis. CIs provide a rather unique measure of observer performance in 

revealing internal templates, which are difficult to estimate with other psychophysical techniques. 

This technique could be applied in further investigation of the mechanisms of PL. For example, CIs 

could characterise the ability to sample binocular disparity cues in Stereodeficient observers, and 

reveal potential improvements from PL. Both CIs and PL benefit from long experiments with 

thousands of trials. Thus, future studies may add CIs to their PL experiments to gain an additional 

route to studying learning effects with little extra cost to participation time. Adding CIs requires a 

target-modulating random component to the stimulus images, such as added noise textures (Dobres 

& Seitz, 2010; Gold, Sekuler & Bennett, 2004) or random modulations to the target itself in e.g., 

position (Kuai, Levi & Kourtzi, 2013; Kurki & Eckstein, 2014; Li, Levi & Klein, 2004).  

The results regarding the transfer task suggest that learning in the main part of the 

experiment transferred across orthogonal orientations (horizontal to vertical). Studies have shown 

that transfer across retinal locations and orientations can be limited (O’toole & Kersten, 1992; 

Ramachandran, 1976; Ramachandran & Braddick, 1973), but Li et al. (2016) found evidence of 

transfer across orthogonally orientated Gabor patch carriers (in the same retinal location). The 

current study controlled for initial learning in the transfer task by providing 128 practise trials with 

the vertical target. Vergence control was also controlled for prior to starting any experimental 

sessions. A limitation in the design in the current study is that the horizontal and vertical targets 

 
11 See Chapter 6 for a discussion on mechanisms associated with template shapes.  
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shared a central overlapping area (a square 1.04 degrees of visual angle), thus no transfer was 

required to discriminate crossed and uncrossed disparities in this small central area12.  

The pilot and main experiments shared many similarities, but also differences in some 

important respects. The two experiments differed in choice of targets and SNRs, and in participant 

details. Regarding choice of targets and SNRs, the pilot experiment was instructive in showing that 

the hedge and ditch targets were too difficult to discriminate, thus not likely to facilitate PL (see 

above: Pilot experiment). The main experiment thus utilized new targets, defined as pedestals of 

crossed and uncrossed disparity. These new targets facilitated the use of stronger disparity signals 

compared to the noise-masked hedges and ditches of Chapter 5. Furthermore, to achieve consistent 

and standardised SNRs, the main experiment used an adaptive staircase procedure, moving away 

from the static SNR in the pilot experiment. Regarding participant details, the pilot and main 

experiment used psychology and optometry undergraduate students, respectively. The training 

experience of these groups differ: optometry students are trained to administer perceptual tasks 

with forced choice judgments and are familiar with this paradigm; Psychology students are more 

familiar with questionnaire studies and reaction time experiments. The participants were also 

compensated differently, where the psychology students received either credits (five participants) or 

£10 per visit (three participants), but all optometry students received £15 per visit. Such differences 

in training and compensation could impact the participants’ attention throughout the experiment in 

favour of the optometry students.  

Regarding the broader context of this thesis, in Chapter 4, expert remote sensing surveyors 

showed a large increase in sampling rate of disparity cues compared to novices. The current study 

and previous literature suggest that PL is a likely mechanism that contributes to the development of 

this expertise. Future studies could aim to expand these results through e.g., stereopsis training 

involving multiple and more diverse targets that might promote more general learning. The issue of 

whether stereopsis can be generally improved with laboratory training in stereo-normal adults is still 

debated, and more research is required (Levi, 2022; Lu, Lin & Dosher, 2016). If future work can 

identify if and how stereopsis can be improved, laboratory PL interventions could be used in 

workplaces such as in remote sensing surveying as supplementary training for inexperienced 

surveyors (see also Future directions in Chapter 6).  

 
12 This central area was foveated following the instructions to look at the central fixation cross. Although this 
central area constituted only 15.6% of the target areas, the classification images from the horizontal target 
clearly show that much cue sampling occurred in this area (Figure 5.4). The results of the transfer task would 
thus have been better controlled with the addition of a condition where the target is defined only in the small 
central area (like the square target in Chapter 3). A comparison between this and the vertical target could 
afford a measure of how learning on the horizontal target might transfer to the ‘tails’ of the vertical target, 
beyond the central area.  
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Chapter 6 

Discussion 

 

6.1 Meeting the aims of the thesis 

This thesis set out to test four broad hypotheses regarding the mechanisms associated with expertise 

in remote sensing surveying of stereoscopic aerial landscape images. First, the unfamiliar aerial 

viewpoint is more difficult to process, but expert surveyors are better at processing the aerial 

viewpoint. Next, surveyors are experienced with using binocular disparity cues in stereoscopic aerial 

images, and they are better able to process this cue. The surveyors also adapt to the aerial imagery, 

and this can alter perceptual priors for interpreting shape from shading. Finally, the surveyors 

develop their expertise from experience, and the expertise can in part be explained by perceptual 

learning (PL).  

