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ABSTRACT Pressure insoles allow for the collection of real time pressure data inside and outside a
laboratory setting as they are non-intrusive and can be simply integrated into industrial environments
for occupational health and safety monitoring purposes. Activity detection is important for the safety
and wellbeing of workers, and the present study aims to employ pressure insoles to detect the type of
industry-related task an individual is performing by using random forest, an artificial intelligence-based
classification technique. Twenty subjects wore loadsol® pressure insoles and performed five specific tasks
associated with a typical workflow: standing, walking, pick and place, assembly, and manual handling. For
each activity, statistical and morphological features were extracted to create a training dataset. The classifier
performed with an accuracy of 82%, and a re-analysis focusing on the five most influential features resulted
in 83% accuracy. These accuracies are comparable to similar task classification studies but with the benefit
of added explainability, which increases transparency and, thereby, trust in the classifier decisions. The
combination of random forest and in-depth feature analysis (SHAP) provided insights into the importance
of certain features and the impact of their value on the classification of each task. The insights obtained from
these methods can aid in the design of pressure insoles that are optimized for the extraction of impactful
features and the prevention of work-related musculoskeletal disorders in Industry 4.0 operators.

INDEX TERMS Human activity recognition, pressure insoles, explainable AI, industry 4.0.

I. INTRODUCTION
Pressure insoles measure the plantar pressure experienced
between the foot and the sole of the shoe, and they can be
used to estimate total ground reaction forces and the center
of pressure in ambulation [1], [2], [3]. While force plates
are considered the ‘gold-standard’ for load measurement in
biomechanics, pressure insoles such as the loadsol® (Novel
GmbH,Munich, Germany), F-Scan (Tekscan,Massachusetts,

The associate editor coordinating the review of this manuscript and
approving it for publication was Chan Hwang See.

USA), and Moticon (Munich, Germany) allow the collection
of real-time pressure data inside and outside a laboratory
setting with good accuracy.

Pressure insoles research extends from sporting to rehabil-
itation contexts, with studies assessing injuries and patients’
recovery [4], [5] and aiding in sports performance [6], [7], [8].
The detection of activities of daily living via plantar pressure
mapping has been investigated in [9], showing the potential
to monitor exercise technique and detect unhealthy posture.
In clinical settings, the devices have been used to develop
footwear to prevent ulcer recurrence in diabetic patients [10]
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and to detect freezing of gait in patients with Parkinson’s
disease [11].

In occupational health and safety research, pressure insoles
were also used to detect loss of balance events [12], indirectly
monitor loads on the lower back duringmanual handling [13],
and design insoles that redistribute and reduce pressure
on the workers’ feet [14]. Specifically in the construction
industry, the devices were used to reduce the possibility of
back pain [15], quantify physical intensity [16] and work-
load with the assistance of computer vision [17], identify
safety hazards [18], perform fall risk assessments [19] and
activity recognition [20], and classify fatigue levels from
gait [21].

Industry 5.0 builds on the automation and efficiency of
Industry 4.0 and denotes a move towards a human centric
approach that enables humans and machines to collabo-
rate. Among other things, the new collaboration involves
minimizing the repetitive and physical workloads that can
cause fatigue and, if not detected and monitored, can lead
to work-related musculoskeletal disorders [22], which are
a leading cause of injury and work absence [23]. Pressure
insoles present a non-invasive means of collecting related
worker data for Industry 5.0 without interfering in worker
activities. Task detection is important for both the worker
and the employer and can be used to achieve an appropriate
trade-off between work targets and the worker’s wellbeing.
Pressure insoles can be used to detect the weight of a tool
being held, the center of pressure (CoP), and the distribution
of force throughout the foot while an activity is performed,
all of which give an indication of the type of task and the
overall workload. Additionally, task detection and the weight
assessment of the manipulated object or tool are crucial
elements in biomechanical models for human endurance,
which are also related to fatigue prevention research. Pressure
insoles can be included in the personal protective equipment
of smart workers and be fully integrated within a wireless
sensing framework of smart manufacturing, leading to the
comprehensive overview and monitoring of the safety status
of the worker.

