Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches
copyright, (either yours or that of a third party) or any other law, including but not limited to
those relating to patent, trademark, confidentiality, data protection, obscenity, defamation,
libel, then please read our Takedown policy and contact the service immediately
(openaccess@aston.ac.uk)

http://www.aston.ac.uk/library/additional-information-for/aston-authors/aston-research-explorer/takedown-policy/

UNIVERSITY OF ASTON IN BIRMINGHAM LIBRARY

[IBHAMELERRN

Author 30116 00 i
Title

Award Date

BLLD Shelf No. 1> (1 L£ & 119

Class No. Book No.

THESIS FOR USE IN THE LIBRARY ONLY

Please return to the Short Loan Counter the same day.
Library Regulations

22. All persons wishing to consult a thesis shall sign a declaration that
no information derived from the thesis will be published or used
without the consent in writing of the author.

23. Normally a request for interlibrary !oan of a thesis deposited in
the Library shall be met by the supply on loan of a microfilm

copy by the University Library; the attention of the borrowing
library being drawn to Regulation 22.

24 A request from another library for permission to photocopy 3
thesis may be granted subject tO specification of the part to be
copied and a declaration that any nhotocopy made will be used
solelv for the purpose of private study or research.

The design of robust protocols for distributed real-time systems

Martin Robert Hill

Submitted for the degree of Doctor of Philosophy

THE UNIVERSITY OF ASTON IN BIRMINGHAM

September 1990

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation from

the thesis and no information derived from it may be published without the author's prior,
written consent.

The University of Aston in Birmingham
The design of robust protocols for distributed real-time systems
Martin Robert Hill
Submitted for the degree of Doctor of Philosophy 1990.
Summary of thesis

Modern distributed control systems comprise of a set of processors which are
interconnected using a suitable communication network. For use in real-time control
environments, such systems must be deterministic and generate specified responses within
critical timing constraints. Also, they should be sufficiently robust to survive predictable
events such as communication or processor faults. This thesis considers the problem of
coordinating and synchronizing a distributed real-time control system under normal and
abnormal conditions.

Distributed control systems need to periodically coordinate the actions of several
autonomous sites. Often the type of coordination required is the all or nothing property of
an atomic action. Atomic commit protocols have been used to achieve this atomicity in
distributed database systems which are not subject to deadlines. This thesis addresses the
problem of applying time constraints to atomic commit protocols so that decisions can be
made within a deadline. A modified protocol is proposed which is suitable for real-time
applications.

The thesis also addresses the problem of ensuring that atomicity is provided even if
processor or communication failures occur. Previous work has considered the design of
atomic commit protocols for use in non time critical distributed database systems.
However, in a distributed real-time control system a fault must not allow stringent timing
constraints to be violated. This thesis proposes commit protocols using synchronous
communications which can be made resilient to a single processor or communication failure
and still satisfy deadlines.

Previous formal models used to design commit protocols have had adequate state
coverability but have omitted timing properties. They also assumed that sites communicated
asynchronously and omitted the communications from the model. Timed Petri nets are used
in this thesis to specify and design the proposed protocols which are analysed for
consistency and timeliness. Also the communication system is modelled within the Petri net
specifications so that communication failures can be included in the analysis. Analysis of
the Timed Petri net and the associated reachability tree is used to show the proposed
protocols always terminate consistently and satisfy timing constraints.

Finally the applications of this work are described. Two different types of applications are
considered, real-time databases and real-time control systems. It is shown that it may be
advantageous to use synchronous communications in distributed database systems,
especially if predictable response times are required. Emphasis is given to the application of
the developed commit protocols to real-time control systems. Using the same analysis
techniques as those used for the design of the protocols it can be shown that the overall
system performs as expected both functionally and temporally.

Key words : Atomic commit protocols, Fault-tolerance, Petri nets, Real-time systems

Acknowledgements

I would like to take this opportunity to express my gratitude to everyone who helped me
through my research. I am especially indebted to my supervisor Dr D.J.Holding for his
guidance, persistence, and preparation with the thesis. I would also like to thank all my
research colleagues in the department of Electrical and Electronic Engineering and Applied
Physics at the University of Aston for their stimulating discussions and suggestions. A
special thank you is due to my girlfriend, Becki, for being patient and helping me with the
mundane tasks of day to day living as I prepared this thesis.

Finally I would like to thank the Science and Engineering Research Council and the
University of Aston for funding throughout this research.

Table of contents

LISt Of fIZUTES L ouuuiiiiiiiii i e e 7
Chapter 1 IntrodUuCHONuiuiiiii e 9
1.1. Distributed COMPUtING SYSLEIMS ... euuitiitinietiitiieerieitieteneeieniaanaannns 9

1.2. Coordination in distributed SyStemS........ooviiiiiiiiiiiiiiiiiiiiiiienen. 12

1.3. Faults, reliability and safetycooooieiiiiiiiiiiiiiiiiiiiiiii e, 14

1.4, Summary of thesis.....cciciiiiiiiiiiiiii e, 18
Chapter 2 Aims and Objectives of the research............ccoovviiiiiiiin. 21
2.1, IntrodUCHION «. vttt e 21

2.2. The coordination of distributed SyStemScocviiiiiiiiiiiiiiieiiieaennen. 22

2.3, Errors and faults........oooiiiiiiiiiiiiii 24

2.4, Software fault tolerance.......c.oovviiiiiiiiiiiiiiiiii i e 26

2.4.1. Traditional software fault tolerance methods...........cc.c....... 27

2.4.2. Providing atomicity in the presence of faults..................... 30

2.5. Design of robust commit ProtoColS.......ceviiiiiiiiiiiiiiiiiiiieiiiainaannn, 31

2.5.1. Previous modelling of commit protocols.............ccovviinnnnn 32

2.5.2. Petri net modelling of commit protocols.......ccc.cccevvreennee. 33

2.6. Implementation of commit ProtoCols........ccvuiiiiiiiiiiiieiiiniiininnnn.. 34

2.7. Application of commit protocols to real time Systems.........c..c.cceuunens 35

2.7.1. Applications in real-time database systems............c.cccuuueen. 35

2.7.2. Applications in real-time control Systemsc.covvinnnne. 36

2.8, DISCUSSION ..t ttteetetitt ittt it ettt ettt eraeraaeeneeaaaeanans 37
Chapter 3 Modelling atomic commit ProtocolS......c.ccccceuuiiiiiiiiiiriniinerienrennnnen. 38
KJ BB s (ot L1 oot B PP PP PPN 38

3.2. Atomic commitment ProtoCOISuiuiuiiiiiiiit it it eiaaaeeaas 39

3.2.1. Blocking commit protocolscooeiiiiiiiiiiiiiiiiiiiiiieen, 40

3.2.1.1. The two phase commit protocol.........cccceeeeeeren. 40

3.2.1.2. Variations on the 2 phase commit...........cccuueenee. 41

3.2.2. Non-blocking commit Protocols.........cccccceereiirinicrernnnnnn. 44

3.2.2.1. The 3 phase commit protocol...........cceuveeeunnnn. 44

3.2.2.2. Termination ProtoColS.......cccvviiiniinriiinienennnnn. 45

3.2.3. Independent TECOVETY .. .uinuiiniiiiiieii i eeeneen. 46
3.2.3.1. Quorum based protocols...........ceiiiiiiiiiiniinnnnn. 46

3.3. Finite State Machine models of commit protocols........................... 47
3.3.1. The 2 phase commit FSM.......ccooiiiiiiiiiiiiiiiii, 47

3.3.2. The extended 2 phase commuitccoeiviiiiiiniiininnnnn.n. 48

3.3.3. The 3 phase commit.......cccccuiiiiiiiiiiiiiiiiiiiinininneeeennnnn. 49

3.4. Analysis of the FSM models........ccooiiiiiiiiiiiiiiiiiiiiiiiiiinciiee, 50
3.5. Problems with modelling commit protocols using FSM.................... 54
Chapter 4 The design of robust atomic commit protocols..........c.coeveviveiinininnnnn. 56
4.1, IntrOdUCHON ...uiii ittt e et e e e e aens 56
4.2, Petri nets and timMe ...oouuiieiieeiitieieaiea et eieaeeteaieenennintenaenns 58
4.2.1. Time Petri NetS.ccc.ciiiiiiiiiiiiiiiiiiiiiiiieeiie e eaaeees 60

4.3. Time Petri net models of commit protocols.........ccccuvvvevivrvunnenienene. 61
4.3.1. Modelling the communication Systemcccevevinnennnn. 61

4.3.2. Two phase commit Petri net models.......................oooee.s 63

4.3.3. Extended 2 phase commit Petri net models 67

4.3.4. Possible Failurescccooiiiiiiiiiiiiiiiiiiiiiiiii 70

4.3.5. Deadlock preventioncc.ocoeviiiiiiiiiiiiiiiinininieiaeneane, 72

4.4. Failure and timing analysis of the modelscooiiiininee, 73
4.4.1. Site failurescooiiiiiiiii i 74

4.42. Link Failures....ccoooiiiiiiiiiiiiiiiiiiiiiiiii e, 78

4.4.3. Timing analysiS...cccccccciiiiiiiiiiiiiiniiiiniiiiiceeeeen, 84

4.5, DISCUSSIONeuittitieit ittt 86

Chapter 5 Implementation and optimization of commit protocols

using synchronous communicationsSocvevvuiiiiiiniiiiiiiiiiininnennn.. 87
5.1 INrOdUCHION t.uuutiit it 87
5.2. Occam as a language for distributed systems.......cccccceecrvrrvrernrnnnnne. 88

IR B 0 1o1oT: 1 o + U 88

5.2.2.0CCaAM 2 .iiiiiiiiit i e 90

5.2.3. Other languages for programming distributed systems........... 91

5.2.4. Petri net models of Occam CONStIUCES..........cuvvevevvevvenenee. 93

5.3. Occam implementation of commit protocols.........cecceeriviurrirennnnen.. 94

5.4. Optimizations with synchronous communications.........c.ccccccuvennne. 98

5.5, DISCUSSION ..t tetiitit ittt ettt ettt e e e aas 105
Chapter 6 Application of commit protocols to real-time Systemsccceee... 107
6.1, INtTOdUCHON ..ttt e et e e eeaaens 107

6.2. Characteristics of real-time SyStemSo.viviiiiiiieiiiiiiiiieeiniiieeaens 107

6.3. Commit protocols in real-time database systems........cccccceereuenenn 112

6.3.1. Example 1 : site failures.........coocoiiiiiiiiiiiiiiiiiiiiiinnnan... 114

6.3.2. Example 2 : link failures.......cccccccceiiiiininniicinieninnnnnnn.. 115

6.3.3. SUMMATY ..ottt i e era e ee e aaanaas 115

6.4. Applications in real-time control SyStemMS.......cccveiirieiierieraeennnnnnn. 116

6.4.1. Level crossing example.....ccooooiviiiiiiiiiiiiiiiiniicinnnnennn.. 116

6.4.2. Drum and Slider examplecccoiiiiiiiiiiiiiiiiiii 126

6.5, DISCUSSION ..t ut ittt ittt ettt ettt ettt e e ereaaaaaans 134
Chapter 7 Conclusions and further work.........ccooiiiiiiiiiiiiiiiiiiiiiiiiii e, 136
7.1, CoNCIUSIONS « ettt ettt e e eaea .. 136

7.2, FUMher WOTK ..ottt ettt e e e eaanaes 139

3 {3 {3 1 1o S PP PP PP 141
APPENAIX A Lo ettt it et e et ae e aaaaaaanan 152
ApPEndix B ... e 165

List of Figures

Fig.(3.1) FSM of 2 phase commit protocolccccoeiiiiniiiiiiiiiiiinininnnnnn. 48
Fig.(3.2) FSM of extended 2 phase commit protocolcccevviiiiiiiinnnnnn.. 49
Fig.(3.3) FSM of 3 phase commit protocolcccocviiiiiiiiiiniiiniiiiiiiian... 49
Fig.(3.4) Reachability tree for 2 phase commit protocolc..ccccccevuerinians 50
Fig.(3.5) Reachability tree for extended 2 phase commit protocol 51
Fig.(3.6) FSM for extended 2 phase commit protocol resilient to site failures54
Fig.(4.1) Example of a marked Petrinetccocoiiiiiiiiiiiiiiiiiiiiiinnnnn., 58
Fig.(4.2) Reachability tree for fig.(4.1) c..oueniiiiiiiiiiiiiiiiiiiiiiii i 59
Fig.(4.3) Modelling communiCations.ccvveeeiuieieieeieenneareneeeeeneennenns 62
Fig.(4.4) 2 phase commit - asynchronous communications 64
Fig.(4.5) 2 phase commit - synchronous communications........c.cceceeeeeeieneanas 65
Fig.(4.5¢c) Reduced reachability tree for fig.(4.5a)..cccccceeeiiivnninnninnninnnnnnnn. 66
Fig.(4.6) Extended 2 phase commit - asynchronous communications............... 68
Fig.(4.7) Extended 2 phase commit - synchronous communications................ 69
Fig.(4.8) Example site failureccoviiiiiiiiiiiiiiiiiiiiii i eeeee e enes 70
Fig.(4.9) Example of a link failureccooiiiiiiiiiiiiiiiiiiiiiiiinin, 72
Fig.(4.10) CommuniCation tMEOULSvvuteentineeeeneneaseneaanenrersensereensenns 72
Fig.(4.11) Asynchronous extended 2 phase commit with site failures 74
Fig.(4.12) reachability tree for fig.(4.11) ...coviiiiiiiiiiiiiiiiiiirieie e, 75
Fig.(4.13) Synchronous extended 2 phase commit with site failures 76
Fig.(4.14) Reachability tree for fig.(4.13) ..c..ooiiiiiiiiiiiiiiii, 77
Fig.(4.15) Asynchronous extended 2 phase commit with link failures.............. 79

Fig.(4.16) Reachability tree for f1g.(4.15) c..ooiiiiiiiiii e 80
Fig.(4.17) Synchronous extended 2 phase commit with link failures 82
Fig.(4.18) Reachability tree for fig.(4.17)oviiiiiiiiiiiiiiiiiiee, 83
Fig.(4.19) Timing diagram of message tranSmissionc.ceceevvveiniininnn... 85
Fig.(5.1) Two communicating OCCam PrOCESSESvuunrerinenereninrreaeniaraennnsn. 89
Fig.(5.2) Petri net representations of Occam CONSIUCESvvvvviiveniineininnn.n. 94
Fig.(5.3) Optiimized extended 2 phase commitc.ccoviuiiiieniieiiiininnn... 99
Fig.(5.4) Optimal extended 2 phase commit.......ccccceveiiiiiiiiiiiininiiinn... 102
Fig.(5.5) Petri net of 3 site Protocolcccccccceiieiiieriiiiriininieneennenneenenns 104
Fig.(6.1) Example database SYStemooveiuiiieneeeiinnirineaieaieanaanenannes 115
Fig.(6.2) Outline Petri net of level crossing examplecccoceeviiininin..s. 117
Fig.(6.3) Level crossing deciSionc.iviieiiiiiiiiiiiiiiiieiieienieiiennininaens 118
Fig.(6.4) Petri net of level crossing with link failurescooiil 120
Fig.(6.5) Reachability tree for fig.(6.4)cooovieiiiiiiiiii i 121
Fig.(6.6) Partial reachability tree with second train at S1cccccueevennn.e. 122
Fig.(6.7) Partial reachability tree with second train at S2cceeererueennnen. 123
Fig.(6.8) Petri net of level crossing with site failures........cccoeveeeinneennn.e. 125
Fig.(6.9) Outline of arbor drum control systemcccoceveucireninnnnnnnnnn. 126
Fig.(6.10) Slider mMOtION .iouiiiuiiieiiiiieiieieeie et ee e ee e e e e aaes 128
Fig.(6.11) Outline Petri net for slider drum controlccceeiiiviviininnn... 129
Fig.(6.12) Petri net for slider drum controlcoovviiriiiiiiiiiiiiinenenen.. 131
Fig.(6.13) Reachability tree for fig.(6.12)coveveveiiiniiiiiiiiiiiiiiiiniinns, 132

Chapter 1

Introduction
1, Distri
Applications of modern computer systems require vast amounts of computing power,
examples are image processing and weather prediction systems. Military image processing
systems require very fast processing to process images in real time whereas a weather
prediction system needs to analyse vast amounts of data. This necessitates the need to
increase the speed of processing. To reduce the processing time three techniques can be

applied either increasing the speed of the hardware, increasing the efficiency of the
software or increasing the number of processors used.

The first solution will eventually reach the physical limits of a specific topology where it is
impossible for a single processor to be made faster without radical changes in technology
or architecture. Processing time is also affected by the efficiency of the algorithm being
executed. Performance can be improved by restructuring the code and this is often carried
out by a high level language compiler but this will also reach a limit. The third solution is
that of parallel processing, this allows a task to be split over a number of processors all
running in parallel.

Although the field of parallel processing is vast [Hwang 84] and beyond the scope of this
thesis, it is useful to consider the applicability of various computer architectures to this
research. A simple classification of computer architectures by Flynn [Flynn 66] identified
four different structures by their instruction and data multiplicity. Although this scheme
does not differentiate between input and output data the classification will suffice to
demonstrate the multitude of architectures. The four structures identified were SISD (single
instruction stream, single data stream), SIMD (single instruction stream, multiple data
stream), MISD (multiple instruction stream, single data stream) and MIMD (multiple
instruction stream, multiple data stream).

SISD machines exhibit no parallelism and are typical of the usual Von-Neumann
architecture. A SIMD machine performs the same instruction on a set of data concurrently,
an example being an array processor. MISD machines are generally accepted as not having
any applications [Basu 87] but this depends on the interpretation of instruction and data
streams. A pipeline consists of one data stream (although different at each stage) being
passed through a number of processing elements and could be considered as MISD. The
final type, MIMD is more general purpose and consists of different instructions executing
concurrently on different data.

One problem with the Flynn classification is that the processors are assumed to be tightly
coupled, ie. they all share common memory. If no shared memory exists between the
processors they are said to be loosely coupled.

Tightly coupled systems have the disadvantage that because memory is shared the physical
distribution of the processors is limited. The reliability of the system depends on the shared
memory because if the memory fails then no processors can communicate. Also as the
distribution is limited it is likely that there are other common mode failures, such as failure
of a shared power supply which would affect the whole system.

Loosely coupled MIMD architectures are commonly known as distributed processing
systems. They consist of a number of autonomous processors executing asynchronously
and communicating via a communication network. Additional processors can be added to
such networks at will, thus providing additional computation power easily. The sites are
assumed (but not necessarily) to be physically distributed. Thus a site failure (eg. power
failure) or communication failure may not render the whole system unoperational, such
failures are examined in section (1.3). Besides faster computation and resilience to failures,
distributed processing systems also have the advantage of being able to naturally model
many applications which are suited to concurrent processing.

With increased performance and versatility computers are increasingly being used to control
applications where incorrect behaviour or component failures may have serious
consequences, such as loss of life, environmental damage or damage to the application.
Examples of such computer disasters have been collected by Neumann [Neumann 85].
Such systems are known as safety critical and must be designed so that the consequences
of failures are minimized [Leveson 84, Leveson 86]. When a site or communication failure
occurs in a distributed processing system it is possible for the remaining operational system
to detect this and prevent any unsafe events.

This thesis examines the design of distributed real-time systems which generally comprise
MIMD processing architectures. Emphasis is placed on the design of distributed systems
which react in a safe manner when failures occur.

The processors in a distributed processing system are connected by a communication
network which provides the facility for any two processors to communicate. The
processors are also known as sites or nodes and in general may provide, communication
functions, application functions or both. This thesis assumes that non of the sites in a
distributed processing system provide purely communication functions. The
communication network may comprise of various types of physical transmission media
such as radio or satellite but is usually cable based. A communication link is defined to be
the transmission path between two sites and may be a physical link or logical link. A
physical link is a physical connection (circuit) between two sites whilst a logical link is an

10

The operations performed are not usually time critical although a reasonable response is
expected. Recently interest has been shown in providing distributed database operations
within real-time [Singhal 88, Lin 88] but this is linked to their use in control systems to
store sensor information. It is therefore debatable as to whether a real-time distributed
database is different to a real-time control system with a distributed database storage
system. In either case, techniques to provide the desired properties and real-time response
are required for safe operation.

A distributed control system obtains and sends information to its external environment by
sensors and actuators. The application of distributed control systems are usually such that
incorrect control is dangerous, eg consider the control of a nuclear power station or an
industrial plant. A control system processes its inputs and provides suitable outputs to the
system and operators. Control is often required within pre-defined time limits, systems

providing control within temporal constraints are known as real-time control systems.

This thesis is concerned with generic aspects of real-time systems. It draws on the
techniques developed in distributed database systems and distributed control systems and
addresses the problem of designing robust real-time distributed control systems.

1.2, Coordination in distributed

Problems that occur in distributed systems can be classified as either coordination problems
or problems due to faults and failures. Both type of problems occur in distributed databases
and distributed control systems. Different solutions exist because databases operate on
objects whilst control systems perform actions. Incorrect updates on objects can be
corrected and are often insignificant but incorrect actions performed by a control system are
rarely inconsequential.

To ensure the data contained in a database is accurate, correct and valid integrity constraints
are used. They are assertions which are explicitly defined over a set of database resources
(generally data items), for example A is always equal to B. They are used to guard against
invalid updates and if they all hold the database is said to be correct. Another term often
used for an integrity constraint is a consistency constraint, if all consistency constraints are
satisfied then the database is termed consistent. Throughout this thesis the term integrity
constraint will be used to mean assertions over data. The term consistency is used to mean
that two or more values are in some kind of agreement unless otherwise defined.

Since the state of a database will change it must be ensured that that every user operation
transforms the database into a new state which also satisfies the integrity constraints. The
problem is to achieve this even in the presence of concurrent operations and failures. This
prompted the design of transactions by Eswaren [Eswaren 76] which are now standard
practice in database systems.

12

A transaction is an elementary unit of database access and may involve many fundamental
operations on data such as read or write. It also provides the properties of atomicity,
consistency, isolation and durability [Haerder 83]. Atomicity is the property that either all
of the transactions operations are performed or none of them are. When a transaction
completes, its updates are either committed to the database or undone. They are committed
if the updates will not violate any integrity constraints, however if the integrity constraints
are not satisfied the updates are undone, i.e. the transaction is aborted. The consistency
property means that after the transaction has completed then the state of the database is such
that all integrity constraints are satisfied. This property is often called serializability (see
section (2.2)) when concurrent transactions are considered because serializability is a
method of ensuring all the integrity constraints are satisfied. The isolation property prevents
other concurrent transactions from seeing any results until the transaction has completed.
This ensures a transaction does not have any side effects and can be safely restarted if
necessary. The last property of a transaction, durability ensures that once a transaction has
committed then the updates are not lost even if subsequent failures occur. These properties
are required to aid the control of concurrent transactions and also recovery after failures. A
user operation may consist of zero or more transactions but quite often only one, in such

cases a user operation is termed a transaction.

Coordination is a problem in distributed systems because each site executes autonomously
and does not know what the other sites have done without communicating with them. Thus
communication is a vital part of the coordination. In addition distributed database systems
can execute a number of transactions concurrently, either at one site or at many sites. The
results of each transaction and the overall outcome must maintain a consistent database. To
achieve this the execution of concurrent operations must be such that updates by one user
are prevented from interfering with other database accesses. This allows transactions to be
developed irrespective of their use in a single or multi user system.

Such a technique is known as a concurrency control mechanism and ensures that executing
a number of transactions concurrently produces the same results as executing them in some
serial order. However, this does not mean that a concurrency control mechanism enforces
serial execution of transactions. Concurrency control prevents concurrent transactions from
interfering with each other and producing incorrect results. It also restricts the availability
of the resources so the granularity of the units used for concurrency control is very
important when considering system performance. Concurrency control is a well developed
field both for centralized and distributed systems [Bernstein 87a]. An early survey by
Bernstein and Goodman [Bernstein 81] presents 48 different methods for concurrency
control in distributed databases but still more have been developed [Bernstein 87b, Halici
89]. Most of these are variations on one method which has become almost standard, that is

13

2-phase locking. Other concurrency control mechanisms can be categorized as either being
timestamp methods [Bernstein 80] or optimistic methods [Bhargava 83, Kung 81].

The coordination problem also appears in distributed control systems because the ordering
and execution of concurrent events must be controlled. One example is when one event
must occur before another, this is known as condition synchronization. Another problem is
that of mutual exclusion where an event must be prevented from occurring whilst another is
happening, this is usually used if two processes access the same resource. The solutions to
these problems should be general purpose and allow as much concurrency as possible.

Techniques to solve these problems stem from operating system solutions [Andrews 83]
and assume shared memory. Semaphores [Dijkstra 68] are a general purpose mechanism to
solve these problems. A semaphore is a non-negative integer variable, s, associated with
the resource which has two operations on it, P and V. P delays until s>0 and then executes
s:=s-1 whilst V executes s:=s+1. To solve the mutual exclusion problem s is initially 1 and
the first process to use s executes a P operation. The other processes cannot execute their P
operations until s>0 which is provided by the original process executing a V operation (at
the end). This is sometimes known as a binary semaphore.

Monitors [Hoare 74] are a similar technique but have a much more structured approach. A
monitor consists of a set of permanent variables used to store resource states and a
collection of procedures to perform operations on the resources. When a procedure within a
monitor is called it is guaranteed to have mutually exclusive access to the required data. To
solve the condition synchronization problem Hoare [Hoare 74] uses a variable which is
acted upon in a similar manner to a semaphore.

Synchronization problems and concurrency control are similar because they both control
the ordering of events. Concurrency control is in fact a series of synchronization problems
with the ordering defined by the events involved, these change for each new set of
transactions. Synchronization on the other hand is defined for a known set of events.

In this thesis techniques for providing the atomicity property of database transactions are
extended for use in distributed real-time control systems. Holding, Hill and Carpenter
[Holding 88] have proposed the use of such database techniques in real-time systems. This
thesis concentrates on a method of designing the protocols so that the properties applicable
to real-time systems can be demonstrated.

ligbili n f
Another problem with distributed systems apart from coordination is to maintain a reliable

and safe system even in the presence of failures. The reliability of a system is a measure
(usually expressed as a probability) of how its behaviour conforms to its specification over

14

a period of time. The specification should be complete, accurate and unambiguous so that
acceptable and unacceptable system behaviour can be distinguished.

A system failure is also related to the reliability of a system and is defined to occur when its
behaviour deviates from that specified [Randell 78]. A failure is therefore an aspect of the
system behaviour but they are caused by internal events known as errors which manifest
from faults. A fault can be either a component fault or a design fault. and can be classified
depending on its persistence. Three types are distinguishable, permanent faults, transient
faults and intermittent faults. A permanent fault can appear at any time and remain until it is
repaired. If a fault appears for a short period and then disappears it is known as a transient
fault, an example being a fault caused by radio frequency interference. The final class of
faults is the intermittent fault which recurs from time to time.

The previous definition of reliability can be applied to software systems but must assume
that all inputs and hardware are fault free. If a system can tolerate such faults and retain a
certain degree of functionality then it is said to be robust.

Unlike reliability the safety of a system is concerned with the actions of a system when it
does not conform to its specification. A safe system is defined to be the free from
conditions that cause human injury, environmental damage or costly repairs [Leveson 86].
As mentioned previously computers are being used more and more to control safety critical
applications. Failures of such systems can be categorized as safety failures or non-safety
failures [Leveson 86]. A safety failure is assumed to lead to one of the afore mentioned
unwanted conditions. When a safety failure occurs it is preferable to prevent the dangerous
action rather than attempting to provide correct system behaviour. Thus by ensuring the
safety of the system its reliability may be reduced. A non-safety failure can be handled by a
recovery mechanism that ensures all the critical functions of the system are maintained. If a
recovery from a safety failure can not be made this way then a fail safe or fail soft
procedure must be used. A fail safe system is such that when a failure occurs instead of
attempting to maintain functionality the amount of damage caused by the failure is
minimized, i.e. safety is of paramount importance. A fail soft system can continue
operation with degraded performance or reduced functionality until the fault is removed.

This thesis is concerned with designing fail safe systems in a distributed real-time
environment where various failures can occur. Emphasis is placed on the design of robust
transaction protocols which will operate correctly in the presence of failures. A particular
feature of the work is the imposition of real-time constraints on such protocols.

The nature of faults is different in hardware and software systems. Most hardware faults
are due to components which deteriorate with time and so faults occur as the system ages.
In comparison, software does not deteriorate with age and software faults arise from errors
introduced at the design stage. Two types of faults must be tolerated, predictable hardware

15

faults and unpredictable faults such as software design errors. This is sometimes termed
fault-intolerance and fault-tolerance [Avizienis 75]. It is assumed that these faults can occur
at any time.

The protocols designed in this thesis are designed to tolerate a clearly defined set of
predictable hardware faults. The faults tolerated are permanent and persist until they are
repaired. This thesis investigates the behaviour of transaction protocols when site and
communication failures occur. The only site failures considered throughout this thesis are
total site failures, i.e. a site stops processing until repaired. Communication failures can
take many forms such as out of order messages, late messages or lost messages. The type
of communication failure also depends on the type of communications used. This thesis
considers a communication failure to be a failure of the communication media that prevents

a number of sites communicating, this is also known as a network partitioning.

Reliable hardware is achieved through module design and re-use, the design being refined
over a number of applications. However, software is often application specific and each
new application introduces new design errors. Thus software is a primary cause of faults in
a computer system. Two complementary techniques exist for reducing the effects of
software faults, that is fault prevention and fault tolerance. Fault prevention attempts to
reduce the number of design errors during development, whilst fault tolerance techniques
are used to mask faults that do occur.

In an ideal software engineering environment fault prevention should not be necessary, the
specification should map directly into code. This is practically impossible because even if
the necessary error free compilers and translators existed there will always be some human
decisions involved often at the specification stage. Specifications should be defined
accurately and precisely to prevent any misinterpretations. Software engineering techniques
[Sommerville 85] can be applied to prevent many design errors but errors will still occur.
Since most software errors are due to incorrect interpretations of the specification [Kopetz
83] more and more emphasis is being placed on the use of formal methods in software
engineering.

Software can still contain design errors even after rigorous development. To mask such
faults software fault tolerance techniques must be used [Anderson 81]. A real application
using such techniques has been shown to yield a substantial improvement in reliability
[Anderson 85]. The first requirement for any fault tolerant mechanism is to detect the errors
created by a fault and assess how much damage has occurred, e.g. how far errors have
propagated. After this, recovery techniques must be applied, these are classified into
backward or forward recovery techniques [Randell 78]. Backward error recovery restores a
system to a previous state known to be free from errors. Forward error recovery usually
transforms the erroneous state into a new correct state. In general forward error recovery is

16

used for predictable faults whilst backward error recovery is used for unpredictable design
faults. The two methods are complementary [Leveson 83] and can be used together.

A harder problem to solve is to provide fault tolerance in real-time systems [Anderson 85,
Hecht 76, Bloch 89]. This is because the external environment is continually changing so
techniques that use backward error recovery may restore a correct state which is out of
date. Distributed systems also pose problems because errors may be propagated by inter-
processor communication, such systems require mechanisms using the idea of atomic
actions [Randell 75]. An atomic action in this case is defined as "a group of processes with
no interactions between the group and the rest of the system for the duration of the
activity".

A database system executes transactions which are atomic actions, however a transaction is
different in that it can either abort or commit. If a transaction aborts then the system is
restored to its original state which is consistent. If a transaction commits then the actions
are performed and the database enters a new consistent state. Therefore a transaction differs
from an atomic action in that it provides the additional property that either all its actions are

completed or none at all, even if failures occur. This action is provided in database systems
by an atomic commitment protocol.

Mancini and Shrivastava [Mancini 89] recently suggested that object and process model
approaches to fault tolerance are duals of each other. They showed that replicated data
management techniques can be useful for managing replicated processes. This thesis
. considers another aspect of this duality by considering the application of database atomic
commit protocol techniques to control systems.

This type of database atomicity is often required in a distributed real-time control system
but within a deadline. An example being the coordination of 2 robot arms to lift a container
from a conveyor belt. The lift must be performed by both robots or neither, if only one
robot attempts the lift the container will tip. Being able to tolerate faults is also important in
such systems. Applying atomic commit protocols to real-time control systems is similar to
providing transactions trimmed of certain properties. Stankovic [Stankovic 88b] suggested
the use of transactions trimmed to provide a minimum set of properties for use in real-time
databases.

This thesis proposes a new design for commit protocols which will provide atomicity
within a deadline and also tolerate site and communication failures. Concurrent work by
Davidson et al [Davidson 89] has also proposed the extension of a commit protocol with
deadlines but their environment does not allow faults to be tolerated. The outcome of their
commit protocol has another state in its outcome, the exception state, which is entered
when a fault occurs, this indicates that recovery must be performed.

17

This thesis develops a new method of designing robust commit protocols which are
suitable for use in distributed real-time control systems. The design is performed by using a
formal model which is developed to study the effects of site and communication failures.
The model used also includes timing information so that timing properties of the commit
protocols can be investigated. Since failures are allowed the commit protocols are extended
with mechanisms to detect and tolerate them. The correctness of the commit protocols
developed can be shown by analyzing the formal models.

1.4. Summary of thesis

Chapter 2 outlines how the objective of designing robust distributed real-time systems
which are fail-safe was realized. Firstly the problems of distributed systems are classified
as being caused by the effects of concurrency or failures. The different techniques used to
solve these problems in the database domain and control field are surveyed with
comparisons drawn where possible. The techniques used by control systems to tolerate
faults are shown to be deficient of mechanisms that provide the atomicity property when
failures occur. It is proposed that a database technique, namely commit protocols, can be
extended and applied to distributed control systems to provide atomicity. To be of use in
real-time systems commit protocols must be extended with a deadline and also shown to
operate correctly. Therefore an aim of this thesis is to develop a method of designing

commit protocols that can show timing and functional properties are satisfied. The model
should also be easily transformed into an implementation.

A commit protocol must provide as its result a set of states which are consistent with each
other. To show such consistency a model of commit protocols that represents state is
required. A survey of previous work on the modelling of commit protocols is provided in
chapter 3. By including failures in the specification it can be seen where mechanisms are
required to increase the resilience of the protocols. This chapter also shows why the
previous modelling techniques are inadequate to design commit protocols for use in real-
time systems. In particular time is omitted and it is therefore impossible to verify timing
properties using these models. The model also omits the communication system and so
communication failures can not be modelled. Many different commit protocols exist, to
examine their usefulness to real-time systems they are surveyed in chapter 3. It is shown
that protocols can be classified into those that need to communicate after a failure and those
that can recover independently. The latter class of protocols are shown to be of more use in
real-time systems because timeliness can be preserved.

Since previous models are inadequate to show timeliness and tolerance to communication
failures, a new design technique must be developed. This thesis describes in chapter 4
how Petri nets [Peterson 81] can be used to solve the problems of the previous techniques.
It is shown how commit protocols can be modelled with the communications included.

18

This allows protocols to be designed and analysed using both asynchronous and
synchronous communications. The protocols are analysed under fault free conditions and
shown to be correct. Various failures are then included in the model and the protocols
enhanced to tolerate such failures. Including the communication system in the model allows
communication failures to be studied. The commit protocols using asynchronous
communications are shown to be directly equivalent to the previous models. However the
commit protocols using synchronous communications are different because they can be
made resilient to a communication failure as well as a site failure. This is because the sender
always knows if a message has been received or not, unlike asynchronous
communications. The new commit protocols using synchronous communications cannot
take advantage of previous techniques for timeout placement and so a new method is
developed by analysing the Petri net with failures included. Timing analysis can be
performed by including time in the Petri net model. This permits the timeout values to be
estimated directly. This calculation of timeout values is provided in greater detail in
section (6.4.2).

Chapter 5 outlines how the robust commit protocols developed in chapter 4 can be
implemented using a distributed programming language. Occam is used to demonstrate the
implementation of the commit protocols because it includes primitives for synchronous
communication and parallel processing and is also uncomplicated. It is shown how
additional assembler routines must be used when failures are expected because Occam has
insufficient semantics. Chapter 5 also shows how the new protocols using synchronous
communications can be optimized by reducing the number of explicit messages sent. This
is achieved by allowing the synchronous acknowledgement to infer information. So far in
this thesis, for simplification, the protocols have only been using two sites. It is shown in
this chapter how the optimized protocol can be extended to more than two sites.

Applications of the new robust commit protocols developed are described in chapter 6. The
first application is a real-time database, this shows how the commit protocol can be used to
ensure consistency even if when communications fail. It is also proposed that allowing the
commit protocol to abort a transaction within a deadline is better than waiting indefinitely
before committing a transaction. This would allow other transactions which are possibly
more time critical the opportunity to complete in time. The protocols are then applied to two
control examples, both illustrating the need for the all/nothing property. The second control
example also requires timing constraints to be met, in particular that the commit/abort
decision is always made within a deadline. The control examples are modelled using Petri
nets so that the commit protocol models can be directly incorporated. This allows the
analysis of the system to follow in a similar manner to the analysis of the commit protocols.
It is shown how consistency is maintained. In the second example timing constraints are
added to the Petri net model which is then analysed to show that a consistent decision is

19

reached within the required deadline. It is also shown in greater detail than in chapter 4 how
bounds on the timeout values can be calculated directly from the Petri net model of the
system.

Finally the achievements of the research are summarized in chapter 7. Conclusions are
drawn about the use of commit protocols in control systems and the modelling technique
used. A section suggesting further work is also provided.

20

Chapter 2

Aims and objectives of the research
2.1. Introduction
This chapter outlines the aims of the research and examines existing work and literature in
the field of distributed systems. Two aspects of distributed systems are considered in this
chapter, the control of concurrent operations and their resilience to faults. The scope of this
chapter includes a study of coordination techniques in section (2.2), an examination of

errors and faults in section (2.3) and a review of traditional fault tolerant techniques in
section (2.4).

A distributed computing system comprises hardware and software and so faults can occur
in either. Hardware faults are mainly due to deterioration with age whereas software faults
are caused by design errors. It is desirable for the coordination of distributed systems to be
able to tolerate such failures. If a failure cannot be tolerated then this may result in an
undesirable state which could possibly be unsafe. The problem of coordinating distributed
systems in the presence of faults is examined in section (2.4.2). This leads to the
identification of a class of protocols which are ideal for such coordination. However, the
protocols require enhancements if they are to operate correctly in distributed real-time
control systems in the presence of faults.

Models exist which have been used to ensure the protocols functioned correctly. Existing
models are examined in section (2.5.1) and their advantages and limitations are discussed.
This analysis leads to the conclusion that these models cannot be easily enhanced to model
the features required by a distributed real-time system. This is because the existing models
do not explicitly model the communication system or include timing information. Therefore
a requirement exists to develop a new modelling and analysis technique to support the
development of such protocols.

The implementation of existing protocols is examined in section (2.6), a major factor being
the type of communications used. Typically, asynchronous local area networks have been
used as the communication system but no guarantee on timely transmission and message
ordering can be provided. Thus an implementation that can guarantee such properties is
required if the protocols are to be used in distributed real-time systems.

