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We consider the Riemann-Hilbert (RH) approach to
the construction of periodic finite-band solutions to
the focusing nonlinear Schrédinger (NLS) equation.
An RH problem for the solution of the finite-band
problem has been recently derived via the Fokas
method (Deconinck et al. 2021 Lett. Math. Phys.
111, 1-18. (doi:10.1007/s11005-021-01356-7); Fokas
& Lenells. 2021 Proc. R. Soc. A 477, 20200605.
(doi:10.1007 /s11005-021-01356-7)) Building on this
method, a finite-band solution to the NLS equation
can be given in terms of the solution of an associated
RH problem, the jump conditions for which are
characterized by specifying the endpoints of the arcs
defining the contour of the RH problem and the
constants (so-called phases) involved in the jump
matrices. In our work, we solve the problem of
retrieving the phases given the solution of the NLS
equation evaluated at a fixed time. Our findings
are corroborated by numerical examples of phases
computation, demonstrating the viability of the
method proposed.

© 2024 The Authors. Published by the Royal Society under the terms of the
(reative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.


https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2023.0828&domain=pdf&date_stamp=2024-03-27
mailto:shepelsky@yahoo.com
http://orcid.org/0000-0001-6616-5893
http://orcid.org/0000-0002-6580-1138
http://orcid.org/0000-0002-1838-0465
http://orcid.org/0000-0002-3035-4112
http://dx.doi.org/10.1007/s11005-021-01356-7
http://dx.doi.org/10.1007/s11005-021-01356-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1. Introduction

About 50 years ago, the inverse scattering transform (IST) method was introduced. This method
allows us to solve certain one-dimensional nonlinear evolution equations, called integrable
equations, on the entire line of a spatial variable. This is achieved by analysing the corresponding
linear problems constituting the associated Lax pair [1-4].

The IST method can be divided into three main steps. (i) First, given the initial data, it involves
solving a linear auxiliary set of equations and establishing a spectral (direct) problem. This
spectral problem maps the initial data to a set of special quantities known as spectral data. (ii)
Next, the method focuses on understanding the evolution of these spectral characteristics over
time. (iii) Finally, it tackles an inverse problem, which allows retrieving the partial differential
equation (PDE) solution at any desired value of time (evolution) variable.

For the initial value problems (for which the IST method was originally developed), where
the data and the solution are assumed to vanish sufficiently fast as the spatial variable
approach infinities, the direct spectral problem takes the form of a scattering problem. As for
the inverse problem, the IST method in the original formulation uses the Gelfand-Levitan—
Marchenko integral equations [5]. An alternative approach to the inverse problem is to consider a
factorization problem of the Riemann-Hilbert (RH) type, formulated in the complex plane of the
spectral parameter involved in the Lax pair equations [6].

The extension of the IST method to problems formulated on the half-line or on an interval
proved to be a challenging task. A systematic approach to these problems known as the unified
transform method (a.k.a. the Fokas method) was introduced by Fokas [7] and further developed
by many researchers; see [8] and references therein. The method is based on the simultaneous
spectral analysis of both equations of the Lax pair and the subsequent analysis of the so-called
Global Relation coupling, in the spectral terms, the appropriate spectral transforms of the initial
data and all boundary values. In certain cases of boundary conditions (called linearizable), the
Global Relation can be ‘solved’ in a way that allows us to formulate the associated RH problem
in terms of the data for a well-posed problem alone.

In some recent papers [9,10], it was shown that the initial boundary value problem on a finite
interval [0, L] C R with x-periodic boundary conditions [4(0, ) = (L, t), gx(0, t) = gx(L, t)] for the
nonlinear Schrédinger (NLS) equation, the focusing NLS,

it + gux + 219179 =0, (1.1)

as well as the defocusing NLS belong to the class of linearizable problems: the solution g(x, t) can
be expressed in terms of the solution of an RH problem, the data for which (the jump matrix
across a certain contour and the residue conditions) can be expressed in terms of the entries of
the scattering matrix for a spectral problem on the whole line, associated with g(x,0), x € [0, L]
(continued by 0 on R\ [0, L]). Particularly, the contour for the RH problem is a union of the real
and the imaginary axes and a number (possibly infinite) of finite segments symmetric w.r.t. the
real axis.

The NLS equation is known to be a key model governing under specific conditions the
signal propagation in single-mode optical fibres [11,12]. The linearization of problems for the
NLS equation provided by the IST method was the basis for the development of the nonlinear
Fourier transform (NFT)-based optical communication systems [11,13]. The central idea of such
an approach is to use, in order to carry the encoded data, the so-called nonlinear spectrum of
a signal and to take advantage of the linear evolution of the spectrum. Most of the NFI-based
optical communication systems studied so far deal with the rapidly vanishing signals and suffer
from the burst mode operation and high computational complexity of the involved processing
elements, which reduces the practicality of the approach [11,14]. Over recent years, there has
been a growing interest in the development of optical communication methods based on the
utilization of non-decaying solutions to the NLS equation [15-20] as a more efficient alternative to
the ‘conventional” NFT-based communications [21]. The IST operations associated with periodic
finite-genus NLS solutions were named periodic nonlinear Fourier transform (PNFT) in these
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works. In [18,19], an optical signal modulation and digital signal processing method has been
proposed for a PNFI-based transmission, where the inverse problem step (the construction of a
signal in the physical domain at the transmitter side) harnesses the numerical solution to the RH
problem.

The data for the RH problem associated with the NLS equation are 2 x 2 jump matrices, which
are off-diagonal matrices satisfying a certain symmetry condition with constant entries on each
separated part of the jump contour (consisting of a finite number of arcs). The solution of such
an RH problem gives rise to a finite-band (finite-genus) solution to the NLS equation [22,23]:
the endpoints of the arcs fix the associated Riemann surface, while the constants in the jump
matrices specify an individual solution. The present paper mainly addresses the direct part of
the approach: given the profile g(x, T) associated with some fixed t =T, recover the constants in
the jump matrices of the RH problem generating g(x, T) via the solution of an RH problem having
the form as described above. This is done through transforming the RH representation of periodic
solutions developed in [9,10] to that involving the jumps across the ‘bands’ alone. Since the latter
RH problem can be solved explicitly in terms of the associated Riemann theta functions [22,23], we
in particular obtain the affirmative answer to the hypothesis raised in remark 5.3 of [10] that one
can represent a theta-function finite-band solution in terms of the solution of an RH problem. We
note that the direct problem for the general quasi-periodic solutions was solved approximately
using neural networks in [24].

The outline of the paper is as follows. In §2, we review the inverse part consisting of generating
a finite-band solution to the NLS equation by solving the RH problem with appropriate data
(jump conditions). In §3, we briefly describe the ideas behind the development of the RH problem
formalism for the periodic problem for the NLS equation presented in [9,10]. In §4, we present
the details of the sequence of transformations of the RH problem leading to our main results on
the direct problem stated in theorems 4.11, 4.13 and 4.15. The evolution of the spectral data is
discussed in §5. Finally, in §6, we illustrate numerically the recovery of the phases (the constants
in the jump matrices for the RH problem) using our direct problem algorithm.

2. The inverse problem by the RH approach

A wide variety of solutions of an integrable nonlinear evolution equation can be constructed in
terms of solutions to a family of RH problems (parameterized by the independent variables of the
nonlinear equation, say, x and ) whose data depends on x and ¢ in a way specific to the integrable
nonlinear equation in question. Specifically, in the case of the focusing NLS equation (1.1), we
have the following.

Proposition 2.1. ([22,23]) Given {zj}gf with Imz; > 0 and {qu}g] with ¢; € [0, 27), define

— the oriented contour ZN = U].Ii o Zj, where X; = (zj, z;) (an arc connecting z; with z;), and
— the 2 x 2-valued function

0 e —Dizx—4iz*t
J@x t,2) = ; el 2izx-+4izt 0 , zZ€2 2.1

and consider the following RH problem: find a 2 x 2-valued function W (x, t,z) such that:

(i) For all xe R and t e R, ¥(x,t,z) is analytic w.r.t. z for ze C\ N and continuous up to N
from the both sides of ZN;

(i) The limiting values W (x, t,z) and ¥~ (x,t,z),z € N of ¥(x,t,z), as z approaches =N from the
+ and — side respectively, are related by J(x, t, z):

Ut tz) =~ (x, 4 2)](x t,2), zeXN; (22)

(iii) At zj and Zj, W (x, t,z) has the inverse fourth root singularities;
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(iv) As z— oo,

1 10
W(x,t,z):l-i—O(E), I=(O 1). (2.3)

Then

(i) For all x and t, the RH problem (2.1)—(2.3) has a unique solution W¥(x,t,z), which satisfies
W (x,t,z) = oW (x,t,z)on, where op = (? Bi );
(if) Defining @ (x,t,z) =W (x,t,2) e =22005  where o3 =(} ©)), determining Wi(x,t) from
U(x, t,z)=1+ W (x,t)/z) + - - - as z— oo, and determining q(x, t) by
q(x, 1) = 2i[¥1 J12(x, 1) (24)

(where [-]12 stands for the 12 entry of a matrix), we have
(@) q(x, t) is a solution of (1.1);
(b) @(x,t,z) satisfies the system of linear differential equations (Lax pair)

@, =UP (2.50)

and
O =V (2.5b)

with
Ulx, t,2) = —izos + (_q(ox’ ) "(’5’ ”) (2.6a)

and

. 0 g\, (ia? g
Vix, t,z)= —2i7%05 + 2z _ +| .- . ; 2.6b
( ) o3 (_q(x, t) 0 ) ( i —l|q|2 ( )

(iif) q(x, t) given by (2.4) is a solution of the NLS equation of finite-genus type: it can be expressed
in terms of Riemann theta functions associated with the Riemann surface of genus N, with the
branch points at zj and z;, j=0,...,N.