Discussions with Ordnance Survey (OS) remote sensing surveyors helped to develop these 

broad hypotheses into elaborated and more specific research questions. This section provides an 

overview of the specific aims of this thesis, and the following section provides a more detailed 

discussion of the results of the studies.  

The first study aimed to explore the effects of surveyor experience with processing aerial 

viewpoints (Chapter 2). This aim was met with two experiments that examined scene gist, and object 

matching, with images of both scenes and objects seen from both the ground and aerial viewpoints. 

This study provided evidence that surveyors have a superior ability to process both scenes and 

objects from the aerial viewpoint. The results also suggest that the surveyors have an advantage with 

expertise for processing the featural configurations typical of aerial images.  

Having established that experts show evidence of expertise for detecting diagnostic features 

in 2D aerial images, later work aimed to explore classification of stereoscopic features that support 

perception of 3D shape in aerial images. To provide a suitable method for this, Chapter 3 aimed to 

develop a novel version of classification images (CIs) that could simultaneously estimate CIs from 

binocular disparity and luminance cues. This CI technique was developed in three stages of pilot 

experiments, and was applied in the last two empirical chapters of this thesis.  

The aims of Chapter 4 sought to discover how experts and novices use different stereoscopic 

cues when discriminating aerial images of hedges and ditches. The CI technique served to capture 

the use of binocular disparity cues, diffuse luminance (‘dark-is-deep’), and lighting direction priors. 

The use of these different image cues revealed group differences related to visual expertise in 

remote sensing surveyors, discussed in detail below.  
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A result of Chapter 4 showed that better sampling of binocular disparity cues is a hallmark of 

expertise in expert surveyors. Chapter 5 followed up on these results with a stereoscopic PL 

intervention aimed to characterise learning to better sample disparity cues in stereograms. This 

study used CIs to characterise changes to internal templates that occurred with learning.  

 

6.2 Overview of results 

The main empirical chapters in this thesis paint a picture of expertise in remote sensing surveying. 

The results show that expertise is associated with more accurate scene categorisation in briefly 

presented aerial images, more accurate object identification across aerial and ground viewpoints, 

and an improved ability to sample binocular disparity cues in stereograms. The results also suggest 

that surveying is associated with a modified interpretation of the lighting-from-above prior, and that 

PL is a likely contributor to developing expertise for stereograms.  

 

6.2.1 Chapter 2: Expertise in the aerial viewpoint 

Chapter 2 shows evidence of expertise in tasks related to higher levels of visual perception, 

using natural images of scenes and objects seen from the aerial and ground viewpoints. A primary 

challenge with remote sensing surveying is the reliance on aerial images, as aerial viewpoints provide 

unusual views of the world. The results suggest that surveyors have overcome some of this difficulty 

with experience.  

Expert surveyors were more accurate than novices at categorising briefly presented (100ms) 

scenes from aerial but not ground viewpoints. This suggests improved gist processing of aerial 

scenes, where experience brings processing benefits in the first moments of stimulus exposure. 

Expert surveyors were also better able to judge the identity of objects across viewpoints. This second 

experiment suggests that experience with featural configurations in aerial viewpoints allow greater 

recognition across viewpoints. These results together show that expert surveyors have developed 

expertise for aerial viewpoints, similar to how we develop expertise for ground viewpoints with our 

everyday perceptual experiences. This study also provides evidence that objects from aerial 

viewpoints are not mentally rotated in the 2D image plane prior to identity matching with a ground-

view counterpart, extending previous findings which have shown that aerial images are not rotated 

during scene categorisation (Loschky et al., 2015).  
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6.2.2 Chapter 3: Contributions to the CI technique and pilot results 

A new version of CIs was developed for this project, outlined in detail in Chapter 3 (Pilot 1-3). 

This CI technique facilitates simultaneous estimation of templates from 2D luminance and 3D 

binocular disparity cues from RDS-like noise textures.  

Two previous studies have developed stereoscopic CIs from disparity cues in RDS (Gosselin, 

Bacon & Mamassian, 2004; Neri, Parker & Blakemore, 1999), and many studies have utilized CIs from 

luminance textures (see Chapter 1 for these details). The previously demonstrated stereoscopic CIs 

were based on RDSs, which are a sparse array of dots on a uniform background (e.g., black dots on a 

grey background) that can carry a stereogram (Julesz, 1971). The aims of the thesis included masking 

a natural image (for example, a hedge) with an RDS-like image to provide stereoscopic CIs. However, 

classical RDSs are unsuitable to add as a mask to another image, as the sparse dots do not provide 

the desired masking effect. Thus, Chapter 3 described the development of a novel version of 

stereoscopic CIs based on dense noise textures, which provided the desired masking effect. The 

ability to mask another image extends the potential applications of the technique. Furthermore, as 

this manipulation is based in a carrier noise texture, analysis of this carrier texture simultaneously 

affords luminance CIs. Simultaneous CIs from luminance and disparity could be useful for studies that 

seek to examine e.g., 1) stereoscopic judgements with both cue modalities, 2) cue combination of 

luminance and disparity, or 3) cue sampling in stereograms where a dense mask is required.  

