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SUMMARY . 

The thesis describes the development of techniques 

for the optimal control of industrial processes by an on-line 

digital computer. The process model is taken to be a set of 

linear differential equations describing the behaviour of the 

process for small displacements about a particular operating 

point. The design of the control system is based on the 

minimisation of a performance index which is a quadratic 

function of the displacements of the system variables. The 

minimisation is subject to amplitude constraints on the control 

inputse 

An investigation is carried out into the theoretical 

and practical value of existing techniques for optimal on-line 

control of systems with constrained inputs. One result of the 

investigation is a new theoren on the equivalence of single-stage 

and Nestage optimal control policies. Because of practical 

limitations of existing methods, a new technique is developed 

in the thesis. The theoretical value of this technique is con- 

sidered to be not less than that of any comparable technique, In 

each case the optimal control policy is derived using the concepts 

of dynamic programming. The proposed technique involves the exact 

minimisation of a single-stage performance index at each successive 

sampling instant, and uses a computational procedure based on the 

geometrical properties of the index to solve the resulting quadratic



  

SUMMARY (contd) 

programming problem. The method of solution of the control 

problem is such that most of the difficulties associated with 

the practical implementation of other methods are removed. 

A study by simulation is included of the application 

of these techniques to the dynamic control of a power-station 

boiler under changing load conditions. Results are given of 

tests carried out using both digital and hybrid computers. 

The practical limitations of existing methods are demonstrated, 

and it is shown that the proposed technique yields system 

responses which in certain cases show a significant improvement 

over responses achieved using other methods. 
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P,R,S,W,Z = recurrence relation matrices for N-stage 
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g = vector of elements of principal diagonal of Q 

ic = number of control inputs to system    
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1) INTRODUCTION. 

1.1) Modern ¢ontrol theory. 

  

Conventional automatic control theory has made 

great advances over the past thirty years and industrial 

applications of control technology have contributed much 

to engineering progress. The limitations of conventional 

theory have however become apparent and over the past few 

years there has been a growing interest in a more 

sophisticated approach to control system design, 

Many complex processes have been controlled by 

a number of individual control loops, rather than by an 

overall control scheme. Interactions between the process 

variables can and do cause interactions between the control 

loops, leading to a reduced performance of the system, 

In addition the criteria used to judge the performance of 

individual control loops have not been consistent. There 

is a case for the design of integrated control schemes using 

performance criteria which are related to the actual re- 

quirements of the process. The term "modern control theory" 

is used when the approach to systen design is of this kind, 

The first result of this approach is that a much 

better knowledge of the process dynamics is required, 

Secondly, techniques must be available for the analysis of 

the resulting mathematical model, and for the subsequent



1) contd. 

Joa) contd. 

synthesis of a system to control the process. It is 

doubtful if much significant progress would have been 

made in this second direction without the help of high= 

speed digital computers. The digital computer has 

stimulated thought into problems whose solution it was 

previously considered impracticable to attempt. The 

modern control problem often falls into this class. 

Let us assume that the dynamics of a process are 

completely determined. The control problem may then be 

expressed as the development of a controi law so as to 

minimise (or maximise) an index of overall system per- 

formance. The index will be a function of the process 

variables and possibly also of the control inputs to the 

process. This minimisation will be subject to constraints 

determined by physical limitations. 

An a order system can usually be described at 

time t by means of a set of quantities xa (+) »X2 (+) »000x,(t). 

These quantities are often called the state variables of the 

system, and together constitute the state vector x(t). If 

it can be assumed that the time-derivative of the state 

vector, o » depends only on the current state of the 

dt 

system and not on past states, then the process can be 

described in vector notation by
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1.1) contd. 

£ (x(t), u(t), n(t), t] oleie ee tl 

a 
1 

where 

x(t) [xa (+) x(t) x5(t) ... x(t)]" , the 

n-dimensional state vector; 

u(t) = [us(t) w(t) oe u(+)]* » the 

r-dimensional control input vector; 

n(t) = [m(t) me(t) oc n(t)]* » an s-dimensional 

vector whose components represent random 

disturbances 3; 

and f£ is a known vector function er tag ica oy 

Itcwill be assumed that all the state variables 

of a system are accessible for observation and measurement. 

Where this is not so, best estimates must be constructed 

4 32 
from the available information. 

A typical index of system performance is 

ta 

C= 8 | Balt) = nt) oat) sf) ae * eae Gee) 

to 

where the objective function F is a non-negative scalar function; 

x(t) is the reference input vector to the systen; to is fixed
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contd. 

and t1 may be fixed or variable; and E stands for 

expected value. 

The optimal control policy will be obtained 

by the minimisation of C with respect to the control 

inputs, subject to a set of constrdnts 

6 (Us ,Ua, woe U.) <0, 1=51,2, ... 2 woe (1.3) 

or g(u) < 0. 

There may also be constraints on the process state 

variables 

h(x) < 0 ound) 

Stated in this form the control problem is 

clearly a variational problem. Some success has been 

achieved by applying classical calculus of variations 

theory to problems in the control field, ee more 

progress has been achieved by a number of methods, 

all based on variational theory, which have been developed 

in recent years. It is not proposed to detail these methods 

except where a method has potential application in the 

field of control by on-line digital computer. An in- 

troduction to the more important optimisation techniques 

and a list of references is given by Le¢tmann.
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1.2) On-line computer control. 
  

The modern approach to control system design 

is based on the determination of a control policy to 

minimise an index of performance. The generation of 

the optimum policy for a complex industrial process 

would seem to be best accomplished by a digital 

computer. The computer is given all the information 

available on the dynamic behaviour of the process, and 

programmed to produce the optimum control policy as a 

sequence of numbers. In this context the expression 

"on-line" means simply that the computer is working 

in real time to control the process. Fig.1.1 illustrates 

a typical multivariable computer control system. 

Using a digital computer introduces a discrete 

property into the system. The method of working is for 

the computer to sample the values of the process state 

variables x(t), use these to calculate the optimal 

control inputs u(t), and then return to sample for new 

values of x(t). The cycle time will be decided by 

reference to the characteristics of the process. After 

calculation the control input vector will be held constant 

until it is updated one cycle time (sampling period) later. 

u(t) will therefore be a piecewise-constant function of 

time (Fig.1.2)
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u(t) = u(kt) kT <¢ t < (kel)t ca 6Esb) 

where T is the sampling period and k any integer 2 0. 

The control problem to be solved, and then 

implemented by the computer, may be considered in either 

of two ways. Assuming that a mathematical model of the 

process with all its non-linearities is available, the 

direct approach is to attempt to find a set of control 

policies which will transfer the system from any one 

state to any other in the best way possible. Research 

has shown the formidable difficulties inherent in this 

approach. Progress has been made in the theory of non= 

94 
linear optimal control systems® » but any solutions 

at present would inevitably require immense computing 

power.> ?°4 

The second approach is to consider only small 

deviations of the systen from some normal operating 

condition, This has the advantage that the system 

| equations may be linearised about a steady-state condition 

and hence become much more tractable. The approach is 

reasonable since most engineering processes are designed 

to operate at one of only a small number of points rather 

than at an infinite number of points throughout their 

operating range. 
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contd. 

In this thesis we consider a process which 

can be described by the n simultaneous first-order 

linear differential equations 

Hse (x4 x4 u: u_) L = i 1 yAQZy coco n? Udy 239 eee r 

dt 
i =1,2,3 «0 

The equations may provide a complete description of the 

process or, as is more likely, may be a linearised set, 

valid only for small variations about a specific operating 

point. Without loss of generality the equilibrium state 

may be taken to be x = 0, U= 0. 

In vector-matrix notation the equations are 

fa eae ieee) 
dt 

where x is the n-dimensional state vector 

u is the r—dimensional control vector 

A is the (nxn) coefficient matrix of the process 

B is the (nxr) "driving" matrix 

The piecewise-constant nature of the control 

inputs during computer control, expressed in equation 

(1.5), leads to an exact solution of the equation 
Opto. 

(1.6) known as the state-transition equation, 

<. (Bel eles OCC) xii) + GCE). 6 GE. 7) 
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1.2) contd. 

¢ and G are (nxn) and (nxr) matrices respectively. 

This equation describes the state of the process at 

the ayes sampling instant in terms of the state at 

the ag jinstant and the values of the control inputs 

over the period [kT,(k+1)T]. 

For an index of system performance we require 

a function which gives a measure of the deviation of 

the system from its desired condition, An terror—square' 

function of the state variables is the simplest suit- 

able function in the mathematical sense. Over the 

period [t stl such an index would be 

tp 

c= | Lax (t)P+aame (t)Peee.at()*] at 
t 

Oo 

with qs 20 ya a ice oe a 

The values of the individual q's reflect the relative 

importance of deviations in each of the state variables. 

The emphasis in computer control systems is 

placed on the state of the systen at the sampling 

instants. Consequently a modified form of C is more 

popular in the study of such systems. The modification 

consists of replacing the integral by a similar sum; 
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over [0, NT] 

N 

G,= ) x08) @ x(a) Ce) 
aes 

where Q is an (nxn) matrix, normally of the form 

we 6 a 8 

0 g2 0 eee 0 5 

oe 0 0 ics ie 0 with qs 2 0 

| : eee ; i = 152,15 me eee (129) 

ep 6 eee qn 

The index is to be minimised with respect to 

the control input variables. 

The constraints on these variables are taken 

to be pairs of known bounds, so that 

a,<u, <b; , 1=1,2,3 7 cae. (lee. 

The control problem is to find a sequence of 

expressions for u(o), u(T), u(2T), se. ul(N-1)T] which © 

will minimise the inex of equation (1.8), subject to 

the set of equations (1.7) and the input bounds of 

equation (1.10). 

1.3) The development of a control scheme, 
  

The principal reason for posing the control 
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1) contd. 

1.43) contd. 

problem in the form given in Section 1.2 is that in 

certain circumstances an analytical solution of this 

problem is possible. A result due to Kalman ete PT 

shows that optimal control by computer of a linear 

process with unconstrained control variables can be 

achieved by negative feedback of the state variables, 

By adjoining to the performance index a quadratic 

function of the control variables it is possible also 

to allow for constraints in these variables whilst main- 

taining the type of solution. The method used to arrive 

at this solution is the technique of dynamic programming, 

originally developed by Bellman® . 

Section 2 of this thesis describes the dynamic 

programming approach to the solution of problems in the 

optimal control of processes by a digital computer. 

Additions to existing theory made by the author are 

presented in Section 2.3. These new results fom a 

significant part of the base on which an alternative 

control scheme is developed, 

It is recalled that this theory applies only 

to systems described by linear differential equations. 

Almost certainly such a system description is an 

approximation to the true equations, valid only for 
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ts 

contd. 

small deviations from a particular operating point. 

Any proposed control scheme should be evaluated with 

this in mind. Ideally, the control scheme should 

simulate as far as possible the performance of a 

solution to the overall non-linear control problem 

posed by the process. A major point must be that the 

scheme should be capable of dealing with a change in 

the operating condition whilst the computer is con= 

trolling the process. In the context of the system 

model outlined in Section 1.2, this means that the scheme 

should be able to handle on-line changes in the 

coefficients of the performance index matrix and in the 

values of the control input bounds, as well as the 

obvious changes in the process—description matrices A 

and B. 

The standard dynamic programming approach to 

discrete bounded-input control systems results in a 

control scheme which is naturally rigid in construction. 

It will be shown, for example, that to allow for changes 

in the operating condition would require either an 

exceptionally fast digital computer or large amounts of 

fast computer storage, or both. Sections 3.2 and 3.3 

of this thesis are devoted to the development of an 
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alternative control scheme which is more flexible 

than the standard scheme outlined in Section 3.1. 

The dynamic programming approach is maintained in 

the new scheme, 

The control scheme proposed in Section 3.3 

differs from the standard scheme in two respects. 

Firstly, minimisation of the performance index is 

carried out on a single-stage rather than an N-stage 

basis. Over the period 0 < t < NT corresponding to 

N sampling periods, or N stages, the problem stated 

in Section 1.2 is to find the sequence 

u(o), u(T), eee,u [(N-1)T] which will minimise the 

index 

M 

> z*(et) @ x0) 
Ky 

The single-stage scheme solves the problem of finding 

ul(k-1)T] to minimise the current value of the index 

C= x"(kr) Q x(kt) , 
for k:= ele an ise pls 

This sub-optimal approach removes much of the rigidity 

of the standard scheme since optimisation may be carried 

out forwards rather than backwards in time. It has been
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13. 

contd. 

9 74, and .peen used*°#** before. advocated * 

The argument for using a single-stage scheme in this 

way has been that the computational advantages out- 

weigh the loss in optimality. A second and more 

formal argument springs from one of the new results 

of Section 2.3. This result shows that under certain 

conditions the single-stage scheme is identically 

equivalent to an N-stage scheme. The conditions 

could well be fulfilled in practice, 

The second respect in which the proposed 

control scheme differs fron previous theory is in that 

an original method is used to deal with control input 

bounds. The method of implementing control input 

bounds normally used is to modify the performance index 

by adding a term which represents the "cost of control". 

