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Abstract 

Efficient risk transfer is an important condition for ensuring the sustainability of a market according to the established 
economics literature. In an inefficient market, significant financial imbalances may develop and potentially jeopar- 
dize the solvency of some market participants. The constantly evolving nature of cyber-threats and lack of public data 
sharing mean that the economic conditions required for quoted cyber-insurance premiums to be considered efficient 
are highly unlikely to be met. This paper develops Monte Carlo simulations of an artificial cyber-insurance market and 
compares the efficient and inefficient outcomes based on the informational setup between the market participants. 
The existence of diverse loss distributions is justified by the dynamic nature of cyber-threats and the absence of any 
reliable and centralized incident reporting. It is shown that the limited involvement of reinsurers when loss expecta- 
tions are not shared leads to increased premiums and lower overall capacity. This suggests that the sustainability of 
the cyber-insurance market requires both better data sharing and external sources of risk tolerant capital. 

Keywords: cyber-insurance; reinsurance; Monte Carlo simulations; efficient risk transfer; cyber-threats; security economics; insur- 
ance economics 
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1 For further background, [ 8 ] provides a useful summary of the functioning 
of the Lloyd’s market for insurance. 
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yber-insurance has attracted considerable attention in the litera-
ure as a research topic and is now a significant insurance market
n its own right, with $7.2bn of direct written premium in 2022 in
he US domestic market alone [ 1 ] while reinsurance brokers estimate
he global market may total $14bn [ 2 ]. Commercial estimates sug-
est that up to 45% of premium is ceded to reinsurers in the cyber-
nsurance market [ 3 , 4 ]. Yet, the interaction between insurers and
einsurers in the cyber-insurance market has received surprisingly lit-
le attention in the academic cyber-insurance literature in comparison
o industry publications [ 2 , 5–7 ]. This paper aims to help partially
ddress this gap by considering the asymmetry of information ex-
hange and the uncertain time profile of damage revelation in relation
o the cyber-insurance market and its interaction with reinsurers. It
s then questioned whether reinsurers are sufficiently incentivized to
articipate in the cyber-insurance market on a long-term basis given
he significant difficulties in achieving ex post efficient information
xchange. Cyber risks are a relatively new multifaceted phenomena
nd the type of incidents and their impact may change in an unantic-
pated manner. It is, therefore, important to understand the resultant
The Author(s) 2024. Published by Oxford University Press. This is an Open Access article
 https://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribut
ited. 
ssues that may arise and the ability of the market to absorb unex-
ected losses as otherwise the sustainability of the market is threat-
ned. 

nsurance market structure 

e now briefly review the structure of the insurance market and the
nteraction of its various associated entities and parties. A thorough
nalysis of the cyber-insurance market requires the role and function
f the different participants in the market to be defined 1 . 

We assume here that the insurance buyer is a firm who buys in-
urance coverage via an insurance broker. The broker obtains quotes
rom different insurance firms provided by their underwriters. An
nderwriter is responsible for managing a book of insurance policies
o deliver specified performance targets. These may vary according
o the experience and skill of the underwriter (underwriters with a
roven track record may be permitted to write either more premium
1  distributed under the terms of the Creative Commons Attribution License 
ion, and reproduction in any medium, provided the original work is properly 
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or cover riskier entities than less experienced colleagues), the markets 
they cover and the risk tolerance of the provider of the insurance cap- 
ital. Contrary to what might be expected, underwriting is not purely 
a statistical exercise. The dynamics of the exchanges between under- 
writers and brokers are complex, in particular with respect to infor- 
mation exchange, which may be highly asymmetric. The job of the 
underwriter is to make a subjective judgement on the likelihood of 
the risks (prospective policyholders) they are presented with experi- 
encing a loss and whether these can be underwritten at a premium 

rate, which the underwriter believes is likely to be profitable. This 
judgement requires a certain amount of skill as while a high insur- 
ance rate is more profitable, it will attract less demand than a more 
attractive rate. The key objective is to price the policy such that the 
desired mix of risk characteristics is obtained by the insurance firm.
Underwriters are assisted by actuaries, who provide mathematical 
support, such as technical pricing models, to assist the underwriting- 
process and often hold specialist qualifications [ 9 ]. 

While the underwriter is the key decision maker at each insur- 
ance company in our model, insurance companies usually have mul- 
tiple underwriters with different areas of expertise in terms of peril 
and geography—by writing policies covering different perils, insur- 
ance companies can reduce their average expected loss by diversifi- 
cation. Insurance brokers act as the intermediary between the insur- 
ance company and its underwriters and the end-user of the insurance.
For corporate insurance, companies will typically ask their broker to 
prepare an insurance proposal covering a range of potential losses; 
these are known as lines in the insurance industry . Property , Casualty 
& Professional (Liability), Aerospace, and Maritime are well-known 
examples. The role of the broker is to obtain the best possible terms 
for its clients—both in terms of premium and depth of coverage. This 
requires the broker to have an excellent knowledge of the different 
insurance firms in the market and their reputation. Underwriters will 
aim to build a strong business relationship with leading brokers in the 
hope that they will receive a strong allocation of available premium.

Reinsurance companies provide insurance to insurance compa- 
nies. The main reason for their existence, informally, is to smooth the 
potential loss profile of insurance companies who otherwise might 
only be able to write more modest quantities of premium or hold 
greater capital reserves to cover potential rare outsize losses. Rein- 
surers also act as a potential clearinghouse for information within 
the market as the reinsurer will have visbility over the portfolio con- 
tents of a range of insurers (known as cedents, which rival insurance 
companies in the market cannot directly observe. 

Cyber-insurance presents a particularly interesting case of insur- 
ance market dynamics. The nature of the insured is particularly im- 
portant as a large firm with high turnover is likely to present a more 
interesting and economically lucrative target for attackers, but may 
have better defences than a smaller firm. However, barring a systemic 
vulnerability the risks of significant losses in a well-diversified port- 
folio of numerous low-limit small-medium enterprise policy may be 
a more profitable undertaking for a firm. An insurance company will 
usually obtain reinsurance to manage either tail risks associated with 
its portfolio (excess of loss) or to reduce its overall exposure (quota 
share) 2 . 

Technological advancement, information deficiency, 

and cyber-insurance 

One particular issue for understanding loss risks stemming from 

cyber-incidents is the difficulty in framing the potential future scope 
2 See, e.g. Albrecher (2017) [ 10 ], Kiln (2017) [ 11 ] or any other introductory 
resource on the fundamentals of reinsurance. 
of losses. Kurz (2023) [ 12 ] provides a very readable account of the 
attendant challenges for economic reasoning related to advances in 
technology. Estimates of significant loss are usually calculated and 
reported by the exposure management department of an insurance 
company and may be either probabilistic or deterministic (based on 
stated realistic disaster scenarios). Exposure management tradition- 
ally is used to ascertain the risks from a natural catastrophe. In this 
scenario, the attacker is nature and the vectors are either wind (hur- 
ricane) or water (flooding). The questions the model for premium 

calculation must address are the geographical scope of the damage,
which determines the expected frequency of claims and the feroc- 
ity of the natural disaster, which determines the expected severity.
While nature is inherently unpredictable, nevertheless past experi- 
ence of weather patterns gives some basis for modelling expected 
future losses. The relatively brief (at least in the history of insur- 
ance) history of cyber-risks and the constant evolution of technol- 
ogy, its integration in an ever increasing number of processes and 
the sophistication and capability of attackers makes such compara- 
tive predictions regarding potential losses extremely difficult. When 
designing cyber-insurance policies, it is important for the insurer to 
be highly specific in terms of the coverage and for the reinsurer 
to have a clear understanding of the risk dynamics it assumes if 
these policies are ceded. Figure 1 outlines a range of possible cy- 
ber losses organized by frequency and severity. This relatively sim- 
ple graphic encapsulates the potential modelling challenges associ- 
ated with cyber-insurance and reinsurance. The scope for cyber-losses 
is determined by the evolution of technology; at the time of writ- 
ing, generative artificial intelligence and quantum computing are ex- 
amples of two emerging technologies that have significant security 
implications. 

What claims might arise in relation to cyber-insurance? 

Barely a day passes without news of an emerging cyber-incident or 
other risk. It is important to realize that while these may be extremely 
disruptive for individuals, companies or societies, not every cyber- 
incident results in an insurance loss. An insurance loss may be de- 
fined as a loss resulting in a claim being paid by an insurer, whereas 
an economic loss is the total loss to an insured from the peril. Cyber- 
insurance policies comprise both first-party and third-party risks.
First-party losses usually include preincident support, postincident 
support, cyber extortion, damage to digital assets, and business in- 
terruption, while third-party losses tend to encompass liability from 

privacy violations related to data loss [ 13 ]. The exact coverage will 
vary from carrier to carrier by policy wordings. 

To consider a few different potential examples of cyber-incident 
losses, a ransomware attack (without data exfiltration) would largely 
result in first party claims for network interruption and recovery 
costs. In contrast, a large data breach can incur significant third party 
costs. It is worth noting that such third-party claims might arise sev- 
eral years after the policy is written. This is an important feature in 
cyber-insurance; a prominent relatively recent example was large ho- 
tel chain Marriott suffered a cyber-attack commencing in 2014 that 
was undetected until September 2018 3 , which has been one of the 
largest cyber-insurance claims seen thus far. A reinsurer might have 
expected to retain the bulk of cedent premium income, only to find 
large claims emerging later. It should also be noted that not all in- 
sured losses related to cyber-insurance policies necessarily arise from 

malicious cyber-attacks. A recent example of litigation is the use of 
‘tracking pixels’, which create a risk of claims related to privacy [ 15 ].
3 This data breach is widely documented on the WWW from a variety of 
sources; for an insurance perspective see, e.g. [ 14 ]. 



The barriers to sustainable risk transfer in the cyber-insurance market 3 

Figure 1. Categorization of cyber losses by frequency and severity. 
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As cyber-risk is such a nascent class of business, the insurance in-
ustry is still adapting to understanding how to price the risks, which
ectors are most vulnerable and how best to assess underwriting stan-
ards. This creates a risky environment to the reinsurer, particularly
s cyber is likely to be a relatively small line in their overall busi-
ess and they may, therefore, lack the requisite technical expertise to
ruly evaluate the risks. An interesting example is Solarwinds vulner-
bility 4 , which proved very widespread. However, it appears that the
ain motivation of the attackers was espionage rather than financial

ain and consequently, bar investigative costs, there is little likelihood
f significant cyber-claims as a result. 

Figure 1 provides a stylized framework for categorizing claims
elated to cyber-losses. In the insurance industry, it is conventional to
eparate attritional losses (those experienced from ordinary course
f business claims) from catastrophic losses [ 17 ]. Catastrophic cyber-

osses are represented by the upper-right quadrant of Fig. 1 . For the
urposes of this research, we do not distinguish between attritional
nd catastrophic losses, but rather consider catastrophic losses as
esiding within the long tail (i.e. probability of loss less than 5%)
f the distributions we simulate. The uncertainty for insurers and
einsures related to potential catastrophic cyber-risk is currently ad-
ressed by using third-party vendor models. A report by reinsurance
roker Guy Carpenter (2023) [ 2 ] provides a useful account of the
ifferent models and their development. There remains significant
ivergence in the outputs of the three most commonly used mod-
ls, which suggests that they are unlikely to as yet form a vehicle
or agreement on the most likely distribution of cyber-losses at this
uncture. 
 See, e.g. Devanny et al. (2021) [ 16 ]. 
5

hat is the motivation for reinsurance involvement in 

he cyber-insurance market? 

 possible motivation for early entrants to the cyber-reinsurance
arket is to build market share and hope to capture premium

ate increases as the market becomes more popular. Gallagher Re
2022) [ 5 ], a leading reinsurance broker with a specialist focus on
yber, have argued that reinsurers, technological solutions and cyber-
ecurity practice may converge to create a ‘virtuous cycle of capital
rotection’. As insurers gain more knowledge about the likely distri-
ution of losses, underwriting standards may be tightened. There is
evertheless a clear information advantage possessed by the ceding

nsurer about the ‘quality’ of their insurance portfolio relative to the
einsurer, which raises the issue of adverse selection. A rational rein-
urer will pay extremely close attention to the information they are
iven by the cedent with the past loss history of the portfolio often
 key feature. The fact that so much premium is ceded suggest also
hat insurance carriers are themselves nervous of the quantity of risks
nsured relative to the likelihood of losses. This begs the question as
o why reinsurers would rationally increase capital allocations to the
yber-insurance market if the originating insurer is not comfortable
ith the risks. One possibility is that the reinsurer may have extended

cope to absorb losses from cyber-risks more readily in a diversified
ortfolio and may further be able to charge elevated premia if the
edent insurer is desperate to offload the risk. 

