OXFORD

Briefings in Bioinformatics, 2024, 25(2), bbae092

https://doi.org/10.1093/bib/bbae092
Opinion Article
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Abstract

Computational predictors of immunogenic peptides, or epitopes, are traditionally built based on data from a broad range of pathogens
without consideration for taxonomic information. While this approach may be reasonable if one aims to develop one-size-fits-all
models, it may be counterproductive if the proteins for which the model is expected to generalize are known to come from a specific
subset of phylogenetically related pathogens. There is mounting evidence that, for these cases, taxon-specific models can outperform
generalist ones, even when trained with substantially smaller amounts of data. In this commment, we provide some perspective on
the current state of taxon-specific modelling for the prediction of linear B-cell epitopes, and the challenges faced when building and

deploying these predictors.
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INTRODUCTION

Computational identification of immunogenic peptides, or
epitopes, represents an important step in the development of
diagnostic tests, vaccines and immunotherapeutic approaches,
detecting potential targets for downstream experimental inves-
tigation. In the last few years, in silico prediction of linear B-cell
epitopes (LBCEs) has received considerable attention, with several
groups proposing new tools based on a rapidly expanding volume
of experimentally-validated data [1].

Several recent works [2-6] describe the building of LBCE pre-
dictors based on pre-selecting training data based on taxonomic
criteria. Taken together, these works highlight an emerging trend
in epitope prediction, namely the development of models opti-
mized for predicting epitopes from specific subsets of organisms
rather than from all possible pathogens. Here, we highlight the
main hypotheses underlying the development of taxon-specific
LBCE predictors, recent published work in this area, and the main
challenges for the development of bespoke models for specific
taxonomic groups.

TAXON-SPECIFIC EPITOPE PREDICTION

In biology, a taxon refers to a group of one or more species inferred
to be phylogenetically related due to shared common ancestry,
presenting within-group characteristics that differentiate it from
other such groups. A taxon encompasses all included taxa of
lower rank, down to individual species [7]. Organisms that are
phylogenetically close are expected to be more similar in both
their phenotypes and genotypes, a fact that must be taken into
account when modelling species-derived data [8].

The main assumption underlying the development of taxon-
specific LBCE predictors is that different taxa may exhibit dis-
tinct epitope signatures due to, e.g. protein characteristics arising
from their evolutionary histories. Under this assumption, it is
expected that, once projected onto a feature space, epitopes from
pathogens from different taxonomic groups will occupy distinct
regions of that space, while phylogenetically close pathogens will
occupy closer regions. This pattern can be exploited by predic-
tive pipelines that are either optimised specifically for a given
taxonomic group, or incorporate taxonomic information as an
additional predictive feature.

Supporting evidence for this assumption was presented in
[2], where epitopes from a number of phylogenetically distant
pathogens were found to exhibit clearly distinct patterns in terms
of location on a feature space, including the superposition of
LBCEs from one pathogen with known non-immunogenic pep-
tides from others. This would compromise the performance of
models trained without the use of taxonomic information, and
motivated the development of organism-specific models, which
were shown to significantly improve performance over generalist
models [2, 9].

Multiple groups have independently considered the taxon-
specific assumption, although not always explicitly framing it as
such. Bahai et al. [10] presented a virus (superkingdom) specific
version of their EpitopeVec tool, suggesting that ‘properties dis-
tinguishing epitopic and non-epitopic peptides could be specific to the
source of the antigen species’. Another model tailored for viruses
was presented by Yin et al [6], while others presented predic-
tors tailored for distinct taxonomic levels, either by including
Class information as an encoded variable as part of the feature
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space [4] or by proposing models specific to the family of different
viruses [5].

Liu et al. [5] also advanced a hypothesis on why the use of
family-specific models may be relevant, suggesting that this may
be due to shared conserved epitope motifs across closely-related
viruses. Although this is a likely contributing factor, performance
gains were observed for organism-specific predictors even when
extreme care is taken to prevent sequence similarities from play-
ing a role on the estimated performance of the models [2]. This
suggests that other factors besides sequence similarity such as,
e.g. optimization of model parameters to a target pathogen, may
also play a role on the success of taxon-specific models when
compared to generalist ones.