The final aim of this chapter is to demonstrate that the protocols developed can be used in
distributed real-time systems. Section (2.7) assesses the need for such protocols in
distributed real-time databases and distributed real-time control systems. To demonstrate
the usefulness of the protocols it is preferable that they are modelled using a technique

21

which can also model the application. This allows a uniform modelling and analysis
technique to be used throughout the thesis.

22 Tl finati £ distril !
Coordination is needed in distributed systems to prevent concurrent operations from having
undue effect. Two operations may be executed alone without any problems but if they are
executed concurrently they may need to be coordinated so that one finishes before the other
starts, this is known as serialization. A similar coordination problem occurs if two
operations access the same resource, the operations must be coordinated so that only one
accesses the resource at any time. This is known as mutual exclusion and is similar to
serialization but is used when it is not known which operation should occur first. Atomicity

is another form of coordination which requires that either a number of events complete
satisfactorily or they all have no effect.

In a distributed database system, user operations are performed as transactions (see section
(1.2)). Since user operations can be initiated concurrently (either at the same site or
distributed) transactions must be executed in a manner that prevents interference. Also,
since failures can occur, transactions must ensure that either all the operations of a

transaction take place or the transaction has no effect on the database.

A transaction executed alone will always transform the database from one correct state to
another. Therefore two transactions executed serially will also result in a correct database.
To prevent concurrent transactions interfering, concurrency control techniques are used. If
two transactions are executed concurrently at the same site then their interleaved execution
must produce the same result as if they had been executed serially. This also applies when
the transactions are executed at different sites. The interleaving does not have to be a serial
execution of the two transactions thus allowing greater concurrency than serialization. If the
interleaving of two transactions does produce the same result as a serial execution then the
execution of the two transactions is said to be serializable.

A correct database can be maintained by assigning integrity checks on database items but
even for small transactions the number of integrity checks would be large. To prevent such
a large number of integrity checks serializability can be used as the consistency constraint.
If two transactions are not serializable then they cannot be executed concurrently.

The most common example of how concurrent transactions interfere is the lost update
problem. As an example of how updates can be lost consider transactions T and Tp; T1
increments the data item X by 10 and T decrements X by 5. If initially X is 20 and T; and
T» both occur serially then the expected result would be X = 25. If T and T, are executed
concurrently then the operations on X could be :-

22

(1) Tq reads X =20
(2) Tp reads X = 20
(3) Ty operates, X = 30
(4) T, operates, X = 15

The final result is either X = 15 or X = 30 depending on which of T or T terminated last.
To control such problems database systems use concurrency control methods to preserve
serializabilty of transactions.

Concurrency control is a well developed field both for centralized and distributed systems
[Bernstein 87a]. Many different methods exist but most are variations on one, that is 2-
phase locking [Eswaren 76]. Other concurrency control mechanisms can be categorized as
either being timestamp methods [Bernstein 80} or optimistic methods [Bhargava 83, Kung
g1].

The accepted standard concurrency control solution, 2-phase locking, is inefficient and
reduces concurrency considerably but has the advantage of being simple to implement. 2-
phase locking involves locking a data item when a transaction requires it and making other
transactions that need to access the data item wait until it is free again. This prevents
conflicts between concurrent transactions. A transaction must acquire a lock on a data item
before it can access it. The basic idea behind 2-phase locking is that once a transaction has
released a lock it cannot acquire any new ones. This means a transaction obtains locks in
two phases :-

Phase (1) Locks on data items are accumulated
Phase (2) Locks on data items are released

Two types of locks are used, a read-lock is used when reading data and a write-lock when
updating data. Since transactions may be concurrent, two transactions may attempt to lock
the same data item. Locks on the same data conflict in two ways, a read-write conflict and a
write-write conflict. The first occurs when a transaction holds a read lock and another
attempts a write lock on the same item. A write-write conflict occurs if a transaction holds a
write lock and another attempts a write lock on the same data. If the locks conflict then
access is denied to the latter transaction.

Using this technique serializability is ensured and the consistency property of a transaction
is performed. To provide the isolation property of a transaction the locks must be held until
the transaction is terminated upon which the locks are released instantaneously. This is
because otherwise exclusive locks could be released at any time during phase (2) and could
be read by another transaction even though the result may be aborted later.

23

Other non 2 phase locking protocols exist and allow more concurrency than 2 phase
protocols. Even greater concurrency can be achieved using these protocols by allowing the
type of locks held to be converted dynamically [Mohan 85].

Another method for concurrency control is to assign ordering to database accesses before
execution of the transaction. Each transaction is given a unique identifier, the timestamp,
which is tagged to all read and write operations. Each data item is now associated with the
largest timestamps of the possible read and write operations. Conflicts are then detected by
checking the timestamp of an operation against the stored largest timestamps. For a read, if
its timestamp is less than the largest write timestamp it is rejected and the corresponding
transaction is restarted. Similarly for a write operation, if its timestamp is less than the
largest read or write timestamps then the transaction is rejected and restarted. If there is no
conflict the operation is allowed to continue and the corresponding largest imestamp for the
data is updated to the timestamp of the operation. One problem with using timestamps in a
distributed system is the difficulty in maintaining global clocks [Lamport 78] but this is
usually solved by using a site identifier tag.

Unlike 2-phase locking and timestamping, optimistic concurrency control methods execute
a transaction until completion [Kung 81]. To prevent conflicts all write operations are
performed on local copies. At the end of the transaction global validation is applied, if this
is passed the database is updated, if it fails the transaction is restarted. The validation test
ensures that the execution of the transaction is serializable and is usually based on

timestamps. This method is optimistic in that it assumes more transactions pass the test than
fail.

2,3, E”!ZFS and Iau!ts

A failure of a system is said to occur when its behaviour deviates from that specified
[Randell 78]. A failure stems from the system containing an uncorrected erroneous state.
Erroneous system states are caused by faults, these faults can either be component faults
(hardware) or design faults (software).

Faults in a distributed computing system can be attributed to either hardware or software.
Hardware faults are mainly due to the deterioration of components as they age. Software
does not age and so faults are due to errors introduced at the design stage. Hardware
failures can be expected to happen and systems designed to minimize their effects.
Software faults are unexpected because the design errors introduced cannot be predicted.

Since it is impossible to prevent hardware from deterioration, hardware failures must be
tolerated. Techniques to tolerate hardware faults consist of replication [Lala 85]. This
redundancy is usually provided either dynamically or statically. When a number of identical
hardware elements are executed concurrently it is known as N-modular redundancy, this is

24

known as static redundancy. When a result is required the outputs from each of the units
are passed to a voter unit, if a unit has failed its failure is masked by the results from the
other units. Another method to tolerate a hardware failure is to use dynamic redundancy in
the form of a standby unit which repeats the processing required after a failure of the
original unit is detected. If a standby unit can be switched in and finish processing within a
known deadline it is possible for this technique to be used in real-time systems.

In a distributed computing system there are a number of possible sources of hardware
failures, sites may fail and communication errors may occur. This thesis assumes that when
a site fails it stops completely and does not do any erroneous processing, this is known as
the fail stop approach [Schneider 87]. An alternative would be to allow sites to fail
unpredictably, eg to compute strange values or send conflicting information to different
parts of a system. Detecting such failures and dealing with them is very complex and is
known as the Byzantine generals problem [Lamport 82]. In a distributed database system if
a site fails, other sites can only perform transactions that access data at the failed site if the
data is replicated at a working site in which case the failure has little effect. In a distributed
control system, failure of a site can be disastrous because control over an actuator is lost.
For example a site controlling a valve may fail with the valve open. The only solution is to
use backup processors to take over control of the valve. Without backup processors the
recovery time of a failed site cannot be determined a priori and so deadlines cannot be
applied if sites are assumed unreliable. Thus real-time control systems cannot be made
resilient to site failures without using redundant processors.

In general the communication network may fail in a number of ways depending on the type
of communications used. Messages may be delivered out of order or late and if failures
occur messages may even be lost. If a direct point-to-point network is used the order of
messages is preserved and the propagation delay of messages is known. This thesis
investigates the use of both asynchronous and synchronous point-to-point networks in real-
time distributed control systems. One particular feature investigated is their resilience to
unpredictable disconnection.

Software is vastly more complicated than hardware and is also very application specific.
This increases the probability of design errors being undiscovered even if rigorous
software engineering techniques are used. Two techniques exist for reducing the effect of
software faults, fault prevention and fault tolerance. Fault prevention attempts to reduce the
number of design errors during development, whilst fault tolerant techniques are used to
mask faults that do occur.

The use of formal methods is becoming an ever popular approach to fault prevention.
Formal methods are based on a mathematical or logical foundation and therefore have a set
of rules which allow reasoning about a system. Formal methods consist of two

25

approaches, formal specification and formal verification. Formal specification [Parnas 77]
is the precise representation of a problem using a mathematical representation which has a
predefined set of rules. There are a number of specification tools, many such as Z [Spivey
89] are based upon set theory and predicate calculus. Another form of formal specification
is the use of graphical techniques, these are known as formal models. For example formal
models such as finite state automata and Petri nets can be executed to determine the
outcome of the system. Formal verification [London 75, Keller 76] is used to ensure a
program adheres to its specification. London [London 75] suggests that verification of a
program should not be used as a substitute but in conjunction to testing.

The use of formal methods is slowly filtering through into concurrent systems [Lamport
83] and real-time systems [Joseph 89] but their use is still difficult and error prone. From
the experience of Moser and Melliar-Smith [Moser 90] it is clear that formal verification is
only possible for small code segments. Undoubtedly progress in this area of research will
be rapid. A discussion of these methods is beyond the scope of this thesis but a survey
detailing common techniques for real-time systems including concurrent systems can be
found in Sagoo and Holding [Sagoo 90].

An informal technique which can be used to eliminate hazards is known as software fault
tree analysis (SFTA) [Leveson 83]. A design is analysed for potential hazards, the causes
of which are identified until primitive faults are reached. The design is then altered to
prevent the primitive faults. The reliability of a system cannot be estimated using this
method unless the probability of the causes are known, this is difficult (if not impossible)
for design faults and so achieving a desired level of safety is unlikely.

Software can still contain design errors even after rigorous development. To mask such
faults software fault tolerance techniques must be used [Anderson 81]. Such techniques are
described in the next section and code redundancy.

2.4, Software fault tolerance

Due to the immaturity of formal methods it is unlikely that design errors can be completely
eliminated from software therefore techniques to mask faults caused by these errors should
be used. Such software fault tolerant techniques mask faults by using redundant code. All
of the fault tolerant techniques described here work on the principles of error detection,
damage assessment and error correction. The final stage of a general purpose fault tolerant
mechanism, fault removal is not used in software because code is not dynamically
reconfigurable.

26

».4.1. Traditional soft fault_tol hod
Software fault tolerance methods involve either static or dynamic redundancy to mask
faults. Static redundancy executes redundant code even when failures do not occur whereas
dynamic redundancy executes redundant code only when necessary. Thus dynamic
redundancy involves less overheads. The basic assumption behind the use of redundancy
in software is that different designs from the same specification will contain different

CITOTIS.

N-version programming [Avizienis 85] is an example of static redundancy. Here N-
versions of a program are executed in parallel and their outputs passed to a voting
mechanism. Majority voting is then performed using all the program outputs, thus if a
majority of outputs agree erroneous results can be masked.

A problem with this technique is that it assumes that design diversity will produce different
design errors. Knight and Leveson [Knight 86] carried out a statistical study on 27
independently written, identically specified programs. The programs were subjected to
many different sets of data and any faults were monitored. This study showed that common
design errors do occur in independently developed programs, probably due to a common
misinterpretation of the specification. This illustrates the need for formal specification
methods. Another problem that may also occur is in the use of floating point arithmetic,
results from different programs may be correct but may not match due to rounding errors
[Brilliant 89]. For these reasons N-version programming should be used carefully,
probably in conjunction with other software fault tolerant techniques.

Dynamic redundancy does not incur the overhead of executing redundant code unless an
error is detected. Instead when an error is detected an attempt to re-do the faulty
computation by using an alternative piece of code is tried. Before the alternative can be
executed an error free system state must be re-established, this is achieved by using either

backward or forward error recovery.

Recovery blocks [Randell 75] use dynamic redundancy and are used in sequential systems
to provide backward error recovery. A recovery block consists of a recovery point, an
acceptance test, a primary module and a number of alternative modules. When the recovery
block is first entered the error free system state is stored, this is known as the recovery
point. The primary module is then executed. When this is completed the validity of the
results are checked by an acceptance test. If the acceptance test is passed, the recovery
block is exited and the saved recovery point is discarded. If the acceptance test fails then the
program is rolled back to its recovery point, the saved state is restored and an alternative
module is executed. This continues until the acceptance test is either passed or the number
of alternatives are exhausted. If the acceptance test fails and no more alternatives exist then

27

the recovery block fails and the system must provide recovery at a higher level, possibly by
nesting recovery blocks.

This technique does not incur the overheads of N-version programming if faults do not
occur but it does suffer from the same design diversity problem. Another problem with
recovery blocks is that the acceptance test is a critical component. It must be designed to
detect as many errors as possible but also be minimized because it is executed every
traversal of the recovery block. Acceptance tests are devised to detect unexpected program
executions and also prevent unsafe output, Hecht [Hecht 79] describes how acceptance
tests can be constructed.

Fault tolerance in a concurrent system where processes communicate is much more difficult
to achieve because errors can migrate during inter-process communication. Consider a
number of communicating parallel processes. If an error is detected after a communication
has taken place, the communication must also be undone during rollback . This means the
process receiving the message must also be rolled back, this process may also have
communicated with another process and so that communication must also be undone. This
cascading of rollbacks is known as the domino effect [Randell 75] and may lead to all
processes being rolled back to their start. A method of controlling error migration and
recovery is therefore needed.

Atomic actions are a method of controlling error migration by ensuring that the processes
within an atomic action do not communicate with processes outside for the duration of the
atomic action [Anderson 81]. When an error is detected each process is rolled back to the
state occupied when entering the atomic action. Since no process communicates outside the
atomic action the domino effect is limited. Atomic actions can be associated with backward
and forward error recovery techniques.

The most well known technique using the ideas of atomic actions and backward error
recovery is the conversation [Randell 75]. A conversation involves the coordination of
recovery for a number of concurrent processes. It is basically an extension of the recovery
block mechanism which limits inter-process communication. A conversation is often
described as a boundary consisting of a recovery line, an acceptance test and sidewalls to
prevent communication. The recovery line consists of a set of process recovery points, one
for each constituent process and is used during rollback. The acceptance test of a
conversation is a test on the set of results produced by the constituent processes, no
process is allowed to leave a conversation unless all pass the acceptance test. If any fail
then all the processes are rolled back to their recovery point and the conversation is
restarted using alternative modules (for the same processes).

A major problem with using conversations is the identification of constituent processes and
a suitable boundary. Tyrrell and Holding [Tyrrell 86] describe a static method using

28

process states to solve such problems. This method is simplified by Wu and Fernandez
[Wu 89] who only consider interprocess communication as being important. This
simplified method loses state information and only provides an approximate boundary. One
problem with using such a method is that conversation placement takes place after the
system is designed and transformed into a state representation. An alternative solution

would be to identify where conversations are required during the design stage.

Other problems of the static design of conversations exist because once a set of processes
are chosen to take part they cannot be changed. Alternative approaches have considered the
dynamic design of conversations [Merlin 78, Kim 88], although great care is required to
avoid the creation of recovery modes that exhibit the domino effect. Problems also arise
from the generic structure of the conversation. Processes enter a conversation
asynchronously but are synchronized on their exit because of the acceptance test. This
implies that if a process never enters a conversation then all the other processes cannot
leave, the conversation does not allow any timeout mechanism. A problem also occurs
when the acceptance test fails and the processes are rolled back and execute their
alternatives. It may be better for just a few to execute their alternatives or for a completely
different set of processes to interact. Also because primary modules are different to
alternative modules a new acceptance test may be preferable to the original.

These problems are solved by Gregory and Knight [Gregory 85] who proposed a linguistic
approach known as the colloquy. Again a colloquy uses atomic actions and backward error
recovery but unlike conversations different processes are allowed after recovery. A
colloquy consists of a number of blocks known as dialogs. A dialog indicates the processes
that take part in an atomic action and the acceptance test to be used. If a dialog fails its
acceptance test then the colloquy can execute another dialog. This method also allows
timeouts to be used. An attempt was made to provide such a mechanism using a production
programming language [Gregory 89] but found the differences between the needs of a
general purpose programming language and backward error recovery difficult to overcome.
They also suggested that a programming language with semantics designed to support
backward error recovery is needed.

The previously discussed techniques, the conversation and colloquy provide structuring of
backward error recovery using atomic actions. However, in certain systems forward error
recovery is more useful [Leveson 83]. Atomic actions can also be used to structure forward
error recovery [Campbell 86, Taylor 86]. Problems occur when concurrent processes
detect different faults because they may be handled individually instead of as one. Campbell
and Randell [Campbell 86] propose the use of an exception tree to eliminate this and
activate the required fault tolerant measure.

29

All of the previously mentioned techniques are useful for tolerating software faults and can
be used to tolerate certain transient hardware faults, e.g. a memory bit changing.

viding a
None of the fault tolerant mechanisms described above provide atomicity, although the
acceptance test of a conversation does provide a fail/succeed mechanism there is no
guarantee of this if all the alternatives fail. A database system uses transactions to provide
atomicity in the presence of hardware failures and concurrent transactions. Atomicity when
concerning transactions is often divided into failure atomicity and concurrency atomicity.
Failure atomicity means that the transaction either completes successfully or has no effect
on the database, this is the usual meaning of atomicity. Concurrency atomicity of a
transaction is the property that partial results are not available to other transactions. This
thesis uses the term atomicity to mean failure atomicity and concurrency control to mean
concurrency atomicity. The mechanism used by transactions to provide atomicity is

extended with timing requirements in this thesis. Its use in real-time systems is then
considered.

Stankovic [Stankovic 88b] suggested that real-time databases could take advantage of cut-
down transactions to satisfy timing constraints. This thesis takes the idea of cut-down
transactions further and just uses the mechanism which provides failure atomicity. Such
mechanisms are known as commit protocols. The basic idea of a commit protocol is to
ensure the all/nothing property even when failures occur, this ensures that a consistent state
is always maintained. Commit protocols are surveyed in chapter 3

An example of the use of a commit protocol in a database system is the termination of a
transaction which has spawned a number of sub-transactions. To maintain a consistent
database all of the sub-transactions must be terminated in the same way. Either they are all
completed or they all have no effect. This is provided by the commit protocol which
ensures that either all the sub-transactions are committed or none of them are. A commit
protacol uses stable storage (eg. disk) to store system states for use during recovery after a
failure. Stable storage is assumed to be tolerant to failures in that memory contents are
never lost.

Initially the acceptance test of a conversation appears to provide the all/nothing property
required for atomicity because either all processes exit or are restarted. The difference being
that the processes are not just rolled back but restarted using an alternative module. If a
number of faults occur then this roll back will be repeated until there are no more alternative
modules and the conversation is deemed to have failed, recovery must then be performed at
a higher level. Thus there is no guarantee on the overall outcome. Also processes enter a
conversation asynchronously therefore some may enter before it is known that all the

30

processes are able to start. A commit protocol overcomes this by ensuring that if a
constituent process cannot take part then no processes take part. Another problem with the
conversation is that although they tolerate software failures they do not tolerate hardware
failures because they do not use stable storage. Commit protocols on the other hand are
resilient to any number of sequential failures and use stable storage to store system state.
Conversations are designed for process interactions whilst commit protocols are expected

to operate with data items.

Since a safety critical system needs to tolerate failures and still remain safe, the coordination
of such a system requires extra care. If the system is distributed the coordination of the
system is even more difficult because inter-processor communication failures must also be
tolerated. Not only must software faults be tolerated but also hardware faults. The above
mentioned fault tolerance techniques can be used to tolerate software faults but not
hardware failures. A protocol used to coordinate safety critical systems must be able to
function correctly but always maintain a safe system even in the presence of hardware
failures. If a failure occurs which prevents the desired operation being performed within its
timing constraints, a substitute operation which meets these constraints can be used.

This thesis proposes the use of commit protocols to coordinate processes in real-time
systems. The coordination is such that if a timing constraint cannot be met then a safe
system state is still maintained. One problem of commit protocols is that the all/nothing
property is always reached eventually, no timing constraint is applied. Therefore this thesis
also considers the design of commit protocols enhanced with timeout mechanisms to
provide timely decisions.

5. Desien of rot , |

The preferred characteristics for real-time commit protocols have been identified above. To
satisfy these requirements it is desirable to develop a technique and model which can be
applied to the specification, design, implementation and verification of the protocols. A
protocol for use in real-time systems must provide the required functionality and also meet
pre-determined temporal constraints. This thesis assumes that the only temporal constraint
on a commit protocol is that the decision must be made before its deadline. The functional
properties that a commit protocol must satisfy are that the outcome at each site is consistent
with the other sites and also correct.

A system model which shows the state of each site in a commit protocol can be used to
demonstrate the desired functionality. The commit protocols can be modelled as a series of
state transitions at each site which in the absence of any failures should produce a
consistent result. Failures can then be included in the model and the design enhanced to

31

provide resiliency to such failures. The scope of failures included depends on the aspects of
the system modelled.

Only one formal model for commit protocols currently exists, this is described in the next
section. This thesis examines the limitations of this model and proposes a new model

which can be used as a basis for the design of robust protocols.

5.1, Previ telli ‘ , I

The first formal model of commit protocols used a finite state machine (FSM) to model
local states [Skeen 83]. Each site was modelled by an individual FSM and the global
system state was defined as the union of all local states and any outstanding messages in
the network. The analysis of this method is explained in more detail in chapter 3.

Skeen's model includes implicit assumptions about the communication network. These
assumptions simplify the model but limit its usefulness. For example communication
mechanisms are not modelled with the result that the model of communication failures is
not explicit. Typically, the model assumes that timeout messages are generated by the
network when a message fails to be transmitted. Another assumption made is that the
transmission of a number of messages is atomic. This means that if a site sends a message
to a number of other sites then if one site receives the message it is assumed that all the
other sites receive theirs. Obviously in a practical distributed system this situation is
unrealistic.

The original model does not contain any timing information and so cannot be used to derive
performance characteristics, without which it cannot be deduced if deadlines are met. This
was not a problem in Skeen's work [Skeen 83] because the commit protocols did not have
associated timing constraints. However it is a severe limitation if the protocol is to be used
in real-time systems.

The FSM models were used to derive a number of theorems about the existence of commit
protocols when various spurious faults were allowed. One of the most significant results
that have been obtained is a theorem which states that there does not exist any commit
protocol using independent recovery which is resilient to arbitrary failures by more than
one site [Skeen 83], thus the resiliency of commit protocols is limited.

Skeen's assumption that multi-site communications constitute an atomic action is relaxed by
Yuan [Yuan 89]. This extends Skeen's model so that a site can fail after sending a message
to only some of the intended sites. This is much more realistic for a multi-site system. Yuan
also proposed a new protocol which is resilient to multiple failures but only by
communicating with other sites after recovery. Thus upon recovery a site knows what
action all the other sites took and can act appropriately. The protocol is enhanced so that
failures which allow independent recovery can be detected and used for optimizing the

32

number of messages sent. This reduces the communication overhead and therefore the

recovery time. One disadvantage is that a fully connected commit network is required.

252, Petri lelling of : !

Petri nets [Peterson 81, Murata 89] are a technique for modelling sequential and concurrent
systems. They are mathematically based and can be represented either as a set of equations
or as a bipartite directed multigraph. The graphical representation is clear and precise and
allows the dynamic and concurrent properties of a system to be visualized. Petri nets model
control flow and can show synchronization and communication between parallel activities.
A FSM is a subclass of Petri nets known as state machines [Peterson 81] but do not show

such synchronization or communication.

Many uses exist for Petri nets, in particular they can be used to model computer hardware
[Azema 76] and distributed software systems [Mekly 80]. Another use is as a high level
design tool, Nelson et al [Nelson 83] have suggested that by annotating Petri nets they can
be transformed into a suitable programming language. Another recent use of Petri nets is
their use in designing software fault tolerant systems [Tyrrell 86, Leveson 87].

The analysis of Petri nets allows system properties such as liveness and reachability to be
verified. Liveness shows that a deadlock cannot occur and reachability shows if a possible
global state is achievable. Two techniques exist for verifying such properties, the transition
matrix and the reachability tree [Peterson 81]. Although more amenable to computer
analysis the transition matrix does not represent state as clearly as the reachability tree. The
reachability tree of a concurrent system can be very large even for a system with few states,
the analysis of which is often automated [Razouk 85b, Memmi 84].

This thesis considers the use of Petri nets to design robust protocols for use in distributed
real-time systems. The Petri net are shown to be correct by the manual generation and
analysis of the reachability tree. Petri nets and their analysis are described in chapter 4. It is
then shown in chapter 5 how the Petri net can be transformed almost directly into the
programming language Occam.

Petri nets can be used to model the states of a concurrent system, thus they can be used to
model the state based behaviour of commit protocols. They can also be used to model the
same type of failures as Skeen's FSM model, i.e. site and communication failures. In
addition they can be used to provide a uniform method of modelling failures. Following
Leveson and Stolzy [Leveson 87] who allow failures to be incorporated by using failure
transitions, the same method is used in this thesis to model site failures. Additionally, lost
messages are modelled as failure transitions and communication failures as unfireable
transitions.

33

Using Petri nets a succinct representation of the communication system can be developed.
This allows individual messages to be modelled. Unlike the FSM models, which did not
include explicit messages, communication failures can now be added to the Petri net model.
This allows recovery mechanisms to be placed appropriately. The FSM models are
provided in chapter 3 whilst the Petri net models are derived in chapter 4. Modelling
communications allows a comparison between the use of asynchronous and synchronous
communications and it is also possible to identify where optimization may be used.

Another important feature of Petri nets is that time can be included, this allows analysing of
the net with respect to timing properties. Properties such as the determination and
placement of timeouts can be found by analysing the timed Petri net. Such timeouts can be
used to ensure that a consistent decision is always made before the deadline.

2.6, Impl (ati f . tocol
Commit protocols have traditionally been used in distributed database systems where the
only means of communications is by a local area network [Ceri 87]. An early distributed
database system, SDD-1, used a communication network designed to provide each site
with facilities for reliable communications [Hammer 80].This network is known as Relnet
(reliable network) and provides guaranteed message delivery in the correct order. If a site
fails and a message cannot be delivered spoolers are used to store this message until the
failed site recovers. The commit protocol used by this system is detailed in chapter 3.

The underlying communication structure affects the implementation of commit protocols
because it restricts how sites can interact. For instance commit protocols can be designed to
communicate using centralized, hierarchical or linear communication structures [Ceri 87]. A
centralized communication structure designates one master site which can communicate
with every other site but these other sites cannot communicate with each other directly only
via the master. However a hierarchical structure allows messages to be passed up and
down the tree and for sites within a local sub-tree of the hierarchy they do not need to go
via the master site. The communication structure therefore affects the design and
implementation of the commit protocols.

In this thesis only the more commonly used centralized commit protocols are implemented
because they can be easily modified to use other communication structures. The language
Occam [Inmos 88a] is used to implement the commit protocols because of its succinct
message passing ability and because each primitive in Occam has a corresponding Petri net
model [Carpenter 88a]. Since Occam uses direct point-to-point synchronous
communications, any facilities for reliable communications previously provided by the local
area network must now be provided by the commit protocol itself, an example being the

34

provision of timeouts. However, such protocols must be proved to be free from deadlock,
inconsistencies, and timing errors for the given communication structure.

In chapter 4 Petri net models are used to demonstrate that commit protocols can be designed
using direct synchronous communications and still be resilient to failures. It is then
demonstrated in chapter 5 that the Petri net specifications can be transformed into the
programming language Occam. The proposed implementation also identifies a known short
coming of the Occam language which prevents direct implementation when communication
failures are allowed, this is overcome by using a low level extension to Occam.

2.7, Application of :] L

The applications of the protocols developed are demonstrated in chapter 6 by three
examples. Firstly a real-time database example illustrates how commit protocols with
deadlines may prevent transactions missing deadlines. The next two examples illustrate the
use of commit protocols in control systems.

»7.1._Applicati . -t Jatal
A real-time database system is usually very closely related to its environment, possibly as
part of a control system, this implies that access time to the database must be fast and
predictable [Singhal 88]. This response time must be maintained even in the presence of
failures whenever possible. The response time of a database can be improved by using

larger main memory (less disk accessing), trading a feature (such as serializability) or by
replicating data.

Data replication is often used because it is less costly to achieve than main memory systems
and the full properties of a transaction can be provided if necessary. Another advantage is
that it is unlikely that all the copies of a data item will be unavailable due to failures and so
transactions can still execute [Son 87]. If critical data is replicated at sites which access it
frequently then the response time of transactions accessing this data can be reduced because
communication overheads are not incurred.

Problems with replicated databases are the storage overheads and the control of replicated
copies. Replicated copies must be made to act as a single unit, ie a strong consistency
constraint is needed to ensure all copies of a data item always have the same value. This is
impossible to fulfil all the time because it takes finite time to update data and communicate
requests. This can be temporarily relaxed but a mechanism is needed to resolve

inconsistencies as soon as possible [Son 88, Bhargave 87].

Two conflicting properties in a real-time database are consistency and availability [Lin 88].
Whilst consistency is important it may be better to temporarily sacrifice consistency so that
a required response time can be satisfied. Consider for example two copies of data item X,

35

x1 and xp which reside at sites s; and s respectively. If a transaction T is updating both
copies when site sj fails, to achieve consistency, x) cannot be updated until s3 recovers. If
another transaction T now requires access to X it must also wait for sy to recover. A
possible solution is to allow x; to be updated and allow T to execute, x is then updated
when sy recovers. This increases the availability of X but reduces the consistency between
copies because it is not known how long sy will be down. This causes problems because
transactions can occur at any time, even when a failed site is recovering. Therefore if the
item x is being updated during recovery but another transaction T3 is updating x then this
update is missed at site sp. A solution to this is suggested by Bhargava [Bhargava 87] who
uses the idea of a lock which indicates if an item is updated when one of its copies is
unavailable.

If the situation is simplified so that transactions are not allowed during the recovery of a site
then a possible solution is to use a non-blocking commit protocol. This could be used in the
above example to update xj. Since the protocol is independently recoverable, when sy
recovers it will update itself to the value of x1. This obviously simplifies the problem in a
distributed database but is a good example of the use of such protocols.

A distributed real-time control system coordinates the actions at independent sites by using
only message passing. The coordination must also satisfy timing constraints. Often it is
required that a number of sites are coordinated so that either all sites perform their actions
or none of them do. It is quite reasonable to expect timing constraints to be applied to such
coordination. This thesis assumes that the all/nothing property is crucial to the safety of the
system, if only some actions are performed the system becomes unsafe. An example of this
type of behaviour can be seen by examining again the problem of coordinating 2 robot arms
which lift faulty containers from a conveyor belt. The container must be lifted by both
arms, if only one robot attempts the lift the container will tip, also the lift must also be
completed in time to clear the next container. This example illustrates both the all/nothing
property of the actions and the timely decision to lift the container. If the decision to lift the
container is late, the robots will not be able to perform the lift in time to clear the next
container. Another problem that must be solved is tolerating failures, a consistent action
must be performed by the robots even if failures occur.

Parallel work by Davidson et al [Davidson 89] has extended the basic two phase commit
protocol with a deadline but their environment does not allow failures to be tolerated. The
protocol instead allows an extra termination state, the exception state, a site enters this state
when a failure occurs. This does not provide total consistency because when the protocol
terminates some sites may have aborted/committed whilst others may be in the exception

state, this is resolved later by a recovery procedure. The commit protocol used by Davidson

36

is the most basic commit protocol which does not provide independent recovery. This
means if a site fails the other sites must block until the failed site recovers. Since only one
type of protocol is used a formal model is not used to demonstrate the required features.
This work has been extended by Lee et al [Lee 89b] to take advantage of the periodic nature
of many real-time tasks but uses the same basic protocol.

This thesis applies an extended two phase commit protocol enhanced to accommodate
deadlines and timeouts to real-time systems and shows how site and communication
failures can be tolerated. It is shown how the real-time systems can be modelled using Petri
nets to show that they function correctly both functionally and temporally. The resilience of
the systems to failures is demonstrated by including site and communication failures in the
Petri net model.

2.8, Di .

The use of commit protocols in real-time systems requires protocols extended with
deadlines and mechanisms to detect and tolerate faults. A method of modelling such
protocols and verifying their functional and timing properties is also required.

Previous formal models for commit protocols have concentrated on proving the existence
of certain classes of protocols. Timing has never been included. This thesis extends the
previous work by using Petri nets and including timing constraints in the specification.

The models developed in this thesis allow the communication system to be modelled thus
allowing communication failures to be analysed. Modelling the communication system also
allows the use of both asynchronous and synchronous communications to be compared.
They also allow the incorporation of time into the models so that a uniform model is
provided which makes analysing the protocol easier, timing constraints can be directly seen
from the analysis of the specification.

Naturally, the protocols developed in this thesis are suitable for implementation on
appropriate communication networks. The implementation of a commit protocol for use in a
real-time system should provide reliable communication with a predictable propagation
delay. Traditional local area networks do not provide such predictability, however the
implementation of the synchronous protocol in this thesis overcomes this by using direct
point-to-point synchronous communications.

When applied to real-time systems it must be shown that the commit protocol performs as
expected. In this thesis, Petri net techniques are used to model both the application and the
protocol. This allows the commit protocol to be modelled as an integral part of the system.
From this model it can be confirmed that a safe system state is always maintained and also
shows that timing constraints are met.

37

Chapter 3

Modelling Atomic Commit protocols

3.1. Introduction

To ensure consistent decisions are made over a distributed computer system commit
protocols are used to provide atomicity. Various protocols have been designed to provide
atomicity in database applications [Gray 79, Balter 81, Skeen 82a] but these have never
included deadlines, the agreement is always reached eventually. This chapter describes the
most important of these protocols and explains how they can be classified into blocking and
non-blocking depending on the affect of a failure. The protocols are examined and

investigated for their applicability to real-time systems. Non-blocking protocols are
identified as being useful because they can recover independently after a failure.

It is advantageous to describe commit protocols in a precise and clear manner so that a
systematic design method can be developed. The graphical model described in this chapter
is the Finite State Machine (FSM). Each site is modelled as a separate FSM which
expresses the local state of each site. Sites are modelled as starting in an initial state and
progressing through a number of states until a final commit or abort state is reached. If all
the local states are combined a global state is derived which allows the system to be
analysed as a whole. A commit protocol FSM is said to be correct if all the final global
states contain either all abort states or all commit states.

In many ways a formal graphical model is better than a formal mathematical model for
describing distributed systems. Graphical models are usually clearer and more concise than
mathematical models. Also the required information is generally found by analytical
inspection rather than mathematical reasoning. For this reason, proofs deduced from a
graphical model are known as rigorous and not formal. When investigating commit
protocols the property of interest is that of state consistency, this can be found by
inspection of the FSM model. Possible failures can be included in the model so that the
resiliency of the protocol can be examined.

Existing models of commit protocols using Finite State Machines (FSM) are examined in
this chapter. Previous work [Skeen 82a, Skeen 83] used the models to determine the
existence of protocols which can survive various site or communication failures. Skeens
results show that commit protocols can be designed to tolerate only a limited set of failure
scenarios. Another result is that failure modes must be completely distinguishable. The
analysis of these models provide information on what types of failures the protocols can
tolerate and still be made to terminate consistently. The models are also useful to show
where timeouts should be placed to provide resiliency to failures. However, the existing

38

models are shown to be inadequate for describing timing properties or calculating the
values of such timeouts.

Throughout this chapter the protocols are assumed to have access to an asynchronous
communications network which fully connects all the participating sites. The network is
assumed to be able to absorb undelivered messages and also report timeouts to the sender.
Such a network could be a local area network which incorporates special facilities such as
timeouts for undelivered messages, these facilities aid the resiliency of the protocols to
failures.

These assumptions result in significant simplifications of the protocols. Later, in chapter 4,
consideration is given to replacing the asynchronous communications network with

synchronous point-to-point communications.

Section (3.2) describes existing protocols which have been developed in the database field.
These protocols are classified as either blocking or non-blocking and their strengths and
weaknesses are discussed. One specific protocol, the extended 2 phase commit, is
emphasized because all operational sites can terminate consistently without waiting for the
failure to be repaired and without any extra communication. Because of this the extended 2
phase commit protocol is selected for use in later parts of the thesis. The FSM models for
the common protocols are discussed in section (3.3) and are analysed in section (3.4). The
analysis involves generating the global state tree which consists of all possible achievable
states. A method which uses this tree to determine whether a protocol is non-blocking is
described. The disadvantages of the FSM model are discussed in section (3.5).

3.2, Atomic commitment protocols

Commit protocols have been used in distributed database systems to provide the atomicity
function of a transaction and keep the database in an overall consistent state. They have
been used to ensure that transactions either complete fully or have no effect on the database
even when the database recovers after failures. Recovery in centralized databases is
relatively simple but becomes more complex for distributed databases [Bernstein 83]. The
added complexity for distributed databases is because the commit protocols have to ensure
all the sites make a consistent decision even in the presence of failures. This thesis

considers the application of commit protocols to distributed real-time systems therefore
empbhasis is placed on protocols applicable to distributed systems.

Commit protocols can be classed as blocking or non-blocking protocols, a method to
identify blocking protocols is given by Skeen [Skeen 83]. Consistency and availability are
conflicting properties for commit protocols. Blocking protocols have low availability and
high consistency but non-blocking protocols have high availability but may have low
consistency. Blocking and non-blocking protocols are described here with the most

39

common protocols described in detail. Following this the concept of independent recovery

is introduced and it is shown that this property is most useful for real-time systems.

32.1. Blocki . I
A commiit protocol is termed a blocking protocol if due to a site failure a consistent decision
cannot be made until the failed site recovers. In a database system a blocking commit
protocol reduces the availability of data because locks are held on data until the failed site
recovers and the protocol terminates, thus preventing access by other transactions. The
recovery time of a failed site may be quite substantial and this could be unacceptable in
some situations, in particular time-critical systems. In some cases it may be better to
provide a substitute answer (emergency default) within the time limit than to miss the

deadline completely and possibly delay other important processes.

3.2.1.1. The two phase commit protocol

The most widely used and well known blocking commit protocol is the 2 phase commit
[Gray 79]. It has been shown to be blocking by the use of a state reachability tree and the
notion of a concurrency set [Skeen 83]. If a site i is in a state A, then the concurrency set
for state A is the set of all possible states that other sites can occupy whilst site i is in
state A. Concurrency sets are important because they allow deductions to be made about
the recoverability and blocking properties of a protocol following a failure. For example, if
a site fails and its state at the point of failure has a concurrency set which includes a final
state then its recovery possibilities are limited (if any) because it must recover consistent
with the final state of the other site. Similarly, if a protocol contains a state which has both

abort and commit in its concurrency set and the site fails in this state then the protocol is
unrecoverable using local information and is said to be a blocking protocol.

The 2 phase commit protocol can be centralized with one site designated the coordinator
process whilst the others act as participants. The job of the coordinator is to ensure all

participants (and itself if involved) make a consistent decision. The coordinator executes as
follows :-

Phase 1 (1) aready log file is written,
(2) 'ready' messages are sent to each participant,
(3) wait for participants to reply with their votes,

Phase 2 (1) when all participants have replied a decision is made ,
(2) a log file reflecting the decision is created,
(3) the decision is sent to the participants (‘commit’/ 'abort’).