Industry reports suggest that there are significant capacity con-
traints on the appetite of reinsurers to assume cyber-risk [ 18–20 ].
 recent report by the Geneva Association 5 (2023) [ 7 ] discusses

he reasons for this from an industry perspective and steps toward
 The leading global association of insurance companies. 
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improving risk sharing including broader re/insurance participation. 
This paper aims to formalize and model some the challenges that 
must be addressed to improve the efficiency of cyber-risk transfer in 
the insurance market. This is achieved by developing a model of a 
cyber-insurance market, which is stylized yet aims to be represen- 
tative of the existing cyber-insurance market. The model provides 
a framework for mathematical evaluation of qualitative economic 
arguments on efficiency. A key argument of this paper is that there 
may be a diverse range of beliefs among market participants about 
the dynamics of cyber-risk and resultant losses. We demonstrate via 
simulations that under this assumption, reinsurance is only some- 
times optimal for insurers. Economic theory on efficiency is consis- 
tent with this conclusion. This implies that insurers may need to rely 
on external sources of risk-tolerant capital (such as insurance-linked 
securities (ILS, which are sometimes called catastrophe bonds) [ 21–
23 ]. Further, there is societal benefit in better information sharing on 
cyber-losses, which should see convergence in beliefs. 

Relation to existing literature 

This paper applies well-established economic theory to the cyber- 
insurance market in a novel manner. It is the first, to the best of our 
knowledge to consider the specific interaction of reinsurance capi- 
tal and cyber-insurance via simulations that are representative of the 
existing market. 

Paper structure 

In this paper, we examine the impact of diverse anticipations regard- 
ing cyber-losses for firms (insurance buyers), insurers, and reinsur- 
ers in an artificial market. We compute the optimal involvement of 
reinsurance under different assumptions regarding the distribution 
of risks. The paper structure is as follows. In Literature review , we 
provide a brief introduction into existing literature on reinsurance,
relevant actuarial models for cyber-insurance, and potential sources 
of external and capital requirements. Model introduces a model for 
interaction between the participants in the cyber-insurance market—
buyers, insurers, and reinsurers. Simulations presents simulations of 
the artificial market under a variety of informational assumptions 
regarding the frequency of incidents and their severity (expected 
loss per attack). Finally, Discussion summarizes our results and and 
presents our conclusions. 

Literature review 

This literature review focuses on academic papers related to the fun- 
damentals of reinsurance and on technical actuarial papers of direct 
relevance to cyber-insurance. It then considers the economic litera- 
ture on efficiency, from which the core arguments of inefficiency in 
the cyber-insurance market are developed including a brief discus- 
sion of policy wordings around cyber-war. Where necessary, industry 
sources and commentary on the cyber-insurance market are used to 
illustrate arguments where peer reviewed literature is not available; 
but the reader should note that these sources may have commercial 
motivations and, thus may be less objective than comparable peer- 
reviewed literature. 

Reinsurance fundamentals 

Dionne et al. (2013) [ 24 ] is an excellent collection of important pa- 
pers related to reinsurance and includes many key contributions to 
the field. Within this, Borch (1962) [ 25 ] is of particular relevance to 
this work, focusing on describing the conditions required to achieve 
equilibrium in a reinsurance market via generalizing the classical the- 
ory of commodity markets to include uncertainty. Schlesinger and 
Doherty (1985) [ 26 ] provide a useful treatment of issues associ- 
ated with incomplete insurance markets, in particular suggesting that 
focusing on correlation of risks is essential for making use of in- 
complete markets theory. This is an argument as to why an insurer 
who does not currently offer cyber-insurance might enter the market 
should it believe that cyber-losses will not be highly correlated with 
areas in which it currently has exposure. Empirically, there is concern 
of hidden or ‘silent’ cyber-risks within existing lines, meaning that for 
many insurers offering cyber-insurance could be utility detracting.
Froot and O’Connell (1999) [ 27 ] discuss the pricing of US catastro- 
phe insurance with some illustrative data. They find that price in- 
creases and quantity declines are more pervasive than they should 
be within catastrophe reinsurance based on fundamental data; this is 
strongly suggestive of historical inefficiency. 

Actuarial models 

Some interesting literature has emerged around developing specific 
actuarial models for cyber-insurance. Bessy-Roland et al. (2021) [ 28 ] 
introduce a multivariate Hawkes process for cyber-insurance and 
demonstrate how it can be calibrated using the Privacy Rights Clear- 
inghouse database of data breaches to provide a full joint distribution 
of future cyber attacks (see also Hillairet et al. (2021) [ 29 ] for an ap-
plication of such modelling to cyber-insurance derivatives). Hillairet 
and Lopez (2021) [ 30 ] propose a stochastic diffusion model for esti- 
mating the propogation of cyber-incidents within an insurance port- 
folio. Biener et al. (2015) [ 31 ] outline a framework for systemati- 
cally analysing the insurability of cyber-risk, concluding that there are 
significant hindrances towards a sustainable cyber-insurance market 
developing based on their criteria. Eling and Wirfs (2019) [ 32 ] use 
extreme value theory to estimate cyber-risk costs based on an op- 
erational risk database. In developing a model for cyber-insurance 
claims, catastrophic claims are a significant concern. Baldwin et al.
(2017) [ 33 ] use the multivariate Hawkes process as the basis of a 
model for estimating contagion in cyber attacks. Bessy-Roland et al.
(2021) [ 34 ] introduce a multivariate Hawkes framework for mod- 
elling and predicting cyber attacks frequency across firms following 
successful cyber-attacks against a subset of the population. 

Economic theory on efficiency 

We now consider how to relate well-established economic arguments 
on efficiency to insurance of cyber-risks. A rational buyer of insur- 
ance will likely aim to purchase a policy via a market in order to 
achieve a price they deem acceptable (ideally optimal). The aim of a 
well functioning market is to match buyers and sellers of a particular 
good and to establish a fair price for that good. Efficiency is often 
used as a measure for the efficacy of risk transfer in a market and 
can be defined in two ways: ex ante (before the transaction) or ex 
post (after the transaction). Ex ante efficiency requires conditions,
that we shall demonstrate are extremely hard to satisfy. Ex post ef- 
ficiency can be realized but requires an exchange of information. It 
should be noted that an efficient ex post premium if realized would 
be considered a technical premium (i.e. an actuarially fair premium); 
this is distinct and different from a premium that meets customer 
expectations and is subjectively viewed as acceptable based on risk 
tolerance or beliefs. A lack of efficiency does not mean that transac- 
tions will not take place, but creates a comparative advantage for the 
party with greater access to, or possession of less noisy, information.
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6 A full discussion of cyber-war is tangential to the work in this paper, and 
thus for the purposes of this research we do not distinguish between cyber- 
war and other catastrophic losses in the simulated market we model. 
x ante efficiency 
ccording to the Arrow-Debreu model [ 35 , 36 ], a complete market
as: 

(1) Negligible transaction costs and therefore perfect information.
(2) Every asset has a price in every possible state of the world. 

Both of these assumptions are highly unlikely to be valid for
yber-insurance markets. For an asset such as a stock or bond, which
ay be continually traded, price is a legitimate marker of informa-

ion. However, commercial insurance contracts are struck at discrete
ime periods and are valid for a specific length of time only. These typ-
cally operate on a yearly basis with key renewal points throughout
he year dictated by market convention. Further, there is a significant
ost of operating for the insurance company that is typically passed
nto the customer via the premium. Most insurance contracts are
onfungible and nontransferable, unlike many publicly traded finan-
ial instruments such as stocks or bonds. In the absence of capital
equirements, the purchaser of insurance is exposed to counterparty
isk. This is a fundamental feature of insurance markets and implies
hat the first condition of completeness within the Arrow–Debreu
odel is unlikely to be satisfied. The second assumption that every

sset has a price in every possible state of the world is equally not
ealistic as in reality insurance companies may decline to quote for a
articular policy if the insuring party considers the risks outside of
heir tolerance. 

x post efficiency 
tarr (1973) [ 37 ] suggests that a set of valuation decisions is ex post
fficient if that ‘there be no redistribution that will increase some
rader’s realized utility while decreasing no trader’s realized utility’.
lternatively, as interpreted by Feiger (1976) [ 38 ], ‘there exists no
lternative feasible set which is sure to be Pareto improving, looking
ack from the state which actually occurs.’ The Arrow interpreta-
ion of states of the world is convenient for an insurance analysis
s certain states of the world are loss-triggering. There are a diverse
ange of possibilities for attempting to frame these states—one pos-
ible utility driven approach is to model the utility of the protector
f an information set using confidentiality , integrity , and availabil-
ty and constructing potential incidents degrading these properties
n terms of deviations from their preferred state. A cyber-insurance
olicy can cover a wide range of potential losses, an interesting case
eing costs of specialist IT consultants to help diagnosis and recov-
ry after a data breach, for example. A data breach primarily reduces
onfidentiality but if the system from which the data is taken is some-
ow modified by a malicious actor to facilitate the theft, then it is also
n attack on integrity . Recently , ransomware attacks have become a
rominent cyber-threat adding a further risk of loss of availability. 

A particular issue for cyber-insurance is the risk of a catastrophic
yber event. A problem with establishing distributions for catas-
rophic events is that the sample space is often sparse as these events
end not to occur too often. Despite computer systems and net-
orks being societally ubiquitous in most developed countries, pub-

ic data about cyber-incidents and computer mishaps of the stan-
ard required to properly price cyber-insurance contracts remains
acking. Returning to the definitions of Starr and Feiger, these re-
uire careful interpretation in the context of cyber-insurance. Con-
ider the scenario in which an entity suffers a loss as a result of a
yber-incident, which is deemed ‘with high confidence’ by relevant
ational Cybersecurity Agencies to have been state sponsored. In an

fficient market, it ought to be the case that a loss is experienced
nd thus constitutes a valid claim. However, many insurance poli-
ies in general contain what is known as a ‘war clause’ or exclusion
see, e.g. Simon (1981) [ 39 ] or Woods and Weinkle (2020) [ 40 ]).
n the case of conventional property damage policies, the detailed
ording of the exclusion requires careful analysis and interpreta-

ion, but conditions such as attribution and geographical scope while
pen to dispute are far easier to articulate in comparison with state-
anctioned if not directed cyber-operations. In the event of a signifi-
ant cyber-incident, the world reaches a state whereby losses are gen-
rated. These claims ought to be paid, yet there is a clear potential
or legal dispute. A prominent recent example is court cases involv-
ng (separately) Merck [ 41 ] and Mondelez [ 42 ], where both parties
uffered multibillion dollar economic damages as a result of malware
elieved to have originated from nation state-backed entities. These
laims resulted from ‘all risks’ property damage policies rather than
tandalone cyber policies [ 43 ], but nonetheless illustrate the com-
lexity of, and attention that must be paid, to policy wordings to be
lear that the policy covers what both the insurer and insured reason-
bly expect. Uncertainty about whether claims will be paid provides a
lear path towards violation of both the Starr and Feiger conditions,
eaning ex post efficiency is de facto unachievable. The state of un-

ertainty around ‘cyber-war’ 6 has led the market to take clarificatory
teps. In 2022, Lloyd’s of London Market Bulletin Y5381 [ 44 ] out-
ined requirements for state backed cyber-attack exclusions in stan-
alone cyber-attack policies. The details of the different types of war
xclusions are complex—a helpful guide is provided by the Lloyd’s

arket Association [ 45 ]—for the purposes of the arguments of this
aper, the existence of multiple different wordings used by different
rganizations is supportive of our hypothesis of inefficiency in the
yber-insurance market and uncertainty around the tail risks associ-
ted with writing cyber-insurance. Wolff (2023) [ 46 ] has produced
n extensive survey that relates existing literature on the role of in-
urance in forming de facto regulation to the development of war
xclusions in cyber-insurance, concluding that industry leading this
evelopment may have far-reaching consequences. 

ational belief equilibria 
urz (1994) [ 47 ] compares rational expectations equilibria, in which
ll agents know the true probability distribution of prices, with ra-
ional belief equilibria, in which no one knows the true distribution
f prices and each agent must form their own belief about it. Even at
rst sight, it appears intuitive that the latter category of equilibrium
s likely to better characterize cyber-insurance decisions given that
 claim to know the path of future technological development with
ven a degree of confidence is almost certainly fallacious. Kurz’s the-
ry of rational belief equilibria relies on the system being stationary
or the purposes of agents generating forecasts. The theory identifies
 set B ( Q ) of beliefs compatible with the data generated under Q ,
hich cannot be rejected by the data. At first sight, this may appear
 significant issue for analysis of cyber-risk. However, one possibility
s that there exists a brittle equilibrium for a finite period of time,
ubject to shocks. Eventually a shock, or paradigm shift in the sense
f Kuhn (1962) [ 48 ], may perturb the market from its state of equi-
ibrium. This causes market participants to abandon their beliefs but
hen upon stabilization a new set of beliefs may be formed. For ex-
mple, the ransomware epidemic post-WannaCry makes for an in-
eresting case study. This introduced a hitherto less well considered
enerator of potential losses, which insurers had to adjust for in their
olicies and subsequently triggered a marked increase in premiums
harged to the market based on revised distributional beliefs. 