 Furthermore, a post-hoc interest in stereoscopic PL motivated further analysis of two pilot 

experiments (Pilot 2 and 3) that used disparity targets with disparity noise. In these experiments, half 

the participants showed evidence of improvement throughout the experiment. That is, an adaptive 

staircase procedure increased the level of external noise (lowered the signal-to-noise ratios; SNR) 

throughout the experiment. This indicates that the participants became better able to detect the 

targets in noise. This evidence of PL was seen despite no provision of feedback, and with a smaller 

number of participation days, suggesting that experience is important for stereoscopic tasks. This 

supplementary analysis of the pilot experiments was instructive to the development of the study in 

Chapter 5, described below.  

 

6.2.3 Chapter 4: Stereoscopic cues with experts and novices 

The first study in Chapter 2 involved higher levels of visual perception with more general 

tasks of recognition in natural images. The study in Chapter 4, however, focused on more specific 

visual mechanisms related to depth perception in judgements of stereoscopic aerial landscape 

images.  
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This study implemented the novel approach to CIs described above, and provides novel 

evidence of expertise in remote sensing surveyors. Compared to novices, expert surveyors were five 

times better at sampling binocular disparity cues in both CI and sensitivity (d’) measures (Figure 

4.12). In the study, participants had access to binocular disparity cues that could define targets as 

stereoscopically tall or deep features. The task of discriminating tall vs. deep in a foveated region is a 

simple perceptual task which does not require much attentional resources or instrumental learning. 

Further, the procedure ensured that all participants had appropriate vergence control in the 

stereoscope, that is, stimulus images were seen with good dichoptic fusion. The simple nature of the 

task and the insurance of vergence control strongly suggest that these group differences reflect 

visual expertise, where the experts have a greater facility in sampling binocular disparity cues.  

Chapter 4 also suggests that surveyors show evidence of adaptation for the lighting-from-

above prior. The surveyors are accustomed to working with aerial landscape imagery where the sun 

provides light from below the line of sight. Application of a lighting-from-above prior to lit-from-

below images would systematically provide the wrong interpretation in shape from shading. That is, 

interpretations of convex and concave shapes from directional lighting and shading cues would 

systematically be inverted and thus be counterproductive. The surveyors’ visual systems might thus 

have adjusted to this environment by diminishing the typical lighting-from-above prior. A ranked 

pairing of expert surveyors against novices (Figure 4.11c) shows that novices consistently had the 

stronger priors for lighting-from-above, and some experts had a lighting-from-below prior, which 

would generally not be expected in novices (e.g., Pickard-Jones, d’Avossa & Sapir, 2020). These 

results suggest a striking shift in this prior. Adams, Graf and Ernst (2004) showed that the lighting-

from-above prior can be malleable within smaller angular changes, but no study to date has found 

evidence of systematically diminished priors or even full inversions to lighting-from-below in a 

natural population. While these biases were very robust within-participants and were statistically 

significant between groups, they are limited by the smaller sample size of six participants per group, 

and should be interpreted with caution.  

Chapter 4 also contained an online follow-up experiment which sought to estimate lighting 

direction priors from the honeycomb stimulus and aerial-view hedges and ditches. Expert surveyors 

tended to interpret the honeycomb with a lighting-from-above bias. Note, however, that this follow-

up experiment used different participants than the main experiment in Chapter 4. The honeycomb is 

an image outside of the experts’ domain, and the results from this image could suggest that 

surveyors interpret the world outside of their domain according to lighting-from-above. This would, 

of course, be an appropriate interpretation as the world is generally lit-from-above. The results of the 

main experiment in Chapter 4 do not show strong lighting-from-below biases in expert surveyors, but 
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rather generally weaker biases that sometimes switch to smaller lighting-from-below biases (Figure 

4.11c). Taken together with the results from the honeycomb image in the follow-up experiment, this 

could suggest that surveyors are combating the lighting-from-above prior when classifying aerial 

images, but use the lighting-from-above prior elsewhere. Experienced surveyors might have 

developed a context-specific exception for aerial images, but they still interpret the real world with 

an assumption that light comes from above. The implications of this are discussed below.  

