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Over the last years non-alcoholic fatty liver disease (NAFLD) has grown into the

most common chronic liver disease globally, affecting 17-38% of the general

population and 50-75% of patients with obesity and/or type 2 diabetes mellitus

(T2DM). NAFLD encompasses a spectrum of chronic liver diseases, ranging from

simple steatosis (non-alcoholic fatty liver, NAFL) and non-alcoholic

steatohepatitis (NASH; or metabolic dysfunction-associated steatohepatitis,

MASH) to brosis and cirrhosis with liver failure or/and hepatocellular

carcinoma. Due to its increasing prevalence and associated morbidity and

mortality, the disease-related and broader socioeconomic burden of NAFLD is

substantial. Of note, currently there is no globally approved pharmacotherapy for

NAFLD. Similar to NAFLD, osteoporosis constitutes also a silent disease, until an

osteoporotic fracture occurs, which poses a markedly signicant disease and

socioeconomic burden. Increasing emerging data have recently highlighted links

between NAFLD and osteoporosis, linking the pathogenesis of NAFLD with the

process of bone remodeling. However, clinical studies are still limited

demonstrating this associative relationship, while more evidence is needed

towards discovering potential causative links. Since these two chronic diseases

frequently co-exist, there are data suggesting that anti-osteoporosis treatments

may affect NAFLD progression by impacting on its pathogenetic mechanisms. In
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the present review, we present on overview of the current understanding of the

liver-bone cross talk and summarize the experimental and clinical evidence

correlating NAFLD and osteoporosis, focusing on the possible effects of anti-

osteoporotic drugs on NAFLD.
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD; or metabolic

dysfunction-associated fatty liver disease, MAFLD; or metabolic

dysfunction-associated steatotic liver disease, MASLD) is one of the

most common causes of chronic liver disease worldwide. Indeed,

over the past couple of decades NAFLD has grown into the most

common chronic liver disease, with prevalence of 17-38% in the

general population (1), and 50-75% in patients with obesity and/or

type 2 diabetes mellitus (T2DM) (2, 3). NAFLD is determined as

steatosis affecting 5% of the liver volume or weight (accumulation of

fat in more than 5% of hepatocytes) (4), and encompasses a

spectrum of liver diseases, ranging from simple steatosis (non-

alcoholic fatty liver, NAFL) and non-alcoholic steatohepatitis

(NASH or metabolic dysfunction-associated steatohepatitis,

MASH) to brosis and cirrhosis with liver failure or/and

hepatocellular carcinoma. Notably, based on recent estimates,

cirrhosis due to NAFLD is expected to be the leading cause of

liver transplantation in the US by 2030 (5). Additionally, the

economic burden of NAFLD/NASH on health systems is

enormous, while that there is currently no globally approved

treatment specically for NAFLD/NASH (6).

Currently, NAFLD is diagnosed by detecting steatosis (either by

imaging or histologically) and by excluding other causes of liver

disease, including exclusion of alcoholic liver disease (ALD) which

has similar pathologic spectra with NAFLD (in NAFLD the daily

alcohol consumption should not exceed 20 g in women or 30 g in

men) (7). For the diagnosis, as well as its staging, of NASH and

cirrhosis, liver biopsy remains the ‘gold standard’, which, however,

also has limitations since it is an invasive method with possible

complications, sampling errors and high cost (8, 9). Of note the

renaming of NAFLD as MAFLD or MASLD has recently been

proposed, with new proposed diagnostic criteria, namely hepatic

steatosis based on histological (biopsy), imaging or biochemical

conrmation along with one of the following: (a) overweight/

obesity; (b) T2DM; or (c) metabolic dysfunction as indicated by 2

of the following: increased waist circumference, hypertension,

elevated triglycerides, low HDL, prediabetes (IGT, IFG), HOMA

index>2.5, elevated CRP, which rather put a positive diagnosis and

not an exclusion of other causes of liver disease (10).

Osteoporosis is also a chronic disease characterized by

decreased bone density and a disruption of the bone’s

architectural structure, resulting in bone fragility and increased

fracture risk (11). Osteoporosis is particularly prevalent in

postmenopausal women, where the noted estrogen decrease leads

to an increase of the activity of the osteoclasts, increasing their

responsiveness to RANKL which binds to RANK on the osteoclast

membrane, and resulting in the differentiation of osteoclast

precursors into mature osteoclasts (12). The drugs used for the

treatment of osteoporosis are antiresorptives (e.g. bisphosphonates,

denosumab and raloxifene), bone anabolic agents (e.g. teriparatide

and romosozumab) and calcitonin (13). Similar to NAFLD,

osteoporosis progresses as a silent disease until an osteoporotic

fracture occurs, which also poses a very signicant disease-related

and socio-economic burden (6).

Recent data have been highlighting potential links between

NAFLD and osteoporosis, linking the pathogenesis of NAFLD to

the process of bone remodeling. In this context, it is considered that

chronic low-grade inammation plays a crucial role in the

pathogenesis of both diseases (14, 15). However, this eld is still

open and more evidence is needed towards understanding the

potential common pathogenetic mechanism(s) and the

correlations/links between NAFLD and osteoporosis.

In the present review, we present an overview of the current

understanding of the liver-bone cross talk and summarize the

experimental and clinical evidence correlating NAFLD and

osteoporosis. Since these two diseases frequently co-exist,

medications for the treatment of osteoporosis may affect NAFLD

progression by impacting on underlying pathogenetic mechanisms/

links. As such, herein, we also focus on insights into the possible

effects of anti-osteoporotic drugs on NAFLD.