6 Skeoch and Ioannidis 

 

 

 

 

Model 

We now introduce a model for describing the dynamics of a reinsur- 
ance market. We use standard results in the microeconomic theory 
of insurance without derivation for brevity. The motivation for this 
is to outline in formal economic terms the structure of an insurance 
market with reinsurance, from which theoretical simulations may be 
developed. 

Insurance buyer 

Before formulating the model for a market, we establish the baseline 
decision of a buyer of insurance facing two states—loss and no loss—
with probability π and 1 −π , respectively. The corresponding utility 
function is 

E[ U] = (1 − π ) u (W − P(C)) + πu (W − P(C) − L + C − D ) , (1) 

where u is the constant absolute risk aversion (CARA) utility func- 
tion, 

u (w ) = 

1 − e −αw 

α
, (2) 

where α is a constant. For the purposes of this research, we chose 
CARA as it is a commonly used utility function and sufficiently cap- 
tures the trade-offs we wish to model. Other forms of the utility func- 
tion might be deployed to represent more complex buyer preferences.
The parameters in Equation ( 1 ) are W , representing the initial wealth 
of the insurance buyer; P ( C ), the premium paid for an amount of in- 
surance coverage, C ; and D , the deductible 7 set by the insurer. We 
shall assume that 

P(C) = pC, (3) 

where p represents a premium rate . We emphasize that the customer 
chooses the coverage amount C , up to a limit permitted by the insurer 
and observes the premium rate, p , from different insurance compa- 
nies. L is the loss experienced in the loss state. In the event that there 
are multiple loss states, denoted by s , we assume that these belong 
to a finite and countable set of states, S , such that s ∈ S , with a cor-
responding loss for that state, L s . Specifying an initial endowment,
W 0 , and representing the total cash premium paid as P , Equation ( 1 ) 
may be restated 

E[ U] = 

( 

1 −
∑ 

s 

πs 

) 

u (W 0 − P) 

+ 

∑ 

s 

πs u (W 0 − P − L s + C s − D s ) . (4) 

Both Equations ( 1 ) and ( 4 ) are equivalent and for the unsophisti- 
cated cyber-insurance buyer, Equation ( 1 ) is a sufficient formluation 
of the problem. However, when considering the supply dynamics of 
the cyber-insurance and reinsurance markets, it would be expected 
that the insurance company consider the different states that may be 
loss generating. We assume that the objective of the insurance buyer 
is to maximize their utility. 

Assumption 1. 
The insurance buyer aims to maximize their utility 

Supply of insurance 

Having established the theoretical decision framework for the insur- 
ance buyer, we now establish a formal model determining the supply 
7 The amount of losses, which must be borne by the insurance buyer. 
of cyber-insurance. Following Hammond (1981) [ 49 ], we consider 
the actions of consumers in the economy: 

x i (s ) = 

[ 
x i t , x 

i 
t+1 (s ) 

] 
, (5) 

where i represents an individual consumer of a total I consumers 
in the marketplace. As before, s represents a contingent state of the 
world, and it is assumed that the set of possible states, S is finite. The 
vector of total insurance demand, x t = [ C 

1 
t , C 

2 
t , . . . , C 

i 
t ] . 

We assume that there are J insurers in the market, each with a 
supply of insurance 

y j (s, x ) = 

[ 
y j t ( x t ) , y 

j 
t+1 ( s, x t+1 ) 

] 
, (6) 

where y j t is an i-length vector of the units of insurance sold by insurer 
j to customer i at time t and consequently, which, expressed in mon- 
etary terms is identical to cover, C . It is assumed that each customer 
i has an exclusive policy with its chosen insurer j . Each insurer has a 
premium vector, 

P j = [ P 1 , P 2 , . . . , P i ] , (7) 

representing the premium it charges to each customer. This vector 
may be time dependent. For conciseness of presentation, we will 
henceforth drop time subscripts as the analysis in this paper is re- 
stricted to a single period. 

Insurer objectives 
We assume the insurer formulates its decisions on insurance supply,
y j ( s , x ) via the following parameters (see Chapter 3.5 of [ 50 ]): 

� K : the reserve capital held by each insurer. 
� P : the total premium income for each insurer. 
� X : the claim costs (losses) experienced, described by probability 

function F ( X ) with differentiable density f ( X ) defined over the 
interval [0, X max ]. 

� D : the total deductible enforced by the insurer. 
� W 0 : the initial wealth of the insurer—this may be thought 

of as shareholder equity, e.g. or syndicate (nonregulatory) 
capital. 

� W : the residual wealth the insurer has after paying claims. If the 
amount of claims is greater than A ≡ P + K + W 0 , the insurer 
faces ruin. 

� r : the risk-free interest rate for the relevant period. 

We assume that each insurer has zero utility condition and its 
objective is to maximize its wealth 

W j = W 0 + P j −
∫ A j 

0 

X j − D j 

1 + r 
dF j (X) (8) 

subject to the constraint 

W j + K j > 0 . (9) 

The intuition underpinning Equation ( 8 ) is that the insurer has a 
trade-off between the amount of premium it collects and the risk 
of claim associated with that premium. It may also set a deductible 
to mitigate moral hazard. Accordingly, the insurer should assess the 
probable maximum loss of claims according to its distribution and 
ensure that it has sufficient capital to pay the claims. The claims are 
discounted by the risk-free rate, r , as it is assumed that the insurer will 
earn interest on its earned premium over the period. The optimal set 
of allocations for the insurer would be to policies that maximize the 
wealth/capital ratio W j / K j . 

Assumption 2. 

Insurers aim to maximize their wealth 
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9 The definition of a σ -algebra is a collection of subsets of a set that is closed 
(stable) under any countable number of set operations. This is important for 
working with probabilities, where the probabilities of all possible outcomes 
must sum to 1. 
ssumption 3. 
he probability distribution, F j ( X ) is subjective to each insurer in the
ense of de Finetti (1974) [ 51 ]. This will be justified in Modelling
yber-risks . 

ntroducing reinsurance 

n order to reduce risk exposure, the insurer may also seek to pur-
hase reinsurance. There are two categories of reinsurance consid-
red in this work: quota share and excess-of-loss. Reinsurers are con-
equently concerned with determining the probability of two types
f extreme events: those resulting in single large losses from a par-
icular client (concentrated losses/attritional) and those resulting in
idespread repeated claims across cedents (contagion/catastrophic).

n the event that this distribution is objective, then this would lead
o a universal fair price for insurance. Reinsurers in turn will have
heir own subjective distributions and charge the expected value of
heir own distributions to clients. While this may be commercially
easonable, such prices are not fair in a strict economic sense. The
xistence of reinsurance serves to allow insurers to smooth their sub-
ective expected loss distributions, which clearly implies risk aversion
s opposed to neutrality. In short, intermediation implies imperfec-
ion 8 . Including reinsurance, Equation ( 8 ) becomes: 

W j = W 0 + (P j − R j ) −
∫ A j 

0 

X j − D j − I j 
1 + r 

dF j (X) , (10) 

here the parameters are as above, with the addition of R , which
epresents the cost of reinsurance to the insurer and I j , which is the
mount of losses indemnified by the reinsurance policy purchased.
he constraint W j + K j > 0 continues to apply. Notation-wise, in
imilar fashion to Supply of insurance , we use vectors to describe
einsurance supply. We assume that there are k reinsurers, who charge
 

k rates to insurer j and denote the supply vector of reinsurance as
 

k . 
For a simple quota share policy, 

R = ρP, 

here ρ is the proportion of the portfolio ceded and then 

I(L ) = ρL. 

owever, in cases involving excess of loss or other reinsurance
reaties, the calculation is more involved. Miccolis (1977) [ 53 ] pro-
ides an exposition of some standard mathematical techniques for
escribing excess of loss calculations. In the case of excess of loss,
he indemnification equation becomes: 

I(L ) = (L − N) + − (L − N − M ) + , (11) 

here M and N are parameters for an excess of loss policy covering
M(mn) of losses in excess of $N(mn). For simplicity, it is assumed
hat each insurer can purchase only a single excess-of-loss policy from
ach reinsurer. It would seem rational for the purposes of our discus-
ion that the insurers seek to buy reinsurance above the aforemen-
ioned value A , losses above which the firm becomes insolvent. 

he reinsurance market 
e assume that there are K reinsurers in the market who provide

einsurance capacity. The reinsurer aims to maximize wealth in sim-
lar fashion to the insurer (Equation 8 ), but does not include a de-
uctible: 

W k = W 0 + R k −
∫ A k 

0 

I k (X) 
1 + r 

dF k (X) , (12) 
 Skiadas (2013) [ 52 ] presents an interesting analysis on this topic. 

1
1

here R k is the total reinsurance premia received and I k ( X ) denotes
xpected reimbursements paid out to cedents. The reinsurer is subject
o the capital constraint W k + K k > 0. Note that we allow for the
einsurer and insurer to have different beliefs about the expected dis-
ribution of losses. As with the insurers, A k , represents the amount of
einsurance payouts above which the reinsurer would be insolvent. 

ssumption 4. 
he reinsurer may have a different belief from the insurer regarding

he distribution of risks. 

odelling cyber-risks 

e have, thus far considered losses related to cyber-risk in an abstract
ense as setting up the theoretical framework for evaluating the inter-
ction between buyers, insurers, and reinsurers does not require the
unctions dictating these losses to be instantiated. However, simulat-
ng the decision making to analyse the potential for efficiency in the
arket does require some sample distributions. We use standard re-

ults in probability theory without derivation (the reader wishing to
nderstand the background more thoroughly is referred to any stan-
ard statistical text on probability theory; Williams (1991) [ 54 ] is a
articularly accessible and carefully explained introduction). While
sing formal probability theory is not essential for simulating the re-
ults in this paper, it is beneficial to apply theoretical rigour as this
elps to highlight some features specific to cyber-risk that are po-
entially problematic for formulating traditional actuarial insurance
ssessments. 

We start by defining a probability triple (�, F , P ) . � is a set rep-
esenting the sample space of all events . ω represents a sample point
f the sample space. The σ -algebra 9 , F , on �, is known as the family
f events 10 . Denoting an event by A , we may write 

F = { A | A ⊆ �, A ∈ F} . (13)

he intuitive explanation in relation to cyber-insurance is that F is
he collection of events covered by a policy that may trigger a claim
nd then, possibly, a loss to the insurer. If F is the Borel 11 σ algebra
n the set of real numbers, then there exists a unique probability
easure on F for any cumulative distribution function. Letting X be
 random variable on (�, F , P ) , 

� → 

X 
R 

[ 0 , 1] ← 

P F ← −X −1 B. (14)

nformally, this means that so long as there is a collection of events
hat obeys certain mathematical properties, it is possible to assign a
robability to an event using a probability distribution function. One

nteresting outcome is that a key assumption of probability theory is
hat the system is stable. This is a potentially problematic assumption
or cyber-risk as there have been clear examples of previously un-
onsidered threats developing. However, insurance policies comprise
 set of event definitions as part of the policy, which are contractu-
lly binding (albeit open to legal dispute). The importance of care-
ul policy wording is consequently readily apparent. As will shortly
e explained, underwriting cyber-insurance policies requires an as-
umption of subjective, temporary stationarity in distributions. This
0 See Chapter 2 of Williams (1991) [ 54 ]. 
1 The Borel σ -algebra, B(R ) , is the smallest σ -algebra containing all open 

intervals in R . 
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12 For example, Benson and Magee (2015) [ 56 ], Funk and Magee 
(2015) [ 57 ], and Nagy et al. (2013) [ 58 ]. 
is a realistic assumption in the context of industry practice, where 
(re)insurance policies last for a year and then are repriced based on 
updated distributions resulting from supply–demand dynamics and 
claims experienced. 

Why use subjective probabilities to model cyber-risks 
Assumption 3 in Supply of insurance stated that the probability dis- 
tributions that govern insurance supply are subjective in the sense of 
de Finetti (1974) [ 51 ]. We now provide the intuition behind and jus- 
tification for this assumption before moving to consider the form of 
distribution that might be used to model cyber-insurance decisions. 