Regarding observer strategies, most participants in both groups verbally reported using 

binocular disparity cues as a primary strategy, with a secondary strategy of diffuse lighting 

judgements of luminance cues (‘dark-is-deep’). Despite this, experts were better able to use disparity 

cues while novices tended to use luminance cues (Figure 4.9). Furthermore, the use of lighting 

direction priors did not reflect a consciously available strategy in the participants. Thus, CIs revealed 

group differences that the verbal reports did not: that the experts were better able to use the 

disparity cues, and that the use of luminance cues varied across groups and individuals. This suggests 

that CIs can be a powerful technique for revealing visual strategies that observers are unaware of 

using, and the implications of this are elaborated below.  

 

6.2.4 Chapter 5: Perceptual learning for disparity cues 

Expertise (in general) can originate from two non-exclusive factors: 1) self-selection, where 

inherently talented individuals are drawn to specific domains where they excel, or 2) development, 

where abilities improve with experience. In general, people are likely more attracted to jobs or 

activities where they feel like they can perform well, thus self-selection can likely account for some 

expertise as a natural part of human individual differences. But a large part of expertise likely 

develops from experience. In the previous chapter, expert surveyors showed a large advantage for 

sampling binocular disparity cues in stereograms. In a supplementary analysis of earlier pilot data, it 

was shown that PL occurred, with half the participants improving their ability to detect a disparity 

target in stereograms. Following this, the study in Chapter 5 was designed to directly induce 

stereoscopic PL, to capture and characterise details regarding how the experts might have gained 

their advantage for disparity cues.  

The results of Chapter 5 were split across two main outcome measures: 1) threshold 

estimates across sessions, and 2) comparison across CIs from the first and the last thirds of the 

sessions. For both measures, the results show converging evidence of stereoscopic PL. Thresholds 

improved, where SNRs reduced (more external noise was tolerated) as the experiment progressed. 

Disparity CIs increased in amplitudes but not spatial extent, showing that participants learned to 
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better sample disparity cues from a focused area. See below for further discussion of template 

shapes. Note, however, that the threshold and amplitude improvements did not correlate.  

Previous literature commonly discusses PL as a mechanism for developing perceptual 

expertise (e.g., Lu & Dosher, 2022; Seitz, 2017; see also Chapter 1 for an elaboration). PL can be 

defined in laboratory settings where a controlled intervention is applied to improve visual processing 

of some stimuli. But PL also occurs in natural environments where experience improves stimulus 

processing in expertise domains, such as in remote sensing surveying or radiology. In such natural 

environments, the development of expertise does not occur with formal PL interventions, but rather 

through experience-dependent improvements from processing a diverse set of domain-specific 

stimuli.  

Chapter 5 shows that PL can improve the processing of disparity cues in stereograms, which 

was the primary expertise factor in Chapter 4. Taken together, these results suggest that experience 

is important for processing stereograms, and that remote sensing surveyors develop expertise 

through long-term work with stereoscopic aerial images. Furthermore, the results of Chapter 5 raise 

the possibility of increasing the rate of expertise development through formal PL interventions. This 

topic serves as a suggestion for future directions, and is discussed further below.  

 

6.2.5 Mechanisms of template shapes in Chapter 4 and 5 

This section elaborates on the template structure in the CIs from Chapter 4 and 5. The 

disparity CIs in these two studies are discussed together, as they used similar targets in terms of their 

disparity profiles. Disparity templates often contained negative side-lobes, above and below the 

central positive peaks. These side-lobes show that cues were integrated from the surrounding area 

where, for example, a central target could appear ‘taller’ if an immediate surrounding point of 

reference was ‘deeper’. The templates thus reveal how the participants integrated relative disparities 

by using non-target areas as reference points when judging target relief.  

The shape of the CI templates appeared centralised, with amplitudes that peaked at the 

foveated region of the images. The central template peaks decayed with horizontal eccentricity from 

the centre, as seen along the horizontal widths of the signal locations. For example, in Chapter 4, the 

fitted Gaussian functions had spreads that were smaller than the width of the target images (Figure 

4.8; Table 3.2). The CIs in Chapter 5 similarly showed highly concentrated templates which clearly did 

not spread to the full width of the target signals (Figure 5.4). This suggests that relevant target signals 

were ignored in eccentric areas. Furthermore, learning in Chapter 5 was characterised by increased 

processing (template amplitudes) in the foveated area, without any increases in template spatial 

extent to sample a larger signal area. A similar effect is seen in Chapter 4 for disparity CIs, where 



E. Skog, PhD Thesis, Aston University 2023.   151 

experts did not have wider templates than novices. But sampling a larger area could also have served 

to improve task performance as it would incorporate more relevant signal. For example, an ideal 

template is a perfect match to the target, and an ideal observer would utilise the full signal area (e.g., 

Gold et al., 2000). Overall, neither within-participant learning nor between-group expertise were 

associated with sampling disparity cues over more of the signal area.  

