
RELIABILITY ANALYSIS FOR HAZARD 

AND OPERABILITY STUDIES 

By 

SAFA YOUSIF RAMADAAN 

B.Sc, H.Diploma, M.Sc 

Thesis submitted for the degree 

of 

Doctor of Philosophy 

Department of Chemical Engineering 

The University of Aston in Birmingham 

June 1987 

This copy of the thesis has been supplied on condition that anyone who consults it is 

understood to recognise that its copyright rests with its author and that no quotation 

from the thesis and no information derived from it may be published without the 

author's prior, written consent.



The University of Aston in Birmingham 

Reliability Analysis For Hazard And Operability Studies 

Safa Yousif Ramadaan PhD 1987 

SUMMARY 

Fault tree analysis is used as a tool within hazard and operability (Hazop) 
studies. The present study proposes a new methodology for obtaining the exact TOP 
event probability of coherent fault trees. The technique uses a top-down approach 
similar to that of FATRAM. This new Fault Tree Disjoint Reduction Algorithm 
resolves all the intermediate events in the tree except OR gates with basic event 
inputs so that a near minimal cut sets expression is obtained. Then Bennetts’ 
disjoint technique is applied and remaining OR gates are resolved. The technique 
has been found to be appropriate as an alternative to Monte Carlo simulation 
methods when rare events are encountered and exact results are needed. 

The algorithm has been developed in FORTRAN 77 on _ the Perq 
workstation as an addition to the Aston Hazop package. The Perq graphical 
environment enabled a friendly user interface to be created. The total package 
takes as its input cause and symptom equations using Lihou's form of coding and 
produces both drawings of fault trees and the Boolean sum of products expression 
into which reliability data can be substituted directly. 

Key words : Hazop, Fault Tree, Boolean Algebra, Reliability



To my wife Tagried and my son Ihab for 

love, sacrifice, patience and for making 

my life worthwhile.



Acknowledgments 

I am indebted to my supervisor Dr. A.P.H. Jordan for his close 

supervision, keen interest, patience and encouragement during the performance of 

this research and writing up the thesis. I am thankful to the departmental electrical 

staff in particular Mr. M. Lea and Mr. D. Bleby for providing the BREAK box 

and maintenance for the Perq workstation. My gratitude is also extended to Dr. 

B. Gay, Head of the Computer Science Department, Dr. J. P. Fletcher and Dr. 

M.C. Jones for their friendliness and help. 

I am grateful to the University of Baghdad for granting me study leave. I 

am much appreciate the help given to me by Mrs. T.M. Vygus. I would like to 

thank my colleagues in the computation research group for their comradeship. 

Finally I would like to express my indebtedness to my father and my 

mother for encouraging their children into high academic persuits and to my wife for 

love, understanding and encouragement especially when our son was born.