The last statement of proposition 2.1 follows from the possibility to express g(x, t) in terms of
the solution of another RH problem (see proposition 2.2 below), which can be considered as a
transformation of the original RH problem evoking the so-called ‘g-function mechanism’ [25,26].

In order to formulate the modified RH problem, we need a set of parameters uniquely defined
by the set of the branch points zj and zj,j=0,...,N. First, define w(z) by

N
w@)=[],/(-2)e-%), (2.7)
j=0

as a function analyticin C \ ¥ N whose branch is fixed by the asymptotic condition w(z) >~ N+ ag
z— o0. Let each arc 3 be oriented upward and let w* (z) be the values of w at the ‘+” side of the
corresponding X;. Further, define the N x N matrix K by

L Em—l df o
Km] = ij T(E)’ m,j=1,...N, (2.8)

and determine the vectors C ::(Cf ,...,CJ;\,)T and C8:= (Cg,...,C‘Iq\,)T as the solutions of the
following linear equations:

T
N
K-d'=10,...,0,—27i]" and K-Cg=—4rri|:O,...,0,2,Z(z]-+2j):| , (2.9)
j=0

(in the case N=1 or N =2, the last (respectively, two last) equations from (2.9) are to be
considered).
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Finally, determine the constants fy and go from the large-z developments of two scalar
functions, f(z) and g(z), analytic in C \ N

of
w(z) Cdé 1
= 2ni ZJ wrEE g THRTO <2> 210
and N .
_ w(2) Ga 1
g(z) = i ;JE/ TTEE—2) =2z"+g0+0 (;) . (2.11)

Proposition 2.2. ([23]) Given {zj}é\’ with Imz; > 0 and {dbj}lo\] with #; €10,27), the genus-N solution
q(x, t) of the NLS equation, which can be obtained as the solution of the RH problem of proposition 2.1, can
also be expressed by ‘ .

q(x, ) = 2i[ b1 J12(x, 1) eHH* 200 (2.12)

where &1 enters the large-z development

é(x,t,z):1+@+.--, (2.13)

of the solution & (x, t, z) of the following RH problem: find & (x, t, z) analytic in C \ XN satisfying the jump
conditions

dt(x,t,2) =" (x,1,2)]i(x,H), z€X;,j=0,...,N, (2.14)
il 0 - —i(3+Clx+C)
Jitx )= ( i(¢-+C x+Co) - ) ’ (215)
ie [ 0
and the normalization condition
qs(x,t,z):l—kO(%), z — o0. (2.16)

Here, cﬁ:cﬁ:o whereas the constants fo and go in (2.12) and Cf, Cf, j=1,...,N in (2.15) are
determined by {zj}é\] via (2.8)-(2.11).

Remark 2.3. The solution ¥(x,t,z) of the RH problem in proposition 2.1 is related to the
solution qﬁ(x, t,z) of the RH problem (2.14)—(2.16) as follows:

l]f(x, t, Z) _ e(i]"ox+igot)a3 é(x, t, Z) e(i(z—f(z))x+i(222 —g(2))t)o3 ) (217)

Remark 2.4. It is the RH problem (2.14)—(2.16) that can be solved explicitly [22,23], in terms of
Riemann theta functions associated with the genus-N Riemann surface associated with w(z) (2.7)
and characterized by the branch points zj and z;, j =0, ..., N.

Remark 2.5. If all C| together with fp turn out to be commensurable, then the underlying
solution of the NLS equation is periodic in x.

3. Direct problem in the periodic case: a sketch

The direct problem associated with the RH problem (2.1)—(2.3) (i.e. with the problem: given {gbj}sl ,
construct q(x, t)) consists in the following: given a N-genus solution gq(x, t) of the NLS equation
associated with the prescribed branch points {zj}gf and evaluated as a function of x at some fixed
t=t*, determine the underlying phase parameters ¢;.

In the case where CJ; together with fy (see (2.9)—(2.11)) are commensurable and thus the
underlying solution of the NLS equation is periodic in x, a possible way to solve the direct
problem is based on the idea of finding an RH representation for the solution of the initial
boundary value problem (IBVP) for the NLS equation, where the initial data given for x varying

87905707 081 ¥ 205 -4 2044 edsyjeuinol/iobuystigndiaaosiefos



on an interval (of the periodicity length L), i.e. g(x,0) = go(x) for x € (0, L), are supplemented by
the periodicity conditions:

q0,t)=q(L,1), gx(0,t)=qx(L,t)forallt>0. (3.1)

If the RH problem in this representation had the same structure as the original RH problem (2.1)—-
(2.3), then the constants ¢; appearing in the jump construction would give the sought solution of
our direct problem.

To get the appropriate representation, one can proceed in two steps: (i) first, provide some
RH representation (with some contour and jumps), where the data for the RH problem can be
constructed from the data of the periodic IBVDP, i.e. the initial data go(x) for x € (0, L); (ii) second,
using the flexibility of the RH representation for the solution of nonlinear equations, transform
this (original) RH problem to that having the above-mentioned desired form (2.1).

The first step has been recently addressed in [9,10], where it was shown that in the case (in
particular) of the focusing NLS equation, the solution of the periodic IBVP (not necessarily finite-
band) can be given in terms of the solution of an RH problem, where (i) the contour is the union
of a (possibly infinite) number of finite arcs and the real and imaginary axes, and (ii) the jump
matrices can be constructed in terms of the entries a(z) and b(z) of the scattering matrix:

az)  b@2) a*(z)  b(z)
0= (—b(z) a(z)) - (—b*(z) a(z)) ' 2
where we adopt the notation a*(z) = a(Z), etc. Here, s(z) is the scattering matrix of the Zakharov—
Shabat spectral problem (the x-equation of the Lax pair for the NLS equation) (2.54) considered
on the whole line, with the potential 4 = g(x, 0) involved in U being continued on the whole line
by setting it to 0 for x outside [0, L].
To ensure the consistency of presentation, we briefly describe this step that can be performed

in two sub-steps. In sub-step 1, an RH problem is constructed using the spectral functions a(z)
and b(z) supplemented by the spectral functions A(z), B(z), A1(z), B1(z), that enter the scattering

matrices
[ A*(z) B(2) _(Ai®  Bi(?)
S(z) = (—B*(Z) A(Z)) and 51(z) = (—Blflk(Z) Ay (Z))

associated with the t-equation from the Lax pair (2.5b) considered for x =0 and x = L, respectively
[27,28].

Namely, assuming for a moment that g(0, t) and 4.(0, f) are given for t € (0, T) with some T > 0,
equation (2.5b) can be considered, similarly to (2.51), as a spectral problem for a matrix equation
with coefficients determined in terms of g(0,t) and gx(0, t), giving rise to 5(z) as the associated
scattering matrix. Similarly, g(L, t) and gx(L, t) give rise to Si(z). Then the periodicity condition
(3.1) implies that S(z) = S1(z). Since V in equation (2.5b) is a polynomial of the second order w.r.t.
z, it follows that the contour where the scattering relation is established consists of two lines, the
real and imaginary axes (where Im 22 =0).

Since neither g(0, t) nor g, (0, t) are given as the data for the periodic IBVP, sub-step 2 addresses
the problem of replacing the RH problem constructed in terms of a(z), b(z), A(z) and B(z) by
an equivalent one (in the sense that ¢g(x, t) obtained following (2.4) from both problems are the
same), whose formulation involves a(z) and b(z) only. A key for performing this sub-step is the
so-called Global Relation [8,9,27,28], which is a relation among a(z), b(z), A(z), and B(z) reflecting
the fact that the IBVP with periodic boundary conditions is well-posed (particularly, has a unique
solution) without prescribing the boundary values (0, t) and (0, t).

