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We consider the Riemann–Hilbert (RH) approach to
the construction of periodic finite-band solutions to
the focusing nonlinear Schrödinger (NLS) equation.
An RH problem for the solution of the finite-band
problem has been recently derived via the Fokas
method (Deconinck et al. 2021 Lett. Math. Phys.
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& Lenells. 2021 Proc. R. Soc. A 477, 20200605.
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method, a finite-band solution to the NLS equation
can be given in terms of the solution of an associated
RH problem, the jump conditions for which are
characterized by specifying the endpoints of the arcs
defining the contour of the RH problem and the
constants (so-called phases) involved in the jump
matrices. In our work, we solve the problem of
retrieving the phases given the solution of the NLS
equation evaluated at a fixed time. Our findings
are corroborated by numerical examples of phases
computation, demonstrating the viability of the
method proposed.
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1. Introduction
About 50 years ago, the inverse scattering transform (IST) method was introduced. This method
allows us to solve certain one-dimensional nonlinear evolution equations, called integrable
equations, on the entire line of a spatial variable. This is achieved by analysing the corresponding
linear problems constituting the associated Lax pair [1–4].

The IST method can be divided into three main steps. (i) First, given the initial data, it involves
solving a linear auxiliary set of equations and establishing a spectral (direct) problem. This
spectral problem maps the initial data to a set of special quantities known as spectral data. (ii)
Next, the method focuses on understanding the evolution of these spectral characteristics over
time. (iii) Finally, it tackles an inverse problem, which allows retrieving the partial differential
equation (PDE) solution at any desired value of time (evolution) variable.

For the initial value problems (for which the IST method was originally developed), where
the data and the solution are assumed to vanish sufficiently fast as the spatial variable
approach infinities, the direct spectral problem takes the form of a scattering problem. As for
the inverse problem, the IST method in the original formulation uses the Gelfand–Levitan–
Marchenko integral equations [5]. An alternative approach to the inverse problem is to consider a
factorization problem of the Riemann–Hilbert (RH) type, formulated in the complex plane of the
spectral parameter involved in the Lax pair equations [6].

The extension of the IST method to problems formulated on the half-line or on an interval
proved to be a challenging task. A systematic approach to these problems known as the unified
transform method (a.k.a. the Fokas method) was introduced by Fokas [7] and further developed
by many researchers; see [8] and references therein. The method is based on the simultaneous
spectral analysis of both equations of the Lax pair and the subsequent analysis of the so-called
Global Relation coupling, in the spectral terms, the appropriate spectral transforms of the initial
data and all boundary values. In certain cases of boundary conditions (called linearizable), the
Global Relation can be ‘solved’ in a way that allows us to formulate the associated RH problem
in terms of the data for a well-posed problem alone.

In some recent papers [9,10], it was shown that the initial boundary value problem on a finite
interval [0, L] ⊂ R with x-periodic boundary conditions [q(0, t) = q(L, t), qx(0, t) = qx(L, t)] for the
nonlinear Schrödinger (NLS) equation, the focusing NLS,

iqt + qxx + 2|q|2q = 0, (1.1)

as well as the defocusing NLS belong to the class of linearizable problems: the solution q(x, t) can
be expressed in terms of the solution of an RH problem, the data for which (the jump matrix
across a certain contour and the residue conditions) can be expressed in terms of the entries of
the scattering matrix for a spectral problem on the whole line, associated with q(x, 0), x ∈ [0, L]
(continued by 0 on R \ [0, L]). Particularly, the contour for the RH problem is a union of the real
and the imaginary axes and a number (possibly infinite) of finite segments symmetric w.r.t. the
real axis.

The NLS equation is known to be a key model governing under specific conditions the
signal propagation in single-mode optical fibres [11,12]. The linearization of problems for the
NLS equation provided by the IST method was the basis for the development of the nonlinear
Fourier transform (NFT)-based optical communication systems [11,13]. The central idea of such
an approach is to use, in order to carry the encoded data, the so-called nonlinear spectrum of
a signal and to take advantage of the linear evolution of the spectrum. Most of the NFT-based
optical communication systems studied so far deal with the rapidly vanishing signals and suffer
from the burst mode operation and high computational complexity of the involved processing
elements, which reduces the practicality of the approach [11,14]. Over recent years, there has
been a growing interest in the development of optical communication methods based on the
utilization of non-decaying solutions to the NLS equation [15–20] as a more efficient alternative to
the ‘conventional’ NFT-based communications [21]. The IST operations associated with periodic
finite-genus NLS solutions were named periodic nonlinear Fourier transform (PNFT) in these
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works. In [18,19], an optical signal modulation and digital signal processing method has been
proposed for a PNFT-based transmission, where the inverse problem step (the construction of a
signal in the physical domain at the transmitter side) harnesses the numerical solution to the RH
problem.

The data for the RH problem associated with the NLS equation are 2 × 2 jump matrices, which
are off-diagonal matrices satisfying a certain symmetry condition with constant entries on each
separated part of the jump contour (consisting of a finite number of arcs). The solution of such
an RH problem gives rise to a finite-band (finite-genus) solution to the NLS equation [22,23]:
the endpoints of the arcs fix the associated Riemann surface, while the constants in the jump
matrices specify an individual solution. The present paper mainly addresses the direct part of
the approach: given the profile q(x, T) associated with some fixed t = T, recover the constants in
the jump matrices of the RH problem generating q(x, T) via the solution of an RH problem having
the form as described above. This is done through transforming the RH representation of periodic
solutions developed in [9,10] to that involving the jumps across the ‘bands’ alone. Since the latter
RH problem can be solved explicitly in terms of the associated Riemann theta functions [22,23], we
in particular obtain the affirmative answer to the hypothesis raised in remark 5.3 of [10] that one
can represent a theta-function finite-band solution in terms of the solution of an RH problem. We
note that the direct problem for the general quasi-periodic solutions was solved approximately
using neural networks in [24].

The outline of the paper is as follows. In §2, we review the inverse part consisting of generating
a finite-band solution to the NLS equation by solving the RH problem with appropriate data
(jump conditions). In §3, we briefly describe the ideas behind the development of the RH problem
formalism for the periodic problem for the NLS equation presented in [9,10]. In §4, we present
the details of the sequence of transformations of the RH problem leading to our main results on
the direct problem stated in theorems 4.11, 4.13 and 4.15. The evolution of the spectral data is
discussed in §5. Finally, in §6, we illustrate numerically the recovery of the phases (the constants
in the jump matrices for the RH problem) using our direct problem algorithm.

2. The inverse problem by the RH approach
A wide variety of solutions of an integrable nonlinear evolution equation can be constructed in
terms of solutions to a family of RH problems (parameterized by the independent variables of the
nonlinear equation, say, x and t) whose data depends on x and t in a way specific to the integrable
nonlinear equation in question. Specifically, in the case of the focusing NLS equation (1.1), we
have the following.

Proposition 2.1. ([22,23]) Given {zj}N
0 with Im zj > 0 and {φj}N

0 with φj ∈ [0, 2π ), define

— the oriented contour ΣN = ∪N
j=0Σj, where Σj = (zj, z̄j) (an arc connecting zj with z̄j), and

— the 2 × 2-valued function

J(x, t, z) =
(

0 i e−iφj−2izx−4iz2t

i eiφj+2izx+4iz2t 0

)
, z ∈ Σj (2.1)

and consider the following RH problem: find a 2 × 2-valued function Ψ (x, t, z) such that:

(i) For all x ∈ R and t ∈ R, Ψ (x, t, z) is analytic w.r.t. z for z ∈ C \ Σ̄N and continuous up to ΣN

from the both sides of ΣN;
(ii) The limiting values Ψ +(x, t, z) and Ψ −(x, t, z), z ∈ ΣN of Ψ (x, t, z), as z approaches ΣN from the

+ and − side respectively, are related by J(x, t, z):

Ψ +(x, t, z) = Ψ −(x, t, z)J(x, t, z), z ∈ ΣN ; (2.2)

(iii) At zj and z̄j, Ψ (x, t, z) has the inverse fourth root singularities;
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(iv) As z → ∞,

Ψ (x, t, z) = I + O
(

1
z

)
, I =

(
1 0
0 1

)
. (2.3)

Then

(i) For all x and t, the RH problem (2.1)–(2.3) has a unique solution Ψ (x, t, z), which satisfies
Ψ (x, t, z̄) = σ2Ψ (x, t, z)σ2, where σ2 = ( 0 −i

i 0 );

(ii) Defining Φ(x, t, z) := Ψ (x, t, z) e(−izx−2iz2t)σ3 , where σ3 = ( 1 0
0 −1 ), determining Ψ1(x, t) from

Ψ (x, t, z) = I + (Ψ1(x, t)/z) + · · · as z → ∞, and determining q(x, t) by

q(x, t) = 2i[Ψ1]12(x, t) (2.4)

(where [·]12 stands for the 12 entry of a matrix), we have

(a) q(x, t) is a solution of (1.1);
(b) Φ(x, t, z) satisfies the system of linear differential equations (Lax pair)

Φx = UΦ (2.5a)

and
Φt = VΦ (2.5b)

with

U(x, t, z) = −izσ3 +
(

0 q(x, t)
−q̄(x, t) 0

)
(2.6a)

and

V(x, t, z) = −2iz2σ3 + 2z

(
0 q(x, t)

−q̄(x, t) 0

)
+
(

i|q|2 iqx

iq̄x −i|q|2
)

; (2.6b)

(iii) q(x, t) given by (2.4) is a solution of the NLS equation of finite-genus type: it can be expressed
in terms of Riemann theta functions associated with the Riemann surface of genus N, with the
branch points at zj and z̄j, j = 0, . . . , N.

The last statement of proposition 2.1 follows from the possibility to express q(x, t) in terms of
the solution of another RH problem (see proposition 2.2 below), which can be considered as a
transformation of the original RH problem evoking the so-called ‘g-function mechanism’ [25,26].

