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Oxysterol sulfates are emerging as key players in lipid homeostasis, inflammation and immu-
nity. Despite this, knowledge on their basal levels in fluids, cells and tissues and any changes
associated with age, gender and diet in health and disease; as well as their spatio-temporal
distribution in cell membranes and organelles have been greatly hampered by the lack of
commercially available pure synthetic standards. Expansion of the panel of pure oxysterol
sulfates standards is pivotal to improve our understanding on the impact of oxysterol sul-
fates at the membrane level and their role in cellular events. While the clinical significance,
biophysical implications and biological relevance of oxysterol sulfates in fluids, cells and
tissues remains largely unknown, knowledge already gathered on the precursors of oxys-
terol sulfates (e.g. oxysterols and cholesterol sulfate) can be used to guide researchers on
the most relevant aspects to search for when screening for oxysterol sulfates bioavailabil-
ity in (patho)physiological conditions which are crucial in the design of biophysical and of
cell-based assays. Herein, we provide a review on the brief knowledge involving oxysterol
sulfate and an overview on the biophysical implications and biological relevance of oxys-
terols and cholesterol sulfate useful to redirect further investigations on the role of oxysterol
sulfates in health and disease.

Introductory perspective
Oxysterol sulfates are members of the diverse family of lipid sulfates. a heterogeneous class of lipids dis-
tributed across a wide mass range with distinct structural motifs containing sulfate group in its structure
[1].
In mammals, lipid sulfates (Figure 1) can be sub-divided in those bearing a steroid-backbone (e.g.

cholesterol sulfate [CS], steroid hormones, and bile acids), glycerol-backbone (e.g. seminolipids) and
sphingosine-backbone (e.g. sulfatides and higher glycosylated-ceramides). Interestingly, the insertion
of glycosyl residues in lipid sulfates occurs by two distinct intermediates, via uridine diphosphate
(UDP)-glucose with formation of glucosyl-ceramides (GlcCer), the precursor of major glycosphin-
golipids, and via UDP-galactose leading up to the formation of seminolipids and sulfatides [2]. Lipid
sulfates are ubiquitous to the whole body and distributed across fluids, cells and tissues [1] and during
their analysis are often accompanied by other lipid-like sulfated metabolites [1]. Due to their relevance in
human reproduction, growth development and sports performance, steroid sulfates (e.g. sex hormones,
vitamin D and bile acids) are the most widely studied among lipid sulfates and their basal levels and
changes with age, gender and disease are fairly well-characterised [3,4]. On the other hand, oxysterol sul-
fates, remain largely understudied.
Oxysterol sulfates can arise in vivo by two main routes (Figure 2). Oxysterol sulfates formed by

(auto)oxidation of dietary and liver cholesterol via enzymatic or non-enzymatic routes with formation
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Figure 1. Structures of sulfate-containing lipids.

Structure of sulfate-containing lipids identified in human biological samples bearing a steroid-backbone (blue), a glycerol-backbone

(purple) and a sphingosine-backbone (orange). LogP predicted values (ALOGPS model) were taken from Human Metabolome

DataBase (HMDB). Substitution of ceramide with increasing number of sugar residues confers lipid sulfates increasing solubility

and distribution across a wide mass range.

Figure 2. In vivo formation of oxysterol sulfates (green box) from its precursors (blue box).

Oxysterol sulfates can be formed via sulfation of oxysterols formed by oxidation of cholesterol, or via oxidation of cholesterol sulfate

formed by sulfation of cholesterol.
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Figure 3. Number of publications on oxysterol sulfates.

Number of publications retrieved using the search string ‘oxysterol sulfates’ and its precursors ‘oxysterols’ and ‘cholesterol sulfate’

encompassing the period from 1945 to 2023 (PubMed search, assessed 3 January 2024).