40

The commit decision is only made if all the participants and the coordinator voted 'yes'
otherwise the decision is to abort. The log files are used by a recovery process to see how
far the protocol has got.

Each participant executes in the following manner :-

Phase 1 (1) wait for ready' message,
(2) if participant can commit send 'yes' else send 'no’ and abort,

(3) write yes / no log file,

Phase 2 (1) either 'commit’ or 'abort' message is received,
(2) write decision log file,

(3) execute decision.

Once the 'ready’ message is received by a participant it checks to see if the transaction
requested can be completed. If it cannot be completed the participant unilaterally aborts and
terminates otherwise it continues with the protocol. In a database system a typical check
would be to determine whether the data items are locked by any other transaction, if they
are locked then the requested operation must be aborted and a 'no' vote is sent otherwise a
'yes' vote is sent. The second phase is necessary because another participant may not be
able to commiit its request therefore no others are allowed to commit. The 2 phase commit is
correct with respect to participant failures but is blocking for coordinator failures. The 2
phase commit protocol described omits acknowledgement messages normally sent after a
participant has written its decision log. These are omitted because they do not increase the
fault tolerance of the protocol but are used to inform the coordinator that the required
actions have been completed.

3.2.1.2. Variafi the 2 pI .

This section describes a number of variations on the 2 phase commit protocol namely the
presumed abort, the presumed commit and the 4 phase commit protocols. The first two are
optimized versions of the 2 phase commit whilst the latter protocol includes backup
processes.

The presumed abort and presumed commit protocols {Mohan 83a] reduce the number of
messages and log writes involved in the original protocol and thus improve the
performance. They have been implemented in the IBM distributed database system R*
[Lindsay 83].

The presumed abort protocol is optimized by taking advantage of read-only transactions. If
a participant receives a 'ready’ message and decides no updates are needed then it sends a
read vote and releases its locks on any data items. No log records are needed and no
command message needs to be sent, this is because the outcome of the transaction is

41

irrelevant to read-only participants as no updates are done. If all participants reply with
read votes then there is not even a need for the second phase. If at least one yes vote is
received then the coordinator acts as for the 2 phase commit .

The presumed abort protocol also attempts to overcome the blocking which occurs in the 2
phase commit protocol following failure of the coordinator. It also reduces the number of
log records required. Specifically, in the 2 phase commit protocol, if a failure of the
coordinator occurs after sending the 'ready’ messages and before receiving all the votes
then there is no information about the outcome of the decision. When the coordinator
recovers, its recovery process may get inquiries from the participants which cannot be
answered. In the presumed abort case if there is no information the transaction is assumed
to be aborted and an abort message is returned. Thus the coordinator does not need to write
an abort decision log because any recovery procedure finding no log assumes the decision
is abort. This protocol still blocks when a coordinator fails before informing the
participants about the decision.

An extension to the presumed abort uses Byzantine agreement [Mohan 83b] to trade more
message passing for an improved recovery time. This extension uses the notion of a cluster
of processes, such a cluster being highly connected with a high communication bandwidth.
Byzantine agreement [Lamport 82] is used between the processors within a cluster but not
between clusters because the inter-cluster communication bandwidth and connectivity is
assumed to be low. The commit protocol is non-blocking if the transaction is executed
entirely within a cluster because each processor within the cluster acts upon the same
database. Since failures should be a rare event the extra message overhead and additional
processors required are probably unacceptable for most applications.

Another extension to the presumed abort is that used by the Quicksilver system [Haskin 88]
where additional possibilities exist for the vote returned by a participant. The different
possibilities allow varying degrees of synchronization and recoverability.

The presumed commit protocol is the dual of the presumed abort and was designed because
more transactions are expected to commit than abort. In this protocol when a site recovers
and finds no information about the decision it is assumed to be commit. An inconsistency
can occur if the coordinator failed after sending ‘ready' messages and before collecting all
the votes. Since no log record would have been written the coordinator would recover and
abort because it has no record of the participants involved, the participants upon recovery
would find no information and presume a commit decision. This inconsistency can be

removed by including a prepared log which identifies the participants involved.

The presumed commit is more efficient for update transactions whereas the presumed abort
is more efficient for read-only transactions. Intuitively more reads than updates are
performed per transactions so presumed abort is preferred. Within R*, the type of commit

42

protocol can be varied for the type of transaction but the choice for a mixed transaction
must be made heuristically.

The 4 phase commit protocol has been used in the SDD-1 system [Hammer 80] and the
DDM system [Chan 83] and is based upon the 2 phase commit with the addition of backup
processes and the idea of a reliable network. In SDD-1 the network, Relnet has a
guaranteed delivery layer which ensures that if a message is sent it will eventually be
received by the correct site in the correct order. The Relnet is provided by a number of
reliable buffers called spoolers. The use of such a network allows the commitment of a
transaction even if a participant fails, this is because when the participant recovers it will
receive the final commit message from the network. To provide resilience to coordinator

failure a number of backup coordinators are assigned. The four phases of the protocol are :-
phase 1 a number of ordered backup coordinators are created,

phase 2 updates are sent to the participants,

phase 3 commit/abort is sent to all backups,

phase4 commit/abort is sent to all participants.

If the coordinator fails one of the backup processes takes over, a two phase procedure is
used to ensure all the other backups are in the same state. This is needed because a backup
may fail and another one must be chosen which must know the same outcome as the failed

backup.

The protocol is blocking only if the coordinator and all the backups fail at some time during
the four phases, this becomes very unlikely when more backups are used. The overheads
involved in creating and coordinating backup processes are very costly in terms of message
transfers and are probably unacceptable for many systems.

To summarize this section on blocking protocols the application of each is considered.
Firstly the 2 phase commit has the advantage of being simple and general purpose,
improvements to the efficiency are provided by the presumed abort and presumed commit.
The latter protocols may be useful in real-time systems because of the optimizations but
they still block when failures occur. Another problem is that it may not be possible to unroll
incorrect presumed commits if they involve physical output. It must be noted that the
agreement of these protocols is not bounded by any time limits which would be essential
for the application to real-time systems. The 4 phase commit is not considered in the thesis
because of the added complexity of backups and the idea of guaranteed delivery which
would be difficult to provide

43

3.2.2. Non-blocki . |
A commit protocol is non-blocking if it can be terminated without waiting for the failed site
to recover. The properties of non-blocking protocols have been investigated by Skeen
[Skeen 81a, Skeen 82a] by the use of FSM's, this technique is discussed in section 3.3.
Non-blocking protocols have high data availability because data is never locked
indefinitely, but data may become temporarily inconsistent until a failed site recovers. This
inconsistency is only between operational and failed sites, all operational sites will be
consistent. The application of non-blocking protocols to real-time systems appears more
feasible than blocking protocols because all operational sites can be made to terminate
within a deadline. One problem with their use is that they incur approximately fifty percent
more communication overheads than their corresponding blocking protocol [Dwork 83].

3.2.2.1. The 3 phase commit protocol

This protocol is very similar to the 2 phase commit but buffer states are added before
entering the commit states. There exists at least two 3 phase protocols, the one presented by
Skeen [Skeen 83] adds a buffer state only to the coordinating site but in general a buffer
state is added to the coordinator and the participants [Skeen 81a]. This latter version allows
the protocol to be the same for the fully decentralized case where each site takes part as an
equal. This thesis assumes the centralized version of the protocol with buffered coordinator

and participant when referring to the 3 phase commit. In addition, the simple protocol with
a buffered coordinator is termed the extended 2 phase commit.

The execution of the coordinator process for the 3 phase commit protocol with reference to
messages and states only is as follows :-

Phase 1 as for the 2 phase commit a 'ready’ message is sent to each participant, the
coordinator enters a wait state.

Phase 2 votes are collected, if any vote is 'no' then an 'abort’' command is sent else a

'prepare to commit' message is sent. The coordinator enters a prepared state.

Phase 3 the coordinator collects acknowledgements from the participants and sends the
'‘commit’' message and commits the transaction.

The participant follows a similar procedure :-

Phase 1 as for the 2 phase commit either a 'yes'/no' is returned to the coordinator after
a 'ready’ is received. If 'no' is sent the participant unilaterally aborts the
transaction otherwise it enters the ready state.

Phase 2 the participant waits for the command either 'abort' or ' prepare to commit'. If
the later is received then a prepared state is entered else the transaction is
aborted. An acknowledgement of this transition is sent to the coordinator.

44

Phase 3 a final 'abort’/commit’ command is received to finish the participant.

The coordinator in the extended 2 phase commit executes as above except 'commit'
messages replace the 'prepare to commit' messages because the participants do not have a
prepared state. Also the participants of the extended 2 phase commit are the same as the

participants used in the 2 phase commit with an extra acknowledgement message.

The centralized 3 phase commit involves an extra 2N messages [Dwork 83] but this
overhead is more than outweighed by the non-blocking property. Recall that the 2 phase
commit is blocking if the coordinator fails and no operational site has reached their commit
state, ie all sites are in their ready states. Now for the 3 phase commit if none of the
operational sites are in the prepared to commit state the failed site could not have possibly
committed itself therefore the transaction can be aborted. If a failure of the coordinator
happens in the final phase a new coordinator can be elected to terminate the transaction
because the participants must be in the prepared state and could not have aborted.

3222 T inati tocol
When a site failure is detected a commit protocol cannot terminate normally, therefore a
termination protocol is used so that all operational sites finish consistently [Skeen 81b].
Also the failed site must terminate consistently upon recovery. This would be a useful

feature for real-time systems because the operational sites could be used to override the
failed site but still provide a consistent decision.

Termination protocols can only be used with non-blocking protocols such as the 3 phase
commit. When the failure of a participant is detected the operational sites can all terminate
correctly and the failed site will terminate after recovery. As for the 2 phase commit
problems occur when the coordinator fails. Upon detecting a coordinator failure a new
coordinator is elected. This can be done in various ways but a simple and efficient way is
that used by the SDD-1 system [Hammer 80]. Once elected the new coordinator takes over
and polls each site for state information.

If any site is found to be in the commit or abort state then the outcome of the transaction is
known and all operational sites must be terminated appropriately. However, if there are no
sites in a final state the termination protocol can decide whether to commit or abort the
transaction. This decision is based upon two principles [Skeen 81b], the first is that if at
least one site is in the prepared state then the transaction can be safely committed. This is
because no site can have aborted otherwise a prepared state would not have been entered.
The second principle is that if at least one site is not in the prepared state then the
transaction can be safely aborted because there can be no site in the final commit state. The
two conditions are not mutually exclusive and often both can hold together, in which case
the termination protocol has to decide on the outcome. A termination protocol that always

45

decides to commit wherever possible is known as progressive. A non-progressive protocol
will always abort when both conditions hold.

3.2.3. lnggngnggut FCCOVETY

Independent recovery is a very important property when considering protocols resilient to
link failures. A link failure may occur in such a way that a site (or group of sites) become
isolated, this is known as a network partition. With a network partition remote recovery
information cannot be used therefore recovery must use only local information. The 2 and 3
phase commit protocols are not independently recoverable because if a partition occurred
each partition would elect a new coordinator and terminate independently and possibly
incorrectly.

Any protocol that uses independent recovery is very important to real-time systems because
deadlines can be applied since recovery time is deterministic. In particular a protocol
resilient to network partitioning is useful because each partition could still operate correctly
but independently thus providing a full service.

Independent recovery has been studied by Skeen [Skeen 83] and a number of theorems and
a design method have been developed. The two most important theorems arising from this

work are :-

Theorem 1 "There exists no protocol resilient to a network partitioning when messages
are lost ",

Theorem2 "There exists no protocol resilient to multiple partitions".

These theorems imply that if a sending site can determine if a message has been sent or not
then a protocol can be designed which is resilient to a single partitioning. Since Occam
communication is synchronous, messages cannot be lost therefore there should exist a
protocol written in Occam capable of tolerating a single partition. The protocols in Occam
can then be directly implemented on Transputers for use in embedded real-time control
systems. The ability to tolerate partiticns would be extremely useful because the probability
of a link failing in a real-time control system is greater than a processor failure because of
the hazardous environment for links. The use of Occam for such applications therefore
looks very promising because it also includes the idea of time.

3.2.3.1, Quorum based protocols

In general protocols non-blocking to partitions cannot be designed and so another technique
is usually used. That is, protocols continue processing transactions when a partition occurs
and merge the results after communication is repaired.

46

One possible answer is the primary site approach [Stonebraker 79], this assigns beforehand
a site as the primary site. When a partition occurs only sites in the group with the primary
site are allowed to continue processing. This method increases the likelihood of blocking
but removes the need for a merge protocol. Since only one partition is allowed to process
transactions response time is also increased.

Another approach is to use quorums where each site is assigned a weight (according to its
importance) and a partition can only commit/abort if the appropriate quorum is formed. A
quorum is formed when the number of sites willing to commit/abort agree to some
predefined rules. The 3 phase commit can be extended to include quorums [Skeen 82b] by
counting the acknowledgements received in the third phase.

Specifically if a network partition is detected a termination protocol is run which tries to
form a quorum, if a quorum cannot be made it must wait for sites to be repaired. Once
failed sites are repaired they must take part in a quorum by running a merge protocol.
Quorum protocols are blocking only when a quorum cannot be made, they are also
considerably more complicated than standard commit protocols and are therefore not
considered further.

3.3. Finite State Machi lels of , !

Finite State Machines (FSM) have been used by Skeen [Skeen 83] to specify and prove
existence properties of commit protocols. They are ideal for this work because of their
succinct state representation This section shows how the previously described protocols
can be modelled using FSM's. Since these FSM models do not include the communication
system they are only suitable for consideration of systems subject to site failures. The FSM
models described here are analysed in section (3.4), they are then modified to make them
resilient to a single site failure. Unfortunately, FSM models lack timing information which
is important in real-time systems (alternative models including timing are considered in
chapter 4).

3.3.1. The 2 phase commit FSM

The 2 phase commit as described in section (3.2.1.1) can be translated into an FSM model,
the two site case being shown in figure (3.1). The model shows directly the state of a site
and the messages received and sent, log records are omitted for clarity but assumed to be
written where applicable. The state is named within the circle whilst the labeled arcs
represent messages. A message above the line is received by the appropriate site whilst the
message below the line is sent to another site. Therefore a state transition may consist of
receiving a message, sending a message and changing state. For more than two sites some
messages, such as 'start’ are sent to more than one site. The original work assumed that
this was atomic, this was later relaxed by Yuan [Yuan 89]. A participant is allowed to

47

unilaterally abort its transaction at any time before it has replied. For example it may wish
to abort because it cannot acquire the required data locks or if the user aborts the
transaction. The votes from the participants are collected by the coordinator whilst in state
wi. If they are all 'yes' then the decision to commit is made but if one 'no' vote is received
the decision is abort. The coordinator also has a vote but this is shown as a message
received in figure (3.1).

Coordinator Participant
States :-
q; = initial
%t;_;gl&ﬂ_ w; = ready
p; = prepared
a; = aborted
abort commit

Fig.(3.1) FSM of 2 phase commit protocol

Each site progresses through a number of states until a final state is reached, if the protocol
is correct then all the final local states combined should form a consistent global state. A
global state can be described as a vector of local states ie. G =(S1,52,....Sp) and to be

correct the final global state vector should only contain either all abort or commit states.
3.3.2. The extended 2 phase commit

This protocol is the 2 phase commit extended with a prepared state in the coordinator and
an acknowledgement message from the participant, the FSM is shown in figure (3.2).

This is an important protocol because it is an optimal non-blocking protocol [Chin 87]. It
can be made independently recoverable, this has been shown to be an important property
for use in a real-time system (see section 3.2.3). Section (3.4) explains why this protocol is
non-blocking and how it can be enhanced so that it tolerates a single site failure.

48

Coordinator Participant

user request
start

v yes

commit

Jno
abort

1 2 F f n 2 ph mmi

Another well known protocol is the 3 phase commit described in section (3.2.2.1). This is
the 2 phase commit extended with buffer states in the coordinator and participants as shown
in figure(3.3). This protocol is similar to the extended 2 phase commit but will not be
discussed further because although non-blocking it cannot be made independently

recoverable.

Coordinator Participant

Fig.(3.3) FSM of 3 phase commit protocol

49

3.4, Analysis_of the FSM models

As can be seen from the model of the 2 phase commit protocol, figure (3.1) each site
progresses through a number of states until a final state is reached. The state occupied at
any time by a single site is known as a local state. Collectively all the local states and any
outstanding messages are known as the global state of the system. A global state is final if
all the local states are final states, it is consistent if all the local states are the same. A global

state changes every time a local state changes therefore for each local transition there is a
global transition.

The global states achieved from a sequence of global transitions can be represented as a
global state reachability tree. The states of the sites are shown above the line in the circles
and any outstanding messages are shown below the line. The state trees for the 2 phase
commit protocol and extended 2 phase commit protocol are shown in figure (3.4) and
figure (3.5) respectively.

Coord = no

Fig.(3.4) Reachability tree for 2 phase commit protocol

50

94,
USer reg

Fig.(3.5) Reachability tree for extended 2 phase commit protocol

Inspection of the reachability trees show that all the final global states comprise either all
commits (ie cjcp) or all aborts (ie ajaz). Thus without any failures both of the protocols
always terminate with a consistent global state. To analyse the state trees two notions are
introduced, the concurrency set and the sender set. Skeen uses the idea of concurrency sets
to determine if a protocol can be made independently recoverable. Sender sets are used so
that the protocols can be made resilient to various failures by including timeouts.

51

A concurrency set for state Si, C(Sj) is defined as the set of all states that another site can
occupy while site i is in state Sj. For example the concurrency set for wy in figure (3.4) is

{q2,a2,p2}. The concurrency sets for figure (3.4) and figure (3.5) are shown below :-

2 phase commit :-
C(qp) ={q}
C (wq) = {qp, Py, a3}
C (ay) ={pp, a3}
C(cp)=1{pp,¢2}
C(qp) = {q7> w1}

{

{

{

Cy) =
C (32) = Wl’ al}
C (02)

W1,21,C1)

ci)

Extended 2 phase commit :-
C(qp) =1{qy}

C(wp ={qp, pp, a2}
C(a1) = {pp, a3}
C (pp) = {c2,p2}
C(cp) = {cy}
C(qp) ={qq, w1}
C (pp) = (w1, p1}
C(ap) ={wy, a1}
C(cp) ={cq, p1}

A sender set for state S;, S(S;) is defined as the states which send messages to the site i

when it is in state S;, these sets are used for timeout placement. For example the state pj in

the participant of figure (3.1) receives messages from the coordinator in state wi, thus

S(p2) = {w1}.

The sender sets for figure (3.4) and figure (3.5) are shown below :-

2 Phase commit ;-

S@qn = {}
S(w) = {q2}
S(ap = {}
Sy ={}
S(q2) = {q1}
S(p2) = {w1}
S(a2) = {}
S{co) = {}

Exten 2 ph ommit ;-

S(qn ={})
S(wy) = {q2}
S(ap = {}
S(p1) = {p2}
Sc1) ={}
S(q2) = {q1}
S(p2) = (w1}
S(a2) = {}
S(c2) = {}

To determine informally whether a protocol can be made independently recoverable the

concurrency sets must be generated and analysed. If a local state contains both an abort and

a commit state in its concurrency set then it cannot be made to recover independently. This

is because it is impossible to determine the other sites actions without extra communication.

The 2 phase commit protocol cannot recover independently because the concurrency set for

state pp contains the states aj and cj. Examining the concurrency sets for figure (3.5)

shows that the extended 2 phase commit protocol is independently recoverable.

52

To make the extended 2 phase commit protocol resilient to failures, failure and timeout
transition have to be included in the model. Ideally the failure transitdons should model both
site and communication failure. However, all previous work on FSM models of commit
protocols assume that the communication mechanism is an asynchronous network in which
messages can be lost. Theorem 1 (section 3.2.3), states that in such a system there is no
protocol which is resilient to network partitioning following a communication failure.
Therefore only site failures will be considered here. A site failure transition is assumed to
be the action taken by a filed site when it recovers. This is usually by way of a recovery
procedure which examines the log record and puts the site into a new state.

A timeout transition is the action taken by the other sites when they detect that a site has
failed (eg a message has not been received). If the failure and timeout transitions are
assigned using the following rules [Skeen 83] the protocol will always terminate
consistently.

Skeen's rules

Rule 1: For each intermediate state s;, if C(sj) contains a commit then assign a failure
transition from s; to a commit state else assign a failure transition from s; to an
abort state.

Rule 2: For each intermediate state s, if tj (the state of another site) is in S(s;) and t; has
a failure transition to a commit (abort) state then assign a timeout transition from
s; to commit (abort).

Applying these rules to the extended 2 phase commit protocol produces the FSM of
figure (3.6) which can be analysed using the state tree to show that it always terminates
consistently. The state tree is not shown here but the analysis is the same as for the Petri net
model using asynchronous communication which is shown in chapter 4.

53

Coordinator Participant

:"-"”_——
' I T

— — — — % Timeout Transition
““““““““““““ » Failure Transition

failyr

The FSM models of the previous commit protocols provide good state representation.
However, they suffer from two problems which restrict their applications. Firstly they do
not represent timing information and do not support the timing analysis required in real-
time systems. Secondly they do not model the nature of the communications network
which is central to an understanding of the behaviour of the protocols under failure
conditions.

To demonstrate the limitations of the FSM communications model consider figure (3.6) and
assume that the coordinator fails whilst in global state {pj,p2) after the commit message
has been received but before the ack is sent successfully. Upon recovering the coordinator
enters state ¢y, whilst the participant attempts to send the acknowledgement. Eventually the
network will send a timeout command to the participant which will then occupy state c5.
The acknowledgement must now be absorbed by the network and forgotten.

This shows that the resiliency of the protocol is dependent on the network providing special
features. Without a timeout the site would deadlock and attempt to send a message
indefinitely. In a real-time embedded system this communication facility is not usually
used, instead point-to-point communications are used. In such cases the onus for timeouts
and dealing with unaccepted messages is placed within the protocols themselves. Such
features should then be included within any model of the protocol.

Another problem with the FSM model is that state transitions are assumed to be atomic.
This means that for the multi-site case if a coordinator sends messages to all the participants

54

then if one of them received theirs all the participants received their message. This
assumption is used because the communication system is not modelled and extra notation
would be needed to remove it.

The above assumption was relaxed by Yuan [Yuan 89] who describes a multi-site protocol
resilient to a single coordinator failing before sending all its messages. In this protocol
when a site times out it sends messages to the other sites telling them what action has been
taken, this has the disadvantages of more messages and that a fully connected network is
required.

The rest of this thesis uses Petri net models which resolve the above disadvantages by
allowing the communication system to be modelled as an integral part of the protocol. It
also allows asynchronous and synchronous communications to be modelled and compared
in such a situation. Another advantage of the proposed method is that timing information
can be included in the model by allowing transitions to take a finite time. This allows
intermediate timeout values to be estimated from an overall deadline for the decision. Also
the Petri net models using synchronous communication map almost directly into the
programming language Occam. This is an advantage because it means that there is no need
to map the design into another model before implementation.

55

Chapter 4

The Design of robust atomic commit protocols
4.1. Introduction
The previous chapter has discussed previous work in the modelling of commit protocols.
The problems with these techniques, in particular the addition of time and the omission of a
network model have been high-lighted. One of the aims of this thesis is to apply commit

protocols to real-time systems because they often need to coordinate tasks and reach
agreement within predefined deadlines.

Any model used to specify the protocols must therefore be capable of including time,
modelling the communication system whether synchronous or asynchronous, modelling
site and link failures and also be easily transformed into an implementation. This chapter
describes the formal model chosen, Time Petri nets, and shows how they can be used to
design robust commit protocols which are augmented with timeouts so as to provide a
decision within a deadline.

A Time Petri net is based upon the general Petri net with time included in the model. Petri
nets are an alternative model to FSM which can also represent system state. They are most
useful for modelling concurrent systems because parallelism and synchronization are easily
modelled and understood. Petri nets can also be used to illustrate the dynamic properties of
a system by execution of the net using a set of pre-defined rules, this results in a tree of all
possible system states which is useful for analysis. Petri nets are also easily analysed for
properties which are important to critical systems such as deadlock and state consistency.
Unlike a FSM a Petri net is capable of modelling interactions between concurrent processes
directly. This allows a model of inter-process communication that does not rely on
assumptions about the transmission media. Thus they can model both synchronous and

asynchronous communication very succinctly and accurately.

Since the protocols are to be applied to real-time systems, time must be included in the
model, this is provided by extending Petri nets with time. Methods of extending Petri nets
with time are described in section (4.2.1), this introduces the two basic models of Time
Petri nets [Merlin 76] and Timed Petri nets [Ramchandani 74] and explains the difference.
The resulting Time Petri net model can be analysed with respect to time as well as the state
of a system and constraints made on the system so that consistent decisions are always
made by a deadline. This represents a significant advance on existing approaches. For
example commit protocols have been analysed using Finite State Machines (FSM) by
Skeen and Stonebraker [Skeen 83] but deadlines were not included. The extension of
commit protocols with timing constraints was first suggested by Holding, Hill and

56

Carpenter [Holding 88] for use in real-time systems. Similar recent work independently
carried out by Davidson et al [Davidson 89] included deadlines in atomic commit protocols
but they do not allow for failures or include a formal model.

Petri nets allow the communications between sites to be explicitly modelled thus showing
any differences in using asynchronous or synchronous primitives. Section (4.3) contains
the Time Petri net models for the commit protocols described in chapter 3. Both
asynchronous and synchronous communications are modelled so that comparisons can be
made. The protocol using asynchronous communications is shown to be isomorphic with
the original FSM model. The Time Petri net models are then augmented with site and link
failures and their resiliency is investigated. Novel work in this section includes the design
of commit protocols using synchronous point-to-point communication primitives and the
addition of time to provide decisions within deadlines. From the protocol using
synchronous communications the previous rules (used for the FSM models) for placing
timeout and failure transitions are shown to fail. A new method of placing them by
examination of the state reachability tree is provided in section (4.4). Section (4.4) also
includes the analysis of the nets where properties such as consistency and freedom from
deadlock are shown. Properties involving time such as timer evaluation are also included.

The protocols designed in this chapter using synchronous communications have been
implemented in Occam and executed on a network of Transputers, these implementations
are described in chapter 5. The resiliency of the protocols to site and communication
failures is shown to follow the analysis of the Petri nets. The full listings for the 2 phase
commit (blocking) and extended 2 phase commit (non-blocking) protocols with timeouts
derived for link failures are provided in Appendix B.

The Time Petri net models developed also allow site and link failures to be modelled in a
uniform manner. They are included in the specification which is used to determine the
placement of recovery mechanisms. Failure transitions are added to simulate faults, this
was first used by Merlin [Merlin 76} for communication protocols and later used by
Leveson [Leveson 87] for safety critical systems. They are now applied here to commit
protocols under failure conditions. Modelling the communication system allows a lower
level of atomicity for message transfer than previously assumed [Skeen 83] and permits
non-atomic communication. The Petri net model is novel in the respect that timing and
failures are added and also the communication system is modelled. Timing is included to

investigate the timeliness of decisions when failures occur.

It is shown how protocols can be designed to be resilient to either site failures or link
failures but not both. Protocols resilient to link failures are very important for control
systems because when a link failure occurs each site (processor) can still control its
application autonomously and possibly provide a safety feature. When a site fails the

57

control of its actuator is lost and so safety features must be provided by either the other
operational sites or backup sites. Thus deadlines can be provided for link failures but due to
unpredictable recovery time deadlines cannot be met with site failures. Concluding remarks
are provided in section (4.5).

4,2, Petri nets and time

A Petri net [Peterson 81, Murata 89] is a formal model used to study systems, in particular
concurrent systems can be modelled extremely well. They are based upon an extension of
set theory known as bag theory which allows elements to be repeated any number of times.
Two representations exist [Peterson 81], the Petri net structure and the Petri net graph,
when referring to 'Petri nets' the later is implied.

A Petri net structure is a 4-tuple, (P,T,I,O) where P is a set of places, T is a set of
transitions and I and O are input and output functions. The input function maps a transition
into a number of input places whilst the output function maps a transition into a number of
output places. Using bag theory instead of set theory allows places to be multiple input or
multiple outputs. This representation of a Petri net is convenient for manipulation by
computer but for most purposes a Petri net graph is more useful.

A Petri net structure can be transformed directly into a Petri net graph [Peterson 81], which
is the usual representation. A Petri net graph is a bipartite directed graph which represents
places (circles) and transitions (bars) as nodes. The nodes are connected by directed arcs
which represent the input and output functions.

The state of a system can be modelled using a Petri net graph by allowing tokens which
reside within appropriate places to represent the instantiation of a particular state. Any
number of tokens are allowed to reside within a place. The set of places and the number of
tokens in each place are known as the marking of the net. An example of a marked Petri
net, in which the tokens are denoted by black dots is shown in figure (4.1).

Fig.(4.1) Example of a marked Petri net

58

A general Petri net allows any number of tokens to reside in any place at any time (as in
place p; of figure (4.1)). However, the Petri nets used in this thesis are a special class of
Petri nets known as safe Petri nets [Murata 89] because the number of tokens in a place
may not exceed one. This simplifies the marking of the net into a set of places. The initial
marking of figure (4.1) is (p1,P2,P3.P4,P5.P6) = (1,3,0,0,0,0) whereas if the Petri net was
safe and pp only had one token the marking would be (1,1,0,0,0,0) and denoted as
(P1,p2)-

A marked Petri net can be executed following a set of rules. Basically a transition fires if all
its input places contain tokens. When the transition fires, one token is removed from each
input place and a token is added to all the output places. For example in figure (4.1) t; can
fire which removes the token in p; and places one in p3 producing a new marking of
(0,3,1,0,0,0). The firing of transitions continues until no more are enabled, this is known
as the execution of the Petri net. In a safe Petri net which models concurrent systems there
will be one token per parallel process. During the execution many transitions may be
enabled at the same time thus allowing nondeterminism. This results in a number of
possible executions for the same Petri net.

Two techniques exist for analysing Petri nets, using matrix equations [Murata 89] and
using the state reachability tree [Karp 69]. The matrix representation is very applicable for
computer manipulation of a Petri net but is not as explicit in its state representation as the
reachability tree. Although the reachability tree cannot in general solve all reachability or
liveness problems, in the restricted class of Petri nets that are used in this thesis it can
explicitly show deadlock and state consistency. This shall therefore be the technique used
for analysing the protocols.

The reachability tree is generated by executing each enabled transition and recording the
new markings produced. Where more than one transition is enabled extra branches are
added to the tree, each branch representing the firing of a different transition. A complete
reachability tree shows all the possible states that a system may exhibit during its execution.
As an example consider the reachability tree shown in figure (4.2), this shows all the states
that the Petri net of figure (4.1) may posses.

(1,3,0,0,0,0)

v
(0,3,1,0,0,0)

ts
(0,2,0,0,1,0)

Fig.(4.2) Reachability tree for fig.(4.1)

59

When modelling software with Petri nets [Mekly 80] it is common for places to represent
conditions and transitions to represent events (e.g. assignment). The Petri net reachability
tree then expresses causality in that certain conditions must prevail before an event can
occur. As an example, in figure (4.1) the conditions pj and p3 must hold before the event ty
can occur. The reachability tree features substantially in this thesis for analysis of the
commit protocols developed.

121 Ti Petri
There has been much work into extending Petri nets with time resulting in a number of

different ways of including and expressing timing delays. The two most used methods are
those of Timed Petri nets [Razouk 84] and Time Petri nets [Merlin 76]

Timed Petri nets were originally defined by Ramchandini [Ramachandini 74] as having a
fixed delay with each transition. This delay was later applied to places [Sifakis 77,
Coolahan 83] so that the original definition of instantaneous transitions was obeyed. The
timing was decomposed for each transition, t; into an enabling time, E(t;) and a firing time
F(t;) by Razouk [Razouk 84] so that the dynamic behaviour of the Petri net could be
described better and new rules for the firing of a transition which involved time devised. A
transition is ready to be fired at time T if it has been enabled continuously for the period
[T - E(t), T]. At the point T the transition fires absorbing tokens from its input places.
Unlike normal Petri nets tokens do not appear in the output places until after the time
T + F(tj), during the period [T, T + F(t;)] the transition is said to be firing.

Performance analysis is derived by using the timed reachability tree [Zuberek 80, Razouk
85a], these can become very complicated but are not required for deriving timing
constraints. These Timed Petri nets have been used to design deterministic timeouts for use
in a communication system [Suzuki 90].

Time Petri nets were developed by Merlin and Farber [Merlin 76] and involve associating a
minimum, Tmin (t;) and a maximum, Tmax (t;) firing time to each transition. Transitions
are allowed to fire some time in the interval [Tmin (t;), Tmax (t;)] after it first becomes
enabled. If the time Tmax (t;) is reached before firing the transition is guaranteed to fire.
This model is more flexible and also models timeouts more accurately because a timeout
cannot be timed exactly. It is more flexible because the tokens are not removed from the
places until the transition has fired, this simplifies reachability analysis. The original
definition of a transition firing being instantaneous is also obeyed.

An analysis technique similar to the reachability analysis of standard Petri nets has been
developed by Berthomieu and Menasche [Berthomieu 83]. This allows a finite
representation for the possibly infinite number of next states involving time. The technique
is not used to determine timing constraints. Time Petri nets have been used by Leveson and

60

Stolzy [Leveson 87] to derive timing constraints so as to avoid high risk states. The models
in this thesis are based upon the Time Petri net model of Merlin and Farber because of its
flexibility and simplicity.

+3. Time Petri tels of : :

This section shows how the commit protocols described in chapter 3 can be modelled using
Time Petri nets thus removing the disadvantages of the FSM model. Firstly it shows how
the communication system can be modelled, the protocols are then modelled incorporating
asynchronous and synchronous communications. The protocols chosen are the 2 phase
commit and the extended 2 phase commit. The 2 phase commit protocol is chosen because
it is the basic commit protocol and is useful for comparing the FSM and Petri net models.
The extended 2 phase commit protocol is modelled because it can be made independently
recoverable which is a very important feature when considering real-time applications. The
extended 2 phase commit is also an optimal non-blocking protocol [Chin 87]. Finally, it is
shown how site failures and communication failures can be modelled using Petri nets.

The protocols are modelled with both asynchronous and synchronous communications and
analysed using a reachability tree to show that they are still correct when there are no
failures. The analysis of the protocols when failures occur and time constraints are applied
is left until section (4.4).

3.1, Modelline {1 s I

A FSM models the state of a system but omits detail about the communications. Petri nets
can model as much state information as an FSM and also model the communications. Both
asynchronous and synchronous communications can be modelled thus allowing the two to
be compared. Figure (4.3) shows how a two site FSM that receives a message and sends
another can be transformed into Petri nets, figure (4.3b) shows the asynchronous
communications whilst (4.3¢) shows the synchronous version.

61

Coordinator Participant Coordinator Participant

@ t @ start @ @ start @
start - ><}
®) (®) ®

(a) Finite state machine (b) Petri net with asynchronous
communications
Coordinator Participant

(&)
start
‘
©
(c) Petri net with synchronous
communications

Fig.(4.3) Modellin mmunication

This shows that there are two different actions depending upon the type of communications
used. In the asynchronous communication model, a message is sent and the sender changes
state concurrently. However, in the synchronous model a state transition of the sender only
occurs when it knows that the message sent has been received.

Tokens in the places start and ok in figure (4.3c) represent that the sender is ready to send
the start message and that the message has been received successfully. This is the ideal
model of synchronous communications and in reality cannot be implemented identically.

Synchronous communications can be implemented using a handshaking technique, such as
used by Inmos Transputer links [May 85]. This involves the sending of two messages, the
actual data to be transmitted and an acknowledgement signal. The acknowledgement is
returned by the receiver after the original message is received. Once the acknowledgement
is received, the sender knows that the original message was received successfully and that

another message can be sent.

62

As an example, the coordinator in figure (4.3c) will only reach state wj after the
communication has taken place, i.e. a token appears in the ok place. This only happens
after the 'start’ message has been sent and acknowledged.

13.2. T | it Petri Jel
The 2 phase commit described in section (3.2.1.1) can be modelled using Petri nets
showing state information and the communication system. The Petri net specification using

asynchronous communications is shown in figure (4.4) complete with the associated
reachability tree.

The place marked 'req' is an external request used to initiate the protocol and can be
assumed to always happen. When a token is placed in a message place this means the
message is being sent, it is equivalent to the outstanding message in the FSM reachability
tree. One advantage of showing the messages explicitly at this level is that communication
failures can be modelled.

The reachability tree shows that without failures a consistent final global state is reached.
As for the FSM model, the concurrency set for each state can be calculated. In this case the
concurrency set for the state pp is {w}, aj, €1, yes, commit, abort} again showing that the
protocol is blocking. The sender sets do not need to be used because they are obvious from
the Petri net.

It is expected that the protocols are to be implemented using synchronous communications
but figure (4.4) does not model this type of communications. Thus another model must be
derived that explicitly shows synchronous communications. This can be developed from
the Petri net of figure (4.4) by replacing each asynchronous communication with a
synchronous communication, thus deriving the Petri net of figure (4.5).

63

SUONEITUNIITIOY STOUOIYIUASE - JIwod aseyd ¢ (v) 814

san Aiqeyoeay (Q) 10U 13 (e)

Zol
ele NO ~0
07 XA
¢duoqe 'e Cdmuos Ty

A

1
ou = p1oo) CdIp” sak = p100)

Cple

LN

lg oulm Tdsok T

N A

ou=0onred Iply S9k = onreq

A

]

I0]BUIPIOO))

san Aunqeyoedy (q)
N.m ﬁa NO ao
m:q th
(2% wxo Sy vi,

j &
Zo I 4 doqe ¢d oo
7 \ﬂ

91/ OU=p100) ¢d P’sof = px

9
& 1)
°°® Yo 1oge <or— %0 \a(vlql.vmu_ouEES

4?/ A\H« H
ou'm sak
Ou 3 o1ued Nv:\mmm“u opred
A

& £)
ou xo‘duvbfodﬁ sakTyo
(4
%buers
F'y
13}
NGUD.H ﬁd

100 13 (€)

65

I01BUIPIOOD)

synchronous communication primitives embedded in the notions of CSP [Hoare 78] and
Occam can be used in the modelling of the protocol. If the implementation of synchronous

Each ? and ! pair represent a single synchronous communication and shows how the

communications is by handshaking then each ? and ! pair will comprise of two messages.

Although the protocol only involves five communications, ten actual messages would be
used.