In order to formulate the modified RH problem, we need a set of parameters uniquely defined
by the set of the branch points zj and z̄j, j = 0, . . . , N. First, define w(z) by

w(z) =
N∏

j=0

√
(z − zj)(z − z̄j), (2.7)

as a function analytic in C \ ΣN whose branch is fixed by the asymptotic condition w(z) � zN+1 as
z → ∞. Let each arc Σj be oriented upward and let w+(z) be the values of w at the ‘+’ side of the
corresponding Σj. Further, define the N × N matrix K by

Kmj :=
∫
Σj

ξm−1 dξ

w+(ξ )
, m, j = 1, . . . N, (2.8)

and determine the vectors Cf := (Cf
1, . . . , Cf

N)T and Cg := (Cg
1, . . . , Cg

N)T as the solutions of the
following linear equations:

K · Cf = [0, . . . , 0, −2π i]T and K · Cg = −4π i

⎡
⎣0, . . . , 0, 2,

N∑
j=0

(zj + z̄j)

⎤
⎦

T

, (2.9)

(in the case N = 1 or N = 2, the last (respectively, two last) equations from (2.9) are to be
considered).
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Finally, determine the constants f0 and g0 from the large-z developments of two scalar
functions, f (z) and g(z), analytic in C \ ΣN :

f (z) := w(z)
2π i

N∑
j=1

∫
Σj

Cf
j dξ

w+(ξ )(ξ − z)
= z + f0 + O

(
1
z

)
(2.10)

and

g(z) := w(z)
2π i

N∑
j=1

∫
Σj

Cg
j dξ

w+(ξ )(ξ − z)
= 2z2 + g0 + O

(
1
z

)
. (2.11)

Proposition 2.2. ([23]) Given {zj}N
0 with Im zj > 0 and {φj}N

0 with φj ∈ [0, 2π ), the genus-N solution
q(x, t) of the NLS equation, which can be obtained as the solution of the RH problem of proposition 2.1, can
also be expressed by

q(x, t) = 2i[Φ̂1]12(x, t) e2if0x+2ig0t, (2.12)

where Φ̂1 enters the large-z development

Φ̂(x, t, z) = I + Φ̂1(x, t)
z

+ · · · , (2.13)

of the solution Φ̂(x, t, z) of the following RH problem: find Φ̂(x, t, z) analytic in C \ ΣN satisfying the jump
conditions

Φ̂+(x, t, z) = Φ̂−(x, t, z)Ĵj(x, t), z ∈ Σj, j = 0, . . . , N, (2.14)

with

Ĵj(x, t) =
⎛
⎝ 0 i e−i(φj+Cf

j x+Cg
j t)

i ei(φj+Cf
j x+Cg

j t) 0

⎞
⎠ , (2.15)

and the normalization condition

Φ̂(x, t, z) = I + O
(

1
z

)
, z → ∞. (2.16)

Here, Cf
0 = Cg

0 = 0 whereas the constants f0 and g0 in (2.12) and Cf
j , Cg

j , j = 1, . . . , N in (2.15) are

determined by {zj}N
0 via (2.8)–(2.11).

Remark 2.3. The solution Ψ (x, t, z) of the RH problem in proposition 2.1 is related to the
solution Φ̂(x, t, z) of the RH problem (2.14)–(2.16) as follows:

Ψ (x, t, z) = e(if0x+ig0t)σ3Φ̂(x, t, z) e(i(z−f (z))x+i(2z2−g(z))t)σ3 . (2.17)

Remark 2.4. It is the RH problem (2.14)–(2.16) that can be solved explicitly [22,23], in terms of
Riemann theta functions associated with the genus-N Riemann surface associated with w(z) (2.7)
and characterized by the branch points zj and z̄j, j = 0, . . . , N.

Remark 2.5. If all Cf
j together with f0 turn out to be commensurable, then the underlying

solution of the NLS equation is periodic in x.

3. Direct problem in the periodic case: a sketch
The direct problem associated with the RH problem (2.1)–(2.3) (i.e. with the problem: given {φj}N

0 ,
construct q(x, t)) consists in the following: given a N-genus solution q(x, t) of the NLS equation
associated with the prescribed branch points {zj}N

0 and evaluated as a function of x at some fixed
t = t∗, determine the underlying phase parameters φj.

In the case where Cf
j together with f0 (see (2.9)–(2.11)) are commensurable and thus the

underlying solution of the NLS equation is periodic in x, a possible way to solve the direct
problem is based on the idea of finding an RH representation for the solution of the initial
boundary value problem (IBVP) for the NLS equation, where the initial data given for x varying
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on an interval (of the periodicity length L), i.e. q(x, 0) = q0(x) for x ∈ (0, L), are supplemented by
the periodicity conditions:

q(0, t) = q(L, t), qx(0, t) = qx(L, t) for all t ≥ 0. (3.1)

If the RH problem in this representation had the same structure as the original RH problem (2.1)–
(2.3), then the constants φj appearing in the jump construction would give the sought solution of
our direct problem.

To get the appropriate representation, one can proceed in two steps: (i) first, provide some
RH representation (with some contour and jumps), where the data for the RH problem can be
constructed from the data of the periodic IBVP, i.e. the initial data q0(x) for x ∈ (0, L); (ii) second,
using the flexibility of the RH representation for the solution of nonlinear equations, transform
this (original) RH problem to that having the above-mentioned desired form (2.1).

The first step has been recently addressed in [9,10], where it was shown that in the case (in
particular) of the focusing NLS equation, the solution of the periodic IBVP (not necessarily finite-
band) can be given in terms of the solution of an RH problem, where (i) the contour is the union
of a (possibly infinite) number of finite arcs and the real and imaginary axes, and (ii) the jump
matrices can be constructed in terms of the entries a(z) and b(z) of the scattering matrix:

s(z) =
(

a(z̄) b(z)
−b(z̄) a(z)

)
≡
(

a∗(z) b(z)
−b∗(z) a(z)

)
, (3.2)

where we adopt the notation a∗(z) = a(z̄), etc. Here, s(z) is the scattering matrix of the Zakharov–
Shabat spectral problem (the x-equation of the Lax pair for the NLS equation) (2.5a) considered
on the whole line, with the potential q = q(x, 0) involved in U being continued on the whole line
by setting it to 0 for x outside [0, L].

To ensure the consistency of presentation, we briefly describe this step that can be performed
in two sub-steps. In sub-step 1, an RH problem is constructed using the spectral functions a(z)
and b(z) supplemented by the spectral functions A(z), B(z), A1(z), B1(z), that enter the scattering
matrices

S(z) =
(

A∗(z) B(z)
−B∗(z) A(z)

)
and S1(z) =

(
A∗

1(z) B1(z)
−B∗

1(z) A1(z)

)

associated with the t-equation from the Lax pair (2.5b) considered for x = 0 and x = L, respectively
[27,28].

Namely, assuming for a moment that q(0, t) and qx(0, t) are given for t ∈ (0, T) with some T > 0,
equation (2.5b) can be considered, similarly to (2.5a), as a spectral problem for a matrix equation
with coefficients determined in terms of q(0, t) and qx(0, t), giving rise to S(z) as the associated
scattering matrix. Similarly, q(L, t) and qx(L, t) give rise to S1(z). Then the periodicity condition
(3.1) implies that S(z) = S1(z). Since V in equation (2.5b) is a polynomial of the second order w.r.t.
z, it follows that the contour where the scattering relation is established consists of two lines, the
real and imaginary axes (where Im z2 = 0).

Since neither q(0, t) nor qx(0, t) are given as the data for the periodic IBVP, sub-step 2 addresses
the problem of replacing the RH problem constructed in terms of a(z), b(z), A(z) and B(z) by
an equivalent one (in the sense that q(x, t) obtained following (2.4) from both problems are the
same), whose formulation involves a(z) and b(z) only. A key for performing this sub-step is the
so-called Global Relation [8,9,27,28], which is a relation among a(z), b(z), A(z), and B(z) reflecting
the fact that the IBVP with periodic boundary conditions is well-posed (particularly, has a unique
solution) without prescribing the boundary values q(0, t) and qx(0, t).

In the current setting (i.e. for the periodic problem in x), the global relation takes the form of
the equation:

e2izL(A(z)a∗(z) + B(z)b∗(z))B(z) + (A(z)b(z) − a(z)B(z))A(z) = e4iz2TO

(
1 + e2izL

z

)
, (3.3)
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where the r.h.s. is not given precisely but only asymptotically, as z → ∞. Noticing that the r.h.s.
in (3.3) approaches 0 as z → ∞ staying in the first quadrant of the complex z-plane suggests
replacing the r.h.s. by zero, which leads to a quadratic equation for the ratio B(z)/A(z), with the
coefficients given in terms of a(z) and b(z). Define R(z) as the solution of the resulting equation,

e2izLb∗(z)R2(z) + (e2izLa∗(z) − a(z))R(z) + b(z) = 0, (3.4)

by

R(z) = e−izLa(z) − eizLa∗(z) +
√

(e−izLa(z) − eizLa∗(z))2 − 4b∗(z)b(z)
2 eizLb∗(z)

, (3.5)

where the branch of the square root is chosen such that the branch cuts are the arcs connecting the
pairs of complex conjugate points (actually, they are zj and z̄j) and that R(z) → 0 as z → ∞. Then,
one can show that the RH problem sought in sub-step 2 is that obtained from the original RH
problem, where B(z)/A(z) is replaced by R(z). Due to the jumps of R(z) across the arcs connecting
zj and z̄j, additional jump conditions on these arcs arise and thus the jump contour takes the form:
∪N

j=0Σj ∪ R ∪ iR, whereas the jump matrix on all parts of the contour can be algebraically given in
terms of a(z), b(z) and R(z). To complete the formulation of the RH problem from step 1, the jump
conditions have to be complemented by the residue conditions at the singularities of R(z), if any
(these are also given in terms of spectral quantities determined by the initial data only). For the
exact formulation of the RH problem of step 1, see [10], theorem 4.61 and theorem 4.1 below.

Assumptions. In order to fix ideas while avoiding technicalities, we assume that (i) a(z) has a
finite number of simple zeros in the upper complex half-plane and these zeros do not coincide
with the poles of R(z) and R∗(z) and (ii) Re zj �= 0 for all j.

The second step consists of transforming the RH problem described above (with jumps
across ∪N

j=0Σj ∪ R ∪ iR and residue conditions) to an RH problem of the form (2.1)–(2.3) with
some constants φj. We will show that this step can also be divided into several sub-steps: (i)
transforming the RH problem to that with jumps across R and iR having the diagonal structure;
(ii) reducing the jump conditions to those across ΣN = ∪N

j=0Σj only and getting rid of singularity
conditions; (iii) making the jumps on each Σj to have the structure as in (2.1).