In terms of accompanying computational algorithms,
machine learning (ML) has long been used in conjunction
with wearable sensors to identify the state and activities of
the user [24], including gait events [25], common daily activ-
ities [26], and even cooking [27]. Classification is important
for the monitoring of ergonomic risks and physical activity
for health and wellness purposes. De Pinho André [28] out-
lines three categories of activity classification using pressure
insoles: gait phases and patterns, common daily activities, and
specific activities. We have conducted a literature review on
studies involving ML algorithms and pressure insoles in line
with the three aforementioned categories, and we present in
detail our search strategy and important elements extracted
from each paper in the supplementary material (Supp. Mat.)
of this publication. We additionally provide information on
open access databases containing raw pressure insole data
(Table 1).

TABLE 1. Datasets with pressure insoles.

In summary (Tables 1 to 3, Supp. Mat.), it was observed
that many research groups have used their own custom
designed insoles [29], [30], where ML-based classification
is often used for validation purposes. It was also evident
that there is little consistency in the classification techniques
employed, as well as the validation and assessment meth-
ods [31], [32], [33]. A high degree of variability in terms of
segmentation methods was also apparent, ranging from gait
cycle [31] to step [34] to fractions of a second [28], while
time windows of different lengths were often used for activ-
ity classification, sometimes with an overlapping or sliding
window. The majority of activity recognition studies utilize
pressure insoles with built-in IMUs [35], [36] and motion
capture [37], [38], [39]. The use of additional sensors allows
tasks to be distinguished easily, often with higher accuracy,
for example [13]. However, in terms of real-world deploy-
ment of human activity recognition (HAR) systems, a task
classification system based on force data alone has benefits
in reducing cost and computing power and minimizing the
impact of wearables on an individual’s daily activities.

Along these lines, the present study aims to use a
supervised ML classifier for the task classification of
industry-related work activities, using ad-hoc features eval-
uated on three specific pressure sensor areas in each insole.
The features extracted consider both statistical and mor-
phological aspects of force data; force data alone has yet
to be considered in HAR research with pressure insoles as
studies generally benefit from the assistance of accelerom-
eters and/or additional sensors (see Supp. Mat. Tables 1 to
3). The explored method of classification, random forest
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(RF), and the feature analysis method, the SHAP (Shapley
Additive explanation) analysis library [55], allows a thor-
ough understanding of the impact each feature has on the
overall classification and a within class evaluation provides
insights into the impact feature values have on individual
classes – the latter cannot be achieved with typical feature
analysis methods. References [56] and [57] provide detailed
explanations of SHAP and its variations, including a sur-
vey of SHAP uses on health sensor data. Random forest
is commonly used in human activity recognition studies,
for example, [28], [40], and [41], (Supp. Mat., Table 2),
but is utilized in only a few specific recognition studies,
such as [12] and [42]. An explainable approach through
RF and SHAP enables transparency, and therefore trust,
in the decisions made by the classifier, which is essential
in a health and safety context. Additionally, important fea-
tures required for task identification can provide insights
into how insole-based sensing systems can be optimized
for real-time task classification. The sensors, the features
extracted from these sensors and their analyses for enhanced
explainability, and the creation of a new open-source database
of pressure insole data for task classification present valu-
able contributions to the development of accurate, cost-
effective and streamlined real-time HAR systems for smart
manufacturing.

The collection of insole pressure data created in this study
has been made openly accessible through the publication of
the open access database on Zenodo [50]. While the focus
of the study is the industry sector, the task classification in
the present research is relevant to all areas of occupational
health and safety research since manual handling, assembly
and pick and place tasks are required in almost all professions
to varying extents; and as such, manual handling training is a
requirement in most workplaces.

The contributions of this work include the use of explain-
able ML methods for the task detection of five common
occupational tasks; analysis of the most significant features
highlighted by the SHAP analysis which give rise to recom-
mendations for the future design and optimization of pressure
insoles for occupational health and safety specifically, as well
as an open access dataset of the pressure insole data included
in the study. Task recognition of common work activities,
such as those presented in this study, can aid in the real-time
detection and prevention of work-related musculoskeletal
disorders. Different tasks are associated with different levels
of fatigability, depending on factors such as load [23] and
task complexity [58], and using the methods described in this
paper, the operator’s state can be monitored with information
from pressure insoles such as task type, duration, and load.