This limitation in processing could be explained with visual mechanisms. As the visual system 

generally loses sensitivity and resolution with eccentricity (Baldwin, Meese & Baker, 2012; 

Strasburger, Rentschler & Jüttner, 2011), eccentric image regions were of less value than central 

ones, and this remained the case with PL. Attentional mechanisms could also provide a non-exclusive 

explanation. Perhaps observers had to limit their attentional window (Downing & Pinker, 1985; 

Posner, 1980) to a smaller location due to the high task demands of discriminating stereoscopic 

surfaces with strong external noise. Observers can reduce the size of their attentional window to 

increase processing efficiency, and efficiency decreases gradually with distance from the attentional 

focus (Castiello & Umiltà, 1990).  

In conclusion on disparity CIs, the disparity templates were sub-optimal as they did not 

extend the full width of the signal area. The spatial extent of the templates remained unchanged 

with PL (Chapter 5), and experts did not prioritise larger spatial extents compared to novices 

(Chapter 4). Instead, learning and expertise were associated with higher amplitudes, indicating that 

experience enhances the ability to process disparity cues in a focused area.  

Finally, the luminance CIs in Chapter 4 contained peaks with variable vertical offsets. These 

offsets were correlated with the sensitivity measure (d’) for lighting-from-above (Figure 4.13). The 

offsets thus reveal that CIs captured the use of lighting direction priors, where participants who 

applied stronger priors for lighting-from-above tended to have asymmetric luminance peaks that 

were located above-centre. Conversely, participants with weaker priors tended to have symmetric 

peaks located closer to the centre. These results characterised group differences in lighting direction 

priors, elaborated above. Further, these differences in asymmetry and peak location show whether 

participants interpreted lighting cues as coming from a diffuse light source (‘dark-is-deep’) or a 

punctate light source (‘sunlight strikes from a specific location’).  

 

6.3 Future directions 

 

6.3.1 Future directions: Perceptual learning for remote sensing surveying 

The OS employs a small number of new surveyors every year who need training and experience to 

develop expertise. These newly recruited surveyors could be ideal participants in studies of how PL 
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interventions might serve to speed up the development of expertise. Explicit training on 

photogrammetric tasks familiarises newly recruited surveyors with landscape features in aerial 

images. Developing generalised expertise in the workplace likely requires a very diverse set of 

experiences with stereoscopic aerial images over several months or years. Potentially, as a future 

addition to the natural development of expertise, PL interventions could help to improve the use of 

binocular disparity cues in stereograms by direct training. Having good stereopsis for stereograms is 

considered important by senior OS surveyors, and Chapter 4 clearly shows that surveyors are very 

adept at using binocular disparity cues in judgements of stereoscopic surfaces. Chapter 5 further 

shows that stereopsis in stereograms can be improved with a formal PL intervention. Direct training 

with stereoscopic PL could potentially afford a shortcut to developing expertise for stereopsis in 

stereograms. However, this proposition faces a few challenges. The main challenge is that the 

scientific literature does not provide a clear path to generalisable stereopsis training in stereo-normal 

participants (Levi, 2022; Lu, Lin & Dosher, 2016). An initial challenge is therefore to discover 

stereoscopic PL that – at least – transfers within stereograms. Learning must generalise within the 

domain of stereoscopic aerial images to be useful. This includes transfers across e.g., retinal 

locations, orientations, and the spatial frequency spectrum.  

Following the potential validation of a generalisable stereoscopic PL intervention, this could 

be applied to see if the training brings benefit to inexperienced surveyors during surveying tasks. 

Inexperienced surveyors could be tested for their abilities with stereograms, and with a test/control 

group design, a stereoscopic PL intervention could be used to examine the efficacy of PL on 

improving the surveyors’ abilities to process binocular disparity cues. Performance measures could 

be gathered multiple times in the first year of the surveyors’ employment. This could afford 

measures of the natural development of expertise in the control group, and if any relative 

improvements are brought with the PL training in the test group. This proposed study is logistically 

challenging, as only a small number of new surveyors could be recruited as participants each year 

from a company such as OS. Likely, multiple years of participant recruitment and testing would be 

required, which could also afford multi-year longitudinal measures of expertise development. 

Although difficult to conduct, such a study could provide major insights into the real-world 

applications of PL and how organizations might want to utilise PL in their employee training 

regimens.  