of oxysterols where they can undergo sulfonation by cytosolic enzyme SULT2B1b [5,6] or alternatively, being CS a
better substrate for CYP27A1 than cholesterol [7], they can be formed enzymatically by (auto)oxidation from en-
dogenous CS or host microbiota CS [8].
In view of the reported raised levels of oxysterols [9–11] and cholesterol sulfate [12,13] in disease, they hint to

the likely in vivo accumulation of oxysterol sulfates rendering these compounds valuable prognostic potential as
markers in risk prediction and disease stratification. However, although the initial findings of sulfate conjugates
of C27 steroids (oxysterol sulfates) date back to the 1970s reported in the plasma and urine of cholestatic pa-
tients [14], investigations have mainly focused on oxygenated sterols (Figure 3) prompted by the discovery that
oxygenated sterols, but not exogenous cholesterol or other metabolically related steroids, depressed the activity of
3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase [15].
Since then, and contrary to the widely studied oxysterols, its sulfated derivatives have received very little attention

over the years and their prognostic value remains, to date, largely unexplored. To date, very little is known about: (1)
the oxysterol sulfate ‘signature’ and basal levels in fluids, cells and tissues, crucial considering the heterogenous panel
of oxysterols reported in serum, urine and cerebrospinal fluids (CSFs) [11,16]; (2) the carriers of oxysterol sulfates in
circulation, relevant considering the significantly raised levels of CS in low-density lipoproteins (LDLs) of recessive
X-linked ichthyosis (RXLI) patients but not in other lipoprotein populations [17]; (3) the changes associated with age,
gender, diet and disease, considering the reported age- and gender- dependence in CS and oxysterols levels [11,18];
and finally (4) the spatio-temporal distribution across cell membrane and organelles, crucial considering the wide
distribution of oxysterols across cell organelles [19]. Bearing this in mind, it is rather puzzling why the analysis of
oxysterol sulfates in biological samples has not yet been routinely implemented in research laboratories considering
the technological advances made in the development of user-friendly mass spectrometers equipped with fast scan
rates, high sensitivity and high resolution, hugely responsible for the popularity of Omic platforms in clinical research,
and the automation of lipid analysis pipeline (e.g., lipid extraction, LC-MS data acquisition, data pre-processing, lipid
identification and quantification) which are already in place in most large-scale lipidomic laboratories.
One of the reasons for the lack of interest in the study of oxysterol sulfates could be related to the reported very

low levels at which oxysterol sulfates [16,20], as well as their precursors (e.g., oxysterols and cholesterol sulfate),
occur. When compared with cholesterol the ex vivo levels reported for oxysterol-to-Chol ratio are of 1:1000 and
CS-to-Chol ratio of 1:500 [21,22] suggesting that these molecules may have little physiological relevance. Their low
physiological levels are determined by the rate of in vivo formation and turnover to other molecules (e.g., bile acids,
steroid hormones, cholesterol, and other sterols in the case of oxysterols) andnon-selective reversal by steroid sulfatase
(in the case of cholesterol sulfate and oxysterol sulfates).
Although very little is known about the distribution of oxysterol sulfates in cell membranes and other organelles,

their concentration values, or their impact on the biophysical properties of cell membranes are scarce. However, their
precursors (e.g., oxysterols and cholesterol sulfate) are intrinsic components of cell membrane and other organelles
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[19,21]. Because of the oxidative environment in mitochondria and the intracellular occurrence of CYP and cytosolic
SULT2 enzymes [5,23], it is plausible to infer the occurrence of oxysterol sulfates as constituents of cell membranes
and other organelles. In addition, recent biophysical studies have shown that as integral components of cell mem-
branes, oxysterols and cholesterol sulfate affect the structure, organisation and dynamics of lipid bilayers changing
the physical properties of cell membranes [24–27]. Changes to the dynamics and organisation of membranes, mod-
ify the oxysterol–phospholipid–protein interactions and the cross-talk of oxysterol-sensing proteins highlighting the
biological importance of these compounds in membrane-mediated cell events in (neuro)inflammatory responses,
immune adaptation signalling and cell function.
Herein, we overview the current knowledge on oxysterol sulfates and provide a critical evaluation on the caveats

and challenges surrounding investigations on oxysterols and cholesterol sulfate which could be used to improve our
understanding on the in vivo clinical significance, biological relevance and biophysical implications of oxysterol sul-
fates.