II. METHODOLOGY
A. PARTICIPANTS
Twenty subjects (10 females) were recruited by word of
mouth and email advertisement to take part in the study. The
study had the ethical approval from the university’s ethics

FIGURE 1. A subject’s left foot raw data while carrying out all five tasks.

FIGURE 2. The set up of the components for the assembly task (left) and
the assembled components (right).

committee (CREC Review Reference number: ECM 4 (p)
6/7/2021), and subjects provided written informed consent
to participate. Participants were excluded if they reported
any musculoskeletal disorders. The mean age of the subjects
was 29 years and ranged between [20 64] while their weight
ranged between [53.5 102.7] with a mean of 71.6kg. Partici-
pants completed a brief warm-up routine for five minutes and
were given manual handling training prior to data capture.

B. DATA COLLECTION
Subjects all wore the same type of trainers containing
loadsol® pressure insoles, which sample at 100Hz, in a
choice of three sizes (EU 39, 43 and 45). Subjects with
different shoe size did not qualify for participation in the
study. Each insole samples force data from three areas: heel,
midfoot and forefoot. The heel and midfoot sensors each
occupy 30% of the insole length, and the forefoot takes up
40% of the insole length.

Each participant carried out five tasks for at least one
minute each, of which 55 seconds were analyzed for data bal-
ancing purposes. The first was standing still in static posture
(Task 1); the second was level walking (Task 2), where, prior
to the task, subjects were advised to change the direction and
speed of their ambulation. The next three tasks were industry-
related; they were assembly (Task 3), pick and place (Task 4)
and manual handling (Task 5).

Fig. 1 shows 3 seconds of raw sensor data for all tasks. All
subjects changed their walking direction and speed through-
out Task 2, at a self-elected time and speed. The assembly task
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involved piecing together 3d printed bolts and nuts and taking
them apart repeatedly until 1 minute of data were acquired;
the parts were laid out in a semicircular arrangement on the
workbench within arm’s reach (approximately 25cm) of the
participant (Fig. 2). The pick and place task involved moving
light weights (0.5kg and 1kg) from one corner of the table to
the other in a self-selected manner and speed; more than one
weight could be moved at a time, and weight(s) could move
diagonally, side-to-side, or straight ahead. Finally, the manual
handling task required the subject to lift a box containing
a 10kg weight from the floor to a chair (height of 48cm)
to a table (75cm); again, at a rate subjects chose, and the
order of lifting was not prescribed (for example, from the
floor to the table and finally to the chair). Participants were
instructed to carry out the tasks continuously at a self-elected
rate for at least one minute and in the order they chose
(for manual handling, assembly and pick and place tasks),
thus enabling the classifier to also take into account the
individual differences that take place during the completion
of tasks.

C. FEATURE EXTRACTION
Space-temporal and morphological information were
extracted from raw data provided in force (N) from the
commercial software accompanying the pressure insoles
(loadsol-s), to create the training and testing datasets for the
ML classifier. Features from force data, CoP and morphology
of the peaks were obtained over different time windows (2,
3, 4, 5, 6, 8, 10, 12 and 15 seconds). A total of twenty-four
features were extracted from the data; where the number of
features related to force, CoP and peaks morphology were
eleven, six and seven, respectively. The total number of data
points per feature was calculated by: (total no. of samples ÷

number of samples per window) × no. of tasks (Table 1).
For example, for 55 seconds of data acquisition at 100Hz
and considering an observation window of two seconds, for
five tasks we have: 5500 ÷ 200 = 27.5, rounding down and
multiplying by the number of tasks we obtain 27 × 5 =

135 data points for the two seconds window and total data
size of 24 features ×135 data points.

1) Force-related values: Force-related features (all in N)
were calculated for the total force of the insole and
includedmean value, standard deviation, range, median
value, mode, interquartile range, skewness, covari-
ance, and kurtosis, as well as the ratio of the forefoot
force to the heel force (mean and standard deviation),
which were calculated using only forefoot and heel
sensors.