CONTENTS 

Title Page 

Summary 

Dedication 

Acknowledgements 

List of Contents 

List of Tables 

List of Figures 

CHAPTER ONE 

1.INTRODUCTION 

CHAPTER TWO 

2.HAZOP AND FAULT TREE ANALYSIS 

2.1 Hazard And Operability (Hazop) Studies 

2.1.1 Introduction 

2.1.2 Critical Examination Approach 

2.1.3 Principles of The Hazop Technique 

2.1.4 The Hazop Study Team 

2.2 Recording of Hazop Information 

2.2.1 Introduction 

2.2.2 Cause And Symptom Equations 

2.2.2.1 Coding of Deviations 

2.2.2.2 Cause Equations 

2.2.2.3 Symptom Equations 

2.3 Fault Tree Analysis 

2.3.1 Introduction 

2.3.2 Fault Tree Terminology 

an 
Fk 
W
 N
 

13 

14 

15 

16 

21 

oe 

9 

22 

24 

27 

27 

29 

29 

32 

3S 

36 

38 

39 

39 

40



2.3.3 General Procedure of Fault Tree Analysis 

2.3.3.1 System Definition 

2.3.3.2 Fault Tree Construction 

CHAPTER THREE 

3. RELIABILITY CALCULATIONS 

3.1 Introduction 

3.2 Stochastic Techniques 

3.2.1 Simple Statistical Rules 

3.2.1.1 Union of Events 

3.2.1.2 Intersection of Events 

3.2.1.3 Bayes' Theorem - Conditional Probability 

3.2.2 Failure Rate And Failure Distributions 

3.2.2.1 Mean Time Between Failures And Failure Rate 

3.2.2.2 Failure Distributions 

3.2.2.2.1 Exponential Distribution 

3.2.2.2.2 Weibull Distribution 

3.2.3 Monte-Carlo Methods 

3.3 Deterministic Techniques 

3.3.1 Introductory Theory 

3.3.2 Laws of Boolean Algebra 

3.3.3 Probability Calculations From Fault Trees 

3.3.3.1 Effect of Repeated Events 

3.3.4 Minimal Cut Sets And Reduced Logical Expressions 

3.3.5 Methods For Generating Minimal Cut Sets 

3.3.5.1 Selected Algorithms And Techniques For Obtaining 

Minimal Cut Sets in Fault Trees With Repeated Basic Events 

42 

43 

43 

45 

46 

46 

47 

4 

48 

49 

50 

51 

52 

a 

a2 

54 

55 

58 

58 

58 

60 

61 

62 

64 

66



3.3.5.1.1 Tree Reduction Technique 

3.3.5.1.2 FATRAM (Fault Tree Reduction Algorithm) 

3.3.5.1.3 BUP-CUTS (Bottom-UP algorithm for 

enumerating minimal CUT Sets of fault tree) 

3.3.6 Disjoint Techniques 

3.3.6.1 The Karnaugh Map 

3.3.6.2 The Disjoint Technique 

3.3.7 Generation of Probability Expressions From Fault Trees 

3.3.8 Methods For Disjoining Cut Sets 

3.3.9 A New Combined Method 

3.3.9.1 Introduction 

3.3.9.2 The Fault Tree Disjoint Reduction Algorithm (FTDRA) 

CHAPTER FOUR 

4. APPLICATIONS OF THE FTDRA APPROACH 

4.1 Introduction 

4.2 Example 1 

4.3 Example 2 

4.4 Example 3 

4.5 The Complexity of Computation 

CHAPTER FIVE 

5. HARDWARE AND SOFTWARE TOOLS 

5.1 Introduction 

5.2 Hardware 

5.2.1 The Keyboard 

5.2.2 The High Resolution Screen 

5.2.3 The Floppy Disc Drive 

5.2.4 The Processor Box 

66 

70 

2 

75 

75 

78 

81 

82 

84 

84 

85 

90 

91 

91 

91 

93 

96 

100 

102 

103 

103 

103 

103 

105 

105 

106



5.2.5 Tablet And Pointing Device 

5.3 The Operating System 

5.3.1 Perq Under POS 

5.3.1.1 The Shell 

5.3.1.2 The HELP Key 

5.3.2 Software Available 

5.3.2.1 Pascal 

5.3.2.2 FORTRAN 77 

5.3.2.3 The POS Editor 

5.3.2.4 The Window Manager 

5.3.3 Perq Under PNX Operating System 

5.3.4 Software Available Under PNX 

5.3.4.1 Window Management System 

5.3.4.2 Windows 

5.3.5 Languages 

5.3.5.1 C Programming Language 

5.3.5.2 FORTRAN 77 Language 

5.3.5.3 PNX Pascal 

5.3.6 The Spy Editor 

5.3.7 The Make utility 

CHAPTER SIX 

6. THE HAZOP PACKAGE 

6.1 General Introduction 

6.2 The Data Structure 

6.2.1 Named And unnamed Branches 

6.2.2 The SYMPTS Array 

106 

107 

107 

107 

108 

108 

108 

108 

109 

109 

109 

110 

110 

110 

411 

111 

112 

112 

112 

113 

114 

115 

115 

115 

116 

116



6.2.3 The NAMES Array 

6.2.4 The CELLS Array 

6.3 Harris Version of The Package 

6.3.1 Part One 

6.3.2 Part Two 

6.3.3 Part Three 

6.4 POS Version of The Package 

6.4.1 Changes in Part One 

6.4.2 Changes in Part Three 

6.4.3 The TRYOUT Subroutine Library 

6.4.4 The GINO-F Library on The Perq Under POS 

6.5 PNX Version of The Package 

6.5.1 Changes in Part One 

6.5.2 Changes in Part Three 

6.5.3 The MAX Package 

6.5.4 The GINO-F Library on The Perq Under PNX 

' CHAPTER SEVEN 

7. IMPLEMENTING THE FAULT TREE DISJOINT 

REDUCTION ALGORITHM (FTDRA) 