The reachability tree of figure (4.5b) can be reduced to simplify its analysis. The reduction
is possible because it can be assumed that any implementation of synchronous
communication acknowledges the received message before any other transition can occur.
This preserves the idea of synchronous communications as closely as possible. The
reduced reachability tree for this for figure (4.5a) is shown below in figure (4.5.c). All

subsequent protocols using synchronous communications follow this assumption and are
shown only with the reduced reachability trees.

q; Teq q,

okvldz

t3
v

Partic = yes Partic = no
yl N
‘t/) yes wlnot
x

d ok,

t a10ks
t
Coord = yes d P, Coord = no 9
w’ 2&&0
commit p, ~ abortp, 1
L Ny
ok %) 0k5 a
t13 tis
qc %2
Fig.(4 R reachabili for Fig.(4

Using the reduced reachability tree does not affect the analysis of the protocols because the
omitted states should never be reached in an implementation. From this reduced reachability

66

tree the concurrency sets can be obtained, none of which contain both commit and abort
states, thus this protocol should be non-blocking. On further investigation this property is
only gained because each part of the synchronous communication is shown separately. For
example the abort/commit messages are both shown separately. In practice, where such a
protocol is implemented, for example in Occam on a network of Transputers, only one
communication link would be used. This means that the places ok4 and oks are in fact the
same meaning that the transmitted message has been received. Now C(oks) = {ap} and

C(oks) = {cp} therefore since okgq = oks, then C(okg) = {ap, c2} and the protocol is
blocking as expected.

From the two Petri nets it has been shown that the blocking property of the 2 phase commit
is independent of the type of communications used. Blocking protocols do not have a
bounded recovery time and are not considered useful for real-time systems.

133, E fed 2 pl it Petri fel
The 2 phase commit has been extended using an acknowledgement so that it is non-
blocking to site failures [Skeen 83], the resulting protocol is known as the extended 2
phase commit. This section shows the Petri net models of this extended protocol to which
later sections will add failures and timeouts. Figure (4.6) shows the protocol using
asynchronous communications whilst the synchronous version is shown in figure (4.7).

The reachability tree of figure (4.7b) is of the reduced form as described earlier for the
synchronous 2 phase commit protocol.

Analysing the reachability trees show that without failures both versions are non-blocking.
The effects of including site and link failures to both these is left until section (4.4). The
synchronous version is non-blocking even taking into account the problem explained in the
last section.

67

;
§ ASTON UKIVERSITY
LIBRARY ARL

b
i

INFORMATION SERYICES §

SUOQEDIUNWIIO) SNOUOIYIUASE - JIWWO0D 95eqd ¢ PapuaxXd (9 +) 81

san A1qeydeay () Jou 103 (®)

Cele oty O
947 XA

¢ uoqe e ¢d oo 'd

% 3y

I
vE ou=pioo)) CdIp” sof = pioo)

w/
1

e ou Im TdsehTa

C

68

I0JeUIpPIOO))

SUOHEJIUNUITOY SNOUOIYOUAS - JII0D 9seqd g papuaixyg (L v) 8t

oan ANqIqeyoear paonpay (q) bh
SJ&
%o
EM
yoe'd
Cel 19 91)] 4

is'y
$h mﬁ\i
Ze Sx0 tsMo
4!
1 }
ﬂa/to% Nﬁ:ao
(A
e'e OM'IMW
] 1
' “\4 :
6 ou = pI00))

$94 = p100)
Ho'e %o B\Qo]
ou Ty sak rmu

FJ \(7,
ou = onred M

S9A = o1ed
mA
P

8 J

91

10U I3 (8)

@A
ov

vl

N;.

1, 01 1
100 ou = p100)

1

e
:
\

69

134, Possible Fail
The commit protocols previously discussed are all correct when there are no failures but in

a real system the protocols also need to be correct when failures occur. Failures have been
classified into failures of commission or omission [Mohan 83b].

Commission failures are where incorrect actions are performed by the failed item, these
type of failures are very difficult to rectify and are not considered in this thesis. The
resolution of commission errors is similar to solving the Byzantine generals problem
[Lamport 82], this has been applied to commit protocols [Mohan 83b] the problems of
which were outlined in section (3.2.1.2).

Omission failures are when a failed item does not do something that is expected, this is
sometimes known as the fail-stop approach [Schneider 87] and is much simpler to deal
with. Only omission failures are dealt with in this thesis, these can be further classified into
site and communication failures.

A site failure is considered to be safe when no erroneous computation are executed, the site
just stops processing. In this thesis each site is assumed to be running a protocol written in
a high level language so the atomicity of failure is at this level, this means a high level
statement is either fully executed or not at all. The lowest level of atomicity would be at the
machine instruction level but this is not considered here.

To simulate a site failure a recovery procedure is used. A call to this procedure is inserted
where the failure is to occur and the remaining code is ignored. The recovery procedure is
assumed to be executed immediately a failure is detected but a delay can be included to
simulate repair time. In reality recovery involves reading a local log file and returning the
site to a state consistent with the other sites. Depending upon the protocol used, recovery
could involve extra communication between sites. When no extra communication is needed
this is known as independent recovery and has been discussed earlier.

A site failure can be modelled using Petri nets. Consider for example the failure of the
coordinator as modelled in figure (4.8).

Coordinator Participant

ONEE. - @)
t] >O
&

te

ty

D

Fig.(4.8) Example site failure

70

Here a failure is assumed to occur at the coordinator site whilst in state q if the failure
transition tf fires before ty. It is assumed that a recovery protocol is executed and the
coordinator aborted. The participant on the other hand is in state qp, it cannot continue and
is deadlocked. This situation is undesirable and the use of timeouts is described in section
(4.4) to avoid it.

There are a number of possible communication failures depending upon the network used.
In general message loss, out of order messages and link failure can occur. In an
asynchronous system all of these are probable but with synchronous communications, such
as those used in a network of Transputers, the synchronous nature of the communications
prevents message loss and out of order messages. Therefore the only type of
communication failure considered in this thesis for the synchronous communication model
is the inability for two sites to communicate. Since the protocols in this thesis assume that
there is only one communication path between two sites total communication failure can be
caused by a physical link failure.

Depending upon the environment in which a system is applied then link failure may be the
most probable cause of a failure. In particular within a control environment if a number of
processors are distributed, say on a robot arm then the inter-processor links may become
trapped and severed. Protocols resilient to this kind of failure are therefore very important
to prevent unsafe conditions in particular in safety critical systems. With synchronous
communications a sender site knows if a receiver has received a message or not, therefore
if a link failure occurs before the acknowledgement was returned then the sender knows its
message was not received.

A network partition occurs when a link failure separates the network into two or more
isolated groups of sites. The sites in each group can communicate between each other but
no communications between groups can occur. A simple partition is where only two
groups are isolated from each other. Multiple partitions are not considered because there
does not exist any protocol resilient to them [Skeen 83].

It was pointed out by Skeen [Skeen &3] that a multi-site protocol resilient to a single
partition is only possible if undeliverable messages are returned to the sender, this implies it
should be possible to design protocols in languages containing synchronous
communications such as Occam which are resilient to a single link failure. It should be
noted here that no protocols exists for multiple partitions or where messages are lost.

In this thesis, synchronous protocols are implemented using the concurrent programming
language Occam which is based on CSP. A link failure in the Occam simulations is
provided by removing the actual link during execution. A link failure can be modelled in the
Petri nets by a transition that never fires as denoted by the double bar in figure (4.9).

71

message

Fig.(4.9) Example of a link failure

With asynchronous communications message loss can occur, this can be modelled by a
token being removed from a message place [Merlin 76], this is not considered appropriate
for the models using synchronous communications.

4.3.5. Deadlock prevention

Deadlock in a database means a transaction is waiting to lock a data item which will never
happen because other transactions may have conflicting locks on it. In this thesis deadlock
is used to mean a process is waiting indefinitely because of some site or communication
failure. For instance if a site fails before sending a message the other process will wait for
the non-existent message. This is obviously an undesirable property when a real-time

system and deadlines are considered. This situation can be avoided by the use of timeouts
and is described here for the use with synchronous communications.

Consider a message being passed synchronously between two processes as shown in
figure (4.10a). If the link fails then to prevent deadlock the tokens from P and P must be
able to bypass tf, this is achieved by having a timeout on both sides of the communication
as shown in figure (4.10b).

O —® O —®

9 !

K
: 3 "y 2
;)< >) >(.) (1

e

(a) Synchronized communication (b) Synchronized communication
with breakout

Fig.(4.10) Communication timeouts

There are a number of problems with using timeouts to prevent deadlock, firstly false
timeouts may occur and secondly there are a large number of timeouts whose values must
be controlled. The values must be controlled so that one timeout does not force another
false one and also so that an overall deadline is still met. False timeouts are due to not
allowing enough time for the communication to occur. The worst case for a timeout value
must always be chosen to allow enough time for process synchronization and the message

72

propagation delay of the link. The timeout value must not be too large because undue
delays are unacceptable and may upset the timing requirements of other parts of the system.
The number of timeouts required for synchronous communications is quite large because
every input and output must be bounded, also it must be ensured that there are no
redundant timeouts and also that timeouts do not depend on others.

It has been suggested that time limits can be added to the transitions in a Petri net [Merlin
76, Leveson 87]. Each transition is given a minimum and a maximum firing time after the
transition is first enabled. Thus to allow enough time for communication in figure (4.10b),
the condition

Min (t;) >Max (tf) and Min (tp) >Max (tf)

ensures that the communication has adequate time to execute if possible. Since
communication is synchronized the first primitive to be ready (? or !) must wait for its
corresponding partner, this may be quite a way back in its execution and so this time must
be allowed when calculating timeout values such as tf. That is :-

Max (tf) >= MAX[message propagation delay] + MAX[Process synchronization delay]

A similar expression can be derived for Min (tf) using the corresponding minimums. Since
these values are predictable accurate timeout values can be chosen and deadlines kept.

14, Fail | timi lysis of {1 il

The 2 phase commit has been shown to be a blocking protocol under certain failures. Since
deadlines are being applied only the extended 2 phase commit will be analysed here. This is
because it can independently recover and it is also an optimal non-blocking protocol. Firstly
a two-site model is used and site failures allowed at either site. Secondly link failures are
introduced. Link failures will be emphasized because if a protocol can independently
recover from this kind of failure then processing can continue independently at each site
thus providing any required safety features. It is shown that the Petri net model does not
introduce any problems and so the asynchronous version of the extended 2 phase commit is
analysed and it is shown that this provides the same results as Skeen's FSM model.
Skeen's rules (see section (3.4)) for timeout placement are shown correct for the
asynchronous model and investigated for the synchronous model.

The synchronous model is used to show how the communication structure affects timeout
placement and that Skeen's rules are not applicable to synchronous protocols. A new set of
rules are provided so that the synchronous protocols can be made resilient. The
synchronous model includes redundant messages and this fact is used in chapter 5 for
optimizing the protocols.

73

The analysis introduces site and link failures into the model so that the reachability tree can
be used to show where recovery and timeouts are needed. The reachability tree is then used
to show deadlock freeness and consistency. Timing requirements are found by adding time
to the transitions in the model.

14.1. Site fail

Firstly consider the asynchronous version of the extended 2 phase commit, this has been
shown without failures in figure (4.6). Now introducing site failures as defined by Skeen
gives the Petri net of figure (4.11) below. The extra states in the Petri net, d; and d», can
be considered as decision states and do not write log files. If a failure happens in these
states then upon recovery a w) and qp log file is read respectively, therefore the same
failure transitions for wj and qz can be assigned to d; and dj respectively.

Coordinator Participant

1g.(4.11) Asynchron xten 2 ph mmit with site failur

74

tf tf
a) req q, <@ 1 qireq q,—3 9 qyreqa,

t
1
3

s, O

\{
W, start Q2—5—> W start a,

t
d 2 W a,
A 2 Partic = yes | Partic =no @
v tfe
tf2 K
al no a2 {
tfz tf
4 yes P« W yes Py tf, W no a,
tf Coord = yes L Coord = no ‘4
(®21p, : dip, Wyespy A1

‘y t ©

/p R alabortpz
9’/
€ commit Py p ack<:2 tf,
Lfy
tg

Crack €y Cicy Pcomnnta2 aa rta2 aja,

Fig.(4.12) reachability tree for fig.(4.11)

The reachability tree for figure (4.11) is shown in figure (4.12), this shows that with
failures deadlock can occur in each of the circled states ((1) through (10)). To prevent this
timeouts are assigned on states w1, p1, q2 and p2 as defined by Skeen (see section (3.4)).
These timeouts are the same as defined by Skeen, thus this model and the analysis is
equivalent to Skeen's FSM model.

The synchronous version of this protocol was presented without failures in figure (4.7) it is
now shown with site failures in figure (4.13). The failures have been assigned in the same
way as for the asynchronous version. However, Skeen's rule defining how these can be
placed is not applicable because the concurrency set cannot be used since state transitions
representing message transfer alter the state of two sites (as opposed to the asynchronous
version where only one site changes state). The reachability tree for this is shown in figure
(4.14) showing the deadlock states. This can be used to determine where timeouts should
be included to prevent deadlock (cases (1) to (8)).

75

Coordinator Participant

Fig.(4.13) Synchronous extended 2 phase commit with site failures

76

1
ajreq gy @ q req gu———q; reqa,
@ ltl ty
t
start g, —>f5 start a,
t2

tf
ok dp — ¥ ok, 2,

a,d
132 l 13
7
Wy dy——2—>

w8y
Partic = yes t, ‘Pamc—no@
t
a; yes @ @ f2 Wy yes tfy W no
t
8
® ts \
tf \4 ok
al Ok2 "‘""""‘3_d1 Ok2 al 3
te tg t9
tf v
® a,p, «—3—4p, aj 3,
7
commit P7 abort py
A ;/ e 7
commit a , abort a,
tf ok532

okg4 $2—2— okg2)

' t13 [f ‘[13 t15

¢, 52 4—2— Plsz.......-.-p Pra,
t a;d,

16 tis @ 1

tf
¢, ack 4———5—plvack
t17
4
¢ okg

t1g

\4
%R

Fig.(414) R reachabili for fig.(4.1

The reachability tree of figure (4.14) is again reduced, but this does not affect the analysis
because the only states removed should never actually be reached. Also, recovery from the

77

omitted states would be consistent because they do not cross a communication boundary.
The timeouts are needed on both sides of every message transfer i.e. every message
primitive must be bounded. This implies that a process must be able to stop waiting to
receive a message and also stop trying to send a message. The limits on these bounds must
be predetermined worst case values to prevent false timeouts. It must be noted here that a
timeout applied to sending the ack message should transfer the state to ¢, thus it does not
matter if the last ack is sent or not, this feature is used later for optimizing the protocol.

4.4.2. Link Fail

Link failure is more important than site failure because it is envisaged that link failure will
prevail in a real-time control environment. In this thesis a tree structure is used for the
protocols and so a single link failure is equivalent to network partitioning, this is a much
more difficult situation to deal with than a single site failure [Davidson 85]. As pointed out
before only protocols where messages are not lost are resilient to network partitioning, this
is shown to be true here.

A link failure is assumed to be a physical disconnection of a communication link between
processors, it is also assumed that messages are short so that a link disconnection either
happens before or after a message has been received (and not half way through a message).

Consider the Petri net model of the asynchronous extended 2 phase commit, shown in
figure (4.4), for the first message a link could be disconnected any time before t; fires or
anytime after tp has fired.

If the start message has been received before the link becomes disconnected, the only
problem is that the next message (yes/no) cannot be sent. However, if the link is
disconnected before the start message is received it is equivalent to the transition t) being
unable to fire. This is equivalent to losing a token from the start place. Thus a link failure
can be assumed to be equivalent to a message loss in the asynchronous protocol. This is
modelled in the Petri net as the removal of a token from a message place.

These lost message transitions can be added to the Petri net model of the asynchronous
extended 2 phase commit as shown in figure (4.15). The reachability tree for this is shown
in figure (4.16) and shows that there are six possible states after a link failure, namely,

wi1q2, wW1p2, W1a2, a1p2, P1P2, P1€2.

78

Coordinator Participant

12.(4 Asvnchron xten mmit with link fail

79

Qireq q,

4

A\ tm /tm,
w; start qz__’ w, qz—-b aja,
ty o
Partic = yes {| Partic =no
W dy
a 2/tm3 tf, \ f
13—V, D) ¢——= W, yes Py
t
a,a
Coord = yes Coord =no 172
1P
‘)/ \
P 421- commit s
1P2 Py P2 alabonP2—>a192

75 G

INCONSISTENT

Fig.(4.16) Reachability tree for fig.(4.15

From these states it can be determined that :-

(D) w1 must timeout to aj (to be consistent in wy aj)

2) qp must timeout to as (to be consistent in wiqa with w) timing out)
3) p2 must timeout to ap (to be consistent in apy)

4) p1 must timeout to ¢y (to be consistent in pjc2)

Now if the state pjpy is reached both sites timeout independently and an inconsistent final
state is reached ie. cjap. This shows that this asynchronous protocol is not resilient to
message loss and that Skeen's rules are valid in this case.

A link failure in a system with synchronous communications can be modelled as a
transition failure, i.e. a transition not firing, this is shown in the following diagrams as a
double bar. With synchronous communications an acknowledgement is returned
immediately after a message has been received thus a sender knows if a message was
received or not. A link failure can now occur before the message is sent, after the message

80

is sent but before the acknowledgement is returned, or after the acknowledgement. The
latter case has no effect but both earlier cases have the same consequence in that no
acknowledgement is received by the sender, this implies that the sender knows if a message
was received or not.

If a message was sent correctly and then the link failed, the acknowledgement would fail to
be sent and the sender site assumes that the message was not received and no action was
taken by the receiver. The addition of possible link failures is shown in figure (4.17),
double bars indicating where failures may occur. Timeouts have been included to show
where they can be placed. The placement is derived from the reachability tree but shown
here for conciseness. The protocols using synchronous communications have been
implemented in Occam and shown to behave as expected, the code for these protocols with
timeouts placed for link failure is included in Appendix B.

81

Coordinator Participant

ot8

Fig.(4.17) Synchronous extended 2 phase commit with link failures

82

qy 189 q2

t q;Teq a,
tm m tm
alaz 4—-——i—— a 1q2<—1 start 4o —_—.6 start a2
m,
t
2 aa,
Okl d2
ts
\{
wyd,
4 NlPartic:no
tm2 W1 no
{8
ts
alok3
dl 0k2 t9
I6L
dp, ———>
Coord = yes Coord = no
"’ e l\
commit Py — \w» commit a, abort a,
9
12
0k4 $2
t3 ok 5
tm 5
G S2 4——— P82 t1s
t
16 th vtm a v
10 a,a
¢ ack " p. ack—¥ p,; 5, 172
1.3C 1
ty7
tm
5
tm
Lig
\4
)

Fig.(4.18) Reduced reachability tree for fig.(4.17)

The reachability tree is shown in figure (4.18) the double transitions bars showing where a
failure may occur. The states before these transitions show where timeouts must be used to

83

prevent deadlock, such that the timeouts bring the sites to consistent states. It can be
derived from the reachability tree that to ensure a link failure is tolerated every input and
output must be bounded. The reachability tree shows that this two site protocol is resilient
to a single link failure. The concurrency set from the reachability tree cannot be used to
determine Skeen's rules but similarities between this model and Skeen's can be drawn. It
must be noted that the timeouts on the places wy, py and pp are the same as for the
asynchronous model, Skeen also defines 'undeliverable message' transitions which are
equivalent to timeouts on sending a message, in this case a timeout on sending
commit/abort and yes/no.

14.3. Timi lysi

An independently recoverable protocol seems well suited for use in a real-time environment
since they have the capability of surviving both site and link failures. However, the
recovery time of sites cannot be calculated and this makes timing analysis difficult,
therefore only link failures are considered further. This section determines timing
information relevant to the synchronous extended 2 phase commit in the presence of a link
failure. It is assumed that both sites should reach a consistent agreement within a time limit
T and that the action of both sites aborting is a safe action and is preferable to an
inconsistent or late decision. A late decision is assumed to be unsatisfactory because other
processes depend on the decision, therefore timeliness is of paramount importance. This
section shows how to calculate and control timeouts to prevent false timeouts and considers
the synchronous extended 2 phase commit protocol of figures (4.17) with possible link
failures and timeouts included. Only a brief description of how to calculate timeout values
is provided, section (6.4.2) shows the calculation in greater detail with reference to an
application.

Each transition t; has two times asscciated with it, the minimum and maximum firing times
denoted Min(tj) and Max(t;) respectively. Therefore once enabled a transition fires in
between the interval [Min(t;), Max(tj)]. Consider the events following the sending of the
start message. To prevent a false timeout enough time must be allowed for t; to fire before
either site can timeout, therefore Min(tm) and Min(tmg) > Max(tp). In this case Min(tp) =0
and Max(tmp) can be determined as the propagation delay of the start message plus the
propagation delay of an acknowledgement. Also Max(tm;) and Max(tmg) must be less than
the required deadline.

As an example consider a failure in which the link is disconnected before the first message
start is sent, the latest an abort decision is reached is,

MAX [(Max(t;) + Max(tm;), Max(tme)]

84

The other timeouts are calculated in a similar fashion.

To see how timers may overlap consider the timing diagram shown in figure (4.19) which
shows the messages and associated timers of the first phase of the extended two phase
commit. The propagation delay of a message, A is assumed to be the same as for an

acknowledgement because the messages are relatively short.

Coordinator Participant
¢ Y
3 ’ A
’V tmg
P
tml P
: —GD M
A
% g
T
i ! _‘ '
A
<
Vv m, LPC
tmy /g
-G
v Cla—,
-) 4

Fig.(4.19) Timing diagram of message transmission

From this diagram it is clear that timers may overlap, as shown by tm; and tmj but this
does not cause problems because tmj is never started until after ok; is received.The
processing delays Pp and P are included to show that messages take a finite time to
process, to send an acknowledgement message this is negligible and could probably be
omitted. The timer tm; is started when the start message is sent, if for some reason an
acknowledgement is not received before it expires then recovery action is needed. If on the
other hand the acknowledgement is received before tm; expires then after the time to
process it another timer tm is started.

A false timeout can occur if for some reason d; is longer than expected, in which case the
yes/no message will be sent after tmp has timed out. Timer tm7/tmg would then timeout
even though no failure occurred. It must be ensured when calculating timeout values that
worst case timing assumptions such as message propagation delay are used. The first
timer, tm; in this case can have the approximate value of 2A where A is the worst case
message propagation delay. Once the acknowledgement is received, after time T the timer
tmy is started, the value of this cannot be approximated to 2A because the participant site

85

has to make a decision about its local ability to commit, this takes time dj which is probably
not negligible. The other timeout values can follow in a similar fashion.

4.5. Discussion

This chapter has shown how commit protocols can be extended with time to provide timely
decisions in the presence of failures, one major contribution being the modelling of commit
protocols using Time Petri nets. This model includes as much state information as previous
modelling techniques and also includes time which is vital for real-time applications.
Another advantage this method has over previous models is that the communication system

is also modelled, this has been exploited to show the difference between implementations

of commit protocols using asynchronous and synchronous communications.

The Time Petri net models in this chapter have also included an explicit model of the
communication system. In particular, both the 2 phase commit and the extended 2 phase
commit protocols have been modelled with asynchronous and synchronous
communications.

It has been shown that the Petri net model of the 2 phase commit using asynchronous
communication is equivalent to the original FSM model and also that the synchronous 2
phase commit protocol is still a blocking protocol. The synchronous 2 phase commit
protocol has been implemented in Occam, the code listing is given in Appendix B, this
implementation has been used to demonstrate the blocking property.

The extended 2 phase commit protocol has also been modelled with asynchronous and
synchronous communications. Both models have been subjected to site and link failures
and the placement of timeouts suggested to prevent deadlock and an inconsistent final state.
It has been shown that the asynchronous extended 2 phase commit cannot be made
independently recoverable from a link failure. However, it has also been shown that the
same protocol implemented using synchronous communications can be made independently
recoverable from the same kind of failure. The placement of timeouts to provide such
recovery has also been suggested.

The implementation of the synchronous protocols using a programming language designed
for distributed systems is described in the following chapter. The applications of the
protocols developed here to real-time systems are considered in chapter 6.

86

Chapter §

Implementation and optimization of commit protocols using
synchronous communications

S.1. Introduction

The previous chapter has shown that Petri nets can be used to design commit protocols. It
has shown how site and link failures can be modelled and used in the specification of
robust protocols. These models can then be analysed so that recovery mechanisms can be
designed and included to produce robust protocols and that timeouts can be used to detect
failures. It has been shown why site and link failures can not be distinguished easily. The

method was demonstrated through the design of a robust commit protocol that would
survive a single link failure.

For the Petri net specifications and designs to be useful they must be easily transformed
into implementations. Since the protocols were designed for distributed systems, if they are
to be implemented successfully they must be programmed using a language suitable for
expressing the properties of such systems. A suitable language needs constructs to describe
parallelism, inter-process communication, synchronization and non-determinism. Occam is
a language that possesses all the necessary properties quite neatly. Previous work has
shown that Occam programs can be modelled by Petri nets [Carpenter 88], a reverse
transformation is informally used in this chapter.

This chapter shows how Occam programs can be derived almost directly from the Petri net
designs for synchronous communications shown in the previous chapter. This chapter
demonstrates this translation process and emphasizes where care must be taken for the
implementation to be practical. Also this chapter serves as an evaluation of the use of
Occam in fault-tolerant distributed systems, and the limitations of Occam are discussed.

This work is novel in its implementation of robust commit protocols because point-to-point
synchronous communications are used rather than the usual asynchronous network. This
includes the use of the timed Petri net specification and designs and the use of structure
preserving transformations to translate these designs into Occam programs. In addition, the
optimizations of the protocol are novel in that the acknowledgment signals are used to
convey information and timeouts are used in the decision process. An acknowledgement
that is received designates a positive vote whilst not receiving an acknowledgement is

assumed negative.

Section (5.2) describes the concurrent programming language Occam and compares it with
Ada. The advantage that Occam is based upon a mathematical background is emphasized.
The actual implementation of the commit protocols in Occam 2 is outlined in section (5.3).

87

From the implementation the robustness of the protocols to site and link failures can be
tested, this is carried out by simulating the failures as outlined. It is shown that Occam has
insufficient semantics to provide complete resiliency to all types of failures. A solution to
this is presented using available assembler routines [Shepherd 87]. Section (5.4) explains
how the commit protocols developed in chapter 4 with synchronous communications can
be optimized. The optimizations reduce the number of messages sent by using the
acknowledgement message to contain information. Using these optimizations a three site
protocol resilient to a single link failure is developed and tested. Finally conclusions are
summarized in section (5.5).

52. O] for distril l
Occam was developed by Inmos as the language for programming the Transputer [May
85]. Until recently it was the only programming language available for the Transputer. It
has a sound mathematical background because it is based upon CSP [Hoare 78]. This
allows simple transformations to be applied to programs with full confidence that the
resulting program is equivalent to the original. Occam is a very simple language and
contains all the primitives required to program distributed systems. The original Occam
language has now been superseded by Occam 2, this contains the same core as the original
Occam but includes extra features. When used in this thesis 'Occam’ refers to the basic
features which are present in both Occam 1 and Occam 2. The programs in this thesis have
been developed using Occam 2 but throughout the description of the software Occam and
Occam 2 will be used interchangeably.

S.2.1, Occam 1

This section describes the original definition of Occam. The later variant Occam 2 contains
the same primitives and constructors as Occam 1, the differences between Occam 1 and
Occam 2 are considered in section (5.2.1). Occam 1 is a block structured language but
unlike conventional languages the indentation of the program is also part of the syntax,
programs must therefore be carefully formatted. Like most other languages Occam 1
consists of primitives, constructors and declarations, but unlike many languages these

constructs contain the necessary commands needed to program distributed systems.

Occam 1 primitives are assignment (:=), communication input (?), communication output
(1), process halt (STOP) and a null process (SKIP). The input and output commands
provide synchronized inter-process communication which is restricted to being one-to-one
along predefined channels. Since the communication is synchronized it can be used to
provide synchronization of processes. An example of two processes communicating is

shown below :-

88

Process A Process B

h
Chan1 110 |—SP 01 Chant 2x

X now equals 10

Fig.(5.1) Two communicating Occam processes

The other properties required by a distributed system programming language, parallelism
and non-determinism are provided by the use of constructors. The constructors of Occam
are SEQ, PAR, IF, WHILE, ALT. The first two, SEQ and PAR describe how the set of
commands which follow are to be executed, either sequentially or in parallel. When PAR is
used the processes which follow can be executed concurrently either on a network of
Transputers or on one Transputer. When more than one process is run on one Transputer
the processor is time sliced using a micro-coded scheduler. Examples of the use of the
sequence and parallel constructors are given below :

SEQ PAR
X := b x :=Db
y = ¢C y :=¢C
processl processl

Although good for expressing the parallelism of a system PAR incurs an overhead if the
processes are executed on one Transputer (context switching time of 75 nS). When using
the parallel construct certain parallel programming rules must be observed such as all the
variables must be mutually exclusive [Dijkstra 68].

The IF and WHILE constructors provide selection and repetition which are amongst the
basic requirements of a sequential programming language [Dijkstra 72], whilst the ALT
(alternation) provides non-determinism. An ALT allows one of a number of guarded
commands to be chosen non-deterministically. A guarded command [Dijkstra 75] consists
of a guard followed by a number of commands to be executed if the guard is chosen. A
guard may consist of an optional boolean expression and an input command, timer input or
a SKIP command. Timer inputs are used to break out from communication and prevent

deadlock. An example of an ALT command is :
ALT
Cl ? x
Bl ! x
(A AND B) & C2 ? y
B2 ! vy
When executed, the ALT waits until one of the guarded commands is ready to be executed.
In the above example the first guard is ready when the corresponding output on channel C1
is ready, the second guard is ready if the expression (A AND B) is TRUE and the output
on channel C2 is ready. Once a guard is chosen, the defined actions are then performed. If
more than one guard is ready when the ALT is executed an arbitrary guard is chosen.

However, a PRI ALT construct exists which allows priorities to be assigned to each guard.

89

This means that if a PRI ALT is executed and a number of guards are ready then the first
one in textual order is selected. One restriction on these constructs is that only input
commands are allowed in the guard.

The declarations allowed in Occam are CHAN (channel), VAR (variable), DEF (constant),
VALUE (fixed procedure parameter) and PROC (procedure). The declarations of CHAN,
VAR and VALUE may also be subscripted to allow for arrays. A PROC declaration is
used for convenience to bind a set of primitives, constructors and declarations, it does not

increase the expressiveness of the language.

Being a very simple language Occam 1 was criticized for not including features which had
become expected of modern programming languages. Notably missing were data typing,
recursion, functions and modules. Most languages allow variables to be declared as
integers, boolean or real but Occam 1 only allows integer variables. Recursion is also not
allowed in Occam 1 due to the problems of implementing large stacks on the Transputer.
Functions are not provided but with careful programming side-effect free procedures can be
used as functions. Occam 1 does not allow modules which are crucial for any large
software project but separate compilation of procedures is provided by certain
programming environments [Inmos 89]. Another problem with Occam 1 is the use of a
predefined read-only channel, TIME, to act as a timer, this channel breaks the rules of
Occam in that it is not one-to-one and can be accessed by many processes. This means
procedures using this channel cannot be transformed using the usual rules. Another
problem is the type of communication used is such that only one data item can be
transferred but often it is required to send a complex data structure per rendezvous.

.22, Occam 2

Occam 2 was developed in an attempt to solve the problems of Occam 1. It allows variables
to be typed, INT, BYTE or BOOL and thus provides type checking. However it still does
not provide other useful data types such as user defined types (eg. records, queues etc).
Another type included is the TIMER which defines a channel which can only be used to

input from a hardware clock.

TIMER clock

clock ? time.now

These timers allow a representation of ‘computer time' and not 'real-time’ and also follow

the traditional Occam model of one-to-one channels.

In Occam 2 a channel is now declared as having a type so that they can be checked by the

compiler for misuse. As an example :
CHAN OF INT chanl

Any attempt to send a variable of type BOOL or BYTE would result in an error. Channels
are now allowed to send complex data structures (Eg. Arrays) in one rendezvous.

90

Communication can also be made safer by the use of protocols which define what types
and the order of data which can be sent / received along a channel. Any abnormalities can
then be reported by the compiler.

Although included in the definition for Occam 2 functions and the CASE statement are not
fully implemented by all the available compilers. Another problem, in particular for
industrial credibility is that Occam 2 still does not allow any kind of module concept, only
the external programming environments provide such support.

$.2.3. Other | [ine distributed

Many concurrent languages exist but most are limited to research institutions. An excellent
survey of almost all applicable languages is provided by Bal et al [Bal 90]. The most
commercially available programming languages for distributed systems Ada [Dod 83] and

Occam are considered further. This section contrasts the main distributed features of Ada
and Occam.

Parallelism is expressed in Ada by the use of 'tasks' which can be created dynamically.
Unlike Occam where statements can be executed concurrently, tasks are the only unit of

parallelism in Ada. As an example of executing two processes, Procl and Proc2 in

parallel :
Qccam 2 Ada
PAR declare
Procl () task one
Proc2 () task two
task body one is
begin
Procl
end one;
task body two 1is
begin
Proc?2
end two;
begin
null
end ;

One disadvantage of the Ada type of parallelism is that the tasks cannot be passed
parameters, they must be communicated separately. Occam on the other hand allows
parameters in the procedure calls which can be executed in parallel.

Inter-process communication in Ada is known as an extended rendezvous. It is a form of
synchronous communication but involves more waiting than that of Occam. The type of
communication used by Occam (? and !) involves the sender process waiting until the
receiver has acknowledged receipt, after this the sender continues independently. The
extended rendezvous of Ada on the other hand involves the sender waiting until the receiver

91

has received the message, performed some computation and then returned a reply. This has
the disadvantage that concurrency is reduced.

The Ada form of communication is also known as remote invocation and is not to be
confused with the similar remote procedure call. Syntactically they can be made to look the
same but semantically they are very different because a remote procedure call transfers
control not messages and does not need to have to execute an explicit receive command. An
Ada send and receive command is outlined below :

Send Receive

task Procl is
. entry send (num : integer);
Procl.send (x) end Procl ;

task body Procl is
begin

accept send (num : integer)
end Procl;
It can be seen that the send command is a form of a procedure call and the receive consists
of an entry and an accept command. This is not as simple as the Occam model and also

causes problems because it is not one-to-one, i.e. a number of tasks may send to the same
receiver task.

Another problem with Ada is that communication can also use shared variables which
although efficient is undesirable because of the lack of control and synchronization. This
type of communication is not allowed in Occam. The communication used in Occam is part
of the Occam model (communications are primitives) and is simpler and more predictable

which makes it safer for use in critical real-time systems.

The final property required for distributed systems, non-determinism, is achieved in Ada

using the 'select' statement which is similar to the Occam ALT. For instance :
select
accept call 1 (...)

end call 1
or
accept call 2 (...)
end call 2
or
delay 0.5 seconds

end select ;

This allows communication with either branch depending on which one is ready first. If no
rendezvous is taken within 0.5 seconds then the delay branch is selected and the commands

92

following the delay statement are executed. If an accept is taken then the commands within
the rendezvous are executed followed by any commands after the end of the accept. One
advantage of the select statement is that it allows a procedure call in one of the branches.
Using this, a message can be sent and also timed, this is known as 'timed entry call'. It is
restricted so that only one call is allowed within the select command and accept statements
cannot be used as well. The timeout period is for the call to be accepted and NOT the

completion of the rendezvous which would probably be more useful.

Occam is more suitable than Ada for implementing commit protocols because it allows a
direct form of synchronous communication and a simpler representation of concurrency.
Since each Occam construct has a Petri net representation it is also easier to transform the
Petri net specification into Occam code. It would be possible to implement the Petri net
specifications in Ada but problems may arise due to the form of Ada communications. It

would also be necessary to develop Petri net representations for Ada constructs.

3.2.4. Petri net models of Occam constructs

Petri nets have been shown to be a powerful modelling technique (chapter 4). For the Petri
net specification of a protocol to be transformed into Occam, it must be shown that Occam

constructs can be modelled using Petri nets. These Petri net structures can then be identified
within the specifications and transformed into Occam.

Previous work on the modelling of Occam using Petri nets [Carpenter 87, Carpenter 87b,
Carpenter 88] has developed a set of transformations. The Petri nets of typical Occam
constructs are shown in figure (5.2).

93

Assignment Sequence Parallel Communication

SEQ PAR
Pl P1
P2 P2
g P1 P2
Altemation Selection
IF ..
ALEhl 7 x condition condition
? ? Pl F
Chg,l? X } Chl Ch2 NOT condition
P2 P2 P2
ol J
While Time g
WHILE condition (J Time ? timenow
P1 condition

T

Pl Time ? AFTER time

Fig.(5.2) Petrin resentations of m con

These show the control flow of the constructs, for example the parallel construct will only
terminate when both constituent parts have completed, i.e. P; and P3 both finished. An
ALT or an IF statement will terminate when the selected statements have completed. This
chapter uses the above Petri net constructs to implement the protocols in Occam.

S5.3. Occam implementation of commit protocols

Occam has in-built primitives to provide inter-process communication, namely ? and ! for
input and output respectively. The communication is synchronous and should map directly
into the previously described synchronous specifications. The idea of time is also included
in the language which allows it to be used in real-time systems [Leppalla 87]. This section
outlines how the synchronous specifications of a commit protocol can be almost directly
mapped into Occam. For demonstration purposes, the implementation of the extended 2

94

phase commit is explained in detail. It is then shown how failures can be modelled in
Occam and timeouts provided to prevent deadlock.

At the top level for a two site protocol, an Occam model of the specification is formed using
a parallel construct :-

PAR
coordinator (To.participant, From.participant)
participant (From.participant, To.participant)

this allows two processes, the coordinator and participant to execute concurrently and pass
messages to and from each other. This construct can be used on a single Transputer or each
process can be run on a separate Transputer. The protocols in this thesis were developed

using a multi-Transputer system where each Transputer was used for one process only.

Consider the specification without any failures as shown in figure (4.5). The message
places (starty, okj, etc.) can be implemented as messages sent along channels or links and
each state place is equivalent to a state assignment. The decision states (d;, d3) where each
site makes a local decision whether to commit/abort, can be modelled for simulation
purposes using a boolean variable which is set to TRUE/FALSE.

Also each transition marked ? and ! can be translated into an Occam communication pair.
One of the problems here is that each communication transition represents a separate
channel. For practical reasons the number of actual channels was reduced to two, namely
To.participant and From.participant. This means that the messages yes and no are sent
along the same link (From.participant), the same applies to the messages abort/commit.
This restriction forces the code to perform a check on the message once received.

With this restriction the protocol cannot be made independently recoverable to site failures
but resiliency to link failures is still possible. Site failures need extra communication upon
recovery because a site may fail after a commit message is received but before the commit
action (and therefore log file) was performed, upon recovering the failed site will wait for
the decision from the coordinator. To solve this a reasonable assumption would be that a
site never fails between receiving a message and writing a log record. This could cause
deadlock if the coordinator assumes that the participant has finished because it will not send
the decision again. Link failures are unaffected because each site can still continue
processing. The outline for an Occam implementation of the 2 site protocol where failures

are not allowed is as follows :-

95

Proc coordinator (To.pl, From.pl)

SEQ
state = q3
To.pl ! start
state := w;
From.pl ? mess
IF
mess = no
state := aj
mess = yes
IF
coord.willing
SEQ
——- decision is commit
To.pl ! commit
state := p3
From.pl ? mess
IF
mess = ack
state := c3
TRUE
—— error !
NOT coord.willing
SEQ

—— decision is abort
To.pl ! abort
state := a3

PROC participant (To.coord, From.coord)

SEQ
state := q»
From.coord ? mess
IF
mess = start
IF
partic.willing
SEQ
To.coord ! yes
state := p»
From.coord ? mess
IF
mess = commit
SEQ
To.coord ! ack
state := ¢C32
mess = abort
state := az
NOT partic.willing
SEQ
To.coord ! no
state = a3

96

As described above, using a single link prevents protocols being independently recoverable
to site failures so only link failures will be discussed further. A link failure is effected by
actually removing the physical link between Transputers during simulation. As mentioned
in a previous section (4.4.2) to be resilient to a link failure each input and output process
must be bounded.