In Ex post efficiency , we outlined the conditions required for ex 
post efficiency. Considering these in the context of cyber-insurance,
we conclude that ex post efficiency is unlikely to hold and almost 
certainly cannot be implemented at the time when the underwriting 
decision is made. Unless of course, the true probability distribution 
attached to the known and finite states of nature is known and shared 
by all participants. Such condition is the foundation of the theory of 
rational expectations. This is synonymous with the existence of a 
stationary distribution. One way of defining a stationary process is 
to say that its moments are time-independent, which means that the 
average value of the measurements is a constant. Such distributions 
are foundational for the existence of efficient equilibria under risk. 

It is usual in macroeconomics to depict technological progress as 
a Markov chain. If the depicted process has started far from its invari- 
ant distribution, then it is also nonstationary, but easy to predict as it 
will approach the limiting distribution that is ultimately stationary.
However, in a short epoch, it will appear as nonstationary. Whether 
technological progress has such a limiting distribution is an unre- 
solved question. Over the long-run it appears to have exhibited a def- 
inite trend, with some downwards transitions attributable to natural 
disasters, wars epidemics etc. In the short run, local approximations 
can be derived, and expectations can be formed, however, agents will 
splice different segments depending upon their horizons and discount 
rates. The imposition of rational expectations restrictions upon this 
structure can only be justified if all agents have identical preferences 
and endowments, a condition that by construction does not hold.
For Markov chains with nonstationary transition probabilities, no 
steady-state typically exists and almost nothing in the nonstationary 
setting is computable in closed-form. 

It is hard to imagine that there is any way to truly predict an 
arbitrary nonstationary process. This is because as soon as one pos- 
tulates a future path another can always reverse it, without creating 
any problems of consistency with earlier data. In a more general case 
one might lower expectations, not to actually predicting well, but 
to predicting with low regret. To this effect agents can choose their 
most suitable approximations selecting the time span and use their 
best computational algorithms. 

In the absence of a universally accepted probability distribution,
ex post efficiency is almost impossible to attain. Of course, there are 
opportunities which can best utilized only with ex ante knowledge of 
the state of nature. In its simplest form, it is the choice of technique in 
production/product that depends upon the expected state. However,
a more interesting situation arises when the expected state condi- 
tions the preferred level of production. Expecting the cyber-insurance 
market to quote premia at all levels that are consistent with ex post 
efficiency is rather unrealistic. The very nature of the underlying pro- 
cesses does favour the existence of a generally accepted stationary 
distribution. Rational agents will behave as if they are ex ante effi- 
cient using their own expectations of losses based on their subjective 
probability distributions taken over their own sample spaces. 
The evolution of cyber-threats will be conditioned of the path 
of technological improvements in both elements of information and 
communications technology, software and hardware. The future path 
of such advances may be partly predictable based on well-established 
empirical regularities, such as Moore’s law that famously predicted 
that the number of transistors on integrated circuits would double 
every two years, i.e. at an annual rate of about 40% [ 55 ]. Oth- 
ers 12 , looking at related data came to the conclusion that predictions 
of particular technological IT innovations, such as hard drives may 
be approximated using exponential functions. A very useful exposi- 
tion of this attempt, using smooth functions the predict technological 
progress is Farmer and Lafond (2016) [ 59 ]. 

Yet, technological advances undergo structural breaks, where 
both the level of technology in terms of some of its main characteris- 
tics and its future direction change. A prominent example at present 
is the introduction of quantum computing, which will alter radically 
reduce computational time and, thus has implications for the robust- 
ness of cryptographic protocols that are currently infeasible to attack 
on a realistic timeframe. 

Technological progress is achieved by the complex interactions of 
two main human pursuits. The organized knowledge as it appears in 
scientific papers, submitted patents, recipes, protocols, routines, and 
probably informal know-how, acquired through ‘learning by doing’ 
in a long process of imitation and repetition. The development of 
science, technology, innovation and production require both codifi- 
cation and knowledge. 

It seems unlikely that such dual processes can be tamed into a 
smooth parametric function with time invariant parameters, shared 
by all participants. If anything, in the absence of such shared beliefs, it 
is expected that for market participants whose welfare depends upon 
such developments, their decision making will be based on arbitrarily 
diverse anticipations. These are individually efficient decision mak- 
ers because they act on the basis of all the information available at 
the time. It is clear, therefore, that by and large insurance contracts 
on expected losses based of future technological developments, that 
are subject to structural changes, cannot be written on generally ac- 
cepted parameters, to deliver Arrow–Debreu type ex ante efficient 
premia. All the participants are efficient in terms of fully exploiting 
their private anticipations of losses, but the quoted premia at the two 
levels will not result in fully efficient in the Pareto sense economic 
outcomes. 

Probability distributions 
For the Simulations , we separate the expected distribution of losses 
into the number of expected claims (frequency) and the average ex- 
pected loss per claim (severity). This is a very common method for 
actuarial modeling and is described in most standard texts, for ex- 
ample Panjer (2006) [ 60 ]. Its appropriateness to categorizing cyber- 
risks was described in Section I.3 and summarized in Fig. 1 . We as- 
sume that frequencies follow a Poisson distribution and severities a 
log-normal distribution. The Poisson distribution is a standard start- 
ing point for frequency modelling (see, among many, [ 61 ]). There is 
no clear consensus in the empirical literature on which distribution 
is most appropriate for describing the severity of cyber-losses (see in 
particular [ 32 , 62 ]). We use the log-normal distribution as a starting 
point as it is well-understood and straightforward to configure. We 
use simulated rather than empirical distributions as the aim of the 
simulations is to examine whether efficiency is theoretically possi- 
ble, whereas markets in practice are very unlikely to be efficient. The 
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robability of k events occurring in a unit of time represented by the
oisson distribution is 

f (k, λ) = 

λk e −λ

k ! 
, (15) 

here λ is the expected number of events. The log-normal distribu-
ion assumes 

ln (X) ∼ N (μ, σ ) , (16) 

hat is the natural logarithm of variable X is normally distributed
ith mean, μ, and standard deviation, σ , which are defined as 

μ = 

μ2 
X √ 

μ2 
X + σ 2 

X 

and σ 2 = ln 

( 

1 + 

σ 2 
X 

μ2 
X 

) 

, (17) 

here μX 

and σ 2 
X are the mean and variance, respectively, of the vari-

ble X . The probability density functions and cumulative distribu-
ions functions for the log-normal distribution are readily available
n any standard resource on statistics and are omitted for brevity. 

ombining probability distributions 
yber-insurance policies cover a diverse range of first- and third-
arty risks and consequently, there is probably no one distribution
hat actually covers all relevant risks. Accordingly, it is desirable to
onsider a combination of possible risks. Unfortunately, probability
istribution functions are rather difficult to combine with a closed-
orm solution (see, e.g. Nadarajah et al. (2018) [ 63 ]) and require
nalytical solutions. A common strategy is to use a package such as
athematica [ 64 ]. However, there is an alternative approach which

s to use Monte Carlo-type simulations. Simulations will show how
hese can be deployed to yield useful insights on insurance decisions,
he results of which do not require sophisticated mathematics to for-
ulate or interpret. 

imulations 

e consider simulations of a cyber-insurance market with reinsur-
nce over a single period. We assume that losses arise in the period
f the insurance policy and are recorded at the time they arise. Pol-
cy data is confidential to insurance companies and consequently,
he simulations are established for model convenience but are con-
tructed to replicate real-world insurance market dynamics. We use
oisson distributions for the frequency of losses and log-normal dis-
ributions for the severity of losses (details of these distributions and
heir associated functions may be found in any standard statistical
ext). The Poisson distribution is a common choice for modelling
laim frequencies in insurance (see, among many excellent references,
 61 , 65 ]). There is no clear consensus in the literature on the optimal
istribution for modelling the severity of cyber-related claims, but
he log-normal distribution has been shown to be a reasonable ap-
roximation in the limited empirical studies to date (e.g. Eling et al.
2019) [ 32 ], Woods et al. (2021) [ 62 ]. The use of the joint frequency-
everity distribution approach follows Panjer (2006) [ 60 ]. We as-
ume a common set of contracts across insurers varying in limit size.

The analysis considers only variation in coverage and premium.
e assume arbitrarily a market size of $500mn total coverage. The

imulations were computed using the Julia programming language.
e found the Distributions.jl [ 66 ], QuadGK [ 67 ], and Plots.jl [ 68 ]

ackages particularly useful in facilitating the presentation analysis.
nless otherwise specified, Monte Carlo type simulations were run
00 000 times. 

The goal of the simulations is to illustrate how capital supply

rom the reinsurance market to the insurance market and then to 
uyers is inherently inefficient as pricing is influenced by the diver-
ity of opinions regarding the frequency and severity of losses even
ith relatively simple standard distributions. The simulations might
e applied to a variety of insurance markets, but they have been con-
tructed to be representative of the existing cyber-insurance market
ased on the authors’ interaction with insurance market profession-
ls. 

reliminaries 

amiliarity with the insurance market is not a prerequisite for under-
tanding and interpreting the simulations that follow. We have taken
are to explain the terms used and ensure parameters are fully defined
nd explained. However, the reader unfamiliar with corporate insur-
nce may find the following definitions helpful as a reference. These
ay be safely skipped for those experienced in either the practice or

tudy of insurance. 

� μL : the average expected loss in monetary (cash) terms. 
� σL : the standard deviation of losses in monetary (cash terms). 
� F −1 ( p ): the loss value that occurs with probability p according to

the cumulative distribution function F . If P = .95, then in 95%
of cases, the loss is expected to be less than or equal to the output
of this function. 

� Loss ratio: the percentage of cash premiums collected by an in-
surance company for a specified period (usually a year) paid out
as losses. 

� Frequency: the number of claims in a period. 
� Severity: the average loss per claim. 
� Cover/exposure: the total maximum losses that could result from

a policy/portfolio, respectively. 
� Expected loss: the mean loss from a policy/portfolio. 
� Net loss: the loss to the insurer after applying purchased reinsur-

ance. 
� Technical premium: the cash premium or premium rate (calcu-

lated as the ratio expected loss/cover) corresponding to the ex-
pected loss. This is the premium income at which the insurer can
be expected to break even. 

� Simulated loss: the average loss from running N simulations
based on random sampling of the expected loss distribution. This
can only be computed once the portfolio is formed, so we assume
that premiums are calculated based on expected loss values. 

� Ceding commission: the percentage premium paid back to a ce-
dent by a reinsurer to cover underwriting expenses and other
costs. 

It is important to note the sequencing of the insurance transac-
ions in the market. The insurance buyers observe a premium rate and
ased on this decide how much cover to buy. The insurance provider
hen has obtained a portfolio. Based on the risk characteristics of that
ortfolio, the insurer may look to enter into a reinsurance contract to
liminate some potential risk. The simulations assume that insurers
nd reinsurers target a specific loss ratio ex ante to determine pricing.

imulation strategy 

e consider three simulations: 

(1) A benchmark simulation. 
(2) One reinsurer, five insurers with different portfolios comprised

of different weights of five common contracts, buyers not con-
sidered. 

(3) One insurer, one reinsurer, different buyer price sensitivities. 
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Figure 2. Benchmark severity (LHS) and frequency (RHS) distributions. 

 

 

 

These simulations are distinct from each other, though have 
broadly consistent parameters where possible. The aim of the bench- 
mark simulation is to demonstrate the approach used to generate loss 
distributions and also to instantiate buyer utility functions to show 

that if the buyer has a different expectation of loss severity from the 
insurer, then full insurance coverage may not be utility maximizing. 

The second simulation starts with a reinsurer who has a range of 
distributions its actuaries consider acceptable. The reinsurer attempts 
to offer reinsurance to achieve a target loss ratio and so quotes a rein- 
surance rate to the market. The market consists of five insurers who 
have portfolios that range from a large number of small loss risks 
(called Insurer Alpha) to a small number of large loss risks (called 
Insurer Echo) with Insurers Beta, Charlie, and Delta having portfo- 
lios that move progressively between the two extremes. This aims 
to replicate the structure of the cyber-insurance market in a stylized 
form and contrast the appropriate reinsurance strategy for the differ- 
ent types of insurer. 

It should be noted that the premia in the simulations may vary 
from those witnessed in the market and in some cases appear very 
large. The simulations are intended to guide the reader through an 
application of the economic theory and market model from a theo- 
retical perspective and demonstrate the difficulty of establishing effi- 
ciency rather than aiming to be a simulation of the real-world cyber- 
insurance market. 

Simulation 1: benchmark simulation 

We first consider a simple simulation before starting to examine the 
effects of varying market structure and pricing variables. This simu- 
lation assumes the following: 

� There is only one insurance policy offered in the market, with a 
limit of $1mn. 

� The mean expected severity of an incident (loss) for each policy 
is $500k, with standard deviation $250k. 

� The frequency of losses is simulated under two scenarios where 
10% and 50%of policies are expected to experience a loss, re- 
spectively. 

