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1 Introduction

The many natural disasters of the recent years have commonly been attributed to climate

changes. Most importantly, however, the avid and often vocal interest of the public in ac-

tions that are friendly to the environment has drawn governments to set ambitious policies

that have significantly enhanced renewable energy investments. Wind energy is currently the

fastest growing form of electricity generation in the world (IEA, 2021); in the UK in 2019 it

reached its largest market share with almost 8.5GW of operational capacity.1 As of 2022, a

capacity expansion program of nearly 30GW comprising about 4,900 planning applications has

been granted.2

Nevertheless, this planned albeit substantial growth in wind energy capacity has led to a

fierce competition for the best locations (see, e.g., Fischetti & Fischetti, 2023). Unsurprisingly,

this was actually predicted. Indeed, previous studies have warned about a location problem

arising from the disparity between where the energy demand is and where the energy resources

are (Staid & Guikema, 2015). However, to our best knowledge, none of those studies examined

the effect of the correlation between the energy price and the energy production of individual

wind farms, although recently Shin et al. (2017) urge emphaticaly to do so; and this is important

because, ceteris paribus, wind farms located on sites with higher correlations are more valuable.

In this paper, we examine whether, and if so to what extent, there are economic and statis-

tically significant differences in the correlation of individual wind farm production and energy

prices. Then, we devise an empirical and a theoretical model to demonstrate how these differ-

ences can be translated into monetary gains/losses. This, in turn, enables us to establish the

importance of accounting for the price-quantity co-movements when selecting the location of a

wind farm.

Our main argument builds on the monopsony hypothesis which states that under a single

homogeneous product, in our case electricity, the product prices are set by the demand, the

monopsonist (see, for example, Manning, 2006, 2010). As the number of wind farms grows, the

economic value differences among the available sites decreases.3 Therefore, we should expect

1See Global Offshore Wind Report, 2019.
2According to the Global Energy Review, wind renewable generation of electricity grow by 275 TWh, or almost

17%, in 2021 compared to 2020 levels. https://www.iea.org/reports/global-energy-review-2021/renewables.
3In other words, after the best locations in terms of wind resources, initial investment, and maintenance costs

have been occupied, the remaining locations are more similar.
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that the importance of factors that lead to marginal value differences will become more and

more prominent in determining the preference for a site over another. Consequently, wind

energy developers will demand more accurate investment evaluation techniques to optimally

decide when and where to build a wind farm beyond simply relying on the wind resource of and

accessibility to the site.

And indeed, previous studies focused on reducing developers risk uncertainty in the pre-

construction phase of wind farms (see, for example, Bier & Lin (2013) and Zitrou et al. (2022)).

The motivation behind this research was that wind farm revenues vary significantly over time

because of the nature of the wind and the volatility of energy prices that stem from abrupt

changes in demand. The so-called energy price spikes, swift and dramatic price changes, are

particularly notorious in this market. Peura & Bunn (2021) developed a theoretical market

model to investigate how intermittently available wind generation affects electricity prices in

the presence of forward markets, which are widely used by power companies to hedge against

revenue variability. These fluctuations underlie the high uncertainty of wind farm investments

and explain why wind energy developers “employ teams of meteorologists to scour the world

for the best places to put turbines.”4 Consequently, the wind resource potential of the sites has

been carefully assessed prior to the investment decision (Lackner, 2008; Foley et al., 2012). Our

aim is to move this literature a step further by introducing an additional factor, what we denote

as the price-quantity correlation, and establishing the importance.

In particular, we argue that locations with higher price-quantity correlations (ρ) are, ceteris

paribus, more valuable. In other words, a wind farm located on a site which exhibits production

above its average quantity (q) when the electricity price (p) is also above its average level (ρ+)

is more valuable than an equivalent wind farm located on a site which does not exhibit such

a relationship. In contrast, a wind farm located on a site which exhibits production below its

average q when p is above average (ρ−), is less valuable.

To this aim, we make use of a notable feature of the renewable energy output, when compared

to the non-renewable energy output, namely that it has priority to enter the national electricity

grids. Hence, as long as there is wind and energy demand, wind farms sell all their production.

Consequently, the level of output wind farms produce does not relate to the energy market price

in the usual demand-supply fashion which, in turn, intrinsically favors the site locations with

4See https://www.economist.com/special-report/2008/06/21/trade-winds.
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higher price-quantity correlations (ρ).

Building on this argument, we then proceed in three steps. First, we empirically test whether

there are such statistically significant correlation differences. Using a unique high frequency

(half-hour) dataset of 1.4 million observations, to address the fact that aggregation masks the

actual effect of correlations, covering 60 UK wind farms that span 2006-2019, we estimate the

(ρ) of each wind farm and differences among their ρs, and find that such differences do indeed

exist; and they are statistically significant. Second, we develop the necessary framework to

measure empirically the impact of ρ on firm revenues and profitability through a monetary

value representation of the excess return that a wind farm will generate in comparison to an

equivalent wind farm in a different location with lower price-quantity correlation. Finally, we

develop a real option model that shows the theoretical effect of ρ on the ex-ante wind farm

value, the parameters of which we calibrate with the real world values to examine how the value

of the wind farm company changes with ρ. This is also particularly important for wind farm

developers at the evaluation and pre-construction phases since it is a readily available tool for

comparison of candidate sites.