It has been shown [Carpenter 87] that Occam allows an input process to be bounded by the
use of an ALT statement and a timer process as shown below :-
time ? time.now
ALT
input ? message
process input

time ? AFTER time.now PLUS allowed.wait
timed out

When the ALT statement starts either the input process or time process can take control, the
time process will take control only after the time specified thus allowing the input process

that amount of time to communicate. This provides a method of bounding an input process.

It would be expected that the output process could be dealt with in a similar manner but
because of language limitations output guards are not allowed in an ALT statement and can
not be bounded in this way. A method to allow indeterminacy in input/output guards has
been proposed [Bornat 86] but timeouts can not be implemented in this way. Therefore
pure Occam cannot be used to implement protocols resilient to failures.

Fortunately, if the protocols are implemented on Transputers, assembler routines have been
provided which allow bounded inputs and outputs [Shepherd 87]. These routines still
provide synchronous communications but provide a way of breaking out and preventing
deadlock. Procedure calls are used to replace the communication primitives ? and ! and are

of the form :-

InputOrFail.t (Channel, message to be sent, timer, allowed
delay, flag)

OutputOrFail.t (Channel, message received, timer, allowed
delay, flag)

The flag is set to TRUE if the process has not completed within the allowed time else it is
set FALSE. Each procedure call models exactly one side of the communications of figure
(4.10b) and must be used to prevent deadlock.

The 2 phase commit and extended 2 phase commit protocols have been implemented using
these routines to provide resiliency to site and link failures. The results of the
implementations show that the 2 phase commit protocol remains blocking whilst the
synchronous extended 2 phase commit can be made to terminate consistently. The listing of
the implementation using these assembler routines is given in Appendix B.

97

S.4. Optimizations with synchronous communications

This section proposes optimizations to the robust extended 2 phase commit using
synchronous communications when only link failures are expected to occur. The full listing
of the Occam code for the resulting protocol is included in Appendix B. The protocol
specification shown in figure (4.17) is the basis for the optimizations, the initial
observation being that if the abort command was not sent then both sites would timeout and
abort which is the same situation if the abort command had been sent. This message
therefore contains no additional information and can be removed.

The robust extended 2 phase commit consists of ten messages, five of which are
acknowledgements. It would be preferable to reduce this number which does seem a bit
excessive. For the two site protocol of figure (4.17) not only is the abort command
message redundant but also the 'no' vote and 'ack’ message. The 'no' vote can be removed
and the timeout on wy used so that a timeout is assumed to mean a negative answer, i.e. the
'no' message. The same reasoning applies to the abort and ack messages. This reduces the
number of explicit synchronous messages from five to three. The resulting protocol is that
shown in figure (5.3). The reachability tree (figure (5.3b)) is again of the reduced form
because the acknowledgement transitions (t3, t7 and t;) are assumed to fire as quickly as
possible.

98

SGONESTUNUIWIOD SNOUCIYIUAS JOJ PIZIWINAC = TRIRG0) 9seqd ¢ Papuaixy (¢ §) 33

san Auiqeyoear padonpay () 13u 12 (&)

1881
Gl @

:HF ;ﬁ
I O Yo
G Hoqe 1 z

d
o:__
/Ja ; wd u \\g

oo 8
: 1

1 9
jm b = \3\
ou=pI00) S = p100)
Nu_o__*v

99

Zelp tele

z SM__ \ ‘un ¢ o
Eu/w Ty SOA' M Sun soX &
4
]
JA“ tun Nﬁﬁm\A

A 94 = o1ed

ou = OnJE

Nuﬂw
b s

bar 'b wedisyre g 107EUIPIO0))

The reachability tree shows that a consistent decision is always reached even in the event of
a link failure. Each communication is of the form shown in figure (4.10b) therefore each ?

and ! can be replaced by the bounded communication procedure calls. The code fragments
for each process being :-
Proc coordinator (To.pl,
SEQ
state := o1
OutputOrFail.t (..,start,..)
IF
failed
—- link down
state := a3
NOT failed
state = wj
InputOrFail.t (..,mess,..)
IF
failed
-- link down or pl = no
state = a;
NOT failed
-- pl replied yes

From.pl)

IF
NOT coord.willing
state := aj ;
coord.willing ¥
state := pj ‘@
OutputOrFail.t (..,commit,..) |
IF !
failed
—-— link down
state := ajz
NOT failed
state := ¢C1

100

Proc participant (To.coord, From.coord)

SEQ
state = q»
InputOrFail.t (..,mess,..)
IF
failed
-— link down
state := as
NOT failed
IF
NOT partic.willing
State := az

partic.willing
OutputOrFail.t (..,yes,..)
IF
failed
—-— link down
state := az
NOT failed
state := pp
InputOrFail.t (.., mess,..)
IF
failed
-- link down
state := ap
NOT failed
state := C2

These optimizations have removed the no and abort messages which would only be sent if
either site voted to abort, removing the ack message saves one message during
commitment. One disadvantage of this protocol is that it can only be used when the
communication links are dedicated to these control messages so that the propagation delays
can be calculated accurately. If the timeouts are not accurate then false timeouts can occur
when both sites could have gone on to commit. This disadvantage is outweighed by the
safety aspect, it may be far better to have a false timeout than an inconsistent or late

decision which may cause an unsafe event.

From the previous optimized protocol of figure (5.3) it can be seen ihat during commitment
the ok; message from the participant is followed by a yes message informing the
coordinator that the participant is able to commit. This appears to be redundant, it is now
suggested how it may be possible to remove this message but only under certain

conditions. The protocol suggested is shown in figure (5.4) :-

101

19U Ndg As
san ANiqeyoeal paonpay (q) @

&le
6

N e
N

ou = p100) $9£ = p100))
9N _v_
Cele «

m
:E/ HH__ ﬁﬁ ok
T wels mtsm o O C—ta P

™, £

ou = oE.mm S94 = onred
(45) F

[§1
b hor !

101eUIPIO0))

b wredonred

102

In this protocol the yes message is replaced by the ok, message, this has the disadvantage
of removing the synchronization at the start of the protocol. These optimizations lead to a
loss of desirable qualities and also the introduction of undesirable constraints. For example
the start of each site is now assumed to be synchronous within a known time limit. That is,
if the start time of the participant is not known accurately then the timeout period tmj cannot
be calculated. It is also assumed that each participant knows what actions to perform. This
is because the start message would normally include the work each participant should do
but now the participant has to decide locally before the start message is received.

The participant now checks to see if its actions can be performed, if they cannot then it
aborts immediately but if they are possible then it waits for a start message from the
coordinator. Once this is received it enters a prepared state and waits for a commit
command or timeouts to an abort state. The coordinator after receiving the ok message
then checks to see if its actions are possible (and checks other sites) and sends a commit
message or aborts. This protocol again removes messages by assuming that a lack of a
message is equivalent to a negative reply.

This protocol can not be directly extended to include more than two sites because if the
decision to commit is reached and a commit message is sent to one participant but fails to be
sent to another then one participant commits but the other timeouts and aborts. However
from Skeen's theorem it should be possible to design a multi-site protocol which is resilient
to a single link failure because providing consistency between connected sites is relatively

easy.

To solve this problem another phase can be added to the protocol as shown in figure (5.5).
When a site receives a commit message it now enters a 'prepared to commit' (R or Rp)
state in which it either timeouts and commits or receives an abort message. In the event of a
timeout it is reasonable to assume a commit because we have assumed only one link failure
will occur and so the last abort messages will always be received. The abort messages are
sent only after a different link has failed previously and are assumed safe. If links were
allowed to fail during this phase then the protocol would have to be blocking and of little

use in a real-time situation.

False timeouts in the protocol happen when the timeout values are set too low or a process
is slower than expected. With a dedicated system false timeouts should be rare events if the
values are calculated with care. False timeouts are undesirable but acceptable if safety is
preserved. Another problem is the omission of the synchronization, traditional commit
protocols use the start message to synchronize autonomous sites, this has been removed for
asily be included. In a practical system the use of such

synchronization is probably necessary, this would involve an extra 2(N-1) messages where

optimization but could €

N is the number of sites.

103

ipant
t3

Pam;z

Coordinator

b

Participant 1

Fig.(5.5) Petri net of 3 site protocol

When the protocol of figure (5.5) is used it needs 4(N-1) messages to commit which is the
same as the 3 phase commit protocol, if synchronization at the start is used a total of 6(N-1)
messages are needed. This means that the message overhead for commitment is greater but
since lack of a message is used to mean a negative answer the number of messages to abort
is less. In this case the number of messages t0 abort has a lower bound of 2N-3 (if a

participant says no) and an upper bound of 3(2N-3) (when a commit message fails).

104

The disadvantage of false timeouts and extra messages are far outweighed by the fact that
consistency can be maintained even with a link failure. Since each site can recover
independently from a link failure and still continue processing, any applications being
controlled can still continue and real-time constraints can still be met. It would be

advantageous to use such protocols in safety critical real-time control systems where timed
consistency has priority over other aspects.

5.5, Discussion

To be useful a specification must be easily translated into an implementation, in this case a
suitable programming language. This chapter has demonstrated how the Petri net protocol
specifications can be converted almost directly into Occam programs without too many
abnormalities. Special cases due to practical limitations (the number of Transputer links)

have been pointed out and shown to be transformable into a communication followed by a
selection.

It has also been shown that Occam is a valuable tool for programming distributed systems,
possessing the necessary constructs to define parallelism, inter-process communication and
non-determinism. The advantages of Occam, its simplicity and mathematical fundamentals
probably outweigh any disadvantages. One disadvantage of Occam is that it has insufficient
semantics for highly robust distributed systems primarily by not allowing a timeout on a
send command. This has been overcome by the use of pre-defined assembler routines.
Another disadvantage of Occam is its fixed type of synchronous communications which
may not be flexible for all systems. This thesis proposes that this type of communications
is more predictable and should be used for safety critical systems.

The use of synchronous communications for the protocols has been analysed and an
optimized two site protocol has been developed. This essentially uses the the idea of
implicitly allowing the acknowledgement signals to carry information. The presence of an
acknowledgement is assumed to represent a positive reply whilst the lack of
acknowledgement means a negative response. This uses timeouts to determine a decision
and so puts greater emphasis on accurate timeout values. Also for the totally optimized case
the sites must have a totally synchronized start, this would probably reduce the number of
applications of such a protocol. A three site protocol using these optimizations has also

been developed.

The 2 phase commit and extended 2 phase commit protocols have been implemented using

Occam on a network of Transputers. The Jisting of these protocols with timeouts defined

pendix B. The implementation confirm that the 2 phase
unication is still a blocking protocol. They also confirm

for link failures are given in ap
commit using synchronous comm

that the extended 2 phase commit can independently recover from a single link failure. The

105

optimized extended 2 phase commit protocol has also been implemented, its listing also
appears n appendix B. The results of this show that it still exhibits the same resiliency to
link failures as the extended 2 phase commit but the assumed synchronization does pose

problems. The calculation of timeout periods is also a greater problem in this protocol
because false decisions can be made.

The following chapter will demonstrate the use of the optimized protocols in real-time
applications. It will be shown how making a decision within a deadline is important in

safety critical situations and why tolerating a link failure is more important than tolerating a
site failure.

106

Chapter 6

i . . .

Application of commit protocols to real-time systems

6.1, Introduction

This chapter illustrates the use of commit protocols using synchronous communications in
real-time systems. Section (6.2) examines the requirements of various classes of real-time
systems. Section (6.3) provides two real-time database examples which show how site and
link failures can be tolerated by using the protocols developed in chapter 4. Two real-time
control examples are provided in section (6.4) both of which show how important
atomicity is in a control environment. The first example, a level crossing, is used to show
how atomicity can be applied without any timing constraints. Timing constraints are

included in the second example which shows how the protocols of chapter 4 can be applied
to safety critical situations.

62, Cl teristi i 1t

In general a real-time system must be predictable both functionally and temporally
[Stankovic 88a]. In such a system, the basic component of work is the task which can be
either periodic or non periodic. Periodic tasks are predictable and are performed once every
T seconds and can be therefore scheduled with known start times. Non periodic tasks are
known events which may happen at any time, therefore their start times are unknown. A
processor may be executing a number of periodic tasks when a non periodic task is
initiated, the processor must then be able to determine which task has higher priority. For a
task to be completed in real-time, certain temporal constraints must be satisfied. A task can
be characterized by the following constraints [Ramamrithran 84] :

(1) start time
(2) computation time
(3) deadline for completion

All three can be represented as absolute or relative times. For a task to be possible the

following must hold:-

(deadline - start time) >= computation time

If this is not true then it is impossible for the task to be completed in time. The difference
laxity of the task and is a

between the task completing and the deadline is known as the '
measure of how much spare time there is. This laxity is very useful when attempting to
schedule a number of tasks on one processor. It may be possible to use this spare time of a

ired.
processor to execute another process and reduce the number of processors requ

107

Temporal scopes [Lee 85] are a language construct which associates timing constraints with
a collection of statements. They assume that an underlying scheduler exists which uses the
timing information provided. The timing constraints are provided by the user and are more
explicit than simple delays. The possible attributes to a temporal scope are :

(1) Deadline for temporal scope

(2) Minimum delay before starting temporal scope

(3) Maximum delay before starting temporal scope

(4) Maximum execution time of the statements in temporal scope
(5) Maximum elapsed time of temporal scope

The maximum elapsed time is the actual time that the processor is used for the temporal
scope, this includes all delays where the processor is not executing any command. An
example of such a delay is when waiting for a communication. A scheduler uses the
information about the elapsed time to try and schedule other tasks in the delays. One
problem with this is that the delays must be defined by the user which is a very difficult
task. These extra constraints are not needed for systems where the scheduler does not use
user defined timing information. A Transputer based system is an example of where such
timing information is irrelevant because the scheduler is micro-coded and priority based and
does not use information provided by the user.

Other deadline semantics that have been included in a real-time operating system {Gheith
89] are recoverable deadlines and weak deadlines. Recoverable deadlines are useful for
tolerating failures and still providing a safe system. For example if a hard real-time task is
scheduled and misses its deadline because of a failure it is possible to recover by defining
an exception handler which is executed with highest priority. Weak deadlines are such that
when deadlines are missed partial values already generated may be acceptable by the
system. This may be satisfactory for a single process system but for a distributed system it

is difficult to maintain consistency between sites and is therefore rarely used.

Tasks also have different importance and when scheduling it is useful to know these so that
the more important tasks take precedence. Real-time tasks can be classified as either hard
real-time or soft real-time [Burns 90]. A hard real-time task is such that if its deadlines are
missed then the system fails and a catastrophe may occur, for example an aircraft
controller. If a task misses its deadlines but the system still functions correctly (and safely)

then the task is said to be soft. In a real-time system a hard real-time task has a higher

priority than a soft real-time task.
t have enough resources for each required task and as such

Most real-time systems will no .
being a number of tasks which are

multi-tasking must take place. A typical situation of ta
n be run with different priorities a scheduler

executed on one processor. So that tasks ca :
ch a scheduler ensures faimess between equal

must be provided by the operating system, Su

108

priority tasks and also includes a resource manager which allocates in advance time slots
for access to shared resources by specific tasks. Scheduling involves executing all hard

tasks within their deadlines and also as many soft tasks as possible. This may involve pre—
empting soft tasks to ensure a hard task finishes in time.

In a distributed real-time system with limited resources it may be possible to schedule and
execute tasks on other nodes. Such a scheme has been presented [Ramamrithran 84] which
requires each node to have additional processes which take care of scheduling tasks,
bidding for tasks and dispatching tasks. When a task arrives at a node an attempt is made to
schedule it, if unsuccessful the task is sent to another node. This continues until the task is
either guaranteed or the deadline is missed. For this algorithm to be successful each node

must be able to handle concurrency and must be connected to the other nodes by a reliable
and efficient communications system.

With limited resources and sporadic tasks, scheduling is generally performed by an
operating system with a kernel providing a limited set of primitives. Current operating
systems provide scheduling based on priority rather than time and have limited ability to
manage time and time bounded communications. Lee et al [Lee 89a) have developed a real-
time kernel for use with a robot arm to provide predictable timing behaviour which uses
temporal scopes to instruct the scheduling algorithm. The scheduler is priority based and
classifies tasks as either imperative, hard or soft. Imperative tasks have the highest priority
and are executed on a first come first serve basis whilst hard and soft tasks are executed
depending upon their timing constraints. Once a hard task is scheduled its deadlines are
guaranteed but soft tasks may not complete in time. If a hard task violates a timing
constraint because of a failure, the tasks priority is raised to that of imperative. Its exception
handler is then executed immediately. This allows tasks to start off as non real-time and as
soon as a timing constraint is specified it becomes a real-time task. Timing constraints are
specified by temporal scopes extended with a flag which indicates soft or hard constraints.
The advantage of this system is that using temporal scopes means that the scheduler can use
timing information not just priority to derive its schedule. An extension to this work would

be to allow tasks to be scheduled on nodes other than where they were initiated.
Real-time systems are typically used in control applications with sensors and actuators

interfacing to the external environment. Such control systems are using ever Increasing

amounts of information and are now being equipped with database systems for efficient

storage and manipulation. In database systems the unit of work is the transaction. If the
database has to respond within predefined time li
database system. Transactions are being extended with
Abbot 88]. However problems still remain when all the

required. Properties such as concurrency control and

mits the system is known as a real-time
timing constraints [Stankovic 88b,
properties of a transactions are

atomicity cause problems in

109

predicting computation times because recovery times and data locking times can be

unpredictable. Usual operating features such as paging, buffering and resource allocation

also make deadline prediction more difficult if not impossible.

Many transactions in a real-time database system have deadlines which are not critical and
so a more flexible model for time constraints is being developed [Abbot 88]. The method
assigns a function which varies with time to each transaction, the sign and magnitude of the
function expresses how useful the result of the transaction is. For example if a hard real-
time transaction completes before the deadline then the function is a high positive number
but once the deadline is passed the function becomes zero. Although flexible the problem
still remains of how and when to classify the transactions, also what happens if the
transactions are classified incorrectly? One short coming is that the method does not include
concurrency control in its outline. Concurrency control is important because to achieve
serializability certain tasks may need to be rescheduled which may violate the deadlines.

One problem of real-time database systems which needs further investigation is that of
recovering from failures in a timely fashion. Most work in this area concentrates on main
memory databases which are not distributed [Singhal 88]. When a site fails which is
involved in a transaction with a deadline, it must recover and return the required results
before the deadline expires. In practice the recovery time of the site is unpredictable and the
analysis intractable. A similar situation also arises during commitment of a transaction.
Consider a transaction using a blocking commit protocol such as the 2 phase commit, if a
site fails the transaction has to wait until the failed site recovers before terminating. This
would involve keeping data locked and possibly unavailable to other transactions. Other
transactions may therefore miss their deadlines. Section (6.3) proposes the use of non—
blocking protocols to solve this problem. With a non-blocking protocol, if a site fails, the
operational sites can terminate the transaction thus releasing locks. Upon recovery the failed
site recovers to a consistent state. This means although the original transaction cannot keep
its deadline it will release locks on data in time for other transactions to meet their
deadlines. Also if a single link between two sites fails it is possible to continue processing
at both sites independently if the network is such that no messages are lost. A solution is

proposed in section (6.3) which uses the protocols developed in chapter 4.

Other properties required in a real-time system are robustness and flexibility. Robustness is

a combination of reliability and availability and should provide an acceptable service in the

presence of failures. An example of a system where robustness is very 1mportant is in an

avionics control system where system failure is expected n su
r fails then for the system tO be robust control must be maintained.

to be extremely rare. In such a

system if a processo :
This can be achieved by having another processor execute the task of the failed processor.

It is difficult to tolerate site failures in real-time because site recovery is unpredictable and

110

additional hardware must be used and the switching of tasks is required. Section (6.4)

illustrates how a site failure can be tolerated without additional hardware using a commit

protocol but not within a deadline.

Consideration is also given to link failures in such Systems. These leave the processors able

to function correctly but unable to communicate, Redundant links may be used to tolerate a
link failure but for a system with limited resources this is impractical. Since the processors
are still functioning, theoretically it is possible to still keep contro] of the system. Since
coordination is impossible the only way is for all (now) independent sites to assume a state
known to be safe. This is illustrated in section (6.4) with an example which requires the

safe state to be achieved within a deadline.

The property of flexibility can be defined in terms of static or dynamic flexibility. Static
flexibility is based upon modularity where functions are identified with modules and if the
functions change (eg. changing the product shape) then it is only necessary to change a few
modules and not the majority of the system. Dynamic flexibility ensures that the system
performance is maximized as the working conditions change. The system must be able to
change instantaneously at unpredictable times if working conditions change (eg. loads or
faults occurring). Both static and dynamic flexibility must be easily implemented if the
system requirements or conditions are expected to change frequently. The examples in the
following sections are static and therefore their functions are assumed constant. They are
designed to tolerate faults thus demonstrating robustness. However the methods illustrated
are applicable to flexible systems if the communication network remains fixed. To achieve
full flexibility all sites must be able to coordinate with any other and so each site must be
able to be designated a coordinator or a participant. The role of each site would also have to
be switchable at any time. This increases the complexity and is not considered in the
examples.

In the following applications reference is made to the Transputer [Inmos 88] which is a
VLSI chip with built in processor, memory and four point-to-point synchronous
communications modules which can execute in parallel with the processor. It has been used
in real-time control systems|Leppalla 87, Flemming 87, Irwin 90, Chull 89] because of its

high processing power, low cost, modularity and simplicity of interconnection.

Interconnections are via communication links which provide bi-directional synchronous
communications and can operate simultaneously thus providing a very high message
throughput. Being synchronized means that communication is very reliable because

messages cannot be lost or received out of order as in asynchronous communicatons.

The Transputer allows concurrency by using a microcoded scheduler based upon tim.e
slicing. Priority allocation to processes can be performed directly from Occam but this

allows only two priorities. Another problem is that processes are scheduled on priority and

111

not timing constraints. Although not ideal for real-time systems the microcoded scheduler
does alleviate the designer from scheduling problems, Eventually as costs fall the
Transputer will be used in systems where one process executes on one processor thus
removing the need for a scheduler. Other advantages of the Transputer include its efficient
communication system and the ability to implement Occam programs directly. This is an
advantage because Occam is based on the CSP process model and follows its rules for

transformations. Thus an Occam program can be transformed into another which can be

proved to provide the same function [Roscoe 88]. This is usually performed in an attempt

to reduce the hardware required. The transformation of real-time programs is much more

difficult because time constraints must also be met [Moitra 90] this involves taking into
account the scheduling strategy used.

6.3. Commit protocols in real-time database systems

This section examines the use of commit protocols in real-time database systems. It
proposes the use of non-blocking protocols to provide transactions which can satisfy
timing constraints. It also proposes the use of synchronous communications for commit
protocols where the application is safety critical and link failures are expected. Two
examples are used to demonstrate the proposals.

An example of a real-time database system can be found in a radar system tracking an
aircraft, the position, direction and speed being stored in the database. Such systems are
often distributed and comprise multiple sensors, processors and data. If a weapon system
uses this information then the storage and retrieval time of the information must be
predictable so that the system knows it is trailing by a known amount. This delay can them
be taken into account in the design of the weapon and guidance system. This causes
problems because database systems generally have slow response times for data access
because of disk i/o and the need to maintain consistency. Data consistency is often achieved
by serializing transactions but which can cause unpredictable delays because transactions
may be restarted or blocked. The previous performance problems are solved by either using
main memory databases or trading a feature such as serializability [Singhal 88].

Main memory databases can be used to improve the performance of a traditional database.
This is because they possess a large fast main memory which is used to store part if not all
the database thus reducing database access time. The main problem with this technique is

the high cost involved but the cost of memory may continue to fall in the future. Another
g stable storage. This type of storage is slow and a

a log record may not be tolerable for real-time
and the recovery process starting is also

problem is that of crash recovery by usin
typical recovery technique such as reading
applications. The time between a site failing
unpredictable.

112

transactions [Stankovic 88b). One method is to sacrifice the serializability property of
transactions. The correctness of a database is actually decided by pred
constraints on the data. A simple example of an integrity constraint is tha
must contain an amount greater than zero (or the overdraft limit). The
constraints is typically large and so serializability is used instead

Serializability is used in database Systems to ensure that concurre

efined integrity
t a bank account
number of these
[Davidson 85].

nt execution of
transactions has the same effect as if they were executed serially so as to maintain a correct

database [Bernstein 87a]. Since serializability is achieved by blocking or restarting
transactions the time to complete a transaction in a concurrent environment may be greater
than if executed in isolation. Real-time database Systems usually have a fixed number of
transactions to perform and it is possible to specify a small set of integrity constraints
which can be used instead of serializability. This technique has been used to design a

quorum protocol [Lin 88] which allows greater data availability in the presence of a
network partitioning,

Real-time databases are expected to show resiliency to failures as well as predictable
response times. Resiliency to failures can be provided by a distributed database with
replicated data. Distribution has the advantage that if one site crashes the others can still
continue processing. Replication of the data enhances data availability in the event of a
failure and can also be used to improve transaction response time by judicious placement of
the copies.

Full replication of the database means that a transaction can still complete even if any site
fails. This is wasteful of resources and is not common practice, usually only part of the
database is replicated and rarely at every site. To increase performance copies of data can be
placed where they are expected to be accessed frequently thus removing long
communication delays. A problem with replicating data is ensuring that all copies act as
one, even in the presence of failures. For example if a transaction updates a data item which

has a copy unavailable hecause of a site failure, upon recovering the failed site must update

its copy so as not to be inconsistent.

A number of algorithms exist to control multiple copies of data [Bhargava 87, Son 87].
Most require that each site knows the status of every other site, either operational, non-
operational or recovering. Another concept common to both is the read-one / write-a'll-
available paradigm where a read transaction acquires a lock on one copy whereas a write
transaction must be able to lock all available copies. Fail locks [Bhargava 87] are used to
inform operational sites that data being updated has copies at failed sites. Kceping.tablcs of
fail locks at each site is a disadvantage because of the communication overheads incurred.

Son [Son 87] exploits the dominance of read-only transactions to enhance performance,

113

one problem being that the read-only transactions must be identified before execution. Such
resiliency to failures helps to achieve real-time response but the co .

d ffect ntrol of the copies has an
adverse e)

When a transaction has to complete within a deadline two conflicting situations arise,
database consistency and data availability. If database consistency is preserved it may mean
keeping locks on data items thus reducing data availability. If database inconsistency can be
tolerated it may be better to remove locks on data so that other transactions can complete
within their deadlines. A real-time database has two types of consistency to preserve,
internal and external. Internal consistency of the database is provided by integrity
constraints. External consistency means the database must model the outside world
accurately which implies data has a limited life span so the database must be updated
frequently. Out of date data is sometimes useful in real-time databases where a transaction
response time is critical but the value is not.

The main problems associated with real-time databases are providing concurrency control
of transactions within deadlines and also recovery from site and link failures. Concurrency
control algorithms must be optimized so that blocking of transactions is minimal. A high
performance concurrency control algorithm has been developed [Singhal 88] which
removes communication delays from the blocking time of a transaction. Recovery
techniques must also be developed which allow fast recovery from site failures and
continued processing of transactions when a link fails.

5.3.L E le 1 : site fail
This example demonstrates how non-blocking protocols can be used in real-time database
systems to allow transactions to satisfy deadlines when sites fail. Consider the database
system shown in figure (6.1) where the transaction Ty is initiated at dbj and expects all
three databases to be updated.

Assume that a copy of a data item X resides in each of the databases, let the copies be
denoted xj, x7, x3. Also assume that the transaction Ty, is to update X and once updated X
is then read by another transaction. For the second transaction to satisfy its time constraints

Ty is specified to complete within the deadline D.

114

DB,

Fig.(6.1) Example database system

Now consider the situation where T is about to commit but dbs fails. If a blocking commit
protocol were used T, cannot complete until the failure is repaired, this may be sometime
after D and so the deadline is missed. To solve this a non-blocking protocol extended with
timeouts can be used. Ty detects that db3 has failed and terminates appropriately at dbj and
dby, a result is then available at D for the next transaction. Upon recovering db3 examines
its log record and brings itself to a state consistent with dbj and dby.

This example demonstrates how a commit protocol using synchronous communications can
provide consistency even if a link fails. It also shows how the timing constraints of a

transaction can still be satisfied.

Consider again the database system of figure (6.1) and assume that Tu is a transaction that
updates share prices and the three databases are each local to a different stockbroker's
office. If the major cause of failure is expected to be a communication link failure then the
system must be designed to ensure that no stockbroker receives information that the others

do not.

If a non-blocking protocol with asynchronous communications is used it is possible for the
ges can be lost. As an example consider Ty

It is possible for the messages to be

databases to become inconsistent because messa

sending commit messages to dbiy, db; and db3. '
received by dby and dba but for the commit message to db3 to become lost, the share price
at dbz will not then be updated. If instead a commit protocol using synchronous

communications such as described in chapter 4 was used messages could .nozh be lost and
this inconsistency would not occur. The protocol was shown to be correct in the presence

of a link failure in chapter 4.

115

The transaction Tu could be periodic so that the share price is updated every P minutes. A
deadline D can now be placed on the completion of Tu so that D < P, The timeout Values' in
the protocol can be assigned so that the transaction provides a decision by D at the latest.
Any timeout that is not satisfied can be assumed to imply a link failure. The action taken to
maintain consistency is decided by the protocol and has been explained in chapter 4.

6.3.3. Summary

Both examples show that non-blocking protocols are useful in a real-time database to allow
transactions to meet their deadlines. Example 1 demonstrated how a replicated database
could still satisfy its iming constraints even if a site crashed, the increased data availability
was due to the non-blocking commit protocol. If consistency is considered more important
than availability then a non-blocking commit protocol with synchronous communications
can be used, such a situation occurs in safety critical systems. The communications used in
example 2 imply that a link failure is detected quickly and easily.

A disadvantage of using a non-blocking protocol is that if the cause of failure (site / link)
cannot be determined then an inconsistent result can occur. Disadvantages of using a
protocol with synchronous point-to-point communications as in example 2 are mainly due
to its inherent inflexibility. The network must be defined beforehand and cannot be changed
dynamically. This would appear acceptable for most real-time databases which are usually
static but a general purpose database system usually needs more flexibility.

This section uses two illustrative examples to demonstrate the use of atomic commit

protocols using synchronous communications. Atomicity is shown to be a necessary
property in both applications with timed atomicity required in the second.

It is shown how the use of synchronous communications provides extra resiliency to
network partitioning than can be expected by using asynchronous communications. The

examples are both plausible for Transputer implementation.

0.4.1. Level crossing example
As a simple example of a control system consider the level crossing outlined in figure
(6.2). The gate Gy can be in one of the states {UP, DOWN] whilst the state of the lights

L1 and L, belong to the set {STOP, GO}. A token in place Py represents the train lights in
the state STOP, whilst a token in place Py represents the state GO, similarly for the car

lights and places P3 and P4.

116

Approaching Sl_/ >
L;=STOP
£]
L] =G0
Within @9 —>

pya A

Past @ -

Fig.(6.2) Outline Petri net of level crossing example

Figure (6.2) shows that the position of the train is detected by three sensors Sj, S7 and S3,
S1 detects when a train is approaching the crossing, S indicates when a train is within the
crossing whilst S3 signals when the train is clear of the crossing. A token in one of these
places represents the position of a train. If more than one token is allowed to be in the
union of S1, S2 and S3 then this models the presence of a number of trains. The gate is
raised and lowered by a controller Cj, which takes its inputs from S and S3, another
controller, Cy uses the lights Lj and Ly to control the position of trains and cars
respectively. The only communication between the controllers is by message passing which
can not be assumed perfect. The coordination between the lights and the gate must now be
performed so that a hazardous situation cannot happen, the situation to be avoided in this
case is when Lj = GO, Ly = GO and Gj = UP. Another not so serious case to be
avoided is L; = STOP, Ly = STOP and G = DOWN which is not dangerous just

unintended.

The action of the controllers is twofold, they must detect the position of a train and control
the gate and lights accordingly, secondly they must also ensure that the afore mentioned

hazardous states do not occur. The gate should be lowered when a train approaches the

crossing and cannot be stopped in time, it should then be raised once the train has left the

crossing. Another problem occurs when more than one train is allowed at the same time,
€.g. tokens in S and S3.

To show the usefulness of commit protocols in such an application, part of the control of

the gate is now replaced with such a protocol. For clarity only the action of raising 'the gate
is shown, the reverse, the lowering of the gate when a train approaches is n?t explaxlned but
would follow in a similar manner. First of all the action of the controller is explained for

117

one train and then when more than one train is allowed so as to em

the commit protocol phasize the usefulness of

Assume that initially Gy = DOWN, Ly = Go and Ly = STOP and a train is within the

crossing (token in Sp). When the train is clear of the crossing (a token in S3), the gate
controller senses this and initiates a commit protocol between C1 and C2 with t’he aim of
raising the gate and changing the lights. This property can be provided by an atomic

commit protocol as shown below in figure (6.3) with C; as the coordinator process and Cp
as the participant.

Coordinator Participant
G C,
Gj= DOWN L; =GO
S L,=STOP
3 —» Ready
Can action
be commited ?
Yes/No
¢
Can action
be commited ? Commit
/Abort

/

Committed | |Aborted Committed | | Aborted
G, =UP G, =DOWN| | L,=STOP | | L, =GO

L, =GO ||Lp=STOP

Fig.(6.3) Level crossing decision

If failures do not occur then the final state of the system will be either {G; = UP, L} =
STOP, Ly = GO} or the same as the initial state, thus preserving the safety of the system.
The yes/no decision made by the participant is based upon whether another train is
approaching (no decision) or not (yes decision), this information is provided by the state of
S1. The gate controller Cy has the final decision and checks to ensure the gate can be
raised, for example, ensuring that there is not a train within the crossing or the gate is not
already up. Without failures the above algorithm is correct but is not resilient to messages

being lost. For example if the commit message to C2 is lost the gate will be raised but the

lights will not change thus causing a hazard.

To prevent this situation the robust extended 2 phase commit protocol using synchronous

communications (see chapter 4) can be used. Initially only link failures are allowed,

processors are assumed to always function correctly. This is probably not realistic but the

118

probability of a communication link failing is probably greater than a processor failing in

t protocols in this application the
controllers can now be replaced by the Petri net model of such a protocol, in this case

figure (5.3) is used. For clarity, only the Petri net model of the actions involved in raising

the gate are shown in figure (6.4). An attempt 1o raise the gate is only made when a train
has left the crossing,

such an environment. To show the use of commi

the gate should be lifted if and only if it is safe to do so. The reduced
reachability tree of figure (6.5) is derived from figure (6.4) with an initial state of (S3, qy,
q2, L1, L3, Gyp). It shows that if only one train is allowed the actions performed by the
controllers are consistent and safe, even in the event of a link failure. Also link failures are
modelled and the protocol is shown to preserve a safe state for al] link failures. Failure

transitions are shown by a double bar and modelled as not firing (equivalent to a link being
disconnected).

119

Approach

L
t 2
‘Tl T L L
Within =)
|
O cly Train lights
‘2 Controller
Coordina Participant
Past .] |
i t1 start
Train art
% -
tm
° d ©
® u 48
ls
TT 6
OF ©
1 L
- N Car lights
= ;: 8 -9 commit
!
1
ok
g2 tgl 3
G2 O tll
tng

®
G-
®

cl'1 O cly

Fig.(6.4) Petri net of raising gate with possible link failures

120

Gate = Down, Train lights = Go, Car lights = Stop

t
L 1 tm
start aZS 3L1 3Gl q1a2$3L1L3Gl—R Q1Q2S3L1L3G1
tm
1

m tm
a1 3233L1L301"‘—'A——_a1 q2$3L1L3Gll\ start g, S3L1L3G1

U}

D)
ok} 4,S3L1LsG,
3
a
L leS3L1L3Gl TWIQS 3L1L3G,
tm .
& yes S3L1L3Gy 2 WﬂyesS3L1L3Gl
tm5l m Wy 32831411_,3(}1%5 t6
d; ok
385S5L1L G, l(h) 253L1L4G,
7
dy 8,8 3L1L3G g
29 3L1L3U; d1 p2S3L1L3G,
tg m i
a1 2S3L1L3Gy e commit p; S3L1L3G,
tm6 tm tio
m s commit & S3L,L3G, 0k 3¢283L1L3G,
4 253L1L5G, _— 1 Guaranteed Operation
2S3L1L3G, ———cIe2S3L1LsG, 5
8
t12 L2
t
clelyS3L; LyGy—=Ll= ¢/l rcly S LyGy
L1
t t
L NN " G 1,S3L,L4G
el SalyLy ¢1¢l,S3L,L3Gy
cl,S3L,L3G, cl1S3LL4G, t &
L1 Lia
tia ‘L1 ¢S3,L4 G cl184L LG,
Ll
& L
S3l, LGy

Gate = Up, Train lights = stop, Car lights = Go

Fig.(6.5) Reduced reachability tree for fig.(6.4)

Analysis of the reachability tree shows that if a link failure does occur the undesired state
{G1 =UP, L| = GO, L, = STOP/GO)} is never reached. If asynchronous communications
were used instead when a link fails messages may be lost and so this property cannot be
guaranteed. Once the transition ty1 has fired the operation of the system can be guaranteed
(no site failures are allowed) and so the final state will eventually be {G; =UP,L; =

STOP, L, = GO}.

121

To emphasize the usefulness of such a protocol the model can no

. w be extended so that
more than one train is allowed.

This can be modelled in the Petri net of figure (6.4) by allowing more than one token at the

same time in the places S, 5 and $3. For example, a token in S} and S3 represents the

state when & train is on the approach to the crossing as one has just left. To demonstrate
this situation it is assumed that a token may appear in Sy at any time before the final
decision is made. The train represented by this token may enter the level crossing before the
train lights change to STOP or it may be prevented from entering by the lights changing in
time. It is assumed here that the signal from S1 to the controller indicates that the train is
too close to the crossing to be stopped by the train lights. If this situation occurs then the
decision of the controllers should be to abort the raising of the gate and prevent the unsafe

state. It is now shown how the decision to raise the gate can be aborted if another train is
approaching close to the first train.

As before the commit protocol allows a decision to be made at each participating site, the
coordinator and participant in this case. The decision made by the participant is to ensure
that it is safe to change the state of the light L from GO to STOP. The function of the
coordinator is to ensure that it is safe to raise the gate, therefore if a train is within the
crossing the gate must not be raised. To demonstrate the actions when two trains are
allowed consider figure (6.4), and allow another token to appear in S after the first train
has initiated the decision mechanism (i.e. tj has just fired). As soon as a token appears in
place dj, both t4 and t5 are enabled, that is the second train is detected by the participant.
Since this train is too close to be stopped, the raising of the gate must be aborted, hence ts
is assumed to fire. Assuming that the train does not enter the crossing (t; does not fire),
then this situation is demonstrated by the partial reachability tree of figure (6.6). The train is
shown appearing after t; has fired but could happen any time before ts.