7.1 The Data Structure 

7.1.1 Introduction 

7.1.2 Basis of The Data Structure 

7.1.3 Subroutines For The Data Structure Manipulation 

7.1.3.1 Subroutine INIT 

7.1.3.2 Subroutine NEWSET 

7.1.3.3 Subroutine ADDITM 

7.1.3.4 Subroutine DELSET 

118 

119 

123 

123 

124 

in 

bed 

127 

127 

130 

131 

133 

134 

134 

136 

136 

139 

140 

140 

140 

140 

142 

142 

142 

144 

146



7.1.3.5 Subroutine DELITM 

7.1.3.6 Subroutine INITTK 

7.1.3.7 Subroutine TAKITM 

7.1.3.8 Subroutine NUMSET 

7.1.3.9 Subroutine SETERR 

7.1.3.10 The Logical Function EQUAL 

7.1.3.11 Subroutine CPYSET 

7.1.3.12 Subroutine TYPSET 

7.1.4 Subroutines For Rules Manipulation 

7.1.4.1 Subroutines For Rule 1 Manipulation 

7.1.4.1.1 Subroutine STEP 1 

7.1.4.2 Subroutine For Rule 2 Manipulation 

7.1.4.2.1 Subroutine STEP2 

7.1.4.2.2 Logical Function TESTP2 

7.1.4.2.3 Subroutine RESTP2 

7.1.4.3 Subroutines For Rule 3 Manipulation 

7.1.4.3.1 Subroutine STEP3 

7.1.4.3.2 Subroutine RSUP1 

7.1.4.3.3 Subroutine RSUP2 

7.1.4.4 Subroutine For Rule 4 Manipulation 

7.1.4.4.1 Subroutine COLCT 

7.1.4.4.2 Subroutine DISJON 

7.1.4.4.3 Subroutine MAKDIS 

7.1.4.5 Subroutines For Rule 5 Manipulation 

7.1.4.5.1 Subroutine STEPS 

7.1.4.5.2 Subroutine RESOLV 

10 

149 

151 

151 

151 

151 

153 

153 

154 

154 

154 

154 

154 

154 

155 

155 

155 

155 

155 

156 

156 

156 

156 

157 

157 

157 

157



7.1.4.5.3 Subroutine CHECK 

7.1.4.5.4 Subroutine COLSET 

7.1.4.6 Reporting The Set Structure 

7.2 Real Time Processing 

CHAPTER EIGHT 

8. DISCUSSION AND CONCLUSION 

8.1 Discussion of Work Done 

8.1.1 Introduction 

8.1.2 The Fault Tree Disjoint Reduction Algorithm (FTDRA) 

8.1.3 Implementation Of The FTDRA On The Perq 

8.1.3.1 The Programming Language 

8.1.3.2 The Set Structure 

8.1.4 The Hazop Package On The Perq Under POS 

8.1.5 The Hazop Package On The Perq Under PNX 

8.2 Proposals For Future Work 

8.2.1 Improving The FTDRA Set Structure 

8.2.2 Alternative Languages 

8.2.3 Alternative Coding Of Hazop Data 

8.3 Achievements 

8.4 Further Work 

8.4.1 Hazard And Operability studies 

8.4.2 Documentation 

8.4.3 Design 

8.4.4 Operator Training And Determination Of Human Errors 

8.4.5 Alarm System Analysis 

8.4.6 Reliability Data 

8.5 Conclusion 

11 

158 

158 

158 

158 

161 

162 

162 

162 

163 

165 

165 

166 

167 

169 

170 

170 

172 

173 

177 

178 

178 

179 

180 

180 

180 

181 

182



Appendices 

Appendix A : Rules for writing cause equations 

Appendix B : Symbols commonly used in fault tree graphical 

representation 

Appendix C : Failure probability predicted by the Weibull distribution 

Appendix D : Standard patterns and their mathematical forms 

Appendix E.1 : Flow diagram of converting a Pascal program 

Appendix E.2 : Flow diagram of converting a simple FORTRAN 

program 

Appendix E.3 : Flow diagram of converting a FORTRAN program 

which references a Pascal module 

Appendix E.4 : Flow diagram for converting a FORTRAN program 

which references an independently compiled 

FORTRAN unit 

Appendix F : Listing of cause and symptom equations for the Solvay 

Process 

Appendix G : Listing of the source programs of the hazop POS version 

Appendix H : Listing of the source programs of the GINO-POS version 

Appendix I: Listing of the source programs of the hazop PNX version 

Appendix J : Listing of the source programs of the GINO-PNX version 

Appendix K : Listing of the FTDRA source programs 

Appendix L : Real time runs for examples 1, 2, 4 and 5 

References 

12 

183 

184 

189 

190 

14 

192 

193 

194 

Ps 

200 

253 

Zio 

318 

340 

365 

369



LIST OF TABLES 

mek 

aes 

wo; 

2.4: 

Zant 

DOr: 

miles 

oom 

Sin 

6.1°: 

6.2: 

Tak; 