Overall, our results show that there are indeed persistent and statistically significant ρ differ-

ences across wind farms; and selecting a site location with higher ρ yields on average a location

price-quantity correlation premium per MWh of 65.75 pence which, based on our sample average

production of a wind farm, corresponds to £589,510 extra revenues per year or £17,685,300 for

a 30-year wind farm lifetime - a result that is confirmed also with the real option model.

The contribution of our paper is fourfold. First, we introduce ρ as a key factor that affects

the value of wind farms which, to the best of our knowledge, has not been considered yet in the

existing literature - probably due to the tacit assumption of both renewable energy developers

and policy makers that the stochastic nature of wind fluctuations and energy prices implies that

even at the individual wind farm level ρ is zero on average and therefore it does not matter.

Second, we enrich the renewable energy empirical applications of the monopsony market, which

is overwhelmingly dominated by labor market applications, and demonstrate its direct relevance

when using high frequency data for determining the economic value of individual wind farms

and how misleading can it be with the use of low frequency data. Third, we propose a new

method to empirically demonstrate, using high frequency wind farm data, how differences in ρ

can be translated to monetary gains/losses - which reveals a substantial location price-quantity
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correlation premium. Finally, we introduce a valuation method to complement existing ones

for the selection of the optimal location to build a wind farm - which adds to the literature

on the renewable energy market sustainability and operation management, a broad literature

that covers areas such as supply chains (e.g., Cachon, 2014), production technology choices (e.g.

Islegen and Reichelstein, 2011), and government regulations (see e.g. Kim, 2015).

The remainder of the paper is structured as follows. Section 2 sets the theoretical frame-

work underlying this work. Section 3 describes the dataset. Section 4 provides the methodology

used to empirically estimate the price-quantity correlation and the associated empirical find-

ings. Section 5 presents the empirical methodology used to convert the correlation differences

into monetary gains or losses. Section 6 develops a theoretical model to evaluate wind energy

investments. Lastly, Section 7 contains our concluding remarks.

2 Theoretical Framework

There are different models that can be applied to describe the situation in UKs electricity

market. However, for our purposes, it suffices to simply make some modifications to the partial

equilibrium model of Robinson (1933) repurposed for the electricity market. Figure 1 presents

the archetypical monopsony against perfect competition diagram to graphically depict the main

underlying ideas.

[Figure 1 here]

It is worth noting that in the UKs electricity market, power is bought from generators on a

competitive wholesale market at each half-hour trading period; and electricity generators bid to

contribute to the power grid. However, prices are set by a merit order system, where low-cost

sources like renewables are chosen first, and expensive, flexible sources like gas are chosen last.

But the price is set at the higher cost of gas generation due to its role in balancing supply

and demand. Consequently, from the perspective of individual wind farms, the existing market

structure can indeed be considered a monopsony.

With the above in mind, we can now assume that the electricity market in the UK is com-

prised of just one buyer, the state, which pays the same price for electricity to all producers of

electricity, be they may renewable energy producers or otherwise. The absence of alternative
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buyers means that a firm must accept the price that the state is offering. And the state, makes

use of this privilege as a tool to implement its energy policies.

Given that the UK also trades electricity with its neighbors, the slope of the electricity

supply curve, which relates the electricity price paid (P ) to the level of electricity production

generated and supplied (Q) and is denoted as an increasing function c(Q), is upward - although

relatively inelastic. Interestingly, its constituent for the domestic renewable energy producers,

such as windfarms, in the short run is perfectly inelastic because they always sell whatever

they produce to the state and the only way to increase production is by building new sites of

electricity generation, which can take place in the long run.

Total costs of electricity production are given by c(Q).Q. The homogeneity of electricity

suggests that the revenue (R) of an electricity producer increases with Q almost proportionally,

although there have been various incentive schemes over the years especially for renewable energy

producers. The firm wants to choose Q to maximize profit, π(Q), which is given by the difference

of total revenues and costs, namely:

π(Q) = R(Q)− c(Q).Q (1)

which suggests that the first order conditions with respect to Q yield:

MR = R′(Q) = c′(Q).Q+ c(Q) = MC (2)

where R(Q) and c(Q) indicate the first order derivatives of the revenues and cost func-

tions, and MP and MC are the marginal revenue and marginal cost respectively of electricity

production.

Interestingly, we can safely assume that the marginal cost of electricity production is, in gen-

eral, higher than the existing electricity production cost c(Q) (specifically, in our setup, exactly

by the amount c(Q).Q), primarily because, despite the continuous technological advancements in

power generation and irrespective the large upfront investments that are demanded, electricity

producers cannot easily change the amount of electricity they produce. In the case of renewable

energy firms this restriction is even more stringent their production is fully depended upon the

whims of nature. Consequently, we place the MC curve above the electricity supply curve.

Using Figure 1, the maximum profit in a monopsonistic market is obtained at point A, the

5



intersection of the MR and MC curves, indicating PA price and QA level of energy production.

This, however, means that an electricity producer cannot reach point B, the competitive market

equilibrium, suggesting an overall deadweight loss equal to the area of the triangle ABC. Nev-

ertheless, this market efficiency loss is widely considered necessary to ensure that the state can

offer a certain level of satisfaction from electricity to its citizens through energy providers that

are regulated to sell electricity within certain price ranges which explains why the electricity

market is commonly viewed as nominally efficient.