2 Pathogenetic mechanisms linking
NAFLD and osteoporosis

Potential common pathogenetic mechanisms linking NAFLD

and osteoporosis have been recently described. The pathogenesis of

NAFLD was initially described with the ‘two-hit’ hypothesis, with

steatosis, i.e. the accumulation of triglycerides (TAGs) in the liver,
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representing the ‘rst hit’ and triggering the expression of pro-

inammatory cytokines (e.g. NF-a, IL-6) which was described as the

‘second’ hit (16). The latter results to the activation of pro-

inammatory pathways and potential brogenesis in the liver.

However, the spectrum of mechanisms implicated in NAFLD

pathogenesis appears to be much more complex, and, thus, has

been more recently described with the “multiple-hit hypothesis”

which includes multiple genetic and environmental factors that may

result to obesity, insulin resistance, gut microbiome alterations,

adipose tissue dysfunction and liver fat accumulation with or

without hepatic inammation (17). For example, hepatic

mitochondrial dysfunction leads to endoplasmic reticulum (ER)

stress, oxidative stress and the production of reactive oxygen species

(ROS), while autophagy and apoptosis also play crucial role in

NAFLD (18–20). Of note, even certain gut microbiome

modications appear to trigger the expression of pro-

inammatory cytokines (e.g. IL-6, TNF-a), whilst all the

aforementioned mechanisms combined with genetic factors and

epigenetic alterations may lead to chronic liver inammation (17).

In this context, focus has been placed not only on traditional

cytokines (e.g. IL-6, TNF-a), but also on additional factors

implicated in these pathways such as adipokines (21, 22). Among

these, adiponectin is the most abundant and is secreted

predominantly by the white adipose tissue. Notably, adiponectin

has anti-inammatory and anti-atherogenic effects, and plays an

important role in lipid and glucose metabolism by increasing

insulin sensitivity, promoting the oxidation of free fatty acids,

decreasing de novo synthesis/accumulation of lipids and

protecting hepatic cells from apoptosis (23, 24). The effects of

adiponectin on the liver are mediated by its receptors (AdipoR1,

AdipoR2), interacting with the adaptor protein phosphotyrosine

interaction (APPL1). Indeed, AdipoR1 activates the AMP-activated

protein kinase (AMPK) and AdipoR2 the peroxisome proliferator–

activated receptor-alpha (PPAR-a) signaling, and, thus, through

these pathways adiponectin acts against hepatic lipid accumulation

and regulates glucose homeostasis. Moreover, through the blockage

of nuclear factor kappa (NF-kb), adiponectin reduces

inammation. Notably, a diet rich in saturated and trans-fats,

which directly induces signicant hepatic fatty inltration, has

been shown to also reduce the circulating levels of adiponectin

(25, 26). Furthermore, data show that adiponectin impedes hepatic

brosis, by inhibiting platelet-derived growth factor (PDGF)

stimulation and downregulating the transforming growth factor

beta 1 (TGF-b1) (26), whilst as NAFLD progresses, adiponectin

levels appear to decline (27). Interestingly, expression of

adiponectin receptors has also been found in bone cells, both

osteoblasts and osteoclasts (28). In addition, data from in vitro

experiments and animal studies support an osteogenic role for

adiponectin, by promoting osteoblastogenesis and limiting

osteoclastogenesis (29). Accordingly, since NAFLD is associated

with decreased adiponectin levels, the adiponectin downstream

signaling pathways may favor osteoclast function and bone loss in

patients with NAFLD. However, it should be noted that human data

do not consistently point towards a favorable effect of adiponectin

on bone biology (28, 29). Bacchetta et al. showed a negative

association between bone mineral density (BMD) and adiponectin

in patients with chronic kidney disease (30), whilst Jürimäe et al.

demonstrated a negative correlation between adiponectin and BMD

in a group of middle-aged premenopausal women (31). Moreover, a

recent case-control study, including 210 postmenopausal women,

showed an inverse relationship between serum adiponectin levels

and T-score in women with osteoporosis and osteopenia (32).

Finally a prospective study by Barbour et al., showed that high

adiponectin levels were correlated with a higher fracture risk in

men, but not in women (33).

Recent research focus has also been placed on osteocalcin (OC)

which is secreted by osteoblasts and constitutes the most abundant

non-collagen protein in bone (34). In its uncarboxylated form, OC

exerts effects on bone by binding calcium (35), whilst it also plays a

role on the pancreas-liver crosstalk and metabolism by promoting

directly insulin expression in the pancreas and by increasing GLP-1

and adiponectin expression in adipocytes (36). Conversely, OC

expression in osteoblasts is promoted by insulin and adiponectin

(37). Several studies have demonstrated an inverse association

between NAFLD and serum OC levels, with Yilmaz et al. showing

that patients with NAFLD and increased hepatocyte ballooning

degree had lower OC levels (38). Furthermore, Yang et al.