In the case N = 0, this step has been done in [9,10]; in this case, the contour for the RH problem
consists of a single arc, and there are no singularity conditions. The associated (0-genus) solution
of the NLS equation is a simple exponential function: q(x, t) = α e−2iβx+2iωt+iφ0 , where α = Im z0,
β = Re z0, and ω = α2 − 2β2.

The cases with N ≥ 1 turn out to be more involved. Particularly, in the realization of sub-
step (ii) we need to get rid of singularity conditions at the singularity points of R(z). In terms
of the spectral theory of the Zakharov–Shabat equation with periodic coefficients, the (possibly
empty) set of such singularity points {μj}N1

1 , N1 ≤ N consists of those conjugated auxiliary spectrum
points for this problem which are located on the sheet (of the two-sheeted Riemann surface of R)
characterized by the condition R(z) → 0 as z → ∞.

The resulting (z-dependent) jump matrix is as follows:

J̌(x, t, z) =
(

0 iJ00(z) e−2izx−4iz2t

iJ−1
00 (z)e2izx+4iz2t 0

)
, z ∈ ΣN , (3.6)

where J00(z) can be expressed in terms of R(z) (see (4.74) below).
Having J00(z) obtained, sub-step (iii) can be done using the solution of the scalar RH problem:

d+(z)d−(z) = J00(z) eiφj , z ∈ Σj, j = 0, . . . , N (3.7)

and

d(z) → 1, z → ∞. (3.8)

1In [10], the notation Γ̃ is adopted for R.
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In this problem, the constants φj are not prescribed but determined uniquely by (3.8) applied to
the Cauchy-type solution of (3.7); they are the phases sought in the direct problem.

4. Direct problem in the periodic case: details
As we have mentioned above, using the ideas of the unified transform method, it is possible to
represent the solution of the periodic problem

iqt + qxx + 2|q|2q = 0, x ∈ (0, L), t > 0; (4.1a)

q(x, 0) = q0(x), x ∈ [0, L]; (4.1b)

and q(0, t) = q(L, t), qx(0, t) = qx(L, t) for all t ≥ 0, (4.1c)

in terms of the solution of an RH problem, the data for which jump and residue conditions can
be constructed using the spectral functions a(z) and b(z) uniquely determined by the initial data
q0(x). Namely, a(z) and b(z) are the entries of the scattering matrix s(z) (3.2) relating the dedicated
solutions Φ0

2 (x, z) and Φ0
3 (x, z) of the Zakharov–Shabat equation (2.5a), (2.6a) taken at t = 0: let

U1(x, 0) :=
(

0 q0(x)
−q̄0(x) 0

)
; then s(z) is determined by

Φ0
3 (x, z) = Φ0

2 (x, z)s(z),

where Φ0
2 (x, z) and Φ0

3 (x, z) are the solutions of the integral equations

Φ0
2 (x, z) = e−izxσ3 +

∫ x

0
e−iz(x−y)σ3 U1(y, 0)Φ0

2 (y, z) dy

and

Φ0
3 (x, z) = e−izxσ3 −

∫L

x
e−iz(x−y)σ3 U1(y, 0)Φ0

3 (y, z) dy.

In the construction of the associated RH problem, a key role is played by R(z) (3.5). Before
presenting this RH problem, we discuss some analytic properties of R(z).

(a) Analytic properties of R(z)
The scattering matrix s(z) in our setting is closely related to the monodromy matrix M(z) of the
Zakharov–Shabat equation with periodic conditions defined as M(z) = Φ(L, 0, z), where Φ(x, 0, z)
is the solution of equation (2.5a) satisfying the condition Φ(0, 0, z) = I. Particularly, we have

M11(z) =M∗
22(z) = e−izLa(z) and M12(z) = −M∗

21(z) = −e−izLb(z). (4.2)

In terms of Mij, equation (3.4) reads as

M21(z)R2(z) + (M22(z) − M11(z))R(z) − M12(z) = 0; (4.3)

its solutions, R(1)(z) and R(2)(z), can be expressed as follows:

R(1)(z) = M11(z) − M22(z) −
√

2(z) − 4
2M21(z)

= e−izLa(z) − eizLa∗(z) −
√

2(z) − 4
eizLb∗(z)

(4.4a)

and

R(2)(z) = M11(z) − M22(z) +
√

2(z) − 4
2M21(z)

= e−izLa(z) − eizLa∗(z) +
√

2(z) − 4
eizLb∗(z)

, (4.4b)

where
(z) :=M11(z) + M22(z) = e−izLa(z) + eizLa∗(z), (4.5)

and we have used that

detM(z) =M11(z)M22(z) − M12(z)M21(z) = a∗(z)a(z) + b∗(z)b(z) ≡ 1. (4.6)
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As functions of z, R(1)(z) and R(2)(z) can be viewed as the branches of function R meromorphic
on the Riemann surface (z, w) of

w2 =
N∏

j=0

(z − zj)(z − z̄j),

assuming that there is a finite number (denoted by N + 1) of conjugated pairs {zj, z̄j} of simple zeros
of function 2(z) − 4.

In the context of the spectral theory of the Zakharov–Shabat equation with periodic conditions,
{zj, z̄j}N

0 are called the main spectrum; they are the branch points of R. On the other hand, the simple
zeros of M12(z) which are not double zeros of 2(z) − 4 (as well as the multiple zeros of M12(z))
constitute the auxiliary spectrum {μj}N

1 .
Note that by the definition of M, all zeros of M12(z) are the eigenvalues of the homogeneous

Dirichlet-type problem for the Zakharov–Shabat equation (2.5a) on (0, L) with q = q0(x): if
M12(z̃) = 0 for some z̃, then there exists a non-trivial vector solution Ξ (x, z̃) = (Ξ1(x, z̃), Ξ2(x, z̃)T of
(2.5a) such that Ξ1(0, z̃) = Ξ1(L, z̃) = 0 (actually, one can take Ξ (x, z̃) = Φ(2)(x, z̃), where M(l) denotes
the l-th column of a 2 × 2 matrix M).

Similarly, all zeros of M21(z) are the eigenvalues of the homogeneous Neumann-type problem
for the Zakharov–Shabat equation (2.5a) on (0, L): for such z, there exists a non-trivial vector
solution of (2.5a) such that its second component equals 0 at x = 0 and x = L.

One can view R(1)(z) and R(2)(z) as meromorphic functions on C \ ΣN with the branch cut ΣN ,
where ΣN = ∪N

0 Σj and Σj are the vertical segment connecting zj and z̄j. Particularly, we specify
R(1)(z) by the condition R(1)(z) → 0 as z → ∞.

Let us list some analytic properties of R that hold for all z including the limiting values at each
side, z+ and z−, of Σj(z):

(i) By the definition of R(1) and R(2) (as the solutions of the quadratic equation),

R(1)(z) · R(2)(z) = −M12(z)
M21(z)

= e−izLb(z)
eizLb∗(z)

; (4.7)

and

R(1)(z) + R(2)(z) = M11(z) − M22(z)
M21(z)

= e−izLa(z) − eizLa∗(z)
eizLb∗(z)

; (4.8)

(ii) By the symmetries (4.2),

R∗
(2)(z) = − 1

R(1)(z)
, (4.9)

(both sides of (4.9) satisfy the same quadratic equation) and thus, in view of (4.7),

M21(z)R(z) =M12(z)R∗(z), (4.10)

or
eizLb∗(z)R(z) = −e−izLb(z)R∗(z), (4.11)

where R(z) = R(1)(z) or R(z) = R(2)(z).
(iii)

(a(z) + b(z)R∗(z))(a∗(z) + b∗(z)R(z)) ≡ 1. (4.12)

Indeed,

(a + bR∗)(a∗ + b∗R) = (M11 − M12R∗)(M22 + M21R) = (M11 − M21R)

× (M22 + M21R) = 1 + M12M21 − M21(M21R2 + (M22 − M11)R)

= 1 − M21(M21R2 + (M22 − M11)R − M12) = 1,

where we have used (4.3), (4.6) and (4.11).
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(iv)
a(z) + b(z)R∗(z) �= 0, (4.13)

for all z. This follows from (4.12) and the fact that b∗(z)R(z) is, by (4.4), non-
singular.Actually, this also follows from the representation:

a∗(z) + b∗(z)R(z) = 1
2

e−izL((z) ±
√

2(z) − 4).

Finally, we list some properties of R involving the limiting values at the different sides of Σj(z)
(denoting R±(z) := R(z±)):

(i) (R+(z))/R∗+(z) = R−(z)/R∗−(z) (follows from (4.10) and the fact that Mij(z) are entire
functions).

(ii)
R∗+(z)R−(z) = R+(z)R∗−(z) = −1 (4.14)

(follows from (4.9) and R(2)(z+) = R(1)(z−), R(1)(z+) = R(2)(z−));
(iii)

a∗(z) + b∗(z)R−(z) = e−2izL(a(z) + b(z)R∗+(z)
)
, (4.15)

(follows from (4.14), (4.2) and (4.3) for R−).