2) Centre of pressure values: The CoP coordinates on
the ground plane were evaluated considering fixed dis-
tances between the three pressure sensors of each insole
during foot flexion/extension, and a constant distance
between participants’ feet. TheX and Y position of CoP
in cm considering the origin on the axis (0, 0) between
the feet, was evaluated as follows:

XCoP =

∑n
t=1
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2 F
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−Df
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)
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where t is the data sample that goes from 1 to 5500 (55
seconds of acquisition at 100Hz), Df is the mean distance
in cm between the feet, evaluated on the basis of the body
segments length based on the average high of the cohort
(as per [59]), as Df = 171 × 0.191. Sf is the weighted
mean size in mm of the shoe used by the cohort, evaluated
as Sf = {[(39 × 9) + (43 × 9) + (45 × 2)] ÷ 20} × 0.6658,
where the last value is the conversion between European shoe
size to cm. FLt , F

R
t , F

F
t , F

M
t and FHt are respectively the

contribution in Newton of the sensors of the left insole, the
right insole, the front pressure sensors of both insoles, the
middle sensors of both sensors and the heel pressure sensors
of both insoles. From the value of the CoP, three statistical
values were evaluated per each coordinate (X and Y): mean
value, standard deviation, and range (in cm).

1) Peak morphology values: The dynamic behavior of the
pressure values can vary according to the task being
performed. The static task might produce uniform pres-
sure on the overall insole over time; while activities
where the bodyweight moves from one foot to the other
or goes across different areas of the same foot produce
peaks and valleys in the data. To capture such behavior,
time-domain and frequency-domain features related to
the morphology of the pressure values were evaluated
for each window per total insole force value:

a) Shaper factor – gives an indication of peak profile:

SF =

(
1
N

∑N
i=1D

2
i

)1/2
1
N

∑N
i=1 |Di|

, (2)

where N is the number of data sample per time window
of observation and D is the sample data.

b) Peak to peak value – difference between the minimum
and the maximum value of the pressure within the time
window in Newton.

c) Number of peaks per time window – number of peaks
that exceed 60% of the maximum value of pressure,
within the time window.

d) Mean distance between peaks that exceed a 60%
threshold of the maximum value of force within the time
window in seconds.

e) Mean amplitude of peaks within the time window in
Newton.

f) Standard deviation of the spectral power distribution
(discrete Fourier transform) within the time window.

g) Main frequency within the spectral power distribu-
tion (discrete Fourier transform) – excluding the peak
at 0 Hz, the main frequency was extracted per each time
window.
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D. TRAINING AND ASSESSMENT OF SUPERVISED
MACHINE LEARNING CLASSIFIER
The features extracted per each time window were labelled
according to the task being performed and were used for
the training process of the RF classifier. We evaluated
Support Vector Machine, k-Nearest Neighbor and Naïve
Bayes; they all offered considerably worse performance.
These classifiers are omitted for brevity, however, the code
for all classifiers and the associated database of extracted
features can be accessed online at https://github.com/patricia-
o-sullivan/PID4TC_Analysis.

A 10-fold cross-validation was employed to train and test
the data, where each fold contains all the measurements for
two subjects. This split guarantees the model is learning pat-
terns that can generalize to unseen subjects. For each fold and
time window, accuracies were computed from the confusion
matrices and the classifier was assessed using SHAP to eval-
uate feature importance. SHAP values are assigned to each
feature, representing its influence on the predicted outcome
relative to the other features in the dataset, where high SHAP
values indicate a high influence. The analysis also provides
insights into the influence of features on each task individu-
ally by indicating if a high or low feature value influences the
classification of a particular task. Cross-validation and SHAP
results for the folds were aggregated for each window.

The highest performing features, based on the SHAP anal-
ysis, were rerun through the classifier in the same way as
described for the first iteration of the analysis to gain an
understanding on how fewer features impact on accuracy.

III. RESULTS
A. PRESSURE INSOLES DATA FOR TASK CLASSIFICATION
(PID4TC)
The pressure insoles data used in this work are available at
doi: 10.5281/zenodo.7755802 under CC.BY.40 license [50].
The dataset is composed of.csv files and is correlated with
relevant metadata (.txt files) for database description and
navigation. PID4TC is organized by subjects, where each.csv
contains 55 seconds of acquisition at 100Hz, organized by
task.

