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Abstract: Diabetes is one of the leading non-communicable diseases globally, adversely impacting an 
individual’s quality of life and adding a considerable burden to the healthcare systems. The necessity for 
frequent blood glucose (BG) monitoring and the inconveniences associated with self-monitoring of BG, 
such as pain and discomfort, has motivated the development of non-invasive BG approaches. However, 
the current research progress is slow, and only a few BG self-monitoring devices have made considerable 
progress. Hence, we evaluate the available non-invasive glucose monitoring technologies validated against 
BG recordings to provide future research direction to design, develop, and deploy self-monitoring of BG 
with integrated emerging technologies. We searched five databases, Embase, MEDLINE, Proquest, Scopus, 
and Web of Science, to assess the non-invasive technology’s scope in the diabetes management paradigm 
published from 2000 to 2020. A total of three approaches to non-invasive screening, including saliva, skin, 
and breath, were identified and discussed. We observed a statistical relationship between BG measurements 
obtained from non-invasive methods and standard clinical measures. Opportunities exist for future research 
to advance research progress and facilitate early technology adoption for healthcare practice. The results 
promise clinical validity; however, formulating regulatory guidelines could foresee the deployment of 
approved non-invasive BG monitoring technologies in healthcare practice. Further, research prospects are 
there to design, develop, and deploy integrated diabetes management systems with mobile technologies, data 
analytics, and the internet of things (IoT) to deliver a personalised monitoring system.
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Introduction

Globally, diabetes is a leading non-communicable chronic 
disease affecting an individual’s health and quality of life 
(1,2). The International Diabetes Federation reported 
463 million adults aged 20–79 years (9.3% of the adult 
population) had diabetes in 2019 (3,4). Around 79% 
of adults with diabetes live in developing countries (3), 
incurring a long-term burden of disease and financial 
costs (1). Globally, diabetes caused 4.2 million deaths in 
2019 (3).

In 2019, over 1.1 million children and adolescents 
had type 1 diabetes mellitus (T1DM) (3). T1DM is the 
autoimmune destruction of pancreatic β-cells resulting 
in insulin deficiency (5). On the other hand, type 2 
diabetes mellitus (T2DM) is a chronic metabolic disorder 
characterised by insulin insensitivity because of insulin 
resistance, declining insulin production, and eventual 
pancreatic β-cell failure (6). Ageing, urbanisation, and 
lifestyle factors have led to an increasing prevalence of 
T2DM (4). Around 374 million people are at risk of 
developing T2DM (3).

Inadequate diabetes management increases the risk of 
comorbidities such as neuropathy (7), nephropathy (8), 
retinopathy (9), foot disease (10,11), skin disease (12), 
hearing impairment (13,14), and stroke (15). To maintain 
health and wellbeing, people with diabetes need to monitor 
and manage their blood glucose (BG) levels regularly (16). 

The management of diabetes involves regular blood 
tests, which are expensive and inconvenient (6,17). The 
self-monitoring BG (SMBG) using finger-stick blood 
samples, test strips, and portable meters has aided 
diabetes management, especially for those undergoing 
insulin treatment (18,19). SMBG has several clinical and 
psychological challenges, such as inflicting finger injury and 
sensory loss (20), anxiety and fear (21,22), and compromised 
accuracy and specificity in the readings (19). The discomfort 
and challenges associated with the SMBG call for novel 
technology development (23). 

Continuous glucose monitoring (CGM) systems are 
minimally invasive devices that automatically and constantly 
measure the glucose concentration in the interstitial fluid. 
Apart from assisting diabetics in managing their BG, CGM 
assists in the early detection of abnormal glucose regulation, 
lifestyle optimisation, and optimisation of athletic 
performance (24). However, CGM systems have limitations, 
such as inevitable time delay in the transportation of 
glucose from the blood to the subcutaneous interstitium 

(approximately 15–20 min), short biosensor lifetime, need 
for calibration by fingerstick glucose, and limited glucose 
level readings (25). These challenges direct research toward 
less-invasive or noninvasive systems (24).

With advancements in technology, non-invasive 
BG monitoring devices are being developed (26,27). 
Technologies such as reverse iontophoresis, spectroscopy, 
ultrasound, electromagnetic sensing, metabolic heat 
conformation, and other emerging technologies are used 
for non-invasive BG monitoring (28). Other novel systems, 
such as biosensor based on polynorepinephrine integrated 
with a smartphone to function as point-of-care glucose 
analyser has been proposed (29). Despite considerable 
research, the progress is slow, and there are currently very 
minimal devices approved by regulatory organisations 
worldwide (17). 

Recent literature reviewed specific non-invasive 
technologies such as impedance spectroscopy (30), sweat-
based wearable electrochemical sensors (31) and CGM (32), 
salivary diagnostics (33), and the role of optical, electrical, 
and breath acetone glucose sensing techniques (34). A study 
highlighted the clinical significance of non-invasive methods 
in glucose monitoring and presented the progression 
of the methods over the years for potential diabetes  
management (35). Another recent review evaluated the 
scope of non-invasive technologies in increasing adherence 
towards checking BG and it concluded that further research 
is needed to improve the specificity and sensitivity of non-
invasive technologies (36). 