3 The Data Sample

Our data sample comprises synchronous half-hourly electricity market prices and wind energy

production of 60 UK wind farm sites, covering the period between 12 September 2006 and

10 March 2019. The initial overall data sample contains about 1.4 million observations, al-

though these vary significantly across wind farms, depending on their age. For instance, for the

youngest wind farm (named “Beatrice 2”) we have 11,322 observations, whereas for the oldest

(named“Edinbane”) we have 282,672.5

The electricity prices were collected from the Market Index Price Data (MID) which is

used in the calculation of the Reverse price for each settlement period and reflects the price

of wholesale electricity in the short-term market. The electricity output data was collected via

an API connection to the Elexon portal. This data has physical notifications of half-hourly

generation for wind farms that participate in the Balancing Mechanism (BM), which is a tool

used by the national grid as the System Operator to balance supply and demand in real time.

The BM data provides the national grid with a planned schedule of supply for each half-hourly

settlement period. When demand is expected to deviate from the schedule, the national grid

via the balancing mechanism accepts a bid or offer to either increase or decrease generation to

ensure that the energy system remains in equilibrium.

Table 1 depicts the characteristics of our sample including the names of each wind farm

and its developer, and the wind farm’s code, location (county, country, and GPS coordinates),

technology used (on-shore or off-shore), installed capacity, and number of turbines. Regarding

the wind farm codes (column 2), they represent wind farms some of which developed in phases,

5We refer to our data as initial sample because of the data-cleaning issues we had to address before using it.
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so the numbers 1,2,3,..., after the code represent each of those phases. The half-hourly electricity

output is reported separately for each wind farm site because our analysis is performed per site.6

Overall, our sample is a comprehensive representation of the existing UK wind farms since it

comprises both on-shore and off-shore projects in England, Scotland and Wales developed over

the last 13 years. The installed capacity of our sample ranges from 20.5 MWh (Cour) to 598

MWh (Beatrice).

[Table 1 here]

4 Price-Quantity Correlation Estimation

The relationship between the energy market price and wind farms’ quantity production on

aggregate is a standard example of having a single homogeneous product under monopsony, given

that prices are uniform. Therefore, under the typical assumptions governing such a market, it

would be natural to expect that the relationship between the two would be negative (see, e.g.,

Boal & Ransom, 1997; Manning, 2006, 2010). That is, higher energy prices would be observed

when there is scarcity of energy quantity produced and lower energy prices would be observed

when there is abundance of energy in the market. The profitability of the respective average or

representative producer, here the wind farm, in such idealized conditions would simply follow the

prescriptions of the standard literature of a monopsony market with many suppliers (Manning,

2010).

However, even in this setup the average producer is not very representative of the actual wind

farms. There are several reasons for this being the case, two of which are particularly important

for our discussion in this paper. First, the location of a wind farm affects the energy production

since there are sites where the wind blows more frequently and possibly faster. Indeed, although

meteorological conditions are often very unpredictable, especially in the long-run, there are

locations that have proved to be more endowed in terms of wind resources. Second, the site

location can also determine the price-quantity correlation which in turn affects profitability. This

latter characteristic becomes more and more prominent as the wind resource characteristics of

the available sites where to build wind farms become more homogeneous. Therefore, an exact

6The Renewable Energy Planning Database (REPD) is a governmental organization that provides the Depart-
ment of Energy and Climate Change with the data used to track renewable energy projects as they move through
the planning system.
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procedure for the location selection demands at the outset to determine whether, and if so, to

what extent, the energy market price and the energy production of each potential wind farm are

correlated. And the impact of aggregation can be assessed by repeating the exercise at different

frequencies.

To this aim, and using a comprehensive high frequency (intraday) dataset, we examine

the realized correlations of energy prices and the quantities produced by each wind farm at

different levels of temporal aggregation. However, in order to do so in a way that allows us

to draw statistically robust inference, we need to bear several stylized facts about our data

characteristics into account: i) there is an almost unanimous agreement in the literature that

prices of goods and services have a unit root; ii) in the UK, it is not uncommon the phenomenon

of negative power pricing and indeed, there have been several instances in our sample when

prices were zero or negative;7 iii) excluding periods of testing, maintenance, and adverse weather

conditions, wind farms production over 30-minute intervals have effectively a unit root; iv) it

is not uncommon for wind farms to generate for substantial period of time zero quantities of

energy (see Barndorff-Nielsen & Shephard, 2004).

To account for the above data characteristics, we use the first differences of the inverse

hyperbolic sine transformation of the price and quantity series:

αi,t = ∆ log[pi,t + (p2i,t + 1)1/2 = log[pi,t + (p2i,t + 1)1/2]− log[pi,t + (p2i,t−1 + 1)1/2] (3)

yi,t = ∆ log[qi,t + (q2i,t + 1)1/2 = log[qi,t + (q2i,t + 1)1/2]− log[qi,t + (q2i,t−1 + 1)1/2] (4)

where log indicates the natural logarithmic function and pt and qt are the corresponding price

and quantity values respectively at time t, where t = 1, 2, ..., T , being T the length of our

sample time horizon. This enables us to work effectively with the standard interpretation of

log-difference since it would require very small values (in absolute value) of pt and qt to make

the inverse hyperbolic sine transformation deviate from being approximately equal to log(2pt)

and log(2qt) respectively. In the difference specification, the log(2) component is cancelled

out. Therefore, the two transformed variables can be interpreted in exactly the same way as a

standard (log-)returns and growth series.