The index becomes 

N 

Gy = ne (x(eP) Qa(kD) + wt (e1) 2] uf (-2)2) 
k=4 

or for single-stage control 

C= x*(kT)Q x(kT)+ wil (k-1)T]H ul (K-1)T] 

H is a diagonal matrix (rxr), similar in form to Q. The 

elements of H are to be chosen so that the bounds on the
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control inputs are satisfied. In this respect they 

may be considered to be similar to Lagrange multipliers. 

The new method,which is based on the 

properties of the functions involved, gives an exact 

solution of the single-stage minimisation problem 

Ce gee hee a) 

It will be shown that the use of this method allows the 

control system to use the total available control to 

combat any disturbance, It also makes possible on-line 

changes in the operating condition by reducing computer 

storage requirements and off-line computation to a 

minimum. 

Loh) Optimal control of a power-—station boiler, 

It is now accepted that the development 

of large steam gererating units has led to a require— 

ment for automatic control equipment to carry out the 

start up and shut down functions. The speed with which 

the plant canbe started up after an ovérnight shutdown 

is likely to be limited by the time required to carry 

out the necessary control operations rather tn by 
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| 1) contd. 

1.4) contd. 

the physical characteristics of the plant being 

controlled**®. The specifications of new generating 

stations are beginning to include digital computers 

whese chief function is the logical sequencing of these 

control operations. It is difficult to justify the 

purchase of an on-line control computer for dynamic 

control alone, but if the computer is already in use 

for sequencing control it is easier to justify the 

further use of it to attempt dynamic optimisation of 

the plant. 

It was stated earlier that the first pre- 

requisite of the modern approach to control systems 

was the need for a better knowledge of the process 

dynamics. The steam generation process has been re- 

ceiving considerable attention in this direction ovér 

the past ten years. Important publications include 

the original 1958 paper of Chien, Ergin, Ling and Lee*?,a 

series of papers by Nicholson which includes work on 

optimal control*® 7*9 244 . and a recent paper by Anderson, 

Kwan and Qualtrough*®. Each of these develops at least 

one mathematical model of a power boiler. Such a model 

is highly suitable for simulation studies to compare the 

value of techniques for dynamic optimal control. Results 
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obtained may be evaluated not only in terms of 

simple numbers, but also in terms of their practical 

implications. 

The control studies which have been 

carried out on power boilers have usually concen= 

trated on the system response to a change in load, 

or steam=demand. The method of representation of 

this load change has caused difficulties in the 

acceptance for control studies of either the 

Chien model*? or the Nicholson model*®, Nelson 

Research Laboratories, English Electric Co.Ltd., 

have developed a model of a natural circulation 

boiler*® with a better representation of load changes 

which was offered to the author for control studies. 

The method of representation used in the NRL model 

is similar to, though not quite as general as, that 

of Anderson et.al., whose model was available in April 

1968 only. 

The reduced form of the NRL boiler model 

which has been made available for control studies is a4 

ann -order system, with 4 control inputs. Simulation 

studies have been carried out in this thesis to 

determine the performance of optimal control techniques 
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contd. 

in returning the process to equilibrium following a 

load disturbance. Section 4 of the thesis describes 

the boiler model, the control algorithms considered, 

and gives results and conclusions from the simulation 

tests. Part of the simulation has been carried out 

on an English Electric KDN2-LACE hybrid computer in- 

stallation, but most of the worthwhile results have 

come from fully digital simulation on the University's 

Elliott 803 computer. The boiler model itself is de~ 

tailed in Appendix 1 of os thesis. 

The results of the tests show that the 

proposed control scheme, developed in the thesis, can 

yield boiler responses which are significantly better 

than those obtained by alternative schemes. A test 

in which the proposed control scheme performs marginally 

worse than one of the alternative schemes is a case 

where none of the schemes compared are capable of worth- 

while control. The number of strict comparisons between 

schemes has been limited by the difficulty of finding 

the correct "cost of control" multipliers for the standard 

schemes. This difficulty is highly significant in the 

determination of the practical value of the control 

schemes. No difficulty has been encountered in the 

 



  

1) contd. 

1.4) 

  

(Ta. 

contd. 

tests of the proposed optimal single-stage control 

scheme. Due to the method of representation of load 

changes, in no test is there instability of a system 

variable, unlike the majority of a set of similar 

tests carried out by Nicholson*®. The performance 

of the boiler model seems to confirm the view that 

dynamic optimisation of power boilers is a feasible 

proposition.
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2) ‘THE DYNAMIC PROGRAMMING APPROACH TO ON-LINE CONTROL SYSTEMS. 

The application of the dynamic programming 

technique to the control of processes has been the subject 

of a considerable amount of research over the past few 

years? ?7969 7947 GEe The technique, developed originally 

by R.E.Beliman, is related to the calculus of variations 

and to Pontryagin's maximum orinciple’?. Dynamic programming 

is based on the Principle of Optimality® , which»states 

that an optimal sequence of decisions u(o),u(T),...ul(I-1)T] 

has the property that, whatever the initial state x(o) and 

initial decision u(o), the remaining decisions u(Z) ...u{(N-1)T] 

must constitute an optimal sequence with respect to the state 

x(T) resulting from the first decision u(o). 

Kalman®’? and Tou* have given results which shaw 

that, under certain conditions, the optimai control policy 

consists of a feedback matrix with constant or time— 

varying coefficients. 

   



nO 

y Solution of the state space equation for linear systems, 

We consider a linear system subject to random 

disturbances 

OZ = a(t) x(t) + B(t) u(t) + n(t) ea) 
at 

where A(t) is the coefficient matrix of the process 

B(t) is the "driving" matrix 

x(t) is the state vector 

u(t) is the control input vector 

n(t) is a vector of independent random variables. 

The system described by equation (2.1) is 

linear and time-varying, unless A and B are constant 

matrices, in which case it is linear and stationary. 

If both A(t) and B(t) are integrable over 

the relevant interval .. <t< os then there exists 

a unique solution of the system equation, given 

x(t), over = <t< toe 

Let $(t,t,) be an (n x n) matrix which satisfies 
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contd. 

4 (#(tst,)) = A(t) o(t,t,), sew (202) 

with $(t55t,) = I, the (nxn) unit matrix 

and A(t) the same matrix defined in equation (2.1). 

If we assume that 

x(t) = $(t,¢,) x(+) 
then 

ax d. d: 
ae (gy) =o + ty 

dt 

ad 
= $Z + Ady 

dt 

But 

SS = Ady + Bu + 2. 
dt 

Therefore 

gz =Bu+n, 
dt 

or, assuming that ¢* exists, 

t 

u(t) = | [g*(x,¢,)(B(r)u(r)+ n(r)) Jar + x(+,) : | 
° 

Ul x(t.) = FF (t,t) x(t) 

x(t.) 

The solution of equation (2.1,) is therefore 
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t 

x(t) = $(tyt,)x(t,)+ (t,t,) | *(r,¢,)[B(r)u(r)an(r)] ar 
t 

: baleen) 

The contribution to the solution $(t,%,) x(t.) is 

in fact the complete solution to the homogeneous 

equation 

= = a(t) x(t) , 

which represents the free motion of the system with 

no control or disturbance. $(t,%,) is known as the 

state transition matrix, 

If the systen under consideration is time— 

invariant, so that A and B are constant matrices, then 

$ becomes 

$(t,t,) = ott) res 
The solution for x becomes 

G 

x = x(toph(tto) | | eM") tpu(r)an(r)] ar vee (205) 
to 

in the general time-varying case, there is no 

simple expression for the state transition matrix. The 

expression one might expect
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contd. 

t 

(tt) = em | A(r) ar 
to 

tt 

is true only if A(t) and | A(r)dr commute for 

to 

a As a consequence it is necessary to 

resort to numerical integration for computing ¢$. 

For the synthesis of optimal computer control 

systems it is simpler to use a difference equation 

for the systen rather than the original differential 

equation. If we assume that the components of x 

are measured only every T seconds and that the values 

of the control inputs are held constant between these 

sampling instants, then the above analysis leads to 

the exact solution for the system 

xl (k+1)T] = $(KT) x(kT)+G(kT)u(kT)+a(kT) 22. (2.6) 

where k is any integer 2 0, 

$(kT) = ¢[ (k+1)T,T] 

(k+1)T 

G(kT) =| pl (k+1)T,7] B(r)dr 

kT 
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(k+1)2 

and = (kT) -| ol (k+1)T,7] n(r)dr 

kT 

For time-invariant or stationary processes, 

the difference equation (2.6), which is known as the 

state transition equation, reduces to 

xl (k+1)T]= ¢(2)x(kT)+G(T)u(kr)+ a(kT) wc (2,60) 

with 

g(t) =e" 
T 

G(T) - | Alton) 3 ay 

(k+1)T 

and a(kT) -| f(tr) n(r)dr. 

kT 

2.2) Optimal control with unconstrained control inputs. 

a) Linear time-varying systems. 

In this section the solution of the control 

problem posed by a linear time-varying system is 

derived using the technique of dynamic programming. 

The derivation is included to provide an example of 

 



2) contd. 

2.2) contd. 

a) contd. 

the general dynamic programming approach, resulting 

in a set of recurrence relations for the control 

inputs at successive stages. This method of exression 

of the solution of any N-stage problem is continued 

throughout the thesis. 

Without ambiguity the notation of the state 

transition equation (2.6) may be simplified by 

omitting T to give 

x(+1) = (8) x(k) + G() ule) + a(K) 46 (247) 
Starting at time t = 0 with initial state x(o) 

the control vector u(t) is required to return the 

system to equilibrium (x = 9) by time t = NT in such 

a way that the perfomance index 

N 

Cry =) x'(k) Q(k) x(k) seni (2.8) 

et 

is minimised. 

Q is an (nxn) diagonal matrix 
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qa (k) 0 0 eoe «80 

0 ge (k) 0 eos 

Q(k) = 0 c. aw wes 2 wae (269) 

0 0 0 ‘ q(x) 

with a, (k) PO. Tor ie 1,2. osu Dee Bl 

The elements a; of the Q matrix determine the weightings 

against deviations in the relevant components of 

the state vector. If one or more of the qs is a 

function of k, equation (2.8) is seen to describe a 

time-weighted performance index, 

The control problem is to choose the input 

sequence u(i), i = 0,1,2, .s. (N-1) so as to minimise 

C,., for any initial state x(o). The dynamic pro- NV’ 

gramming approach to the solution of this N-stage de- 

cision problem is to traverse the state trajectory 

backwards in time from the equilibrium condition in 

order to determine the optimum input at each backward 

instant. Each input u(i) will then be independent of 

decisions taken at further backward (i.e. earlier) sampling 

instants,
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a) contd. 

Since the system equation involves random 

disturbances, only the expected value of the per 

formance index can be minimised. 

Let fy x(0)] = so EC, aa teete) 

where E stands for expected value 

Imbedding this equation into the general equation 

for minimising the part of the index covering the 

intervals [j,N], for j = 0,1,2, o.. (IN-l), 

fy_; [x()] = n(i) E Cy. 

N 

4 uli) - 2 x"(k)Q(k)x(K) eee (2.11) 

ul 5+1) k=j+1 

(ie) 

Now suppose that the first j stages are 

optimum, Then the contribution to the index from 

the remaining (N-j) stages is to be equal to the 

contribution from the (an stage plus optimum 

contribution from the remaining N-(j+1) stages.    
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2.2) contd, 

a) contd. 

By the Principle of Optimality, 

- fy (51) 51 | pie owe) 

fy_jlx(3)J is quadratic in x, and it can be shown 

by induction®® that 

fy_jlx(3)] = x'(3) POFS)z(4) sew (2.13) 

where P is a symmetric matrix. 

Substituting for f. a and f in equation (2.12), 
Ny N-(j+1) 

x*(3)P(ea)x( 5) = BER 2'(3e1)81 (a+( 542) 1x( 342) | 
wl AL). 

with S[(N-(j+1)]=Q(j+1)+P[N-(j+1)] wee teal) 

Let Vy_= 2 ( Jot) sL0-(Je2) Lal 2) | gia (25:6) 

Now, using the state-transition equation to express 

x(j+1) in terms of x(j), u(j), and d(j), 
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- xtht tat Vue x'o'Sdx + u'G'SGu 

| + x'o'SGuiu'G's ¢x + E(d'Sd) een Cad) 

with XxX» Us gy G= x(j) ,u( 5) 96(35) (3) 

and s = s[N - (j+1)] 

The expression for V3 involves the values of 

the state and control vectors, x and u, at the 

— sampling instant only. The N-stage decision 

process has been reduced to a series of single- 

stage decisions. The optimum for each stage may 

be found by simple differentiation 

diVer. = N-j = G'Sdx(j) + x'(5)$'SG + GtSG u(J) 
Tm) ; 

+ u'(j) G'SG 

In view of symmetry, 

dV. Mj = 2 Gt(j) S[N-(5+1)]6(5) x(3) 
169) 

+ 2 6(3) S[I-(j+1)] G(5) u(j) eee (2.18) 

d i 
Equating Vie to zero gives the optimal control 

du( J 

policy 

u(j) = F(N-j) x(3) wea 12019)    



  

2): conti 

29. 