We systematically reviewed the non-invasive technologies 
validated against individuals’ BG levels to update the 
current knowledge of reliable biomarkers, devices, data 
analysis methods, and factors to be considered in decision-
making. Finally, we provide future research direction 
to design, develop, and deploy SMBG with integrated 
emerging technologies. 

Methods

This section discusses the method followed to retrieve and 
select the articles considered for this review.

Data sources and search strategy

To undertake our literature search, we used databases, 
including Embase, MEDLINE, Proquest, Scopus, and Web 
of Science. The search terms used were (non-invasive OR 
“non invasive”), AND (diabetics OR diabetes OR “blood 
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Table 1 Selection criteria [adapted from reference (37)]

Inclusion criteria

(I) Non-invasive glucose monitoring approaches/technologies

(II) Non-invasive recordings validated against individual’s blood glucose levels

(III) Human subjects (non-invasive technology evaluated on ≥20 diabetes participants)

(IV) Participants aged >18 years

(V) Peer-reviewed

(VI) English language

(VII) Year of publication: January 2000–June 2020

Exclusion criteria

(I) Publications on incomplete or part of research (e.g., editorials, abstracts, workshop/conference summaries, research proposals, 
descriptive surveys, clinical protocols, research methods, literature reviews, conceptual papers)

(II) Non-invasive glucose monitoring approaches/technologies evaluated on only non-diabetes participants

(III) Non-human focused (e.g., animals)

(IV) Diabetes treatment, gestational diabetes

(V) Non-invasive monitoring of other disease severity due to diabetes

(VI) Evaluation and development of research tools (e.g., hardware and algorithm improvement studies, clinical measurement technology to 
access and analyse secondary data, prototypes, and simulations)

(VII) Data modelling & dataset analysis—application of machine learning algorithms to predict diabetes, data modelling and statistical 
analysis of diabetes detection, diabetes risk prediction

sugar” OR “blood glucose”). We applied the search strategy 
in Table S1 to MEDLINE and customised it for other 
databases.

Study selection criteria

Table 1 details the applied selection criteria for selecting the 
articles for this study. We selected English language articles 
published in peer-reviewed journals between January 2000 
and June 2020 (37). We limited the article search timeframe 
from January 2000, since considerable development, 
evaluation, approval, and commercialisation of non-invasive 
diabetes monitoring technologies have been undertaken 
since then (26). Also, we limited the article search timeframe 
to June 2020 due to coronavirus disease 2019 (COVID-19). 
During this period, with recommendations regarding social 
isolation to minimise the spread of COVID-19, telehealth 
was the most utilised healthcare delivery method (38). 
Hence, we have considered the abovementioned period to 
consider studies using non-invasive technologies that were 
validated against individuals’ BG levels.

During the early stage of non-invasive technology 

development, there is a need to assess the specificity, 
sensitivity, and user satisfaction among diabetes individuals 
and healthcare providers. Hence, we have strictly considered 
studies that evaluated non-invasive technologies against an 
individual’s BG levels, including haemoglobin A1c (HbA1c), 
fasting plasma glucose (FPG), and 2-hour PG during an 
oral glucose tolerance test (OGTT) (36,39). 

Studies with a small sample size could negatively 
influence the outcomes (40), hence we have considered 
studies with at least 20 diabetes participants. Since the 
studies used non-invasive technologies that are under 
development and would need informed consent, we 
considered studies with adult participants (41).

Study selection process 

Figure 1 illustrates the article selection process. The search 
keywords were entered into the database, and we imported 
the selected article citations into the reference management 
software EndNote. The duplicate articles were eliminated 
and a total of 1,656 articles were considered for screening.

The first level screening was performed by reading 

https://cdn.amegroups.cn/static/public/mHealth-23-9-Supplementary.pdf


mHealth, 2024Page 4 of 16

© mHealth. All rights reserved. mHealth 2024;10:9 | https://dx.doi.org/10.21037/mhealth-23-9

Figure 1 Flow diagram for selection of articles.
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Keywords: (non-invasive OR “non invasive”) AND (diabetics OR diabetes 

OR “blood sugar” OR “blood glucose”)

Articles identified through the database searching (n=2,336)

• Embase (n=290)

• Medline complete (n=200)

• ProQuest (n=669)

• Scopus (n=520)

• Web of Science (n=657)

Articles after removal of duplicates & selected for screening (n=1,656)

Articles screened & excluded (n=1,568)

• Review/report articles (n=237)

• Age <18 years (n=146)

• Non-human (n=120)

• Evaluation and development of research tools (n=491)

• Irrelevant to objectives (n=574)

Full-text articles excluded (n=79)

• Age <18 years (n=1)

• Diabetes participants ≤19 (n=12)

• Evaluation and development of research tools (n=29)