Q1 92S3L1L3G,
K
slartq281$3L1L3Gl
19}
ok; & S5;S3L1L3G,
t3
ts
|im,
3182$IS3L1 L3Gl

Fig.(6.6) Partial reachability tre¢ with second train at Sy

122

Depending upon the speed of the second train it mga

Y pass into the crossing before the
participant reaches state dy, if this is the Case then t4

will fire and the participant will have
€ transition tr; firing before a token

ty tree of figure (6.7). However, this
does not cause a problem because the coordinator detects this situation at place d; and

aborts the decision (i.e. tg fires). The abort decision is taken although a request to raise the

reaches place dp, as shown by the partial reachabil

gate is made because it is unsafe to do so since a train is within the crossing. This shows
how a safe system is maintained.

q QZS3L1 L3G1
E
start 5;S3L L3G,
it
start S $3L LG,
)
ok; S 8311 L3G,
t3
W1d25§3L1L3G1
Y

wyyesS §[L1L3G1

te
d10k2s 23 Ll L3G1
K
alpzs 233L1 L3Gl
tn16

ajaS $3L1L3G,

Fig.(6.7) Partial reachability tree with second train at S2

ili i 1 iously timin
Such a protocol can be used to provide resiliency to site failures but obv h y gt
ituati ili ite failures the commi
constraints cannot be applied in such a situation. To be resilient to site

ing recovery. One
protocol has to write 'log records’ to stable storage for use during y

i i nt sending a message will
a log record. These are realistic assumptions because the time spe g

ler. So as not to be
be small and also log records can be written asynchronously or to a spooie

123

the system model as S.hown in figure (6.8), participant site failures are omitted for clarity
but can be placed in the same way. Note failure transitions are added to the
acknowledgement places (ok; - ok3) but not the message places (start, yes, commit). The

timeouts used in the participant to provide resiliency to the failures are also shown

To provide resiliency to the site failures, when the site recovers jt must terminate itself
consistently with all the others (the participant in this case). This is achieved by writing a
log record as the protocol progresses and upon recovery using this to decide the new state.
Writing of the log records can now be assigned to the transitions as follows :-

t; = write ready’ log
tg = write 'abort decision' log
tg = write 'commit decision' log

Now consider a failure of the coordinator C; whilst waiting to receive the
acknowledgement oks, the participant having committed its action and changed the lights.
The state of the external system is now; the gate is lowered, the train lights are on STOP
and the car lights are on GO. Although the position of the gate is not correct with respect to
the lights it is not hazardous and is safe. Obviously this situation cannot be changed
because the coordinator is unable to do anything. Once it recovers the coordinator checks
its log record and finds a 'commit decision’, it then commits its action and raises the gate
correcting the situation. Since the recovery time of the coordinator is unpredictable, timing
constraints cannot be applied here and so the system is in an incorrect state for an
indeterminable time, but is eventually corrected. The recovery process executes accordingly
for failures in all other states. The reachability tree is omitted because it is almost the same
as figure (6.4) but shows consistency is always achieved, even if eventually. One
advantage is that if more than two sites are used the sites that do remain operational can
always be made consistent and safe because the failed site will be made consistent when it

recovers.

124

Appreach 4
Ly
Withi %
L
Train lights
O ¥
t1o Controller
Coord Participant
Past
Train
cl;

Car lights

Fig.(6.8) Petri net of raising gate with possible site failures

125

6.4.2. Drum and Slider example
As an example of an atomic action in which timing constraints must be satisfied consider
the synchronization of a drum and slider motion as outlined in figure (6.9)

Controller 1 < Controller 2
l Drum
[7]
]
Shder <
Actuator
7 Drum
.:—] -------- é: Motor <
Slider «—p Slider EI
Slider Motion ?
“

Fig.(6.9) Outline of arbor drum control system

An object is placed within one of the arbors on the periphery of the drum, the drum then
rotates until the object is aligned with the slider. Once aligned the slider is inserted pushing
the object from the arbor, the slider is then retracted ready for the next operation. Both of
the motions are effected by motors under microprocessor control.

The synchronization of this system is critical because any slight error could cause the drum
and slider to collide which is dangerous and costly to repair. For instance this could happen
if the drum started to rotate with the slider still inserted in an arbor or if Controller 1
attempted to insert the slider before the drum had moved into alignment. The system must
be designed so that these events never occur even if failures occur. This section proposes
the use of the previously developed commit protocols to prevent such events and shows
how a link failure between the two controllers can be tolerated. This section also shows
how Timed Petri net models can be used during the design to ensure correct functionality

and timeliness.

Timeliness is important because the slider must be able to be inserted and removed before
the drum starts to rotate, similarly the drum must move from one correct position to its next
before the slider reaches the drum perimeter.

One solution would be to totally synchronize the two events S0 that the drum only moves

when the slider is stopped and out of the drum, and the slider only moves when the drum is

. .. . PSR oncurrency of
stationary and in the correct position. This solution is safe but reduces the ¢ y

the system and since the application of such a system is for high speed machinery the

: - i ce.
concurrency must be maximized wherever possible to Increase performan

: i m until a point is
A better solution is to allow the slider to continue moving towards the dru po

. < voint
reached where it can commit (be inserted) or abort (stopped as fast as possible). This poin

126

is termed the decision point and is calculated beforehand as the point nearest to the dru
e drum

such that if maximum deceleration is applied to the slider it stops just short of the drum

The decision process can be described as an all/nothing action between the drum rotation
and the slider motion with both parties taking part in the decision. It must be pointed out
that this decision is not as would be expected, instead at the decision point if a commit is
decided, both the slider and drum continue. It is assumed (although it may be impractical)
that if a commit decision is made then the drum can rotate to its new position before the

slider reaches the edge of the drum. However, if an abort decision is made then the slider
and drum are stopped.

By assigning the slider controller as the coordinator process and the drum controller as the
participant a commit protocol using synchronous communications, such as developed in
chapter 4, can be used to implement the actions. Both controllers take part in the decision,
the participant sends its vote to the coordinator and then waits for the final command. The
final command is based upon the participants reply and the coordinators vote, either of
which may be deemed to be abort. To vote each site must be able to check if the actions
they are to perform are possible. This is done by checking the current system state for
abnormalities and also possibly the availability of resources in the future. If the current
system state is incorrect or the required resources will not be available then the vote must be
to abort.

The drum controller, upon receiving a ready message from the coordinator has to ascertain
if it is possible for it to carry out the requested operation, thus it must make some checks on
the current and future system states. A possible check for the participant could be to ensure
that the slider is not within the drum already and to ensure that the drum is in a safe
position. Also if the controller processor is being shared by more than one process then the
drum process must be able to ensure that enough resources (eg CPU) will be available for it
to complete its task in time. The pre-allocation of resources is usually carried out by a
resource manager, possible resources include processor cycles, memory and
communication bandwidth. Once the resources have been allocated it is guaranteed that the
drum will rotate to its new position by a specified time. If enough resources were not
available to the participant the drum may not complete its rotation before the slider arrived at
the edge. If the slider is within the drum or not enough resources can be allocated then the

participant replies no otherwise it sends a yes message.

The slider controller also has to decide if its actions are possible in a timely manner. The

slider must not be inserted before the drum has completed moving into an index pc?51.uon.
_ e . ipan
Since the time for the drum to rotate to 1ts nEw position 18 guarantced by the participant

replying yes, a check must be placed on the slider to ensure it does not reach the drum Too
soon. Therefore if the slider is travelling t00 fast it must be stopped and the decision

127

does not remain within the drum too long. If the Speed of the slider at the start of th
decision is not between the minimum and maximum speeds then the decision mt?sttb:
abort. If the slider controller is shared between a number of processes then resources must
be allocated to ensure that insertion and retraction of the slider is possible.

Since the slider is in motion when the decision is taken, a late decision is as undesirable as
an incorrect decision because even if the decision is to abort it may too late to prevent a
clash. This must be prevented by including timeouts in the decision mechanism. Hence
traditional commit protocols cannot be used here because they do not include such

timeouts. The protocols developed in chapter 5 can be used because they have timeouts
included and have also been shown to be resilient to a link failure.

To calculate timeout values, timing constraints must be placed on the decision processes.
Assume initially that the slider is at its home position and the drum is in its index position,
the state of the system is now safe. A decision as to the outcome of the atomic action
(commit / abort) must now be made by the time the slider reaches its decision point, Dy as
shown in figure (6.10). To allow enough time for message propagation and computation
the decision must be started at time Dg. To achieve a timely decision the timeout values are
calculated from the deadlines so that the last timeout can fire and abort the decision by Dg.

T. = Start time
Ty Dg Dy Z > .
Dg= Deadline to start
o making decision
------- ::] N 2 D4 = Deadline for decision
e
%
> /]
Time <

Fig.(6.10) Slider motion

As before the system can be modelled using Petri nets, these can be analysed in a fault free

environment and shown to be correct. An outline Petri net of the system is shown in figure

(6.11), the decisions are not shown in detail but can be assumed to produce consistent

results. This means that tokens appears in P3 and P7 or in P4 and Pg but not in a

combination of the two.

y by executing the Petri net of figure (6.11).
m is in its safe index position (Pg). The two
empt to coordinate. The slider is accelerated
pon the coordinator communicates with
participant has entered its decision and

The system can be analysed for functionalit
Initially the slider is at rest (P1) and the dru
controllers now execute in parallel until they att
until the start decision point is reached (P7) whereu
the participant about the decision. Meanwhile the

128

has been waiting for the start decision message from the ¢

oordinator. The two decisions
now produce either an abort decision (P3 and P7)oraco

mmit decision (P4 and Pg). If
aborted the drum is not moved and the slider s Stopped. If committed the drum rotates to

its new position and the slider is inserted.

Also if the actions are committed various timing constraints are guaranteed, such as the
absolute firing times for t7 and t3 must satisfy Max (t7) < Min (t3). This ensures the
drum will have completed rotation before the slider will be inserted, these timing
constraints have been guaranteed by the commit protocol ensuring resource allocation and
cannot be violated. For example the drum controller may have scheduled the processor so

that it processes only the movement of the drum for the next X seconds, this is guaranteed
and cannot be interrupted by any other process.

Decison |4 | Boeon
Decision

P4 P7 P8

3
Ps
ty
Pg
ts

3
5
|
T

Fig.(6.11) Outline Petri net for slider and drum control

: itions and events :-
The places and transitions of figure (6.11) define the following condition

129

P; = Slider at rest t1 = accelerate slider

P, = Slider at decision point ta = Re-initialize slider

P; = Stop slider enabled t3 = Insert slider

P4 = Slider Insert enabled t4 = Withdraw slider
Ps = Slider fully inserted ts = Re-initialize slider
Pg = Retract slider enabled t6 = Do nothing

P; = Stop drum enabled t7 = Rotate drum

Pg = Drum rotate enabled

Pg = Drum in safe position

To examine the effect of failures on the system the specification of the decision must be
included. Only link failures can be considered in this system because if a site fails then
control of the system will be lost. The full Petri net model of the system is shown in figure
(6.12). Note that the places Py -Pg shown in figure (6.11) are the same as those in figure
(6.12). However, the transitions of figure (6.11) have been renumbered for ease of
analysis of the reachability tree and do not correspond directly with the transitions shown in
figure (6.12). The reachability tree of figure (6.13) shows all the possible final states of the
system under normal and link failure conditions. It can be seen that all the final states are
consistent and also the drum rotates to its new position before the slider is inserted.

A consistent decision is always produced even if the link between the controllers fails at
any time. Since messages cannot be lost (unlike a protocol using asynchronous
communications) the undesirable system state P3Pg can never be reached, this can be
verified by by examining the reachability tree. As an example consider the link failing
before the participant receives the commit message, the coordinator can timeout and abort
the decision safe in the knowledge that the participant will also abort. This is modelled in
the Petri net of figure (6.12) by transition tj2 failing to fire, the timer transitions tm3 and
tmg now fire thus providing the decision. The order in which tm3 and tm6 fire is irrelevant
because the final state reached is the same, this can be verified by examining the
reachability tree. A link failure is more likely to occur than site failures in real-time systems
because of the mechanics being controlled. An example is a link being trapped in a robot
arm joint.

This system cannot be made resilient to site failures without redundant processors because

when a site fails control of the environment is lost. For example a site failure could occur

m
after the a commit decision had been made and acted upon, for example the drum may

move only partially before the controller fails. In this case there is no way a clash .c'an be
prevented because the slider will have passed Dd which is defined as the closest position to

the drum where the slider can be safely stopped. It is difficult to guarantee timing

et time of a site are
constraints when site failures occur because the repair time and recovery

130

unpredictable. A possible
ocessors, but thi i 1l @pproach to solve this problem is b
rocessors, but this wi ily i ®
p necessarily involve extra Communicati fy 1 use of redundant
10n for coordinati
on.

Fig.(6.12) Petri net for slider and drum control

131

:

P3p9_tm_1_ startP) P Q— P, P,

o 5) L\ |'3 t3

tm
P3P7 —=4— Pyq, L start 4o — 4 ganp; T P;P
tiatyy ty ot l
1 17

PPy ok, & P'P!
t5 1°9

P3P7 __LP3 yes —_Lw lyes

4N / Ynz
P, P9 dyok 2 P3P7

t14t17
ml 1 1]
6
10 . :
tn 1 10
P3F7 commit p,"™3 P3p2 _
tiat17 L\m3\ y L2 \ °
: P3P
PPy commit P 7 ok3Pg 3P7 oty
ti3 o
tig
- P,Pg
Maxt16< Mmt15 o
1
P5P§
t1g
Ps Pg
t19
PPy

Fig.(6.13) Reduced reachability tree for fig.(6.12)

Timing constraints can be added to the Pe
transition firing times. These times are

after the transition is enabled befo

h
bounds on event times. These times can be converted to absolute time by adding t

the transition is enabled to the firing times.

132

i net in the form of minimum and maximum
the minimum and maximum times that can elapse

re it fires. The times then represent upper and lower
e time

This example requires that a decision is made at the latest by time Dy, for this to happen
various timing constraints must be satisfied. If absolute times are assumed then the timing
constraints applied to figure (6.12) are :-

(1) Max (t12) <Dyq

(2) Max (tm3) < Dq and Min (tm3) > Max (t12)
(3) Max (img) < Dq and Min (tmg) > Max (t;7)
(4) Max (tm3) < Dg and Min (tmj) > Max (tg)
(5) Max (tms) < Dq and Min (tms) > Max (tg)
(6) Max (tm;) < Dg and Min (tm1) > Max (t4)
(7) Max (tmg4) < Dg and Min (img) > Max (t4)

The first constraint ensures that if no failures occur and the decision to commit is made then
the decision is computed before Dy. The constraints (2) to (7) state that the timeout
transitions must fire before the deadline but after the latest time that the communications can
occur. This guarantees that the communication will take place if the link has not failed.

A timer transition (eg. tmj) is special in that an extra delay, the timer value is associated
with the transition. When enabled a timer transition is assumed to start a timer, when it
expires the transition may fire. The normal minimum and maximum firing times are still
associated with timer transitions thus modelling timer bounds. This is realistic because
precise timers cannot be implemented due to unpredictable overheads.

Timeout values have to be calculated carefully to prevent false timeouts occurring. For
example consider the first communication of figure (6.12), transition t4, this is enabled to
fire when tokens are present in both the places start and q2. The timer tm; is enabled as
soon as a token appears in the place start, thus the value of tm; must be calculated so that it
does not timeout before Max (t4), even though tg is not enabled until a token arrives in Q2.
The reverse situation is also true for the timer tmy.

Assuming relative times for the transition times and that places P; and Pg both have tokens

at time 0, the earliest that tm is enabled is Min (t;) + Min (t3). Thus if the value of the
timer is Dum, the transition tmj is able to fire after the time Min (t;) + Min (t3) + Dim;.

The earliest time that tm1 can now fire is Min (1) + Min (t3) + Dmn1 + Min (tmy). In this

situation t4 can only fire when tokens are in start and qp, the latest that this happens is
Max[(Min (t1) + Min (13)), Max (t2)], let this be L (t4). The latest that t4 fires is now L(tg) +
Max (t4) and so to allow enough time for communication the following must hold :-

Min (t1) + Min (t3) + Dy, + Min (tm) > L (t4) + Max (t4)

and so the timer value is found as :-

Dimy > L (t4) + Max (t) - Min (t1) - Min (t3) - Min (tmy)

133

Another constraint on Dim, is that the latest absolute time that tmj can fire must be less th
ess than

Dg. Therefore for the relative times of ty,t3 and tmy the following must hold :

Max (t1) + Max (t3) + Max (tm;) + DUnl <Dy
:. Dim; < Dd - Max (1) - Max (13) - Max (tm))

The other timeout values follow in a similar manner but general expressions are difficult to
calculate because of the proliferation of possible maximum enabled times

The coordination of the slider drum system is an example of timed atomic commitment.
This section has demonstrated how such coordination can be provided by using a commit
protocol with bounded synchronous communications. Although it has not been
implemented, the slider drum system is a good example of how timed atomic commitment
can be built into a real-time system. By taking advantage of the fact that processes can
operate independently when a link fails the decision produced by the protocol can be made
consistent and timely. It has also been shown how upper and lower bounds for the timeout
values can be calculated by examining the Timed Petri net model of the system.

One disadvantage of using commit protocols with bounded synchronous communications
is that when a site fails it appears identical to the other processes as a link failure. This
means the operational sites produce a decision assuming that a link has failed which may be
incorrect. Other problems are due to using timeouts, firstly timeouts must be calculated so
that false timeouts are rare and that timeouts do not induce further timeouts. Secondly if the
start of the system is not synchronized within certain limits then it is not possible to
estimate timeout values that will always satisfy their timing constraints. This suggests that
the optimal protocol developed in section (5.4) is unsuitable.

6.5, Di .
Commit protocols have traditionally been used to provide atomicity in database systems
where a timely response is not important. The coordination provided by commit protocols
is often needed by control systems but a timely response may be necessary. Also database
systems are being used in time critical situations which require deadlines on decisions. This
chapter has proposed the use of the commit protocols developed in chapter 4 in control
systems and systems which require timely decisions. It has shown how a timely response
can still be maintained even if failures occur.

been demonstrated by way of three illustrative examples, a

The protocols developed have
’ | application. All three

real-time database, a control application and a real-time contro

. st i lines
demonstrate the idea of atomic actions, the real-time applications showing how dead

can be applied and met even in the presence of a link failure.

134

when a site fails it is assumed to stop processing and the repair time of the site i
unknown. The real-time database example has shown how a site failure can b(:: tol e S::i: \
replicating the data and allowing the operational sites to continue independ::)n(:at Tl:)'y
creates ternporary data inconsistencies which are resolved when the failed site rcz;)verls
When considering control applications without redundant processors a site failure woulz
mean that actuator control is lost. A site failure can only be tolerated if no timing constraints
exist for the actuator. If timing constraints do exist then the failure cannot be tolerated
because there is no guarantee that the site will recover in time,

A communication link failure leaves the processors with the ability to function
independently but prevents any further coordination. Previous work [Skeen 83] has shown
that a commit protocol cannot be designed which tolerates a link failure if messages are
lost. The protocols developed in chapter 4 cannot lose messages and therefore can tolerate a
link failure. The real-time database example shows how these protocols can be used to
maintain consistency at a number of sites even in the presence of a link failure. Tolerating a
link failure in a control application is very important because the processors can still control
their actuators. The real-time control example shows how a safe system is always
maintained even when a link fails.

Problems with using the protocols of chapter 4 stem from the type of communications
used. The point-to-point communications prevents their use in general purpose database
systems because there is no knowledge of the transactions beforehand. Real-time systems
are usually more predictable and the fixed communication network should not present any
problems. A problem also occurs because of the timeouts used, the timeout periods must be
calculated carefully to prevent false timeouts and cascaded timeouts. A method has been
proposed which shows how timeouts can be calculated from the Timed Petri net model of
the system. Another problem is caused by using timeouts to detect failures, 2 site and link
failure cannot be distinguished. That is, if a timeout occurs the site does not know if the
link failed or if the other site has failed. One possible solution would be to have redundant
communication links. If a site now fails to send a message it can try another link, if it still
fails then it is highly probable that the receiving site has failed.

135

Chapter 7

Conclusions and further work

7.1, _Conclusions

Computers are increasingly being used to control applications which have the potential to
pecome dangerous if incorrectly controlled or if failures occur. Formal techniques can be
used to ensure the controlling software performs as expected but failures of processing
sites and communication Links can still occur at any time. Such failures must be anticipated

during the design stage so that mechanisms can be incorporated to ensure the system still
meets its functional and/or temporal specifications.

It is often required that two or more sites need to be coordinated in such a way that either
they all perform their actions or none at all. In safety critical systems it may be necessary
for this functional atomicity to be provided even in the presence of failures. Also in a real-
time system such atomicity may be required within specified temporal constraints.

This thesis has considered the design of protocols to achieve such atomicity and preserve
consistency of actions subject to timing constraints and also in the presence of failures. The
protocols have been developed for a network of Transputers where synchronous message
passing is the only method of communication. Deadlines have been applied to the protocols
so that they can be used to provide atomicity in real-time systems.

This research led to a number of results concerning commit protocols and their application
to real-time systems. One major result is that the type of communications used to implement
a protocol does affect its resiliency to failures. The extended 2 phase commit protocol has
been identified as the most applicable to real-time systems, this is because when

implemented using synchronous communications it can be made independently recoverable

to site and communication failures.

The 2 phase commit protocol was studied and shown to remain a blocking protocol,
independent of the type of communication used. The extended 2 phase commit was then
ynchronous communications. This research has
the asynchronous extended 2 phase commit can

ures. It has also been shown that this protocol

investigated using asynchronous and s
proposed the placement of timeouts SO that
be made independently recoverable to site fail
cannot tolerate a link failure if asynchronous €0
of this work is that the extended 2 phase commit
be made independently recoverable even in the
of timeouts 10 achieve this have been suggested
chronous 2 phase commit can also be made

mmunications are used.

However, another major contribution
using synchronous communications can
presence of a link failure. The placement
throughout this thesis. Similarly, the syn

irld"fpﬁndently recoverable from site failures.

136

These results were achieved by modelling the commit protocols usin

' _ g a formal model
firstly in a fault-free environment and then with selected faults included. In the fault f
environment it must be shown that the protocols developed satisfy certai;l properties s::
as deadlock freeness, consistency and timeliness. Previous formal models used for commit
protocol specifications (FSM) were studied and found to be lacking in timing information
and also did not include the communication system within the model. Without timing
information the protocols cannot be analysed for timeliness and deadlines cannot be
derived. The communication system was not modelled in the FSM specifications, instead a
local area network was assumed to fully connect all the sites and provide facilities to deal
with communication problems such as timeouts and lost messages. Since the protocols
were to be implemented on a Transputer system where the communication is point-to-point
the message passing must be modelled explicitly in the specifications.

This thesis uses Petri nets as a formal model for the protocol specifications because timing
information can be included easily [Merlin 76, Razouk 84] and it also allows succinct
modelling of point-to-point communications.

One advantage of including the communications within the model is that communication
failures can be added to the Petri net so that the protocol resiliency can be investigated.
From adding such failures it is found that timeouts must be included to prevent deadlock.
The analysis of the Petri nets is by the use of the reachability tree which shows all possible
states that can be achieved during the protocol execution. If failures are included in the Petri
net specification and the Petri net is then executed the corresponding reachability tree may
show a final global state which is deadlocked. From the analysis of the tree with all
possible failures included it is possible to determine where timeouts should be placed and

what action should be taken after timing out to preserve consistency.

Another advantage of using Petri nets as a formal model is that they can be mapped almost
directly into Occam source code [Carpenter 88a). Problems involved with mapping Petri
nets into Occam are explained during the course of the protocol designs. Analysis of the

protocols under failure conditions also revealed that pure Occam has insufficient semantics
ut guards are not allowed in an alternate command. This
s which allow

to prevent deadlock because outp

problem is shown to be solved by using pre-defined Inmos assembler routine

both input and output to terminate after 2 specified time if communication is not attempted.

i Is
These assembler routines have been used 10 implement the synchronous protoco

i itten 1 n used for
developed in this thesis. The implementations arc written in Occam and have been u
a pragmatic investigation of their resiliency t0 site and link failures.

i nchronous
The Petri net specification of the protocols were shown in chapter 4, both asy .
5o that existing theorems for use with

and synchronous communications were included -
e Petri net model with asynchronous

FSM could be investigated. This shows that th

137

Communications was equivalent to the original FSM mode] and could be analysed usi
similar methods. It is shown how site failures and message loss can be model)ied usflllg
petri net model using a uniform technique for both types of failure. It is shown t(:;t tz
design non-blocking protocols using synchronous communications the previous design
rechniques cannot be used, another method using the Petri net model is proposed. It is also
shown that synchronous communications does affect the resiliency of the protocols to
failures. In particular previous results show that a network partition cannot be tolerated if
message loss occurs, but using synchronous communications messages cannot be lost so a
single partition can be tolerated, other scenarios are also investigated.

The protocols were originally developed by replacing asynchronous communication calls
directly with synchronous communication calls which produced redundant messages. After
removing the redundant messages it was found that further optimizations could be obtained
by assuming that lack of a message implies a negative response. For instance if a site sends
a message and awaits a reply, then no reply within a specified time can be assumed to mean
the other site has decided no. Of course the determination of timeouts becomes very critical
because false timeouts can occur due to slow communications or slow processing. Since
the communication system on a Transputer network is dedicated the communication delays

can be determined accurately thus making it easier to deduce worse case timeout values.

Applications of commit protocols using synchronous communications and deadlines were
proposed in chapter 6. Firstly a database example was used to demonstrate the two
conflicting properties of availability and consistency of data. It is suggested that the
protocols developed can be used to allow timely termination of transactions. An example of
achieving data consistency when a link fails is presented. The transactions are assumed to
be periodic and possess a deadline by which they must be completed. This is dealt with in
the commit protocol by having a deadline by which the commit/abort decision must be
made by, once this deadline has been calculated all other intermediate timing constraints can
be made.

Using commit protocols in database systems to provide consistency of data is standard
s their use in control applications. The

practice (deadlines are not). Chapter 6 also propose

need for the consistency of events as provided by a traditional commit protocol is shown by
way of a level crossing example. This example shows how two tasks may need t.o be
coordinated to retain a safe system. It is shown t0 be safe even in the presence of a single
site failure. The next example, the control of a drum/slid ! ' '
be applied to the commit protocol s that decisions can be augmented w1.th a deadlme.. It is
shown how timing constraints can be used to provide timely and functionally consistent
decisions by analysis of a Petri net model of the system-

er mechanism shows how time can

138

1,2, Further work

This thesis has been concerned with applying time constraints to commit protocols and
using the resulting protocols to provide decisions in real-time systems. The principle
hehind a commit protocol is that of atomicity, although important this property has oily
been incorporated into one programming language, ARGUS [Liskov 88] and this does not
allow timing constraints. It would be worth investigating how existing languages can be
extended with such constructs, in particular languages designed for real-time systems
should incorporate the atomicity mechanisms if they are to be used in safety critical
situations.

The specification of the protocols has been carried out using Petri nets with time added to
wransitions. The analysis of such nets is complicated because state information is combined
with timing information, automatic analysis would be advantageous and less error prone.
Therefore additional work is required to develop a tool which can analyse a Petri net, the
tool should be able to check for all the standard Petri net properties such as reachability and
liveness. In addition, timing properties and consistency could be analysed thus proving the
correctness of the Petri net. This tool could also be used during the design of a protocol by

allowing automatic generation of the concurrency sets for each state.

An extension to this work would be to model and analyse the protocols using Temporal
Petri nets [Suzuki 89], these were developed because certain properties such as eventuality
and faimess cannot be modelled using time Petri nets. The fixed execution and delays used
in time Petri nets are replaced by expressions using Temporal logic which is more precise
and flexible. A previous application of these nets has been to a real-time control problem

[Sagoo 90] where properties such as timeliness and safety were investigated.

As the number of sites involved in the protocol increase so does the number of states in the
Petri net (known as the 'state explosion’ problem) thus making analysis harder. A method
which reduces the number of states in the Petri net but still keeps all the timing constraints
and all other properties is worth researching.

ontinuation of this is to find further applications
gate the use of other database techniques in real-

Other work which can be considered as a ¢
for the commit protocols and also to investi
time systems.

rotocols could be during the reconfiguration of processor

One application for commit p :
n links the connections must

networks. During the reconfiguration of the communicatio comeetions T
only be changed when no messages are in transit. This involves coordination Detw

i i igurer occurs, after
processors before reconfiguration can 0ccur; also if a failure of @ reconfigur ,

i ing i i ate consistent with the others.
recovering the reconfigurer must bring 1ts connections to a st

139

Other database techniques which at first sight appear applicable to real-time systems are

concurrency control and replication. Locking, timestamps and optimistic techniques have

been used in database systems to provide serializability, these techniques may be more
useful than strict mutual exclusion in real-time systems. As an example an optimistic
concurrency control technique allows all transactions to complete, it then checks to see if
any conflicts have arisen. If not the transactions are allowed and the database is updated but

if conflicts do arise some transactions must be restarted, this allows greater concurrency but
involves restarting a transaction from its start.

Also more work is required to design protocols which allow transactions to continue but
still maintain concurrency control when partitions occur. Replication has been used in
database systems to enhance availability of data but incurs extra overheads in controlling
the consistency of the copies. Real-time control systems already use replicated software
[Avizienis 85] to provide fault tolerance but these are used to mask design faults.
Techniques similar to those used to ensure concurrency control in databases with replicated
data may be of use in real-time control systems, eg. to provide backup for failed
Processors.

140

References

[Abbott 88] R.Abbott, H.Garcia-molina, "Scheduling real-time transactions", SIGMOD
record, Vol.17, No.1, 1988, pp 71 - 81

[Anderson 81] T.Anderson, P.A.Lee, "Fault tolerance, principles and practice", Prentice
Hall, 1981

[Anderson 85] A.Anderson, D.A.Barret, D.N.Halliwell, M.Moulding, "Software fault

tolerance, an evaluation", IEEE Trans. Software Eng., Vol SE-11, No 12, 1985, pp 1502 -
1510

[Andrews 83] G.R.Andrews, F.B.Schneider, "Concepts and notations for concurrent
programming”, ACM Computing Surveys, Vol.15, No.1, 1983, pp 3 - 43

[Avizienis 75] A.Avizienis, "Fault tolerance and fault intolerance : complementary
approaches to reliable computing”, Proc. int. conf. on reliable software, ACM SIGPLAN,
1975, pp 458 - 464

[Avizienis 85] A.Avizienis, "The N-version approach to fault tolerant software”, IEEE
Trans. Software Eng., Vol.SE-11, No.12, 1985 pp 1491 - 1501

[Azema 76] P.Azema, R.Valette, M.Diaz, "Petri nets as a common tool for design
verification and hardware simulation”, Proc. 13th IEEE design automation conf., 1976,
pp 106 - 116

[Bal 90] H.Bal, J.Steiner, A.S.Tanenbaum, "Programming languages for disiributed
computing systems", ACM Computing Surveys, Vol.21, No.3, 1988, pp 261 - 321

[Balter 81] R.Balter, "Selection of a commitment and recovery mechanism for a distributed
transactional system", Proc. 1st int. symp. on Reliability in distributed software database
systems, IEEE 1981, pp 21 - 26

[Basu 87] A.Basu, "Parallel procesing systems : a nomenclature based on their
characteristics", IEE Proc. part I, Vol.134, No.3, 1987, pp 143 - 147

[Bernstein 80] P.A.Bernstein, D.W.Shipman, J.B.Rothnie, "Concurrency control in a
system for distributed databases (SDD-1)", ACM Trans. Database Systems, Vol.5, No.1,

1980, pp 18 - 52

[Bernstein 81] P.A.Bernstein, N.Goodman, "Concurrency control in distributed database
systems”, ACM Computing Surveys, Vol.13, No.2, 1981, pp 186 - 221

141

[Bernstein 83] P.A . Bernstein, N.Goodman, V.Hadzilacos, "Recovery algorithms for

database systems", in Information Processing 83, R.E.A.Mason (Editor), IFIP 1983,
pp 799 - 807

[Bernstein 87a] P.A Bernstein, V.Hadzilacos, N.Goodman, "Concurrency control and
recovery in database systems", Addison-Wesley, 1987

[Bernstein 87b] P.A Bernstein, N.Goodman, "A proof technique for concurrency control
and recovery algorithms for replicated databases", Distributed Computing, Vol.2, No.1,
1987, pp 32 - 44

[Berthomieu 83] B.Berthomieu, M.Menascre, "An enumerative approach for analysing
Time Petri nets", Proc. 1983 IFIP Congress, 1983, pp 41 - 46

[Bhargava 83] B.Bhargava, "Resilient concurrency control in distributed database
systems", IEEE Trans. Reliability, Vol.R-32, No.5, 1983, pp 437 - 443

[Bhargava 87] B.Bhargava "Transaction processing and consistency control of replicated
copies during failures in distributed databases”, Journal of Management Information
Sciences, Vol.4, No.2, 1987, pp93-112

[Bloch 89] G.Bloch, .M.Macleod, "An analysis of error recovery problems in distributed
computer control systems", Proc. 8th IFAC workshop on distributed computer control
systems, 1988, pp 81 - 85

[Bornat 86] R.Bornat, "A protocol for generalized Occam", Software Practise and
Experience, Vol.16, No.9, Sep.1986, pp783 - 799

[Brilliant 89] S.S.Brilliant, J.C.Knight, N.G.Leveson, "The consistent comparison
problem in N-version software", IEEE Trans. Software Eng., Vol.SE-15, No.11, 1989,
pp 1481 - 1485

[Burns 90] A.Burns, A.Welling, "Real-time systems and their programming languages",
Addison-Wesley, 1990

[Campbell 86] R.H.Campbell, B.R.Randell, "Error recovery in asynchronous systems",
IEEE Trans. Software Eng., Vol.SE-12, No. 8, 1986, pp 811 - 826

[Carpenter 87] G.F.Carpenter, "The use of Occam and Petri nets in the simulation of logic
structures for the control of loosely coupled distributed systems", in Proc. UKSC conf. on
computer simulation, 1987, pp 30 - 35

142

[Carpenter 88a] G.F.Carpenter, D.J -Holding, A.M.Tyrrell, "The analysis and protection

of interprocess communication in real-time systems", Journal of IERE, Vol. 58, No. 4,
June 1988, pp 173 - 180

[Carpenter 88b] G.F.Carpenter, D.J -Holding, A M. Tyrrell, "The design and simulation of
software fault tolerant mechanisms for application in distributed processing systems",
Microprocessing and Microprogramming Vol.22, 1988, pp 175 - 185

[Ceri 87] S.Ceri, G.Pellagati, "Distributed databases, principles and systems", McGraw
Hill, 1987

[Chan 83] A.Chan, U.Dayel, S.Fox, N.Goodman, D.R.Ries, D.Skeen, "Overview of an
ADA compatible distributed database manager”, ACM SIGMOD Record, Vol.13, No.4,
May 1983, pp 228 - 237

[Chin 87] F.Y.Chin, K.V.S.Ramarao, "Information based model for failure handling",
IEEE Trans. Software Eng., Vol SE-13, No.4, 1987, pp 420 - 437

[Chull 89] M.E.Chull, A.Zarea-alibadi, "Real-time system implementation - the Transputer

and Occam alternative", Microprocessing and Microprogramming, Vol.26, 1989, pp 77 -
84

[Coolahan 83] J.E.Coolahan, N.Roussoploulos, "Timing requirements for time driven
systems using augmented Petri nets", IEEE Trans. Software Eng., Vol.SE-9, No.5, 1983,
pp 603 - 616

[Davidson 85] S.B.Davidson, H.Garcia-molina, D.Skeen, "Consistency in partitioned
networks", ACM Computing Surveys, Vol.17, No.3, Sep. 1985, pp 341 - 370

[Davidson 89] S.Davidson, I.Lee, V.Wolfe, "Language constructs for timed atomic
commitment”, Proc. 19th int. symp. on fault tolerant computing, IEEE 1989, pp 470 - 477

[Dijkstra 68] E.W .Dijkstra, "Co-operatin g sequential processes”, From Programming
languages F.Genuys (Ed.), Academic Press, 1968

[Dijkstra 72] E.W .Dijkstra, "Notes on structured programming”, Academic Press, 1972

[Dijkstra 75] E.W.Dijkstra, "Guarded commands, non-determinacy and a calculus for
derivation of propositions", Proc. int. conf. on reliable software, ACM SIGPLAN, 1975,
pp 2.0 - 2.13

143

[Dod 83] Department of defense (USA), "Reference manual for the Ada programming
language"”, ANSI/MIL-STD-18 15A, Dod, Washington D.C.,1983

[Dwork 83] C.Dwork, D.Skeen, "The inherent cost of non-blocking commitment", Proc.
symp. principles of distributed computing, ACM 1983, pp 1 - 11

[Eswaren 76] K.P.Eswaren, J.N.Gray, R.A.Lorie, I.LL.Traiger, " The notions of

consistency and predicate locks in a database system", ACM Communications, Vol.19,
No.11, Nov.1976, pp 624 - 633

[Fleming 87) P.J.Fleming (editor), "Parallel processing in control - the Transputer and
other architectures”, Peter Peregrinus Ltd, 1988

[Flynn 66b] M.J.Flynn, "Very high speed computing systems", Proc. IEEE, Vol.54,
1966, pp 1901 - 1909

[Gheith 89] A.Gheith, K.Schwan, "CHAOSART . Support for real-time transactions”,
Proc. 19th int. symp. on Fault-tolerant computing, IEEE, 1989, pp 462 - 469

[Gray 79] J.N.Gray, "Notes on database operating systems"”, in Operating systems : an
advanced course, Springer-Verlag 1979, pp 393 - 481

[Gregory 85] S.T.Gregory, J.C.Knight, "A new linguistic approach to backward error
recovery”, Digest of papers FTCS-15, 15th annual symposium on Fault tolerant
computing, IEEE, 1985, pp 404 - 409

[Gregory 89] S.T.Gregory, J.C.Knight, "On the provision of backward error recovery in
production programming languages", Proc. 19th international symposium on Fault tolerant
computing, IEEE, 1989, pp 506 - 511

[Haerder 83] T.Haerder, A Reuter, "Principles of transaction oriented database recovery",
ACM Computing Surveys, Vol 15, No 4, Dec 1983, pp 287 - 317

[Halici 89] U.Halici, A.Dogac, "Concurrency control in distributed databases through time
intervals and short term locks", IEEE Trans. Software Eng., Vol.15, No.8, 1989, pp 994 -
1005

[Hammer 80] M.Hammer, D.Shipman, "Reliability mechanisms for SDD-1 : A system for
distributed databases", ACM Trans. Database Systems, Vol.5, No. 4, 1980, pp 431 - 466

[Haskin 88] R.Haskin, Y.Malachi, N.Sawdon, G.Chan, "Recovery management in
Quicksilver', ACM Trans. Compting Systems, Vol.6, No.1, Feb 1988, pp 82 - 108