Lar 

8.12 

Some methods of hazard identification 

A list of guide words 

Team composition of a new plant 

Team composition of an existing plant 

Meaning of index numbers in brackets following a line 

or a node number 

Equipment failure modes indicated by a single index number 

or L (leaking) in brackets 

The effect of the shape factor on the simulated distribution 

Relevant laws of Boolean Algebra 

Comparison of probabilities and Boolean Algebras 

Column values in array CELLS and their meanings 

The development of the Harris version 

A general comparison between the characteristics of some 

examples 

A general comparison between the number of sets after the 

application of FTDRA rules with their CPU times for the 

examples given in table 7.1 

List of names of subroutines that call subroutine NUMSET 

within them 

13 

23 

28 

30 

31 

34 

35 

56 

a) 

76 

122 

126 

159 

159 

170



LIST OF FIGURES 

mes 

ae: 

aes 

a 

cas 

ars 

3.4: 

an: 

BO: 

aes 

4.1: 

4.2: 

4.3: 

yee 

oa: 

6.1; 

C2: 

53° 

6.4: 

oa 

tin 

70°: 

7.4: 

To 

7: 

cs 

EB 

Lane 

7.10: 

wad? 

treet 

Detailed sequence of critical examination 

Hazop procedure 

Flowsheet of solvay process simulation 

A fault tree 

A fault tree 

A fault tree 

Reduced fault tree 

AB 

A+B+C 

A fault tree 

Example 1 

Example 2 

Example 3 

Perq 1 workstation (photo): 

Four button cursor 

Named and unnamed branches 

PAGE 
25 
26 

af 

60 

61 

63 

70 

77 

77 

88 

92 

94 

97 

104 

106 

117 

Schematic diagram for the screen layout of the hazop POS version 129 

The menu (photo) 

Screen layout under the PNX system (photo) 

The initialised set structure 

Process of creating sets 

Functioning of subroutine ADDITM 

A set with item 3 and item 9 

Adding item 7 to the set 

Adding item 2 to the set 

Adding an empty subset to the set 

Functioning of subroutine DELSET 

Deletion of item 6 

Deletion of item 9 

Deletion of item 20 

Example 5 

14 

135 

137 

143 

144 

147 

147 

148 

148 

149 

150 

152 

152 

153 

160



CHAPTER ONE 

15



1. INTRODUCTION 

Since the industrial revolution, the presence of the potentially destructive 

physical energies of pressure, heat and motion, and the way in which they may be 

activated, have been known. But catastrophic accidents continue to happen. From 

the second world war to the 1960's the industry boomed and more new processes, 

especially in the field of chemical, petrochemical and petroleum industries, were 

established. In these processes a number of factors have changed. Process 

operating conditions such as pressure and temperature have become more severe. 

The energy stored in the process has increased and represents a greater hazard. 

Problems in area such as materials of construction and process control are more 

taxing. At the same time plants have grown in size, typically by a factor of about 

10 (1), but are often single-stream. The operation of such plants is relatively 

difficult. Also the start up and shut down of a large, single-stream plant in an 

integrated site is much more complex and expensive. These factors have 

resulted in an increased potential for loss both in human and economic terms. 

Such loss may occur in various ways. The most obvious is the major accident, 

frequently taking the form of serious fire, explosion, toxic release or even 

radioactive releases. 

The evolution of automatic control over the years has been in the 

direction of replacing the human operator by automatic equipment. As the 

degree of automation has increased, there has emerged a number of functions 

which have proved rather difficult to automate and which can often be shown to 

be well suited to execution by the human operator. In more recent years the 

emphasis has therefore shifted somewhat from complete automation to division 

16



of labour between automatic equipment and man. The sophistication of a system 

is no longer judged simply by the degree of automation but also by the extent to 

which it achieves a proper balance between the two. 

The application of reliability engineering to the design and operation plant 

in general and of control systems in particular has led inevitably to a requirement 

for methods of assessing the reliability of the process operator. This demand is 

strengthened by the fact that analyses of accident causes show a large proportion to 

be due to human failures. The reporting of errors in man-machine systems is 

often deficient, because reporting systems are frequently designed essentially to 

give information on equipment failure (2,3,4).Work both on the features which 

cause human error and on the methods of assessing it is a well established aspect of 

human factors. 

Operator selection, training and operating manuals play a great deal in the 

reduction of the human error factor and help him in decision making. Training may 

be assisted by the use of a simulator, for example, in flight training, where a 

subject easily forgets he is in a simulator and not a real aircraft. In the process 

industry an operator faces a similar situation as the pilot in a plane. Good 

training, good operating documentation together with a good visual 

assessment will help to avoiding waste of time in the prevention of accidents (5). 