2.2) contd. 

a) 

  

contd. 

F(N-§)= - [@*(3)s[we(j+1)]6(5)]"* @" (5) SLN-( 5+1)]9( 3) 

sas.2.20= 

F(N-j) is clearly a feedback coefficient matrix, 

The optimal control law is totally 

determined by the recurrence relationship betwen 

the P and F matrices of equation (2.20) and 

P(N-j) = $'(5)S$(5)4+6'(5)SG(5)F(N-5) -- (2.21) 

from equation (2.14) 

Computation of the P and F matrices, 

starting with P(o), yields the N different F 

matrices required to formulate the control sequence 

u(i), i = 0,1,2, ...(N-1). The sequence is generated 

in reverse time order, beginning with u(N-1) and 

ending with u(o). 

The optimal control policy for a linear 

systen is thus shown to consist of linear time- 

varying feedback of the state variables. 

Linear time-invariant systems. 

The development of an optimal control 

policy for linear time-varying systems does of
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202). contd. 

b) 

  

contd. 

course also cover linear time-invariant systems. 

However, it is considered that an alternative 

development is simpler and gives more insight into 

the properties of the problem and of the solution, 

Let the state transition equation of a 

linear time-invariant system be 

x(k+1) = $(T)x(k) + G(T) u(k) wey (2022) 

and let the imlex of system perfomance to be 

minimised be 

N 

Cy = we x"(k) Q x(k) hn (45) 

k= 

where Q is a constant weighting matrix, 

Concentrating on the last sampling interval 

[(N-1)T, NE], we have that the contribution to Cy 

from this interval is 

Vy = 2'(N) @ x(N) 

The minimum value of Vy is given by
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contd. 

b) contd. 

Ty = u(mea) (21) @ x(0)) 

min 

= (ie), (@20F2)+6u00-2)) 'a(x(ti1)2u(0-2)) 

en (2.210) 

Again the optimum value for u(N-1) 

can be found by simple differentiation, Setting 

aN, = 0 for a minimum value yields 

TOFT) 

G'QG u(N-l) = - G'Qp x(N-1), eas (2525) 

of if G'QG is non-singular 

‘u(N-1) = F(1) x(I-1) 

with (1) =- .fGtqe]"* ote in (0626) 

This feedback control law is known 

as the law for single-stage sub-optimal control, that 

is how to choose u(k) to minimise the value of the 

summand x'(k+1)Q x(k+1) at the next sampling 

instant. 

For optimal control over the last two 

sampling intervals, 
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2) contd, 

242) ° "conti, 

b) contd. 

<j
 

| ats i x'(N-1)Q x02) | ea (eee 

u(N-2) 
hea 

Rie . ($+GF(1) )x(N-1)] *Q[ (6+GF(1) pee 

a2 + x'(N-1)Q x(I-1) 

Setting Oates = 0 gives 
du(N-2 

u(N-2) = - [G'RG]"* GtR¢ x(N-2) wis Leecn) 

= F(2) x(Ne2) | 
with R = Q + (¢+GF(1))* Q(¢+GF(1)) see EH 

Similarly, for optimal control over three intervals 

u(N-3) = - [Gtwe]-* ctw x(N-3) 

with 

W = Q + (¢+GF(2))* R(¢+GF(2)), and so on. 

This development of the optimal control 

policy for an unconstrained linear time-invariant system 

follows closely that given by Nicholson*®. 

The analysis shows that optimal control 

is achieved by the time-varying feedback 

we) & FUR) xO): 5 ik 20,1 Pos de (NOL). kee ee)    
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contd. 

where the Bxn feedback matrices F are specified by 

the recurrence relations 

F(N-k) = - [G'Z(N-k)G]"* G'z(N-k)¢ an (2esks 

Z(N-k) = Q + [¢+GF(N-k-1)] *Z(N-k-1)[¢+GF(N-k-1)] 

wine (2,32) 

Z(1) =Q, 

provided that rank (Q) 2 r. 

New results for linear time~invariant systems. 

a.) Equivalence of. N-stage and single-stage control 

policies 

The first new result is that the series 

of feedback matrices F(N-k) specified by the re- 

currence relations (2.31) and @.32) reduces under 

certain conditions to a sequence of constant matrices, 

each of which is identical to the single-stage feed- 

back matrix F(1). The repeated use of F(1) is then 

fully optimal for the Nestage problem. 

For this equivalence property to hold it 

will be shown that.it is sufficient for the per- 

formence index of equation (2.23) 
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a) contd. 

N 

2 2 2 
Cy =) (qa X4 +Q2%2 + vend =, ) ’ q 2 QO, 

k= 

to contain explicit functions of not more than r 

of the n state variables (i.e. not more state 

variables appearing in the index than the number 

of control inputs to the system). 

Without loss of generality we may take 

a corresponding performance index matrix Q to be 

Qa en es 

e Q2 

Ga fhe 2 4, 20 eee (2,33) 

H
O
 

    
Let the number of zeros on the lower part of the 

diagonal of Q be s, so that 

= ie tS 

From equations (2.31) and (2.32) 
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2(2)-2(1) = [¢-G(G'QG)"*Ga¢] *Q[d-G(GtQG)"* G*Q¢] 

eee (2.34) 

=¢'L'QL¢ ooo (2.35) 

where L=I -— G(G*QG)~*GtQ iva (20) 

Assume that the result 

L'QL = the null matrix (nxn) 

TS brue, FOr Ne = TS, 

If L'QL is null, then #'L'QI¢ is also null 

and Z(2) = Z2(1). To attempt a proof by induction on s, 

take n = r+s+l. Q and G become the matrices 

= ¢ Jol 2e5t) 
7 “L434. r+s 

&1 & eon & 

By forming appropriate products of the banded matrices, 

we find that 

t — t 

arse re eed * | r+S “r+s es eee (2.33) 

and hence that 

L 
P+ST1 

‘a FS ad 
= (I = Glerac] Tos    
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Eg h2. 38) 
nes 

e
e
o
e
e
v
e
e
n
v
e
e
 

MF
 
G
e
e
e
D
 O
 

R At A eecce r+s 

where the ats are functions of the 8; of Ors 

and of the elements of (clerge}*GtQ) 

ao
 

. =< 0 
Finally, (GAQb) sg = (L'QL) 4s > e] eee (2.10) 

0 0 e@eeee8 O 

The first part of the induction proof 

shows that if (L'QL) 5 is a null matrix, then 

t j | (L Qh) is also null. To complete the proof 

take S = Oe 

_ are ~1Lra-1 wt t 
ous (I - ae “Q"Gr’G eee F wee (2,451) 

which is a null matrix provided that G and Q are 

both non-singular. This "square systen" result 

is given by Tou". 

It has therefore been shown that   Z(2) = Z(1), for n= 1, rtl, r+2, eee, for the 
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set of performance index matrices Q defined by 

equation (2.33). The recurrence relations for & 

show that in this case 

Z(N) = Z(N-1) = oo. = 2(2) = Z2(1), 

so that the N-stage sequence of feedback matrices 

F(N-k) reduces to a sequence of constant matrices. 

The optimal control policy is given by 

u(kt) = — [GtQG]"*GtQp x(kT) , k=0,1,2.0.N eee (2642) 

for any number of ca N. 

To sum up, it has been shown that if not 

more state variables appear in the index than there 

are control inputs to the system, an N-stage control 

scheme simplifies identically to the corresponding 

single-stage scheme, 

In large industrial systems it is quite 

likely that this condition on Q will be met, since 

the values of many of the state variables will be 

of no interest provided they remain bounded. The 

knowledge of possible simplification could also 

influence the choice of system model and performance 

index.e 
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b) On the singularity of the matrix product G'QG. 

The results of the theoretical synthesis 

of N-stage systems, and not least the equivalence 

property stated above, depend on this stage on the 

non-singularity of the matrix product G'QG. A 

discussion of this dependence seems to have been 

avoided by previous authors. It is considered 

necessary to attempt to establish whether solutions 

for the feedback matrix F(N-k) exist even when 

G°QG is singular. 

It has been shown that provided the 

matrix product G'QG is non-singular the unbounded 

control problem has a solution in the form of a 

sequence of matrices, the appropriate matrix from 

the sequence to be selected at each sampling 

instant. 

When dealing with processes involving 

anything more than a very small number of variables, 

it is likely that one or more of the components of 

the state vector x will not appear explicitly in 

the index of performance    
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N 

Cy = . x*(X) @ x(k) 
Ve 

The matrix Q will then contain one or more zeros 

on the principal diagonal, and hence will be 

singular. In this case the matrix G'QG may or may 

not also be singular. If it is, no inverse exists, 

and equation (2.26) for F(1) 

F(1) = - [etge}* arQ¢ 

does not hold. It would of course be possible to 

ensure non-singular G'QG by the device of replacing 

the relevant zeros by very small positive numbers, 

We wish to determine whether a solution 

of the original equation for F(1) 

[¢'QG] F(1) = - GQ bee (2eh3) 

exists when the matrix G'QG is singular and there- 

fore has no inverse, Let us assume’. that the number 

of non-zero elements on the principal diagonal of Q 

is m. This is the number of state variables appear 

ing explicitly in the performance index, 

Physical considerations give immediately    
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m€¢n , the total number of state variables, 

and that the number of control inputs, r, satisfies 

the relation roan. 

Q is an nxn matrix and G an. nxr matrix. 

The rank®® of the matrix Osis: me 

The rank of G<¢r 

The rank of a product of matrices AB cannot 

exceed the rank of either factor 

rank(AB) < min(rank A, rank B) 

G'QG is an rxr matrix; if rank (G*QG) <r 

the matrix is singular; if rank (G*QG) = r the 

matrix is non-singular and possesses a unique inverse. 

Let the rank of G be p, and consider the 

possibilities 

2) ae 2 
  

rank(G'QG) < min (rank Gt, rank Q) 

<p 

rank (G'QG) < p 

2) men 

(a) m2r 

Again, rank (G*QG) < p 
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(2) contd. 

(yh) m@< 7 

rank (G4QG) <m , <r 

G'QG is singular. 

In cases (1) and (2a) it is probable that 

rank(G'QG) = p, so that G'QG is non-singular unless 

BOS Xm 

In practice if rank G (that is p)<r 

we can select any p columns of G and express each 

of the renaining (r-p) columns as a sum of multiples 

of these p columns, This means that only p 

of the r control input variables are independent. 

The problem should therefore be re-formulated in 

terms of p imependent control variables. 

For case (2b), the condition that there should 

be a solution of equation (2.43) for F(1) is that the 

augumented matrix [G'QG : GtQ¢] should have the same 

rank as ctoor® 5 The condition is satisfied if rank G2 Mm. 

A set m of the r control variables will then provide a 

solution, the remaining (rm) variables having been 

given arbitrary values. Not all sets of (r-m) of the   
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2.3) ‘contay 

b) 

  

contd. 

variables may be given arbitrary values; the criterion 

is that the coefficients of the remaining m control 

variables should give a non-zero minor of order m in 

G'QG. 

Hence it has been shown that a solution of 

the equation for F(1) 

[GtQc] F(1) = - Gta 

exists even when the matrix G'QG is singular. It may 

on occasion be necessary to re-formulate the problem 

in order to arrive at a solution, in particular when 

the control variables are not all independent. 

F(1) is the appropriate feedback matrix for 

single-stage control. The equations for the feedback 

matrices F(2), F(3) .«. F(N) are similar to the 

equation for F(1), but in place of Q they involve 

matrices Z(2), Z2(3) «ee. (equation (2.32)). These 

matrices are seen to have the same rank as Q, so that 

the above rank analysis holds for non-equivalent 

N-stage control as well as for single-stage control.
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AB. 

OPTIMAL CONTROL WITH BOUNDED CONTROL INPUTS. 

The specification to be met by any physical control 

system will inevitably include some sort of constraints on 

the control inputs. If this were not so an optimal system 

would quite rightly demand infinitely large control for an 

infinitely short period to drive the system back to equilibrium, 

The form in which constraints are specified will 

vary from problem to problem. Usually, "hard" constraints 

or bounds on the control inputs will be included. It is 

often argued that these bounds should be "soft" or elastic 

constraints, since small violations will not matter, but this 

approach may lead to difficulties with the degree of sof'tness. 

The process engineer may also find bounds more easily specified 

than any other form of control input constraint. 

3.1) The Kalman-Tou method, 

Kalman and Koepceke®, and Tou* have given a 

method which has become the standard me thod** of deal ing 

with control input constraints in optimal computer 

control systems, The essence of the method, as outlined 

in the introduction, is that the index of system per— 

formance 

N 

Cy. S ="(k)Q x(k) 
kat 

is modified to include a quadratic function of the
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control inputs 

oy =)" {2"000 200 + aCe xO) vite (ek) 

kat 

where 

es Aa 0 0 eee 0 

0 Ag 0 eee 0 with A; > 0 eee (352) 

0 OAs. wee 0 

oO oO
 oO 

e e e » 

The addition of this term to the performance 

index makes only a small change to the dynamic programming 

solution of the control problem outlined in Section 2.2. 