B. INDUSTRY TASK CLASSIFICATION
The accuracy of the classifier ranged from 80-86%, with a
gradual improvement as the observation windows increased
(Fig. 3). The highest accuracy (≈ 86%) was observed for
windows larger than 10 seconds (1,000 frames), while reach-
ing a peak of 82% after 5 seconds before the value briefly
declines. Task prediction that takes place within 5 seconds
can be considered ‘real-time’ and offered good accuracy,
thus prompting further analyses. The confusion matrix of the
5 second window iteration is presented in Fig. 4, with the
highest accuracies for manual handling and walking (dark
shaded values), closely followed by assembly and standing
tasks. Pick and place was incorrectly predicted as either
assembly or standing tasks approximately 45% of the time.

FIGURE 3. Accuracies of the random forest classifiers across all nine
observation window sizes (2, 3, 4, 5, 6, 8, 10, 12, and 15 seconds).

Fig. 5 highlights the features that have the most impact on
the classification of each task, quantified by SHAP values.
Overall, the features related to the CoP (impact SHAP values:
range in y direction ≈ 0.25, range in x direction ≈ 0.21,
mean in x direction ≈ 0.18, std in x direction ≈ 0.14, std
in y direction ≈ 0.12), spectral entropy (≈ 0.10) and mor-
phology of the peaks (distance between peaks in seconds ≈

0.08) played a major role in the classification of all tasks.
Furthermore, statistical features extracted from force data,
such as covariance (≈ 0.09), standard deviation (≈0.09), and
the ratio of the front of the foot to the heel (≈ 0.08) were
also prominent. The SHAP analysis also gives a within task
breakdown of feature importance by calculating a score for
all the input features for a given model, resulting in a range
of SHAP values for the twenty highest scoring features in
a class (colored regions for each feature, Fig. 5). Manual
handling, walking and assembly tasks were misclassified the
least (Fig. 4) due to the strong influence of the feature values
on the classification of these tasks; hence, in Fig. 5, these
tasks carry greater SHAP values (e.g., purple-shaded zone for
the manual handling task in the CoP YRange feature).

Fig. 6-8 also provide insights into feature importance
within tasks with the overall highest SHAP scores: manual
handling, walking and assembly. A clear contrast in feature
values is present in the highest impacting features (high
SHAP values) which is evident from the high color contrasts
assigned to the ranges of SHAP values. This means the
large magnitudinal differences in feature values, especially
in CoP, aided in the identification of tasks. High values of
the CoP range resulted in high SHAP values (≈ 0.2 to 0.3)
for manual handling (Fig. 6), while low CoP ranges were
found to be impactful (up to ≈ 0.1) on the classification
of walking (Fig. 7) and assembly (Fig. 8). High values of
CoP standard deviations and mean in the x direction (up to
≈ 0.20) for walking and up to ≈ 0.10 for assembly helped
for their respective categorizations. In addition, we observed
a decreased classification accuracy in the confusion matrix
for tasks where the CoP is more confined (Fig. 4 and 9),
for example, pick and place and standing. The natural shift
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FIGURE 4. Confusion matrix showing the prediction accuracy for the
5 second observation window.

FIGURE 5. Analysis of feature importance for the 5 second observation
window.

of the weight along the sagittal and coronal axes (changes
in CoP) varies depending on the task, to the greatest extent
during manual handling and walking and to a lesser extent
when manipulating objects while both feet are stationary;
this, results in a broader range of feature values with higher
associated SHAP values as it is easier to distinguish features
that vary depending on the task.

The analysis was repeated using only the top five features
from Fig. 5, all of which are CoP related features: range
and standard deviation in both directions and mean in the
x direction. The 2nd RF classification returned marginally
better accuracies across almost all windows, including the
5 second window which increased by 1% to 83% (Fig. 10).
Fig. 11 focusses in on the SHAP analysis for the 5 second
window, with highest SHAP values still associated to manual
handling, walking and assembly. Interestingly, the mean CoP
in the x direction became the most influential factor in the
reanalysis, jumping up from third (Fig. 5). Overall, higher
SHAP values are present in the new analysis (Fig. 11) com-
pared to the analysis containing all features (Fig. 5), as the

FIGURE 6. SHAP analysis of feature importance for manual handling in
the 5 second observation window.