• Irrelevant to objectives (n=37)

Full-text articles assessed for eligibility (n=88)

Studies included in qualitative synthesis (n=9)

the title and abstract of the article. We excluded reviews 
and editorials, studies undertaken on those younger than  
18 years, non-human subjects, and research tool evaluation 
and development. Further, we excluded studies irrelevant 
to the objective of this review, such as research proposals, 
descriptive surveys, clinical protocols, research methods, 
conceptual papers, undertaken among non-diabetic 
participants, hardware and algorithm improvement studies, 
clinical measurement technology to access and analyse 
secondary data, prototypes, simulations, application of 
machine learning algorithms to predict diabetes, data 
modelling and statistical analysis of diabetes detection, and 
diabetes risk prediction. We obtained 88 articles for further 
full-text review at the end of this stage.

At the second level of screening, we read the entire 
article and eliminated studies undertaken in non-adults, less 

than 20 participants, and those irrelevant to the objective 
of this review. We then had nine articles that we considered 
for this review. 

Data extraction

A reviewer (J.C.M.) independently evaluated the titles and 
abstracts of all articles identified in the initial database 
search and were discussed with other authors (S.M.S.I. 
and S.A.); then, J.C.M. reviewed the full text for eligibility 
according to the study’s inclusion criteria (42). The reviewer 
then extracted study characteristics, including country 
of study, participant count, study duration, and patient 
characteristics, including diabetes type, age, and gender. 
Also, we obtained the details regarding non-invasive 
devices, technology, parameters recorded, and the duration 



mHealth, 2024 Page 5 of 16

© mHealth. All rights reserved. mHealth 2024;10:9 | https://dx.doi.org/10.21037/mhealth-23-9

of observation. 

Analysis of selected studies

We analysed the selected studies through the theoretical 
lens of the Technology Task Fit theory (43). This theory 
conceptualises the fit between a technology (in this case, 
non-invasive technologies) and the task it aims to support 
(i.e., reading the glucose level in human blood) through task 
requirements, technical characteristics and performance 
impacts (clinical standards) and utilisation (BG monitoring 
and management). 

In this review, technology characteristics include non-
invasive devices, technology, parameters recorded, and 
the duration of observation. Task requirements include 
technically robust, clinically accurate, with clinical and safe 
interfaces, easy to use, alleviating psychological effects, 
and economically affordable (16). To critically analyse each 
study using technology-task fit performance, we considered 
their statistically significant value with a cut-off point of the 
results as designated by P values at the level of α<0.05. 

Results

The initial search returned 2,336 articles. After removing 

duplicates, we included 1,656 articles for the title and 
abstract screening. Further, we applied selection criteria to 
the obtained 88 articles and finally selected nine studies in 
this review. 

The studies were undertaken in China (44), India (45-47),  
Israel (48), Japan (49), the Philippines (50,51), and the 
United States of America (52). Table 2 details the study and 
participant characteristics. 

The number of study participants varied between 36 (49)  
and over 300 (52). The study settings differed, i.e., the 
clinical studies were performed after an overnight fast 
(44,45,47,49-51), for an extensive duration in a day (46,52), 
and a few days (48). Also, a study evaluated non-invasive 
technology in home settings (52). 

The participant selection criteria varied between 
the studies. For example, studies excluded participants 
living with chronic diseases, including T1DM (52) and 
T2DM (45,47,48,50). A few studies did not mention the 
participant’s diabetes type (44,46,49,51). Studies included 
non-diabetes participants (44-47,49,51,52). The HbA1c 
(44-46,48,49,52), or fasting BG (FBG) (45,47,50,51) 
recordings categorised participants as diabetes and non-
diabetes.

The participant’s age varied between 18 (47,48,51) and 
82 years (49). The studies that evaluated saliva (45,47,50,51) 

Table 2 Characteristics of included studies

Study Country Count T1DM and T2DM Non-DM Age (years) Male (%) Female (%) Validated against