In particular the Nicholson-type solution for linear time- 

invariant systems becomes, for single-stage control, 

u(N-1) = F(1) x(N-1) 

with, instead of F(1) = - [Gtac]”* ata, 

F(1) = — [G'QG+H]~* Gta eee (3.3) 

The extension to N-stage control follows a recurrence 

relation pattern similar to that of the N-stage modified 

index solution. For example   u(N-2) = — [@'rG]~* ¢'Rdx(N-2) 
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R= Q + F(1)* H F(1) + (G+GF(1))*Q(G+GF(1)) eee (3.4) 

The effect of the term u'(k-1)H u(k-1) is 

to add to the performance index a quantity which varies 

as the square of the amount of control action used to 

return the system to equilibrium after a disturbance, If 

this method is used to implement bounds on the control 

inputs, the Ay of the H matrix are chosen so that each 

of the control inputs remains in its allowable region, 

lu;| < Mi, i= 1,2, oo. Te 

The method outlined above for the optimal 

control by computer of systems with bounded control 

inputs is theoretically very neat and simple, which is 

an advantage, It is the opinion of the author, however, 

that the method is of doubtful practical value. 

Let us consider the use of this method in 

practice, The significant difficulties arise from the 

selection of the values of the A elements of the H 

matrix. Even with a good iterative scheme the work in- 

volved in calculating the best values for the A's is 

considerable. (An example involving four control inputs 

is detailed in Section 4 of this thesis). This work may 

be done either off-line using a digital or a hybrid
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computer, or on-line using the control computer whilst 

it is controlling the process. 

If selection is made off-line ona "once and 

for all" basis, response tests must be made with the 

largest disturbance the system is expected to encounter. 

Full available control will therefore be used only when 

the largest disturbance occurs, and with smaller distur- 

bances the system will not be optimum in the original 

sense. Alternatively a number of sets of A could be cal= 

culated corresponding to different levels of disturbance, 

The sets would be stored in the computer and when a dis-— 

turbance occurred it would be monitored in some way and the 

appropriate set of A selected, with the aid of an inter- 

polation routine, The sequence of feedback matrices 

F(1), F(2) ... F(N) could then be calculated and finally 

appropriate control applied to the process. 

It would be preferable if selection of A could 

be carried out on-line. Let us assume that an estimate 

of the disturbance can be made and the estimate included 

in the systen equations. Now, one iteration on A involves 

calculating the A-dependent sequence of feedback matrices, 

simulating the corresponding system response and using this 

to improve the current estimate of A. When a satisfactory 
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A has been computed, the corresponding sequence of feed- 

back matrices can be applied immediately to the process, 

It seems unlikely that the application of the on-line method 

with its consequent speed requirements would be a practical 

proposition in a process control installation. 

The preceding remarks on the selection of A 

have not taken into account the likelihood that the system 

model is only an approximation, valid for small deviations 

about one particular operating point, If this is so, the 

off-line selection method would involve the computation 

of several sets of A for each of several sets of Q,¢ am 

G matrices corresponding to the different operating points. 

All this data must be stored in the control computer, 

suitably for fast access since even when A has been selected 

it would remain to calculate the sequence of feedback 

matrices. 

Both of the A~selection methods discussed hinge 

on the ability of the system to recognise and estimate the 

size of a disturbance. If this cannot be done satisfactorily, 

then the practical value of the Kalman-Tou method is 

further reduced. 

The theoretical value of the method is difficult 

to estimate. A control policy evolved by this method is 

only sub-optimal, in the original sense, since the solution 
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of the problem of minimising 

‘3 [x"(92 x(k) + u'(k-1)H (it) 

Le [ul <M 

is not identical with the solution of the problem of 

finding 

N 
min ' 

lul< M \ x"(k)Q x(x) 

k= 

r°> for a number of A comparison made recently by Fulle 

low-order continuous systems shows that the technique 

may lead to performance index values 30 to 50% greater 

than the true optimum, 

Another consideration is that the addition 

of the H matrix, whilst removing any singular G'QG diffi- 

culties, also destroys the equivalence theorem: between 

Nestage and single-stage control. 

Single-stage control. 
  

In the previous section the Kalman-Tou method 

of dealing with control input constraints was derived and 

discussed, It was concluded that the method had practical 
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shortcomings. In the remainder of this section of the 

thesis an alternative method is derived which overcomes 

most of the difficulties associated with the standard 

method. 

One way of simplifying the application of 

the theoretical solution of the computer control problem 

is to approximate to the N-stage optimal policy by a 

single-stage optimal policy. If the system equations in 

discrete form are 

x(k+l) = ¢ x(k) + G u(k) sac tee) 

and the performance index is 

on © \ | ato x(k) + ut(k-1)H u(k-1) } see(356) 

k=1 

then the optimal control in the last interval 

t+ = [(N-1)T, NE] is 

u(N-1) = = [G'QG+H]"* G'Q x(N-1) aw (347) 

Choosing the feedback matrix defined by this equation 

at any time t = kT will guarantee a minimum of the 

contribution to the index at the next sampling instant, 

C(k+1) = x"(k+1)Q x(k+1)+ u'(k)H u(k) cag’ (318) 
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The system response achieved by repeated use 

of the single-stage feedback matrix approximates to the 

"optimal" response achieved by applying the full N-stage 

series of feedback matrices®*. An alternative to this is 

the repeated application of F(o), the infinite-stage 

matrix’. The use of a cow tant feedback multiplier matrix 

has much to recommend it. Both storage and speed require— 

ments of the control computer will be significantly reduced, 

making on-line control a more attractive proposition, 

The alternative control scheme developed in 

this section is to be based on the use of a single-stage 

index, but not the single-stage version of the Kalman-Tou 

method, nor the constant feedback matrix arrived at by the 

convergence of an infinite-stage scheme. It is the con= 

tention of the author that there is no need to introduce 

the artificial H matrix to deal with control input bounds. 

It is possible to solve the optimal control problem posed 

by a single-stage index with no devices at all. 

If the systen to be considered is described 

by the state transition equation 

x(k+1) = ¢ x(k) + G u(k) 

and the single-stage index is
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Ul C(k+1) = x'(k+1) Q x(k+1), 

then 

C(k+1) = [$x(k)+Gu(k)] *Q[¢x(k)+Gu(k)] wan (ed) 

Let the control input bounds be described by 

a uch eee (3.10) 

We are required to minimise C(k+1) subject to the 

bounds a and b. 

At time t = kT, the matrices G, Q and ¢ ami 

the value of the state vector x are all fixed. It re- 

mains only to minimise C(k+1) with respect to its one 

remaining variable, u. 

C(k+L) = (¢x+ Gu) 'Q(¢x+Gu) is a positive 

semi-definite quadratic form in the components of the 

control input vector Us,tUe, eee ou, The control problem 

therefore becomes a problem in the quadratic programming 

field. 

We already know that the solution in the 

absence of constraints is 

u(k) = = [6*9g"* G'Q $ x(k) wee 5011) 

In addition, from the new results of Section 2.3, a solution 

for u is still possible if G'QG is singular, and should the 

conditions of the equivalence theorem be fulfilled then 

equation (3,11) is the solution of the N-stage unbounded
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problem as well as the single-stage problem, 

It should be mentioned here that a previous 

author, Nicholson, also avoids the H matrix approach to 

single-stage systems*°, His method is developed from an 

original suggestion in a paper by Kalman and Bertram*, 

Nicholson's method of dealing with input bounds is to 

calculate the free minimum by equation (3.11) and then 

to limit the individual components of u according to their 

bounds a and b. [Fig.13 of ref.10]. He calls this 

"including the constraints outside the linear range of 

equation (96)" [equation (3.11) of this thesis]. The 

method gives a fast but inaccurate solution in every case 

except where the mappings of constant C(k+1) in u-space 

consist of a family of hyperspheres, when the solution 

is accurate. This case only occurs when in the expansion 

ooo r 

C(k+1) =) x a5; 4, 4; + Ms B, (k)u,+ vik), wav’ (3.32) 

i=a j= cies =1 

the a; 3 satisfy 055 = 0, i233, 

@11 = Age = wee = & 

The error involved in Nicholson's method depends on the   
relative sizes of the as 3° Large ratios of the us” 

tems, 05 5/O 55s could lead to a "solution" far from the 

 



  

3) contd, 

35%) 

323) 

  

536 

contd. 

true optimum. 

A computational procedure to solve the quadratic 
programming problem. 

It has been shown that the bounded input 

single-stage control problem results in a type of 

quadratic programming problem. Several published 

methods were considered for the development of an 

algorithm to solve the problem. The four methods 

listed below are examples of the different types of 

method considered, 

1) Box's method®*® of using the transformation 

u, = a,+(b,-a, )sid'v, to yield an unconstrained 

minimisation problem, 

2) Wolfe's modified simplex method’, A simple linear 

transformation Yes us + a. would give a notation 

nearer standard. 

3) Fiaceio and McCormick's penalty function technique?® 

using some approximation to the function near the 

boumse 

4) Hadleyts method of Lagrange multipliers and "active 

constraints"?°, 

Methods proposed for the solution of quadratic 

programming problems can be divided into two classes. 

  

>
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contd. 

Class A consists of methods which transform the problem 

to remove the constraints, such as Box, and Fiaccio and 

McCormick, and class B methods which use the constraints 

to solve the problem, such as Wolfe, and Hadley. There 

also exist methods such as Hildreth’’ which remove some 

constraints and retain others. 

In the choice of an algorithm for on-line 

computation of the solution of the control problem, it 

was considered advisable 

a) to retain as far as possible the feedback nature 

of the solution 

and b) to attempt to minimise the maximum time taken to 

find the solution, 

These two comitions tend to rule out class A methods, which 

are more suitable for off-line computing on larger one-off 

problems, The class B methods (with the exception of 

Hadley's method) are again more suitable to larger, more 

complicated problems. None of the methods satisfy 

condition (a), not surprisingly, and not all methods 

guarantee even convergence in a finite number of steps. 

The on-line control problem is distinguished 

from normal problems in the quadratic programming field 

by the relatively small number of variables, the
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contd. 

simplicity of constraints, and the necessity for speed 

guarantees, It seemed worthwhile therefore to look at 

the problem in a different way and to attempt to build 

up a new method more suitable for the particular appli- 

cation. The method which has been developed is based 

on a geometrical view of the function in variable-space, 

yielding certain properties of the function and of its 

minimum, 

We distinguish immediately between the free 

or global minimuy which is known to be given by 

u(k) = - [e'Qa]"* Gta¢ x(k) exert os11) 

and the constrained minimum, which is the solution of 

the problem, 

The function, C(k+1) of equation (3.12), is 

a positive seni-definite quadratic form in the control 

variables Ut yU2 yeoesU.y and is therefore convex. It 

follows that any local minimum is the global minimum, 

From this we have properties 1 and 2 of the solution. 

Property 1 - If the free minimum satisfies all the 

bounds on u(k), then it is the solution 

of the problem, 

Property 2 - If the free minimum violates any of the bounds
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Property 2 =— on u(k), then the constrained solution 
ontes 

must lie on at least one of the bounds, 

Proof. Assume that the free minimum violates one or more 

of the bounds, a < u < b, and that the constrained 

solution lies totally inside the bounds. Then the 

solution must also be the global minimum, which 

contradicts the original assumption. 

Properties relating the free and constrained 

minima are clearly important, since the free minimum is 

given by a simple matrix equation (3.11). A further 

relational property which applies is 

Property 3 - If the free minimum violates a number m of 

the 2r bounds, then the constrained solution 

lies on at least one of these m bounds, 

Proof’, The mapping in u-space of surfaces of constant 

C(k+1) is a family of rdimensional hyperellipses. 

The hyperellipses are cut by hyperplanes which 

represent the bounds. Let the free minimum be a 

point which lies outside m of the 2r hyperplanes 

which define the allowable control region. Then   a straight line joining the free minimum to any 
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Proof (contd) 

Die 

interior point of the allowable region must 

cross all the m hyperplanes. The point at 

which the last of these m hyperplanes is 

crossed is a point on the boundary of the 

region. Since the gradient of the function 

value along the line, x, must be always 

positive, this boundary point will yield a 

lower value of C than any interior point on 

the line, (Interior points are taken to 

include boundary points on any of the (2r—m) 

bounds not violated by the free minimum). 

The constrained minimum must therefore lie 

on at least one of the m bounds violated by 

the free minimum, 

An illustration of this for a problem 

with two control variables is given in 

Leo el 

Fig.3.l also illustrates the fact that the 

constrained minimum point does not, in general, lie on 

all the m violated bounds. Besides confirming the failure 

of Nicholson's method of locating the solution (page 52) 

the figure shows that the computational procedure 
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3.5). contd. 

suggested by the author in reference 30 would not in 

general locate the correct minimum point. 