144

[Hecht 76] H.Hecht, "Fault tolerant software for real-time applications", ACM Computing
Surveys, Vol.8, No.4, 1976, pp 391 - 407

[Hecht 79] H.Hecht, "Fault tolerant software", IEEE Trans. Reliability, Vol.R-28, No.3,
1979, pp 227 - 232

[Hoare 74] C.A.R.Hoare, "Monitors: an operating system structuring concept”, ACM
Communications, Vol.17, No.10, 1974, pp 549 - 557

[Hoare 78] C.A.R.Hoare, "Communicating sequential processes", ACM Communications,
Vol.21, No.8, 1978, pp 666 - 677

[Holding 88} DJ .Holding, M.R.Hill, G.F.Carpenter, "The design of distributed, software
fault tolerant, real-time systems incorporating decision mechanisms”, Microprocessing and
Microprogramming, Vol.24, 1988, pp 801 - 806

[Hwang 84] K.Hwang, F.A Briggs, "Computer architectures and parallel processing”,
McGraw-Hill, 1984

[Inmos 88a] Inmos Ltd, "Occam 2 reference manual”, Prentice Hall, 1988
[Inmos 88b} Inmos Ltd., "Transputer reference manual”, Prentice-Hall, 1988
[Inmos 89] Inmos Ltd., "Transputer development system", Prentice Hall, 1989

[Irwin 90] G.W.Irwin, P.J.Fleming (Eds), "Parallel processing for real-time control",
Special edition IEE Proc. D, Vol 137 No.4, 1990

[Joseph 89] M.Joseph, A.Goswami, "Formal description of real time systems: a review",
Information and Software Technology, Vol.31, No.2, 1989, pp 67 - 76

[Karp 69] R.Karp, R.Miller, "Parallel program schemata", Journal of Computer Systems
and Science, Vol.3, No.4, 1969, pp 167 - 195

[Keller 76] R.M.Keller, "Formal verification of parallel programs", ACM
Communications, Vol.7, 1976, pp 371 - 384

[Kim 88] K.H.Kim, "Programmer transparent coordination of recovering concurrent
processes : Philosophy and rules for implementation”, IEEE Trans. Software Eng.,
Vol.14, No.6, 1988, pp 810 - 821

145

[Knight 86] J.C.Knight, N.G.Leveson, "An experimental evaluation of the assumption of

independence in multi-version programming”, IEEE Trans. Software Eng., Vol.SE-12,
No.1, 1986, pp 96 - 109

[Kopetz 83] H.Kopetz, "Software reliability”, Macmillan Press Ltd., 1979

[Kung 81] H.T.Kung, J.T.Robinson, "On optimistic methods for concurrency control”,
ACM Trans. Database Systems, Vol.6, No.2, 1981, pp 213 - 226

[Lala 85] P.K.Lala, "Fault tolerant and fault testable hardware design", Prentice-Hall, 1985

[Lamport 78] L.Lamport, "Time, clocks and the ordering of events in a distributed
system", ACM Communications, Vol.21, No.7, 1978, pp 558 - 565

[Lamport 82] L.Lamport, R.Shostak, M. Pease, "The Byzantine Generals problem"”, ACM
Trans. Programming Languages and Systems, Vol.4, No.3, 1982, pp 382 - 401

[Lamport 83] L.Lamport, "Specifying concurrent program modules”, ACM Trans.
Programming Languages and Systems, Vol.5, No.2, 1983, pp 190 - 223

[Lee 85] LLee, V.Gehlot, "Language constructs for distributed real-time programming”,
Proc. real-time symposium, IEEE, 1985, pp 57 - 66

[Lee 89a] I.Lee, R.B.King, R.P.Paul, "A predictable real-time kemnel for distributed multi-
sensor systems”, IEEE Computer, Vol.22, No.6, 1989, pp 78 -83

[Lee 89b] LLee, S.B.Davidson, V.Wolfe, "Maintaining consistency over a network in
real-time applications"”, Proc. 1989 American control conf., IEEE, 1989, pp 528 - 533

[Leppalla 87] K.Leppalla, "Utilization of parallelism in Transputer based real-time control
systems”, Microprocessing and Microprogramming, Vol.21, 1987, pp 629 - 636

[Leveson 83] N.G.Leveson, "Software fault tolerance: the case for forward error
recovery”, Proc. 4th American Inst. astronautics and aeronautics (AIAA) conf. on
computers in aerospace, 1983, pp 50 - 54

[Leveson 84] N.G.Leveson, "Software safety in computer controlled systems"”, IEEE
Computer, 1984, pp 48 - 55

[Leveson 86] N.G.Leveson, "Software safety : Why, what and how 7", ACM Computing
Surveys, Vol 18, No 2, June 1986, pp 125 - 163

146

[Leveson 87] N.G.Leveson, J.L.Stolzy, "Safety analysis using Petri nets", IEEE Trans.
Software Eng., Vol.SE-13, No.3, 1987, pp 386 - 397

[Lin 88] K.J.Lin, M.J Lin, "Enhancing availability in distributed real-time databases",
ACM SIGMOD Record, Vol.17, No.1, 1988, pp 34 - 43

[Lindsay 82] B.G.Lindsay, L.M.Haas, C.Mohan, P.F.Wilms, R.A.Yost, "Computation

and communication in R* : a distributed database manager", Operating Systems Review,
Vol.17, No.5, 1983, pp 1- 2

[Liskov 88] B.Liskov, R.Scheifler, "Guardians and actions: linguistic support for robust
distributed programs", Proc. 9th Symp on Principles of Programming Languages, 1982,
pp7-19

[London 75] R.L.London, "A view of program verification", Proc. int. conf. on reliable
software, 1975, pp 534 - 545

[Mancini 89] L.V.Mancini, S.K.Shrivastava, "Replication within atomic actions and
conversations : a case study in fault tolerance duality”, Proc. 19th int. symp. Fault tolerant
Computing, IEEE, 1989, pp 454 - 461

[May 85] D.May R.Shepherd, "Occam and the Transputer”, in Concurrent languages in
distributed systems, G.L.Reijns and E.IDagless (editors), IFIP 1985, pp 19 - 33

[Mekly 80] L.J.Mekly, S.S.Yau, "Software design representation using abstract process
networks", IEEE Trans. Software Eng., Vol.SE-6, No.9, 1980, pp 420 - 434

[Memmi 84] G.Memmi, P.Behm, "RAFAEL : a real-time system analysis tool", Proc. 2nd
conf. on software eng. practice and experience, 1984, ppl-7

[Merlin 76] P.M.Merlin, D.J.Farber, "Recoverability of communication protocols -
implications of a theoretical study”, IEEE Trans. Communications, Vol.24, No.7, 1976,
pp 1036 - 1043

[Merlin 78] P.M.Merlin, B.Randell, "State restoration in distributed systems", Digest of
papers FTSC-8, 8th annual international symposium on Fault tolerant computing, IEEE,
1978, pp 129 - 134

[Mohan 83a] C.Mohan, B.Lindsay, "Efficient commit protocols for the tree of processes
model of distributed transactions”, Proc. 2nd SIGACT/SIGOPS symp. on distributed
computing, ACM 1983, pp 76 - 88

147

[Mohan 83b] C.Mohan, R.Strong, S.Finkelstein, "Method for distributed transaction
commit and recovery using Byzantine agreement within a cluster of processes”, Proc. 2nd
SIGACT/SIGOPS symp. on distributed computing, ACM 1983, pp 89 - 103

[Mohan 85] C.Mohan, "Lock conversion in Non-two-phase locking protocols”, IEEE
Trans. Software Eng., Vol.SE-11, No.1, 1985, pp 15-22

[Moitra 90] A.Moitra, M.Joseph, "Implementing real-time systems by transformations”, in
Real-time systems, theory and applications, H.M.S.Zedan (Editor), Elsevier science
publishers B.V. (North-Holland), 1990, pp 143 - 157

[Moser 90] L.E.Moser, P.M.Melliar-Smith, "Formal verification of safety critical
systems”, Software Practice and Experience, Vol.20, No.8, 1990, pp 799 - 821

[Murata 89] T.Murata, "Petri nets : Properties, analysis and applications", Proc. IEEE,
Vol.77, No.4, 1989, pp 541 - 580

[Nelson 83] R.A.Nelson, L.M.Haibt, P.B.Sheridan, "Casting Petri nets into programs",
IEEE Trans. Software Eng., Vol.SE-9, No.5, 1983, pp 590 - 602

[Neumann 85] P.G.Neumann, "Some computer related disasters and other egregious
horrors", ACM SIGSOFT, Software Engineering Notes, Vol 10, no 1, Jan 1985, pp6-11

[Parnas 77] D.L.Parnas, "The use of precise specifications in the development of
software", Proc. IFIP congress, 1977, pp 861 - 867

[Peterson 81] J.L.Peterson, "Petri net theory and the modelling of systems", Prentice Hall,
1981

[Ramamritham 84] K.Ramamritham, J.A.Stankovic, "Dynamic task scheduling in hard
real-time systems", IEEE Software, Vol.1, No.3, 1984, pp 65 -175

[Ramchandani 74] C.Ramchandani, "Analysis of asynchronous concurrent systems by
Petri nets", Phd thesis, project MAC, report no. MAC-TR-120, MIT, Cambridge, 1974

[Randell 75] B.R.Randell, "System structure for software fault tolerance”, IEEE Trans.
Software Eng., Vol SE-1, No 2, June 1975, pp220 - 232

[Randell 78] B.Randell, P.A.Lee, P.A Treleaven, "Reliability issues in computing system
design", ACM Computing Surveys, Vol.10, No.2, 1978, pp 123 - 165

148

[Razouk 84] R.R.Razouk, The derivation of performance expressions for communication

protocols from timed Petri nets", Computer Communication Review (USA), Vol.14,
No.2, 1984, pp 210 - 217

[Razouk 85] R.R.Razouk, C.P.Phelps, "Performance analysis using timed Petri nets ", in
Protocol specification, testing and verification iv, Y.Yemmi, R.Strom, S.Yemini (Eds),
New York, Elsevar, 1985, pp 561 - 576

[Razouk 85] R.R.Razouk, D.S.Hirschberg, "Tools for efficient analysis of concurrent
software systems", Proc. 2nd conf. on software development tools, techniques and
alternatives, IEEE, 1985, pp 192 -198

[Roscoe 88] A.W.Roscoe, C.A.R.Hoare, "The laws of Occam programming”, Theoretical
Computer Science, Vol.60, No.2, 1988, pp 177 - 229

[Sagoo 90] J.S.Sagoo, D.J.Holding, "The specification and design of hard real-time

systems using time and temporal Petri-nets", Microprocessing and Microprogramming,
Vol.30, No.1 - 5, 1990, pp 389 - 396

[Schneider 87] F.B.Schneider, "The fail-stop processor approach”, in Concurrency control
and reliability in distributed systems, B.Bhargava (Editor), Van Nostrand Reinhold, 1987,
pp 370 - 394

[Shepherd 87] R.Shepherd, "Extraordinary use of Transputer links", Inmos Technical note
no. 1, March 1987

[Sifikis 77] J.Sifikis, "Use of Petri nets for performance evaluation", Proc. 3rd int. symp.
on modelling and performance evaluation of computer systems, 1977, pp 75- 93

[Singhal 88] M.Singhal "Issues and approaches to design of real-time database systems",
SIGMOD Record, Vol.17, No.1, March 1988, pp 19 - 33

[Skeen 81a] D.Skeen, "Non blocking commit protocols”, Proc. SIGMOD int. conf. on
management of data, 1981, pp 133 - 142

[Skeen 81b] D.Skeen, "A decentralized termination protocol”, Proc. of symp. on reliability
in distributed software and database systems, 1981, pp 27 - 32

[Skeen 82a] D.Skeen, "Crash recovery in a distributed database system", Phd thesis, Dept.
elect. eng. comput. sci., Univ. Calif., Berkeley, 1982

149

[Skeen 82b] D.Skeen, "A quorum based commit protocol”, Proc. 6th Berkeley workshop
on distributed management and computer networks, 1982, pp 69 - 81

[Skeen 83] D.Skeen, M.Stonebraker, "A formal model of crash recovery in a distributed
system", IEEE Trans. Software Eng., Vol.SE-9, No.3, May 1983, pp 219 - 228

[Sommerville 85] [.Sommerville, "Software Engineering", Addison-Wesley, 1985

[Son 87] S.H.Son, "Using replication for hi gh performance database support in distributed
real-time systems", Proc of the real-time system symposium, IEEE, 1987, pp 79 - 86

[Son 88] S.H.Son, "Semantic information and consistency in distributed real-time
systems", Information and Software Technology, Vol.29, No.8, 1987, pp 440 - 449

[Spivey 89] J.M.Spivey, "The Z notation : a reference manual”, Prentice Hall, 1989

[Stankovic 88a] J.A.Stankovic, "Misconceptions about real-time computing : a serious
problem for next generation computing systems", IEEE Computer, Oct. 1988, pp 10 - 29

[Stankovic 88b] J.A.Stankovic, W.Zhao, "On real-time transactions”", ACM SIGMOD
Record, Vol.17, No.1, 1988, pp4-18

[Stonebraker 87] M.Stonebraker, “Concurrency control and consistency of multiple copies
of data in distributed INGRES", IEEE Trans. Software Eng., Vol.SE-5, No.3, pp 188 -
194

[Suzuki 89] 1.Suzuki, L.Harngdar, "Temporal Petri nets and their applications to modelling
and analysis of a handshake daisy driven arbiter”, IEEE Trans. Computers, Vol.38, No.5,
May 1989, pp 696 - 704

[Suzuki 90] I.Suzuki, S.M.Shatz, T.Murata, "A protocol modelling and verification
approach based on a specification language and Petri nets", IEEE Trans. Software Eng.,
Vol.16, No.5, May 1990, pp 523 - 537

[Taylor 86] D.J.Taylor,"Concurrency and forward recovery in atomic actions", IEEE
Trans. Software Eng., Vol.SE-12, No.1, 1986, pp -69 -78

[Tyrrell 87] A.M.Tyrrell, D.J.Holding, "Design of reliable software in distributed systems
using the conversation scheme", IEEE Trans. Software Eng., Vol.SE-12, No.9, 1986,
pp 921 - 928

[Wu 89] J.Wu, E.B.Fernandez, "A simplification of a conversation design scheme using
Petri nets", IEEE Trans. Software Eng., Vol.15, No.5, 1989, pp 658 - 660

150

[Yuan 89] S.M.Yuan, P.Jalote, "Fault tolerant commit protocols"”, Proc. Sth int. conf. on
data engineering, IEEE comput. soc., 6 - 10th Feb., 1989, pp 280 - 286

[Zuberek 80] W.M.Zuberek, "Timed Petri nets and preliminary performance evaluation”,
7th annual symp. on computer architecture, 1980, pp 85 - 96

151

Appendix A
Published papers

(1) D.J.Holding, M.R.Hill, G.F.Carpenter, "The design of distributed, software fault
tolerant, real-time systems incorporating decision mechanisms", Microprocessors and
Microprogramming, Vol.24, 1988, pp 801 - 806

(2) M.RHIll, D.J .Holding, "The modelling, simulation and analysis of commit protocols
in distributed computing systems”, Proc. UKSC conf. , Brighton, Sep. 1990

152

North-Holland
Microprocessing and Microprogramming 24 (1988) 801—-806 801

THE DESIGN OF DISTRIBUTED, SOFTWARE FAULT TOLERANT, REAL-TIME SYSTEMS INCORPORATING DECISION MECHANISMS

D. J. Holding, M. R.Hill and G. F. Carpenter

Aston University, Aston Triangle,
Birmingham B4 7ET, United Kingdom.

This paper considers the use of software fault tolerance in the design of loosely-coupled real-time distributed systems. It also addresses

the problem of taking distributed multi-party decisions in decentralised systems and shows that distributed database techniques can be used
1o provide a general solution. In particular, it is shown that a two phase locking mechanism can be used to serialise concurrent decisions,
thus removing cerain timing problems, and a two phase commit protocol can be used to implement distibuted decisions which are
recoverable for centain classes of failure. The techniques described are illustrated by reference to a safety critical application. A solution is
proposed comprising an Occam program which can be implemented on microprocessor and transputer based systems.

Aston University

Content has been removed for copyright reasons

that they do not lead to 1ailure [2], [3]. Tt can aiso be used 10 compiex because an erfor can riigrate between processes
prote = =t === mamn mmmmininatiane (41 thic e C thememkintaronrnrace actinne which can not be revoked. The
impoi in such systems is

ay result in the

This | 1e domino effect).
loose yehaviour of
inter- ation studies are
fault" 'SS actions are

tsc;l:tree AS to n U n ive rS i ty ; liJr‘?ti(r;rgprocess

distril wrefully controlled
show Slerance can be
to pre ncurrent recovery
to tirr s have been

ads Content has been removed for

copyright reasons

153

THE MODELLING, SIMULATION, AND ANALYSIS OF COMMIT
PROTOCOLS IN DISTRIBUTED COMPUTING SYSTEMS

Mantin R. Hill and David J. Holding
Information Technology Research Group
Aston University
Birmingham B4 7ET, U.K.

ABSTRACT

Commit protocols are used to provide atomicity and
ensure consistency in distributed computer systems.
This paper considers the design and simu‘ation of
robust protocols for distributed systems which
communicate by synchronous and asynchronous
message passing. The protocols are mocelled.
simu'lated and analysed under normal and fault
conditions using Petri nets. The state reachability trees
generated from these modeis can be used in the design
of robust protocols. The paper describes the design of &
robust commit protocol for systems which use
synchronous communications and are subject to site
failure. This protocol has been translated :nto the
concurrent programming language Occam and
implement on a loosely coupled distnbuted processing
system comprising a network of Transputers.

INTRODUCTION

To ensure consistency over a distributed computer
system, commit protocols must be used to provide
atomicity when computing distnbuted decisions or
transactions. Such protocols need to be resilient to
processor or communication failure. Traditionallv

Aston University

The technique i1s demonstrated by considernng the
design of an extended two phase commit protocol using
synchronous communication. A robust version of the
orotocol is developed and it 1« shnawn that additional

Aston University

copyright reasons

Content has been removed for

MUM=pany CUrmm piUiuGuid 19, SITHIEI (W Owiveirng e

[- J P

Content has been removed for copyright reasons

eeeennuieauuns, M€ TET NELS Models can be used in
the verification of the protocols. Also, using known
techniques, they can be extended to accommodate
models of timing constraints and failure mechanisms.
The paper describes how such models can be used in
the design of robust synchronous commit protocols tor
systems subject to site failure. The paper also described
how these modals can be transiated into the concurrent
programming language Occam to produce executable
models or simulations.

e e YA T IGRHG U DUT U reguver)ioreen 61]4
The two phase commit protocol described above is a
blocking protocol. While it is correct under normal
conditions and does not block when a participant site
tails (because upon recovery the failed site wili
terminate consistently but with extra communications), it
may block when the coordinator site fails. Specifically, if
the coordinator fails before sending a decision to the
participant then the protocol must hold all its resources
until the failure is repaired.

159

Appendix B
Occam source code for the optimized extended 2 phase commit protocol

This appendix contains the Occam source code for the following protocols using
synchronous communications :

(1) 2 phase commit (see figure 4.7)
(2) Extended 2 phase commit (see figure 4.17)
(3) Optimized extended 2 phase commit (see figure 5.3).

The timeouts shown are placed for expected link failure but the protocols can easily be
modified to investigate site failures. The timeouts would be placed as su ggested in chapter
4. A site fajlure is simulated by executing a recovery procedure at the failure point and
commenting out all the code after that. This recovery procedure then attempts to bring the
recovering site to a state consistent with the other sites using local information.

(A
(W)

see 7/11/89
Coordinator
Participant
Particiapnt
Multiplexor

for details

runs in slot 1

0 runs on slot 0
1 runs on slot 2
runs on slot 3

dodgy link 1s between coordinator link 3
and participant 1 link 3

flying lead between EDGE 0 and EDGE 4

The network 1s configured as a tree of 1 coordinator 2 participants and
a multiplexor process

The multiplexor collects debug information from the coordinator and
participants and sends it to the host via link 2

The multiplexor runs on slot 3
The coordinator runs on slot 1
Participant O runs on slot 0
Participant 1 runs on slot 2

CHAN OF ANY Debug.from.host, Debug.to.host :

i
i
7

Debug.from.pO,
Debug.from.pl,
Debug.from,cocecrxd,

Debug.to.pC :
Debug.to.pl :
Debug.to.

A0 O
[ad]
5

i
"

by

i

conrdinator (CERW OF ARHY Froem.pl,

’ . .
T .Fe. from 3zl ity -
Iu.debuy, Fron.Zezug,
- Lln qrccire compyrloses 27T L ETT 2.7 zTTioLEn T

Lrfe, v, e rint Lrarispiter

Se Wi Uiy gactWeGr Wik L0, G0 NE T L Lf <rE tte wrz- sz-
[P SR S APD s BRI P P AN A

[2SS T PR E E PRI YR VNRNES A

| PR UL IS P O RN B R

[I P [

CHAN OF ANY pl.disconnected

[3] CHAN OF ANY send.to.screen
CHAN OF ANY stop.screen.mux :

#USE "\tdsiolib\userhdr.tsr”
#USE "\tdsiolib\slice.tsr"
#USE "\tdsiolib\filerhdr.tsr"
PROC multiplexor ({]JCBAN OF ANY screen.in, CHAN OF ANY screen.out,
CHAN OF INT stopper)
-- multiplexes a collection of scrstream output channels onto a
-- single such channel.
-— Each change of input directs output to a new line on the screen.
-- Any input on stopper terminates the multiplexer.
VAL n IS SIZE screen.in:
BOOL going :
INT tt.char :
BYTE tt.bcom :
INT any :
INT current.source :
PROC check.current.source (INT prev, VAL INT new)
-- sends *c*n to screen.out if new<>prev, resets prev to be new
SEQ
IF
new = prev
SKIP
TRUE
SEQ
screen.out ! tt.out.byte; '*c'; tt.,out.byte; '*n'
screen.out ! tt.out.byte; BYTE ((INT'0') + new)
screen.out ! tt.out.byte; '>°
prev := new
SEQ
going := TROE
current.source := -1
WHILE going
PRI ALT
stopper ? any
SEQ
screen,out ! tt.out.byte; **c'; tt.out.byte; '*n'; tt.endstream
going := FALSE
ALT i = 0 FOR n
screen.in(i] ? tt.bcom
IF
tt.bcom = tt.,out.string
{max.string.size]BYTE str :
INT len:
SEQ
input.len.bslice {screen.in{i], len, str)
--check.current,source({current.source, 1i)
screen.out ! tt.out.string
output.len.bslice (screen.out, len, str)
(tt.bcom = tt.out.byte) OR
(tt.bcom = tt.ins.char)
BYTE ch
SEQ
screen.in[i) ? c¢ch
--check.current.source{current.source, 1i)

167

screen.out ! tt.bcom; ch
tt.bcom = tt.out.int
INT x
SEQ
screen.in{i) ? x
--check.current.source(current.source, 1i)
screen.out ! tt.out.int; x
tt.bcom = tt.goto
INT x,y:
SEQ
screen.in[i] ? x;y
~-check.current.source{current.source, i)
screen.out ! tt.goto; x; vy
tt.bcom = tt.endstream
SEQ
~-check.current.source {current.source, 1)
screen.out ! tt.endstream
TRUE
screen.out ! tt.bcom

#USE "2pclib.tsr" -- commen messages etc
PROC collect.answers (CHAN OF ANY From.p0O, From.pl,
[no.of.participants] CHAN OF ANY P.replied,
CHAN OF ANY Return.vote, Duff.link.pl, To.screen)

INT vote :
[no.of.participants] INT Answer,from :
INT error.detected :

SEQ
PAR 1 = 0 FOR no.of.participants
Answer.from [i] := not.replied
PAR
SEQ
From.pO ? Answer.from [pO]
P.replied [pO] ! Answer.from [pO]
ALT
From.pl ? Answer.from [pl]
P.replied [pl] ! Answer.from {pl]
Duff.link.pl ? error.detected
SEQ
-- link failure occurred sending message
-- assume answer to be aam
Answer.from [pl] := aam
P.replied [pl] ! Answer.from {pl]
‘vote := commit
PAR i = 0 FOR no.of.participants

IF
Answer.from [i] = aam
vote := abort
TRUE
SKIP

Return.vote ! vote

#USE "2pclib.tsr” -~- commen messages etc

PROC decision ([no.of.participants)CHAN OF ANY partic.answered, CHAN OF ANY
decision.made, Out.to.p0, Out.to.pl, stop.mux, Duff.link.pl,

To.screen)

#USE "\tdsiolib\userio.tsr™
#USE "\tds2lib\reinit.tsr" -- extraordinary library

INT mess :

[IBYTE mess.array RETYPES mess :
INT coord.state :

BOOL coord.willing :

[2)INT has.replied :

INT vote :

168

TIMER time :
INT time.now :
VAL ticks.per.sec IS 15625
VAL time.out IS (10 * ticks.per.sec) :
INT next.tick :
VAL allowed.out.time IS (10 * ticks.per.sec) :
BOOL Link.error
PROC send.state (CHAN OF ANY sink, VAL INT state)
IF
state = initial
write.full.string (sink, " Initial ")
state = ready
write.full.string (sink, "™ Ready ™)
state = undecided
write.full.string (sink, ™ Undecided ")
state = aborted
write.full.string (sink, *" Aborted ™)
state = committed
write.full.string (sink, " committed ")

PROC get.next.tick (INT next.tick, VAL INT delta)

TIMER time :
SEQ
time ? next.tick
next.tick := next.tick PLUS delta
SEQ

coord.willing := TRUE
-- initial state
-- send prepare message to all participants
coord.state := initial
write.full.string (To.screen, "coord state -")
send.state (To.screen, coord.state)
PAR
Out.to.p0 ! pm
SEQ
mess := pm
get.next.tick (next.tick, allowed.out.time)
OutputOrFail.t (Out.to.pl, mess.array, time, next.tick, Link.error)
IF
Link.error
SEQ
write.full.string (To.screen, "error sending pm to pl")
Duff.link.pl ! error
SKIP
NOT Link.error
SEQ
write.full.string (To.screen, "pm sent ok to pl™)
SKIP
coord.state := undecided
write,full.string (To.screen, "coord state -")
send.state (To.screen, coord.state)
PAR 1 = 0 FOR no.of.participants
has.replied [1]) := not.replied

time ? time.now -- start timer for answers
PAR
PAR 1 = O FOR no.of.participants
partic.answered [i] ? has.replied [i]
ALT
time ? AFTER time.now PLUS time.out
SEQ
write.full.string (To.screen, "Coordinator timed out™)
write.text.line (To.screen,"Abort decision made")
coord.state := aborted
write.full.string (To.screen, "coord state -")
send.state (To.screen, coord.state)

169

~= Only one of the participants is assumed to be unable to communicate
-- Need to abort coordinator, abort all participants that replied,
absorb all
-- late communications
-~ The participant that didn't reply will abort itself when it can't
send

-- its answer message

PAR
IF
has.replied [p0) = cam
SEQ
-—-—- participant is in ready state
Out.to.p0 ! acm
has.replied [pO] = not.replied
SEQ
-- p0 not replied => late
-- shouldn't happen in this simulation
SKIP
has.replied {p0] = aam
SEQ
-- p0 already aborted
SKIP
TRUE
SKIP
IF
has.replied [pl] = cam
SEQ
-—- participant is in ready state
SEQ
mess := acm
get.next.tick (next.tick, allowed.out.time)
OutputOrFail.t (Out.to.pl, mess.array, time, next.tick,
Link.error)
IF
Link.error
SEQ
write.full.string (To.screen, "error sending acm to pl")
write.full.string (To.screen, "™ !BLOCKING! ")
SKIP
NOT Link.error
SEQ
write.full.string (To.screen, "acm sent ok to pl")
SKIP
has.replied [pl] = not.replied
SEQ
-~ pl not replied => link failure
write.full.string (To.screen, "pl not replied")
Duff.link.pl ! error
TRUE

SKIP

decision.made ? vote
decision.made ? vote
SEQ
IF
vote = abort
SEQ
write.text.line (To.screen, "Abort decision made")

170

-- abort coordinator and abort all the participants that replied
with cam

-- the participants that replied aam should already have aborted
already

coord.state := aborted
write.full.string (To.screen, "coord state -")
send.state (To.screen, coord.state)
TIMER time :
VAL delay IS 6 * 15625 :
INT time.start
SEQ
time ? time.start
time ? AFTER time.start PLUS delay
PAR
IF
has.replied(0] = cam
SEQ
-- commented out to simulate late process
Out.to.p0 ! acm
TRUE
SKIP
IF
has.replied([1l] = cam
SEQ
mess := acm
get.next.tick (next.tick, allowed.out.time)

OutputOrFail.t (Out.to.pl, mess.array, time, next.tick,
Link.error)

IF
Link.error
SEQ
write.full.string (To.screen, "error sending acm to
pl™)
write.full.string (To.screen, " !BLOCKING! ")
SKIP
NOT Link.error
SEQ
write.full.string (To.screen, "acm sent ok to pl")
SKIP
TRUE
SKIP
vote = commit
SEQ
~- is coordinator willing ?
TIMER time :
VAL delay IS 6 * 15625 :
INT time.start :
SEQ
time ? time.start
time ? AFTER time.start PLUS delay
IF
coord.willing
SEQ
write.text.line (To.screen, "Commit decision made™)
write.full.string (To.screen, "coord state -")
send.state (To.screen, coord.state)
TIMER time :
VAL delay IS 6 * 15625 :
INT time.start :

time ? time.start
time ? AFTER time.start PLUS delay
PAR -- commit participants
Out.to.p0 ! ccm
BOOL sent :
SEQ
mess := ccm

171

sent := FALSE
WHILE (NOT sent)
SEQ
write.char (To.screen, '.‘')
Reinitialise (Out.to.pl)
get.next.tick (next.tick, allowed.out.time)

OutputOrFail.t (Qut.to.pl, mess.array, time,
next.tick, Link.error)

sent := NOT Link.error
write.char (To.screen, ':')
coord.state := committed
NOT coord.willing

SEQ
write.text.line (To.screen, "Coord not willing™)
write.text.line (To.screen, "Abort decision made™)
coord.state := aborted
write.full.string (To.screen, "coord state -")
send.state (To.screen, coord.state)
TIMER time :
VAL delay IS 6 * 15625 :
INT time.start :
SEQ
time ? time.start
time ? AFTER time.start PLUS delay
PAR
-- comment out to simulate late message
Cut.to.p0 ! acm
SEQ
mess := acm
get.next.tick (next.tick, allowed.out.time)

OutputOrFail.t (Out.to.pl, mess.array, time, next.tick,
Link.error)

IF
Link.error
SEQ
write.full.string (To.screen, "error sending acm
to pl™)
write.full.string (To.screen, " !BLOCKING! ")
SKIP
NOT Link.error
SEQ
write.full.string (To.screen, "acm sent ok to pl")
SKIP
write.full.string (To.screen, "coord state -")
send.state (To.screen, coord.state)
write.text.line (To.screen, "decision finished")
stop.mux ! 10 -- any int will do
SEQ
INT start :
SEQ
From.debug ? start
PAR

collect.answers (From.p0O, Link.from.pl, part.answered, vote,
pl.disconnected, send.to.screen [0])
decision (part.answered, vote, To.p0O, Link.to.pl, stop.screen.mux,
pl.disconnected, send.to.screen [1])
multiplexor {(send.to.screen, To.debug, stop.screen.mux)

PROC participant0 (CHAN OF ANY output, input, Debug.out, Debug.in)
#USE "2pclib.tsr"
#USE "\tdsiolib\userio.tsr"
VAL tt.endstream IS BYTE 24 :
INT partic.state :
INT message :
BOOL partic.willing :

172

BOOL partic.late
BOOL going
TIMER time
INT time.now :
INT timed.out :
VAL ticks.per.sec IS 15625 :
VAL allowed.delay IS 10 * ticks.per.sec : =-- in seconds
VAL slow.process IS 2 * ticks.per.sec :
PROC send.state (CHAN OF ANY sink, VAL INT state)
IF
state = initial
write.full.string (sink, "™ Initial ")
state = ready
write.full.string (sink, " Ready ")
state = undecided
write.full.string (sink, "™ Undecided ")
state = aborted
write.full.string (sink, ™ Aborted ")
state = committed
write.full.string (sink, "™ committed ")

SEQ
INT start
SEQ
Debug.in ? start
partic.willing := TRUE
partic.late := FALSE
partic.state := initial
write.full.string (Debug.out, "partic state is - ")
send.state (Debug.out, partic.state)
-- wait for prepare message
input ? message
IF
message = pm
SEQ
--write.text.line (Debug.out, "pm got by p0")
IF
partic.late
SEQ
time ? time.now
time ? AFTER time.now PLUS slow.process
NOT partic.late
SKIP
—— decide if Pl is willing to commit or not
IF
partic.willing
SEQ
output ! cam
partic.state := ready
write.full.string (Debug.out, "partic state is - ")
send.state (Debug.out, partic.state)
input ? message
IF
message = ccm
SEQ
-- all processes are able to commit
-- commit this one
partic.state := committed
message = acm
SEQ
-- some process is unable to commit
-- therefore abort this one
partic.state := aborted
time ? time.now

ALT
input ? message
IF
message = ccm
SEQ

173

-- all processes are able to commit
-—- commit this one

partic.state := committed
message = acm
SEQ

-- some process is unable to commit
~- therefore abort this one
partic.state := aborted
time ? AFTER time.now PLUS allowed.delay
SEQ
write.text.line (Debug.out,
partic.state := aborted
NOT partic.willing
SEQ
-- unilateral abortion
partic.state := aborted
output ! aam

"p0 timed out")

TRUE
SKIP
write.full.string (Debug.out, "partic state is - ")
send.state (Debug.out, partic.state)
~~ terminate fan.out on mux
write.text.line (Debug.out,
Debug.out ! tt.endstream

"stop fan™)

PROC participantl (CEAN OF ANY Link.to.coord, Link.from.coord,

Debug.out, Dabug.in)
#USE "2pclib.tsr”
#USE "\tdsiolib\userio.tsr"
#USE "\tds2lib\reinit.tsr™
CHAN OF ANY From.coord, To.coord :
[3]CHAN OF ANY send.to.screen
CHAN OF INT stop.mux :
INT error.source :
VAL tt.endstream IS BYTE 24 :
INT partic.state :
INT message :
BOOL partic.willing :
BOOL partic.late :
BOOL going
[IBYTE mess.array RETYPES message :
TIMER time :
VAL allowed.in.time IS 10*15625 :
VAL allowed.out.time IS 1*15625 :
INT next.tick :
BOOL Link.,error :
INT time.now :
INT timed.out :
VAL ticks.per.sec IS 15625 :
VAL delay IS 5 * ticks.per.sec : =-- in seconds
VAL slow.process IS 2 * ticks.per.sec :
PROC send.state (CHAN OF ANY sink, VAL INT state)
IF
state = initial
write.full.string (sink, " Initial ")
state = ready
write.,full.string (sink, " Ready ")
state = undecided
write.full.string (sink, " Undecided ")
state = aborted
write.full.string (sink, " Aborted ")
state = committed
write.full.string (sink, " committed ")

.

PROC get.next.tick (INT

TIMER time
SEQ

.
:

time ? next.tick

next.tick,

174

VAL INT delta)

next.tick := next.tick PLUS delta

SEQ
INT start :
SEQ
Debug.in ? start
write.full.string (Debug.out, "pl started")
partic.willing := TRUE
partic.late := FALSE
partic.state := initial
write.full.string (Debug.out, "pl state is - ")
send.state (Debug.out, partic.state)
get.next.tick (next.tick, allowed.in.time)
InputOrFail.t (Link.from.coord, mess.array, time, next.tick, Link.error)

IF
Link.error
SEQ
write.full.string {(Debug.out, "pm not received")
partic.state := aborted
SKIP
NOT Link.error
SEQ
IF
message = pm
SEQ
write.full.string {(Debug.out, "pm got by pl™)
IF
partic.late
SEQ

time ? time.now
time ? AFTER time.now PLUS slow.process
NOT partic.late
SKIP
-~ decide if Pl is willing to commit or not
Ir
partic.willing
SEQ
SEQ
time ? time.now
time ? AFTER time.now PLUS delay
message := cam
get.next.tick (next.tick, allowed.out.time)
OutputOrFail.t (Link.to.coord, mess.array, time, next.tick,
Link.error)
IF
Link.error
SEQ
write.full.string (Debug.out, "error sending cam")
partic.state := aborted
SKIP
NOT Link.error
SEQ
write.full.string (Debug.out, "cam sent ok")
partic.state := ready
write.full.string (Debug.out, "partic state is - ™)
send.state {(Debug.out, partic.state)
write.full.string (Debug.out, " BLOCKING ")
BOOL got :
SEQ
got := FALSE
WHILE (NOT got)
SEQ
Reinitialise (Link.from.coord)
get.next.tick (next.tick, allowed.in.time)
InputOrFail.t (Link.from.coord, mess.array, time,
next.tick, Link.error)
got := NOT Link.error
write.full.string (Debug.out, "Decison got ok™")

175

IF
message = ccm
SEQ
-- all processes are able to commit
-- commit this one

partic.state := committed
message = acm
SEQ

-- some process is unable to commit
-~ therefore abort this one
partic.state := aborted
message = error
SEQ

-- error detected before getting vote
-- abort participant and terminate
write.full.string (Debug.out, "ERROR in decision™)
partic.state := aborted

NOT partic.willing

SEQ

message (= aam
get.next.tick (next.tick, allowed.out.time)
OutputOrFail.t (Link.to.coord, mess.array, time, next.tick,
Link.error)

IF
Link.error
SEQ
-- aam message not sent
write.full.string (Debug.out, "error sending aam")
partic.state := aborted
SKIP
NOT Link.error
SEQ

write.full.string (Debug.out, "aam sent ok")
partic.state := aborted
TRUE
SEQ
write.full.string (Debug.out, "pm message error")
partic.state := aborted
SKIP
write.full.string (Debug.out, "partic state is - ")
send.state (Debug.out, partic.state)
write.full.string (Debug.out, "stop fan")
-- terminate fan.out on mux
Debug.out ! tt.endstream

PROC multiplaexor (CHAN OF ANY From.p0, To.p0, From.pl, To.pl,
From.coord, To.coord, From.host, To.host)
#USE "\tdsiolib\interf.tsr"

#USE "\tdsiolib\userhdr.tsr”
#USE "\tdsiolib\filerhdr.tsr"
#USE "\tdsiolib\slice.tsr"
PROC fan.out {(CHAN OF ANY scrn, screen,outl, screen.out2, terminated)
—— sends copies of everything received on its input channel
-- to both of the output channels.
BYTE tt.bcom:
BOOL going:
SEQ
going := TRUE
WHILE going
SEQ
scrn ? tt.bcom
IF
tt.bcom = tt.out.string
(max.string.size]BYTE str :

176

INT len:
SEQ

input.len.bslice(scrn, len,
screen.outl ! tt.out.string
output.len.bslice(screen.outl,
screen.out2 ! tt.out.string

output.len.bslice(screen.out?2,

(tt.bcom = tt.out.byte) OR
(tt.bcom = tt.ins.char)
BYTE ch :
SEQ
scrn ? ch
screen.outl ! tt.bcom; ch
screen.out2 ! tt.bcom; ch
tt.bcom = tt.out.int
INT x :
SEQ

scrn ? x
screen.outl !
screen.out?2 !

tt.out.int;
tt.out.int; x

tt.bcom = tt.goto
INT x,y:
SEQ
scrn ? X;Y
screen.,outl ! tt.goto; X; y
screen.out2 ! tt.goto; x; y
tt.bcom = tt.endstream
SEQ

screen.outl !
screen.out2 !
terminated !
going := FALSE
TRUE
SEQ
screen.outl !
screen,out2 !