Saliva

Tiongco, 2019 (51) Philippines 80 Total: 25 55 18–NS NS NS FBG

Malik, 2019 (47) India 175 T2DM: 88 87 18–69 50 50 FBG

Tiongco, 2018 (50) Philippines 75 T2DM: 75 – 31–61 33 67 FBG

Sai Archana, 2016 (45) India 75 T2DM: 50 25 40–70 NS NS FBG, HbA1c

Skin

Lin, 2018 (48) Israel 114 T2DM: 114 – 18–NS NS NS HbA1c

Sivanandam, 2013 (46) India 60 Total: 29 31 19–75 45 55 HbA1c

Sheng, 2011 (44) China 195 Total: 75 120 DM: 60.5±8.4;  
Non-DM: 47.0±16.2

51 49 HbA1c

Tierney, 2001 (52) USA C: 231 T1DM: 151 80 48.2±15.0 NS NS Fingerstick 

H: 124 T1DM: 74 50 46.5±11.7

Breath

Takemoto, 2019 (49) Japan 36 Total: 20 16 20–82 58 42 HbA1c

Age: data are presented as range or mean ± SD. T1DM, type-1 diabetes mellitus; T2DM, type-2 diabetes mellitus; non-DM, non-diabetes mellitus; 
NS, not specified; FBG, fasting blood glucose; HbA1c, haemoglobin A1c; C, clinical environment; H, home environment; SD, standard deviation.
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to screen, diagnose, and monitor diabetes had participants 
aged between 18 (51) and around 70 years (45,47). Whereas 
studies examining technologies on the skin (44,46,48,52) to 
estimate BG levels had participants aged between 18 (48) and 
75 years (46). Furthermore, a wide age range (20–82 years) 
is observed in a study assessing breath samples to screen for 
diabetes (49). Nevertheless, a few studies failed to explicitly 
mention the oldest participant’s age (48,51).

Studies have reported the participant’s age in each group 
(i.e., diabetes and non-diabetes) and their relationship with 
HbA1c (46), and the accuracy of device recordings (44).  
A study estimated BG by non-invasive infra-red (IR) 
thermography, which is the process of using a thermal 
imager to detect heat emitted from an object, converting it 
to temperature and displaying an image of the temperature 
distribution observed a significant (P=0.002) age difference 
between diabetes (n=29, age: 52±15 years) and non-diabetes 
subjects (n=31, age: 40±11 years) (46). Additionally, a 
positive correlation (r=0.504, P<0.01) between age and 
HbA1c is observed (46). 

A study on iontophoresis technology (EZSCAN), which 
is a technique that removes molecules from within the 
body for detection, observed a significant (P=0.0001) age 
difference between diabetic (n=75, age: 60.5±8.4 years) and 
non-diabetic (n=120, age: 47.0±16.2 years) participants (44). 
Also, the study observed a statistically significant (P≤0.003) 
relationship in the sensitivity and specificity between older 
(age: ≥54 years, n=95, sensitivity: 93%, specificity: 24%) 
and younger (age: <54 years, n=100, sensitivity: 61%, 
specificity: 83%) subjects at diabetes index ≥40 as EZSCAN  
threshold (44). Age is a significant parameter in estimating 
the BG value from saliva (47) and thermography (46) but not 
with other measured parameters (49,50,52). 

There was an equal representation of male and female 
participants in some studies (44,46,47). However, a few 
studies had skewed male (49) and female (50) participants. 
A few studies have not specified the gender percentage 
(45,48,51,52). Furthermore, studies observed that gender 
is insignificant in estimating FBG value from saliva (47). 
Likewise, another study evaluating the iontophoresis 
technology witnessed similar sensitivity and specificity in 
both sexes (P≥0.500) (44). 

Non-invasive screening

Table 3 represents the details of non-invasive technologies 
considered in this review. Figure 2 depicts the non-invasive 
technologies and significant outcomes of the assessed 

studies.

Saliva
Saliva is a biofluid that could be retrieved effortlessly, 
having a proportional relationship to the BG level; hence 
is evaluated for diabetes diagnostic applications (47). All 
studies collected blood and saliva samples after an overnight 
fast (45,47,50,51). However, the methodology and 
analysis of saliva varied between the studies. For example, 
unstimulated saliva was collected and analysed for salivary 
glucose and minerals (51), electrochemical properties and 
minerals (47), and salivary flow rate, levels of glucose, and 
minerals (45). A study collected saliva after rinsing the 
mouth with distilled water two times before glucose was 
estimated (50). The participants were T2DM (45,47,50) and 
a study did not specify the diabetes type (51).

A study clinically evaluated the potential utility of 
salivary glucose, amylase, calcium, and phosphorus as a non-
invasive diagnostic marker and observed that only salivary 
glucose (r=0.416, P<0.001) and salivary amylase (r=0.226, 
P=0.040) had a positive correlation with FBG having good 
potential in discriminating diabetics from non-diabetics (51).  
Likewise, another study observed a statistically significant 
(P=0.005) relationship between FBG and salivary glucose 
levels (45). Furthermore, among the considered participants, 
a statistical (P=0.01) correlation between saliva and FBG is 
observed in the uncontrolled diabetic patient group (HbA1C 
level >7.0%) (45).

The electrochemical properties of saliva such as 
conductivity, redox potential, pH and K+, Na+ and Ca2+ 
ionic concentrations, and participants’ age and gender 
were trained and tested using a mathematical regression 
algorithm to estimate FBG (47). On analysis, NeuralNet 
Boosting Regression (NBR: 87.4%±1.7%) presented the 
best-classifying accuracy when compared with Kernel Ridge 
Regression (KRR: 73.8%±1.9%) and Neural Network 
Regression (NNR: 84.7%±2.1%) (47). Whereas NNR 
(93.3%±1.7%) had better sensitivity when compared 
with NBR (88.7%±2.1%) and KRR (83.1%±0.4%) (47). 
Furthermore, the study developed an integrated system 
using sensors and Arduino UNO R3, and on evaluating the 
accuracy considering different samples, NBR yielded an 
accuracy of 81.67%±2.53% (47). Additionally, on validating 
the performance of the developed interface, 80% of the data 
lie in the A zone while 20% are in the B zone according to 
Clark Error Grid (CEG) analysis (47).