This computational procedure is based on @ 

further property of the function, which is still useful:- 

Property 4. -— The local minimum on a particular bound, 

uz = bt (say), is given by 

we = = [6 Qe 1 *G* *Q(gx+bscr) eee (3.13) 

Sacgt ‘ 
where u' is the vector of control inputs 

whose values remain free; 

4 ui =[wwuw...ul, 

G* is the matrix G minus its first columns 

ct = &12 &13 eee §& 

and @1 is the vector whose components con= 

stitute the first column of the matrix G: 

= eee ’ ga = [ea a4 eo 

The property follows immediately from the expression of 

the function value on the bound as 
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c = [¢x + Gtut + bac] *Q[dx+Gtu +bica] 

From the properties of the function 

already stated it is clearly possible to develop a 

computational procedure to locate the constrained 

minimum, by effectively reducing the dimension of 

the problem ateach stage (.e.g. a problem where 3 

of 5 components of the free minimum vector lay out- 

side bounds could be expressed as 3 separate problems 

in 4 control variables, instead of one problem in 5 

variables). However it seemed that more investigation 

of one particular bound would be worthwhile, The 

relevant bound is that one bound of all the bounds 

violated by the free minimum whose local minimun 

(e.f. property ADS possesses the largest function 

value. A further property of the solution, concerning 

this bound, is seen to apply:= 

Property 5 - If the constrained solution lies on one 

only of the bounds violated by the free 

minimum, then this bound is the one whose 

local minimum has the largest function value, 

The proof of property 5 follows immediately from the 

proof of property 3 if the constrained solution is the
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local minimum on the bound. If the solution involves 

bounds not violated by the free minimum, the proof is 

more complex. Property 5 as it stands is not very 

useful in developing a computational procedure to 

locate the solution. If it were possible to extend the 

property by proving that the constrained minimum always 

lay on the one bound of all bounds violated by the 

free minimum whose local minimum had the largest 

function value, the property would become computationally 

important. By comparing the local minima on each of the 

violated bounds, it would then be possible to reduce one 

problem of ih order to one problem of (1) order to 

one of (xoy order, and so on. Such a proof has been 

sought, but notfound, and it seems likely that the 

suggested extension to property 5 is not in fact a 

property of the solution of the problem, 

The computational procedure which is used 

in Section 4 of this thesis is therefore based on 

properties 1 to 5 as stated above. As an example, 

for a problem in four control variables, the procedure 

carried out is as follows:-— 

Step 1 Compute the free minimum from the matrix equation 

u = - [Gt9c]"* Gtagx 
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Step 2 For each of the bounds violated by u, compute 

the local minimum and treat this as the free 

minimum of a problem with three variables 

Step 3 Reduce each three variable problen to a number 

of two variable problems, using the same 

technique. 

Step 4 Use property 5 to solve each of the two variable 

problems. 

Step 5 Compare each feasible solution to find the one 

with the lowest function value, which is the 

solution of the problen, 

The logical ordering of the operations is by repeated 

vertical scanning of steps 2 to 5. Each step is nested 

within the previous step. 

For a problem with ¥* control inputs, the maximum 

number of individual computations of minima needed to find 

the solution is 2°-l. Each minimum point is given by an 

equation similar to equation (3.13), its computation 

therefore involving only simple matrix operations. The 

time taken at each sampling instant to find the optimal 

control vector is therefore mainly dependent not on 

the order of the system, but on the number of control 

inputs. 
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The computational procedure in its present 

form is probably suitable for processes with reasonably 

small numbers of inputs. For large numbers of inputs, 

it would be necessary either to improve the method by 

extending the theory, if this is possible, or to develop 

another method. One possible method, suggested by. Lighthill 

io . : : : 3 . 
in a private communication”, is to replace the rectangular 

parallelepiped lu, | < bs by the constraint 

r 2N 

yee 
‘ aL 
L=4 

He suggests that N = 5 would give a close enough 

approximation. Computation of the optimal control 

vector would then involve the solution of the (r+1) 

simultaneous non-linear algebraic equations 

r 
Crk alka 

- @ 54, + B,+2NA i 0 ee de ke Sy 
b 2N 

i. rT 

c 2N 
Arie 

aoe 
i 

ist 

(Note - the bounds are taken here to be |u| = |b|) 
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3/:) Conclusions on the proposed technique. 

The method proposed by Lighthill is an 

alternative way of solving the non-linear programming 

problem, and does not affect the approach to the 

solution of bounded—input control problems advocated 

in this section. The technique for optimal computer 

control of linear or linearised multivariable control 

systems put forward here has the following properties:- 

a) The control policy conforms with tradition in that 

control is achieved by feedback unless or until 

saturation occurs. 

b) The computing load is spread evenly over a control 

period [0,NT], since the minimisation carried out at 

each sampling instant will take a near-constant length 

of time. The Kalman-Tou method involves a large 

3 computing load at t = 0 followed by little work at 

all other sampling instants. 

ec) The computational procedure is unaffected by changes 

in any of the parameters of the system model, the 

performance index, or the bounds on the control inputs. 

It would probably be best to evaluate off-line the 

system ¢ and G matrices corresponding to each set-point,   
but even this could be done on-line if it were 
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contd. 

desired to adapt to changes in the parameters of the 

A and B matrices, The technique offers maximum 

flexibility for use with non-linear processes, since 

changes in set-point present no problems. 

The technique is only sub-optimal over a period 

[o,NT] since it is based ona single-stage index. 

Varied with respect to this index, however, it is 

completely optimal, In contrast to the Kalman-Tou 

method,the technique automatically makes full use 

of all the available control action,
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1.) OPTIMAL CONTROL OF A POWER-STATION BOILER. 

hel) The boiler model. 

The equations used in this thesis to represent 

the dynamics of a natural circulation boiler were 

obtained by Harris,Leigh,Mudge and Sutton of English 

Electric Co.Ltda.*® The equations are similar to 

equations given in the well-known paper of Chien, 

Ergin, Ling and Lee,** but use enthalpy throughout 

rather than a mixture of enthalpy and pressure, The 

complete equations and the assumptions under which 

they were obtained are listed in Appendix l, 

The process is represented by a set of six 

simultaneous linear first-order differential 

equations, suitable for the study of small per-— 

turbations about a given operating point. There are 

four control inputs. In vector—matrix notation the 

equations are 

4% = ax(t) + Bu(t) + n(t) vale) 
dt 

The 6 x 6 matrix A and the 6 x matrix B given. 

below are functions of the boiler parameters and of 

the operating level.   
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A —a410 a4 28 0 yogu -1 O 

aa4.a -8 0 y~Eu -1 0 

a3 40. a3 28 O -asay+éu 1 0 ue ha?) 

0 0 0 ae 1 0 

O 0 0 6 =1 0 

0 0 0 aga Y+HE 0 -€ 

B. =) =1 u 0 0 uae (405) 

=1 U 0 0 

as bs2u (0) 0 

iL lL 0 O 

0 0 i): 0 

0 0 0 Ee 

  

The disturbance vector n(t) represents changes in steam 

demand. 

The components of n are related to a change in the 

area of opening of the throttle valve, N, 

n=[ -uN -uyN uN -N 0 gN]' ee hgh) 

The change in steam flow from the boiler is given by 

n=N+ém , ewer (05) 

as stated in Appendix 1. The change is therefore a 

dependent variable’>, 

The independent variable of the equations, t, is
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proportional to time. 

The state vector, x(t), the control vector, u(t), 

and the disturbance vector n(t) are dimensionless. 

Components of the vectors are related to variables of 

the boiler as follows:-— 

x, to the sum of mass-flow rates per sq.ft. of 

cross-sectional area in the riser and down- 

comer tubes 

xe to the density of the liquid-vapour mixture 

leaving the riser tubes 

x3 to the mass of liquid in the drum 

x4 to the saturated vapour density corresponding 

to the drum pressure 

x5 to the enthalpy of drum and downcomer liquid 

X_ to the superheater outlet temperature 

uz to the heat-input rate from the riser tube 

walls into the boiling liquid 

ug to the feedwater mass—flow rate 

to the enthalpy of the feedwater & 

uz to the heat-input rate from hot gases into 

the superheater tube walls   
N to the area of the throttle valve opening 
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For this investigation, data is available on a 

particular natural circular boiler, a 100,000 lb/hr. 

industrial power—station boiler. An English Electric 

digital computer program exists which transforms such 

data into numerical values for the parameters 

A,B yY ecco S64, Deeg of the A and B matrices. For small 

perturbations about the normal operating point of this 

boiler, the values of these parameters are 

@ = = 2.29066 a44 = — 10.4878 

B= 1.67817 aaa == 6.41307 

y= 2.02097 a1 = 0.33368 

§ = 1.09005 asa = 0.34881 

€ = 0.042829 asa = 1.04536 

7 = = 0.128955 asa = 1.02089 

n= 5.68189 a64 = 0.00091809 

€ = 0.93696 bs2 = 0.71946 

The numerical forms of the relationships between the 

boiler and equation variables are
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m == 0.2600, 2 m = 2.9746 x 107 °Ss 
QB 

a = Osco ze Ue = 9.228 x 10% 7 

1 

xs = 8.0.4 5122 ~ Us = 6.2190 x 10% a 

hy 

xa = 0422013 °Pp mw = 4.9127 x 10% Os 
Ps Res 

xs = 0.97025 Hy of 560668 x 10 EP 
h W. 

Ww B 

6T real time 
= 2 e — ee Xe 50349 _ t EG 

s 

The systen A and B matrices become 

Po —2),.02). 10.762 0 -3.3028 -1 0, 

- 0.76434  -1.6782 0 -3 3028 -1 0 

0.79901 EDAD 0 3.2605 1 0 

0 0 -2.0270 nu 0 

0 0 1.0900 -1 0 

0 0 -0.11897 0 =-0.042829 

0 0 

0 0 

0 0 

0 0 

qi 0 

0 di 
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Fig.4.1 shows the uncontrolled transient reponse 

of this model to a + 10% change in the throttle valve 

opening. The individual response curves of boiler 

variables are given as percentage variations from normal 

levels rather than in absolute units. Agreement between 

these and earlier published boiler response curves’ °?*5 

is considered to be reasonable. The drum level response 

exhibits the expected initial rise followed by a rapid 

fall. The fall is limited by the return of the steam 

mass-flow rate to zero, as observed by Anderson oe ee 

was not possible to determine whether or not the rate 

settled at a small negative value because of the limited 

accuracy of the calculations. The superheater outlet 

temperature seems peculiarly insensitive to changes in 

steam demand. The time scale of the responses compares 

with that of responses obtained by Nicholson*® for a 

similar boiler. 

On-line computer control. 
  

For control systen studies the equation of the model, 

equation (4.1), is expressed in discrete form 

xl (k+1)t] = $(2) x(kT) + G(T) u(KP) + a(KT) 44. (4.6) 
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4.2) contd. 

The control input vector u(t) is assumed to be updated 

every T seconds. 

The matrices ¢ and G and the vector d were 

originally obtained from the system equations (}.1) 

to (4.4) by analytic integration using elementary 

Laplace transform techniques. This exercise was carried 

out to obtain the maximum information about the discrete 

system equations. Numerical integration using the given 

data serves as a check on the analytical results, and 

has been used for all later work, 

The normal method of obtaining numerical values 

  

for the ¢ and G matrices is to use the series’?*°?*5 

AT Ae g(t) = eT - ye = 
r=0 

: ew e(r) -| dG)3 & = Lay 3 
oO 

r=o0 

To aid convergence, it has been found convenient to 

compute the following matrices 

om) = S aC ao" 
r=0   
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2 4 a : oN Av ie uy" 

M r+1)$ 

r=0 

with M a suitable integer (in this case between 10 

and 32). These calculations can be carried out 

simultaneously. The relations between o( An), Fy 

and ¢(1), G(T), a(t) are 

$(f) fe) iD) } 
| 

G(T) [art (ant) ss xt] B 
= 52 

where S, = uc + ane (AF,,)+ ead (any) | sia’ Chae) 

and a(T) = Sn ass! (ied) 

The simpler algorithm for G(T), 

G(T) = A*[9(T) - I]B 

is not successful in acase such as this where A is a 

singular matrix, 

The principal objective of this part of the work 

is to test the value of several different control 

schemes rather than to test the boiler model. Certain 

conditions of the tests are therefore kept constant. 
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The change in steam demand which disturbs the system 

from equilibrium is taken to be + 10% change in throttle 

valve opening, applied as either a continuous or a 

randomly varying disturbance. The sampling period is 

taken to be T = 3, corresponding to 22 seconds real 

Under these conditions the numerical forms of time, 

¢, G and d are 

  

b = |ese6/si0,,. L.05.ita 26. +1 50,10 . eePhulee oO 

weal ose. OO Boe eee 6 

[ei eel os Wade yh ae 

0 0 @-'9,86.10> * 1.560.160. 2 B 

0 0 O70, Ae Ree 28 

0 0 ©. e.16. STi iey 8 e788 

G = | -1.03 0.677 -0.807 0 

-1.92 1.28 -1.49 0 

1 gh 2B 1.25 0 

0.788 0.788 0.638 0 

0.695 0.695 1 ody 0 
-0.183 -0.183 -0,112 2.82 

dx 10° = [=2.0) -3.91 2.83 -2.42 -2.13 -0.552]' 

The performance of a control scheme in returning the 

system to equilibrium is judged by the resulting value of 

the index 
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) C = x*(k) Q x(k) eee: 44510) 

k=1, 

For the purposes of comparison the upper limit N is 

normally given the value 10, corresponding to a total 

optimisation period of 220 seconds. 