demonstrated that Korean men with NAFLD had lower BMD and

OC levels compared to those without (39), whilst Luo et al. showed

that among postmenopausal Chinese women with normal blood

glucose levels those with NAFLD had lower OC levels (40). Finally,

Fang et al. also revealed that lower serum OC levels was an

independent risk factor for NAFLD and progression to NASH

(41). Interestingly, the hepatic inammation observed during the

progression of NAFLD due to lipotoxicity and the production of

pro-inammatory (e.g., TNF-a , IL-1, IL-6, IL-17) and

prothrombotic factors appears to affect both the pathogenesis of

NAFLD and bone tissue metabolism (14). RANKL, RANK and

osteoprotegerin (OPG) are osteokines which are expressed in bone

cells and regulate bone remodeling (42). The OPG/RANKL balance

is highly important for the maintenance of bone health, with

denosumab, a RANKL-binding monoclonal antibody, being

approved as an anti-osteoporotic treatment (42). Of note,

upregulation of the RANK/RANKL pathway induces the

expression of pro-inammatory cytokines, such as IL-1, IL-6, and

TNF-a, which, in turn, promote osteoclast activation and bone

resorption (43). RANKL binds to RANK on the osteoclast

membrane, resulting in the differentiation of osteoclast precursors

into mature osteoclasts (12), whilst OPG diminishes

osteoclastogenesis and, thus, bone loss by binding to RANKL,

preventing the RANK-RANKL activation of osteoclasts. Potential

associations between RANKL, OPG and NAFLD have been

investigated, with experimental data showing that the hepatic

expression of RANKL may be elevated in patients with NAFLD

(44). Furthermore, a study by Amrousy et al. in children with obesity

and NAFLD showed that these children had both higher TNF-a and

IL-6 levels and lower OC, OPG and adiponectin levels compared to

the study controls (45). Moreover, Mantovani et al., trying to access

bone turnover markers in postmenopausal T2DM patients with and

without NAFLD (10 patients with NAFLD and brosis, 52 with

NAFLD and without brosis, and 15 without NAFLD), found that

RANKL levels gradually diminished from the study patients without
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NAFLD, to those with steatosis and then to those with steatosis and

brosis, while sclerostin levels were higher in patients with NAFLD

(46). Another study by Niksersht et al. in a sample of 57 men with

NAFLD and 25 controls demonstrated that patients with NAFLD

had lower levels of RANKL and OPG compared to controls, whilst

OPG and RANKL gene expression was also reduced, suggesting a

potential role in NAFLD pathogenesis (47). Similarly, Hadinia et al.

showed that patients with NAFLD exhibited lower plasma RANK

levels compared to controls, with diminished mRNA RANK levels

(48). A previous study by Yilmaz et al. had also demonstrated that

serum OPG levels were lower in patients with NASH compared to

controls, suggesting that OPG could be used as a biomarker for

NASH (49). A case-control study Niu et al. including T2DM patients

with NAFLD (N=367) and without (N=379) NAFLD showed that

OPG levels were lower in those with NAFLD (50). Interestingly, Erol

et al., trying to investigate whether there is a correlation between

OPG and insulin resistance in children with obesity, found that OPG

levels were lower in such children, but failed to detect a difference in

OPG concentrations between children with both obesity and

NAFLD compared to those with obesity without NAFLD (51).

Finally, Ayaz et al. have shown that serum OPG levels and carotid

intima media thickness (CIMT) were higher in patients with

NAFLD, with a positive association between OPG and CIMT in

these patients (52). It appears that most of the studies point towards

a positive correlation of serum RANKL with NAFLD, while serum

OPG decreases with disease severity. Though, high serum OPG and

low serum RANKL levels have also been reported in patients with

advanced NAFLD-related brosis (46). It is difcult to explain this

discrepancy, however, it should be noted that the elevation of

circulating OPG levels and the decreased RANKL levels could

represent a compensatory mechanism to limit the liver damage

during the progress of NAFLD to brosis.

Of note, OPG and other molecules involved in bone

metabolism, such as osteopontin (OPN) have also been associated

with the progression of hepatic fatty inltration to brosis (14).

Indeed, focus is now placed on OPG which is a member of the TNF-

a receptor family and acts as a cytokine by preventing RANK from

binding to RANKL (53). In this context, Yang et al., in an attempt to

suggest OPG as a noninvasive biomarker for NASH diagnosis and

NAFLD progression, found that serum OPG was lower in NASH

patients compared to normal controls (54). Similarly, OPN is a

glycoprotein that plays a role in bone remodeling, bone matrix

mineralization, bone remodeling, cell chemotaxis and cell survival

and apoptosis (55). Bertola et al. studied the hepatic expression of

OPN and its surface receptor CD44, in patients with obesity,

showing that hepatic OPN levels were higher in those with severe

steatosis and insulin resistance, suggesting their local implication in

the hepatic injury progression (56). Moreover, Gómez-Santos et al.

showed that OPN levels are higher in older patients, whilst this

nding did not apply to patients with NAFLD where higher OPN

levels were noted in younger patients. By also studying OPN

decient mice during aging, this study also showed that in older

mice decreased OPN levels resulted in augmented senescence, ER

stress, hepatic steatosis, and inammation (57).

Insulin-like growth factor-1 (IGF-1) is mainly secreted by the

liver while is also locally produced in small amounts by bones,

affecting positively bone remodeling (58). Yao et al. in their

metanalysis demonstrated that IGF-1 levels were decreased in

patients with NAFLD compared to healthy controls (59).

Moreover, Dichtel et al. showed that decreased IGF-1 levels were

correlated with higher histological severity of NAFLD (60).

Decreased IGF-1 have been reported in both patients with

osteoporosis and NAFLD, indicating the important role of IGF-1

in the liver-bone axis (58).

To this end, Wang et al. investigated the role of IGF-1 in the

progression of both NAFLD and osteoporosis (61). Using 48 female

mice divided into two groups, WT and fed with high fat diet, they

showed that bone loss, deterioration of bone microarchitecture and

NAFLD were progressing in parallel. They demonstrated that

changes of the TNF‐a, IL‐6, as well as IGF‐ 1 and IGFBP‐1 levels

appear to play crucial roles in the different stages of NAFLD in

HFD-fed mice. In particular, they showed that in 24 weeks the levels

of TNF-a and IL-6 were higher in mice fed with HFD compared to

controls leading to changes in the OPG/RANK/RANKL pathway.