 

6.3.2 Future directions: Replicating the adaptation to the lighting-from-above prior 

 The lighting-from-above prior can be malleable within smaller angular shifts (Adams, Graf & 

Ernst, 2004), but the results of Chapter 4 suggests that the prior might be more malleable than 
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previously shown. Although limited by a smaller sample size, the results suggest that the prior can be 

diminished after years of engagement with lit-from-below images that are incongruent with the 

visual system’s typical bias for lighting-from-above. In terms of future directions, another follow-up 

study could attempt to replicate this finding with a larger number of surveyors to produce a more 

reliable result. If replicated, this result would show that the lighting-from-above prior can be 

diminished and sometimes inverted as a result of adulthood adaptation. Furthermore, a new follow-

up study could also seek to estimate if the surveyors interpret lighting direction cues differently when 

they classify aerial images compared to images outside of this domain (e.g., the honeycomb). This 

aim bears similarity to the online follow-up study that was conducted at the end of Chapter 4, but a 

new follow-up study would be more likely to succeed with a closer replication of the main study in 

Chapter 4. A new study on expert surveyors is thus warranted to explore and replicate the 

diminished lighting direction priors, and whether they are context-specific for aerial images. This 

context-specificity could be explored by comparison with e.g., the honeycomb image.  

 

6.3.3 Future directions: Expertise for 3D rotations  

 Perspective rotations from ground to aerial viewpoints are an unusual form of rotation. More 

commonly, an observer might pass by an object horizontally, for example, if you look at a house as 

you walk past it. It might be easy to recognize the house across such a rotation, but a rotation into 

the aerial perspective would create an unusual viewpoint where novices might struggle to maintain 

object constancy and have difficulties with recognition and identification. Expert surveyors are 

familiar with this aerial viewpoint, and show evidence of improved processing in Chapter 2.  

In terms of future directions, a study could explore expert-novice differences in object 

recognition with different viewpoints/rotations. These rotations could cover multiple common and 

uncommon viewpoints, including the above (aerial) perspective. Two competing hypotheses are 

proposed for open exploration: 1) The experts will be better at recognition in above perspectives, but 

not in other translated viewpoints such as different side-views. This would suggest that experience 

plays a specific role to developing the surveyors’ expertise with aerial images, as recognition is 

specifically enhanced for this viewpoint but not others. 2) The experts show improvements across all 

viewpoint rotations. This outcome would be more surprising and more difficult to interpret, as it 

would be less clear what might be causing the experts’ advantage. Potentially, the expert surveyors 

are inherently talented with mental rotations across all viewpoints, or their experience with 

processing one unusual viewpoint translates to other viewpoints. Testing with less experienced 

surveyors could define an ‘intermediate’ group which might help to control any effect of ‘self-
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selection’, where individuals who are inherently talented with mental rotations decide to work with 

surveying tasks.  

 

6.4 Implications 

 

6.4.1 Implications: The skillset of expert surveyors 

The work described in this thesis provides novel and complementary evidence that can be used to 

define expertise in remote sensing surveyors. Expertise is associated with strategic shifts in visual cue 

sampling, with a greater facility in early visual processing of disparity cues in stereograms (Chapter 

4). Beyond early vision, expertise is associated with improved performance in: 1) categorisation of 

briefly presented aerial scenes, 2) consistency across ground and aerial viewpoints, and 3) object 

identity judgements across these viewpoints (Chapter 2). These results can inform training 

requirements for newly recruited surveyors as they develop expertise. At the OS, much emphasis in 

the surveyors’ training is placed on familiarisation with classifying aerial images and the configural 

features specific to this viewpoint. The results of Chapter 2 reinforce the utility of using direct 

training to gain experience with the aerial viewpoint of landscapes, as a part of the expert skillset is 

increased accuracy with aerial images.  

The results of Chapter 4 show advantageous processing in early vision, highlighting the 

importance of long-term PL to achieve visual expertise. Knowing that fully-developed visual expertise 

might take years to develop can constrain expectations on newly recruited surveyors, but also inspire 

new research on PL for increasing the rate of expertise development and thus workplace 

performance, elaborated above (Future directions).  

 We rely on remote sensing to gather geospatial data more than ever, and the demand is 

likely to increase in the future. Remote sensing surveyors have a unique skillset for analysing aerial 

images, and increased knowledge about this skillset can provide new suggestions for improving 

remote sensing analysis. The characteristic skillset of expert surveyors could be incorporated into 

training regimens for newly recruited surveyors, or in machine vision models, with the aim of 

improving performance. For example, Chapter 4 shows that excellent stereopsis in stereograms is a 

hallmark of expert performance in remote sensing. As the experts show a strong reliance on disparity 

cues, machine vision implementations could potentially benefit from training on images that provide 

depth coordinates in the landscape. While a discussion on the importance of 3D cues in machine 

vision is outside the scope of this thesis, remote sensing models could benefit from studies that 

benchmark expert human performance.  
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6.4.2 Implications: The utility of classification images 

Chapter 4 shows that CIs can capture expert-novice group differences. This could have direct 

applications in other domains of expertise. For example, radiologists search for and classify spots in 

x-rays, and CIs could be used in experiments to investigate the radiologists’ expectations on the 

characteristics of different types of targets. Such an experiment could investigate discrimination 

between benign and malignant spots, and characterise expert visual strategies. CIs might capture 

template differences across target types and groups in such a task.  