In the current setting (i.e. for the periodic problem in x), the global relation takes the form of
the equation:

2izL
X L(A(2)a* (z) + B)b*(2))B(2) + (A@)b(z) — a(2)B(2))A(z) = 5 TO (HZE) o 33
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where the rh.s. is not given precisely but only asymptotically, as z— oco. Noticing that the r.h.s.
in (3.3) approaches 0 as z— oo staying in the first quadrant of the complex z-plane suggests
replacing the rh.s. by zero, which leads to a quadratic equation for the ratio B(z)/A(z), with the
coefficients given in terms of a(z) and b(z). Define R(z) as the solution of the resulting equation,

L )R (2) + (20" (2) — a(2))R(2) + b(z) =0, 34

by

e #la(z) — e*la*(z) + (e~ ZLa(z) — elLla*(2))2 — 4b*(2)b(z)

R@) = 2 elzLp*(z)

(3.5)
where the branch of the square root is chosen such that the branch cuts are the arcs connecting the
pairs of complex conjugate points (actually, they are z; and z;) and that R(z) — 0 as z — oc. Then,
one can show that the RH problem sought in sub-step 2 is that obtained from the original RH
problem, where B(z)/A(z) is replaced by R(z). Due to the jumps of R(z) across the arcs connecting
zj and z;, additional jump conditions on these arcs arise and thus the jump contour takes the form:
uN 0%j URUIR, whereas the jump matrix on all parts of the contour can be algebraically given in
terms of a(z), b(z) and R(z). To complete the formulation of the RH problem from step 1, the jump
conditions have to be complemented by the residue conditions at the singularities of R(z), if any
(these are also given in terms of spectral quantities determined by the initial data only). For the
exact formulation of the RH problem of step 1, see [10], theorem 4.6! and theorem 4.1 below.

Assumptions. In order to fix ideas while avoiding technicalities, we assume that (i) a(z) has a
finite number of simple zeros in the upper complex half-plane and these zeros do not coincide
with the poles of R(z) and R*(z) and (ii) Re z; # 0 for all j.

The second step consists of transforming the RH problem described above (with jumps
across U].I\; 0ZjURUIR and residue conditions) to an RH problem of the form (2.1)~(2.3) with
some constants ¢;. We will show that this step can also be divided into several sub-steps: (i)
transforming the RH problem to that with jumps across R and iR having the diagonal structure;
(ii) reducing the jump conditions to those across TN = Ujl\i 0% only and getting rid of singularity
conditions; (iii) making the jumps on each X; to have the structure as in (2.1).

In the case N =0, this step has been done in [9,10]; in this case, the contour for the RH problem
consists of a single arc, and there are no singularity conditions. The associated (0-genus) solution
of the NLS equation is a simple exponential function: g(x, t) = « e Zifxt2iot+ido where o = Imzg,
B =Rezp, and w =a? — 22

The cases with N >1 turn out to be more involved. Particularly, in the realization of sub-
step (ii) we need to get rid of singularity conditions at the singularity points of R(z). In terms
of the spectral theory of the Zakharov-Shabat equation with periodic coefficients, the (possibly
empty) set of such singularity points { p,j}ll\]l , N1 < N consists of those conjugated auxiliary spectrum
points for this problem which are located on the sheet (of the two-sheeted Riemann surface of R)
characterized by the condition R(z) — 0 as z — oo.

The resulting (z-dependent) jump matrix is as follows:

: —2izx—4iz?
Jx,t,z) = (i] ) 0 iJoo(z) e f) eV (3.6)
0

) (Z)e2izx+4izzt 0

where Joo(z) can be expressed in terms of R(z) (see (4.74) below).
Having Joo(z) obtained, sub-step (iii) can be done using the solution of the scalar RH problem:

dy(2)d_(2)=Joo(2) €%, zex;,j=0,...,N (3.7)

and

diz)—>1, z— oo. (3.8)

In [10], the notation I is adopted for R.
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In this problem, the constants ¢; are not prescribed but determined uniquely by (3.8) applied to
the Cauchy-type solution of (3.7); they are the phases sought in the direct problem.

4. Direct problem in the periodic case: details

As we have mentioned above, using the ideas of the unified transform method, it is possible to
represent the solution of the periodic problem

ige + qex + 21917 =0, xe(0,L), t>0; (4.1a)
g(x,0)=4qo(x), x€[0,L]; (4.1b)
and q0,5)=4q(L,t), qx(0,t)=gx(L,t) forall t >0, (4.1¢)

in terms of the solution of an RH problem, the data for which jump and residue conditions can
be constructed using the spectral functions a(z) and b(z) uniquely determined by the initial data
qo(x). Namely, a(z) and b(z) are the entries of the scattering matrix s(z) (3.2) relating the dedicated
solutions (Dg(x, z) and (Dg(x, z) of the Zakharov-Shabat equation (2.54), (2.6a) taken at t =0: let
Ui (x,0):= ( 7{.;;(35) qoéx) ) ; then s(z) is determined by

@3 (x,2) = P (x,2)5(2),

where <I>g (x,z) and <1>g (v, z) are the solutions of the integral equations

cbg(x, z)=e F 4 J e Yoz g (v, O)¢g(y, z)dy
0
and

. L .
Y (x,z) =e 12 J e NN (y,0)0) (y, 2) dy.
X

In the construction of the associated RH problem, a key role is played by R(z) (3.5). Before
presenting this RH problem, we discuss some analytic properties of R(z).

(a) Analytic properties of R(2)

The scattering matrix s(z) in our setting is closely related to the monodromy matrix M(z) of the
Zakharov—Shabat equation with periodic conditions defined as M(z) = ®(L, 0, z), where @(x, 0, z)
is the solution of equation (2.5a) satisfying the condition @ (0, 0, z) = I. Particularly, we have

Mi1(z) = My(2) =e #la(z) and Mia(z) = — M3, (2) = —e ZLb(z). (4.2)
In terms of M;;, equation (3.4) reads as
M21(2)R*(2) + (M (2) — M11(2))R(z) — M1a(2) = 0; (4.3)
its solutions, R(1)(z) and R(2)(z), can be expressed as follows:

Mi1(2) = Mo(z) — VA%(2) =4 e Zlg(z) — efZla*(z) — /A2(z) — 4

Rqy(2) = M1 (@) = L) (4.40)
and
M1(z) — Mpp(z) + VA2(z) — 4 e Zla(z) — ela*(2) + VA2(z) — 4
Rey@) = 2M(2) - elzLp*(z) ’ (44)
where
A(Z) = M11(2) + Mn(z) =e La(z) + ea*(z), (4.5)

and we have used that

det M(z) = M11(2) M22(2) — M12(2)M>21(z) = a*(2)a(z) + b*(2)b(z) = 1. (4.6)
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As functions of z, R(1)(z) and R(»)(z) can be viewed as the branches of function R meromorphic
on the Riemann surface (z, w) of

2

w =] |z—z)z~-z),

—

Il
=)

J

assuming that there is a finite number (denoted by N + 1) of conjugated pairs {z;, z;} of simple zeros
of function A2%(z) — 4.

In the context of the spectral theory of the Zakharov—Shabat equation with periodic conditions,
{zj, :Z'j}gj are called the main spectrum; they are the branch points of R. On the other hand, the simple
zeros of Mi,(z) which are not double zeros of A2(z) — 4 (as well as the multiple zeros of M13(z))
constitute the auxiliary spectrum { Mj}i\’ .

Note that by the definition of M, all zeros of M1;(z) are the eigenvalues of the homogeneous
Dirichlet-type problem for the Zakharov-Shabat equation (2.52) on (0,L) with g=go(x): if
M15(%) = 0 for some Z, then there exists a non-trivial vector solution & (x,2) = (&51(x, %), Z2(x, )" of
(2.5a) such that £1(0,z) = &1(L, z) = 0 (actually, one can take Z (x,z) = @@ (x,%), where MY denotes
the [-th column of a 2 x 2 matrix M).

Similarly, all zeros of M>1(z) are the eigenvalues of the homogeneous Neumann-type problem
for the Zakharov-Shabat equation (2.5a) on (0,L): for such z, there exists a non-trivial vector
solution of (2.5a) such that its second component equals 0 at x =0 and x = L.

One can view R(1)(z) and R()(z) as meromorphic functions on C \ >N with the branch cut £V,
where ¥N = Ué\] Yj and Xj are the vertical segment connecting z; and z;. Particularly, we specify
R(1)(z) by the condition R)(z) — 0 as z — oc.

Let us list some analytic properties of R that hold for all z including the limiting values at each
side, z4+ and z_, of Xj(2):

(i) By the definition of R(1y and R(y) (as the solutions of the quadratic equation),

Mu(z) e Zb(z).

R(l)(z) .R(2)(z) =— Mo (2) = eiZLb*(Z) ; (4.7)
and - -
_ Mii(z) = Mn(z) e a(z) — e®ma*(z)
R(l)(z) + R(2)(Z) = Mu (@) = eiZLb*(Z) ; (4.8)
(ii) By the symmetries (4.2),
o 1
R(z) ()= —71{(1)(2) ’ (4.9)
(both sides of (4.9) satisfy the same quadratic equation) and thus, in view of (4.7),
M1(z)R(z) = M12(2)R*(2), (4.10)
or
eZLv*(2)R(z) = —e ZLh(z)R*(2), (4.11)
where R(z) = R(1)(z) or R(z) = R(2)(2).
(iii)
(a(z) + b(z)R*(2))(a*(z) + b*(2)R(z)) = 1. (4.12)
Indeed,

@+ bR*)(@* + b*R) = (M11 — M1aR*)(M22 + M21R) = (M11 — M21R)
x (M + M21R) =1+ M1p Mo — Mo (M1 R? + (M — M11)R)
=1— My (M2R* + (M — M11)R — M1p) =1,
where we have used (4.3), (4.6) and (4.11).
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(iv)
a(z) + b(z)R*(z) #£0, (4.13)

for all z. This follows from (4.12) and the fact that b*(z)R(z) is, by (4.4), non-
singular.Actually, this also follows from the representation:

a*(z) + b*(2)R(z) = % e P (A(2) £ 4/ A2(z) — 4).