FIGURE 7. SHAP analysis of feature importance for walking in the
5 second observation window.

mean CoP in the x direction attained a mean SHAP value of
approximately 0.45, and all other features achieving a score
higher than≈0.25, which was also the highest SHAP value in
the initial analysis. In addition, the confusionmatrix in Fig. 12
shows fewer misclassifications for the updated analysis. The
exclusion of lower impact features caused a small reduction
in misclassifications, all the while there was no increased risk
of over-fitting.

IV. DISCUSSION
This study investigated the use of pressure insoles for human
task classification in the context of occupational health and
safety. The pressure insole data were collected from 20 sub-
jects while performing five industry-related tasks. From the
raw data, 24 features were evaluated and labelled to form
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FIGURE 8. SHAP analysis of feature importance for assembly in the
5 second observation window.

FIGURE 9. Example of the trajectory of the CoP for each of the five tasks
for one subject.

the training dataset for the RF classifier. The best classifi-
cation accuracy produced a rate of 86% above 10 seconds
of data observation. While the purpose of the study was to
present a highly explainable classifier, and not necessarily to
achieve the highest possible accuracy, the methods show an
accuracy of 82% was reached after 4 to 5 seconds, which is

FIGURE 10. Accuracy values across all windows after re-analysis with the
five most impactful classification features.

FIGURE 11. Analysis of feature importance for the 5 second observation
window and the highest performing features.

FIGURE 12. Confusion matrix showing the prediction accuracy for the top
5 features in the 5 second observation window.

in alignment with the accuracy levels achieved in the clas-
sification of other occupation-specific tasks [60], [61]. The
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4 to 5 second time window is aligned with studies concerning
activity recognition classification (Table 3, Supp. Mat., e.g.,
[21], [62]) and indicates potential for real-time classification
in edge-AI capable devices. In a real work environment, 5 sec-
onds is a realistic time frame to collect sufficient samples for
classification that is robust to momentary changes in activity,
for example, standing still for an instant before picking up an
object and assembling. To further improve real-time predic-
tions in working environments, a sliding or overlapped time
window can be implemented in future applications, as was
done in [62] and [63], to take the previous activity prediction
into account in combination with new data.

Occupation-specific studies generally feature a maximum
of 10 subjects (Supp. Mat. Table 3), making the number of
subjects in the present study higher than other occupation-
specific studies, but is on the middle to lower side when
compared to all ML research involving pressure insoles
(Supp. Mat., tables 1-2), and therefore remains a limitation to
the study. Additionally, the subjects may not be representative
of the population as they do not have industry work experi-
ence. Other limitations include the completion of tasks in a
laboratory as opposed to an industry setting which typically
features more noise, and the inclusion of a subset of possible
industry tasks. Tasks had low complexity and were performed
in an isolated manner and no transitions were considered.
Only one type of pressure insole with a three-sensor config-
uration was utilized in the study.

The release of the raw data, database of extracted features,
and classifier code encourages transparency in the analysis
methods, and the use of 10-fold cross validation and accuracy
as the main measure of prediction success enables pressure
insoles and ML studies to be compared, since these are the
most frequently occurring approaches in recent years (Supp.
Mat.).

ML algorithms, such as the one employed in this study,
use the labelled data to establish a function that can map
the features’ correlation to a specific label. Some ML tech-
niques, for instance RF, allow a more direct evaluation of the
importance of each feature in the classification process. Such
characteristics related to interpretability [64], are particularly
relevant to industrial applications. In fact, for safety and
regulatory reasons, it is preferable to implement AI-based
techniques that take decisions based on models that can be
fully understood in human terms, while a black-box decision-
making behavior can lead to a lack of trust. While deep
learning (DL) models showed high classification accuracies
in Supp. Mat., and a subset of DL models provide a certain
degree of explainability, it was decided not to proceed with
a DL approach for a number of reasons. Firstly, a relatively
small dataset is concerned in this study and a DL model is
more likely to overfit; secondly, DL models would be more
computationally demanding which limits the deployability of
cheap embedded devices. In addition, DL model structure is
strongly dependent on the domain and the dataset, while our
approach using standard ML techniques can be easily and
quickly adapted to a different dataset and problem. Finally,

TABLE 2. Total data size per window.

while SHAP can be applied to any model, the fact that the
Shapley values are computed using a TreeExplainer makes it
more related to a RF classifier, making the provided explana-
tion more reliable in this study. DL models will be explored
in future iterations of this research. RF was employed in this
study since it is a non-linearML technique that provides good
classification performance and interpretability balance. Due
to the limited dataset, we decided to not proceed with the
hyperparameters tuning as the result of the cross-validation
process would likely cause overfitting, rather we kept the
default parameters. A comparison with other models where
the parameters have been kept as default is available in the
accompanying GitHub repository. In general, RF performed
better, which can be verified from the analysis script stored
in the repository.