(b) RH problem associated with the periodic problem for the NLS
From now on, we denote by R(z) the branch in (4.4) decaying to 0 as z → ∞. Define G(z), G1(z)
and G2(z) as follows:

G(z) = − R∗(z)
a(z)(a(z) + b(z)R∗(z))

= −R∗(z)
a(z)

(a∗(z) + b∗(z)R(z)) = −e−2izLR∗(z) − b∗(z)
a(z)

, (4.16)

G1(z) = e2izLa(z)R(z)
a(z) + b(z)R∗(z)

= e2izLa(z)R(z)(a∗(z) + b∗(z)R(z)) = a2(z)
(

R(z) − b(z)
a(z)

)
(4.17)

and G2(z) = a−2(z)G1(z) = R(z) − b(z)
a(z)

. (4.18)

Using these functions, define a 2 × 2 function J0(z) for z ∈ R ∪ iR ∪ ΣN :

J0(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

G∗
2(z) 1

)(
1 r̃(z)

r̃∗(z) 1 + |r̃|2(z)

)(
1 G2(z)

0 1

)
, z ∈ R+,(

1 G∗(z)

0 1

)(
1 + |r|2(z) r∗(z)

r(z) 1

)(
1 0

G(z) 1

)
, z ∈ R−,(

1 −G2(z)

0 1

)(
a−1(z) 0

0 a(z)

)(
1 0

G(z) 1

)
, z ∈ iR+,(

1 G∗(z)

0 1

)(
a∗(z) 0

0 (a∗(z))−1

)(
1 0

−G∗
2(z) 1

)
, z ∈ iR−,(

1 R+(z) − R−(z)

0 1

)
, z ∈ ΣN ∩ I,(

1 0

e−2izL(R∗−(z) − R∗+(z)) 1

)
, z ∈ ΣN ∩ II,(

1 e2izL(R+(z) − R−(z))

0 1

)
, z ∈ ΣN ∩ III,(

1 0

R∗−(z) − R∗+(z) 1

)
, z ∈ ΣN ∩ IV,

, (4.19)
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where

r(z) = b∗(z)
a(z)

and r̃(z) = b(z)
a(z)

. (4.20)

Finally, specify the residue conditions for a 2 × 2 function M(x, t, z) at the poles of R(z) and R∗(z)
as follows:

(i) At the poles ξj of R(z) for z ∈ I:

Res
z=ξj

M(2)(x, t, z) = e−2iξjx−4iξ 2
j tRes

z=ξj
R(z)M(1)(x, t, ξj). (4.21)

(ii) At the poles ξj of R∗(z) for z ∈ II:

Res
z=ξj

M(1)(x, t, z) = −e2iξj(x−L)+4iξ 2
j tRes

z=ξj
R∗(z)M(2)(x, t, ξj). (4.22)

(iii) At the poles ξj of R(z) for z ∈ III:

Res
z=ξj

M(2)(x, t, z) = e−2iξj(x−L)−4iξ 2
j tRes

z=ξj
R(z)M(1)(x, t, ξj). (4.23)

(iv) At the poles ξj of R∗(z) for z ∈ IV:

Res
z=ξj

M(1)(x, t, z) = −e2iξjx+4iξ 2
j tRes

z=ξj
R∗(z)M(2)(x, t, ξj). (4.24)

Theorem 4.1. Let a(z) and b(z) be the spectral functions associated with q0(x), x ∈ (0, L) via the solution
of the direct scattering problem for the Zakharov–Shabat equation (2.5a) with q = q0(x). Assume that (i)
a(z) has a finite number of simple zeros in C+ and (ii) the number of pairs {zj, z̄j} of simple zeros of the
function 2(z) − 4, where (z) is defined by (4.5), is finite. Introduce ΣN by ΣN = ∪N

0 Σj, where Σj is the
vertical segment connecting zj and z̄j. Let R(z) be determined by a and b via (4.4) such that R(z) is analytic
in C \ ΣN and R(z) → 0 as z → ∞, and let G(z) and G2(z) be determined in terms of a, b and R by (4.16)
and (4.17).

Let q(x, t) be defined by q(x, t) = 2i[M1]12(x, t), where M(x, t, z) = I + (M1(x, t)/z) + · · · as z → ∞ and
M(x, t, z) is the solution of the Riemann–Hilbert problem specified by (i) the jump conditions

M+(x, t, z) = M−(x, t, z)J(x, t, z), z ∈ R ∪ iR ∪ ΣN , (4.25)

where contour is oriented such that R is oriented from left to right, iR+ and iR− are oriented towards
infinities, and Σj are oriented upwards, from z̄j to zj, and

J(x, t, z) = e−(izx+2iz2t)σ3 J0(z) e(izx+2iz2t)σ3 , (4.26)

where J0 is given by (4.19); (ii) the residue conditions (4.21)–(4.24), and (iii) the normalization condition
M(x, t, z) → I as z → ∞. Then q(x, t) is the solution of the periodic problem (4.1).

Remark 4.2. As we mentioned above, the construction of the RH problem in theorem 4.1 is
motivated by the application of the unified transform method to the periodic problem [9,10]. On
the other hand, one can show directly that q(x, t) obtained via the solution of this RH problem
solves problem (4.1).

Particularly, one can prove that q(x, t) (i) satisfies the initial conditions q(x, 0) = q0(x) and (ii)
satisfies the periodicity conditions (4.1c) by proving that (a) the jumps and the residue conditions
for t = 0 can be mapped to those in the RH problem associated with q0(x) and (b) the jumps and
the residue conditions for x = 0 and x = L can be mapped to each other.

(i) Verifying the initial conditions

Recall that the RH problem associated with q0(x) is as follows [27]: find M(x)(x, z) such that
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(i) M(x)(x, z) is meromorphic in C \ R and satisfies the jump condition on Σ (x) := R

M(x)+(x, z) = M(x)−(x, z)J(x)(x, z), z ∈ Σ (x), (4.27)

where

J(x)(x, z) := e−izxσ3 J(x)
0 (z) eizxσ3 ,

with

J(x)
0 (z) =

(
1 + |r|2(z) r∗(z)

r(z) 1

)
. (4.28)

(ii) Assuming that a(z) has a finite number of simple zeros {νj}Q
1 in C+ (generic case), M(x)(x, z)

satisfies the residue conditions

Res
z=νj

M(x)(1)(x, z) = e2iνjxb∗(νj)

ȧ(νj)
M(x)(2)(x, νj) (4.29a)

and

Res
z=ν̄j

M(x)(2)(x, z) = −e−2iν̄jxb(ν̄j)

ȧ∗(ν̄j)
M(x)(1)(x, ν̄j). (4.29b)

(iii) M(x)(x, z) → I as z → ∞ for all x ∈ (0, L).

Then q0(x) can be obtained by q0(x) = 2i[M(x)
1 ]12(x), where M(x)

1 (x) is involved in the large-z

development of M(x)(x, z): M(x)(x, z) = I + (M(x)
1 (x)/z) + · · · .

Now we note that the RH problem in theorem 4.1 taken at t = 0 can be mapped to the RH
problem associated with q0(x) as follows:

M(x)(x, z) := M(x, 0, z) ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
a−1(z) 0

0 a(z)

)(
1 −G1(z) e−2izx

0 1

)
, z ∈ I,

(
1 0

−G(z)e2izx 1

)
, z ∈ II,

(
1 G∗(z) e−2izx

0 1

)
, z ∈ III,

(
a∗(z) 0

0 (a∗)−1(z)

)(
1 0

G∗
1(z) e2izx 1

)
, z ∈ IV.

(4.30)

Indeed:

(i) By straightforward calculations, the jump for M(x)(x, z) across R is as in (4.27)–(4.28);
(ii) M(x)(x, z) has no jump across ΣN ;

(iii) All the off-diagonal entries in the r.h.s. of (4.30) go to 0 exponentially fast as z → ∞, Im z �=
0 for x ∈ (0, L) (by the first expressions in (4.16) and (4.17) and since R(z) → 0).

Now consider the mapping of the residue conditions.

(I) For z ∈ I: M(x)(x, z) = M(x, 0, z)
(

(1/a(z)) −(G1(z)/a(z)) e−2izx

0 a(z)

)
.
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(i) At a zero νj of a(z),

M(x)(1)(x, z) = M(1)(x, 0, z)
1

a(z)
= 1

z − νj
C(1)(x) + · · · . (4.31)

On the other hand, from G1(z) = −a(z)b(z) + a2(z)R(z), it follows that as z → νj,

G1(z) = −ȧ(νj)(z − νj)b(νj) + O((z − νj)
2)

and thus

M(x)(2)(x, z) = −M(1)(x, 0, z)
G1(z)
a(z)

e−2izx + a(z)M(2)(x, 0, z)

= 1
z − νj

C(1)(x)ȧ(νj)(z − νj)b(νj) e−2iνjx + O(z − νj)

= C(1)(x)ȧ(νj)b(νj) e−2iνjx + O(z − νj). (4.32)

It follows (also using b(νj) = 1
b∗(νj)

) that

C(1)(x) = e2iνjx
b∗(νj)

ȧ(νj)
M(x)(2)(x, νj).

This, being combined with (4.31), gives

Res
z=νj

M(x)(1)(x, z) = e2iνjx
b∗(νj)

ȧ(νj)
M(x)(2)(x, νj),

which is the required residue condition (4.29a).
(ii) At a pole ξj of R(z),

Res
z=ξj

M(x)(2)(x, z) = −a(ξj)Res
z=ξj

R(z) e−2iξjxM(1)(x, 0, ξj) + a(ξj)Res
z=ξj

M(2)(x, 0, z)

= −a(ξj)Res
z=ξj

R(z) e−2iξjxM(1)(x, 0, ξj) + a(ξj)Res
z=ξj

R(z) e−2iξjxM(1)(x, 0, ξj) = 0,

where we have used (4.21).

(II) For z ∈ II: M(x)(x, z) = M(x, 0, z)
(

1 0
−G(z) e2izx 1

)
. In particular,

M(x)(2)(x, νj) = M(2)(x, 0, νj),

where νj is a zero of a(z). On the other hand, by (4.16),

Res
z=νj

G(z) = −b∗(νj)

ȧ(νj)

and thus

Res
z=νj

M(x)(1)(x, z) = −Res
z=νj

G(z) e2iνjxM(2)(x, 0, νj) = −b∗(νj)

ȧ(νj)
e2iνjxM(x)(2)(x, νj),

which is again the required residue condition (4.29a). Similarly for (4.29b).
Summarizing, transformation (4.30) produces M(x)(x, z) that satisfies the jump and residue

conditions for the RH problem associated with q0(x), which implies that q(x, 0) = q0(x).

(ii) Verifying the periodicity

In order to verify the periodicity, it is sufficient to relate the RH problem for M(L, t, z) to that for
M(0, t, z) in such a way that both the jump residue conditions match correctly.
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Introduce the piece-wise analytic matrix functions

P(t)(t, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I, z ∈ I ∪ IV,(
a(z) + b(z)R∗(z) −b(z) e−4iz2t

0 a∗(z) + b∗(z)R(z)

)
, z ∈ II,(

a(z) + b(z)R∗(z) 0

b∗(z) e4iz2t a∗(z) + b∗(z)R(z)

)
, z ∈ III,

(4.33)

and

P̂(t)(t, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I, z ∈ II ∪ III,(
a∗(z) + b∗(z)R(z) 0

−b∗(z) e2izL e4iz2t a(z) + b(z)R∗(z)

)
, z ∈ I,(

a∗(z) + b∗(z)R(z) b(z) e−2izL e−4iz2t

0 a(z) + b(z)R∗(z)

)
, z ∈ IV.