Finally, we list some properties of R involving the limiting values at the different sides of X;(z)
(denoting R*(2) := R(z1)):

(i) (R*(2))/R**(z) =R~ (2)/R*"(2) (follows from (4.10) and the fact that M;;(z) are entire

functions).
(ii)
R*"(2)R™(z) =RT(2)R* (2) = —1 (4.14)
(follows from (4.9) and Rp)(z+) = R(1y(z-), R)(z+) = Rp)(z-));
(iif)
a*(2) + b*(2)R ™ (2) = e 2L (a(z) + b(z)R* (2)), (4.15)

(follows from (4.14), (4.2) and (4.3) for R™).

(b) RH problem associated with the periodic problem for the NLS

From now on, we denote by R(z) the branch in (4.4) decaying to 0 as z — oo. Define G(z), G1(z)
and G;(z) as follows:

_ R*(Z) _ _R*(Z) * * 721zL * b*(Z)
O =@ R @) e ¢ O EREI= TR =gy (10
_ ZiZLa(Z)R(Z) 21zL * 2 b(Z)

Gile) = o s = PRGN () + b (RE) =) (R(z) u(z)) (417)
and  Gy(2)=a~2(2)G1(2) = R(z) — bgz; 4.18)
Using these functions, define a 2 x 2 function Jo(z) for ze RU R U ZN:

1 0 1 7(z) 1 Gz(z) 2eR
Gi) 1) \F@ 1+ ' *
1 G¥ Z) 1+ r(z) *(Z) 2R
0 (z) G(z) 1)’ -
1 —Gz(z) a1(z) 1 eiR
0 0 a(z) Gz 1)’ +’
(0 © )(“Z’ e 3) e
0 0 (i*(2)! -
Jo(z) = (4.19)
((1) R+(z) R™ (z)) , cesNAL
0 N
(e—leL(R* (2) — R*+(Z)) 1) 4 ze T NI,
21zL
((1) (R+(Z) R (Z))) ) ze NI,
0 ze NNV
R*(z) — R*+(z) 1)’ ’
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where

>k

U@ nd =22, (4.20)
a(z) a(z)

Finally, specify the residue conditions for a 2 x 2 function M(x, t, z) at the poles of R(z) and R*(z)

as follows:

r(z) =

(i) Atthe poles & of R(z) forz e I:

Res M) (x,,2) = e 2545 Res RMD x, 1, ). 4.21)

Z=.’:"/' Z=r‘:~']‘

(i) At the poles &; of R*(z) for z € II:
Res MD(x, t,z) = _e2i¥f<x—L>+4f5f’*Regs R* (M@ (x, t, ). (4.22)
Z=]‘ z= i
(iii) At the poles &; of R(z) for z € III:

Res MO (x,t,2) = e_2iéf(x_L)_4iEf2tReés REMD(x, £,&). (4.23)
Z=gj z=§j

(iv) At the poles & of R*(z) forz e IV:

Res MD(x, t,2) = —ezjg/xHiSthRegs R @M (x, 1, &). (4.24)
z=&; z=§

Theorem 4.1. Let a(z) and b(z) be the spectral functions associated with qo(x), x € (0, L) via the solution
of the direct scattering problem for the Zakharov-Shabat equation (2.5a) with q = qo(x). Assume that (i)
a(z) has a finite number of simple zeros in C. and (ii) the number of pairs {z;, z;} of simple zeros of the
function A%(z) — 4, where A(z) is defined by (4.5), is finite. Introduce N by >N = US’ Xj, where Xj is the
vertical segment connecting z; and z;. Let R(z) be determined by a and b via (4.4) such that R(z) is analytic
in C\ ZN and R(z) — 0 as z — oo, and let G(z) and Gy (z) be determined in terms ofa, band R by (4.16)
and (4.17).

Let q(x, t) be defined by q(x, t) = 2i[M1]12(x, t), where M(x, t,z) =1 + (M1 (x, t)/z) + - - - as z — oo and
M(x, t,z) is the solution of the Riemann—Hilbert problem specified by (i) the jump conditions

Mt t,z2)=M"(x,4,2)](x,t,z), zeRUIRUZXY, (4.25)

where contour is oriented such that R is oriented from left to right, iR and iR_ are oriented towards
infinities, and X are oriented upwards, from Zj to z;, and

](x, t, Z) — e—(izx-‘rZiz2 t)03]0 (Z) e(izx+2i22 t)63, (426)

where Jq is given by (4.19); (ii) the residue conditions (4.21)—(4.24), and (iii) the normalization condition
M(x,t,z) — I as z— oo. Then q(x, t) is the solution of the periodic problem (4.1).

Remark 4.2. As we mentioned above, the construction of the RH problem in theorem 4.1 is
motivated by the application of the unified transform method to the periodic problem [9,10]. On
the other hand, one can show directly that g(x,t) obtained via the solution of this RH problem
solves problem (4.1).

Particularly, one can prove that g(x,f) (i) satisfies the initial conditions g(x,0) =go(x) and (ii)
satisfies the periodicity conditions (4.1c) by proving that (a) the jumps and the residue conditions
for t =0 can be mapped to those in the RH problem associated with go(x) and (b) the jumps and
the residue conditions for x =0 and x = L can be mapped to each other.

(i) Verifying the initial conditions
Recall that the RH problem associated with go(x) is as follows [27]: find M@ (x, z) such that
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(i) MW (x,z) is meromorphic in C \ R and satisfies the jump condition on r®.=R

MOt (x,2) = MO~ (x,2)] O (x,2), zex®, (4.27)
where
](X) (x,z):= e—incs](()x) @) eizxos,
with
@ (1H 1@ (@)
Jo (2)= ( ) N ) . (4.28)

(ii) Assuming thata(z) has a finite number of simple zeros {v]-}lQ in C4 (generic case), MO (x,2)
satisfies the residue conditions

2ivix 1%
et h* (v;
Res MY (y, z) = ,7(])1\40‘)(2) (x,v)) (4.29a)
z=yj a(vj)
and
—2ivix (5
e “Mi*b(v;
Res MM (x, z) = —%(])M(")(l)(x, 7). (4.29D)
Z:f)j a*(vj‘)

(iii) M®™(x,z) — I as z— oo for all x € (0, L).

Then go(x) can be obtained by go(x) =2i[M(1x)]12(x), where ng)(x) is involved in the large-z
development of MO (x,z): MW (x,z) =1 + (ng)(x) /z)+ .

Now we note that the RH problem in theorem 4.1 taken at t =0 can be mapped to the RH
problem associated with go(x) as follows:

(u—l(z) 0 ) (1 —Gl(z)e_Zizx>
, z€l,
0 a(z) 1

G(Z)e2lzx 1) 4

1 G* —2izx
(0 Z)e ) zelll,

*(Z) 0 1 0 2elV
(ll*) I(Z) GT (Z) eZizx 1 4 :

M®(x, z) := M(x,0,z) - (4.30)

Indeed:

(i) By straightforward calculations, the jump for M®(x, z) across R is as in (4.27)—(4.28);
(ii) M®(x, z) has no jump across N,
(iii) All the off-diagonal entries in the r.h.s. of (4.30) go to 0 exponentially fast as z — oo, Im z #
0 for x € (0, L) (by the first expressions in (4.16) and (4.17) and since R(z) — 0).

Now consider the mapping of the residue conditions.
(I) For z e I: MW(x, z) = M(x, 0, 2) <(1/a(z)) _(Gl(z)/?()z) 721”)
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(i) Ata zerov;of a(z),

1 ;C(l)(x) 4o (4.31)

MWD (x, ) = MD(x,0,2) — =
az)  z—v

On the other hand, from G1(z) = —a(z)b(z) + a*(2)R(z), it follows that as z — vj,

G1(2) = —a(y)(z — v)b(v)) + O((z — 1))

and thus

MO, = MV (10,9 20 25 4 M (x,0,)

= Lcm(x)a(vj)(z — v)b(v)) e + O(z — v))
zZ— Vj

= CD@)a(v))b(v)) e 2 4+ O(z — v). (4.32)

It follows (also using b(vj) = ﬁ) that
]

- by

CO(x) = e2“’/‘x7 (V"f) ) M) (x, ).
]

This, being combined with (4.31), gives

().
Res MO x, 2 2 D p @)y, W),

=Y ”(V])

which is the required residue condition (4.29a).
(ii) Ata pole & of R(z),

Regs MW@ (x,z) = —a(éj)Regs R(z) e 25*MWD(x, 0, &)+ a(E]')Regs MP(x,0,z)

=5 z=§j z=§j

= —a(éj)Ress R(z) e 25 MW (x, 0, &) + a(éj)Regs R(z) e 2*MW(x,0,£) =0,
z= i z= i

where we have used (4.21).