A study using saliva sample observed a statistically 
significant (r=0.715, P=0.001) relationship between saliva 
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Table 3 Details of non-invasive technologies examined

Article Device Technology Parameters recorded Procedure duration

Saliva

Tiongco, 2019 (51) Not specified Laboratory procedure Glucose, amylase, calcium,  
& phosphorus

After overnight fasting

Malik, 2019 (47) • F-71 pH/ORP meter Not specified Conductivity, redox potential, 
pH, calcium, potassium & 
sodium ionic concentrations

• Horiba Laqua

Tiongco, 2018 (50) Not specified Not specified Glucose

Sai Archana,  
2016 (45)

• Freestyle precision Not specified Glucose, pH, potassium & 
sodium ionic concentrations

• D-10 hemoglobin 
testing system

• Roche 9180 
electrolyte analyzer

• Optima 1

Skin

Lin, 2018 (48) GlucoTrack Ultrasonic, 
electromagnetic  
& thermal

Glucose fluctuation in the 
earlobe tissue

• Day 1: device calibration  
(20–30 min)

• 2–3 non-consecutive days: 
samples (16 readings/day),  
8–10 hours

• 1 minute/test

Sivanandam,  
2013 (46)

FLIR T 400 Infrared thermography Skin temperature at eye, ear, 
forehead, neck, upper and 
lower extremities

• 15 min—acclimatisation time

• Image capture time

Sheng, 2011 (44) EZSCAN Reverse iontophoresis Electrochemical
Conductance at forehead, 
hands, and feet

2 min test

Tierney, 2001 (52) GlucoWatch Reverse iontophoresis Glucose Every 20 min for 12 hours

Breath

Takemoto, 2019 (49) Not specified Non-dispersive infrared 
isotope spectrometry

Three types of glucose breath 
tests

At baseline and 10-min intervals 
over 150 min

and FBG among T2DM participants (50). Furthermore, 
by applying linear regression analysis, salivary glucose 
(P<0.001) could predict the value of BG (50).

Skin
Skin is a human body barrier with physicochemical 
characteristics differing among individuals due to factors 
such as age, sex, race, anatomical area of the skin, the 
intensity of perspiration, skin temperature and ambient 
temperature, air humidity, season of the year, daily rhythm, 
hormonal balance, and many others (53). To estimate 

the BG levels, different non-invasive technologies such 
as fluorescence, optical polarimetry, optical coherence 
tomography, different types of spectroscopy, metabolic 
heat conformation, millimetre and microwave sensing, 
electromagnetic sensing, ultrasound, sonophoresis, and 
reverse iontophoresis are being evaluated (26). 

The non-invasive devices used technologies such as 
reverse iontophoresis (44,52), infrared thermography (46), 
and a combination of ultrasonic, electromagnetic, and 
thermal technology (48) to estimate BG levels. The devices 
were calibrated and worn at the wrist (52) and attached to 



mHealth, 2024Page 8 of 16

© mHealth. All rights reserved. mHealth 2024;10:9 | https://dx.doi.org/10.21037/mhealth-23-9

Figure 2 Non-invasive monitoring technologies, including saliva, skin, and breath. DM, diabetes mellitus; HbA1c, haemoglobin A1c.

Non-invasive 

monitoring

Saliva

Skin

Breath

Salivary glucose & amylase, significantly higher 

among DM than non-DM.

(Tiongco, 2019)

FBG determination significant parameters- 

Saliva (conductivity, redox potential, pH, & K+, 

Na+, & Ca2+ ionic concentrations), & age.

(Malik, 2019)

Significant  correlation between blood & salivary 

glucose.

(Tiongco, 2018)

Significant  correlation between blood & salivary 

glucose.

(Sai Archana, 2016)

GlucoTrack performance does not depend on 

DM duration, HbA1c level, & smoking history.

(Lin, 2018)

Infrared thermography could obtain the accurate 

HbA1c level.

(Sivanandam, 2013)

Ionotophoresis technology could screen DM 

with reasonable sensitivity and specificity.

(Sheng, 2011)

GlucoWatch biographer is relatively accurate.

(Tierney, 2001)

Glucose breath test could identify DM severity.

(Takemoto, 2019)

the earlobe (48). Moreover, the study was undertaken in 
clinical settings and at-home settings for five days (52). The 
captured recordings were downloaded and analysed offline, 
along with other demographic parameters such as age, 
height, and weight (48,52). 