(4.34)

Then introduce

M(t)(t, z) := M(0, t, z)P(t)(t, z) and M̂(t)(t, z) := M(L, t, z)P̂(t)(t, z). (4.35)

Proposition 4.3. M(t)(t, z) ≡ M̂(t)(t, z); consequently, q(0, t) = q(L, t) and qx(0, t) = qx(L, t) for all t.

To prove the proposition, it is sufficient to prove that M(t)(t, z) and M̂(t)(t, z) satisfy the same
jump and residue conditions.

1. Using the definitions of R, G and G2 as well as the properties (4.11) and (4.12) of R, it is by
straightforward calculations that for z ∈ R ∪ iR,

M(t)+(t, z) = M(t)−(t, z)J(t)(t, z) and M̂(t)+(t, z) = M̂(t)−(t, z)J(t)(t, z)

involving the same J(t)(t, z) =
(

1 R(z) e−4iz2t

R∗(z) e4iz2t 1+R∗(z)R(z)

)
, where R ∪ iR is oriented such that quadrants

I and III have positive boundaries.
2. Using, additionally, property (4.15), it follows that on parts of ΣN , J(t) is given by

J(t)(t, z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 (R+(z) − R−(z)) e−4iz2t

0 1

)
, z ∈ I ∪ III,(

1 0

(R∗+(z) − R∗−(z)) e4iz2t 1

)
, z ∈ II ∪ IV.

3. In order to prove that M(t)(t, z) and M̂(t)(t, z) satisfy the same residue conditions, we observe
from (3.4) that if ξj is a pole of R(z), then b∗(ξj) = 0 and

lim
z→ξj

b∗(z)R(z) = e−2izLa(ξj) − a∗(ξj); (4.36)

consequently,

(a∗ + b∗R)|z=ξj = e−2iξjLa(ξj) and (a + bR∗)|z=ξj = e2iξjLa∗(ξj). (4.37)

Similarly, if ξj is a pole of R∗(z), then b(ξj) = 0 and

lim
z→ξj

b(z)R∗(z) = e2iξjLa∗(ξj) − a(ξj), (4.38)

whereas (4.37) keep holding. Using these properties, it is again by straightforward calculations
that M(t)(t, z) and M̂(t)(t, z) satisfy the same residue conditions:

(i) At the poles ξj of R(z) for z ∈ I and z ∈ III:

Res
z=ξj

M(t)(2)(t, z) = e−4iξ 2
j tRes

z=ξj
R(z)M(t)(1)(t, ξj). (4.39)
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(ii) At the poles ξj of R∗(z) for z ∈ II and z ∈ IV:

Res
z=ξj

M(t)(1)(t, z) = −e4iξ 2
j tRes

z=ξj
R∗(z)M(t)(2)(t, ξj). (4.40)

(c) From the basic RH problem to a RH problem with structure (2.1)–(2.3)
The reduction of the basic RH problem to the RH problem with structure (2.1)–(2.3) as in
proposition 2.1 can be performed in several consecutive steps.

In Step 1, we ‘undress’ the jump matrices on R ∪ iR to those having a diagonal structure. This
step will require appropriate algebraic factorizations of the jumps.

In Step 2, we reduce the RH problem obtained at Step 1 to that (i) with the contour ΣN only and
(ii) having no residue conditions. This step will require analytic factorization of a scalar function.

In Step 3, we reduce the RH problem obtained at Step 2 to that having the structure as in
proposition 2.1, i.e. involving only constants φj as non-trivial elements in the construction of the
jump matrices across ΣN .

(i) Step 1: Undressing the jumpmatrices onR ∪ iR

Recall that in all our RH problem transformations involving multiplication from the right, we
need that the diagonal part of the factors approaches the identity matrix as z → ∞ (in all domains)
whereas the off-diagonal parts decay exponentially fast to 0 for all t > 0 and all x ∈ (0, L). Since
the off-diagonal parts involve e2izx+4iz2t or e−2izx−4iz2t, it follows that the appropriate factors
should have triangular form, with a single non-zero off-diagonal entry containing the decaying
exponential.

Introduce

D1(z) = 1
1 + R∗(z)R(z)

, D2(z) = D−1
1 (z) = 1 + R∗(z)R(z),

D3(z) = 1 + R∗(z)R(z)
a(z) + b(z)R∗(z)

, D4(z) = D∗
3(z) = 1 + R∗(z)R(z)

a∗(z) + b∗(z)R(z)

and U(z) = − e2izLR(z)
1 + R∗(z)R(z)

, L(z) = R∗(z)
1 + R∗(z)R(z)

.

Proposition 4.4. The jump matrix J0(z) defined by (4.19) allows the following algebraic factorizations:

J0(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 L∗(z)

0 1

)(
D1(z) 0

0 D−1
1 (z)

)(
1 0

L(z) 1

)
, z ∈ R+,(

1 0

U∗(z) 1

)(
D2(z) 0

0 D−1
2 (z)

)(
1 U(z)

0 1

)
, z ∈ R−,(

1 0

−L(z) 1

)(
D3(z) 0

0 D−1
3 (z)

)(
1 U(z)

0 1

)
, z ∈ iR+,(

1 0

U∗(z) 1

)(
D4(z) 0

0 D−1
4 (z)

)(
1 −L∗(z)

0 1

)
, z ∈ iR−.

(4.41)

Proof. By straightforward calculations. �
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Factorizations (4.41) suggest the undressing transformation of the RH problem as follows:

M̃(x, t, z) = M(x, t, z) ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

−L(z) e2izx+4iz2t 1

)
, z ∈ I(

1 −U(z) e−2izx−4iz2t

0 1

)
, z ∈ II(

1 0

U∗(z) e2izx+4iz2t 1

)
, z ∈ III(

1 L∗(z) e−2izx−4iz2t

0 1

)
, z ∈ IV.

(4.42)

Note that this transformation is appropriate in the sense that all the off-diagonal entries in the
factors in (4.42) decay exponentially fast to 0 as z → ∞ for all t > 0 and x ∈ (0, l).

The jump conditions for M̃ across R ∪ iR involve obviously the diagonal matrices from the
r.h.s. of (4.41). Concerning the jump conditions for M̃ across ΣN and the residue conditions for
the RH problem for M̃, we have the following two propositions.

Proposition 4.5. M̃ satisfies the following jump conditions across ΣN:
M̃+(x, t, z) = M̃−(x, t, z)J̃(x, t, z), where J̃(x, t, z) = e−(izx+2iz2t)σ3 J̃0(z) e(izx+2iz2t)σ3 with

J̃0(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 R+(z) − R−(z)
1

R−(z)−R+(z) 0

)
, z ∈ ΣN ∩ I,

(
0 e2izL

R∗+(z)−R∗−(z)

(R∗−(z) − R∗+(z)) e−2izL 0

)
, z ∈ ΣN ∩ II,

(
0 (R+(z) − R−(z)) e2izL

e−2izL

R−(z)−R+(z) 0

)
, z ∈ ΣN ∩ III,

(
0 1

R∗+(z)−R∗−(z)

R∗−(z) − R∗+(z) 0

)
, z ∈ ΣN ∩ IV.

(4.43)

Proof. Consider ΣN ∩ I; here we have

J̃0(z) =
(

1 0
L− 1

)(
1 R+−R−
0 1

)(
1 0

−L+ 1

)

=
(

1 0
R∗−

1+R∗−R− 1

)(
1 R+−R−
0 1

)(
1 0

− R∗+
1+R∗+R+ 1

)

=
(

1 R+−R−
R∗−

1+R∗−R− 1 + (R+−R−)R∗−
1+R∗−R−

)(
1 0

− R∗+
1+R∗+R+ 1

)
.

Now we note that the (22) entry in the first matrix equals 0, because

1 + R∗−R−+(R+−R−)R∗− = 1 + R∗−R−+R+R∗− − R−R∗− = 1 + R+R∗− = 0, (4.44)

due to (4.14). It follows that

J̃0(z) =
(

1 R+−R−
R∗−

1+R∗−R− 0

)(
1 0

− R∗+
1+R∗+R+ 1

)
=
(

0 R+−R−
1

R−−R+ 0

)
,

where we have again used the equality (4.44). Similarly for other quadrants. �

Proposition 4.6. M̃ satisfies the following singularity conditions:
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(i) For z ∈ I ∪ III,

M̃(x, t, z) = Mreg(x, t, z)

(
z − ξj 0

0 1
z−ξj

)
, (4.45)

at all poles of R(z) in I ∪ III, where Mreg is nowhere singular in I ∪ III.
(ii) For z ∈ II ∪ IV,

M̃(x, t, z) = Mreg(x, t, z)

(
1

z−ξj
0

0 z − ξj

)
, (4.46)

at all poles ξj of R∗(z) in II ∪ IV, where Mreg is nowhere singular in II ∪ IV.

Remark 4.7. The poles of R∗(z) in II ∪ IV are complex conjugated to those of R(z) in I ∪ III.

Proof. Proof of proposition 4.6. Consider z ∈ I, where M̃ = M
(

1 0
−(R∗/(1+R∗R)) e2izx+4iz2t 1

)
. It follows

that M̃(2) = M(2) and thus M̃(2) has the required singularity from (4.45) due to (4.21).
Now we need to show that M̃(1)(z) = O(z − ξj) as z → ξj. Indeed,

M̃(1)(z) = M(1)(z) − R∗(z)
1 + R∗(z)R(z)

e2izx+4iz2tM(2)(z) = M(1)(z)

− R∗(ξj)

1 + R∗(ξj)(Res
z=ξj

R(z)/(z − ξj) + O(1))

⎛
⎝Res

z=ξj
R(z)

z − ξj
M(1)(ξj) + O(1)

⎞
⎠= O(z − ξj).

Similarly for other quadrants.
Looking at the diagonal factors in (4.41), we note that we can simplify them getting rid of

a + bR∗ and a∗ + b∗R by introducing

M̂ = M̃ ·

⎧⎪⎪⎨
⎪⎪⎩

I, z ∈ II ∪ III,(
a∗ + b∗R 0

0 a + bR∗

)
, z ∈ I ∪ IV.

Recall that a + bR∗ and a∗ + b∗R have neither zeros nor singularities, and thus M̂ satisfies the same
singularity conditions as M̃.

On the other hand, the jump conditions for M̂ on ΣN ∩ I become:

Ĵ0 =
(

a + bR∗− 0
0 a∗ + b∗R−

)⎛⎝ 0 R+(z) − R−(z)
1

R−(z) − R+(z)
0

⎞
⎠(a∗ + b∗R+ 0

0 a + bR∗+

)
.