(II) For z € IT: M™(x, z) = M(x, 0, ) ( —G(zl) o2z (1)> In particular,

M@ (x, v) = MP(x,0,1)),

where v; is a zero of a(z). On the other hand, by (4.16),

b*(v;
Res G(z) = — — ()
z=vj a(vj)
and thus
. b*(v;) ..
Res MWD(x, z) = —Res G(z) "M@ (x, 0, v)) = —%f) A MO (x, v)),
ZZV/' z:v]' :

which is again the required residue condition (4.294). Similarly for (4.29b).
Summarizing, transformation (4.30) produces M®™(x,z) that satisfies the jump and residue
conditions for the RH problem associated with gg(x), which implies that g(x, 0) = go(x).

(ii) Verifying the periodicity

In order to verify the periodicity, it is sufficient to relate the RH problem for M(L, t,z) to that for
M(0, t, z) in such a way that both the jump residue conditions match correctly.
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Introduce the piece-wise analytic matrix functions

I, zelUIV,
a@) +b@R*()  —b(z)e
, zell,
PO(t,z) = 0 a*(z) + b (2)R(2) (4.33)
(a(z) + b(z).RZ* (2) 0 ) R
b*(z) ezt a*(z) + b*(2)R(z)
and
I, zellUIII,
a*(z) + b*(z)R(z) 0 el
PO, z) = { \ —*(2) 2L 42 4(2) + b(2)R*(2) ) ' (4.34)
(a*(z) +b*(2)R(z) b(z)e HL e_4izzt)
, zelV.
0 a(z) + b(z)R*(z)
Then introduce
MO, 2) :=M(©0,t,2)PD(t,z) and MO(t,z):=M(L,t,2)PD(t, z). (4.35)

Proposition 4.3. M()(t,z) = MO(t, z); consequently, g(0, t) = q(L, t) and gx(0, t) = gx(L, t) for all t.

To prove the proposition, it is sufficient to prove that M®)(t, z) and MO(t, z) satisfy the same
jump and residue conditions.

1. Using the definitions of R, G and G, as well as the properties (4.11) and (4.12) of R, it is by
straightforward calculations that for z € R U R,

MO*(t,2) = MO~ (t,2)]O(t,z) and MOF(t,2) = MO~ (¢, 2)] (¢, 2)

1 R@e
R*(2) €42 14 R*(2)R(2)
I and IIT have positive boundaries.

2. Using, additionally, property (4.15), it follows that on parts of N, J®) is given by

(1 (R*(z) — R—(2)) e~42t
1

involving the same J®(t,z) = ( ), where R U iR is oriented such that quadrants

>, zelUII,

1

JO(t2) =
((R*+(Z) —R*(2)) e4izzt

0
1) zellUIV.

3. In order to prove that MO(t,z) and M(t)(t, z) satisfy the same residue conditions, we observe
from (3.4) that if & is a pole of R(z), then b*(§;) = 0 and

lim b*(2)R(2) = e a(§) — o (§); (4.36)
z—&;
consequently,

({l* + b*R)|Z:§j = e_ZiEfLa(éj) and (a+ bR*)|Z=§j = eziéfLa*(Sj). (4.37)

Similarly, if §; is a pole of R*(z), then b(§j) = 0 and
lim b(z)R"(2) = e*"a"(§) - a(é), (4.38)
72§

whereas (4.37) keep holding. Using these properties, it is again by straightforward calculations
that MO(t, z) and MO (¢, z) satisfy the same residue conditions:

(i) Atthe poles & of R(z) forz €l and z € III:

Res MOt z) = e*‘ﬁ%szeSs REMOD(t, &), (4.39)
Z=/' z= i
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(ii) Atthe poles; of R*(z) forzellandzelV:

Res MOD (¢ 2) = 4i§i2tRe§s R* MO, &). (4.40)
z=§j

Z=/

(c) From the basic RH problem to a RH problem with structure (2.1)—(2.3)

The reduction of the basic RH problem to the RH problem with structure (2.1)-(2.3) as in
proposition 2.1 can be performed in several consecutive steps.

In Step 1, we “undress’ the jump matrices on R U iR to those having a diagonal structure. This
step will require appropriate algebraic factorizations of the jumps.

In Step 2, we reduce the RH problem obtained at Step 1 to that (i) with the contour N only and
(ii) having no residue conditions. This step will require analytic factorization of a scalar function.

In Step 3, we reduce the RH problem obtained at Step 2 to that having the structure as in
proposition 2.1, i.e. involving only constants ¢; as non-trivial elements in the construction of the
jump matrices across ¥V,

(i) Step 1: Undressing the jump matriceson R U /R

Recall that in all our RH problem transformations involving multiplication from the right, we
need that the diagonal part of the factors approaches the identity matrix as z — oo (in all domains)
whereas the off-diagonal parts decay exponentially fast to 0 for all £ > 0 and all x € (0, L). Since
the off-diagonal parts involve 2t o o=2izx—4iZ’t it follows that the appropriate factors
should have triangular form, with a single non-zero off-diagonal entry containing the decaying

exponential.
Introduce
_ ; _ -1 _ *
D)= T pERE D20 =Dr'@=1+RERE)
1+ R*(2)R(z) s L+ R¥(2)R(2)
B R e Ee A A e R BT
B eZiZLR(Z) B R* (Z)
and UO =—1Trore '@~ T3 ReRe

Proposition 4.4. The jump matrix Jo(z) defined by (4.19) allows the following algebraic factorizations:

(1 L*(z)) (Dl(z) 0 > ( 1 0)
—1 s Z€R+/
0 1 D; (2)) \L(z) 1
( 1 o) <D2(z) 0 )(1 U(z)) e
J\ur@ 1 D'/ \o 1)’ -
Jole) = ( 1 o) <D3(z) 0 )(1 U(z)) , (41)
1 P z€iRy,
—L(z) 1 D3 (z)/ \O 1

(1 o) <D4(z) ? (1 —L*(z)), e
U@ 1 ;') \o 1

Proof. By straightforward calculations. |
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Factorizations (4.41) suggest the undressing transformation of the RH problem as follows:

0
~L(z) e21zx+4lz 1) / zel

1 —ll(z)e Dizx—4iz*t
0 , zell

M(x, t,z) =M(x,t,z) - 0
) , zelll

(4.42)

u* (Z) e21zx+4lz 1

1 L*@2) o—2izx— 4iz%t
0 1 , zelV.

Note that this transformation is appropriate in the sense that all the off-diagonal entries in the
factors in (4.42) decay exponentially fast to 0 as z— oo for all t > 0 and x € (0, ]).

The jump conditions for M across R UiR involve obviously the diagonal matrices from the
rh.s. of (4.41). Concerning the jump conditions for M across N and the residue conditions for
the RH problem for M, we have the following two propositions.

Proposition 4.5. M satisfies the following jump conditions across XN:
M*(x,t,z) = M~ (x, t,2)](x, t, z), where J(x, t, z) = e~ (¥ +2i2003  (7) e(i2¥+2i2 005 1ty

0 R*(z) — R (z
( : @-K @) zezVnl,
O 0 0
0 2izL
(R*~(z) — R**(2)) —2izL R*+(2)6R*(Z)) RS = i
- z) — z))e
Jo(z) = 0 (R+(2) — R-(2)) %L (4.43)
( o2 ) , ze XN N1,
FOR® 0
0 e
RH*@)-R=() | ze ZNNIV.
R*~(z) — R*"(z) 0
Proof. Consider ¥ NN I; here we have
~ 1 0\ (1 RT-R- 1 0
Jolz) = (L 1) (0 1 ) (—L+ 1)
( 1 0) (1 R+—R—> ( 1 o)
= R*— R*+
w1 \0 1 “HReR 1
( 1 Rt—R~ ) ( 1 0)
= R* RT—R)R*™ R*+ .
TR 1+ ( 1+R**32* —TIRFRE L
Now we note that the (22) entry in the first matrix equals 0, because
14+ R*"R"+(RT—R7HR* =1+ R* R +R'R*” —R"R* =1+ RTR*~ =0, (4.44)
due to (4.14). It follows that
= 1 Rt—R~ 1 0 0 RT—R~
]0 (Z) = R*— 0 _ R*+ 1 = 1 0 ,
T+R*R- T+R* R+ R-—R*¥
where we have again used the equality (4.44). Similarly for other quadrants. u

Proposition 4.6. M satisfies the following singularity conditions:
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(1) Forze I UIII,
~ zZ— S] 0
M(x,t,2) =Mreg(v, £,2) | 1], (4.45)
at all poles of R(z) in I U III, where Myeq is nowhere singular in IU I11.
(it) ForzellUIV,

1
N == 0
M(x, t,2) = Myeg(x, t,2) | ©5 , (4.46)
0 z—§
at all poles & of R*(z) in II U IV, where Myeq is nowhere singular in IIUIV.