� There are 100 buyers, five insurers, and one reinsurer in the mar- 
ket. For simplicity, we model total losses for the market and as- 
sume they are evenly distributed. 
� Losses are simulated with 100 000 runs and random sampling of 
the severity and frequency distributions. 

� Distributions are shared by all market participants. 

Figure 2 plots the probability distribution functions of the severity 
distribution and the two frequency distributions. The severity distri- 
bution is log-normal with parameters μ = 13.0 and σ = 0.22; the two 
frequency distributions are Poisson with λ of 10 and 50, respectively.
The PDF values for the severity distribution are very small because 
of the units of the loss; the integral of the PDF across the function 
domain must sum to 1. Running a simulation, the expected loss dis- 
tribution for the two frequency distributions can be obtained. This is 
presented in Fig. 3 . The values on the y -axis of Fig. 3 simply represent 
the number of times each loss value range in the histogram appears 
in the simulation. Each bar in the histogram has a width of $0.5mn.
This is simply chosen for aesthetic reasons. The main emphasis is on 
the shape of the distributions rather than the precise frequency count 
in the histogram. 

Having examined the distributions, we now consider the pricing 
of the policies. Table 1 shows the expected and simulated losses for 
the distributions in Fig. 3 . Note that 

Expected Loss = Expected Frequency × Expected Severity 

× Number of polices . 

The ratio of the expected loss and the exposure ($100mn in this ex- 
ample) gives what is known in insurance as the technical premium 

rate. Accordingly, the technical premium would be 5% for the 10% 

frequency scenario and 25% for the 50% frequency scenario. The 
simulated losses are lower than the expected (mean) losses because 
of the skew of the log-normal distribution. 

To simulate reinsurance pricing, we first fit a log-normal distribu- 
tion to the joint distribution with 50% loss frequency as previously 
described. This should be understood as the reinsurer attempting to 
estimate the ‘true’ underlying distribution and is an approximation.
We consider reinsurance only for the 50% loss frequency distribu- 
tion as guided by the reported loss ratios in Table 17 , which suggest 
relatively high frequencies of losses have been experienced by the 
actual market. Using the fit functions in Distributions.jl , we obtain 
a log-normal distribution with μ = 16.9 and σ = 0.27. Under this 
distribution, the cumulative probability of a loss exceeding $50mn 
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Figure 3. Simulated loss distributions. 

Table 1. Expected versus simulated benchmark distribution losses. 

Frequency (%) Expected loss (mn ) Simulated loss (mn) 

10 $5 $4.6 
50 $25 $22.9 
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s extremely small, therefore, we price the reinsurance policies using
xcess-of-loss policies with different attachment points and limits up
o an exhaustion point of $50mn. Using the cumulative probability
unctions for the estimated distribution, we can then obtain premium
ates for the reinsurance, which, multiplied by the amount of rein-
urance required, gives the cost of reinsurance. We then rerun the
imulations of losses for the insurer assuming no losses are incurred
bove the threshold at which reinsurance cover binds. We can then
btain the simulated loss with reinsurance. The results are presented

n Table 2 . 
This reinsurance pricing may be considered efficient because both

he reinsurer providing coverage and the insurer seeking reinsurance
ave the same expected loss distribution. It should be noted, however,
hat the difference between the simulated net loss and the $22.9bn
n Table 2 exceeds the technical reinsurance premium. In theory, the
wo should be equal. The discrepancy arises as a result of fitting er-
or in approximating the joint Poisson/log-normal distribution via
 log-normal distribution. This first simulation is intended only as
n overview of how to price reinsurance, and so this discrepancy is
oted simply for transparency and to avoid potential confusion. It
as no impact on the simulations in the following sections where the
einsurer and insurers do not share distributions. 

imulation 2: reinsurance supply and price 

aving considered the case where all parties agree on the same dis-
ribution, we relax this assumption and start to consider divergence
n distributions of expected losses (Assumption 4 in Introducing rein-
urance ). The justification for this is the heterogeneity of loss ratios
n the US cyber-insurance market in Table 17 , which are discussed
n detail in Cyber-insurer loss experience . We begin by considering
he objective of the reinsurer. We assume a log-normal distribution
f total losses. This is the distribution the reinsurance company be-
ieves represents the losses experienced from a pool of cedents. The
einsurance company needs to model different potential loss ratios.
nitially, we assume cover is fixed at a maximum of $500mn. Table 3
resents a number of log-normal distributions. These are purely for
llustrative purposes; in a real world situation, the reinsurer would
odel the distribution based on experience and data. However, it is
elpful to consider a range of distributions to understand how the
hape of the distribution may affect pricing. 

Within this table, F −1 (0.995) represents the maximum loss with
9.5% certainty within the distribution. This is the probability value
sed under the Solvency II insurance regulation to determine the re-
uired capital a firm must hold. The probability density function and
umulative distribution functions for the distributions in Table 3 are
lotted in Fig. 4 . Note that the scale of the loss axis is shortened to
100mn as the probability density function returns extremely low
alues beyond this point. 

To estimate the premium rate, we consider the following. The
einsurer targets a loss ratio (a common performance metric in the
nsurance industry). Total losses from the portfolio are then written 

L = L . R . ×
∑ 

J 

r J C J . (18)

osses experienced are also given by 

L = 

∑ 

J 

E[ I J ] . (19)

e assume there is a single rate for reinsurance such that r J = r ∀ J .
hen, 

r = 

∑ 

J E[ I J ] 

L . R . × ∑ 

J C J 
. (20)

enoting C̄ = 

∑ 

j C J and noting that 
∑ 

J E[ I J ] = 

∫ C̄ 
0 I f (I ) dI where

 ( I ) is the probability density function of an appropriate distribution,
e obtain 

r = 

∫ C̄ 
0 I f (I ) dI 

L . R . × C̄ 

. (21)

his integral can be evaluated numerically, for example using
uadGK in Julia. 
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Table 2. Reinsurance premia for excess-of-loss policies on the 50% chance of claim distribution. 

Reinsurance 
Reinsurance 

premium rate (%) 
Reinsurance 
cover (mn) 

Technical reinsurance 
premium (mn) 

Simulated net loss 
(mn) 

$25mn xs $25mn 32 .2 $25 $8.1 $13.1 
$20mn xs $30mn 12 .5 $20 $3.8 $18.7 
$15mn xs $35mn 4 .2 $15 $0.6 $21.3 
$10mn xs $40mn 1 .3 $10 $0.1 $22.4 

Table 3. Table of reinsurance distributions. 

μL (mn) σL (mn) μ σ F −1 (0.995) (mn) 

Distributions A $10 $10 15.8 0.69 $42 
B $20 $20 16.5 0.69 $84 
C $30 $30 16.9 0.69 $126 
D $40 $40 17.2 0.69 $169 
E $50 $50 17.4 0.69 $211 
F $60 $60 17.6 0.69 $253 

 

 

 

 

 

 

 

Suppose the reinsurer believes that Distribution C best describes 
expected losses to the portfolio and targets a loss ratio of 50%. The 
rate of reinsurance charged is then 11% (Table 4 ). Premium income 
for the reinsurer will be $55mn. Note that per Table 3 , in Distribution 
C, the 99.5% upper bound for losses is $126mn. This means that the 
reinsurer must have access to an additional $71mn of capital under 
this policy scenario. 

Insurance supply 
We assume for simplicity that there are five insurance contracts in the 
market with different limits: $500k, $1mn, $2mn, $5mn, and $10mn.
We assume that there is a uniform individual and independently dis- 
tributed probability of loss for each contract: The expected severity 
in the above contracts is assumed to be log-normally distributed per 
Table 5 and the frequency ∼Poisson( π l k ) where k is the number of 
contracts. Table 6 contains a sample portfolio for a panel of five in- 
surers for illustrative purposes to run a loss simulation. The technical 
premium is the premium income that equates to the expected loss.
Equivalently, this is the premium written at which the insurer would 
expect to break even. 

In reality, insurers do not attempt to break even but rather aim 

to produce a profit to provide a return on investment to the source 
of their capital. One simple objective might to not exceed a target 
loss ratio. This is achieved via an additional charge to the insurance 
buyer over the technical premium known as a loading 13 . The loading 
is calculated: 

Loading = 

1 
Total Exposure 

×
(

Technical Premium 

Target Loss Ratio 
− Technical Premium 

)
. (22) 

The variation between loading and loss ratio for the insurance 
portfolios in Table 6 is plotted in Fig. 5 . The variation in target loss 
ratios may occur for a number of reasons, such as rate of return on 
capital demanded by the capital source (as discussed in Insurance 
market structure , prior loss experience, or other variable expenses.
The loading also may aim to capture any skew in the actuarial dis- 
tribution. 

Table 7 shows the calculated loadings for each insurer in the sim- 
ulation assuming a target loss ratio of 50%. For ease of comparison,
13 See, e.g. Benjamin (1986) [ 69 ] for a discussion. 
we keep the target loss ratio constant across the insurer panel and 
also the overall exposure. 

Interaction between insurance and reinsurance 
The total expected losses for the cyber-insurance market depicted in 
Table 7 are $38.0. The technical premium is equal to the expected 
losses in monetary terms. In Simulation 2: reinsurance supply and 
price we stated that for a log-normal distribution with mean and 
standard deviation of $40mn and target loss ratio of 0.5, the pre- 
mium charge would be 14% for the reinsurer (distribution D). The 
usual process of reinsurance in quota share is that the reinsurer as- 
sumes a stated percentage of portfolio losses. The reinsurance con- 
tract (or treaty) is priced 14 via a ceding commission and reinsurance 
margin. In this case, the reinsurance margin is already accounted for 
in the 14% premium rate as this was calculated to give the required 
reinsurer loss ratio. The ceding commission is paid back to the ced- 
ing insurer to compensate them for underwriting expenses. The ced- 
ing commission is defined as the average premium rate (Table 7 ) less 
the cost of reinsurance (14%). Inspecting Table 7 once more, we can 
see for insurers Charlie, Delta, and Echo, the average premium rate 
of the portfolio exceeds the reinsurance cost. Therefore, the ceding 
commission for these insurers would be positive. However, for insur- 
ers Alpha and Beta, their weighted average premium rate is below 

that charge for reinsurance, implying a negative ceding commission.
If Alpha or Beta believe that their assumed distributions are correct,
this would not be rational behaviour. For the other insurers, purchas- 
ing reinsurance would reduce profits for expected losses . However,
the value of reinsurance will become apparent once we consider the 
effect of capital. 

Having established the target pricing for each insurer ex ante , we 
now consider simulating ex post losses. The profit equation for the 
insurer, may be written: 

$ Profit (L) = $ Premium Written × (1 − ρ) 

+ $( Exposure × ρ × % Ceding Commission) 

− L, (23) 

L = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

Loss (1 − ρ) if D = 0 
Loss if D > 0 , Loss ≤ D 

D + (1 − ρ)( Loss − D ) if D > 0 , Loss > D 

, (24) 

where ρ is the fraction of the portfolio ceded to the reinsurer and 
D is a deductible. We restrict our analysis in this simulation solely 
to policies without deductibles, but provide for their inclusion for 
completeness. 

Simulation procedure 
For each insurance portfolio in Table 5 we simulate losses via the 
following procedure. 
14 Clark (2014) [ 70 ] is a highly approachable introducing to reinsurance 
pricing. 
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Figure 4. Reinsurer loss distributions. 

Table 4. Illustrative premium rates for target loss ratios under different distributions at cover fixed at $500mn. 

Premium rates 

Loss ratios → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Distributions A 0.18 0.09 0.06 0.04 0.04 0.03 0.03 0.02 0.02 
B 0.36 0.18 0.12 0.09 0.07 0.06 0.05 0.04 0.04 
C 0.54 0.27 0.18 0.13 0.11 0.09 0.08 0.07 0.06 
D 0.72 0.36 0.24 0.18 0.14 0.12 0.1 0.09 0.08 
E 0.9 0.45 0.3 0.22 0.18 0.15 0.13 0.11 0.1 
F 1.08 0.54 0.36 0.27 0.22 0.18 0.15 0.13 0.12 

Table 5. Insurance contracts in the market. 

Limit μL σL 

Frequency 
( πL ) 

Expected Loss 
( πL .μL ) 

Premium (Exp. 
loss/limit) (%) 

$500k $200k $125k 0 .1 $20k 4 
$1mn $400k $350k 0 .15 $60k 6 
$2mn $1mn $1mn 0 .16 $160k 8 
$5mn $2.5mn $1.25mn 0 .2 $500k 10 
$10mn $4mn $4mn 0 .3 $1.2mn 12 

Table 6. Insurance policies written by insurance panel. 