SHAP analysis is advantageous over other feature perfor-
mance analyses because it provides a within class feature
importance breakdown and the impact feature values have
on the class prediction. This information is valuable from
the perspective of studying misclassifications and improv-
ing classifier performance as we gain an understanding of
what feature are causing misclassifications, and the most
impactful features can be selected for modelling to reduce
incorrect predictions and increase accuracy, as was the case
in the present study. From the SHAP analysis, CoP features
were identified as having the highest impact (Fig. 5-8), and
included the ranges, standard deviations and the mean in the
x direction. These features produced the highest accuracy
(83%) and SHAP values (between ≈0.25 to 0.45) for the
5 second window when classified alone (Fig. 10-12). This
indicates that the number and disposition of the pressure
sensors can be optimized for CoP, encouraging enhanced task
classification in comparable set-ups. For example, a two-
quadrant (front-back) or four quadrant sensing disposition
(front-left, front-right, heel-left, heel-right) could offer more
precise information in this regard. This will aid in keeping
the number of sensors to a minimum, optimize wearability,
data throughput and energy consumption, all of which are
crucial factors in edge-AI devices, internet of things and smart
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manufacturing environments as awhole. Application-focused
insoles may also aid in reducing the number of task misclassi-
fications, which, with the current pressure sensor number and
configuration of the insoles may affect productivity and pose
health and safety risks. For instance, a worker is engaged in a
pick and place that is erroneously detected as assembly or rest
may lead to a collaborative robot operating in the occupied
workspace or there may be implications on task rotations,
work scheduling and active work time registered.

To minimize computational requirements and power con-
sumption, force data only were analyzed from the pressure
insoles and no additional sensors were utilized in the classi-
fication. This represents a challenge compared with similar
works, where the classification mostly involved diverse tasks
with dynamic characteristics that are more easily distin-
guished from one another, and in some cases, a variety of
sensors were utilized [28], [32], [61], [65]. In this sense,
the features selected for the classification played a crucial
role. The general approach was to focus on describing the
morphology of the pressure signal, especially the peaks’
frequency, intensity, and distribution. The weak relevance of
these features (peak to peak is only the tenth most significant
feature) in the classification might indicate that different
subjects may have different strategies for performing the
same task. Nonetheless, the spectral entropy and especially
the behavior of the CoP (first 6 most significant features for
classification, Fig.4) demonstrated a good task dependency
and a sufficient agnostic level towards the subjects. CoP was
extracted from force data of only two occupation-specific
studies involving ML and pressure insoles [13], [21] (Supp.
Mat. Table 3), one study of which conducted a feature impor-
tance analysis, where CoP-related features were among the
ten most important features in the assessment of lower back
loading during manual tasks [13].
The confusion matrices (Fig. 4 and 12) and SHAP values

in all SHAP analysis figures have highlighted tasks with
limited CoP variations throughout their execution, as shown
in Fig. 9, are more likely to be misclassified. This calls
for further investigation, both in terms of feature selection,
device design and AI classification strategy. For example, the
images generated fromCoP in Fig. 9 may be utilized as inputs
to the classifier instead of the averaged values across time
windows. Exploring the behavior of the pressure values in the
frequency domain has generated useful information to distin-
guish manual handling from the remaining tasks. Similarly,
other time-frequency domains, such as wavelet transform,
may offer different indicators for task classification.

V. CONCLUSION
The paper presents a transparent, non-invasive means of
assessing worker tasks using wearable sensors. A lack of
explainable methods was identified in the literature and
the present research exhibits comparable accuracies to such
studies but with the benefit of increased explainability, mean-
ing that industry-specific pressure insoles with optimized
sensor configuration for the extraction of significant fea-

tures, such as CoP can be achieved. This, in turn, can
reduce data throughput and consumption, presenting poten-
tial for real-time worker monitoring in smart manufacturing
environments.
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