They concluded that changes in bone microstructure and BMD

regarding the ‘second hit’ were due to higher levels of TNF-a and

IL-6. They also showed that, in 32 weeks, IGF-1 was lower in mice

fed with HFD resulting to reduced osteoblast activity, justifying

bone changes in the progressive stage of NAFLD (61).In addition to

the aforementioned factors, vitamin D deciency, which has known

effects on bone metabolism, seems to also inuence NAFLD

progression by inducing pro-inammatory processes and

oxidative stress, as well as stimulating the proliferation of stellate

cells and the production of pro-brotic factors (e.g. PDGF and

TGFb) (14). Indeed, The role of vitamin D deciency in the

progression of NAFLD has been demonstrated in animal models

(14), whilst clinical data, such as those from Wang et al., also

suggest that 25(OH)-vitamin D levels are lower in patients with

NAFLD (62).

Advanced glycation end-products (AGEs), molecules deriving

from the glycation of proteins or lipids, seem to play a role in both

the pathogenesis of NAFLD and osteoporosis (63, 64). Asadipooya

et al. in their review provided a thorough description of how AGEs,

through their receptors (RAGE), provoke inammation, cellular

proliferation, and increased oxidative stress that lead to the

progression of steatosis to NASH and brosis, while vice versa

oxidative stress and inammation trigger the AGEs production

(63). Of note, AGEs are also involved in bone metabolism. At low

concentrations, AGEs promote osteoblastic activity, but at higher

concentrations impair mineralization, induce osteoclastogenesis by

upregulating RANKL, restrain osteoblasts’ growth, inhibit their

differentiation and promote their apoptosis (64). Thus, targeting

AGE-RAGE signaling appear to be very promising in preventing

the progression of both NAFLD and bone loss.

Finally, emerging data also suggest that the Wnt signaling

pathway may contribute to the liver-bone crosstalk. The role of

the Wnt signaling pathway in osteogenesis is well-described, with

Wnt-derived proteins diminishing apoptosis in osteoblast precursor

cells and promoting osteoblast differentiation (65). Similarly, the

role of Wnt/beta catenin signaling - where the binding of a Wnt

ligand with a surface receptor (Fzd) and a co-receptor (LRP5/6) is

responsible for the stabilization of beta/catenin, its nuclear
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translocation and Wnt target gene expression - in NAFLD

development has been described, as recently reviewed in detail by

Harini et al. (66). In this context, the role of the canonical and non-

canonical Wnt pathway is considered crucial in the development of

NAFLD, with the latter being promoted or suppressed according to

Wnt5a binding, whilst NAFLD can induced by the inhibition of the

canonical pathway. As such, it is noteworthy that mutations in the

Wnt co-receptor low density lipoprotein (LDL) receptor-related

protein 6 (LRP6) can provoke NAFLD (66), with Liu et al.

demonstrating that LRP6+/- mice were protected against insulin

resistance and obesity (67).

3 Studies on NAFLD and
osteoporosis links

A number of mostly cross-sectional studies have examined the

interrelation between NAFLD and BMD, as presented in Table 1. Of

these, several demonstrated that patients with NAFLD had higher

risk of osteoporosis. For example, Chen et al. have shown that there

is a decrease in the rate of bone production and an increase in the

rate of bone resorption in elderly patients with NAFLD relative to

individuals without NAFLD (78). Similarly, a recent study by Lee

et al. in men older than 50 years showed a higher 10-year

probability of a major osteoporotic fracture in those with NAFLD

compared to those without, while this association was more

pronounced in those with sarcopenia (82). Contrary, there are

also studies demonstrating either no correlation or a positive

correlation between NAFLD and BMD (Table 1). However, as

summarized in Table 1, several limitations make the ndings of

these studies questionable, particularly since no liver biopsies were

performed to conclusively diagnose/stage NAFLD and fractures

were self-reported, whilst various confounding factors (e.g. vitamin

D levels, metabolic bone markers, other medications) were not

accessed/included in the analysis. Meta-analysis data correlating

NAFLD and osteoporosis have been presented by Su et al. which

showed that NAFLD is associated with decreased BMD and higher

risk of osteoporosis or osteoporotic fractures, with male sex

potentially being a risk factor for decreased BMD in adults with

NAFLD, whilst ethnic disparities appear to be also present between

non-Asian and Asian populations regarding both BMD and

osteoporotic fractures (87). Moreover, the systematic review and

meta-analysis by Pan et al. which included seven eligible studies

showed a signicant association between NAFLD and the

prevalence and risk of osteoporosis or osteoporotic fractures in

both men and women (88).

4 Anti-osteoporotic treatments
and NAFLD

Severalpharmacotherapies, includingdenosumab,bisphosphonates,

teriparatide, raloxifene, calcitonin, and romosozumab, have well-

established efcacy in the treatment of osteoporosis, reducing the risk

of osteoporotic fractures (89). Given that osteoporosis and NAFLD

frequently co-exist, particularly in older adults, suchmedications against

osteoporosis may affect NAFLD progression by impacting on

pathogenetic mechanisms/pathways shared by both these chronic

diseases (Figure 1).