7Such cases occur typically when strong gusts result in excessive amounts of wind on the power network all
while the demand for energy is low and so are the energy prices.
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Furthermore, the realized correlation values we calculate for wind farm i at aggregate time

t are given by ρi,t as:

ρi,t = hαy,i,t(hα,i,t.hy,i,t)
−1/2 (5)

where hαy,i,t is the realized covariance for firm i based on n half-hourly returns at each time t,

where t = 1, 2, ..., τ , and τ is the number of observations at each temporal aggregation level, is

given by:

h
(n)
αy,i =

√√√√ 1

n− 1

n∑
k=1

[(
αi,k −

1

n

n∑
l=1

αi,l

)(
yi,k −

1

n

n∑
l=1

yi,l

)]
(6)

and hα,i,t and hy,i,t are the realized variances based on n half-hourly returns at each time t,

where t = 1, 2, ..., τ , and τ is the number of observations at each temporal aggregation level

obtained through the following expression:

h
(n)
s,i =

√√√√ 1

n− 1

n∑
k=1

(
si,k −

1

n

n∑
l=1

si,l)2

)
(7)

where s is either r or y. Finally, it is worth noting that the temporal aggregation levels we

examine are half-daily (max(n) = 24), daily (max(n) = 48), weekly (max(n) = 3, 36), monthly

(max(n) = 1, 440), quarterly (max(n) = 4, 320) and annual (max(n) = 17, 088), whenever our

data permits us.

Once we measure the correlations of the growth of energy produced by each individual wind

farm and the growth of energy prices (what we denote here as the price-quantity correlations),

we can demonstrate the presence of substantial and statistically significant correlations across

wind farms and determine the impact of data aggregation on the correlation values (Section 4).

By doing so, we highlight how misleading the adoption of high data aggregation (low frequency)

is for determining the effect of the price-quantity correlation on wind farms value.

Then, we can move on to determine the location price-quantity correlation premium, i.e.,

how much extra revenues a particular wind farm would have achieved due to the price-quantity

correlation should it have been built-up in a different location both empirically (Section 5) and

using a real options model (Section 6).

Figure 2 shows the variation of the half-hourly price-quantity correlation coefficient across

wind farms. At the top are the wind farms with the highest (positive) correlations, whereas

at the bottom are the wind farms with the lowest (negative) correlations. As we can see, the
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correlations across wind farm varies substantially, from a maximum of 2.94% to a minimum

of -1.57%. As argued above, there is economic value for a wind farm from having a higher

correlation - ceteris paribus.

[Figure 2 here]

Figure 3 shows the variation of the price-quantity correlations but now controlling for the

wind farm’s age (i.e., number of half-hourly observations). On average, the older the wind

farm the closer to zero is its correlation coefficient. However, this does not apply universally.

Indeed, there are older wind farms with correlation that are further away from zero than younger

wind farms. For instance, the two highlighted wind farms in the middle of the figure (with

approximately 70,000 half-hourly observations) have correlations that are among the highest (in

absolute values) in the sample.

These findings contradict, therefore, the conventional assumption that the price-quantity

correlation of wind farms is zero and, inherently, not an important factor determining the value

of a wind farm. In fact, they provide support for the exact opposite view according to which

there might be wind farm sites with more favorable price-quantity correlation that may well

lead to further economic gains.

[Figure 3 here]

Figure 4 shows the price-quantity correlations at different levels of aggregation. As we can

see, lower data frequencies (higher level of aggregation) correspond to much lower correlations;

likewise, higher data frequencies (lower level of aggregation) correspond to much higher correla-

tions. This could explain why energy developers have typically assumed that the correlation is

zero. Indeed, if we look at the annual frequency correlations (panel f), we see that all correla-

tions appear to be close to zero. However, for higher frequencies, the correlations deviate from

zero strikingly more; at the daily frequency (panel a) the correlations span almost the whole

spectrum of the correlation range (-1,+1). Therefore, the use of low frequency data for deter-

mining of the correlation effect on the economic value of wind farms may well be misleading,

and the adoption of high frequency data is not only important for the robustness of the analysis

but vital.

[Figure 4 here]
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5 Determining the Location Price-Quantity Correlation Pre-

mium

So far, we have established that there are economically and statistically significant differences

in the correlations of the growth of energy produced by each individual wind farm and the

growth of energy prices. In this section, we develop a method to translate these correlation

differences in monetary gains/losses. In other words, we introduce a method that tells us how

much extra revenues a particular wind farm would have achieved due to the price-quantity

correlation should it have been built-up in a different location. This location price-quantity

correlation premium (effectively, excess revenues from selecting a different location on its

price-quantity correlation) can then guide us into assigning, within our sites sample, a monetary

value to capture the impact of the price-quantity co-movements. This, in turn, will enable us to

establish the importance of accounting for the price-quantity co-movements when selecting the

location of a wind farm.