A study using infrared thermography captured images of 
body parts including the forehead, inner eye canthus, neck 
region, tympanic region of the ear, carotid region, palm, 
knee, and the tibial region, at a distance of 1 meter from the 
subject (46). Whereas, in a study using reverse iontophoresis 
technology, the participant stood still with the headband on 

the forehead and their hands and feet on electrode pads for 
2 min, during which the electrochemical conductance (EC) 
to derive diabetes index considering sex, age, body mass 
index, and systolic blood pressure (SBP) is calculated (44). 
Although the technologies differed, the studies established a 
relationship to estimate BG levels non-invasively.

Due to glucose-related shifts in ion concentration, 
density, compressibility and hydration of both cellular and 
extracellular compartments of the tissue, there could be 
glucose variations in the earlobe tissue, which may further 
vary due to microvascular complications, such as diabetes 
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duration, HbA1c level, and smoking history (48). A study 
evaluated the earlobe tissue parameters against actual BG 
levels and found 98.0% of the measurements were in the 
clinically acceptable zones A and B, with 52.3% in the 
clinically accurate zone A on performing CEG analysis (48).  
Additionally, the non-invasive device accuracy was 
comparable across individuals with different clinical 
characteristics such as diabetes duration and smoking 
history, indicating it is suitable for various people with 
T2DM (48).

The core body temperature of T1DM and T2DM 
participants vary from non-diabetics and could also be 
adversely affected due to thermal stress (i.e., hot and cold 
exposure) (54). On analysing the thermal images of diabetes 
(n=29) and non-diabetes (n=31), the skin temperature of the 
body regions indicates a significant decrease in the surface 
temperature at the inner canthus of the eye (diabetes: 
35.56±0.47 ℃, non-diabetes: 36.01±0.43 ℃, P=0.000, 95% 
CI: 0.22–0.69); knee region (diabetes: 31.68±0.65 ℃, non-
diabetes: 32.37±0.94 ℃, P=0.002, 95% CI: 0.27–1.11); tibial 
region (diabetes: 32.20±0.83 ℃, non-diabetes: 32.82±0.77 ℃,  
P=0.004, 95% CI: 0.2–1.03) and at the forehead (diabetes: 
34.68±0.39 ℃, non-diabetes: 35.00±0.48 ℃, P=0.006, 95% 
CI: 0.09–0.55) region (46). 

A positive correlation between HbA1c and age (r=0.504, 
P<0.01), SBP (r=0.305, P<0.05), and diastolic blood pressure 
(DBP) (r=0.278, P<0.05) respectively is observed (46). 
Whereas, a negative correlation between HbA1c and core 
body temperature measurement at the inner canthi of the 
eye (r=−0.462, P<0.01), skin surface temperature at the knee 
region (r=−0.267, P<0.05) is observed (46). Additionally, an 
optimal regression model (r=0.643, P=0.000) to estimate the 
HbA1c (mmol/mol) was developed by considering the age 
(years); skin surface temperature (℃) coefficients measured 
at the carotid and the knee region (46).

Reverse iontophoresis technology estimates BG 
level by performing spot checks (44) and monitoring  
continuously (52). In the study using reverse iontophoresis 
technology to measure EC (micro Siemens, μSi), the EC 
was significantly (P<0.001), lower in diabetes patients at 
the hands (44 vs. 61 μSi) and feet (51 vs. 69 μSi) locations, 
but not at the forehead (15 vs. 17 μSi, P=0.39) (44). 
Furthermore, when the diabetes index threshold was set 
as 40 (the manufacturer suggested), the sensitivity and 
specificity for the diagnosis of diabetes were 85% and 64%, 
respectively (44). 

While using reverse iontophoresis technology to monitor 
continuously, it was observed that the mean difference 

between biographer and finger-stick measurements was 
−0.01 and 0.26 mmol·L−1 for the clinical (n=231) and home 
environments (n=124), respectively (52). Likewise, the 
mean absolute value of the relative difference was 1.06 and 
1.18 mmol·L−1 for the clinical and home environments, 
respectively (52). Furthermore, over 94% of the biographer 
readings obtained in both studies were in the clinically 
acceptable A + B region of the CEG (52).

Breath
Human breath has various components associated with 
pathological state and could be used potentially as a tool for 
the diagnosis and study of medical diseases (17). After an 
overnight fast, to evaluate [1,2,3-13C] glucose present in the 
breath, the patients received 100 mL of water containing 
100 mg of 13C-glucose; following that, breath samples were 
taken at baseline and at 10-min intervals over 150 min to 
perform 1-13C, 2-13C, and 3-13C glucose breath test (49). 
The peak value of 13CO2 (Cmax), is observed to be low in 
diabetes patients compared to the non-diabetes for the tests 
1-13C (diabetes: 7.0±1.9, non-diabetes: 10.4±1.6, P<0.001), 
2-13C (diabetes: 7.5±2.5, non-diabetes: 11.3±1.8, P<0.001), 
and 3-13C (diabetes: 11.3±3.5, non-diabetes: 14.8±3.0, 
P=0.007) (49). 