(4.47)
Using (a + bR∗−)(a∗ + b∗R+) = e2izL (see (4.15) and (4.12)), jump (4.47) becomes:

Ĵ0(z) =
⎛
⎝ 0 (R+(z) − R−(z)) e2izL

e−2izL

R−(z) − R+(z)
0

⎞
⎠ , z ∈ ΣN ∩ I, (4.48)

which has the same form as for z ∈ ΣN ∩ III, see (4.43).
Similarly, the jump for M̂ on ΣN ∩ IV has the same expression as that for M̃ on ΣN ∩ IV, see

(4.43). �

Changing the orientation of R+ (setting it to go from +∞ to 0) and summarizing, we arrive at
the following.

Theorem 4.8. Assuming that the number of the main spectrum points associated with q0(x) is finite, the
solution q(x, t) of the periodic IBVP (4.1) can be given by q(x, t) = 2i[M̂1]12(x, t), where M̂1(x, t) enters the
large-z development of M̂(x, t, z): M̂(x, t, z) = I + (M̂1(x, t)/z) + · · · , and M̂(x, t, z) is the solution of the
following RH problem: given R(z) (which is constructed by (4.4) from the scattering coefficients a(z) and
b(z) associated with the initial data q0(x)), where the branch is chosen such that R(z) → 0 as z → ∞), find
M̂(x, t, z) satisfying the following conditions:
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(i) M̂(x, t, z) is meromorphic in C \ (R ∪ iR ∪ ΣN);
(ii) M̂(x, t, z) satisfies the jump conditions M̂+(x, t, z) = M̂−(x, t, z)Ĵ(x, t, z), where Ĵ(x, t, z) =

e−(izx+2iz2t)σ3 Ĵ0(z)e(izx+2iz2t)σ3 and

Ĵ0(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝1 + R∗(z)R(z) 0

0
1

1 + R∗(z)R(z)

⎞
⎠ , z ∈ R ∪ iR,

⎛
⎜⎝ 0 (R+(z) − R−(z))e2izL

e−2izL

R−(z) − R+(z)
0

⎞
⎟⎠ , z ∈ ΣN ∩ (I ∪ III),

⎛
⎜⎝ 0

e2izL

R∗+(z) − R∗−(z)
(R∗−(z) − R∗+(z))e−2izL 0

⎞
⎟⎠ , z ∈ ΣN ∩ (II ∪ IV)

(4.49)

(iii) M̂(x, t, z) satisfies the singularity conditions (4.45) (for z ∈ I ∪ III) and (4.46) (for z ∈ II ∪ IV).
(iv) M̂(x, t, z) → I as z → ∞.

(ii) R(z) in connection with the theory of periodic finite-band solutions of the NLS

Before passing to Step 2 (getting rid of jumps across R ∪ iR as well as of the singularity
conditions), let us take a look at R(z) taking into account the connection to the theory of finite-band
periodic solutions (see, e.g. [29] and references therein).

Fix (x0, t0) = (0, 0) and denote q = q(0, 0) = q0(0).

Proposition 4.9. There exists an entire function C(z) such that M12(z) = C(z)g(z), M21(z) =
C(z)h(z), and (i/2)(M11(z) − M22(z)) = C(z)F(z), where

(i) g(z) = q
∏N

j=1(z − μj) and h(z) = −q̄
∏N

j=1(z − μ̄j);
(ii) The points {μj}N

1 constitute the auxiliary spectrum (at (x, t) = (0, 0)) of the Zakharov–Shabat
operator (2.5a) with a periodic, finite-genus potential q0(x); it consists of the simple zeros of
M12(z) (or b(z)), which are not double zeros of 2(z) − 4, where (z) =M11(z) + M22(z), and
of the multiple zeros of M12(z), if any;

(iii) F(z) is a polynomial such that the following relation holds:

F2(z) = P(z) + g(z)h(z), (4.50)

where P(z) = w2(z) =∏N
j=0(z − zj)(z − z̄j) and zj and z̄j are simple zeros of 2(z) − 4. This

implies

C2(z)P(z) = 1
4

(4 − 2(z)). (4.51)

In view of proposition 4.9, R(z) can be expressed as follows:

— If F(z) = zN+1 + · · · , then (recalling that
√

P(z) ∼ zN+1 as z → ∞)

R(z) = R(1)(z) = 1
M21(z)

⎛
⎝M11(z) − M22(z)

2
−
√

2(z)
4

− 1

⎞
⎠

= 1
C(z)h(z)

(
−iC(z)F(z) +

√
−C2(z)P(z)

)
= − i

h(z)
(F(z) −

√
P(z)). (4.52)

Accordingly,

R(1)∗(z) = − i
g(z)

(F(z) −
√

P(z)), (4.53)

(note that f ∗ = f , P∗ = P, C∗ = C, g∗ = −h) and

R(2)(z) = − 1
R(1)∗(z)

= − i
h(z)

(F(z) +
√

P(z)). (4.54)
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— If F(z) = −zN+1 + · · · , then

R(1)(z) = − i
h(z)

(F(z) +
√

P(z)). (4.55)

Remark 4.10. Concerning the singularity conditions in theorem 4.8, we observe the following:

(i) The set of poles of R(z) consists of those zeros of b∗(z) (i) which are zeros of h(z) (i.e. belong
to the conjugated auxiliary spectrum {μ̄j}N

1 ), and, at the same time, (ii) which are not zeros
of F(z) ∓√P(z) (or, in view of (4.50), are zeros of F(z) ±√P(z)). Actually, the auxiliary
spectrum {μ̄j}N

1 consists of all poles of R as a function on the two-sheet Riemann surface
(or, equivalently, the set of all poles of R(1)(z) and R(2)(z) as functions on the complex
plane).

(ii) Not all poles of R(z) are involved in the singularity conditions (only those in I and III).

Consequently, in particular cases, it is possible that there are no singularity conditions at all but
in general, there can be up to N singularity conditions in I and III.

From (4.52), (4.53) and (4.55), it follows that

1 + R∗(z)R(z) = 2
√

P(z)

F̃(z) +√P(z)
, (4.56)

where

F̃(z) =
{

F(z), if F(z) = zN+1 + · · · ,

−F(z), if F(z) = −zN+1 + · · · .
(4.57)

Thus the zeros (of order 1/2) of 1 + R∗(z)R(z) are, generically, the branch points (the main
spectrum points) {zj, z̄j}N

0 .

(iii) Step 2: getting rid of the jumps acrossR ∪ iR as well as of the singularities

Due to (4.49), one can get rid of jumps across R ∪ iR by multiplication from the right by diagonal

matrices
(

f (z) 0
0 f −1(z)

)
, where f (z) is related to a ‘square root’ of 1 + R∗(z)R(z).

Consider first the particular case, assuming that R(z) has no poles in the whole plane
(particularly, this implies that there are no singularity conditions). Define

f (z) =
{

(1 + R∗(z)R(z))1/2, z ∈ (I ∪ III) \ ΣN ,

(1 + R∗(z)R(z))−(1/2), z ∈ (II ∪ IV) \ ΣN ,
(4.58)

such that f (z) → 1 as z → ∞, and introduce

M̌(x, t, z) = M̂(x, t, z)

(
f (z) 0

0 f −1(z)

)
, z ∈ C \ (R ∪ iR ∪ ΣN). (4.59)

Using (4.49), direct calculations give that M̌(x, t, z) has no jumps across R ∪ iR.
Now we calculate J̌0(z) in the jump conditions for M̌(x, t, z) across ΣN : M̌+(x, t, z) =

M̌−(x, t, z)J̌(x, t, z) with J̌(x, t, z) = e−(izx+2iz2t)σ3 J̌0(z)e(izx+2iz2t)σ3 . We have

[J̌0]12(z) = [Ĵ0]12(z)
1

f+(z)f−(z)
.

Consequently, for z ∈ ΣN ∩ (I ∪ III), we have

[J̌0]12(z) = e2izL(R+(z) − R−(z))
(1 + R∗+(z)R+(z))1/2(1 + R∗−(z)R−(z))1/2 = −e2izLR−(z)

(1 + R∗+(z)R+(z))1/2

(1 + R∗−(z)R−(z))1/2 , (4.60)

where we have used the equality (following from (4.14))

R−−R+=R−(1 + R∗+R+).
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Similarly, for z ∈ ΣN ∩ (II ∪ IV), we have

[J̌0]12(z) = e2izL

R∗+(z) − R∗−(z)
(1 + R∗+(z)R+(z))1/2(1 + R∗−(z)R−(z))1/2

= e2izL

R∗+(z)
(1 + R∗+(z)R+(z))1/2

(1 + R∗−(z)R−(z))1/2 = −e2izLR−(z)
(1 + R∗+(z)R+(z))1/2

(1 + R∗−(z)R−(z))1/2 . (4.61)

Thus [J̌0]12(z) has the same analytic expression (4.60) across all parts of ΣN . Accordingly,

[J̌0]21(z) = −([J̌0]12(z))−1 = −e2izLR∗+(z)
(1 + R∗−(z)R−(z))1/2

(1 + R∗+(z)R+(z))1/2 . (4.62)

Theorem 4.11. Assuming that R(z) associated with the initial data of a periodic finite-band solution
q(x, t) of the NLS equation has no poles, q(x, t) can be given in terms of the solution M̌(x, t, z) of an RH
problem with the jump conditions across ΣN only: given R(z), find M̌(x, t, z) satisfying the following
conditions:

(i) M̌(x, t, z) is analytic in C \ Γ ;
(ii) M̌(x, t, z) satisfies the jump conditions across Γ : M̌+(x, t, z) = M̌−(x, t, z)J̌(x, t, z), where

J̌(x, t, z) = e−(izx+2iz2t)σ3 J̌0(z) e(izx+2iz2t)σ3 and

J̌0(z) =
(

0 iJ00(z)
iJ−1

00 (z) 0

)
, z ∈ Γ , (4.63)

with

J00(z) = i e2izLR−(z)
(1 + R∗+(z)R+(z))1/2

(1 + R∗−(z)R−(z))1/2 ; (4.64)

(iii) M̌(x, t, z) → I as z → ∞.

Namely, q(x, t) = 2i[M̌1]12(x, t), where M̌1(x, t) enters the large-z development of M̌(x, t, z): M̌(x, t, z) =
I + (M̌1(x, t)/z) + · · · .