A critical challenge of determining a location price-quantity correlation premium formula

stems from the fact that not each wind farm has the same built-in capacity as the rest. Moreover,

each wind farm might be exhibiting different special circumstances, some of which might be

attributed to the specific location while others might be completely idiosyncratic - such as the

quality of the wind turbines, the maintenance protocols and other requirements, and so on. A

conclusive formula would demand that these two issues are addressed.

To this aim, we have looked at all the possible pairs of wind farms and for the common

sample of each pair, of i and j wind farms, we have calculated at each period t the following

measure of location price-quantity correlation premium (∆R) for the wind farm i, the wind farm

with the larger price-quantity correlation:

∆Ri,j,t = (Ui,t − Uj,t)Ri,t (8)

where Ui,t and Uj,t are the utilization of the turbines of the i and j wind farms and Ri,t the

revenues generated by the i wind farm at time t. This formula suggests that the premium is

proportional to the level of revenues of the i wind farm, which accounts for the size of the wind

farm - hence, addressing to a large extent the first issue we have raised above. It also suggests
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that the premium is proportional to the difference in the utilization of the wind turbines of the

two wind farms, which is what is desired. And, also as desired, this difference is maximized when

the i wind farm utilizes its turbines the most, all while the j wind farm utilizes its turbines the

least. Therefore, we are left to specify how to measure each individual utilization.

A first answer could be to assume that the utilization is the quantity of electricity produced

at time t divided by the installed capacity of the respective wind farm as documented in each

firms technical specifications. Then, we could rewrite our formula as:

∆Ri,j,t = (Ui,t − Uj,t)Ri,t =

(
Qi,t

Ci
− Qj,t

Cj

)
Ri,t (9)

where Qi,t and Qj,t are the quantities produced at time t for the i and j wind farms respectively

and Ci and Cj are the corresponding installed capacities. Note that the latter two are by default

time invariant given that the capacities of each wind farm are regulated.

A more pragmatic answer would be to substitute the installed capacities with the actual

maximum quantities, or some other appropriate quantile, that are captured in our sample.

This would also serve as a convenient way to address, to a large extent, the aforementioned

idiosyncratic circumstances issue that each wind farm might exhibit. In such case, the formula

for LP-QCP would be:

∆Ri,j,t =

(
Qi,t

qi
− Qj,t

qj

)
Ri,t (10)

where qi and qj are the observed maximum quantities of firms i and j respectively - for robust-

ness, we have also tried the 99% and 95% quantiles but our inference remains unaffected.

At this point it is worth introducing the revenues variable as the product of quantities

produced and prices:

∆Ri,j,t =

(
Qi,t

qi
− Qj,t

qj

)
Qi,tPt (11)

where Pt is the wind farm-independent energy prices at time t.

Therefore, we can now rewrite the formula in per megawatt hour (MWh) units:

∆Ri,j,t

Qi,t
=

(
Qi,t

qi
− Qj,t

qj

)
Pt = ∆Q̄i,j,tPt (12)

which enables us to aggregate across the different wind farms. The second equation is there to

make the notation more compact.
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Under the natural assumption that the generated quantities of wind farms i and j are

independent of one another, and also under the assumption that each of these quantities is

independent of the energy prices, we can derive the conditional mean of the variable (location

price-quantity correlation premium per megawatt hour) as being given by:

E

(
∆Ri,j,t

Qi,t
|ℑt

)
= E

(
∆Q̄i,j,t

)
E(Pt|ℑt) =

[
1

qi
E(Qi,t|ℑt)−

1

qj
E(Qj,t|ℑt)

]
E(Pt|ℑt) (13)

where ℑt is the information set at time t, excluding t. If quantities and prices were not inde-

pendent then we would have to also take into account the covariance between the two; and the

expectation would change to:

E

(
∆Ri,j,t

Qi,t
|ℑt

)
= E

(
∆Q̄i,j,tPt|ℑt

)
= E

(
∆Q̄i,j,t|ℑt

)
E(Pt|ℑt) + Cov(∆Q̄i,j,t, Pt|ℑt) (14)

where Cov(.) denotes the conditional covariance. Rewriting this, in terms of correlation, yields:

E

(
∆Ri,j,t

Qi,t
|ℑt

)
= E

(
∆Q̄i,j,tPt|ℑt

)
E(Pt|ℑt) + 2

[
V (∆Q̄i,j,tPt|ℑt)V (Pt|ℑt)

]0.5
ρ(∆Q̄i,t,jPt|ℑt)

(15)

where V (.) indicates the conditional variances and ρ(.) the conditional correlation.

Consequently, if prices and quantities are uncorrelated, as suggested by the existing conven-

tional wisdom, this expression becomes unconditionally:

E

(
∆Ri,j

Qi

)
=

[
1

qi
E(Qi)−

1

qj
E(Qj)

]
E(P ) (16)

which suggests that the LP-QCP per MWh would effectively be a positive (when E(Qi) >

E(Qj)) or a negative (when E(Qi) < E(Qj)) portion of the average price level. Therefore, for

non-zero prices, this premium is expected to be zero:

E

(
∆Ri,j,t

Qi

)
= 0∀P ∈ ℜ → 1

qi
E(Qi) =

1

qj
E(Qj) (17)

which is exactly the view that we challenge in this paper. In other words, by arguing that

this premium may well be non-zero, we are effectively establishing that a higher price-quantity

correlation of a wind farm is associated ceteris paribus with higher revenues.
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Following the above method to express the impact of the correlation differences in monetary

values (gains/losses), we find that selecting a site location with higher ρ (average correlation

difference 0.525%8) yields on average a location price-quantity correlation premium per MWh

of 65.75 pence (median 37.81 pence) which, based on our sample average production of a wind

farm, corresponds to £589,510 (£391,677) extra revenues per year or £17,685,300 (£11,750,310)

for a 30-year wind farm lifetime.