A significant difference was observed between diabetes 
and non-diabetes participants for the breath tests, 1-13C 
(diabetes: 642±210, non-diabetes: 914±226, P<0.001), 2-13C 
(diabetes: 717±281, non-diabetes: 1174±178, P<0.001), 
and 3-13C (diabetes: 1,289±409, non-diabetes: 1,668±400, 
P=0.016) (49). The results suggested that the 1-13C glucose 
breath test is suitable for patients with late-stage diabetes, 
whereas the 2-13C glucose breath test is ideal for early-stage 
diabetes (49). 

Discussion

This study reviewed non-invasive technologies validated 
against individual BG levels among people with diabetes. 
Studies appraising the accuracy of saliva (45,47) and 
thermography (46) to estimate BG levels were cost-effective 
technologies. In contrast, a study evaluating the breath 
sample found the technology costly and time-consuming 
to calculate BG levels non-invasively (49). Hence there 
is an imperative need to develop screening tools that are 
demonstrably simple, valid, reliable, quick to administer, 
and easy to use (55).

Ageing increases diabetes risk (56), and globally, 20% of 
adults above 65 years are diabetic (3). The risk of diabetes 
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is high among men compared with women (57). However, 
a few studies have considered participants above 65 years  
(45-47,49), whereas other studies included younger 
participants (44,50,52) or have not mentioned the age limit 
(48,51). Studies have considered participants with more 
women (39) and have not specified gender (37,40,41,44). 
It is evident that diabetes risk is high among the elderly 
and men and is highly prevalent in developing countries 
(4,56,57). Consequently, interpreting the current results of 
the studies need to be done with caution. 

Studies evaluated the reliability of the readings against 
gold-standard but failed to examine the acceptance and 
usability of the technology among various stakeholders, 
including clinicians and participants (44-52). Hence there 
is an imperative need to develop secure, reliable, socially 
acceptable, cost-effective, and usable systems by various 
stakeholders, i.e., the system must support different user 
(gender, socio-economic) groups to interact effectively and 
quickly, and also facilitate older people to access the system 
effortlessly (58). 

The symptoms presented by T1DM and T2DM 
patients and their physiological conditions differ (59,60). 
However, a few studies have not mentioned diabetes 
type among the participants (44,46,49,51). Furthermore, 
diabetes is increasing and often undiagnosed in developing 
countries and among certain ethnic groups, including 
South Asians, due to developing metabolic abnormalities 
at a younger age (61). Hence, non-invasive technologies 
shall be evaluated among T1DM and T2DM, considering 
demographic and behavioural factors to achieve a 
generalisable result. Additionally, there is a need to take 
decisive actions to prevent and manage diabetes using 
innovative and low-cost approaches (61).

Promising non-invasive approaches

The advancements in science and technology are facilitating 
the development of novel non-invasive BG measuring 
systems. A few optical measurements that are considered 
are near-infrared and mid-infrared spectroscopy, optical 
polarimetry, Raman spectroscopy, fluorescence method, 
and optical coherence tomography. Microwave sensors 
have a broad development prospect due to their high 
penetration depth, non-ionisation, low cost, and portability. 
Electrochemical methods, such as reverse iontophoresis 
technology, and biofluid, including saliva, tears, and sweat-
based sensor systems are being developed to monitor 
glucose (62).

Commercial BG measuring devices are in the market, 
however, due to either product discontinuation or failure in 
receiving the Food and Drug Administration or Conformite 
Europeenne approval, only a few are available. Two 
dominant commercial systems, namely, FreeStyle Libre 
and Dexcom provide continuous glucose measurement and 
work for at least ten days. Nevertheless, both use minimal-
invasive technology resulting in disadvantages, such as 
infection risk, pain for the patient, and the cost of sensor 
replacement. Much research is needed to develop less costly, 
more convenient, and more accurate glucose measurement 
and monitoring devices (63).

Challenges in non-invasive approaches 

Non-invasive glucose monitoring system encounters several 
challenges that compromise the accuracy of the system. 
For example, optical sensors struggle in obtaining good 
measurement precision, low signal-to-noise ratios and the 
management of motion artefacts (64). Likewise, sweat-
based glucose sensing still faces many challenges, such as 
difficulty in sweat collection, activity variation of glucose 
owing to lactic acid secretion and changes in ambient 
temperature, and delamination of the enzyme when exposed 
to mechanical friction and skin deformation (62).

Safety and regulatory approvals of non-invasive 
approaches

SMBG using finger-stick blood samples, test strips, and 
portable meters has aided diabetes management (18,19); 
but has several safety challenges, such as inflicting finger 
injury and sensory loss (20), anxiety and fear of self-
injecting (21,22), and compromised accuracy and specificity 
in the readings (19). On the other hand, CGM systems are 
minimally invasive devices that automatically and constantly 
measure the glucose concentration in the interstitial 
fluid (24); but have safety and accuracy concerns due to 
painful insertion, skin/adhesive problems, the necessity 
of calibration by fingerstick glucose, the need of avoiding 
calibration timing after eating, and limited glucose levels 
readings (25,65). 