Remark 4.7. The poles of R*(z) in II U1V are complex conjugated to those of R(z) in I U III.
1 0
‘ © 7(R*/(1+R*R)) eZizx+4iz2t 1
that M® = M@ and thus M® has the required singularity from (4.45) due to (4.21).
Now we need to show that M (z) = O(z — &) asz — &;. Indeed,

Proof. Proof of proposition 4.6. Consider z € I, where M = M ( ) It follows

VD (2) = MV (z) — R*(2) 2izx+4iz2t 3 1(2) () _ A1)
MY (z) = M"Y (z) T R ORG) A TN 12) (7)) = MW(2)
Res R(z)
_ RE(&) = M)(e. 06 &
1+R*<sj>(}22=e$sR<z>/<z—sj)+O<1>)( cog G TOM)=0E)

Similarly for other quadrants.
Looking at the diagonal factors in (4.41), we note that we can simplify them getting rid of
a+ bR* and a* + b*R by introducing

I, zellUTII,
M=M- (a*-l—b*R 0

0 bR*)' zelUIV.
a+

Recall thata + bR* and a* 4 b*R have neither zeros nor singularities, and thus M satisfies the same
singularity conditions as M.
On the other hand, the jump conditions for M on ZN N Tbecome:

() ( 0 R R<z>) SR
0= * 4 LRR— I
0 a’ + b R m 0 0 a—+ bR +
(4.47)
Using (a + bR*™)(a* + b*RT) = 7L (see (4.15) and (4.12)), jump (4.47) becomes:
0 (R*(z) — R™(2)) et
Joz) = ( o2zl . ) , zexNnl, (4.48)
R=(z) — Rt(2)

which has the same form as for z € N N 111, see (4.43).
Similarly, the jump for M on N NIV has the same expression as that for M on TN N1V, see
(4.43). [ ]

Changing the orientation of R, (setting it to go from +oo to 0) and summarizing, we arrive at
the following.

Theorem 4.8. Assuming that the number of the main spectrum points associated with qo(x) is finite, the
solution q(x, t) of the periodic IBVP (4.1) can be given by q(x,t) = 2i[M1]12(x, t), where M (x, t) enters the
large-z development of M(x, t,z): M(x, tzy=I1+ (Ml (x,0)/z)+---, and M(x, t,z) is the solution of the
following RH problem: given R(z) (which is constructed by (4.4) from the scattering coefficients a(z) and
b(z) associated with the initial data qo(x)), where the branch is chosen such that R(z) — 0 as z — oo), find
M(x, t, z) satisfying the following conditions:
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@) M(x t, z) is meromorphic in C\ (RUIR U ZJN)

(1) M(x t,z) satzsﬁes the ]ump conditions M“‘(x t, z)_M (x,t, z)](x t,z), where ](x t,z) =
(1zx+21z to3 T To (Z)e(zszrZzz Hos and

1+ R*(2)R(z) 0 )

0 1 , ze RUIR,

1+ R*(z)R(2)
0 (Rt(z) — R (2))e%L
Jo(z) = e—2i7L 0 , zesNn(@uUIl),  (4.49)
R—(z) — R*(2)
e2izL
0 R¥*(z)—R*(2) |, zeZNNnUIUIV)

(R* (z) — R*Jr(z))efZizL 0

(1ii) ]\:/I(x, t, z) satisfies the singularity conditions (4.45) (for z € I U III) and (4.46) (for z € IIUIV).
(iv) M(x,t,z) — I as z— oo.

(ii) R(z) in connection with the theory of periodic finite-band solutions of the NLS

Before passing to Step 2 (getting rid of jumps across RUIR as well as of the singularity
conditions), let us take a look at R(z) taking into account the connection to the theory of finite-band
periodic solutions (see, e.g. [29] and references therein).

Fix (xg, tp) = (0,0) and denote g = q(0, 0) = qo(0).

Proposition 4.9. There exists an entire function C(z) such that Mya(z) = C(2)g(z), Ma1(z) =
C(2)h(z), and (i/2)(M11(z) — M2a(z)) = C(2)F(z), where

(i) $&) =g 1 =) and h@) == [T - iy
(if) The points {M]} constitute the auxiliary spectrum (at (x,t)=(0,0)) of the Zakharov—-Shabat
operator (2.5a) with a periodic, finite-genus potential qo(x); it consists of the simple zeros of
M12(2) (or b(z)), which are not double zeros of A(z) — 4, where A(z) = M11(z) + May(2), and
of the multiple zeros of Mi2(z), if any;
(iif) F(z) is a polynomial such that the following relation holds:

F2(z) = P(z) + g(2)h(z), (4.50)
where P(z) = w?(z) = ]_[jlio(z —2j)(z — zj) and z; and z; are simple zeros of A%(z) — 4. This
implies

C%(2)P(z) = 3(4 — A%(2)). (4.51)

In view of proposition 4.9, R(z) can be expressed as follows:

— IfF(z) =zN*! 4 ..., then (recalling that /P(z) ~ zN*! as z — o)

R(Z) = R(l)(z) = -1

1 Mii(z) = Man(z)  [A%(2)
Ma1(2) 2 4

=m(—z€(z)ﬂz)+ —CZ(z)P(z)) (F(z) VP(2)). (4.52)

Accordingly,
RW*(z) = (—(F(z) VD)), (4.53)
(note that f*=f, P*=P, C*=C, g* = —h) and

LZ(F(Z) +PR)). (4.54)

1
=" ri@ ~ e
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— If F(z) = —zN*1 4+ ..., then

i
R(l)(Z) = _WZ)(F(Z) + v/ P(2)). (4.55)
Remark 4.10. Concerning the singularity conditions in theorem 4.8, we observe the following:

(i) The set of poles of R(z) consists of those zeros of b*(z) (i) which are zeros of i(z) (i.e. belong
to the conjugated auxiliary spectrum { ﬂj}ll\’ ), and, at the same time, (ii) which are not zeros
of F(z) F \/1% (or, in view of (4.50), are zeros of F(z) £ \/@). Actually, the auxiliary
spectrum {[2]'}]1\] consists of all poles of R as a function on the two-sheet Riemann surface
(or, equivalently, the set of all poles of R()(z) and R)(z) as functions on the complex
plane).

(if) Not all poles of R(z) are involved in the singularity conditions (only those in I and III).

Consequently, in particular cases, it is possible that there are no singularity conditions at all but
in general, there can be up to N singularity conditions in I and III.

From (4.52), (4.53) and (4.55), it follows that
14 R*(2)R(z) = _2VP@)

T F ' (4.56)
F(z) + /P(z)
where
TN F(z), ifF(z)=2Nt1 ...,
= {_F(Z)r if F(z) = —zNt1 ... | (4.57)

Thus the zeros (of order 1/2) of 1+ R*(z)R(z) are, generically, the branch points (the main
spectrum points) {z;, 2]-}6\7 .

(iii) Step 2: getting rid of the jumps across R U /IR as well as of the sinqularities

Due to (4.49), one can get rid of jumps across R U iR by multiplication from the right by diagonal

f (OZ) f*? @ ), where f(z) is related to a ‘square root’ of 1 + R*(z)R(z).
Consider first the particular case, assuming that R(z) has no poles in the whole plane

(particularly, this implies that there are no singularity conditions). Define

matrices (

A+ R*@RE@)YY?,  ze@ull\ =N,
fle)= {(1 +R*(2)R@)"12, ze@ulIv)\ =N, (4.58)
such that f(z) — 1 as z — oo, and introduce
M(x, t,z) = M(x, 1, 2) (f (OZ) f*? (Z)> , zeC\(RUIRUZN). (4.59)

Using (4.49), direct calculations give that M(x, t,2) has no jumps across R U iR.
Now we calculate Jo(z) in the jump conditions for M(x,t,z) across SN Mt(x,t,z) =
M~ (x, t,2)(x, t, z) with J(x, t, z) = e~ (25 +2i2005 | (2)e(i23+2i2)03 We have

. - 1
Uoli2(z) = []O]lz(z)m-
Consequently, for ze XN N (I U II), we have

e*L(R*(2) =R (2)) R .
T+ R @R @A+ @R @2 O

where we have used the equality (following from (4.14))

(1+R*F(2)R"(2))'/2

olio(z) = (14 R*(z)R=(2)1/2’

(4.60)

R™—RT=R~(1+ R*'R").
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Similarly, forz € ¥ N (IIUIV), we have
2izL
R¥*(z) = R*(2)

¥l (14 R @R R
RO AR R @ © ~ @

olo(2) = 1+ R (2)RT(2)/*(1 + R* (2)R™(2))"/?

(1+ R*F(2)R*(2))1/2
(1 + R~ (z)R(2))1/2’

(4.61)

Thus [70]12(2) has the same analytic expression (4.60) across all parts of ¥ N, Accordingly,

2zl it () (1+R* ()R~ (2))'/2

Jolz1(2) = ~([Jolia(2) ™" = —e 1T R @R @)

(4.62)

Theorem 4.11. Assuming that R(z) associated with the initial data of a periodic finite-band solution
q(x, t) of the NLS equation has no poles, q(x, t) can be given in terms of the solution M(x,t,z) of an RH
problem with the jump conditions across XN only: given R(z), find M(x,t,z) satisfying the following
conditions:

0] M(x, t,z) is analyticin C\ I';
(i) M(x,t,z) satisfies the jump conditions across I': MV (x,t,z)=M"(x,t,z)[(x,t,z), where
7(x’ £, Z) — e—(i2x+2i22t)(73j0 (Z) e(izx+2izzt)r73 and

P iJoo(z)
]O(Z)_<i]001(z) 0 ) zerl, (4.63)

with

(1+R*F(z)R*(2)'/?

o Disl
Joo(z) =ie”™™"R™(2) (14 R*(z)R=(2)1/2’

(4.64)
(iil) M(x,t,z) — I as z — oo.