 CIs reveal visual strategies by showing the cues that observers use and prioritise. Chapter 4 

found that observers can employ visual strategies that are not consciously available, as seen with the 

use of lighting direction priors that were not remarked upon despite direct questioning in the post-

experiment debrief. This suggests that CIs can be a powerful technique for revealing visual strategies 

that observers are unaware of using. In many expertise domains, it is likely that experts have 

different visual strategies compared to novices, but the groups might not be able to articulate such 

differences. In Chapter 4, both groups reported that they primarily relied on binocular disparity cues 

to depth, with a secondary strategy of diffuse lighting judgements (‘dark-is-deep’). CIs revealed group 

differences that the verbal reports did not: that the experts were better able to use the disparity 

cues, and that the use of luminance cues varied across groups and individuals. In other expertise 

domains, CIs could provide insights into visual strategies that might not be possible to capture with 

other methods or with verbal reports.  

 

6.4.3 Implications: Lighting directions in the Ordnance Survey imagery 

 The OS mostly arranges aerial landscape images so that they face north-up. This convention 

is congruent with the traditional orientation of maps where the bottom of the page represents 

south, and the top of the page represents north. When surveyors encounter this convention in aerial 

landscape images, lighting comes from below as the UK is in the northern hemisphere. This lighting 

structure conflicts with the well-known prior for lighting-from-above (e.g., Ramachandran, 1988; see 

also Chapter 1 for further details). This means that the imagery is systematically incongruent with 

this natural bias in the visual system for recovering shape from shading. As Chapter 4 suggests, 

surveyors have adapted to this to diminish or switch the lighting-from-above prior in aerial landscape 

images. Surveyors have had to develop an exception to the natural bias, which we all encounter 

everywhere else in the real world. Surveyors also show evidence of having lighting-from-above priors 

in the honeycomb stimulus in the follow-up experiment in Chapter 4 (Figure 4.16), suggesting that 

surveyors’ biases outside of the expertise domain are more typical.  
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An implication from this thesis for the OS to consider is how to arrange the imagery to best 

help their surveyors perform their tasks. If the imagery was oriented differently, so that the sunlight 

mostly comes from above, the surveyors would not have to combat the natural lighting-from-above 

prior. This reorientation would be easy to implement with rotations in the image presentation 

software. Currently, with lit-from-below imagery, the natural bias provides an incongruent 

interpretation which must be ignored or switched to not incur a cost to recovery of shape from 

shading. Instead, with lit-from-above imagery, the natural bias could serve to improve recovery of 

shape from shading. Such a change would likely aid photogrammetric performance in both beginner 

and experienced surveyors, as recovery of shape from shading in the imagery would be congruent 

with the real world.  

 

6.5 Conclusions 

The interpretation of aerial images is key for gathering geospatial information about the world. 

Remote sensing surveyors are experienced with interpreting aerial images that provide an unfamiliar 

view of the landscape. Despite considerable interest in remote sensing, only a small number of 

previous studies have explored the visual mechanisms associated with expertise in remote sensing of 

aerial images. This thesis presents three primary studies that aimed to extend our understanding of 

such expertise and the mechanisms that expert surveyors rely on to interpret aerial images.  

The work presented in Chapter 2 established that experienced remote sensing surveyors 

have a superior ability to process both scenes and objects from the aerial viewpoint. In the first 

experiment of this study, compared to novices, experts were more accurate in categorising aerial-

view scenes but not ground-view scenes. The second experiment shows that experts were better at 

recognising the identity of objects in a matching task involving the aerial viewpoint. This experiment 

also showed that mental rotation is not required for aerial images in this matching task. This study 

suggests that expert surveyors have an advantage for processing the featural configurations that are 

typical to aerial images. While aerial images provide an unusual view of landscapes that can be 

difficult to process, remote sensing surveyors have overcome some of this difficulty with experience.  

Remote sensing surveyors at the OS view stereograms of aerial images, where binocular 

disparity cues significantly contribute to depth perception. To capture how experts and novices use 

different stereoscopic cues when judging 3D profiles in aerial features, a novel version of the CI 

technique was developed (Chapter 3). This method allows simultaneous estimation of CIs from 

binocular disparity and luminance cues. Chapter 4 tested experts and novices with this method, 

finding that the groups used stereoscopic cues in different ways when classifying aerial images. 