6 The impact of Price-Quantity correlation on wind farm value

In this section, we develop a theoretical model relying on the real options theory. This model

enables us to study the effect of the Price-Quantity correlation on the value of a wind farm. We

follow the notation used in the previous sections.

6.1 The real options model

The real options theory (ROT) advocates that, before investing, energy developers have the

option to invest. Such an option has value in the presence of uncertainty. Consequently, energy

developers should invest not when the net present value (NPV) of the investment is positive

but when the NPV is greater than the value of the option to invest. This is because when the

investment is made the expected NPV from the investment is gained but the value of the option

is lost (see McDonald & Siegel, 1986; Dixit & Pindyck, 1994).

Let us, therefore, assume that the electricity market price (P ) and the energy production

of wind farm i (Qi) are both uncertain and follow two independent and possibly correlated

geometric Brownian motion (GBM) processes:

dPt = αtPtdt+ σPPtdW1(t), P0 = P (18)

dQi,t = yi,tQi,tdt+ σQiQi,tdW2,i(t), Qi,0 = Qi (19)

where the correlation between the two GBM processes equals E[dW1(t)dW2,i(t)] = ρidt, α and

yi are the drifts of P and Qi under a risk-neutral measure, σP and σQi are the volatilities of P

and Qi, and dW1 and dW2 are the increments of the Wiener processes for P and Qi respectively.

8If we assume that the relationship between excess revenues and correlation difference is linear, the premium
per MWh is 125.25 pence per 1 percentage point difference in the correlation
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Using Ito’s Lemma (see, for instance, Dixit & Pindyck, 1994, Chapter 3), we conclude that

the evolution over time of the value of the option to invest in a wind farm, f(P,Qi), is defined

by the following partial differential equation (PDE):

1

2

∂2f(P,Qi)

∂P 2
σ2
PP

2 +
1

2

∂2f(P,Qi)

∂Q2
i

σ2
Qi
Q2

i+
∂2f(P,Qi)

∂P∂Qi
PQiσPσQiρi +

∂f(P,Qi)

∂P
αP

+
∂f(P,Qi)

∂Qi
yiQi = r.f(P,Qi)

(20)

where r is the risk-free rate.

This set-up allows us to model the option to invest as a two-factor American perpetual

option that is linearly homogeneous in the underlying stochastic variables P and Qi (that is,

f(λP, λQi) = λf(P,Qi)). Therefore, we can reduce the dimensionality of this PDE (20) to a

one-factor ordinary differential equation (ODE) using Ri = PQi, where Ri stands for revenue,

for which we can now find a closed-form solution:9

1

2
R2

i σ
2
s

∂2f(Ri)

∂R2
i

+Ri(σpσqρi + α+ yi)
∂f(Ri)

∂Ri
− θf(Ri) = 0 (21)

The general solution for (21) is:

f(Ri) = A1,iR
β1,i

i +A2,iR
β2,i

i (22)

where A1,i and A2,i are arbitrary constants to be determined and β1,i (β2,i) is the positive

(negative) root of the following characteristic quadratic equation function of the ODE (21):

0.5σ2
siβi(βi − 1) + (ρiσpσqi + α+ yi)βi − θ = 0 (23)

which are given by

β1,i =
0.5σ2

Si
− (σpσqiρi + α+ yi) +

√
(−0.5σ2

Si
+ σpσqiρi + α+ yi)2 + 2θσ2

Si

σ2
Si

> 1 (24)

9Examples of the usage of this dimension reduction technique can be seen in McDonald & Siegel (1986), Paxson
& Pinto (2005), Malchow-Møller & Thorsen (2005), and Azevedo & Paxson (2018).
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and

β2,i =
0.5σ2

Si
− (σpσqiρi + α+ yi)−

√
(−0.5σ2

Si
+ σpσqiρi + α+ yi)2 + 2θσ2

Si

σ2
Si

< 0 (25)

where

σ2
Si

= σ2
P + σ2

Qi
+ 2σPσQiρi (26)

Since f(Ri) increases with Ri, we have to set in (22) A2 = 0 because β2,i < 0. Therefore,

the wind farm value function is given by:

F (Ri) =


A1,iR

β1,i
i if Ri < R∗

i

Ri

r − α− yi
− I if Ri ≥ R∗

i

(27)

where I is the investment cost, α and yi are the drifts of price and quantity of the option’s

underlying variables, and R∗
i is the optimal revenue investment threshold. In other words, the

first row represents the value of the wind farm before the investment is made (the real option

value) and the second row represents the value of the wind farm after the investment has been

made (the NPV).