4.1 Bisphosphonates and NAFLD

Bisphosphonates are a class of anti-osteoclastic drugs which are

widely used as a pharmaceutical treatment for osteoporosis,

constituting rst-line therapeutic choices for osteoporosis. These have

a structure like pyrophosphate and act by inhibiting bone resorption

and remaining on the bone surface (90). Bisphosphonates are divided

in nitrogen-containing and non-nitrogen-containing agents (91), and

can be used continuously for 3-5 years. However, the long use of

bisphosphonates may have side effects, such as atypical femoral

fractures and jaw osteonecrosis (92). To date, no experimental or

clinical study has showed that the nitrogen bisphosphonates may

impact on NAFLD. However, there are experimental data from

Hasuzawa et al. in a NASH mouse model induced by a methionine

and choline decient diet which show that clodronate (a non-nitrogen

bisphosphonate which acts as a potent and selective inhibitor of the

vesicular nucleotide transporter, VNUT) may improve NASH and

diminish hepatic inammation, steatosis, and brosis (93). In vitro

experiments also showed that clodronate reduced hepatic neutrophil

inltration, hepatocyte apoptosis, and cytokine production, suggesting

that VNUT-dependent vesicular ATP release plays a role in

aggravating hepatic steatosis (93).

4.2 Selective estrogen receptor modulators
and NAFLD

Selective estrogen receptor modulators (SERMS) act as estrogen

agonists in the bone tissue, inhibiting the osteoclast activity, and as

estrogen antagonists in breast and uterine tissues, thus exerting

anti-osteoporotic effects without increasing the risk of breast cancer,

as estrogen replacement therapy does; although, they increase the

risk for thrombosis and pulmonary emboli (92). Raloxifene

hydrochloride is the rst SERM used for the treatment of

osteoporosis (94), with data from the MORE study showing that

it increases BMD in the spine and the femoral neck, whilst

decreasing the vertebral fracture risk (95). Bazedoxifene is

another SERM which has been approved for the treatment of

osteoporosis in post-menopausal women (96); although, it is

considered inferior compared to other anti-osteoporotic drugs

since it has been shown to augment the lumbar spine BMD, but

not the hip BMD. Furthermore, bazedoxifene is combined with

estrogens forming a tissue selective estrogen complex (TSEC),

which is used to moderate vasomotor symptoms (97).

Interestingly, Takamura et al. presented a case report regarding a

53-year-old woman with liver impairment and histologically

conrmed NASH after the initiation of raloxifene treatment (98).

Matsumura et al. reported a similar case regarding a 70-year-old

woman, whose NAFLD deteriorated within three months after

starting raloxifene (99). Both these clinical cases suggested that
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TABLE 1 Selected studies (in chronological order) on the association between non-alcoholic fatty liver disease (NAFLD) and osteoporosis/bone
mineral density (BMD) in humans.

Study
design

Origin Study
population

Methods Outcome Limitations

Li et al.,
2012 (68)

Cross-
sectional

China 7797 participants
over 40 years old,
(2441 men and
5356 women),
2352 with NAFLD

Questionnaire Association between NAFLD and
osteoporotic fractures in men but not
in women

1. no causal inference due to cross-
sectional design; 2. self-report, thus
asymptomatic fractures could not be
reported; 3. no biopsy for the diagnosis of
NAFLD; 4. confounding factors, such as
dietary calcium intake or serum 25-
hydroxyvitamin D that could not be
ruled out

Moon
et al.,
2012 (69)

Cross-
sectional

South
Korea

481 adult women
(216
premenopausal and
265
postmenopausal)

DEXA
lumbar BMD

Postmenopausal women without
NAFLD had higher lumbar BMD
compering to those with NAFLD,
therefore there was no difference
found in premenopausal women

1. no causal inference due to cross-
sectional design; 2. waist circumference
measurement to dene metabolic
syndrome was not available in all patients;
3. no biopsy for the diagnosis of NAFLD

Purnak
et al.,
2012 (70)

Cross-
sectional

Turkey 102 adults patients
with NAFLD and
54 healthy controls

DEXA No correlation between NAFLD and
lower BMD. Subgroup analysis
demonstrated that women with
higher ALT levels had a lower BMD
and higher hs-CRP levels

1. no biopsy for the distinguish of NAFLD;
2. conicting results

Cui et al.,
2013 (71)

Cross-
sectional

China 224 adults; 99 men
(46 with NAFLD,
53 without
NAFLD), and 125
women (73 with
NAFLD 52
without NAFLD)

DEXA Men with NAFLD had signicantly
lower TH and FN BMD and women
with NAFLD had Lower right
TH BMD

1. cross-sectional design; 2. confounding
factors; 3. no liver biopsies

Xia et al.,
2016 (72)

Cross-
sectional

China 1659 adults (755
men; 904 women)

DEXA LFC and ALT were inversely
associated with lower BMD regarding
multiple skeletal sites in middle-aged
men, but no association was found in
postmenopausal women

1. cross-sectional design; 2. no liver
biopsies; 3. sex steroid hormones were
not evaluated

Lee et al.,
2016 (73)

Cross-
sectional

South
Korea

6634 adults (3306
men: 1288 with
NAFLD; 2018
without NAFLD;
3328 women: 1217
with NAFLD; 2112
without NAFLD)

DEXA FN BMD was negatively correlated
with NAFLD in men and LS BMD
was positively correlated with
NAFLD in women

1. cross-sectional design; 2. no liver
biopsies; 3. confounding factors

Yang
et al.,
2016 (39)

Cross-
sectional

South
Korea

859 adult men (249
with and 610
without NAFLD)

DEXA NAFLD was negatively associated
with right TH BMD and serum
osteocalcin in Korean men.