Remark 4.12. J00(z) in (4.64) looks complicated, but it turns out that its square has a simple
expression in terms of M12 and M21 (or b(z) and b∗(z)). Indeed,

J2
00(z) = −e4izL(R−(z))2 1 + R∗+(z)R+(z)

1 + R∗−(z)R−(z)
= e4izL(R−(z))2 R+(z)

R−(z)

= e4izLR+(z)R−(z) = −e4izL R+(z)
R∗+(z)

= −e4izL M12(z)
M21(z)

= e2izL b(z)
b∗(z)

, (4.65)

where we have again used (4.14) as well as (4.11).

Now consider the general case, where R(z) can have poles. Denote by P1 = {ξj} the set of poles
of R(z) in C+ and by P2 = {μj} the set of poles of R∗(z) in C+ (thus the set of all poles of R(z) in the
whole C is given by P1 ∪ P̄2, where P̄2 = {μ̄j}). Introduce the function ν(z) having neither zeros
nor singularities in C+ \ ΣN :

ν(z) := 1
1 + R∗(z)R(z)

∏
j∈P1

z − ξ̄j

z − ξj

∏
j∈P2

z − μ̄j

z − μj
. (4.66)

Then we can define ν1/2(z) as an analytic function for z ∈ C+ \ ΣN such that ν1/2(z) → 1 as z → ∞.
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Using ν1/2(z), we define f (z) in C \ ΣN as follows:

f (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fI(z) = ν1/2(z)
∏

j∈P2

z − μj

z − μ̄j
(1 + R∗(z)R(z)), z ∈ I

fII(z) = ν1/2(z)
∏

j∈P2

z − μj

z − μ̄j
, z ∈ II

fIII(z) = 1
f ∗
II(z)

, z ∈ III

fIV(z) = 1
f ∗
I (z)

, z ∈ IV

(4.67)

Then it is straightforward to check that M̌ = M̂
(

f 0
0 f −1

)
has no singularities in C \ ΣN . Particularly,

for z ∈ II, it is the first column of M̂ that is singular at μj ∈ P2. Then, by the definition of f in II, this
singularity is cancelled for M̌.

For z ∈ I, the second column of M̂ is singular at ξj ∈ P1; this singularity is cancelled for M̌ since
the second column of M̂ is multiplied by f −1

I (z), which vanishes at such ξj due to the factor (1 +
R∗(z)R(z))−1.

By symmetry, the singularities of M̂ in II ∪ IV are cancelled for M̌ as well.
Let us calculate the jump for M̌ on ΣN . For z ∈ ΣN ∩ I, we have

[J̌0]12(z) = e2izL R+(z) − R−(z)
f +
I (z)f −

I (z)

= −e2izLR−(z)
1 + R∗+(z)R+(z)

ν(1/2)+(z)ν(1/2)−(z)
∏

j∈P2
((z − μj)/(z − μ̄j))2(1 + R∗+(z)R+(z))(1 + R∗−(z)R−(z))

= −e2izLR−(z)
ν−(1/2)+(z)ν−(1/2)−(z)

1 + R∗−(z)R−(z)

∏
j∈P2

(
z − μ̄j

z − μj

)2

. (4.68)

Defining (1 + R∗+R+)1/2(1 + R∗−R−)1/2 and (1 + R∗+R+)1/2(1 + R∗−R−)−(1/2) in accordance with
(4.66)

(1 + R∗+(z)R+(z))1/2(1 + R∗−(z)R−(z))1/2 := ν−(1/2)+(z)ν−(1/2)−(z)
∏
j∈P1

z − ξ̄j

z − ξj

∏
j∈P2

z − μ̄j

z − μj

(1 + R∗+(z)R+(z))1/2

(1 + R∗−(z)R−(z))1/2 := ν−(1/2)+(z)ν−(1/2)−(z)
1 + R∗−(z)R−(z)

∏
j∈P1

z − ξ̄j

z − ξj

∏
j∈P2

z − μ̄j

z − μj
, (4.69)

the expression for [J̌0]12(z) can be written as

[J̌0]12(z) = −e2izLR−(z)
(1 + R∗+(z)R+(z))1/2

(1 + R∗−(z)R−(z))1/2

∏
j∈P1

z − ξj

z − ξ̄j

∏
j∈P2

z − μ̄j

z − μj
. (4.70)

Now we note that the set {ξj}j∈P1 ∪ {μ̄j}j∈P2 is the set of all poles of R(z) (in the whole complex
plane). Similarly for z ∈ ΣN ∩ II.

For z ∈ ΣN ∩ III, we have

[J̌0]12(z) = e2izLR−(z)
R+(z) − R−(z)

f +
III(z)f −

III(z)
= −e2izLR−(z)(1 + R∗+(z)R+(z))f ∗+

II (z)f ∗−
II (z)

= −e2izLR−(z)(1 + R∗+(z)R+(z))ν(1/2)∗+(z)ν(1/2)∗−(z)
∏
j∈P2

(
z − μ̄j

z − μj

)2

= −e2izLR−(z)
(1 + R∗+(z)R+(z))1/2

(1 + R∗−(z)R−(z))1/2

∏
j∈P1

z − ξj

z − ξ̄j

∏
j∈P2

z − μ̄j

z − μj
, (4.71)
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where (1 + R∗+(z)R+(z))1/2/(1 + R∗−(z)R−(z))1/2 is understood as

(1 + R∗+(z)R+(z))1/2

(1 + R∗−(z)R−(z))1/2 := ν(1/2)∗+(z)ν(1/2)∗−(z)(1 + R∗+(z)R−(z))
∏
j∈P1

z − ξ̄j

z − ξj

∏
j∈P2

z − μ̄j

z − μj
, (4.72)

Summarizing, on all parts of ΣN , the (12) entry of the jump matrix M̌ has the same analytic
expression (4.70), where the square roots are understood as (4.69) in C+ and as (4.72) in C−.

Theorem 4.13. Let R(z) be associated with the initial data of a periodic finite-band solution q(x, t) of
the NLS equation. Denote by P = {ξj} the set of all poles of R(z) in C. Then q(x, t) can be given in terms

of the solution M̌(x, t, z) of the following RH problem: given R(z), find M̌(x, t, z) satisfying the following
conditions:

(i) M̌(x, t, z) is analytic in C \ ΣN;
(ii) M̌(x, t, z) satisfies the jump conditions across ΣN: M̌+(x, t, z) = M̌−(x, t, z)J̌(x, t, z), where

J̌(x, t, z) = e−(izx+2iz2t)σ3 J̌0(z)e(izx+2iz2t)σ3 and

J̌0(z) =
(

0 iJ00(z)
iJ−1

00 (z) 0

)
, z ∈ ΣN , (4.73)

with

J00(z) = i e2izLR−(z)
(1 + R∗+(z)R+(z))1/2

(1 + R∗−(z)R−(z))1/2

∏
j∈P

z − ξj

z − ξ̄j
; (4.74)

(iii) M̌(x, t, z) → I as z → ∞.

Namely, q(x, t) = 2i[M̌1]12(x, t), where M̌1(x, t) enters the large-z development of M̌(x, t, z): M̌(x, t, z) =
I + (M̌1(x, t)/z) + · · · .

Remark 4.14. In accordance with remark 4.12,

J2
00(z) = e2izL b(z)

b∗(z)

∏
j∈P

(
z − ξj

z − ξ̄j

)2

, z ∈ ΣN , (4.75)

i.e. up to the sign, the entries of the jump matrix (4.63) have simple expressions in terms of b(z)
and the poles of R(z).

(iv) Step 3: reducing the jump acrossΣN to the form of (2.1)

This step can also be performed by multiplication from the right by an appropriate diagonal
matrix. Namely, consider the following scalar RH-type problem: given J00(z) for z ∈ ΣN , find d(z)
such that:

(i) d(z) is analytic in C \ ΣN ;
(ii)

d+(z)d−(z) = J00(z)eiφj , z ∈ Σj, j = 0, . . . , N, (4.76)

where the constants {φj}N
0 are not specified a priori;

(iii) d(z) → 1 as z → ∞.

Applying the logarithm and dividing by w(z) = (
∏N

j=0(z − zj)(z − z̄j))1/2, the problem reduces to
the standard additive RH problem, which gives d(z) satisfying (4.76) in terms of the Cauchy
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integral:

d(z) = exp

⎧⎨
⎩w(z)

2π i

N∑
j=0

∫
Σj

log J00(s) + iφj

w+(s)(s − z)
ds

⎫⎬
⎭ . (4.77)

Then {φj} are determined by applying condition (iii). Indeed, since w(z) = zN+1 + · · · , by
writing 1/(s − z) as

1
s − z

= −1
z

(
1 + s

z
+
( s

z

)2
+ · · ·

)
,

we arrive at the requirements that

N∑
j=0

∫
Σj

(log J00(s) + iφj)sl−1

w+(s)
ds = 0, l = 1, . . . , N + 1,

which gives the system of N + 1 linear equations for {φj}N
0 :

Kφ = B, φ := (φ0, . . . , φN)T, (4.78)

where

Klm =
∫
Σm−1

sl−1

w+(s)
ds, Bl = i

N∑
j=0

∫
Σj

log J00(s)sl−1

w+(s)
ds, l, m = 1, . . . , N + 1. (4.79)

Then, introducing

N(x, t, z) := M̌(x, t, z)

(
d(z) 0

0 d−1(z)

)
,

the jump condition reduces to N+(x, t, z) = N−(x, t, z)JN(x, t, z), where

JN(x, t, z) =
(

0 i e−iφj−2izx−4iz2t

i eiφj+2izx+4iz2t 0

)
, z ∈ Σj,

i.e. to the form of (2.1).
Thus, we arrived at the following algorithm for solving the direct problem.

Theorem 4.15. Let q(x, t) be the finite-band, periodic solution of the NLS equation, with the spacial
period L, determined by the real constants {φj}N

0 , φj ∈ [0, 2π ) and constructed by (2.4) via the solution
of the RH problem (2.1)–(2.3). Then the constants {φj}N

0 can be retrieved from q(x, 0), x ∈ (0, L) via the
solution of the system of linear algebraic equations (4.78), where the coefficients K and B are determined
by J00(z) through (4.79). Here, J00(z) in turn is determined by (4.74) in terms of the spectral function R(z)
constructed from a(z) and b(z) associated with q(x, 0) as entries of the scattering matrix for the Zakharov–
Shabat equation on the line with a finitely supported potential q(x, 0) (continued by 0 on the whole axis).