There are two unknown variables in (27), namely the real option coefficient A1,i and the

investment threshold R∗
i . To obtain the solutions for these unknown variableswe can make use

of the so-called “value-matching” and the “smooth-pasting” conditions (see Dixit & Pindyck,

1994), which are given by:

A1,iR
∗
i
β1,i =

R∗
i

r − α− yi
− I (28)

β1A1,iR
∗
i
β1,i−1 =

1

r − α− yi
(29)

The “value-matching” condition (28) ensures that the investment is made when the option

value (the term on the left-hand side) equals the expected NPV (the terms on the right-hand

side). The “smooth-pasting” condition (29) is simply the first derivative of (28) with respect

to R∗
i and ensures that when the investment threshold is reached the wind farm’s value is

16



maximized. Solving the above equation system for A1,i and R∗
i yields:

A1,i =
R∗

i
1−β1,i

(r − α− yi)β1,i
(30)

R∗
i =

β1,i(r − α− yi)I

β1,i − 1
(31)

At this point the value function (27) is fully characterized and its value depends on the value

of β1,i which in turns depends on ρi. Therefore, we can now calibrate the model parameters,

based on our data, to measure the impact of ρi on the value of each wind farm.

It is worth noting that our work is based on the selection of the optimal location to build a

wind farm. Therefore, our focus is on the option to wait (A1,iR
∗
i
β1,i), which is held by energy

developers before investing, and not on the optimal time to invest (R∗
i ), which is useful only

after choosing the wind farm location.

6.2 Calibrating the model parameters

Given the wind farm’s value function we derived in (27), we can now undertake a sensitivity

analysis on the effect on value f(Ri) of the price-quantity correlation ρi (the correlation between

the energy market price and the wind farm’s energy production). Table 2 shows the model inputs

for the base case, based on our data.

[Table 2 here]

We can see that for our data the base case refers to an average energy price of £44.62 per

MW with energy production of £102.35 per MWh, which corresponds to about £40 million

revenue per annum. This means that about £430 million average investment cost10 are paid

back in just above a decade.

Figure 5 shows the effect of ρ on the ex-ante wind farm value (i.e., the real option value to

wait, ROV), for three different levels of uncertainty for price and quantity (σp and σq respec-

tively). We can see that ROV increases with ρ, σp, and σq. In other words, the option to wait

10The exact average investment cost for our sample is £432,554,484 which was computed as follows: accord-
ing to 2020 data from the International Energy Arena Agency (IRENA), see https://www.irena.org/Energy-
Transition/Technology/Wind-energy, the global weighted-average total installed cost is USD 3,185/kW for off-
shore and USD 1,355/kW for onshore; therefore, using the installed capacity of each wind farm (see Table 1),
we can determine the average investment cost. To convert the investment cost to UK pounds, we used 1.2 as
exchange rate. Other costs, such as maintenance and levelized cost of stored energy (LCOE), account for less
than 1% of the overall cost of the project and, therefore, they can be safely ignored.
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becomes more valuable when the price or quantity uncertainty increases; but the same is true

for the price-quantity correlation. This means that locations with higher ρ make wind farms

more valuable. In contrast, locations with lower ρ makes wind farms less valuable.

[Figure 5 here]

Table 3 Panel A shows the effect of ρ on the wind farm’s value; it also attests that the value

increases with ρ. Panel B shows the gain/loss a wind farm would face had it been located on site

i instead of on site j - assuming that the wind farms are otherwise symmetric.11 For instance,

if location i has a ρ of 3% and location j has a ρ of -2%, the gain for the wind farm located on

site i (instead of on site j) is about £49,058,919 (see value in bolt); likewise, if location i has a

ρ of 1% and location j has a ρ of 0%, the gain for the wind farm located on site i, instead of on

site j, is about £9,776,982 - see value in bolt.

[Table 3 here]

Figure 6 provides further details on the effect on the extra value that accrues to wind farm i

due to a One, Two, or Three percentage points difference between the correlation of wind farm

i and the correlation of wind farm j. It shows that the extra value that accrues to wind farm i

(the wind farm with the higher correlation) increases with both the percentage point correlation

difference between the two wind farms and with the correlations of the two wind farms. For

instance, a two percentage points difference in the correlation leads to about £15.6 million extra

value to wind farm i if it has a correlation of -4% and wind farm j has a correlation of -2%, but

to almost £21.5 million extra value if wind farm i has a correlation of 3% and wind farm j has

a correlation of 1%.

[Figure 6 here]

7 Conclusions

This study relies on a half-hourly data sample comprising over 1.4 million observations with

information on 60 UK wind farms covering a period between 2006 and 2019. We show that

11Notice that, if the ρ of two locations, i and j, is the same, energy developers are indifferent between the two
locations; this is the reason why the values in the diagonal of the matrix are all zeros - they represent cases where
the ρ of the two competing locations (i and j) are the same.
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there are statistically significant differences between the electricity market price (Price) and the

energy produced (Quantity) by individual wind farms and that those differences favor the revenue

of the wind farms located on sites with higher correlations. To the best of our knowledge, we are

the first to highlight the importance of accounting for the above Price-Quantity correlation when

choosing a location for a wind farm investment, which can be deemed as a unique contribution

to the literature.

Furthermore, we present a method to empirically compute the extra revenue that accrues to

the wind farms located on sites with higher correlations, which we name location Price-Quantity

correlation premium (LP-QCP), and develop a theoretical model to evaluate wind energy in-

vestments considering both Price and Quantity uncertainty and the aforementioned correlation.