1. cross-sectional design; 2. only men; 3.
no biopsies; 4. confounding factors

Kim et al.,
2017 (74)

Cross-
sectional

South
Korea

231 adults (160
women and 71
men); 129
with NAFLD

DEXA and
transient
elastography

Correlation between signicant liver
brosis and lower BMD among
patients with NAFLD, using TE

1. cross-sectional deign; 2. no liver
biopsies; 3. difculties in the interpretation
of elastography; 4. no bone turnover
markers; 5. use of hormonal replacement
therapy, HOMA-IR index and CRP levels
were not accessed

Ahn et al.,
2018 (75)

Cross-
sectional

South
Korea

4264 adults (1908
men 2356 women)

DEXA
and FLI

Correlation between high FLI with
lower BMD in men (TH, FM and
whole body BMD)

1.cross-sectional design; 2. FLI, no biopsies
where used; 3. FLI index differentiation
between races; 4. no relationship between
FLI and osteoporotic fractures was found
because of the small number of fractures
among patients in the study; 5. the effect
of diabetes and anti-diabetic drugs on
NAFLD was not evaluated.

Chen
et al.,
2018 (76)

Cross-
sectional

China 938
postmenopausal
women (365 with
NAFLD, of those

DEXA Moderate/severe NAFLD was
independently correlated with
osteoporosis and not mild, MetS was
found to be an independent factor
for osteoporosis combined addictive

1. cross-sectional design; 2. retrospective
study; 3. ultrasound or the diagnosis of
NAFLD; 4. no metabolic markers; 5. only
one center

(Continued)
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TABLE 1 Continued

Study
design

Origin Study
population

Methods Outcome Limitations

132 with moderate/
severe NAFLD)

effect of moderate and severe NAFLD
and MetS on osteoporosis

Wang
et al.,
2018 (77)

Cross-
sectional

China 2659 adults (950
men and 1709
women) of these
2045 with NAFLD

Ultrasound,
questionnaire

NAFLD was correlated with the risk
of osteoporotic fractures in men over
55 years old, but not in women.
NAFLD was correlated with
osteoporotic fractures in men
without dyslipidemia

1. cross-sectional design; 2. recall bias; 3.
self-reported fractures-missing vertebral; 4.
confounding factors

Chen
et al.,
2018 (78)

Retrospective
cohort study

China 4318 adults with
NAFLD and
17272 without

Association between NAFLD and
increased risk of new
onset osteoporosis

1.confounding factors; 2. delay of diagnosis

Umehara,
2018 (79)

Cross-
sectional

USA 6089 adults (1690
with NAFLD and
4399
without NAFLD)

DEXA NAFLD was not signicantly
associated with BMD. NAFLD with
higher ALT was negatively correlated
with FN BMD

1. cross-sectional design; 2. confounding
factors; 3. no fractures report; 4. ALT does
not directly access the severity of NAFLD

Sung
et al.,
2020 (80)

Retrospective
cohort study

South
Korea

4536 adults (1006
men: 434 with
NAFLD and 572
without NAFLD;
3530 women: 446
with NAFLD and
3084
without NAFLD)

DEXA NAFLD was correlated with lower
risk of BMD decrease in women

1. no biopsies, 2. young sample, 3. no bone
metabolic markers

Ciardullo
et al.,
2021 (81)

Cross-
sectional

USA 1784 adults (925
men and 859
women, 488 men
and 391 women
with liver steatosis
and 126 men and
74 women with
liver brosis)

DEXA, TE No association between hepatic
steatosis and hepatic brosis
with osteoporosis

1. cross-sectional design; 2. no liver
biopsies; 3. fracture risk was not accessed

Lee et al.,
2021 (82)

Cross-
sectional

Korea 2525 adults (FLI
dened: 233 with
NAFLD, 279 with
NAFLD and
brosis, CNS
dened: 544 with
NAFLD 614 with
NAFLD
and brosis)

Frax score Association between NAFLD and a
higher 10-year probability of major
osteoporotic fracture in men >50,
while this association was more
pronounced in those with sarcopenia

1. cross-sectional design; 2. underestimated
FRAX score due to missing data, 3.
no biopsies

Xie et al.,
2022 (83)

Cross-
sectional

China 1980 adults (281
with NAFLD, 489
with
severe steatosis)

DEXA
Fibroscan

Negative correlation between NAFLD
and BMD in persons aged 20 to 59
on subgroup analysis. A U-shaped
relationship was found in black
participants. In people aged 40-49
years, a positive relationship was
found between BMD and advanced
brosis and cirrhosis

1. cross-sectional design; 2. diagnosis with
elastography; 3. missing data regarding
medication, history of fracture; 4. no T
scores and Z scores were reported

Yu et al.,
2022 (84)

Cross-
sectional

China 1243 diabetic
patients (760 with
NAFLD and 483
without NAFLD)

DEXA,
ultrasound,
FIB 4, NFS

Association between NAFLD (high
risk for liver brosis) and
osteoporosis in postmenopausal
women with diabetes mellitus, but
not in men

1. cross-sectional design; 2. no liver
biopsies; 3. only middle and high risk
according to NFS

Hassan
et al.,
2023 (85)

Cross-
sectional

Egypt 100 adults (50
with NAFLD)

DEXA
lumbar BMD

Association between NAFLD and
lower BMD

1. small sample; 2. ultrasound for the
diagnosis of NAFLD/no liver biopsy, 3.
minimal steatosis could not be diagnosed;
4. the role of diabetes was not accessed; 5.
only LS BMD was measured