Q is as usual a diagonal matrix with all elements 

either positive or zero, determining the weighting 

against errors in each of the boiler state variables. 

Most of the simulation tests carry weightings against 

errors in drum pressure, drum level, and steam temperature 

to follow practical conditions, 

Constraints on the control inputs are set as + 1% 

maximum deviations fran steady-state values. The bounds 

are expressed numerically by 

al® (2.8 felOn © 9525.18. 6222107 Aoi 1" 

In this form the control problem is an example of 

the type of problem considered in the earlier part of the 

thesis. Simulation of the response of the boiler model 

to changes in steam demand under the different control 

schemes analysed earlier should therefore provide some 

practical evidence of their indivdual merits. 
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4.3) Control algorithms, 

The remainder of the thesis describes the results 

of attempts at optimal control of the boiler model 

following a change in steam demand. Three different 

control algorithms are used. They are 

a) 10-stage optimal control based on the modified 

Kalman-Tou index 

10 

c =) [x"(X)Q x(k) + u8(ke1)H u(le2)] see (del) 
kaa 

b) Single-stage control with a similar modified index 

c) Optimal single-stage control with an unmodified 

index, as developed in this thesis. 

The three algorithms are discussed in detail in Section 3 

of the thesis. 

A change in steam demand is not strictly a random 

disturbance, since, if it is continuous, its value will 

generally be known beforehand. It is considered there- 

fore that the detailed algorithms used should allow for 

knowledge of the size of the disturbance. The control 

policies (b) and (c) are easily modified to include this 

knowledge:-—    
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b) For single-stage control corresponding to the index 

C = x'(k) Q x(k) + u'(k-1) Hu(kl), 

the optimal control vector is simply 

u(k) = — [G*QG+H]"* G*Q(¢x(k)+d) dai (rele) 

c) For optimal single-stage control, the control 

vector u(k) is chosen to yield the index value 

: i | fox (9 +a eu(k) } fdx() <d+eu(*) 3] ue tla) 
ket ~ lus b 

The mechanics of this choice are detailed in Section 3.3 

of the thesis. 

a) The modification of the standard Kalman-Tou N-stage 

control policy to include a continuous disturbance 

is not simple. To the knowledge of the author, the 

recurrence relations for this type of control are not 

stated in the literature. Nicholson*® develops a few 

stages of control under a continuous disturbance with 

an unmodified inex, but does not extend this to deal 

with the Kalman-Tou index of equation (4.11). 

The final stage of such a policy will correspond to 

the single-stage policy of (b), 

u(N-1) Il - [G'Qc+H]"* G'Q[¢x(N-1)+d]   Fi x(-l)+ha , Cac tke) 
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contd. 

- [GtQG+H]™* GtQ¢ Ul with Fy 

Da = = [G*QG+H]~* GtQ il 

For the previous stage, 

u(N-2) = = [o* {QF HF, + ($+GF1 )'Q(6+GF1)} G+H]"* 

— Gt {Q+Fy "HFi+($+GF1) 'Q(d+GF2)} (¢x(N-2)+a) 

i; Gt{R HD, + ($4+GF: ) 'Q(I+GD4 ) a 

where I is the rx r unit matrix; or : 

u(N-2) = + Fe x(N-2) + Ded eos (4015) 

where H = — [G'ReG + H]"* GIR ¢, 

Ils == [GtRG+HT* Gite , 

Re Q+ tH: + ($+GF)' Q(¢+G), 

Se = Re + FH 'HDs + (6+GF:) *Q(1+GD1) 

This treatment has been continued to yield recurrence 

relations for the control vector at any stage, 

u(N-k) = FR, x(IHk) + Dd seu’ (2.16) 

with F, = - (GR, GH]* cng - 

7 c 4 “é | eos (4.17) 
mao [G'R, Ge] * GS» 

Rye = OF HF HHR, 4) ROR.) 
t € 

S 7 Rr 

} « (4.18) 

and Ro = & = Q.
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contd. 

4.3) 

doi) 

contd. 

This set of recurrence relations completes 

the statement of the three control algorithms whose 

performance is to be compared, Algorithm (a) requires 

the complete control policy of N-1l feedback matrices 

to be computed in advance, whereas algorithms (b) and 

(c) require N-l applications of single-stage policies. 

Simulation on a hybrid computer, 

It is generally accepted that simulation 

tests of experimental computer control schemes are 

best carried out on an analogue-digital computer system, 

Such a computer installation enables the process to be 

simulated on an analogue computer and control to be 

effected by a digital computer, thus approaching as 

nearly as possible the conditions applying in practice. 

A system of this type was made available, 

for a limited period, by English Electric Co., Kidsgrove. 

The system consists of a LACE Mk.II analogue computer, 

a KDN2 digital computer, analogue-to-digital and 

digital-to-analogue conversion equipnent and a 

multiplexor scanning system, A full description is 

given in Sutton and Tomlinson‘? , 

A considerable amount of work was put into 

 



  

Pe) contd. 

belt) 

19 

contd. 

tests using the KDN2-LACE installation, more than 

was justified by the results. The contents of this 

section are limited to a discussion of the main 

points of the study together with some conclusions. 

An analogous electrical circuit was built 

up to simulate the boiler on the LACE analogue computer. 

The twenty scan points on the multiplexor were allocated 

in three blocks of six with two points unused, The six 

points of each block were connected, in order, to the 

six LACE amplifier outputs representing the state 

variables x1 to xs. At a scan rate of 50 points/sec. 

the number of blocks of six state variables scanned 

was 15/2 per sec. The sampling interval was chosen 

to be 3 seconds, so that interrogation of the state 

of the system occupied less than 5% of the sampling 

interval, 

The KDN2 is basically a process control 

computer and therefore is designed principally for 

fixed-point arithmetical operations and machine-—code 

programming. Because the arithmetical operations are 

fixed-point a knowledge of the values of the elements 

of the system matrices was necessary before a control 

program could be written for the KDN2. Control 
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contd. 

holt) contd. 

algorithm (c), the optimal single-stage control policy, 

had not at the time (1965) been developed. It was 

therefore decided to begin tests with the conventional 

single-stage policy, algorithm (b). A limited version 

of the general problem was taken to reduce the pro-= 

gramming task involved. The performance index for 

the tests included weightings on the drum level, drum 

pressure and steam temperature variables only, i.e. 

Xsy X4 and xg. The performance matrix Q was 

@ 6. 6:.0.ve Fe. 60 8 

® 0 e 

Q = e As oO 

e RE e 

o 0 o 

0 © o e es e e e Ae 

and the "cost of control" H matrix, 

Ele a Aa e eee 0 

e Ag e 

e As @e 

OC. > > e e aM 

It was found necessary to decide on approximate 

values for As- As before writing the control program 

because of scaling difficulties with the digital computer, 

which has an 18-bit word length. The pilot test involved 

 



  

4) contd. 

4) 

Sly 

contd. 

a performance index with equal weightings against 

deviations in M, Pps and. Tye Equal weightings against 

deviations in each of the control inputs were also 

chosen, the values of As -A4 being chosen to give about 

as 50 of the contribution to the index of the same 

deviation in a state variable. These values may con= 

veniently be expressed as two vectors, 

eBoy le oe) a 

and A= “jsoll. bay Il 

This notation will be continued for later tests. 

A KDN2 program of 1750 instructions was re=— 

quired to Calculate the elements of the feedback matrix 

P.- — [Glee +.B] 6906.4 

and a further 200 sierra as for the contrélprogran 

u(k) = F x(x) 
The two functions of the KDN2 were 

a) to accept a set of At —As and compute the corres-— 

ponding F matrix, and then 

b) to interrogate the state of the boiler model once 

every 3 seconds, up—dating the values of the control 

inputs by execution of the control program. 

 



826 

4) contd. 

bot) contd, 

The area of opening of the throttle valve 

was represented by a voltage, connected through a 

switch to the appropriate amplifiers of the analogue 

circuit. In all the simulation tests this voltage, 

controlled by the KDN2, had a constant level corres- 

ponding to a 10% change in load and a sign which varied 

randomly, changes in sign occurring at the sampling 

instants. 

A series of twenty tests was carried out 

with different values of At - Ae.A section from one of 

the tests is shown in Fig.4.2. The general behaviour 

of the systemwas satisfactory, the response curves 

exhibiting the expected trends ami levels. It was found, 

however, that the initial A selected, 

Ree el Ae) 

gave control input values which bore little relation 

to the bounds. The machine code programs left little 

scope for large changes in individual A's: it was 

possible to put any A, = 0 or to change the size of a 

A; by a factor of 2 or 3, but greater changes resulted   in a complete loss of significance in both the control 

and F programs. The quantitative results may be 

summarised as 
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a) the A, = 0 cases 

(i) = 0; no weighting against errors in xs (drum-level) 

variation three times normal, 

Po
od

 
a
n
e
 

and us (feedwater mass-flow rate and enthalpy) 

effectively zero 

(ii) As = 0; no weighting against errors in x¢ 

(steam-tenperature) 

Xs variation three to four times normal, 

ug (superheater heat input rate) zero. 

b) a, 4 03 

the allowable variation in the A's was too small 

to show significant variations either in the state 

variable responses or in the control input values. 

The major difficulty encountered in this study 

was the near-complete absence of software from the KDN2 

specification. No trouble was caused by the computer 

installation, one of the first of the hybrid type, which 

worked very well, To write the relevant floating-point 

subroutines for the KDN2 was not considered worthwhile, 

since the installation was available only for a limited 

period. The cause of the difficulty with software was 

the necessity to experiment with the values of A to achieve
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8. 

contd. 

hh lt) 

45) 

contd. 

a set which would approximate to the bounds on the 

control inputs. To gain useful results on the relative 

performances of different control schemes using the 

KDN2=LACE would have posed even more problems. Since this 

was the main purpose of the study, it seemed better to 

transfer all the simulation to a scientific digital 

computer where the appropriate software would be available. 

Simulation on a digital computer. 

Simulation of a process model on a digital 

computer to some extent idealises the situation. For 

example, no allowance is likely to be made for the time 

taken to scan the state of the model. This factor alone 

has been known to cause diffimlties. However, in this 

case, the series of tests on the KDN2-LACE computer did 

demonstrate the good behaviour of the process model under 

computer control. The dangers of total digital simulation 

with the boiler model would seem therefore to be reduced. 

The computer requirement for these studies was 

a machine with automatic floating point arithmetic and 

a set of procedures for matrix operations, preferably 

available with an ALGOL or FORTRAN compiler. The 

University's Elliott 803 meets these conditions. The speed 
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contd, 

of the computer was not considered important. 

The matrix differmtial equation governing the 

behaviour of the boiler model is 

ax(4) = ax(t) + Balt) + 2(+) 
at 

In principle the transient response of the model may be 

obtained by standard numerical integration routines. 

With this model, as with another™®, the consequent 

computational load was found to be excessive. The model 

responses were therefore obtained using the difference 

equa tion 

x[(k+1)2] = $(T) x(k?) + G(T) u(kT) + a(kr) 

Elliott Algol programs have been written for 

simulation tests using each of the three control 

algorithms , 

a) 10-stage optimal control according to the Kalman—Tou index 

b) single-stage control with the same modified index 

c) optimal single-stage control according to the original index 

The test program for (a) requires, as data, the 

g and A = dependent feedback matrices, which are evaluated 

in. separate program. 

No extra programs are required for algorithms
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(b) and (c). Data input to (b) includes q and A. The 

program for (b) consists of about 25 Algol statements, 

replacing the 2000 instructions required for the same 

program by the KDN2 computer. 

The main feature of the program for (c) 

is the declaration of a procedure for the solution 

of the quadratic programming problem to which the 

control problem reduces. This procedure, which was 

developed according to the theory of Section 3.3, 

is the only non=standard piece of programming involved, 

and is therefore reproduced in Appendix 2 of the thesis. 

All three programmed algorithms allow for 

monitoring of the disturbance and are therefore as set 

down in Section 4.53. Initial tests were carried out 

with a continuous + 10% demand in steam flow, treated 

as a random disturbance, It was found that each of the 

control schemes maintained the system at a similar off- 

set state, the amount of off-set being the effect of the 

disturbance over the first sampling interval, during 

which there is no control. This was to be expected. 

The discussion of the results of the 

simulation tests is divided into two sections, depending   
on the number of state variables appearing in the 
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4.5) contd. 

particular performance index of a test (i.e. the number 

of non-zero elements in q). 

a.) Tests with some zero elements in gq 
  

A perfomance index with practical application 

would include weightings against deviations in drum 

level, drum pressure, and steam temperature, i.e. 