CHALLENGES AND OPPORTUNITIES

Although this trend of developing tailored pipelines for specific
groups of pathogens represents a promising avenue for improving
the performance of epitope predictors, there remains challenges
that must be carefully considered by researchers working in this
area. These issues relate to several stages in the development of
predictive pipelines, from data retrieval to model assessment and
deployment.

A primary obstacle to the development of bespoke models,
particularly for emerging pathogens, is data availability. Even in
the largest curated databases [1], most pathogens have few, if any,
labelled epitope data. As an example, only five LBCEs are listed
on IEDB for the MPX virus as of November 2023, with no negative
examples, a common scenario for emerging zoonotic pathogens
that would preclude the training of models using exclusively
organism-specific data [2].

This issue has been partially addressed by training bespoke
models for higher taxonomic levels such as family [5] or class [4].
Although this approach can be useful, it is limited by the fact
that both data volume and the expected homogeneity of traits
within these taxonomic levels are often highly variable. A more
promising approach, which we outline in a previous report [3],is to
have pipelines capable of automatically selecting the optimal tax-
onomic level to use when building models for a specific pathogen.
This approach obviates the need for a pre-defined taxonomic
level and enables automatic adaptation to pathogens from data-
rich as well as data-scarce groups. Another potential challenge,
particularly for under-studied taxa or emerging pathogens, could
be the accuracy of the available taxonomic information.

An issue of relevance is the adequate splitting of data for
performance assessment and the prevention of leakage of infor-
mation across splits. Although this is a complex issue and a
full discussion would not fit in this comment, we highlight a
few critical aspects that appear to be sometimes overlooked.
The first and easiest to address is leakage due to homology,
i.e. proteins or peptides with high similarity due to common
ancestry being placed into different splits of the data. The implicit
assumption that examples coming from distinct datasets are
necessarily independent (e.g. by training a model on examples
from IEDB and validating it on data from other databases without
careful verification of homologous entries across datasets) is also
another point of potential information leakage which can bias
performance estimation, since common peptides can often be
found in datasets from different sources. These issues can be
addressed through data redundancy reduction (as done, e.g. in
EpitopeVec [10] and other approaches) or the incorporation of
similarity measures into data splitting strategies. Data splitting
at the peptide level, i.e. having peptides from either the same

or homologous proteins placed in distinct splits, may also lead
information being accidentally leaked across splits if feature cal-
culation uses protein-level information. Splitting the data based
on protein clusters [2, 3] is a simple way to prevent the issue, as
this strategy guarantees that peptides from the same protein or
from highly-similar proteins are always kept together during, e.g.
cross-validation.

Finally, deployment of these taxon-specific models for use by
the wider community needs to be considered. While generalist
models can be deployed as a single entity, taxon-specific ones
require users to be able to train models on demand for their
taxon of interest, or to have access to multiple pre-trained models.
This presents its own challenges, both in terms of computational
resources and of designing appropriate user interfaces or software
packages to reduce the set-up burden of building and using
taxon-specific models for a potential user base composed of non-
coding experts. Designing those systems may require approaches
that are not part of the standard data science toolkit, such as
user-centered design of high-performance user interfaces. Despite
these challenges, taxon-specific epitope predictors present the
potential of providing a valuable addition to the existing toolkit
for combating infectious diseases.

Key Points

¢ Computational prediction of linear B-cell epitopes is a
critical step in the development of serodiagnostic tests,
vaccines, and therapeutic antibodies.

¢ Increasingly, models are being proposed that incorporate
some degree of phylogenetic or taxonomic information
about target pathogens.

* Taxon-specific predictors assume that different groups
of pathogens exhibit distinct epitope signatures in a fea-
ture space, which can be exploited by machine learning
methods.

¢ Challenges remain in terms of the determination of opti-
mal taxonomic levels for model training, methodologi-
cally sound performance assessment, and deployment
of bespoke models to end users.
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