VAL
VAL
VAL
VAL
VAL
VAL

1link0Oin IS 4 :
linkOout IS O :
linklin IS 5 :
linklout IS 1 :
link2in IS 6 :
link2out IS 2 :

VAL link3in IS 7 :

VAL link3out IS 3 :

PLACE From.coord AT 1linkOin:
PLACE To.coord AT linkOout:
PLACE From.pO AT link3in:
PLACE To.pO AT link3out:
PLACE From.pl AT linklin:
PLACE To.pl AT linklout:
PLACE From.host AT link2in:
PLACE To.host AT link2out:
-- channels for scrstream.si
[3]CHAN OF ANY echo :

-~ channels for multiplexor
[3] CHAN OF ANY Send.to.scre
-- channels for termination
CHAN OF INT Fan.linkO, Fan.l
CHAN OF INT Stop.mux :

#USE "\tdsiolib\userhdr.tsr”
#USE "\tdsiolib\slice.tsr"
#USE "\tdsiolib\filerhdr.tsr
PROC multiplexor

str}

len,

len,

str)

str)

tt.out.byte;'!';tt.bcom

tt.bcom

10 -- any will do

tt.bcom
tt.bcom

nk

en 1

inkl, Fan.link3

([]CHAN OF ANY screen.in, CHAN

CHAN OF INT stopper)

-- multiplexes a collection of scrstream output

-~ single such channel.

-- Each change of input directs output to a new line on the screen.

177

OF ANY screen.out,

channels onto a

-- Any input on stopper terminates the multiplexer.

VAL n IS SIZE screen.in:
BOOL going :

INT tt.char :

BYTE tt.bcom :

INT any :

INT current.source :

PROC check.current.source(INT prev, VAL INT new)

-- sends *c*n to screen.out if new<>prev,

resets prev to be new

SEQ
IF
new = prev
SKIP
TRUE
SEQ
screen.out ! tt.out.byte; '*c'; tt.out.byte; '*n'
screen.out ! tt.out.byte; BYTE ((INT'0') + new)
screen.out ! tt.out.byte; '>'
prev := new :
SEQ
going := TRUE
current.source := -1
WHILE going
PRI ALT
stopper ? any
SEQ
screen.out ! tt.out.byte; '*c'; tt.out.byte; '*n’

screen.out ! tt.endstream
going := FALSE
ALT i 0 FOR n
screen.inf{i] ?
IFr
tt.bcom tt.out.string
[max.string.size])BYTE str :
INT len:
SEQ

tt.bcom

input.len.bslice (screen.in[1], len, str)

check.current.source{current.source,
! tt.out.string
output.len.bslice (screen.

screen.out

(tt.bcom = tt.out.byte) OR
(tt .bcom = tt.ins.char)
BYTE ch :

SEQ

screen.in[i) ? ch

check.current.source(current.source,

screen.out ! tt.bcom; ch
tt.bcom = tt.out.int
INT x :
SEQ

screen.in[i}] ? x

check.current.source(current.source,
X

screen.out !
tt.bcom tt.goto
INT x,y:
SEQ
screen.in[i] 2

tt.out.int;

Xy

check.current.source{current.source,

screen,out !
tt.bcom
SEQ
SKIP
TRUE
screen,out !

tt.goto;
tt.endstream

X; Y

tt.bcom

i)

out, len, str)

i)

PROC terminator (CHAN OF INT Fan0O, Fanl, Fan3, terminated)

(3]
SEQ

INT stopped :

178

PAR
Fan0 ? stopped [0]
Fanl ? stopped [1]
Fan3 ? stopped (2]
terminated ! 10 -- any int will do

SEQ
INT start
VAL go IS 10 : -- any int will do
SEQ
From.host ? start
PAR
To.pO ! go
To.pl ! go
To.coord ! go
PAR
fan.out (From.pO, Send.to.screen [0], echo [0], Fan.linkO)
scrstream.sink (echo [0])
fan.out (From.pl, Send.to.screen [l1], echo [1], Fan.linkl)
scrstream.sink (echo {11])
fan.out (From.coord, Send.to.screen [2], echo [2], Fan.link3)
scrstream.sink (echo [21])
multiplexor (Send.to.screen, To.host, Stop.mux)
terminator (Fan.linkO, Fan.linkl, Fan.link3, Stop.mux)

PLACED PAR
PROCESSOR 0 T8
PLACE Debug.from.pO AT 1link3in :
PLACE Debug.to.pO AT link3out :
PLACE Debug.from.pl AT linklin :
PLACE Debug.to.pl AT linklout :
PLACE Debug.from.coord AT 1inkOin :
PLACE Debug.to.coord AT linkOout :
PLACE Debug.from.host AT link2in :
PLACE Debug.to.host AT link2out :
multiplexor (Debug.from.p0, Debug.to.p0, Debug.from.pl, Debug.to.pl,
Debug.from.coord, Debug.to.coord,Debug.from.host,
Debug.to.host)
PROCESSOR 1 T8
PLACE Coord.from.p0 AT link2out :
PLACE Coord.to.pO AT link2in :
PLACE Debug.from.pO AT link3out :
PLACE Debug.to.pO AT 1link3in :
participanto0 (Coord.from.p0, Coord.to.poO, Debug.from.po0,
Debug.to.p0)
PROCESSOR 2 T8
PLACE Coord.from.p0 AT linklin :
PLACE Coord.to.p0O AT linklout :
PLACE Coord.from.pl AT link3in
PLACE Coord.to.pl AT link3out :
PLACE Debug.from.coord AT linkOout
PLACE Debug.to.coord AT linkOin :
coordinator (Cooxrd.from.p0, Coord.to.p0, Coord.from.pl,
Cooxrd.to.pl,Debug.from.coord, Debug.to.coord)
PROCESSOR 3 T8
PLACE Coord.from.pl AT link3out
PLACE Coord.to.pl AT link3in :
PLACE Debug.from.pl AT link2out
PLACE Debug.to.pl AT link2in :
participantl (Coord.from.pl, Coord.to.pl, Debug.from.pl,
Debug.to.pl)

179

-- This protocol is the extended 2 phase protocol from the paper by Skeen and
-— Stonebraker (IEEE s/w eng. SE-9 No.3 1983) with synchronous comms

-- It is implemented here with 1 coordinator and 1 participant

-~ Timeouts are added so that the link between the coordinator and the
-- participant can be pulled

~-- A centralized protocol is assumed

-- Site and link failures are investigated

-- see notes 1/3/90 for configuration and 6/3/90

-- Results :-

-=- (1) Can be made non- blocking and consistent with respect to the link
-- failure

-- An extended 2 phase commit protocol runs on the network

-- The network 1s configured as a tree of 1 coordinator 1 participant and
-- a multiplexor process

-- The multiplexor collects debug information from the coordinator and

-- participants and sends it to the host via link 2

-— The multiplexor runs on slot 3
~~ The coordinator runs on slot 1
~~ Participant 1 runs on slot 2

CHAN OF ANY Debug.from.host, Debug.to.host :

CHAN OF ANY Debug.from.pl, Debug.to.pl :
CHAN OF ANY Debug.from.coord, Debug.to.coord :

CHAN OF ANY Coord.to.pl, Coord.from.pl :

VAL 1linkOin IS 4 :
VAL linkOout IS 0 :
VAL linklin IS 5 :
VAL linklout IS 1 :
VAL link2in IS 6 :
VAL link2out IS 2
VAL 1ink3in IS 7 :
VAL link3out IS 3 :

PROC coordinator (CEAN OF ANY From.pl, To.pl,
To.debug, From.debug)

—- This procedure communicates with participant 1 and also sends debug
-- info to the host transputer via the multiplexor

-~ The link between the coordinator and participant 1 is the one that can
-- be removed to demonstrate the resiliency

#USE "\tdsiolib\userio.tsr”
#USE "\tdsiolib\interf.tsr"

180

#USE "3pclib.tsr"

VAL Coord.willing IS FALSE :
[no.of.participants)TIMER timer :
[no.of .participants]INT time.now :
VAL allowed.input.time IS 5 * 15625 :
VAL allowed.output.time IS 3 * 15625
[no.of.participants]BOOL Link.error :
INT coord.state, decision :
INT mess.pO, mess.pl :
{]BYTE mess.array.p0 RETYPES mess.pO :
[IBYTE mess.array.pl RETYPES mess.pl
[no.of.participants] INT next.tick :
VAL tt.endstream IS BYTE 24 :
PROC send.state (CHAN OF ANY sink, VAL INT state)
IF
state = initial
write.full.string (sink, ™ Initial ™)
state = ready
write.full.string (sink, " Ready ")
state = undecided
write.full.string (sink, ™ Undecided ")
state = aborted
write.full.string (sink, " Aborted ")
state = committed
write.full.string (sink, " committed ")
state = prepared
write.full.string (sink, " prepared ")
TRUE
write.full.string (sink, " !!ERROR!! ™)
PROC get.next.tick (INT next.tick, VAL INT delta, TIMER time)
TIMER time :
SEQ
time ? next.tick
next.tick := next.tick PLUS delta

SEQ
INT start :
SEQ
From.debug ? start
-- initial state
-~ send prepare message to all participants
coord.state := initial
write.full.string (To.debug, "coord state
send.state (To.debug, coord.state)
decision := unknown
SEQ i = p0 FOR no.of.participants
Link.error(i] := FALSE
PAR
SEQ
mess.pl := pm
get.next.tick (next.tick(pl], allowed.output.time, timer(pl])
OutputOrFail.t (To.pl, mess.array.pl, timer{pl], next.tick[pl],
Link.error(pl]))

]
~

IF
Link.error[pl]
SEQ
write.full.string (To.debug, "error sending pm to pl")
-~ assume the link is duff
-- abort decision made
coord.state := aborted
NOT Link.erroripl])
SEQ
write.text.line (To.debug, "pm sent ok to pl")
coord.state := ready
write.full.string (To.debug, "coord state :-")
send.state (to.debug, coord.state)

181

SEQ i = pO FOR no.of.participants
Link.error{i} := FALSE
get.next.tick (next.tick{pl], allowed.input.time, timer(pl})
InputOrFail.t (From.pl, mess.array.pl, timer(pl), next.tick(pl}],
Link.error{pl))
IF
Link.error[pl]
SEQ
write.full.string (To.debug, "Pl not replied")
coord.state := aborted
NOT Link.error [pl)
write.text.line (To.debug, "Delay - put link if necessary")
TIMER delay :
INT now :
SEQ
delay ? now
delay ? AFTER now PLUS (3 *15625)
SEQ i = p0O FOR no.of.participants

Link.error (i) := FALSE
IF
(mess.pl = cam) AND (Coord.willing)
SEQ
PAR
SEQ

mess,.pl := ccm
get.next.tick (next.tick([pl), allowed.output.time, timer({pl])
OutputOrFail.t (To.pl, mess.array.pl, timer(pl]}, ext.tickipl],
Link.error(pl])
IF
Link.error([pl])
SEQ
write.textline (To.debug, ™"error sending ccm to pl"™)
coord,state := aborted
NOT Link.error[pl])
SEQ
write.text.line (To.debug, "Pl got ccm ")
coord.state := prepared
write.full.string (To.debug, "coord state :-")
send,.state (to.debug, coord.state)
get.next.tick (next.tick[pl], allowed.input.time, timer(pl])
InputOrFail.t (From.pl, mess.array.pl, timer{pl],
next.tick[pll],
Link.error(pl])
IF
Link.error (pl]
SEQ
write.text.line (To.debug, "ack not received")
coord.state := committed
NOT Link.error([pl]

SEQ
write.text.line (To.debug, "ack received ok™}
coord.state := committed
{mess.pl = cam) AND NOT(Coord.willing)
SEQ
PAR
SEQ
mess.pl := acm
get.next.tick (next.tick([pl], allowed.output.time, timer(pl])
OutputOrFail.t (To.pl, mess.array.pl, timer(pl],
next.tick[pl],
Link.error(pl]))
IF
Link.error(pl]

SEQ
write.text.line (To.debug, "error sending acm to pl")
coord.state := aborted
NOT Link.error [pl]
SEQ
write.text.line (To.debug, "P1l got acm ")

182

IF

se

write.text.line {(To.debug,

To

PROC participantl

decision

write.full.string

decision

write.full.string
write.full.string

nd.state

.debug !

coord.state
write.full.string (To.debug,

send.state (to.debug,

TRUE -- abort decision

SEQ

write.text.line (To.debug,
coord.state

= commit

= abort

(To.debug,

:= aborted

(To.debug, "Decision

{To.debug, "Decision

(To.debug,

"coord state -

coord.state)

tt.endstream

From.debug)

#USE “"3pclib.tsr"”
#USE "\tdsiolib\userio.tsr"
"\tds2lib\reinit.tsr"

#USE

VAL partic.willing IS TRUE :

TIME

INT time.now

R time :

INT timed.out :
VAL ticks.per.sec IS 15625 :

VAL allowed.input.delay IS 10 * ticks.per.sec
[no.of.participants])TIMER timer
[no.of.participants]INT time.now

VAL allowed.input.time IS 5 * 15625 :
VAL allowed.output.time IS 3 * 15625 :
[no.of .participants)BOOL Link.error :
INT mess.p0, mess.pl :
{IBYTE mess.array.p0 RETYPES mess.p0O :
{1BYTE mess.array.pl RETYPES mess.pl :
[no.of .participants]INT next.tick :

VAL tt.endstream IS BYTE 24 :
INT partic.state :

INT

PROC get.next.tick

TI
SE

message

MER time
Q

time 2 n
next.tic

.
.

ext.tick

(INT next.tick,

k := next.tick PLUS delta

:= aborted

coord.state)

"aam received")

(CHAN OF ANY To.coord,

)

VAL INT delta,

commit™)

abort")

"decision finished")

From.coord,

-- extraordinary library

~- in seconds

PROC send.state (CHAN OF ANY sink, VAL INT state)

IF

SEQ

state =
write.
state =
write.
state =
write.
state =
write,
state =
write.
state =
write.
TRUE
write.

initial
full.string
ready
full.string
undecided
full.string
aborted
full.string
committed
full.string
prepared
full.string

full.string

{sink,
(sink,
(sink,
(sink,
{sink,
(sink,

(sink,

Initial ™)
Ready ")
Undecided ")
Aborted ")
committed ")

prepared ")

"error state")

183

TIMER time)

"coord state :-")

To.debug,

INT start :

SEQ
From.debug ? start
partic.state := initial

write.full.string (To.debug, "particO state is - ")
send.state (To.debug, partic.state)
IF
partic.willing
SEQ

write.full.string (To.debug, "pl willing")

-- wait for prepare message

time ? time.now

ALT
time ? AFTER time.now PLUS allowed.input.delay
SEQ
-- timed out waiting for pm message
write.text.line (To.debug, "timed out waiting for pm")
partic.state := aborted
From.coord ? message
IF
message = pm
SEQ
write.full.string (To.debug, "Pm received ok")
write.full.string (To.debug, "particO state is - ™)

send.state (To.debug, partic.state)
SEQ i = p0 FOR no.of.participants
Link.error[i] := FALSE
SEQ
mess.pl := cam
get.next.tick (next.tick([pl], allowed.output.time, timer(pl])
OutputOrFail.t (To.coord, mess.array.pl, timer(pl],
next.tick{pl],
Link.error(pl})
IF
Link.error([pl]
SEQ
write.text.line (To.debug, "Failed to send cam")
partic.state := aborted
NOT Link.error[pl]
SEQ
write.text.line (To.debug, "cam sent ok")
partic.state := ready
-- wait for decision
time ? time.now
ALT
time ? AFTER time.now PLUS allowed.input.delay
SEQ
-~ timed out waiting for command
write.text.line (To.debug, "Timed out waiting for

command")
partic.state := aborted
From.coord ? message
SEQ
write.text.line (To.debug, "pl received decision in
time™)
IF
message = acm
partic.state := aborted
message = ccm

SEQ 1 = p0 FOR no.of.participants
Link.error{i] := FALSE

SEQ
mess.pl := ack

get.next.tick (next.tick[pl],
allowed.output.time, timer(pl])

OutputOrFail.t (To.coord, mess.array.pl,
timer(pl], next.tickipl],

Link.error[pl])
IF

184

Link.error(pl]
SEQ
write.text.line (To.debug, "Failed to send
ack"™)
partic.state := committed
NOT Link.error{pl]
SEQ
write.text.line (To.debug, "ack sent ok")
partic.state := committed
TRUE
write.full.string (To.debug, "ERROR")

TRUE
SEQ
write.full.string (To.debug, "Error pm not got ")
write.int (To.debug, message, 0)
SKIP
NOT partic.willing
SEQ
write.full.string (To.debug, "pl not willing")
SEQ i = p0 FOR no.of.participants
Link.error[i] := FALSE
SEQ
mess.pl := aam
get.next.tick (next.tick[pl], allowed.output.time, timer{pl])
OutputOrFail.t (To.coord, mess.array.pl, timer{pl], next.tick[pll],
Link.error(pl])
IF
Link.error{pl]
SEQ
write.text.line (To.debug, "aam not sent ")
partic.state := aborted
NOT Link.error(pl]
SEQ
write.text.line (To.debug, "aam sent ok")
partic.state := aborted
write.full.string (To.debug, "particl state is - ")
send.state (To.debug, partic.state)
write.text.line (To.debug, "stop fan"™)
-- terminate fan.out on mux
To.debug ! tt.endstream

PROC multiplexor (CHAN OF ANY From.pl, To.pl, From.coord,

To.cooxrd, From.host, To.host)
#USE "\tdsiolib\interf.tsr"

#USE "\tdsiolib\userhdr.tsr"
#USE "\tdsiolib\filerhdr.tsr"
#USE “\tdsiolib\slice.tsr"
PROC fan.out (CHAN OF ANY scrn, screen.outl, screen.out2, terminated)
-- sends copies of everything received on its input channel
-- to both of the output channels.
BYTE tt.bcom:
BOOL going:
SEQ
going := TRUE
WHILE going
SEQ
scrn ? tt.bcom
IF
tt.bcom = tt.out.string
{max.string.size])BYTE str :
INT len:
SEQ
input.len.bslice(scrn, len, str)
screen.outl ! tt.out.string
output.len.bslice(screen.outl, len, str)
screen.out2 ! tt.out.string

185

output.len.bslice(screen.out2, len, str)
(tt.bcom = tt.out.byte) OR
(tt.bcom = tt.ins.char)
BYTE ch :
SEQ
scrn ? ch
screen.outl ! tt.bcom; ch
screen.out2 ! tt.bcom; ch
tt.bcom = tt.out.int
INT x
SEQ
scrn ? X
screen.outl ! tt.out.int; x
screen.out2 ! tt.out.int; x
tt.bcom = tt.goto
INT X,Yy:
SEQ
scrn ? X;y
screen.outl ! tt.goto; Xx; y
screen.out2 ! tt.goto; X7 Yy
tt.bcom = tt.endstream

SEQ
screen.outl ! tt.out.byte;'!';tt.bcom
screen.out2 ! tt.bcom
terminated ! 10 -- any will do
going := FALSE
TRUE
SEQ

screen.outl ! tt.bcom
screen.out2 ! tt.bcom

-- channels for scrstream.sink
[3]JCHAN OF ANY echo :
-— channels for multiplexor
{3] CHAN OF ANY Send.to.screen :
-- channels for termination
CHAN OF INT Fan.linkl, Fan.link3 :
CHAN OF INT Stop.mux :
#USE "\tdsiolib\userhdr.tsr™
#USE "\tdsiolib\slice.tsr"
#USE "\tdsiolib\filerhdr.tsr"
PROC multiplexor ([)JCHAN OF ANY screen.in, CHAN OF ANY screen.out,
CHAN OF INT stopper)
-- multiplexes a collection of scrstream output channels onto a
-- single such channel.
-- Each change of input directs output to a new line on the screen.
-- Any input on stopper terminates the multiplexer.
VAL n IS SIZE screen.in:
BOOL going :
INT tt.char :
BYTE tt.bcom :
INT any :
INT current.source
PROC check.current.source(INT prev, VAL INT new)
—-- sends *c*n to screen.out if new<>prev, resets prev to be new

SEQ
IF
new = prev
SKIP
TRUE
SEQ
screen.out ! tt.out.byte; '*c'; tt.out.byte; '*n‘'
screen.out ! tt.out.byte; BYTE ((INT'OC') + new)
screen.out ! tt.,out.byte; '>'
prev := new
SEQ

going := TRUE

186

current.source := -1
WHILE going
PRI ALT
stopper ? any
SEQ
screen.out ! tt.out.byte; '*c'; tt.out.byte; '*n’
screen.out ! tt.endstream
going := FALSE
ALT i = 0 FOR n
screen.in[l] ? tt.bcom
IF
tt.bcom = tt.out.string
[max.string.size]BYTE str :
INT len:
SEQ
input.len.bslice (screen.in(i], len, str)
check.current.source {current.source, i)
screen.out ! tt.out.string
output.len.bslice (screen.out, len, str)
{tt.bcom = tt.out.byte} OR
(tt.bcom = tt.ins.char)
BYTE ch :
SEQ
screen.in(i] ? ch
check.current.source (current.source, i)
screen.out ! tt.bcom; ch
tt.bcom = tt.out.int
INT x :
SEQ
screen.in[i] ? x
check.current.source (current.source, 1i)
screen,out ! tt.out.int; x
tt.bcom = tt.goto
INT X,y:
SEQ
screen.in{i] 2 x;y
check.current.source (current,.source, 1)
screen,out ! tt.goto; X; Y
tt.bcom = tt.endstream
SEQ
SKIP
TRUE
screen.out ! tt.bcom

.

PROC terminator (CHAN OF INT Fanl, Fan3, terminated)
[2] INT stopped :
SEQ
PAR
Fanl ? stopped [0]
Fan3 ? stopped (1]
terminated ! 10 -- any int will do

SEQ
INT start :
VAL go IS 10 : -- any int will do
SEQ
From.host ? start
PAR
To.pl ! go
To.coord ! go
PAR
fan.out (From.pl, Send.to.screen {1], echo [1l], Fan.linkl)
scrstream.sink (echo [11])

fan.out (From.coord, Send.to.screen [2], echo [2], Fan.link3)

scrstream.sink (echo [2])
multiplexor (Send.to.screen, To.host, Stop.mux)
terminator (Fan.linkl, Fan.link3, Stop.mux)

187

PLACED PAR
PROCESSOR 0 T8
PLACE Debug.from.pl AT linklin :
PLACE Debug.to.pl AT linklout :
PLACE Debug.from.coord AT linkOin :
PLACE Debug.to.coord AT linkOout :
PLACE Debug.from.host AT link2in :
PLACE Debug.to.host AT link2out
multiplexor (Debug.from.pl, Debug.to.pl,
Debug.from.coord, Dabug.to.coord,Debug.from.host,
Debug.to.host)
PROCESSOR 2 T8
PLACE Coord.from.pl AT link3in :
PLACE Coord.to.pl AT link3out :
PLACE Debug.from.coord AT linkOout :
PLACE Debug.to.coord AT 1linkOin :
coordinator (Coord.from.pl, Coord.to.pl, Debug.from.coorxd,
Dabug.to.coord)
PROCESSOR 3 T8
PLACE Coord.from.pl AT link3out :
PLACE Coord.to.pl AT link3in :
PLACE Debug.from.pl AT link2out :
PLACE Debug.to.pl AT link2in :
participantl (Coord.from.pl, Coord.to.pl, Debug.from.pl,
Debug.to.pl)

188

~- This protocol is the Extended 2 phase protocol from the paper by Skeen and
-- Stonebraker (IEEE s/w eng. SE-9 No.3 1983) optimised for synchronous comms
-- if a participant wants to commit then it accepts the pm message

-- if a participant doesn't want to commit then it rejects the pm

-- Timeouts are used instead of an aam message

-- It is implemented here with 1 coordinator and 1 participant

-- Timeouts are added so that the link between the coordinator and the
-- participant can be pulled

~- A centralized protocol is assumed

~-- Site and link failures are investigated
-- see notes 1/3/90 for configuration and 6/3/90

~-—- Results :-
-- (1) Can be made non- blocking and consistent with respect to the link
-- failure

CHAN OF ANY Debug.from.host, Debug.to.host :

CHAN OF ANY Debug.from.pl, Debug.to.pl :
CHAN OF ANY Debug.from.coord, Debug.to.coord

CHAN OF ANY Coord.to.pl, Coord.from.pl :

VAL 1inkOin IS 4 :
VAL linkOout IS O :
VAL linklin IS 5 :
VAL linklout IS 1
VAL 1ink2in IS 6
VAL link2out IS 2 :
VAL 1link3in IS 7
VAL link3out IS 3

PROC coordinator (CEAN OF ANY From.pl, To.pl,
To.debug, From.debug)
-~ This procedure communicates with participant 1 and also sends debug
-- info to the host transputer via the multiplexor

-- The link between the coordinator and participant 1 is the one that can
-- be removed to demonstrate the resiliency

#USE "\tdsiolib\userio.tsr"

#USE "\tdsiolib\interf.tsr"

#USE "\tds2lib\reinit.tsr" -- extraordinary library
#USE "3pclib.tsr® -- message library

VAL Coord.willing IS TRUE :

[no.of.participants] TIMER timer :
[no.of.participants]INT time.now :

VAL allowed.input.time IS 5 * 15625 :

VAL allowed.output.time IS 3 * 15625 :
[no.of.participants]BOOL Link.error :

INT coord.state, decision :

INT mess.pl :

[IBYTE mess.array.pl RETYPES mess.pl :

(no.of .participants]INT next.tick

189

VAL tt.endstream IS BYTE 24 :
PROC send.state (CHAN OF ANY sink, VAL INT state)
IF
state = initial
write.full.string (sink, ™ Initial ")
state = ready
write.,full.string (sink, " Ready ")
state = undecided
write,.full.string (sink, ™ Undecided ")
state = aborted
write.full.string (sink, ™ Aborted ")
state = committed
write.full.string (sink, " committed ")
state = prepared

write.full.string (sink, " prepared ")
TRUE
write.full.string (sink, ™ !!ERROR!! ")

PROC get.next.tick (INT next.tick, VAL INT delta, TIMER time)
TIMER time :

SEQ
time ? next.tick
next.tick := next.tick PLUS delta
SEQ
INT start :
SEQ

From.debug ? start
-~ initial state
-- send prepare message to all participants
coord.state := initial
write.full.string (To.debug, "coord state -*)
send.state (To.debug, coord.state)
decision := unknown
SEQ 1 = p0 FOR no.of.participants
Link.error{i) := FALSE
PAR
SEQ
mess.pl (= pm
get.next.tick (next.tick({pl), allowed.output.time, timer([pl])
OutputOrFail.t (To.pl, mess.array.pl, timer[pl], next.tick[pl],
Link.error{pl])
IF
Link.error[pl])
SEQ
write.full.string (To.debug, "error sending pm to pl")
-- pl either not willing to commit or the link is duff
-- abort decision made, assume replied AAM
coord.state := aborted
NOT Link.error[pl]
SEQ
write.text.line (To.debug, "pm sent ok to pl")
coord.state := ready
write,full.string (To.debug, "coord state -")
send.state (To.debug, coord.state)
SEQ 1 = p0 FOR no.of.participants
Link.error([i] := FALSE
get.next.tick (next.tick([pl], allowed.input.time, timer(pl])
InputOrFail.t (From.pl, mess.array.pl, timer{pl], next.tick[pl],
Link.error{pll)
IF
Link.error[pl]
SEQ
coord.state := aborted
NOT Link.error|[pl]
SEQ
write.text.line (To.debug, "Delay - pull link if necessary"™)
TIMER delay :

190

INT now
SEQ
delay ? now
delay ? AFTER now PLUS

(3 *15625)

SEQ 1 = pO FOR no.of.participants

Link.error{i) := FALSE
IF
(mess.pl = cam) AND (Coord.willing)
SEQ
coord,state := prepared
write.text.line (To.debug, "Coord.state = prepared")
PAR
SEQ
mess.pl := ccm
get.next.tick (next.tick{pl), allowed.output.time,
timer{pl))
OutputOrFail.t (To.pl, mess.array.pl, timer(pi],
next.tickl[pl],
Link.error(pl]))
IF
Link.error(pl]
SEQ
write.text.line (To.debug, "error sending ccm to pl")
coord.state := aborted
NOT Link.error{pl)
SEQ
write.text.line (To.debug, "pl got ccm")
coord.state := committed
TRUE
SEQ
write.text.line (To.debug, "No need to abort pl ")
write.text.line (To.debug, "It will timeout and abort ")
coord,state := aborted
IF
Link.error{pl}
SEQ
write.text.line (To.debug, "error sending decision to pl™)

NOT Link.error{pil]
SEQ

-- Either pl voted to abort
-- or received the decision ok

write.text.line (To.debug,

"Decisions sent ok™)

write.full.string (To.debug,
send.state (To.debug, coord.state)
write.text.line (To.debug, "decision
To.debug ! tt.endstream

PROC participantil
From.debug)

Extended 2 phase commit participant
i.e. aam and acm messages removed :

messages receieved are : pm,
messages sent are : cam

ccm

#USE "\tds2lib\reinit.tsr"
$USE "3pclib.tsr"
#USE "\tdsiolib\userio.tsr”
VAL partic.willing IS TRUE :
VAL tt.endstream IS BYTE 24 :
INT partic.state :

(CHAN OF ANY To.coord,

participant doesn't start until user sends

"coord state -")

finished"”)

From.coord, To.debug,

: optimised for synchronous comms
noe inferred by timeouts
‘start' message

variable Partic.willing is used to simulate a check on conditions

-- extraordinary library
-~ message library

191

INT message
BOOL Link.error
{}JBYTE mess.array RETYPES message :
TIMER time :
INT time.now :
INT timed.out
INT next.tick
VAL ticks.per.sec IS 15625 :
VAL allowed.input.delay IS 10 * ticks.per.sec : =-- in seconds
VAL allowed.output.delay IS 5 * ticks.per.sec :
PROC send.state (CHAN OF ANY sink, VAL INT state)
IF
state = initial
write,full.string (sink, ™ Initial ")
state = ready
write.full.string (sink, " Ready ")
state = undecided
write.full.string (sink, " Undecided ")
state = aborted
write.full.string (sink, " Aborted ")
state = committed

write.full.string (sink, " committed ")
state = prepared

write.full.string (sink, " prepared ")
TRUE

write.full.string (sink, "error state")
PROC get.next.tick (INT next.tick, VAL INT delta, TIMER time)
TIMER time :

SEQ
time ? next.tick
next.tick := next.tick PLUS delta
SEQ
INT start :
SEQ

From.debug ? start
partic.state := initial
write.full.string (To.debug, "particl state is - ")
send.state (To.debug, partic.state)
time ? time.now
ALT
time ? AFTER time.now PLUS allowed.input.delay
partic.state := aborted
From.coord ? message
IF
message = pm
SEQ
write.full.string (To.debug, "Pm received ok")
IF
partic.willing
SEQ
SEQ
write.full.string (To.debug, "pl sending cam to coord”)
write.text.line (To.debug, "Delay - pull link if necessary")
TIMER delay :
INT now :
SEQ
delay ? now
delay ? AFTER now PLUS (3 *15625)
message := cam
get.next.tick (next.tick, allowed.output.delay, time)
OutputOrFail.t (To.coord, mess.array, time, next.tick,
Link.error)
IF
Link.error
SEQ
-- failed to send ccm

192

partic.state := aborted
NOT Link.error
SEQ
-- particpant ready to commit
partic.state := ready
write.full.string (To.debug, "particl state is - ")
send,state (To.debug, partic.state)
-—- walt for commit message
time ? time.now

ALT
time ? AFTER time.now PLUS allowed.input.delay
SEQ
~- timed out waiting for command
write.text.line (To.debug, "Timed out waiting for
command")
partic.state := aborted
From.coord ? message
SEQ
write.text.line (To.debug, "pl received decision in
time")
IF
message = acm
partic.state := aborted
message = ccm
partic.state := committed
TRUE

write.full.string (To.debug, "“ERROR™)
NOT partic.willing
SEQ
write.full.string (To.debug, "pl not willing™)
partic.state := aborted
TRUE
SEQ
write.full.string (To.debug, "Error pm not got ™)
write.int (To.debug, message, 0)
SKIP
write.full.string (To.debug, "particl state is - ")
send.state (To,debug, partic.state)
write.text.line (To.debug, "stop fan")
~- terminate fan.out on mux
To.debug ! tt.endstream

PROC multiplexor (CHAN OF ANY From.pl, To.pl, From.coord,
To.coord, From.host, To.host)
#USE "\tdsiolib\interf.tsr"

#USE "\tdsiolib\userhdr.tsr"
#USE "\tdsiolib\filerhdr.tsr"
#USE "\tdsiolib\slice.tsr"
PROC fan.out (CHAN OF ANY scrn, screen.outl, screen.out2, terminated)
-~ sends copies of everything received on its input channel
-— to both of the output channels.
BYTE tt.bcom:
BOOL going:
SEQ
going := TRUE
WHILE going
SEQ
scrn ? tt.bcom
IF
tt.bcom = tt.out.string
[max.string.size]BYTE str :
INT len:
SEQ
input.len.bslice(scrn, len, str)
screen.outl ! tt,out.string
output.len.bslice(screen.outl, len, str)
screen.out2 ! tt.out.string

193

output.len.bslice(screen.,out2, len, str)
(tt.bcom = tt.out.byte) OR
(tt.bcom = tt.ins.char)
BYTE ch :
SEQ
scrn ? c¢h
screen,outl ! tt.bcom; ch
screen.out2 ! tt.bcom; ch
tt.bcom = tt.,out.int
INT x
SEQ
scrn ? X
screen.outl ! tt.out.int; x
screen,out2 ! tt.,out.int; x
tt.bcom = tt.goto
INT x,y:
SEQ
scrn ? X;y
screen.outl ! tt,goto; x; y
screen.out2 ! tt.goto; x:; y
tt.bcom = tt.endstream
SEQ
screen.outl ! tt.out.byte;'!';tt.bcom
screen.out2 ! tt.bcom
terminated ! 10 -- any will do
going := FALSE
TRUE
SEQ
screen.outl ! tt.bcom
screen.out2 ! tt.bcom

—-- channels for scrstream.sink
[3]CHAN OF ANY echo :
~- channels for multiplexor
{3] CHAN OF ANY Send.to.screen :
-- channels for termination
CHAN OF INT Fan.linkl, Fan.link3 :
CHAN OF INT Stop.mux :
#USE "\tdsiolib\userhdr.tsr"
#USE "\tdsiolib\slice.tsr"
#USE "\tdsiolib\filerhdr.tsr"
PROC multiplexor ([]JCHAN OF ANY screen.in, CHAN OF ANY screen.out,
CHAN OF INT stopper)
-- multiplexes a collection of scrstream output channels onto a
~- single such channel
-- Each change of input directs output to a new line on the screen.
-~ Any input on stopper terminates the multiplexer.
VAL n IS SIZE screen.in:
BOOL going :
INT tt.char :
BYTE tt.bcom :
INT any :
INT current.source :
PROC check.current.source(INT prev, VAL INT new)
-- sends *c*n to screen.out if new<>prev, resets prev to be new

SEQ
IF
new = prev
SKIP
TRUE
SEQ
screen.out ! tt.out.byte; '*c'; tt.out.byte; '*n’'
screen,out ! tt.out.byte; BYTE ((INT'0') + new)
screen.out ! tt.out.byte; '>°
prev := new
SEQ
going := TRUE

194

current.source := -1
WHILE going
PRI ALT
stopper ? any
SEQ
screen.out ! tt.out.byte; '*c'; tt.out.byte; '*n°'
screen.,out ! tt.endstream
going := FALSE
ALT i = 0 FOR n
screen.in{i) ? tt.bcom
IF
tt.bcom = tt.out.string
[max.string.size]BYTE str :
INT len:
SEQ
input.len.bslice (screen.in[i], len, str)
check.current.source(current.source, i)
screen.out ! tt.out.string
output.len.bslice (screen.out, len, str)
(tt.bcom = tt.,out.byte) OR
(tt.bcom = tt.ins.char)
BYTE ch :
SEQ
screen.in[i] ? ch
check.current.source(current.source, i)
screen,out ! tt.,bcom; ch
tt.bcom = tt.out.int
INT x :
SEQ
screen.inf[i] ? x
check.current.source(current.source, i)
screen.out ! tt.out.,int; x
tt.bcom = tt.goto
INT x,y:
SEQ
screen.in([i] ? x:y
check.current.source (current .source, 1)
screen.out ! tt.goto; x; y
tt.bcom = tt.endstream
SEQ
SKIP
TRUE
screen,out ! tt.bcom

PROC terminator (CHAN OF INT Fanl, Fan3, terminated)
[2] INT stopped :
SEQ
PAR
Fanl ? stopped [0]
Fan3 ? stopped [1]
terminated ! 10 -- &ny int will do

.

SEQ
INT start :
VAL go IS 10 : -- any int will do
SEQ
From.host ? start
PAR
To.pl ! go
To.coord ! go
PAR
fan.out (From.pl, Send.to.screen [1]), echo {1), Fan.linkl)
scrstream.sink (echo [1])
fan.out (From.coord, Send.to.screen {2}, echo [2]), Fan.link3)
scrstream.sink (echo [2])
multiplexor (Send.to.screen, To.host, Stop.mux)
terminator (Fan.linkl, Fan.link3, Stop.mux)

195

PLACED PAR
PROCESSOR 0 T8
PLACE Debug.from.pl AT linklin :
PLACE Debug.to.pl AT linklout :
PLACE Debug.from.coord AT '1ink0in :
PLACE Debug.to.coord AT linkOout
PLACE Debug.from.host AT link2in
PLACE Debug.to.host AT link2out :
multiplexor (Debug.from.pl, Debug.to.pl,
Debug.from.coord, Debug.to.coord, Debug.from.host, Debug.to.host)
PROCESSOR 2 T8
PLACE Coord.from.pl AT link3in
PLACE Coord.to.pl AT link3out
PLACE Debug.from.coord AT linkOout :
PLACE Debug.to.coord AT 1linkOin :
coordinator (Coord.from.pl, Coord.to.pl, Debug.from.coord, Debug.to.coord)
PROCESSOR 3 T8
PLACE Coord.from,pl AT link3out :
PLACE Coord.to.pl AT link3in :
PLACE Debug.from.pl AT link2out :
PLACE Debug.to.pl AT 1link2in :
participantl (Coord.from.pl, Coord.to.pl, Debug.from.pl, Debug.to.pl)

196