In vivo oxysterol sulfates: clinical relevance and biological
significance
While in theory, the structural diversity of oxysterol sulfates may be similar to that reported for
oxysterols, in practice only a handful of oxysterols sulfates has been identified ex vivo in biofluids,
namely the 24-, 25- and 26-hydroxy-cholesterol sulfates using LC-MS approaches [20,28] together the
26-hydroxy-cholesterol-27-sulfate (26OHC27S) [20], as well as the 25-hydroxy-cholesterol-3-sulfate (25OHC3S)
and the 25-hydroxy-cholesterol-3,25-disulfate (25OHCDS) in in vitro cultured rat hepatocytes [29,30]. Interestingly,
assuming that the ionisation efficiency of oxysterol sulfates isomers under gas-phase fragmentation is similar, then
the distinct LC-MS profile observed in serum extract of RLXI patient and a cholestatic baby and the dissimilar
relative abundance [20] suggests that the panel of predominant oxysterol sulfates may be an individual trait.
In fact, work on circulating and excreted oxysterols revealed that 26-HC predominates in circulation in healthy

adults [31] whereas the 24-HC isomer predominated over 26-HC isomer in CSF [16] and the 22-HC was the main
urinary oxysterol found in neonates [11]. With very few exceptions [31–33], most of the screening studies focus
on a small panel of oxysterols in a small number of donors [9,10,34–36] preventing from getting the full image
of oxysterol panel in biological samples. In a recent study conducted on an extended panel of enzymatically and
non-enzymatically generated oxysterols in plasma and serum of a large cohort (n=2282) of women with breast can-
cer diagnosis, the authors found higher levels of six oxysterols with predominance of 7-hydroxy-cholesterol (7-HC),
7-keto-cholesterol (7-KC) and 26-hydroxy-cholesterol (26-HC) in circulation [33].While the increased levels of these
oxysterols in women with breast cancer may be biased due to the lack of standardisation in sterol analysis pipeline
(e.g., sample collection, analyte isolation, extract storage and quantification procedure [9,37]), the results suggest a
disease-related dependence on the predominant oxysterol in circulation highlighting the importance of comprehen-
sive screening studies in sterol research with the inclusion of both enzymatically and non-enzymatically-generated
derivatives. In view of this, the use of sentences such as ‘one of the most important oxysterol molecules derived
from cholesterol . . . ’ or ‘the most abundant oxysterols in the human body . . . ’ are ambiguous and misleading to
the non-expert audience and should be avoided in published manuscripts.
Currently, quantification of oxysterol sulfates can be achieved against a calibration curve using available analyti-

cal standards [16] however, the only analytical synthetic standard commercially available for targeted LC-MS quan-
tification purposes is the 25OHC3S (https://www.sigmaaldrich.com/PT/en/product/avanti/700017p). Although, no
differences are foreseen in the ionisation efficiency between oxysterol sulfate isomers bearing hydroxy and sulfate
groups in different positions of the sterol rings, in reality the small differences reported in the peak area counts (cps)
of several hydroxy-cholesterol derivatives [9] suggests this may not be the case. These findings highlight the need to
engage in collaborative efforts with organic chemists to expand the panel of pure synthetic standards.
To the best of our knowledge, only the 27-hydroxy-cholesterol-3 sulfate (27OHC3S, otherwise known as

(25R)-26-hydroxycholesterol-3-sulfate) [37]) was quantified by targeted LC-MS strategies in serum samples from
patients with steroid sulfatase deficiency [20]. More recently, Dias and colleagues (2022) reported on the total levels
of oxysterol sulfates in AD patients by direct infusion in Qtrap MS instrument and found that the levels of oxysterol
sulfates in both brain tissue and CSF sample were lower in AD patients when compared with controls [16]. Even
though the values reported in AD patients were significantly lower (ng/L) than those reported previously in serum
samples (ng/ml) [20] work on oxysterols has already shown that, given the dynamic efflux of brain oxysterols into
circulation [38], less than 1% of the daily production of the brain oxysterols enters the CSF and approximately 99%
enters the circulation via the blood–brain barrier (BBB) [39]. For this reason, and given that plasma oxysterol levels
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can be altered by exogenous (diet) or endogenous (enzyme andmicrobiota) cholesterol metabolism, it is believed that
CSF levels more closely reflect the integrity of BBB and more consistently relate to neuronal diseases [40].
Although the panel and basal levels of circulating oxysterols sulfates and the spatio-temporal distribution in cells,