Namely, q(x, t) = 2i[M1]12(x, t), where Ml(x, t) enters the large-z development of M(x, t,2): M(x, t,z) =
I+ Mi(x,t)/z) + -

Remark 4.12. Jpo(z) in (4.64) looks complicated, but it turns out that its square has a simple
expression in terms of M1y and My (or b(z) and b*(z)). Indeed,

1+ R**(z)R R*
R =~ R @ e o — itk R
R o b
412LR+(Z)R @)=-— olizL R*Jr((zz)) _ izl ﬁzg; eZIZLb*(i(ZZ))’ (4.65)

where we have again used (4.14) as well as (4.11).

Now consider the general case, where R(z) can have poles. Denote by Py = {;} the set of poles
of R(z) in C4 and by P = {M]} the set of poles of R*(z) in C. (thus the set of all poles of R(z) in the
whole C is given by P; U Py, where Py = {#}). Introduce the function v(z) having neither zeros
nor singularities in C4. \ >N

— 1 —§
V(@)= 1+ R*(z)R(z) ].1:[ - l_[ (4.66)

E] jeP2 B M]

Then we can define v1/2(z) as an analytic function forz e C \ >N such that v!/2(z) - 1 as z — oo.
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Using v1/2(z), we define f(z)inC\ N as follows:

filz) = v112(2) 1‘[]€P2 S (1 FR*@R@), zel
fir®) =@ [iep, Z%Z]:' zell
f@)= 1 1 (4.67)
fii(z) = ff? @ zelll
fiv(z)= fl*(z), zelV

Then it is straightforward to check that M=M (f 0 ) has no singularities in C \ X N . Particularly,

for z € II, it is the first column of M that is singular at 11; € P>. Then, by the definition of f in II, this
singularity is cancelled for M.

For z € I, the second column of M is singular at & € Py; this singularity is cancelled for M since
the second column of M is multiplied by fl_l(z), which vanishes at such &; due to the factor (1 +
R*(z)R(z))" L.

By symmetry, the singularities of M in Il U1V are cancelled for M as well.

Let us calculate the jump for M on XN, For z e XN N1, we have

21 RT(2) —=R™(2)

Uohal®) = o @
— —e?"LR(3) 1+ R (z)R*(2)
V/2D+(2)u1/2=(2) [Tjep, (z — 1)/ (z = 1)*(1 + R*F(2)R*(2)(1 + R*~(z)R~(2))
o v D)=/ (3) Z—
2izL ]
TR + R*~(z)R~(z) 1_[ < - .U«]> ' (4.68)

Defining (1 + R**R*)1/2(1 + R*“R7)1/2 and (1 + R**R*)1/2(1 + R*~R™)~(1/2) in accordance with
(4.66)

(1+R*" (2R (2))/2(1 + R* " (2)R ™ (2))/2 1= v~ 1D ()p=(1/2~ (z)l_[ 22§ ]_[
]eP1 - 51 ]eP B M]

14+ R (@R ()2 v~ 12+ (z)y=(1/2)- (z)

4.69
(1+R*=(@2R-@)/27 14+R*~(2)R ]le_P[ z—§ jl;lz z— (4.69)
the expression for [70]12(2) can be written as
¥ gy WA+ RT @RV 2 5]
Uoli2@) =~ R™ @) e SR ]_[ H — u] (4.70)

]EP

Now we note that the set {§j}jep, U {ij}jep, is the set of all poles of R(z) (in the whole complex
plane). Similarly forze ¥ N1
For z € N N1II, we have

R*(z) — R (2) _
fin @@

~\ 2
—e LR ()1 + R @R @2 22 () T] (z - Mj)

jeP, —H

oli2(z) =R (2) - I R™(2)(1 + R @RT @) 2)fr (2)

(1+R*F(2)R*(2))'/2

z— E]
(1+ R~ (2R (2))12 ]1;,[ & 2 u,

—27LR(2) (4.71)
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where (1 4+ R*F(2)RT(2))/2/(1 + R*~(z2)R~(2))/? is understood as

(1+R*F(2)R*(2))'/?
1+ R-@R @72

»(1/2) *+(Z)v(1/2)* @)1 +R*+(Z)R (2)) l_[ %'] 1_[ j, (4.72)

]eP1 ] ]ePz

Summarizing, on all parts of N, the (12) entry of the jump matrix M has the same analytic
expression (4.70), where the square roots are understood as (4.69) in C and as (4.72) in C_.

Theorem 4.13. Let R(z) be associated with the initial data of a periodic finite-band solution q(x, t) of
the NLS equation. Denote by P = {&;} the set of all poles of R(z) in C. Then q(x, t) can be given in terms
of the solution M(x, t,z) of the following RH problem: given R(z), find M(x, t, z) satisfying the following
conditions:

(i) M(x,t,z) is analytic in C \ £V;
(1) M(x,t,z) satisfies the jump conditions across N M*(x, t,2) = M~ (x, t,2)[(x, t,2), where
7(x’ £, Z) — e—(izx+2izzt)z13j0(Z)e(izx+2izzt)r73 and

Jo(z) = Joo@) e oN, 4.73)
1]00 (2)

with
(14 R*F(2)RT(2))"/?

_ s 2zl p—
]OO(Z)_Ie R ()(1+R* Z)R (Z))l/z

]‘[ S é’ (4.74)

(i) M(x,t,z) — I as z — oco.

Namely, q(x, t) =2i[M1]12(x, t), where Ml (x, t) enters the large-z development of M(x, t,2): M(x, t,z) =
I+ (Mi(x, )/z) + -

Remark 4.14. In accordance with remark 4.12,

](ZJO(Z) _ eZiZL bi((zz)) 1—[ (Z - %) , ze EN, 4.75)

z—§]

i.e. up to the sign, the entries of the jump matrix (4.63) have simple expressions in terms of b(z)
and the poles of R(z).

(iv) Step 3: reducing the jump across 3V to the form of (2.1)

This step can also be performed by multiplication from the right by an appropriate diagonal
matrix. Namely, consider the following scalar RH-type problem: given Joo(z) for z € XV, find d(z)
such that:

(i) d(z) is analytic in C \ ZN;
(ii)
d+(@)d—(2) =Joo(2)e”, ze X}, j=0,...,N, (4.76)
where the constants {qb]'}oN are not specified a priori;

(iii) d(z) > 1 as z — oo.

Applying the logarithm and dividing by w(z) = (l_[jl\io(z —zj)(z — Zj))l/ 2, the problem reduces to
the standard additive RH problem, which gives d(z) satisfying (4.76) in terms of the Cauchy
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integral:

N b
d(z) = exp { %Z) ZJ 10g]00(S)+V¢>]dS} . 4.77)

=0 % w4 (s)(s — 2)

Then {¢;} are determined by applying condition (iii). Indeed, since w(z)=zNt1+..., by

writing 1/(s — z) as . . ,
s s
=124 () ),
s—z z z z

we arrive at the requirements that

N 55—

1 + 19
ZJ (log Joo(s) + igj)s ds=0, I=1,...,N+1,
e % ZU+(S)

which gives the system of N + 1 linear equations for {¢j}ON :

K¢=B, ¢:=(¢o,...,¢n)", (4.78)
where
-1 N -1
K1m=J * s, B;=iZJ 08J00S ™ 4o 1 o1, N+ @79)
g W (8) Pl w+(s)

Then, introducing

N(x,t,z):= M(x, t,z) (dE)Z) d—?(z)) ’

the jump condition reduces to Nt (x, t,z) = N~ (x, t,z)]n(x, t, z), where

0 jei9) 2izx4izzt>
7

NGt 2) = <i ol +2izx+4iz’t 0 Z€2;

]/
i.e. to the form of (2.1).
Thus, we arrived at the following algorithm for solving the direct problem.

Theorem 4.15. Let g(x, t) be the finite-band, periodic solution of the NLS equation, with the spacial
period L, determined by the real constants {z;S]-}N , ¢ €[0,27) and constructed by (2.4) via the solution
of the RH problem (2.1)—~(2.3). Then the constants {¢j}6\] can be retrieved from q(x,0), x € (0, L) via the
solution of the system of linear algebraic equations (4.78), where the coefficients K and B are determined
by Joo(z) through (4.79). Here, Joo(z) in turn is determined by (4.74) in terms of the spectral function R(z)
constructed from a(z) and b(z) associated with q(x, 0) as entries of the scattering matrix for the Zakharov—
Shabat equation on the line with a finitely supported potential q(x, 0) (continued by 0 on the whole axis).

Remark 4.16. From (4.76), we see that the replacement of Joo(z) by —Joo(z) on a particular Xj
can be compensated by the shift of ¢; by =. It follows that if we define Joo(z) at each X; as any
(continuous) branch of the square root of ](2)0(2), then we can retrieve ¢; up to a shift by .