Remark 4.16. From (4.76), we see that the replacement of J00(z) by −J00(z) on a particular Σj
can be compensated by the shift of φj by π . It follows that if we define J00(z) at each Σj as any
(continuous) branch of the square root of J2

00(z), then we can retrieve φj up to a shift by π .

5. Evolution
In the previous section, we have shown that given q(x, 0), where q(x, t) is a periodic finite-band
solution of the NLS equation, one can retrieve the underlying ‘phases’ {φj}N

0 (generating q(x, t)
through the solution of the RH problem (2.1)–(2.3)).

We first note that the idea of the backward propagation in the spectral terms using the
evolution of the scattering coefficients of the problem on the line:

a(z; T) = a(z; 0) and b(z; T) = b(z; 0) e−4iz2t,

does not work in our case since a(z; T) and b(z; T) come from the Jost solutions that are normalized
differently compared with those used for determining a(z; 0) and b(z; 0).
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On the other hand, it is the representation of q(x, t) in terms of the RH problem (2.14)–(2.16) that
makes it possible to obtain {φj}N

0 from those phases obtained from q(x, T) following the procedure
presented in theorem 4.15 where q(x, T) is considered as the initial data.

Indeed, let us introduce t̃ = t − T and let {φT
j }N

0 be the ‘phases’ obtained from q(x, T). Then,
according to (2.14)–(2.16), q(x, t) can be obtained as

q(x, t) = 2i[Φ̂T
1 ]12(x, t) e2if0x+2ig0 t̃ = 2i[Φ̂T

1 ]12(x, t) e2if0x+2ig0t e−2ig0T, (5.1)

from the solution Φ̂T of the RH problem of type (2.14)–(2.16) with the jump matrices

ĴT
j (x, t) =

⎛
⎝ 0 i e−i(φT

j +Cf
j x+Cg

j (t−T))

i ei(φT
j +Cf

j x+Cg
j (t−T)) 0

⎞
⎠ . (5.2)

Now observe that (i) the expression (5.1) being compared with (2.12) contains the factor
e−2ig0T and (ii) the multiplication of q by eiC with some real C corresponds to the transformation
Φ̂ �→ eiC/2σ3Φ̂ e−iC/2σ3 , which in turn corresponds to the transformation of the jump matrix Ĵ �→
eiC/2σ3 Ĵ e−iC/2σ3 , or, in terms of Ĵ12, to the transformation Ĵ12 �→ Ĵ12eiC. It follows that q(x, t) can be
expressed exactly as in (2.12) in terms of the solution of the RH problem with the jump matrix⎛

⎝ 0 i e−i(φT
j +Cf

j x+Cg
j (t−T)−2g0T)

i ei(φT
j +Cf

j x+Cg
j (t−T)−2g0T) 0

⎞
⎠ .

Comparing this with (2.15), we see that the jumps are the same provided φT
j and φj are related by

φj = φT
j − (Cg

j + 2g0)T. (5.3)

Expression (5.3) presents the linear evolution of the phases allowing retrieving the original
phases φj (corresponding to t = 0) using the phases φT

j obtained as the solution of the direct
problem following the algorithm presented in theorem 4.15 and applied to q(x, T), x ∈ (0, L) instead
of q(x, 0).

6. Examples

(a) Case of N = 1
Let us consider a few examples of genus-1 case sharing the same z0 and z1 but having different
phases. For our approach to work, we need the underlying q(x, t) to be periodic in x. According

to (2.12), in the case N = 1, we have to provide the commensurability of f0 from (2.10) and Cf
1 that

enters the jump matrix (2.15). A possible way to achieve this is to provide f0 = 0 by choosing z0
and z1 appropriately. From (2.9) and (2.10), it follows that given z0 and z1, f0 is calculated by

f0 = −1
2

1∑
j=0

(zj + z̄j) +
∫
Σ1

ξdξ

w+(ξ )

(∫
Σ1

dξ

w+(ξ )

)−1
.

Consequently, starting from some z0 and z1 and calculating the respective f0, applying the shift
zj �→ zj + f0, j = 0, 1 produces the needed values of z0 and z1 (generating f (z) with f0 = 0).

In the following examples, we fix z0 and z1 by z0 = 0.2780 + i, z1 = 1.2780 + i (for which we
have f0 to be approximately equal to 0), take three pairs of φ0 and φ1, generate q(x, 0) by solving
the RH problems (2.1)–(2.3) (we implement the RH problem solver [6,30,31]), and recover φ0 and
φ1 from q(x, 0) following the algorithm presented in theorem 4.15.

According to this algorithm, we have to evaluate R(z) from the scattering matrix (or the
monodromy matrix) associated with q(x, 0). In this respect, we note that in the case N = 1, an
efficient alternative way to evaluate R(z) is to use its representation R(z) = −(i/h(z))(F(z) −√P(z)),
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Table 1. Reconstruction of phases in cases with N = 1.

original phases q(0, 0) coeff. of F(z) aux. spectrum recovered phases

Ex. φ0 φ1 q a0 a1 μ φ0 φ1

1 0.4 0.8 1.5844−1.0839i −0.4873 −1.5561 0.7780+ 0.3163i 0.4005 0.7995
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 3.5416 3.9416 −1.5844+ 1.0839i 0.4873 1.5561 −0.7780−0.3163i 3.5420 3.9411
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.4 3.9416 0.1463+ 0.2139i 1.3218 −1.5561 0.7780−3.9526i 0.4000 3.9416
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

see (4.52), where the coefficients of the polynomials F(z) = z2 + a1z + a0, g(z) = q(z − μ) and h(z) =
−q(z − μ) (here q = q(0, 0)) are characterized through (4.50):

a1 = −(Re z0 + Re z1); (6.1)

a0 = 1
2

(−(Re z0 + Re z1)2 + |z0|2 + |z1|2 + 4Re z0Re z1 − |q|2); (6.2)

Re μ = a1a0 + Re z1|z0|2 + Re z0|z1|2
|q|2 ; (6.3)

and |Imμ| =
√√√√∣∣∣∣∣ |z0|2|z1|2 − a2

0
|q|2 − (Re μ)2

∣∣∣∣∣. (6.4)

Further, Im μ can be specified requiring that M12(μ) = 0.
Then we check whether μ is the pole of R(z) (it is not if F(μ) −√P(μ) = 0) and proceed to

constructing J00(z) by (4.64) in the case R(z) has no poles, or by (4.74) in the case when R(z) has
a pole. At this point, it is interesting to compare J00(z) with that obtained as the principal branch

of
√

J2
00(z), where J2

00(z) is given by simpler formulae, (4.65) or (4.75), i.e. directly in terms of the
entries of the scattering matrix.

Example 6.1. Let φ0 = 0.4 and φ1 = 0.8. Solving RH problem (2.1)–(2.3) gives q, whereas
equations (6.1) give a0, a1; μ as shown in table 1 (Im μ is chosen such that M12(μ) = 0). Thus,
the candidate for a pole of R(z) is z = μ̄ = 0.7780 − 0.3163i, but the direct check shows that
F(μ) −√P(μ) = 0 and thus R(z) has no poles. Consequently, in his case J00(z) is given by (4.64),
and the direct check shows that it coincides with that determined by (4.65) on both bands, Σ0
and Σ1.

Example 6.2. Let φ0 = 0.4 + π ≈ 3.5416 and φ1 = 0.8 + π ≈ 3.9416. Analytically, q(x, t) in this
case is that as in example 1 multiplied by −1; the same is for R(z). As for comparing J00(z) obtained
from (4.64) and (4.65), in this case, they are also related by multiplication by −1.

Example 6.3. Let φ0 = 0.4 and φ1 = 0.8 + π ≈ 3.9416. As above, μ is not a pole of R(z). In this
case, J00(z) obtained from (4.64) and (4.65) coincide on Σ0 and differ by sign on Σ1.

In all three examples, the results of the reconstruction of the phases are in good agreement
with the original φ0 and φ1; see also figure 1.

(b) Case of N = 2
In order to provide an example, where R(z) has poles that have to be considered in the phase
reconstruction algorithm, we choose a case with N = 2.

Let z0 = −1 + 3i, z1 = 5i, z2 = 1 + 3i. Smirnov [32] shows that the associated q(x, t) is periodic
in x.

Let φ0 = 0.1, φ1 = 0.2 and φ2 = 0.3. Then the calculated auxiliary spectrum consists of two
points, μ1 = −2.1061 + 0.4161i and μ2 = 2.1061 + 0.4161i, and F(z) = z3 − 38.4617z.

In this case, both μ1 and μ2 turn to be the poles of R(z) and thus, we have to proceed
using (4.74) for calculating J00(z). Then, the reconstruction gives φ0 = 0.1007, φ1 = 0.2000 and
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Figure 1. Three examples in the case with N = 1 with common main spectrum z0 = 0.2780 + i and z1 = 1.2780 + i and
different phasesφ0 andφ1. The phases are depicted as points eφj on the unit circles around the corresponding zj .
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Figure 2. The example in the case with N = 2 with main spectrum z0 = −1 + 3i, z1 = 5i, z2 = 1 + 3i and phases φ0,
φ1,φ2.

φ2 = 0.2993, which is in good agreement with the original phases. The respective results are
depicted in figure 2.

7. Conclusion
A finite-band (finite-genus) solution of the nonlinear Schrödinger equation (in particular, its
focusing version) can be characterized in terms of the solution of a Riemann–Hilbert problem
specified by (i) the set of endpoints of arcs constituting the contour for the RH problem and (ii) the
set of real constants (phases), each being associated with a particular arc. In the present paper, we
address the problem that can be described as ‘an inverse problem to the inverse problem’, namely,
given the finite-band solution, generated via the solution of the RH problem and specified by a
particular set of phases (assuming that the contour endpoints are fixed and that they are such
that the finite-band solution is periodic in x) and evaluated as a function of x for some fixed
t, retrieve the phases. Our approach is based on a sequence of consecutive transformations of
the RH problem characterizing the solution of the Cauchy problem for the NLS equation in the
periodic setting. Particularly, the role of the auxiliary spectrum points in the RH formalism is
clarified.

Data accessibility. The data and codes for the figures are available from the GitHub repository: https://github.
com/Stepan0001/RHP-Direct-problem.git [33].
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