organelles and tissues, and any alterations introduced by age, gender and diet in health and disease remain elusive,
the values of oxysterol sulfates described in biological samples report to nanomolar range [16,20]. In spite of this, in
vitro cell-based research has shown that oxysterol sulfates may act as epigenetic regulators, agonists, and antagonists
of DNA methyl-transferases, evidencing their function of global regulation through epigenetic modification [41].
However,most of these studies cell-based assays were incubatedwith supraphysiological concentrations (3–25μM)of
25HC3S [29,42,43], values that far exceed the reported ones in the literature and thus with poor biological relevance.
Future studies aimed to accurately corroborate oxysterol sulfate levels in biofluids, cells and tissues are advisable,
providing the basis formore relevant and realistic conditions when studying the (patho)physiological role of oxysterol
sulfates in (neuro)inflammation.

In vitro oxysterol sulfates: biophysical implications to
biomembranes
Of more than 80 sterols described in nature, only a few, including cholesterol, ergosterol, and some phytosterols, are
crucial components of cellular membranes. Most of the remaining sterols, including the sub-class of steroid sulfates,
are metabolites or signalling molecules (hormones and bile acids) [44].
Cholesterol is a prominent sterol of mammalian cell membranes. Embedded in lipid bilayers, cholesterol is typ-

ically associated with sphingo- and glycolipids forming nanodomains known as lipid rafts that serve as anchoring
points for transmembrane proteins and crucial for proper signalling and trafficking mediated events [45]. At the bio-
physical level, cholesterol has a ‘condensing’ and rigidifying effect on biomembranes increasing the membrane order
leading to increased bilayer thickness and decreased membrane permeability to water and solutes [46,47]. Unlike
cholesterol, its sulfated conjugate does not diffuse freely across cell membranes. The addition of a hydroxyl and sul-
fate groups confers an amphiphilic character to the hydrophobic cholesterol modifying the interface properties of
membranes and consequently its biophysical properties. Due to its charged and fully hydrated sulfate headgroup, the
sufate group is large enough to act as a spacer between phospholipid molecules rendering cholesterol sulfate (CS)
a more surface-localised position within biomembranes [48]. Studies with artificial biomembranes have shown that
the presence of CS induces a slight ordering effect (to a less extent than Chol) [48] able to induce a greater decrease
in the transition temperature of PC membrane models when compared with Chol [49].
Similar to other sulfate-based lipids, such as sulfoglycoceramides (SGC) and sulfoglycoglycerolipids (SGG), CS

is located at the water-lipid interface of membranes contributing to the overall membrane net surface charge [48].
CS and other sulfate-based lipids (SGC and SGG) gather at sphingolipid-cholesterol-rich domains (lipid rafts) con-
tributing to membrane stabilisation [50] and implicated in mediating membrane-driven cell-cell processes such as
sperm-egg interaction [13], skin differentiation [51], membrane fusion [52] and platelet-cell adhesion [53].
On the other hand, oxysterols diffuse across lipid bilayers including polarised epithelial membranes (e.g., BBB)

[38]. Insertion or replacement of membrane Chol by oxysterols decreases the molar fraction of Chol to the mem-
brane’s composition changing the structure and dynamics of lipid bilayers [24–26,54]. As cholesterol is oxidised with
formation of oxysterols and membrane cholesterol is replaced, how do cells sense and adapt to these changes? One of
the accepted mechanisms proposes that these changes are accompanied by changes to the biophysical properties of
membranes triggering downstream biochemical events [55]. With this in mind, how do oxysterols affect cell mem-
branes?Work aimed to assess the impact of oxysterols on artificial membranes found that the position of the hydroxy
group was particularly relevant [24,25]. Combining spectroscopic measurements and atomistic molecular dynamic
simulations on a panel of enzymatically- and radical-derived oxysterols, Kulig and colleagues found that oxysterols
with the hydroxyl group within the ring- behaved differently than those with hydroxyl group at the hydrocarbon tail
(Figure 4).
While the presence of ring- and tail- oxysterols induce an increase in the order of POPC lipid bilayers (stiffen-

ing effect), ring-oxidised oxysterols (such as 7-HC) exhibit augmented effect in the ordering of acyl chains when
compared with tail-oxidised oxysterols (such as 25-HC), leading to increased bilayer thickness and decreased surface
area in a manner similar to Chol. In opposition, the smaller ordering effect induced by tail-oxidised oxysterols to
the membrane means their presence in artificial PC membranes display a slight permeability [24,25,56]. Data from
atomistic simulations suggest that tail-oxidised oxysterols, unlike ring-oxidised, accommodate inside the lipid bi-
layer in a fluctuating manner [57] where the nearly perpendicular tilted orientation with respect to bilayer enables
the tail- and the 3β-hydroxyl groups to interact with the phospholipid polar headgroups at the water:lipid interface
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Figure 4. Structures of main oxysterols found in vivo.