Policy count grouped by policy limit 

Insurer $500k $1mn $2mn $5mn $10mn Total exposure (mn) Technical premium (mn) 

Alpha 200 0 0 0 0 $100 $4 .0 
Beta 100 50 0 0 0 $100 $5 .0 
Charlie 50 20 15 5 0 $100 $7 .1 
Delta 30 0 5 5 5 $100 $9 .9 
Echo 0 0 0 0 10 $100 $12 .0 
Total 380 70 20 10 15 $500 $38 .0 
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(1) Set severity distribution for each contract as in Table 5 . 
(2) Set frequency distribution as per Table 5 —Poisson ∼ πL .k

where k is the number of each contract contained in the port-
folio. 

(3) Randomly sample the frequency of expected losses for each
contract in the portfolio, to generate a number of losses for
each contract , N loss . 

(4) Randomly sample from the severity distribution for each con-
tract N times, sum and record the losses. 
loss 

 

(5) Run the above process 100 000 times. 

The results of the simulations are presented in Table 8 (histograms
f the generated loss distributions are provided in Fig. A1 ). The table
ontains the premium income for each insurer as previously deter-
ined, a capital level assumed to be held by the insurer equal to the

verage baseline loss in the simulation and reserves defined, 

Reserves = Premium Written + Capital . (25)
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Figure 5. Loading versus target loss ratio for different insurance portfolios. 

Table 7. Calculating premium loading rates for insurance companies based on simulated losses. The loading rate is expressed in 

percentage points. 

Insurer Technical Target loss Exposure (mn) Technical Loading (pp) Weighted 
Premium (mn) Ratio (%) Premium rate (%) Average 

Charged 
Premium rate (%) 

Alpha $4 .0 50 $100 4 .0 4 .0 8 .0 
Beta $5 .0 50 $100 5 .0 5 .0 10 .0 
Charlie $7 .1 50 $100 7 .1 7 .1 14 .2 
Delta $9 .9 50 $100 9 .9 9 .9 19 .8 
Echo $12 .0 50 $100 12 .0 12 .0 24 .0 

Table 8. Simulated losses. 

Assets Losses 

Insurer Premium Capital (mn) Reserves (mn) Simulation Simulation 95% 97.5% 

Income (mn) Baseline average (mn) Baseline SD (mn) Stress test (mn) Stress test (mn) 

Alpha $8 .0 $3 .6 $11.6 $3 .6 $0.8 $8 .2 $9 .4 
Beta $10 .0 $4 .4 $14.4 $4 .4 $1.3 $13 .6 $17 .4 
Charlie $14 .2 $6 .4 $20.6 $6 .4 $3.0 $28 .0 $36 .6 
Delta $19 .8 $8 .9 $28.7 $8 .9 $6.2 $51 .2 $64 .9 
Echo $24 .0 $10 .8 $34.8 $10 .8 $7.9 $53 .1 $77 .0 

 

Along with the simulated loss values, we also calculate loss val- 
ues for a ‘stress test’ type scenario, calculating the maximum loss 
in 95% and 97.5% of cases 15 . This is done via using the quantile 
function of Distributions.jl to calculate the respective frequency and 
severity at F −1 (0.95) and F −1 (0.975). The required values are then 
readily obtained. With these values obtained, we may now proceed 
to consider the interaction between reinsurance and the insurance 
portfolios. 
15 These loss probabilities were selected rather than the Solvency 2 limit of 
99.5% as it is assumed that an insurance company has loss tolerance of 
less than the formal Solvency 2 regulatory buffer. Insurers typically set 
internal risk appetite, via a process documented in, e.g. Lloyd’s standard 
MR5 [ 71 ]. 
Considering the effect of capital 
Suppose, as per Table 8 that the insurer has a capital buffer, which 
initially, is equal to the simulated average losses on its portfolio. We 
now examine the optimal reinsurance fraction which means the in- 
surer would remain solvent in the event of losses of a specified magni- 
tude. We consider ρ values for both the 95% and 97.5% stress tests.
This means calculating the value of ρ which would set $Profit( L ) = 

−K (Equation 23 ). The required expression is 

ρ̄( L stress ) = 

( L stress − $Premium Written − K) 
L stress − $Premium Written + ( $Exposure × %CC ) 

, (26) 

where % C C is the percentage ceding commission. 
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Figure 6. Insurer profit with varying quota share proportions ( ρ). Note that the profit ( y ) axes in the charts are scaled differently for each subplot to allow the 

key features of the plots to be easily identified. 
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The solvency threshold for the insurer is Reserves = L stress . If Re-
erves > L stress then we set ρ̄ = 0 as the insurer does not need reinsur-
nce at this stress test loss level as it would remain solvent without
t. For insurer Alpha, reserves exceed the stress test losses at both
hresholds, while for Beta, reserves exceed only the 95% stress test
oss. Figure 6 and Table 9 show the complete results of the anal-
sis. Starting with Table 9 , it appears that neither Alpha nor Beta
hould buy reinsurance. In the 97.5% stress-test, Beta is insolvent
ven with reinsurance. This suggests that Beta would need to imple-
ent a higher loading than that initially calculated to pass the stress

est. For Charlie, Delta, and Echo, there is benefit in purchasing rein-
urance as a quota share policy, though the optimal fractions appear
airly high. Consequently, the insurers might decide to buy less than
he optimum but set capital higher . However , this then means that
he market is not efficient. Table 9 also shows the profit each insurer
ould receive if ex post losses equal the simulated baseline with no
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Table 9. Reinsurance ceding fractions that maintain insurer solvency at different stress-test values. 

Profit if losses = simulation baseline ($mn) 

Insurer Ceding ρ̄0 . 95 ρ̄0 . 975 ρ = 0 ρ = ρ̄0 . 95 ρ = ρ̄0 . 975 

Commission (%) 

Alpha − 6 .0 0.00 0.00 4 .4 4 .4 4 .4 
Beta − 4 .0 0.00 0.87 5 .6 5 .6 − 2 .7 
Charlie 0 .2 0.53 0.71 7 .8 3 .8 2 .4 
Delta 5 .8 0.60 0.71 10 .9 7 .8 7 .3 
Echo 10 .0 0.47 0.67 13 .3 11 .7 11 .1 

 

 

 

 

 

reinsurance; with reinsurance at the ρ0.95 fraction; and with rein- 
surance at the ρ0.975 fraction. For Charlie, given that its weighted 
average premium rate is close to the reinsurer objective, it receives a 
scant ceding commission. Consequently, there is an opportunity cost 
of $4.0–5.2mn of purchasing quota share at the optimum relative to 
baseline simulated profit of $7.8mn. In a market where information is 
shared, there should not be an opportunity cost. For Delta and Echo,
the purchase of quota share appears more attractive because of the 
more generous ceding commission. These are deliberately extreme 
examples, but in practice suggest that bargaining may occur between 
different insurers and reinsurers over the ceding commission, which 
introduces inefficiency into the market. 

Figure 6 presents a more detailed picture of the simulations that 
yield the optimal ρ. For each insurer portfolio, we plot the insurer 
profit (Equation 23 ) as a function of losses for values of ρ between 0 
and 1. The capital held (i.e. the average simulated loss as already dis- 
cussed) is represented as a horizontal line and the average simulated 
losses for the 95% and 97.5% stress tests are represented as vertical 
lines. The intersection of the average simulated loss and the stress test 
allows for the optimal ρ to be read from the graphs. In the case of 
Alpha, it can be seen that on the ρ = 0 profit line, at the two stress 
test loss values (Points A and B), the profit exceeds the capital held.
For reinsurance to be worth purchasing, the ρ = 0 profit line must be 
less than the capital horizontal lines at the stress test losses. Taking 
Echo as an example, with stress test loss of 95%, we can see that the 
horizontal capital and vertical loss lines intersect between the profit 
lines for ρ = 0.4 and ρ = 0.6 (Point C) As may be verified from Ta- 
ble 9 , the reinsurance fraction for this case is 0.47. The comparable 
intersection for the 97.5% stress test (Point D) is at ρ = 0.67. 

Excess of loss 
Having considered the quota share case, it is worth considering the 
case of excess-of-loss insurance as an alternative to quota share for 
the insurers. Rather than using the capital buffer approach, we con- 
sider a simpler objective: that the insurer rather than holding a cap- 
ital buffer buys insurance from a reinsurer to cover losses in excess 
of its cash premium income up to the limit of the 97.5% stress test 
loss value. To calculate the required parameters, we can use the sim- 
ulated baseline losses already calculated in Simulation procedure .
From these, we compute the number of instances of losses in the vec- 
tor of generated losses that exceed the cash premium income but are 
less than the 97.5% stress test loss value. 

The results are contained in Table 10 . The portfolios of Alpha 
and Beta generate expected losses well below the level of cash pre- 
mium income (see Appendix 1) and accordingly there is little benefit 
in excess-of-loss insurance. For Charlie, Delta, and Echo, it is interest- 
ing to note that the combined technical premium is $7mn. Recall that 
in Simulation 2: reinsurance supply and price , Distribution A in Ta- 
ble 4 gives the loss ratios for the reinsurer versus quoted premium for 
an expected $10mn of losses. If we assume that the reinsurer requires 
a loss ratio of 0.5 or better, then the minimum premium it will charge 
is 4%. For the insurance buyers, only for Echo is buying excess-of- 
loss reinsurance cheaper than buying quota share. Consequently, for 
each insurance portfolio, there is a different optimal reinsurance con- 
tract from the perspective of the insurance company seeking reinsur- 
ance. 

The excess-of-loss premia calculated in Table 10 are computed 
using the individual joint distributions of frequency and severity for 
each of the five insurance companies. These are known only to each of 
those insurance companies alone and are not visible to the reinsurer.
Consequently, there are information asymmetries between the insur- 
ers seeking reinsurance and the reinsurer. Insurers Delta and Echo 
know that the fair insurance premium rate for the excess-of-loss con- 
tracts specified in Table 10 are 5.9% and 6.6%, respectively. How- 
ever, the reinsurer would offer these contracts at 4% premium rate 
based on its own distribution. Consequently, the insurers can, under 
these assumptions, buy reinsurance cheaper than its fair cost based 
on their avantageous knowledge of the ‘true’ distribution rather than 
the reinsurer’s distribution which assumes simple log-normal distri- 
bution of a set of risks at a particular expected loss value. This illus- 
trates how inefficiency and therefore financial imbalances between 
insurance and reinsurance may emerge as a consequence of different 
expected loss distributions, unlike in Table 2 where the reinsurer and 
insurer(s) had the same distribution of expected losses. 

Simulation 3: insurance buyers of variable risk 

We now consider a simulation in which buyers have heterogeneous 
preferences and risk tolerance. The interactions of the real insurance 
market are hard to model as insurance customers interact with in- 
surance companies via insurance brokers who act as an intermedi- 
ary. The flow of business is directed therefore partly by relationships 
(and so is not efficient in a traditional economic sense). However, it 
is possible to construct some simulations of insurance demand based 
on different characteristics and illustrate the utility demand model 
and how this may affect reinsurance pricing. 

The insurance buyer faces a single utility maximization decision: 
for a given premium rate, how much cover does the agent with to 
purchase. This could be formalized in terms of expected utility (Equa- 
tion 4 ) via variation of the risk aversion parameter, α, but this is not 
necessary for the example presented here. The insurance company 
must choose premium rates that it believes will not excessively de- 
plete its capital for a certain level of risks, or plan to cede premium 

to reinsurance to cover that risk as demonstrated in the previous sec- 
tion. We will retain the contract limit structure from Table 5 for this 
analysis, meaning that insurance buyers choose one of the five con- 
tracts. 

We will now assume that the more coverage the buyer takes,
the more sophisticated its assessment of the risks are. This places a 
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Table 10. Excess of loss pricing example. 

Insurer XL reinsurance Probability of Technical XL QS Reinsurance 

Coverage 
Loss > cash 

premium (%) 
Reinsurance 

premium (mn) 
Premium at ρ̄0 . 975 

(mn) 

Alpha $1 .4mn xs $8.0mn 0.0 $0.0 $0.0 
Beta $7 .4mn xs $10.0mn 0.0 $0.0 $8.3 
Charlie $22 .4mn xs $14.2mn 1.6 $0.4 $5.4 
Delta $45 .1mn xs $19.8mn 5.9 $2.7 $3.6 
Echo $53 .0mn xs $24.0mn 6.6 $3.5 $2.2 

Table 11. Insurance buyer premium ceilings. 