Compared to novices, experts had a greater facility to sample binocular disparity cues, likely due to 



E. Skog, PhD Thesis, Aston University 2023.   157 

their experience with judgements in stereograms. This group difference was notably large, and 

revealed a mechanism that is strongly associated with visual expertise in the surveyors. Furthermore, 

the experts and novices interpreted lighting direction cues differently, where experts were less likely 

to adopt the conventional lighting-from-above prior. This prior was diminished or even inverted to 

lighting-from-below in the experts, likely due to the experts’ experience with aerial images that are 

unconventionally lit from below the line of sight. Finally, both groups reportedly relied on disparity 

cues as a primary strategy, however, the experts were better able to use disparity cues while novices 

relied more on luminance cues. CIs thus revealed details about visual strategies that the verbal 

reports did not. This study in Chapter 4 reveal some of the impact of experience with aerial images. 

Experience with surveying aerial images is associated with a better ability to sample and prioritise 

relevant stereoscopic cues. Experience can also modify the interpretation of lighting direction cues in 

recovery of shape from shading.  

 Following the results regarding expertise for sampling disparity cues in stereograms, the 

study in Chapter 5 sought to characterise how novices might learn to improve this ability. With a 

stereoscopic PL intervention, participants generally improved their ability to detect disparity targets 

in noise. CIs revealed that learning was also associated with an improved ability to sample disparity 

cues. This improvement was concentrated to a focused area which did not expand with learning, and 

a similar effect was also seen in the previous study where experts and novices had comparable CI 

template extents. The results of this study help to characterise stereoscopic PL. Remote sensing 

surveyors develop expertise from long-term experience with stereoscopic aerial images, and this 

study provides a link between expertise and PL. This link can inspire suggestions for future research 

which could explore the efficacy of using PL interventions to augment the development of expertise.  

In conclusion, this thesis contributes to furthering our understanding of the mechanisms 

associated with human vision in aerial images, and how these mechanisms can change with 

experience. The results paint a picture of how experience is associated with improvements and 

changes to vision, highlighting the key role of experience for interpreting stereoscopic aerial images. 

These novel and complementary results are useful for future research, and the results may also apply 

to provide an improved understanding of remote sensing surveying in the workplace.  
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Appendix A: Disparity CIs, subdivided by different image manipulation conditions.  

 

 
 
Figure A1: Disparity CIs from different conditions of image manipulations. Participants applied similar 
templates in all conditions. Numbers on the left-hand side represent individual participants at each row. 
‘Congruent disparity’ represents all trials where disparity was congruent. ‘Incongruent disparity’ shows all trials 
where disparity was incongruent. ‘Vertical flip’ shows all trials where the light source originated from above 
the line of sight. ‘No vertical flip' shows all trials where the light came from below.  
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Appendix B: Luminance CIs, subdivided by different image manipulation conditions similar to Appendix A.  

 

 
 
Figure B1: Luminance CIs from different image manipulations conditions similar to Appendix A. Participants 
applied similar templates in all conditions.  
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Appendix C: Fits to vertical cross-section of the disparity CIs for individual participants from Chapter 4 
 

 
Figure C1. Vertical cross-sections of disparity classification images fitted with a Gabor function (Equation 3) for 
each participant. Gabor parameter values are listed above each participant’s plot (with 95% confidence 
intervals shown in parentheses).  
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Appendix D: Fits to vertical cross-section of the luminance CIs for individual participants from Chapter 4 

 

 
Figure D1. Vertical cross-sections of luminance classification images fitted with a Gabor function for each 
participant. Details are as for Figure C1. The fit to Expert 5’s data is unusual. The Matlab optimisation routine 
was drawn towards an unusually high Gabor amplitude (much greater than the amplitude of the data) and a 
long wavelength. This produced a very shallow sine-wave component to the Gabor function around the zero-
crossing that was amplified to reach the data by the high Gaussian amplitude. This unsual nuance had little or 
no influence on out estimates of relative phase (in π radians) and peak location, which are each reliable 
indicators of asymmetry, but posed a problem for the group statistical analysis of the amplitudes (A) from the 
individual fits. To address this, we tried constraining A, but found the fits were always drawn to the value of the 

constraint. We then tried constraining wavelength (), but found an interdependence between the value of the 
constraint and the estimate of amplitude. In a second approach (used in the main body of the report), we 
calculated the mean ratio between Gabor amplitude and the maximum and minumum values in the data for 
the other five experts and used this to estimate the Gabor amplitude for Expert 5 from their maximum and 
minumum values in their data. 
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Appendix E: Raw luminance CIs for individual participants from Chapter 5 
 

 
Figure E1: Partial luminance classification images.  

 