5. Evolution

In the previous section, we have shown that given g(x,0), where g(x, t) is a periodic finite-band
solution of the NLS equation, one can retrieve the underlying ‘phases’ {d’j}(l)\] (generating g(x, t)
through the solution of the RH problem (2.1)-(2.3)).

We first note that the idea of the backward propagation in the spectral terms using the
evolution of the scattering coefficients of the problem on the line:

a(z;T)=a(z;0) and b(z;T) = b(z;0) e 4=,

does not work in our case since a(z; T) and b(z; T) come from the Jost solutions that are normalized
differently compared with those used for determining a(z; 0) and b(z; 0).

87905707 081 ¥ 205 -4 2044 edsyjeuinol/iobuystigndiaaosiefos



On the other hand, it is the representation of q(x, t) in terms of the RH problem (2.14)—(2.16) that
makes it possible to obtain {¢j}6\] from those phases obtained from q(x, T) following the procedure
presented in theorem 4.15 where g(x, T) is considered as the initial data.

Indeed, let us introduce f=f— T and let {(b.T}S] be the ‘phases’ obtained from g(x, T). Then,
according to (2.14)—(2.16), q(x, t) can be obtainec{ as

qx, 1) = 20[] 1 (x, 1) 254280 = 2i[ ST 15 (x, 1) e2ox+2i80t o 20T, (5.1)
from the solution @7 of the RH problem of e (2.14)—(2.16) with the jump matrices
P typ jump

saT oo g

R 0 i e i@] +Cx+C(=T)

]J'T Ccrt) ( i(pT+Clx+C3 (t=T)) : (5.2)
ie ¥ THAT 0

Now observe that (i) the expression (5.1) being compared with (2.12) contains the factor
e~ 28T and (ii) the multiplication of g by el with some real C corresponds to the transformation
& 1> el€/203 p o—iC/ 203 which in turn corresponds to the transformation of the jump matrix f|—>
elC/ 2"3fe_ic/ 205 or, in terms of 712, to the transformation 712 — 7126ic. It follows that g(x, t) can be
expressed exactly as in (2.12) in terms of the solution of the RH problem with the jump matrix

0 ; e—i(¢]T+c§ x+CS (t=T)~2g0T)
. of X .
ie1(¢iT+ij+Cf(t—T)—2g0T) 0

Comparing this with (2.15), we see that the jumps are the same provided ¢].T and ¢; are related by

$j=0] — (Cf +20)T. (5.3)

Expression (5.3) presents the linear evolution of the phases allowing retrieving the original
phases ¢; (corresponding to t=0) using the phases ¢! obtained as the solution of the direct
problem following the algorithm presented in theorem 4.15 and applied to g(x, T), x € (0, L) instead
of g(x, 0).

6. Examples
(@) Caseof N =1

Let us consider a few examples of genus-1 case sharing the same zy and z; but having different
phases. For our approach to work, we need the underlying g(x, t) to be periodic in x. According
to (2.12), in the case N =1, we have to provide the commensurability of fy from (2.10) and C{ that
enters the jump matrix (2.15). A possible way to achieve this is to provide fy =0 by choosing zg
and z; appropriately. From (2.9) and (2.10), it follows that given zp and z, fy is calculated by

fo:‘;g(zﬁ%nj £dg (J dg )1'

5 wi(§) \Us, wi(§)

Consequently, starting from some zp and z; and calculating the respective fy, applying the shift
zj+> zj + fo, j = 0,1 produces the needed values of zg and z (generating f(z) with fo = 0).

In the following examples, we fix zg and z1 by zp =0.2780 + i, z; = 1.2780 + i (for which we
have fy to be approximately equal to 0), take three pairs of ¢y and ¢1, generate g(x, 0) by solving
the RH problems (2.1)—(2.3) (we implement the RH problem solver [6,30,31]), and recover ¢y and
¢1 from g(x, 0) following the algorithm presented in theorem 4.15.

According to this algorithm, we have to evaluate R(z) from the scattering matrix (or the
monodromy matrix) associated with g(x,0). In this respect, we note that in the case N=1, an
efficient alternative way to evaluate R(z) is to use its representation R(z) = —(i/h(z))(F(z) — \/@),
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Table 1. Reconstruction of phases in cases with N =1.

original phases q(0,0) coeff. of F(2) aux. spectrum recovered phases
& q do ai 1z
1 0.4 0.8 1.5844—1.0839i —0.4873  —1.5561 0.7780 + 03163/ 0.4005 0.7995
2 35416 39416 158444108390 0483 15561 —O07780—03163 3540 394
R T o 01463+ o e e 0 e s o

see (4.52), where the coefficients of the polynomials F(z) =22 + a1z + a9, §(2) = 4(z — w) and h(z) =
—q(z — 1) (here g = (0, 0)) are characterized through (4.50):

a1 = —(Rezg + Rezy); (6.1)
0= ~(—(R Rezp)? 2 2 4 4RezgRez; — [q/%); 6.2
0—2( (Rezp + Rezq)” + |zg|” + |z11° 4+ 4Re zgRe z1 — |q%); (6.2)
lql
2012|z1)? — a?
and |hnuh:J Lﬂl%l%——il—(Reuy. (6.4)
q

Further, Im p can be specified requiring that M1z(x) =0.

Then we check whether iz is the pole of R(z) (it is not if F(ix) — /P(x) =0) and proceed to
constructing Joo(z) by (4.64) in the case R(z) has no poles, or by (4.74) in the case when R(z) has
a pole. At this point, it is interesting to compare Jpo(z) with that obtained as the principal branch
of / ](z)o(z), where ]%O(Z) is given by simpler formulae, (4.65) or (4.75), i.e. directly in terms of the
entries of the scattering matrix.

Example 6.1. Let ¢9=0.4 and ¢ =0.8. Solving RH problem (2.1)-(2.3) gives g, whereas
equations (6.1) give ap, a1; u as shown in table 1 (Im p is chosen such that Mjz(u) =0). Thus,
the candidate for a pole of R(z) is z= it =0.7780 — 0.3163i, but the direct check shows that
F(ir) — /P(x) =0 and thus R(z) has no poles. Consequently, in his case Joo(z) is given by (4.64),
and the direct check shows that it coincides with that determined by (4.65) on both bands, Xy
and X.

Example 6.2. Let ¢9 =0.4+ 7 ~3.5416 and ¢1 =0.8 + 7 ~ 3.9416. Analytically, g(x,t) in this
case is that as in example 1 multiplied by —1; the same is for R(z). As for comparing Joo(z) obtained
from (4.64) and (4.65), in this case, they are also related by multiplication by —1.

Example 6.3. Let ¢9 =0.4 and ¢1 = 0.8 + 7 &~ 3.9416. As above, 1 is not a pole of R(z). In this
case, Joo(z) obtained from (4.64) and (4.65) coincide on X and differ by sign on X.

In all three examples, the results of the reconstruction of the phases are in good agreement
with the original ¢g and ¢1; see also figure 1.

(b) Caseof N =2

In order to provide an example, where R(z) has poles that have to be considered in the phase
reconstruction algorithm, we choose a case with N =2.

Let zo = —1 + 31, z1 =51, zp = 1 + 3i. Smirnov [32] shows that the associated g(x, t) is periodic
in x.

Let ¢9=0.1, ¢1 =0.2 and ¢» =0.3. Then the calculated auxiliary spectrum consists of two
points, 1 = —2.1061 4 0.4161i and pp =2.1061 + 0.4161i, and F(z) = 23 — 38.4617z.

In this case, both p; and po turn to be the poles of R(z) and thus, we have to proceed
using (4.74) for calculating Joo(z). Then, the reconstruction gives ¢g=0.1007, ¢1 =0.2000 and
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Figure 1. Three examples in the case with N =1 with common main spectrum z, = 0.2780 + i and z; = 1.2780 + i and
different phases ¢ and ¢;. The phases are depicted as points e? on the unit circles around the corresponding z.
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Figure 2. The example in the case with N = 2 with main spectrum zo = —1+ 3i, zy = 5i, 7 =1+ 3i and phases ¢,

(bll ¢Z~

¢2 =0.2993, which is in good agreement with the original phases. The respective results are
depicted in figure 2.

7. Conclusion

A finite-band (finite-genus) solution of the nonlinear Schrodinger equation (in particular, its
focusing version) can be characterized in terms of the solution of a Riemann-Hilbert problem
specified by (i) the set of endpoints of arcs constituting the contour for the RH problem and (ii) the
set of real constants (phases), each being associated with a particular arc. In the present paper, we
address the problem that can be described as ‘an inverse problem to the inverse problem’, namely,
given the finite-band solution, generated via the solution of the RH problem and specified by a
particular set of phases (assuming that the contour endpoints are fixed and that they are such
that the finite-band solution is periodic in x) and evaluated as a function of x for some fixed
t, retrieve the phases. Our approach is based on a sequence of consecutive transformations of
the RH problem characterizing the solution of the Cauchy problem for the NLS equation in the
periodic setting. Particularly, the role of the auxiliary spectrum points in the RH formalism is
clarified.

Data accessibility. The data and codes for the figures are available from the GitHub repository: https://github.
com/Stepan0001/RHP-Direct-problem.git [33].
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