Structures of main oxysterols formed via enzymatic pathways (dark blue) and non-enzymatic pathways (light blue). Oxysterols

formed by both routes are delimited by orange oval circle. Oxidative modifications at the rings (ring-oxidised, green) and at the

iso-octyl hydrocarbon tail (tail-oxidised, pink) are highlighted.

Figure 5. Sub-cellular distribution of main phospholipid classes and cholesterol in plasma membrane and other cell or-

ganelles.

(Red) PC: Phosphatidylcholine; (light blue) PE: Phosphatidylethanolamine; (purple) PS: Phosphatidylserine; (green) PI: Phos-

phatidylinositol; (dark blue) SM: sphingomyelin; (yellow) BMP: bis(monoacylglycero)phosphate; (orange) CL: cardiolipin; (grey) Chol:

cholesterol (adapted from van Meer & de Kroon “Lipid map of the mammalian cell” published in J Cell Sci. (2011) 124, 5. Reprinted

with permission from The Company of Biologists, Ltd).

[24,58]. Further studies with tail-oxidised 25-HC isomer using various 25-HC and cholesterol molar ratios revealed
that the behaviour of tail- oxysterols shows distinct behaviour depending on the content (molar %) of cholesterol
[26]. The distinct behaviour of oxysterols in cholesterol-depleted and cholesterol-rich membranes [26] is of signif-
icant physiological relevance considering the content of cholesterol in mammalian membranes ranges from 5–10%
in mitochondria and endoplasmic reticulum (Figure 5) to 30–50% in plasma membranes, and over 50% in the brain
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myelin sheath [59,60].
While not yet commercially available, the synthesis of tail- and ring-oxidised oxysterol sulfate standards is piv-

otal to understand the role of these compounds at the membrane level. The behaviour of ring- and tail- oxysterols
in Chol-poor and Chol-rich model membranes herein overviewed provides a starting point to take into account in
future investigations on the biophysical implications of oxysterol sulfates in cholesterol-rich plasmamembranes (e.g.,
endothelial and myelin sheath) or in cholesterol-depleted membranes (e.g., mitochondrion and endoplasmic reticu-
lum). Likewise, understanding how changing levels of oxysterol sulfates likely to occur with age and disease have on
the conformation and behaviour of oxysterol-binding proteins (OBPs) operating at the membrane contact sites, their
performance on intracellular lipid homeostasis and trafficking and on other membrane-driven signalling processes
[61] is of the utmost importance.

Concluding remarks
To date, the clinical significance, biological relevance and biophysical implications of oxysterol sulfates in cell mem-
branes and other organelles remains poorly understood by the scientific community. To improve our understanding
on these aspects particularly in the context of (neuro)inflammatory diseases requires the concerted and integrated
effort of professionals from different fields of research including organic chemists pivotal in the development of Ref-
erence Standard Material; clinicians and health technicians together with analytical chemists for the implementation
of Reference Standard Protocols tailored to the screening and quantification of circulating and excreted oxysterol sul-
fates in biofluids, cells and tissues so that membrane biophysics and cell biologists may decipher the role of oxysterol
sulfates in membrane organisation, and cell metabolism and trafficking.

Summary
• Raised levels of circulating oxysterols and cholesterol sulfate in disease point to the in vivo accumu-

lation of oxysterol sulfates.

• High levels of oxysterol sulfates were reported in CSF and brain tissue in AD patients.

• The diagnostic value of oxysterol sulfates in risk prediction and disease stratification relies on im-
proved knowledge of basal values in health and disease.

• Pure oxysterol sulfates synthetic standards are not yet commercially available.

• Expansion of standards panel is key to improve our understanding on the relevance of these com-
pounds in (neuro)inflammation.
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