Xs, X41, and Xs. Such an index was used for the 

KDN2-LACE tests. The other state variables may not be 

considered as important as these three in assessing 

the performance of the boiler, and might not appear in 

the index. 

It was expected that the optimal single-stage 

scheme would perform well with low-order indices of 

this type, because of the equivalence theorem of 

Section 2.3(a). The theoremdoes not strictly apply to 

bounded control, but it was thought that the equivalence 

property would to some extent carry over from unbounded 

control. In fact this has been verified, and the tests 

show that algorithm (c) gives the best results for low- 

order indices in all respects. 

If an index were chosen with weightings against 

three only of the state variables, the matrix product 

G'QG would be singular. The analysis of Section 2.3(b)   
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4.5) contd, 

a) 

  

contd. 

shows that it would then be necessary, for algorithm 

(c), to set one of the four inputs to an arbitrary 

value (probably zero), and optimise with respect to the 

remaining three inputs. To avoid restricting the 

comparison on use of control with algorithms (a) and 

(b), where this singularity is unimportant, all the 

indices used involve at least four state variables. 

The base index considered is an index with 

equal weightings against xs,x4 and xs, and a much 

smaller weighting against xe: 

Qeto 6.00! 1. T%. 8. Eh, 

which approximates to an index involving only the three 

important state variables. 

The responses of the system to a continuous 

+ 10% load disturbance under each of the three control 

schemes, with this index, are showm in Fig.4.3. 

The response under algorithm (c) needed to be 

computed once only, since the algorithm has been con= 

structed to solve on-line the problem posed by amplitude 

constraints on the inputs. The response is seen to be 

good, with full use being made of the available control 

action, The value of the performance index is
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contd. 

6.= 15017 x 10°, 

of which 0.792 x 10°° is contributed by the un- 

controlled first interval. 

It will be observed that the other control 

schemes have been allowed some latitude to exceed 

the set-down values of the input bounds. The reason 

for this was the difficulty of adjusting the elements 

of A to maintain reasonable responses whilst keeping 

the input values within their bounds. For algorithm 

(b), 15 successive sets of A were used to compute 

15 different responses. The best of these is 

illustrated in Fig.4.3. The same A was found to 

give the best of the responses achieved under the 

N-stage algorithm (a), 

A= see Th 5 a2 8] 

The values of the performance index achived were, 

for scheme (a), 

6 = 1.19% 10", 

and for scheme (bi), 

GC = @.170-% IG < 

The contributions to the injex during the 

controlled part of the interval, [T, 10f], were
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1) co ntd. 

4.5) contd. 

a) contd, 

C,' = 0.399 x 10° 

C,* = 1.378 x 16.” 

Ct = 0.225 x 10°, 

shoving a significant advance by the optimal single- 

stage control scheme (c) over the best offered by 

a conventional. control scheme, 

The difficulty in selecting a set of A 

for conventional schemes is illustrated by the 

comparison shown in Fig.4.4, between the system 

responses of the selected A and of a multiple of 

the same A, viz. 

Aa se-[1.5 . 5 eye 

It would be thought that with the same relative 

weightings between inputs and a larger overall 

weighting on the use of control, less control action 

would be used. However, the system responses show 

that in the second case the model is not so well 

controlgiwith the result that more and more control 

action is used as time progresses. Despite this 

extra control, the final value of the index for the   second A, C = 4.042 x 10° is much higher than that 
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4.5) contd. 

a) contd. 

for the original A. 

Returning to the three responses of Fig.4.3, 

an important difference between the control schemes 

is noted over the existence of off-set equilibrium 

values of the state variables. Nicholson™°, who 

used maiily a scheme of type (a), went to considerable 

lengths to minimise these steady-state errors. It is 

noted that steady-state errors in two of the three 

main controlled variables occur again here under 

schemes (a) and (b), whereas under scheme (c) the 

values of xs and x are reduced to zero within 5 of 

the 10 sampling intervals. One immediate consequence 

is a better steam-flow response. The inference is that 

the optimal single-stage scheme (c), by its nature, 

has a greater capability to reduce the occurrence of 

steady-state errors. 

Further simulation involving low-order gq 

indices has been confined to tests of the performance 

of the optimal single-stage control scheme developed 

in this thesis. Fig.4.5 shows the effect of increasing 

the weighting on one particular variable by a factor   of 10, in one case variations in drum level and in the 
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92.6 

4.5) contd. 

2) 

  

contd. 

other variations in drum pressure, Satisfactory re- 

sponses are achieved in both cases. As an example 

of the computer output results from which the systan 

responses have been plotted, the computed results from 

one of these tests are included in Appendix 2. 

Tests with all elements of g non-zero. 
  

The performance indices of the tests described 

in section (a) were in line with suggestions made by 

staff of English Electric Co., who developed the boiler 

model. Nevertheless it was considered necessary to 

attempt to carry out simulation tests under conditions 

which were unfavourable to the optimal single-stage 

control scheme, Such conditions were found to occur 

under a performance index with equal weightings against 

each of the six state variables, 

at ad a 

The system response corresponding to a continuous + 10% 

change in steam demand controlled by the optimal 

single-stage algorithm (c) was found to demand small 

values of the control inputs, reaching saturation on 

only one input, us. This situation is favourable for 

the standard schemes (a) and (b) since only one element
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4) contd. 

4.5) contd. 

b) contd. 

of A need be non-zero. (Note - if all elements of 

A were zero, the problem would reduce to unbounded 

control, and scheme (a) must then be fully optimal, 

schemes (b) and (c) becoming identical). The value 

of A required was found by trial and error to be 

A= [fo 0 0.5 ol o 100 

The system responses under the three control 

schemes are plotted in Fig.4.6. The state variable 

responses under the two single-stage schemes are 

effectively identical, as is the value of the 

performance index, 

Ge 1565. x 1, 

The N-stage control scheme (a) gives a marginally 

better value of the index, 

G = 1356 « 1d-%, 

The immediate conclusion is that the performance of 

schemes (a), (b) and (c) are comparable on this 

test. However, the steam flow curve shows that 

of the extra 10% demand for steam, only between 

0.3 and 0.4% is supplied in the steady state. 

The complete set of response curves is quite close   
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4) contd. 

4e5) contd. 

b) contd. 

to the set of Fig.4.1 depicting the free response 

of the boiler model to a +10% change in demand under 

no control. It becomes clear that the reason for 

the small values of the control inputs demanded by 

all of the schemes is their inability to effect 

worthwhile control of the model according to an index 

weighted equally against deviations in each of the 

state variables. The value of this test: as a com 

parison between schemes is considered therefore to 

be reduced. 

Any practical performance index would be 

formulated with high regard to reducing the steady- 

state error between load demand and load supply. 

Since the method of representation of steam flow in 

this model involves xm, the drum pressure, further 

tests of schemes (a) and (c) were run with an in- 

creased weighting against m3: 

Cee ee Ot ae 

Responses under both schemes showed a large improve- 

ment to supplying 9.5 and 9.4% respectively of the 

10% demand, accompanied by larger deviations of 

state variables x1,xe and x». The difference between   
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4) contd. 

4.5) contd. 

b) contd. 

the final index values, 

¢, = 1.207 x 10° ana C, = 1.2h8 x ifs 

may be accounted for in part by the relaxation of 

the input bounds for scheme (a), the N-stage control 

policy, and in part by the better control of xs. 

The relaxation was found necessary due to the usual 

difficulty in selecting the elements of A. The 

final A selected after 8 runs of scheme (a) (4 hrs. 

computing time) was 

A= ee eee 8) 100 

The two sets of response curves are compared in 

Fig.4./. Neither control scheme is still quite 

able to cope fully with the load demand, but a small 

second increase in the weighting against x, would 

clearly remedy this deficiency. 

(c) Timing. 

The computer time required for 10-stage runs 

by each of the control programs is as follows, 

a) Nestage control - 20 minutes to produce the required 

feedback multiplier matrices corres-   
ponding to givmg and A, plus 7 minutes 

 



  

1) contd. 

ed) 

96. 

contd. 

a) contd. 

run time covering the optimisation 

period [o 3 10T] 

b) Single-stage - 1 minute to produce the constant feed= 
control 

back multiplier matrix for given q 

and A, plus 7 minutes run time 

c) Optimal single- - Average 16 minutes run-time to obtain 
stage control 

the systen responses corresponding to 

a given q. 

The time taken by the minimisation procedure in 

6-7 scheme (c) averages = = 1 minute per stage of the cal-   

culation. A reasonable timing conversion factor from 

Elliott 803 Algol to the machine-level code of a modern 

control computer might be —, reducing the minimisation 

time to less than $ second per sampling interval. 

For the case with the index 

g=[0 0.001 1 1 0 41], the total computer time 

taken by each scheme to achieve the responses of Fig.4.3 

was as follows: 

c) = 16 minutes 

b) = 15 x 8 = 120 minutes 
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97. 

contd. 

(a) = using scheme (b) as a first estimate, 

120 + 3 x 272 200 minutes; this method was 

found to be faster than attempting a number of 

runs at 27 minutes each with no informed first 

estimate, 

Conclusions on the simulation study. 

The performance of the boiler model during 

the study was in general satisfactory. The method of 

representation of changes in steam demand did not 

require that the load supplied must equal the load 

demanded; as a result, stability of all system variables 

was a common feature of all the tests. The part of the 

model involving steam temperature was relatively in- 

sensitive to changes in steam demand, and contributed 

little to the control studies. This part of the model 

might bear further investigation, 

The KDN2=LACE tests demonstrated only the 

feasibility of computer control without yielding 

quantitative results. The tests showed the necessity, 

for research studies in computer control, of suitable 

computer software, Easily tests on the Elliott computer 

verified this, and also demonstrated the necessity
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contd. 

of including in the systen equations any known 

continuous disturbance, 

The study carried out using the Elliott 

computer gave quantitative results for a comparison 

in performance between standard schemes for optimum 

digital control and the scheme developed in the thesis. 

The proposed scheme achieved significantly better 

control in a case when the number of state variables 

appearing in the index did not exceed the number of 

control inputs. Of the two other schemes, N-stage 

control has the ability to look ahead and to organise 

its control resources to best effect, but even then 

will improve on single-stage optimal control only in 

cases when control is difficult or impossible. This 

type of case should not arise often in industrial 

situations provided that the choice of performance 

index is carried out with care. N-stage control is also 

limited by the necessity of choosing a set of "cost of 

control" multipliers, A, which will ensure that the 

bounds are satisfied during each and every sampling 

interval. The A chosen corresponds to the most difficult 

of the intervals, and for the remaining intervals this 

A is likely to constitute a harder constraint) or greater 
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contd. 

cost, than is necessary. Conventional single-stage control 

cannot improve on the proposed scheme, and is likely to 

give significantly worse results. 

On the practical side, the limitations of 

standard schemes became apparent early in the in- 

vestigation. The difficulty in finding a suitable set 

of multipliers,4, was demonstrated. It is not easy to 

see how this difficulty could be surmounted. A conventional 

iterative routine may not even converge, since the values 

of the components of A reflect on the values of the control 

inputs not directly but through the system response. An 

example of the er ate this can have was given in the 
90 

results cae Bearing in mind that these tests were 

carried out with one level of disturbance only, at one 

particular operating comition, with a constant set of 

bounds and a constant performance index, it is considered 

that the practical limitations of control schemes based 

on the Kalman-Tou index have been shown to be significant. 

The optimal single-stage control scheme was 

designed to avoid the difficulties inherent in the Kalman—- 

Tou approach to bounded—input systems. Changes in any of 

the features of a test, whether model coefficients, dis- 

turbance, bounds or index, can be dealt with on-line by 
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straightforward changes in input data to the 

control program, State minimisation time is 

within acceptable limits. Tests also show that 

under certain conditions, quite likely to be 

fulfilled in practice, the optimal single-stage 

scheme will probably yield a system performance 

improving on the best which can be achieved by 

either of the schemes with which it has been 

compared. 
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CONCLUSIONS 

The problem which has been examined in the 

thesis is that of the control of a linear multi- 

variable systen whose performance is judged by the 

value of a quadratic index. The popularity of this 

formulation of the problem is due to the existence 

of an analytical solution in feedback form, provided 

that control input constraints are absent$-, In 

particular, the solution for optimal on-line control 

by a digital computer reduces to a set of matrix 

recurrence relations between the discrete-time values 

or the control inputs. 

Further investigation of this problem in the 

thesis has yielded new results in the theory of N-stage 

optimum digital control systems. The equivalence 

under certain conditions between N-stage and 

single-stage control policies has been demonstrated,
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contd. 

and may account for a conclusion by Nicholson*° that N-stage 

control e vic boiler model did not appear to be superior 

to single-stage control??, 

Existing methods for dealing with the addition 

of control input bounds to the formulation of the problem 

have been shown to be non-optimal. The practical limitations 

of existing bounded-input control schemes have been discussed, 

with particular regard to the simplifications made when using 

a linearised mathematical model. An alternative method of 

introducing control input bounds to the solution of the 

problem has been developed, based on proven geometrical 

properties of the performance index, The method, which is 

fully optimal with respect to a single-stage index, has 

been designed to yield the maximum degree of optimality 

compatible with ease of implementation in practice. Using 

the proposed optimal single-stage scheme, changes in the 

properties of the control problem, such as operating level, 

performance index or input bound values, can be made during 

on=line control of the process. Further investigation might 

lead to an improved minimisation algorithm reducing the time 

taken to compute the optimal control input vector and therefore 

increasing the order of model to which it would be feasible 

to apply the technique. At present the technique might be 

applied to systems with up to 5 or 6 control inputs, since
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contd. 

the minimisation time depends maifaly on the number of inputs 

rather than on the number of state variables. Optimal control 

of systems with larger numbers of inputs would create problems 

using any valid optimisation technique. 