Highest premium rate at which a buyer takes full coverage Maximum number of customers 

Limit Low risk (%) Medium risk (%) High risk (%) Low risk Medium risk High risk 

$500k 14 20 26 46 46 46 
$1mn 13 18 23 32 32 32 
$2mn 12 16 20 16 16 16 
$5mn 11 14 17 8 8 8 
$10mn 10 12 14 4 4 4 
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onstraint on the amount of loading the insurer can apply to the
igher limit contracts. We will, as previously, fix the total potential
over available in the market at $500mn and consider how this may
e allocated among buyers. However, as will be illustrated, the risks
ssociated with some contracts make them commercially unviable
ven if theoretically priceable. Table 11 sets out some arbitrary pre-
ia based on the subjective beliefs of the respective buyers, and the
aximum number of contracts available in the market based on the
verall capacity of $500mn. We wish to stress that these numbers are
stablished purely for model convenience and to illustrate the further
ifficulties to establishing efficiency under heterogeneous buyer be-

iefs. The assumption of market size is required to price potential
einsurance on insurer policies. 

For this analysis, we set the expected severity loss mean equal to
 quarter of the policy limit and the standard deviation to half the
ean. Unlike in the previous section, we will allow the distribution
f expected losses to vary with different clients and have a mixture
f buyers considered low-, medium-, and high-risk with different dis-
ributions accordingly. We assume that the variation in risk charac-
eristics of the three buyer groups is expressed through variation in
requency. 

We assume that reinsurers consider the risks involved for the three
ifferent risk categories and apply distributions A, C, and E (Table 3 )
o low, medium and high risks effectively, and target loss ratios of 0.3,
.5, and 0.7, respectively. This means that the reinsurance charges for
he portfolios are 6%, 11%, and 13%. 

We now consider the distributions associated with the different
ontracts. Table 12 shows the severity and frequency distributions
or each policy. We have fixed the severity on each contract and as-
umed that riskier clients have a higher expected frequency of claims.
his assumption could, of course, be varied further, but this approach
uffices for the purposes of this example. From this, we simulate the
osses with 100 000 runs and derive the expected loss for the entire
et of possible contracts. This is shown in Table 13 along with the
xpected average loss per contract derived using the assumptions for
aximum number of customers outlined in Table 11 . 

With this calculated, we can then derive the technical premium for
ach contract, which is shown in Table 14 . Comparing with Table 11 ,
e can see that for the $5mn and $10mn limits, the high risk technical
remium is higher than what customers are willing to pay. It may
e possible in this case for the insurer to instigate a deductible and
educe the premium. Otherwise, margin is very limited for medium-
isk $5mn and $10mn limits, which might also motivate introducing
 deductible. 

We now consider the capital requirements associated with the in-
urance policies. Table 15 shows the expected losses for F −1 (0.995)
nd F −1 (0.5) for frequency and severity respectively for both the
hole set of contracts and also per contract. Each insurer must de-

ide how to allocate its available capital and how much reinsurance
o purchase. Rather than calculating sample portfolios, we will sim-
ly calculate the reinsurance fraction that is optimal based on Equa-
ion ( 23 ). 

Based on the stress test loss values, and assuming that the insurer
riting each contract holds capital equal to the expected value of

osses for the contract (Table 13 ), we can then derive the optimal
einsurance fraction for each contract (Table 16 ). As in the prior sec-
ion (Table 9 ), this is calculated by calculating the reinsurance frac-
ion that sets the profit to the insurer equal to −K , i.e. at the level
f loss given in the stress test, the insurer breaks even if it holds this
roportion of reinsurance. As the buyers of the smaller contracts are
ess knowledgeable and will accept a higher premium, the reinsur-
nce fraction is lower as the insurer writes more premium. However,
he reinsurance fraction increases from an average of 20% for the
500k limit contract to as high as 64% for the medium-risk $10mn
imit contract. It is clear from this analysis that while it is possible
o achieve risk transfer between insurance buyer, insurance company
nd reinsurer, for a simulated market, achieving convergence of dis-
ributions is extremely unlikely as each party is incentivized to max-
mize their profit rather than target efficiency. 

We have stopped short of simulating the allocation of policies to
ndividual insurers as to model competitive market dynamics under
ncertainty with heterogeneous beliefs is a complex problem that in

tself might fill multiple papers. However, it is hoped that the simula-
ion presented illustrates the additional dynamics that heterogeneous
uyer beliefs brings to the challenges of modelling cyber-insurance
nd reinsurance. To place the simulation results in context with the
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Table 12. Distribution specification for insurance contracts offered to buyers. 

Severity Frequency, Poisson( λ) 

Limit μL σL Distribution Low risk Medium risk High risk 

$500k $125k $62.5k LogNormal(11.6,0.22) 4.6 11.5 23 
$1mn $250k $125k LogNormal(12.3,0.22) 6.4 12.8 19.2 
$2mn $500k $250k LogNormal(13.0,0.22) 4 8 12 
$5mn $1.25mn $625k LogNormal(13.9,0.22 2 4 6 
$10mn $2.5mn $1.25mn LogNormal(14.6,0.22) 1 2 3 

Table 13. Expected losses for policies. 

Expected Loss (Total, $mn) Expected loss per contract ($k) 

Limit Low risk Medium risk High risk Low risk Medium risk High risk 

$500k 0.53 1.32 2.63 11 29 57 
$1mn 1.47 2.93 4.40 46 92 138 
$2mn 1.84 3.67 5.50 115 229 344 
$5mn 2.28 4.59 6.89 285 574 861 
$10mn 2.30 4.59 6.86 574 1,147 1,716 

Table 14. Technical premium for insurance contracts. 

Technical premium (%) 

Limit Low risk Medium risk High risk 

$500k 2.3 5.7 11.5 
$1mn 4.6 9.2 13.8 
$2mn 5.7 11.5 17.2 
$5mn 5.7 11.5 17.2 
$10mn 5.7 11.5 17.2 

 

 

 

 

 

 

 

 

16 This has been widely reported in the trade press—see, e.g. [ 73 ]. 
US cyber-insurance market, in 2020, according to the NAIC [ 72 ],
there were approximately 4 million cyber-insurance policies written 
in the US market, with the top 20 insurers taking 68% market share.
The report for 2021 does not provide a policy number, but notes that 
almost 50% of cyber-insurance premia were ceded. 

Discussion 

The simulations show the difficulty of achieving economic efficiency 
in an artificial cyber-insurance market even using relatively standard 
distributions and contract structures. However, as has been stressed,
just because a market is not efficient does not mean that transac- 
tions cannot take place. We now consider some of the further infor- 
mational barriers to facilitating smooth transfer of cyber-risk. Issues 
of data transparency, incident measurement, and reporting—making 
relevant data publicly available—are particularly crucial in enabling 
agents to make informed pricing decisions. 

Information asymmetry 

By and large insurance and reinsurance companies operate in envi- 
ronments where high quality precision signals about loss risks exist.
For example, in the case of natural catastrophes, their frequencies 
are well known and established over many periods. Further, there 
are enough tail events to help construct reasonable approximations 
of extremes. When it comes to events regarding human interactions,
such as crime, illness, death, or accidents, these are reported by statute 
to the relevant central authorities. This data is publicly available. In 
both these cases agents at all levels share the public signals and can 
condition their private expectations on good quality evidence. Of 
course, there may be variability in the accuracy of private expecta- 
tions based on individual interpretation of the data or circumstances.
This set-up allows the buyers of insurance the calculate their expected 
loss in a well informed manner and the insurance companies, based 
on the public information, can quote a premium. In turn the reinsur- 
ers share the same beliefs as no further information is available to 
them regarding the likelihood of the different states of nature. 

When it comes to cyber-risk and cyber-insurance, the state of data 
curation and sharing is far more nascent than for other insurance 
perils and it is reasonable to argue that there is no high quality public 
signal to inform all agents’ priors. In the regulation of the aviation 
industry, it is standard to require reporting of ‘near misses’ so that 
lessons can be learnt and procedures updated to lessen the risk of 
future accidents. It is possible that this might be addressed by vendor 
telemetry—an insurer might have a series of recommended cyber- 
security solution providers that their clients could sign up for as part 
of their insurance package who would share data with the insurer.
This raises potential issues of confidentiality. 

Cyber-insurer loss experience 

The United States National Association of Insurance Commission- 
ers publishes an annual report on the cyber-insurance market de- 
rived from its Property/Casuality Annual Statement [ 72 ]. Table 17 
presents this information for the four years currently available. In 
2018 and 2019, the data was presented separately for standalone and 
package policies but in 2020 and 2021 was presented for combined 
policies. We have adjusted for this to present the data on a consistent 
basis. 

It is notable that the ransomware epidemic from 2020 to 2021 
had a marked effect on experienced loss ratios for some insurers 16 .
However, there are pockets of differentiation. For example, the Hart- 
ford Insurance Company specializes in insurance for smaller compa- 
nies, creating a fairly well diversified portfolio of insurance contracts 
where the holders are unlikely to fall victim to sophisticated, targeted 
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Table 15. Stress test losses for policies, with frequency set at F −1 (0.995), severity at F −1 (0.5). 

Stress test loss (total, $mn) Stress test loss per contract ($k) 

Limit Low risk Medium risk High risk Low risk Medium risk High risk 

$500k 1 .2 2 .3 4 .0 27 51 87 
$1mn 3 .1 5 .1 6 .9 98 161 217 
$2mn 4 .5 7 .2 9 .8 280 447 615 
$5mn 6 .7 11 .2 14 .5 839 1398 1817 
$10mn 8 .9 13 .4 17 .9 2236 3354 4472 

Table 16. Optimal reinsurance purchase fraction for each contract 

implied by stress test values. 

Optimal reinsurance fraction for each contract 

Limit Low risk Medium risk High risk 

$500k 0.23 0.23 0.20 
$1mn 0.31 0.30 0.25 
$2mn 0.41 0.40 0.36 
$5mn 0.51 0.53 0.48 
$10mn 0.63 0.64 0.60 

r  

c  

a  

i  

t  

r  

y  

a  

N  

w  

p  

l  

d  

U  

r  

i

 

 

s  

e  

c  

o  

T  

a  

T  

b  

(

C
C  

s  

p  

1

c  

t
 

c  

a  

t  

c  

t  

s  

t  

t
 

f  

t  

t  

r  

t  

s
 

m  

s  

m  

p

L

W  

f  

e  

s  

r  

m  

s  

g  

n  

i  

o  

t  

t  

b  

t  

t  

t  

a  

a  

u

 

ansomware attacks given the potential revenue available. For these
ompanies, basic defences and security software should help mitigate
gainst losses. Figure 7 plots the losses experienced in the underwrit-
ng year versus the premium written and a linear trend line with in-
ercept fixed at 0. The slope of the fitted trend line is then the loss
atio. The average loss ratio remained fairly stable across the two
ears, but it is striking that less than 30% of premia received was, on
verage, retained by the underwriting insurer. The aforementioned
AIC report states that some 50% of premia for cyber-insurance
as ceded to the reinsurance market. There is some evidence to sup-
ort the premise of a disconnect between expected and experienced

osses in cyber-insurance pricing. Woods et al. (2021) [ 62 ] develop a
istribution of cyber-losses based on insurance company filings in the
SA. They note that their model significantly underpredicts losses in

elation to ex post losses reported in other literature. The underpric-
ng of premia implies that either 

� Insurers believe they can diversify loss risk. 
� Customers were not willing to pay the technical premium and

insurers are pursuing a ‘loss-leader’ strategy. 

The entry of Arch Insurance also merits comment. Arch in-
urance provides capacity 17 to a relatively new managing gen-
ral agent, Coalition Inc., providing ‘active cyber-insurance’. Active
yber-insurance is a relatively new product, which merges the roles
f an outsourced security provider and a traditional cyber-insurer.
his reduces some of the risks of asymmetric information transfer
ssociated with cyber-insurance from the perspective of the insurer.
he trade-off between cyber-insurance and security investment has
een modelled by Mazzoccoli and Naldi (2020) [ 74 ] and Skeoch
2022) [ 75 ]. 

omparison to simulated results 
omparing the experienced losses by insurance companies, our as-

umption regarding the adoption by reinsurance firms of their own
rivate distributions for both severity and frequency of successful
7 https:// www.coalitioninc.com/ en-ca/ announcements/ Arch-Insurance- 
Backs- Coalition- With- Long- term- Capacity- Across- Cyber- Insurance- 
Programs 1
yber-incidents and subsequent losses at this stage of development of
his nascent market seems well-grounded on the available evidence. 

The evolution of proportional losses across 15 major insurance
ompanies over the period 2018–2021 presented in Table 17 reveals
 somewhat unstable path. Both the average loss and its distribu-
ion exhibits both wide variability and an increasing trend. Specifi-
ally in 2018, average losses were 25.3% of the premia collected and
his measure has monotonically increased to 68.3% by 2021. At the
ame time the maximum losses have more than doubled from 57%
o 130% by 2021. The cross-sectional standard deviations exhibit
he same monotonic trended pattern. 