This latter model enables us to determine the gain (loss) associated with the locations with

higher (lower) correlations and the optimal revenue threshold which, if reached, triggers the

investment.

Both our theoretical and empirical findings attest that the value of a wind farm increases

with the Price-Quantity correlation; for our data sample, on average, the LP-QCP represents

an increase in the return on investment of about 4%. Therefore, when choosing a wind farm

location, energy developers should consider the so far neglected Price-Quantity correlation and

select first the locations with higher correlations; this behavior is particularly relevant when

the prospective locations under consideration are very similar in terms of wind resources, initial

investment, and maintenance costs.

We expect that the LP-QCP factor will become even more relevant in the future, as a

key determinant of a wind farm location, because as the wind energy capacity expands, the

characteristics of the remaining available locations will be more similar in terms of the other

characteristics that currently determine the choice of a location. We note that, as of March

2022, there are about 1,000 wind farm locations being studied in the UK, for which this work is

directly applicable.

As a further research, it would be interesting to extend this study to a larger sample of UK

wind farms; such a study may identify even more extreme Price-Quantity correlation differences

across wind farms than those reported in this paper. The replication of this study in other

countries is also a valuable study, since it could possibly show the existence of different pat-

terns of correlation differences across countries that might be relate to the adoption of different
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investment incentives policies to promote renewable energy.
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Tables and Figures

Figure 1: The Monopsony Market for Electricity

This figure illustrates the archetypical monopsony against perfect competition. D and S indicate the demand and
supply curves while MC and MR the marginal cost and revenue curves for electricity production.
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Figure 2: The Price-Quantity Correlation per Wind Farm

This figure presents the overall (aggregate) price-quantity correlation coefficient for each wind farm. Notably, the
wind farm BEINW has the highest correlation (+2.94%) and the wind farm ABRBO the lowest (-1.57%). It is
worth noting the quite substantial pair-wise differences.
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Figure 3: Effect of a Wind Farm’s Age on the Price-Quantity Correlation

This figure depicts the relationship between the average correlation between the energy market price and each
of the wind farm’s energy production considering the age of the wind farm measured in half-hourly time period
(one year is about 17,520 half-hourly periods). The red points at the bottom of the graph depict the wind farms
with the highest (right-hand side) and the lowest (left-hand side) correlations, which are statistically significant
at 10% level; the yellow points in the middle of the graph depict the correlation of two wind farms with similar
ages and relatively old (above 70,000 half-hourly periods, i.e. about 8 years old).
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Figure 4: Evolution over Time of the Price-Quantity Correlation

This figure provides information about the evolution of the (half-daily, daily, weekly, monthly, quarterly, and
annually) price-quantity correlation coefficient mean of our sample wind farms. Figures (a), (b), (c), (d), (e), and
(f) refer to half-daily, daily, weekly, monthly, quarterly, and annually data, respectively.
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Figure 5: Effect of Uncertainty and Price-Quantity Correlation on a Wind Farm’s Value

Figures (a) and (b) show the effect of Price-Quantity correlation (ρ) on a wind farm’s value for different levels
of Price and Quantity uncertainty (σp and σq respectively). In the Y-axis is the wind farm value, given in the
British pound sterling (£), whereas in the X-axis is the Price-Quantity correlation (ρ).
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Figure 6: The LP-QCP of Wind Farm i when compared to Wind Farm j

This figure shows that the effect of a One, Two, or Three percentages point correlation difference between wind
farm i and wind farm j on the location Price-Quantity correlation premium (LP-QCP) of wind farm i, which has
a higher correlation. On the X-axis is the correlation of wind farm j, which ranges from -4% to 3%, whereas in
Y-axis is the extra value the wind farm i gets compared to wind farm j (ceteris paribus) if its correlation is One,
Two, or Three percentage points higher. Specifically, the curve at the bottom shows the extra value of wind farm
i compared to wind farm j for when the correlation of wind farm i is One percentage point higher than that of
wind farm j (the first dot on the left-hand side represents the case where the correlation of wind farm j is -4%
and the correlation of wind farm i is -3%, whereas the last dot on the right-hand side represent the case where
the correlation of wind farm j is 3% and the correlation of wind farm i is 4%); the two curves above the one at
the bottom of the graph obey to the same logic but represent scenarios where the correlation difference between
the wind farms i and j are of Two and Three percentage points respectively.
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Table 2: Base Case Inputs

This table displays the estimated model parameters for the base case, relying on our data sample, where P is the
energy market price per MW in £, Q is the energy production in MW per hour, R is the revenue in pounds per
hour, α is the energy price growth rate, y is the growth rate of the energy production, σP is the price uncertainty,
σy is the quantity uncertainty, and I is the investment cost. Unless explicitly stated, otherwise all model inputs
are annualized.

Variable Description Notation Mean value
Energy price (£ per MWh) P 44.62
Energy production (MW per hour) Q 102.35
Revenue (£ per hour) R 4,567.10
Revenue (£ per annum) R 40,005,667.32
Price growth rate (drift of the GBM process for P ) α 0.0200
Quantity growth rate (drift of the GBM process for Q) y 0.0000618
Price growth volatility σP 0.50837
Quantity growth volatility σQ 0.23019
Risk-free interest rate r 0.04
Price-Quantity correlation ρ 0.00
Investment cost (£) I 432,554,484.65
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