Numerical results have been obtained fran a 

simulation study of the application of optimisation 

techniques to the dynamic control of a power station boiler 

under changing load conditions. The performance of the 

boiler model has been in general satisfactory. A feature of 

the tests was the stability of all state variables. The 

practical difficulties associated with existing techniques 

for optimal control of bounded-input systems have been shown 

to be considerable. The proposed optimal single-stage control 

policy has been shown to yield a system performance which at 

worst is comparable with and at best is significantly superior 

to conventional N-stage control.
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APPENDIX 1. 

Mathematical model of a natural circulation boiler, 

The equations given below were obtained by Harris, 

Leigh, Mudge and Sutton during a study of boiler dynamics*®, 

They are similar to equations given in the well-known paper 

of Chien, Ergin, Ling and Lee, but use enthalpy throughout 

rather than a mixture of enthalpy and pressure. The method 

of representation of steam flow is also different in that 

steam flow is treated as a dependent variable rather than as 

an independent variable. The following assumptions have been 

made 

(i) that the fluid in the downcomer leg is incompressible 

(ii) that there is no evaporation to and from the surface of 

the drum 

(iii) that the feed to the drum from the economiser is 

substantially at saturation temperature. 

A schematic diagram of the process is given in Fig.A.l. 

The equations are in linearised form suitable for 

the study of small perturbations about a given operating point. 

This form was achieved by replacement of derivatives with respect 

to variables other than time by niga difference approximations, 

and by reduction of the order of the system using physical and 

engineering considerations. Other methods of systematic reduction
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35 410 
e 

in boiler model 

drum pressure 

superheater outlet pressure 

turbine inlet pressure 

saturated vapour density corresponding to Pa 

density at superheater outlet 

liquid density in downcomer-riser loop 

quality of mixture at riser outlet 

density of liquid-vapour mixture at riser outlet 

superheater outlet temperature 

enthalpy of feedwater 

enthalpy of saturated vapour corresponding to PB 

enthalpy of saturated liquid 0 t " 

enthalpy of drum and downcomer liquid 

enthalpy of steam leaving superheater 

enthalpy of mixture leaving riser 

enthalpy of evaporation corresponding to Pp 

heat-input rate from hot gases into superheater 

tube walls 

heat-input rate from riser tube walls into 

boiling liquid 

feedwater mass—flow rate 

riser mass-flow rate 

steam mass-flow rate from drum into superheater 
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M = mass of liquid in drum 

M, = mass of superheater tubes 

VB = volume of vapour phase in drum 

Lob, = superheater and riser tube lengths 

A vA Ag = superheater, riser and downcomer tube 
cross-sectional areas 

Ap = area of opening of throttle valve 

Cc. = heat capacitance of superheater, and riser 
tubes 

W = sum of mass-flow rates in riser and 
downcomer tubes. 

The equations ares 

af : pL.A Pyar y ee 
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M et: 

The equations (1 - 6) may be written in matrix 

form as 

dx 
a = Ax(t') + Bu(t') + n(t") (8) 
dt? 

whe re x(t') is the state vector of the process 

u(t*) is the control vector 

n(t') is the disturbance vector for changes in 
steam flow 

A is the coefficient matrix of the process 

B isthe driving matrix 

The equations (1 - 6) assume that the steam flow 

from the boiler, Wp 

not so, since flow will be controlled by a valve and will depend 

» may be freely chosen. In practice this is 

on both the valve opening and the pressure drop across the valve. 

Assuming that the flow is dependent on the area of the opening 

and on the square root of the pressure drop, we have 
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If constant pressure on the outlet side of the 

throttle valve is maintained, this equation reduces to 

= N+ &% 

where 
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The coefficient matrix A and the driving matrix B 

now become 
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The disturbance vector, n becomes 

as) = [uN uN uN -N 0 nN] ' (11) 
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APPENDIX 2. 

Minimisation procedure and computer results. 

The control program for tests of the optial 

single-stage policy developed in this thesis involves a 

procedure which finds the values of the elements of the 

input vector, u, such that the performance index is 

minimised: 

e 
min 

C= acucbd | +.Gu + ss Q | + Gu + a| 

Ic
 

The procedure CNTRL, which is reproduced here, is written 

in Elliott Algol, and uses standard Elliott matrix pro- 

cedures. CNTRL is a parameterless procedure and therefore 

requires the prior declaration of ¢, G, Q, d, u, a, b and x 

(here XL) as two-dimensional arrays. 

In the given form CNTRL is written for systems 

with exactly 6 state variables and 4 control inputs. To 

generalise to any number of state variables, N, would involve 

only changes of the dimensional bounds of the arrays and of 

the elements of some of the for - lists, both to become 

dependent on N. The addition of an extra control input would 

involve the nesting of the procedure body within an extra loop, 

with some modifications to the counting variables. 

This version of the minimisation procedure allows 

some redundant calculations to be carried out in order that 

the detailed programming should stay relatively simple. The 

 



  

117. 

redundant calculations may be removed by the addition of 

Boolean arrays to keep track of input value combinations 

which have already been considered, 

An example is given of the form in which the 

results of a simulation test are output by the Elliott 803 

digital computer. The example corresponds to the 

application of the optimal single-stage scheme to the control 

of the model following a 10% extra demand for steam, under 

an index 

Bi LR OMOL ol AM cu 1] 

These results also appear, as response curves, in Fig.4.5. 

Features of the results are the speed of convergence to a 

steady state condition and the absence of off-set values, 

in the steady state, of the principal weighted variables, 

Se 5) Xe cond” Xe. 
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PROCEDURE CNTRL' 
BEGIN INTEGER B8ND,BND1,BND2,BND3,COUNT' REAL X,FNMIN! 

“ARRAY? S1G\G3,F ,HC126.19 19, 2,STORECI2.4 Fhe 
UII 3,42 135,012 CTE2, F219 588 .U123012 1,1: 12 

66101265123), ,G2C156; 1222 5R1681C1s 451260 82612 4,12 43, 
R3,33¢€1:3,1:6),S4C1: 3,1: 39,R5,85€1:2;1:6), 
$6C€1:2,12:2),R7,817C61:1,1269' 
REAL PROCEDURE FNVAL‘ 
BEGIN MXPRODCS1IG,G,U)' 

MXSUMCSIG,4F SIG)" 
MXPRODCG3,Q0,S!IG)! 
MXTRANSCS7], $1G)! 
MXPRODCS8587sG3)" 
FNVAL: =S8C1,1) 

END OF FNVAL' 

MXPRODCF ,PHI,X1)' MXSUMCF,F,D)' 
MXTRANSCS1,G)' MXPRODCR1,S1,Q)' MXPRODCS2,;R1,G)' 
INVMXCS2)' MXPRODCS1,S2;R1)' MXPRODCU,S1,F)' . 
MXNEGCZ,U>' BND:=0' MXCOPYCSTORE,Z)' FNMIN:=1000000' 

BEGIN INTEGER I‘ SWITCH S:=L2'! 1s 
FOR-I:=1 STEP 1 UNTIL 4 DO 

BEGIN X:#ZC1,1)' - 
* IF X LESS ACI) THEN UC1,1)9:2ACI)2 ELSE 

IF X GR BCID THEN UCI,1):=BCI) ELSE 
BEGIN UC1,1):=X' GOTO L2-END‘ - 

BND: =BND+1! 
FOR COUNT:=1 STEP 14 UNTIL 6 DO 
BEGIN HCCOUNT,12:=GCCOUNT,1>#UCI,1)! 

G1CCOUNT,12:=IF I=1 THEN GCCOUNT,2) ELSE GCCOUNT,1)° 
G1CCOUNT,2):=IF I=1 OR: I=2:-THEN GCCOUNT,3) ELSE GCCOUNT,2)' 

G1CCOUNT,32:=IF 1=4 THEN-GCCOUNT,3) ELSE GCCOUNT,4) END' 

MXSUMCSIG,F,H>' MXTRANSCS3,G1)' MXPRODCR3,S3,9)' 
MXPRODCS4,R3,G1)' INVMXCS4)' MXPRODC(S3,84,R3) 
MXPRODCU1,S3,S1G)' -MXNEGCU1,U1)' BND1:=0' 

BEGIN INTEGER V,J'. SWITCH SS:=L4' 
- FOR V:=1 STEP 1-UNTIL 3 DO 
BEGIN 

- J:sIF V GREQ I THEN 1 ELSE O! 
XeSUTCV 1) 
IF X LESS ACV+J) THEN UCV+J,1):=ACVtJ) ELSE 
IF X GR BCVtJ) THEN UCV+J,1):=BCV+JU) ELSE 
BEGIN UCVv+J,1):=X' GOTO L4 END! 

BND1: =BND1+1' 
FOR COUNT:=1 STEP 1 UNTIL 6 DO 
BEGIN 

HCCOUNT , 1): =GCCOUNT, 12#UCI,13+G1CCOUNT,V2*UCV+J,1)' 
G2CCOUNT,12:=IF V=1 THEN G1CCOUNT,2) ELSE G1CCOUNT,1)'° 
G2CCOUNT,2):=I1F V=3 THEN G1CCOUNT,2) ELSE G1CCOUNT,32 

  
END ' 
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MXSUMCSIG,F,H2' MXTRANSCS5,G2)' MXPRODCR5,S5,9)' 
MXPRODCS6, R5, Ge) INVMXCSO)° MXPRODCS5,S6, R5)>! 
MXPRODCU12, $5, S$1G)' MXNEGCU12,U12)' BND2:=0' 

BEGIN INTEGER L,W,K' SWITCH SSS:=L6,L7,L8' 
FOR W:=1, Be ‘DO BEGIN K:=0! 

IF W GREQ V THEN K:=1' 
IF CW+K) GREQ I THEN K:=K+1' 

X:=U12CW,1)': 
IF X LESS ACWtK) THEN UCW+K,13:=ACWtK ELSE 
IF X GR BCWtK) THEN UCW+K,13:=BCWHK) ELSE 
BEGIN UCW+K,1>:=xX' GOTO L6 END! 

BND2:=BND2+1! 

IF Le =1 OR CV+tJ)=1 OR CW+K2=1 THEN L:=2-ELSE BEGIN Lisi! GOTO 
L7 END 

IF 1=2 - OR CV+J2=2-OR CWtKI=2 ‘THEN L:=3 ELSE GOTO L7' 
IF [=3 OR CVtJ2=3 OR CW+KI=3 THEN L:=4' 

L7: FOR COUNT:=1 STEP + UNTIL 6 DO BEGIN 
HCCOUNT , 13: =GCCOUNT,1)#UCI1,12+G1CCOUNT, VI*UCV 4d, +5 

+G2CCOUNT,W2*UCWtK,19' 
G3CCOUNT,12:=GCCOUNT,L)> END' 

BND3:= 

MXSUMCSIG,F,H)' MXTRANSCS7,G32' MXPRODCR7,S7,9)' 
MXPRODCS8,R7,G3)' X:=-CS8C1,19)' MXPRODCU123,R7,S1G)' 
X: aU7123¢1,19/X' ‘ 

IF X LESS ACL) THEN UCL,1):=ACL) ELSE 
IF X GR BCL) THEN UCL,1):=BCL) ELSE 
BEGIN UCL,1>:=X' GOTO L8 END' 

BND3:=1' X:=FNVAL'- IF X LESS FNMIN THEN 
BEGIN FNMIN:=X! MXCOPYCSTORE,U) END! 

L6: END OF K BLOCK‘ 

L8: END OF w LooP' 

IF BND2=0 OR BND3=0 THEN BEGIN 
X:=FNVAL' IF X LESS FNMIN THEN 

BEGIN FNMIN:=X' MXCOPYCSTORE,U2: END END’ 

L4: END OF J BLOCK' END OF VJ Loop! 
IF BND1=O0 THEN BEGIN X:=FNVAL' IF X LESS FNMIN THEN 

BEGIN FNMIN:=X' MXCOPYCSTORE,U): END END' 

L2: END OF X BLOCK' END OF | LOooP! 
IF BND=O0 THEN BEGIN X:=FNVAL' IF X LESS FNMIN THEN 

BEGIN FNMINs=X' MXCOPYCSTORE,U): END END! : 

PRINT £CONTROL VECTOR?‘ PRINTMXCSTORE)' MXCOPYCU,STORE)' 
END OF CNTRL' :
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TIME 
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STATE VECTOR 
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