Non-invasive systems are developed integrating 
various technologies that could compromise patient 
safety. For example, iontophoresis has benefits in diabetes 
management as it is non-invasive and could bypass the first-
pass metabolism; however, there are safety concerns about 
unintended overdose (66). Also, ultrasound could have 
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safety issues on human tissue if it is accompanied by a liquid 
or solid placed between the device that emits the ultrasound 
and the body tissue (67). The safety of magnetic fields, 
including static magnetic fields, extremely low-frequency 
electromagnetic fields and pulsed electromagnetic fields is 
still widely discussed and considered (68).

As substantiated by the literature, diabetes risk is high 
among men, the elderly, and those living in developing 
countries (4,56,57). Hence, there is a need to formulate 
guidelines to evaluate non-invasive glucose monitoring 
technologies to report participants’ diabetes type and 
duration, accuracy, reliability, accessibility, safety, security, 
privacy, convenience of use, and cost-effectiveness, to 
consider it globally. Also, the different technologies used 
to develop non-invasive systems could cause safety issues. 
Hence, appropriate regulatory guidelines are to be formed 
to oversee the development of non-invasive systems. 

Implications for research

Several non-invasive technologies are at an initial stage 
of development (17). There is a statistical relationship 
between standard clinical BG measurement obtained and 
non-invasive methods included in this review; thus, offering 
potential clinical use. 

From the Diffusion of Innovation theoretical perspective, 
we suggest further research to advance the uptake of non-
invasive technologies by early adopters through different 
communication channels to facilitate innovative decision-
making (69). From the Technology Task Fit theoretical 
perspective, we recommend establishing the fidelity 
(fit) between non-invasive technologies and healthcare  
practice (43). 

While the results promise clinical validity, other factors 
such as safety and ease of use, psychological effects, and 
economic affordability should be evaluated. Specifically, the 
severity of diabetes varies due to the type and duration of 
diabetes (59,60). Moreover, such a perspective would enable 
more tailoring of the non-invasive solution for different 
sub-groups in the community so that the usefulness of the 
specific solution can then be maximised which in turn will 
be more likely to lead to frequent use and hopefully better 
managed diabetes. 

In addition, we can integrate non-invasive technologies 
with digital healthcare to be more accessible and efficient 
and thus also address a value-based healthcare paradigm 
and support a healthcare value proposition of better access, 

quality and value of care delivery. 

Future research direction
With the commercialisation of 5G technology and 
smartphones with higher performance and the capability 
to integrate with other peripherals, there is a scope to 
deliver personalised healthcare solutions integrated with 
alternative technologies such as autonomous vehicles, 
artificial intelligence (AI), and the internet of things (IoT) 
(70-72). Since the global market is poised for rapid growth, 
including in developing nations and could have widespread 
implications in delivering personalised healthcare (73-75), 
interoperable mHealth solutions shall be designed and 
developed (76).

Our future work focuses on exploring and realising 
the potential of mHealth solutions integrated with data 
analytics, autonomous vehicles, AI, and IoT to deliver 
remote personalised diabetes monitoring and management 
solutions.

The health and wellbeing of diabetic individuals revolve 
around significant lifestyle changes and meticulous attention 
and monitoring by the patient and health professionals (16).  
Furthermore, interventions provided through digital 
technology have yielded positive outcomes in patients’ 
diabetes management (1,77-79). 

Big data analytics could assist in delivering personalised 
healthcare (80-82). Figure 3 illustrates the mHealth diabetes 
management process integrated with data analytics. 
There are research prospects to design, develop, and 
deploy integrated diabetes management systems with 
mobile technologies, data analytics, and IoT to deliver a 
personalised healthcare system that healthcare professionals 
could access and assess remotely to manage and monitor 
patients’ health with ease.

Limitations of this review

This review had a few limitations. First, the applied 
selection criteria resulted in selecting only nine studies for 
analysis. Second, this review represents a small proportion 
of non-invasive technologies used in glucose monitoring 
due to the selection criteria applied to select studies 
evaluated clinically with credibility. Third, studies with a 
sample size of less than 100 (45,46,49-51) were undertaken 
in developed and developing countries and had varying age 
and gender participants. Although the findings could be 
extended to large sample sizes and different populations to 
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Figure 3 Diabetes management framework [illustrated from reference (1,16,77,78)].

validate the results’ accuracy, the current findings might 
not be generalisable. Finally, the heterogeneity in data has 
restricted us from conducting a meta-analysis.

Conclusions

Non-invasive glucose monitoring technologies showed a 
statistical relationship between BG measurements obtained 
against standard clinical measures. Formulating regulatory 
guidelines could foresee the deployment of approved 
non-invasive BG monitoring technologies in healthcare 
practice. Opportunities exist for future research to advance 
research progress and facilitate early technology adoption 
for healthcare practice. Moreover, there are research 
prospects to design, develop, and deploy integrated diabetes 
management systems with mobile technologies, data 
analytics, and the IoT to deliver a personalised monitoring 
system.
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