Attempting to fit a log-normal distribution over the whole period
or the companies in the sample using the same methodology for fit-
ing such distributions in the simulations shows that the kernel 18 of
he empirical distribution deviates significantly from the normal and
eveals slight bimodality (Fig. 8 ). It is also notable that the fitted dis-
ributions underestimates the tail of large losses, which is arguably a
ignificant consideration for reinsurance companies. 

Faced with such movements of the cross sectional distributions,
eaningful aggregation of the losses experienced by individual in-

urance companies does not seem effective. In the light of this (ad-
ittedly cursory) review of the statistical evidence presented in this
aper, Assumption 4 in Introducing reinsurance seems justified. 

oss transparency 

e consider what happens if agents only selectively claim on losses
rom an insurer. In an insurance analysis, it is usually assumed that
very agent is aware of the incidents they experience. This is a rea-
onable assumption for some categories of cyber-incidents, such as
ansomware, although other cyber-incidents such as data breaches
ight not be detected until some time after the event. Agents report

ome incidents to an insurer and thus a claim is made; some incidents
o undisclosed (in insurance, this is known as IBNR—incurred but
ot reported). More formally, at time t , the agent may be aware of the
ndicent and its damage so the state of the world in which the incident
ccurs, s is known to them. The agent might inform the insurer about
he state so the insurance knowledge of the state s is conditional on
he revelation of the agent. Now, the insurer knows that their distri-
ution is not the objective one but only a partial revelation due to
he agents selectively choosing to report losses. The insurer then tries
o approximate the objective distribution but it will be with error. In
he event that reinsurers know that different insurers have different
pproximations of the true distribution, they will use some kind of
veraging across these approximations to quote reinsurance premi-
ms. The results are: 

� No insurer is offered a fair premium given their approximation
of the true distribution. 
8 See Epanechnikov (1969) [ 76 ]. 

https://www.coalitioninc.com/en-ca/announcements/Arch-Insurance-Backs-Coalition-With-Long-term-Capacity-Across-Cyber-Insurance-Programs
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Table 17. Cyber-insurer loss experience in the US market (†denotes weighted average by DWP). 

Direct written premium ($mn) Loss ratio 

Firm 2018 2019 2020 2021 2018† (%) 2019† (%) 2020 (%) 2021 (%) 

CHUBB LTD GRP 320 .73 355 .28 404 .14 473 .07 28 .6 27 .7 61 .0 76 .9 
F AIRF AX FIN GRP 38 .15 65 .01 108 .69 436 .45 23 .4 51 .6 55 .7 51 .9 
AXA INS GRP 255 .87 229 .68 293 .03 421 .01 57 .2 65 .7 98 .2 86 .5 
TOKIO MARINE HOLDINGS 44 .59 46 .91 78 .16 249 .79 30 .6 17 .1 51 .1 43 .8 
AMERICAN INTL GRP 232 .31 226 .20 228 .42 240 .61 36 .1 55 .4 100 .6 130 .6 
TRAVELERS GRP 146 .23 178 .53 206 .82 232 .28 22 .4 32 .1 85 .5 72 .7 
BEAZLEY INS CO INC 110 .95 150 .94 177 .75 200 .88 7 .8 22 .0 47 .9 38 .7 
CNA INS GRP 83 .36 94 .72 119 .61 181 .38 26 .9 33 .2 105 .7 87 .5 
ARCH INS GRP – – – 171 .94 – – – 9 .2 
AXIS CAPITAL GRP 76 .00 97 .31 133 .55 159 .06 7 .2 18 .5 46 .2 105 .2 
ZURICH INS GRP 43 .32 43 .67 64 .43 151 .87 18 .2 86 .9 40 .4 76 .9 
LIBERTY MUT GRP 66 .50 68 .38 41 .86 138 .22 38 .9 23 .3 30 .0 95 .2 
SOMPO GRP 34 .05 49 .71 72 .59 133 .52 56 .7 29 .3 114 .1 54 .3 
BCS INS GRP 69 .50 76 .06 86 .58 132 .04 10 .4 32 .9 59 .1 80 .1 
HARTFORD FIRE 7 CAS GRP 39 .70 49 .74 102 .86 123 .16 16 .4 31 .6 25 .4 16 .3 

Source: NAIC, Researcher calculations. 

Figure 7. US cyber-insurer losses vs premium written. 

 

� No agent is offered a fair premium as the insurance offer is based 
on a distribution different to their own. 

� Objectively measured data is absent at all levels because reporting 
is a choice. 

Consistency of reference 

There is a significant problem with the standard actuarial modelling 
cycle approach to cyber-insurance: the evolution of systems over 
time, which is quite unique in its complexity in relation to other per- 
ils. Calibration of models using events such as WannaCry have poor 
future predictive power as the security vulnerabilities it exploited 
have been patched, Windows XP is less widespread than it was and 
the operating systems that replaced it have better, though of course 
not perfect, security by design. In economics, this can be couched in 
clients’ Bayesian updating of their distributions; they do not and can- 
not observe incidents of other clients (other than indirectly via media 
reports) so there is no need to converge to a stationary distribution 
at the client level. The consequence of this is that the insurers and 
reinsurers may have a better understanding of the fair price of risk,
but buyers do not share the same concern and thus are not willing to 
pay the demanded premium for the insurance. 

Supply and demand 

In the insurance industry, it is common to describe the state of the 
market as ‘hard’ or ‘soft’. In a soft market, supply exceeds demand 
placing downward pressure on premium, whereas in a hard market 
the converse is true. Often the experience of losses in a particular 
class of business will result in a market hardening. This has impor- 
tant implications for the pricing of cyber-insurance by a vendor. In a 
soft market, the insurer must charge the lowest premium it can ac- 
tuarially justify to build market share. In a hard market, the insurer 
should charge the highest realistic premium possible. If the market 
were efficient, it would converge to some form of equilibrium but if 
not it may swing between financial imbalances. There is evidence that 
in the early stages of the cyber-insurance industry, some insurers op- 
erated a very experimental approach to pricing. Woods (2023) [ 77 ] 
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Figure 8. Epanechnikov kernel versus fitted log-normal distribution for NAIC reported cyber-insurance loss ratios, 2018–2021. 
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rovides an account of one large US insurer, AIG, whose Chief Oper-
ting Officer admitted that their early cyber-insurance models were a
complete guess’. The same insurer then suffered loss ratios of 100%
nd 130% in 2020 and 2021, respectively (Table 17 ), suggesting that
ven if refined and updated, the pricing models may have underesti-
ated the claim frequency or severity. 

urther work 

e have considered simulations in which losses are uncorrelated. An
nteresting next step would be to consider the correlation of losses
nd implement the modeling strategy presented in this paper using
ore complex loss-generating functions, such as those reviewed in
ctuarial models , than the simple joint distributions of severity and

requency used in this paper. It would also be instructive to compare
he results of simulations of distributions proposed by Eling et al.
2019) [ 32 ] and Woods et al. (2021) [ 62 ], with insurer loss data.
laims data is deeply confidential to insurance companies, however,

o the results of such analysis would unlikely be able to be widely
isseminated unless extensively anonymized. 

In the simulations, we focused on the supply dynamics of in-
urance and in particular the interaction between insurers and rein-
urers. The model provides for consideration of buyer preferences,
hich at this stage we have explored only briefly in the first simu-

ation to illustrate how buyer utility can affect coverage. A further
iece of work would be to explore the price sensitivity of buyers of

nsurance coverage and how these preferences propagate through the
nformation chain to reinsurers. The model simulations considered
nly a small number of market participants; with a more complex
et of interactions, it may be possible to attempt to determine the
ptimal market size by introducing appropriate constraints and in-
entives. A further addition might be to consider multiple reinsurers
ith different risk tolerances; however, this would add considerable

omplexity to the model and is outside the scope of the framework
ntroduced in this paper. 

onclusions 

his paper has developed an artificial yet realistically structured
odel of the cyber-insurance market considering all three levels of

gent interactions. The model incorporates the demand choices of
he consumers/buyers of cyber-insurance, their suppliers—insurance
ompanies offering contracts—and reinsurance companies providing
dditional underwriting capacity. 

The extent to which an insurance market facilitates smooth risk
ransfer is linked to the sharing of information by participants re-
arding the distribution of losses. We argue that this condition is
ery unlikely to hold in the cyber-insurance market. Disagreements
n loss expectations means that cyber-insurance contact pricing will
e considered inefficient at both the retail and wholesale levels, lead-
ng to lower societal benefit. The purpose of this paper was to quan-
ify such inefficiency within the confines of a three-tier market under
iscellaneous types of disagreements in loss expectations among the
articipants at each tier. 

To establish a benchmark to gauge the extent of inefficiency, we
ave simulated a simple market where all agents share a distribution
f losses based on two loss frequencies. From this simulation, we ob-
ained the ‘efficient’ measures of reinsurance premium and the pro-
ortional participation of reinsurers. We found that simulated loss
eduction to the insurers is almost identical to the cost of reinsur-
nce (bar small statistical errors), as expected. This case represents
he economically efficient market outcome. 

Maintaining all the behavioural parameters from the first simula-
ion, we then proceeded to compute expected losses and reinsurance
remiums based on diverse distributions held by insurance compa-
ies and reinsurers. Both insurers and reinsurers independently price
remiums to meet target loss ratios based on distinct and subjective
istributions. Under conditions where losses are close to the modal
imulated value, insurers are typically not incentivized to buy rein-
urance. However, when considering relatively extreme losses under
 ‘stress test’ type scenario, the value of reinsurance emerges to some
nsurers whose distributions are relatively heavy tailed in compari-
on to others. For such insurers, the upfront cost of such reinsurance
s justified by the avoidance of ruin under high loss scenarios. 

Even within the confines of this simple example, the divergence
n distributions, expectations, and objectives demonstrates that effi-
ient pricing is hard to achieve. It should be noted that whilst there
re specialists in cyber-insurance operating within the reinsurance
arket, cyber-insurance itself competes with other lines of insurance

or allocation of specialty reinsurance capital. Based on this, we used
 uniform cost of reinsurance in the second of our two simulations.
his is the outcome of the reinsurer holding a private loss distribu-
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tion. This condition may reduce the reinsurance capital allocated to 
cyber-insurance. It is notable that, according to industry sources [ 2 ],
there are only a limited range of nonproportional reinsurance struc- 
tures available to the cyber-insurance market; in other words, the vast 
majority of written reinsurance is quota share. This implies signifi- 
cant uncertainty among tail risks by reinsurers at the present time. 

Our findings suggest that the cyber-insurance market will con- 
tinue to face potential financial imbalances. That is, it will be highly 
profitable for some participants and costly for others. This is al- 
ready evident in data on cyber-insurer loss data (Table 17 ). There 
has been considerable progress in the academic literature on theoret- 
ical modelling of cyber-losses and on empirical analysis. However,
access to reliable and transparent data remains a problem for re- 
searchers as insurance claims data is confidential and highly guarded.
Kasper (2019) [ 78 ] has developed a model for evaluating the feasi- 
bility of cyber-catastrophe bonds, while more recently Braun et al.
(2023) [ 79 ] have noted that an insurance-linked securities market 
to support cyber-insurance may struggle to develop without bet- 
ter cyber-modelling. It is likely that this will be a high priority for 
the market, based on an extensive report by the Geneva Associa- 
tion (2023) [ 7 ]. There have been some efforts in the literature to 
move towards improving cyber-modelling specifically from an insur- 
ance perspective, such as Woods et al. (2021) [ 62 ] and Kasper and 
Grossklags (2022) [ 80 ]. As the literature develops, the model intro- 
duced in this paper may provide a convenient framework for evalu- 
ating more intricate distributions than the standard ones used for the 
simulations in this paper. Without a means of accessing reliable data 
on cyber-losses, insurance buyers will have to continue to form highly 
subjective probability distributions. In a recent paper, Bajoori et al.
(2022) [ 81 ] argue for the creation of an official registry of cyber- 
security experts with a duty to report, which has also been proposed 
by the UK Government 19 . Such public data might allow for the cre- 
ation of distributions of cyber-losses and help contribute to reducing 
information asymmetries. 

The cyber-insurance market is still at as stage of relative infancy.
The current institutional setup does not appear fully conducive to 
the delivery of efficient market outcomes at this juncture. Achieving 
efficiency requires commonly held beliefs and stationary loss distri- 
butions. Whether such conditions can be achieved and maintained is 
questionable given the dynamic nature of cyber-threats. Our provi- 
sional conclusions are that the most likely market structure will in- 
volve firms specializing in particular insurance contracts covering dif- 
ferent ranges of loss limits, with varying access to reinsurance based 
on these contracts. The overall outcome will be that the capital ca- 
pacity of this market will be below its optimal size under shared in- 
formational conditions. 
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igure A1. Insurer simulated loss distributions ( Simulation procedure ). 
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