(Continued)
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liver function should be carefully surveilled following initiation of

raloxifene treatment. Contrary, the ndings from Luo et al. in a

choline-decient high-fat diet NASH mouse model showed an

improvement in NASH after the administration of raloxifene

(100). In line with this animal study, Barrera et al. examined a

recent SERM, i.e. bazedoxifene acetate (BZA), in ovariectomized

female mice fed a Western diet for 10-12 weeks. In this study, BZA

administration, either alone or in combination with a conjugated

estrogen (CE), resulted in attenuated liver steatosis along with

increases in subcutaneous and visceral white adipose tissue

induced by a high-fat diet (101). Moreover, Kim et al. studied the

effects of BZA and TSEC on metabolic dysfunction in

ovariectomized mice fed with a high-fat diet, demonstrating that

BZA and TSEC promoted hepatic lipid oxidation and improved

glucose homeostasis by raising the activity of Sirtuin1 (SIRT1),

PPARa and hepatic AMPK of a different mechanism of action

compared to E2 and CE (102). Interestingly, a natural SERM

(genistein) given as monotherapy at high doses or in combination

with CE in ovariectomized mice reduced fed with a high-fat diet

signicantly reduced the microvesicular fat inltration in

hepatocytes and hepatic TG accumulation induced by the high-fat

diet (103). In an attempt to elucidate the underlying molecular

mechanism, genistein was shown to decrease the expression of

peroxisome proliferator-activated receptor-gamma (PPARg) which
is known to play a crucial role in the progression of hepatic

steatosis (103).

4.3 Calcitonin and NAFLD

Calcitonin is a 32 amino acids hormone which acts by inhibiting

the osteoclasts and stimulating the renal calcium excretion; hence, is

regarded as an anti-osteoporotic treatment (not as effective as other

anti-osteoporotic drugs) (104). Although, the nasal spray of

calcitonin may be used in patients that cannot tolerate other

therapies, there are concerns that calcitonin may provoke

TABLE 1 Continued

Study
design

Origin Study
population

Methods Outcome Limitations

Liu et al.,
2023 (86)

Cross-
sectional

USA 817 (381 with
NAFLD 436
without NAFLD)

DEXA
femoral BMD

NAFLD was correlated with higher
BMD and lower risk of osteoporosis

1. cross-sectional study; 2. Possible ethnic
disparities; 3. Questionnaires/recall bias; 4.
No liver biopsies; 5. LS BMD was
not accessed

ALT, alanine transaminase; BMD, bone mineral density; CRP, C-reactive protein; DEXA, dual x-ray absorptiometry; FLI, fatty liver index; FN, femoral neck; hs:high-sensitivity; HOMA-IR,
homeostatic model assessment for insulin resistance; LS, lumbar spine; LFC, liver fat context; MetS, metabolic syndrome; NAFLD, non-alcoholic fatty liver disease; NFS, nad brosis score; TE,
transient elastography; TH, total hip.

FIGURE 1

Several pharmacotherapies, including denosumab, bisphosphonates, teriparatide, raloxifene, calcitonin, and romosozumab, have well-established
efcacy in the treatment of osteoporosis, reducing the risk of osteoporotic fractures. Given that osteoporosis and NAFLD frequently co-exist, such
medications against osteoporosis may affect NAFLD progression by impacting on pathogenetic mechanisms/pathways shared by both these chronic
diseases. In vitro data, animal studies and case reports support a benecial effect of anti-osteoporotic drugs on the NAFLD/NASH progression.
However, interventional studies could nally evaluate the potential impact of these anti-osteoporotic drugs on NAFLD.

Chondrogianni et al. 10.3389/fendo.2024.1344376

Frontiers in Endocrinology frontiersin.org08



malignancies, thus, it was withdrawn from the market in Europe

and Canada (92). Gydesen et al. investigated the effect of a dual

amylin and calcitonin receptor agonist (DACRA) on rats fed with

high-fat diet, showing that this treatment resulted in improved

glucose homeostasis, higher weight loss, enhanced insulin action

and decreased lipid accumulation in the liver and skeletal muscles,

whilst improved food preferences was also noted in these rats (105,

106). Finally, Polymeris et al. demonstrated that serum calcitonin

levels increased after a 75-g oral glucose tolerance test in healthy

adults, suggesting that calcitonin may be stimulated by

hyperinsulinemia (107).

4.4 Denosumab and NAFLD

Denosumab is a human monoclonal immunoglobulin G2

antibody used as a treatment of osteoporosis. which binds to

RANKL, thus inhibiting RANK activation and the formation and

survival of osteoclasts. As shown by the 10-year FREEDOM

Extension study, denosumab can be safely used as an anti-

osteoporotic treatment for 10 years with low rates of adverse

events, whilst signicantly increasing the lumbar spine BMD and

decreasing the incidence of fractures (108, 109). However,

multiple vertebral fractures have been reported after the

discontinuation of this drug, and, thus, the transition to another

anti-osteoporotic therapy is important after the discontinuation of

denosumab (110).

As RANK/RANKL and OPG are also expressed in other tissues

(e.g. in the liver and broblasts), it has been suggested that the

RANK/RANKL/OPG system may play a physiologic role in organs/

tissues other than bone tissue (44). Indeed, the inhibition of the

RANKL/RANK signaling pathway has been reported as a potential

target for the treatment of T2DM and insulin resistance in humans

(111). Interestingly, Zhong et al. showed that RANKL levels were

gradually higher when going from control mice to high-fat diet

induced NAFLD and NASH, whilst RANKL appeared to also play a

role in Runx2-prompted macrophage migration (112). In vitro, this

study also showed that Runx2 regulated the production of RANKL

in hepatic stellate cells (112). Furthermore, using a mouse model

that expressed human RANKL, Rinotas et al. showed that RANKL

overexpression increases insulin resistance and promotes the

development of NAFLD, with these effects being exerted -at least

partially- by acting at a post-receptor level, as well as by

upregulating the secretion of inammatory cytokines through

NFkB activation (113). Of note, the administration of denosumab

appeared to reverse the negative effect of RANKL on insulin

resistance (113). In line with this nding, Kiechl et al. showed in

a mouse model that RANKL blockage improved hepatic insulin

resistance by preventing the activation of NFkB which is known to

play a role in hepatic steatosis and NAFLD (114).

Moreover, Takeno et al. presented a case report, showing NASH

improvement following denosumab treatment in a woman with

growth hormone deciency and NASH (115). Observational studies

have also noted an association between serum RANKL levels and

NAFLD, with. Lu et al. reporting a correlation between elevated

RANKL levels and higher NAFLD risk in women with PCOS (116).

In addition, RANKL levels have been associated with hyperglycemia

and higher T2DM risk. Recently, taking into account that increased

hepatic expression of RANKL may play a role in the progression of

NAFLD, Polyzos et al. proposed the use of denosumab for the

treatment of NAFLD (117). However, interventional studies are

required to support this suggestion.

4.5 Romosozumab and NAFLD

Romosozumab is a monoclonal antibody which inhibits

sclerostin, an inhibitor of the Wnt signaling pathway signaling,

and increases bone formation whilst reducing bone resorption.

Since there are studies that have documented a relation between

romosozumab treatment and cardiovascular and cerebrovascular

events, it is currently recommended not to use romosozumab in

patients with myocardial infarction or stroke in the last year (118).

As aforementioned, the Wnt/beta-catenin pathway appears to

have an important role in the development and the progression of

NAFLD (66), hence, romosozumab has also been proposed as a

potential treatment for NAFLD (119). In line with this, Kim et al.

using two different mouse models, namely sclerostin-decient mice

and mice treated with a sclerostin-neutralizing antibody, showed

signicantly increased bone mass, as well as decreased hepatic lipid

accumulation and liver inammation (120). Furthermore, Zhou

et al. also revealed that sclerostin levels were reduced in NAFLD

mice compared to controls (121). Finally, Oh et al. reported higher

sclerostin mRNA levels in both patients with obesity and mice fed

with a high-fat diet., whilst further showed that sclerostin

administration amplied lipid accumulation in hepatocytes (122).

On the other hand, Polyzos et al. reported decreased sclerostin

levels in patients with NAFLD and NASH (123), while Rhee et al.

founded that patients with advanced liver cirrhosis had higher

sclerostin levels compared to healthy controls and patients with

early cirrhosis (124).

Overall, the role of sclerostin and Wnt/beta-catenin in the

development and progression of NAFLD appears to be complex

and further research on the potential clinical impact of

romosozumab on NAFLD is required to elucidate the role of this

anti-osteoporotic treatment in the context of NAFLD/NASH.

4.6 Teriparatide and NAFLD

Teriparatide [rhPTH(1-34), the bioactive portion (1-34) of

endogenous human PTH] is an anti-osteoporotic/osteoanabolic

treatment (89). Feng et al. in their recent study in animal models

of NAFLD using intermittent PTH administration, showed an

amelioration of hepatic steatosis. They demonstrated, using an in

vitro model of hepatic steatosis, that PTH through its receptor,

induces in hepatocytes the expression of genes involved in b-
oxidation and reduces the expression of genes involved in lipid

uptake and de novo lipogenesis (125).

A recent metanalysis of 10 studies by Jaroenlapnopparat et al.

demonstrated that high PTH levels was correlated with NAFLD,

and their relation was statistically important. They also showed an
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association between PTH level and NASH, which was not

statistically important (126).

5 Perspectives and conclusion

NAFLD and osteoporosis are highly prevalent diseases which

frequently co-exist with increasing incidence globally. Although

common molecular pathogenetic mechanisms/pathways (e.g. the

RANKL-OPG-RANK pathway and Wnt pathway) are supported by

emerging data, not all epidemiological studies point towards a

positive link between these two chronic diseases. To date, a

limited number studies demonstrated an associative relationship

between NAFLD and osteoporosis; however, conclusive evidence

for causative link(s) and their direction are still missing. Further

research, both basic/translational and clinical aiming to elucidate

the interplay between the liver and bones is essential, including

large prospective cohort and interventional studies which could

target specic patient populations with NAFLD and osteoporosis.

In this context, recent studies have been further linking

sarcopenia with both NAFLD and osteoporosis, thus highlighting

sarcopenia as a potential mediating factor between these two

diseases. This is also supported by the fact that molecules

causatively implicated in sarcopenia, such as sclerostin, RANKL,

and 25(OH)-vitamin-D, already constitute therapeutic targets in

osteoporosis, whilst are also considered to play a role in the

pathophysiology of NAFLD (122–124). Similarly, other

therapeutic targets for osteoporosis, such as kathepsin K, also

seem to be implicated in NAFLD progression (127, 128). Thus, it

can be proposed that there is scope to focus future research in this

eld among patients with coexisting NAFLD, osteoporosis and

sarcopenia since this group may benet from anti-osteoporotic

drugs involved in the overlapping pathophysiological mechanisms

underlying these conditions. Since no globally approved

pharmacological treatment for NAFLD is available yet, whilst

there is an arsenal of approved anti-osteoporotic medication,

observational data as well as interventional studies could evaluate

the potential impact of these anti-osteoporotic drugs on NAFLD

(Figure 1), with focus on certain phenotypic characteristics of the

patient population (e.g. sarcopenic or not). Such targeted studies

may shed light in the complex and yet not fully claried links that

form the liver-bone axis.
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