The normal approach is to break the task down into its constituent elements, to 

estimate the reliability of execution of these elements and then to estimate the 

reliability of the task, using simple reliability relations such as the product law of 

reliability for series systems or reliability tree diagrams (6). The operator also 

requires some knowledge of the plant equipment and the instrumentation. In 

particular, he needs to be able to identify items and to carry out the manipulations 

17



for which he is responsible. There are numerous operating procedures with which 

he has to become familiar. These include start up, shutdown, batch operation and 

other sequential routines. So it is the attempt to qualify and quantify risks and the 

need to have qualitative and quantitative design objectives which have led engineers 

to try to develop risk criteria and hazard prevention (7). 

Hazard and operability studies (Hazop) are used to enhance reliability 

engineering and design. Studies are used to pinpoint potential malfunctions of a 

process and toevaluate potential hazards in order to design safer and more 

reliable plants. Another aim of operability studies is to help in the specification of 

the required instrumentation and improve the alarm analysis of a particular process 

(8). 

A number of techniques for identifying hazards are used. The most 

suitable frame work for the analysis of a potential hazard is a fault tree. Fault tree 

analysis can be carried out as a part of the hazard identification techniques which are 

known as hazard and operability studies. The hazop study is normally based on a 

word model, flow sheet diagram or plant layout to be examined. The study should 

be carried out by a team of experts to provide the knowledge and experience 

appropriate to the objectives of the examination and to the stage of development of 

the project. The study takes the form of questions on every part of the process in 

detail. The team should use its combined experience and imagination to 

pinpoint the deviations, causes and consequences that may lead to an undesirable 

event. In large part the technique of hazard and operability studies represents a 

well-developed form of failure modes and effects analysis. Failure modes and 

effects analysis involves reviewing systems to discover the mode of failure which 

may occur and the causes and effects of such failures. It represents a bottom up 

18



approach in contrast with the fault tree where the approach is top down (9). 

A fault tree analysis may be used as either a qualitative ora 

quantitative technique. Qualitatively it shows the links between deviants and the 

consequences that lead to the occurrence of a particular event. Quantitatively a 

reliability study may be carried out using the fault tree to calculate the probability 

of occurrence of a particular event from the basic events at the bottom of the tree. 

In recent years alot of work has been done in manipulating fault trees and in 

using different techniques of analysis. The fault tree analysis technique can be used 

to investigate system events before they occur. It can be used in cost/benefit 

Studies to compare the level of protection afforded by various design 

approaches. It can provide a model to study the effects of maintenance activities, 

operating procedures and in-service testing on system faults (10). Alarm analysis, 

the design of the layout of control panels and fault tree manipulation can be 

combined to assist the operator in understanding the cause of an alarm. Further, 

the operator can use the fault tree to identify likely next events and appropriate 

causes of action. Studies have found that the operator response to a diagrammatical 

representation is much better than that for a list of figures on a sheet ora 

VDU (11,12). Most modern control rooms consist of : 1) A process layout 

showing all the necessary control instrumentation; 2) Alarm lights and buttons 

designed to lead the operator to the appropriate next action; 3) A_ terminal 

permitting dialogue with the process control computer. The interpretation of an 

alarm signal can be shown as a fault tree display as a request for action or further 

analysis (13). 

The objective of the present research is to develop the use of fault tree 

analysis by generating fault trees on a VDU using and modifying the existing Aston 

19



Hazop Package. The analysis is to be enhanced to permit the assessment of event 

probabilities. Further the work aims to produce a user friendly hazop package 

for use in operator training and operator decision making. 

20



CHAPTER TWO 

at



2.HAZOP AND FAULT TREE ANALYSIS 

2.1 Hazard And Operability Studies (Hazop) : 

2.1.1 Introduction : 

The major hazards with which the chemical industry is concerned are fire, 

explosion and toxic release. The problem of avoiding major hazards is extremely 

important in terms of safety and economy. The first objective of hazard 

identification is to reveal the substances or processes which have potential for 

hazard. The second objective is to identify all conceivable threats to the 

installation or its processes which might lead to loss of containment. The new 

technology and complexity of chemical processes make identification of 

hazards difficult: traditional visual inspection is insufficient. It has become 

necessary, therefore, to develop additional methods for hazard identification 

(14). Table 2.1 (15) shows some of these methods. Each method has a definite 

purpose and basis for use. The stage of the project will determine which method is 

most appropriate for use. For example, at the design stage, hazard and operability 

(hazop) studies are the more convenient type of analysis to be carried out. 

An operability study is defined simply as a structure! technique for 

identifying potential malfunction beforehand (16). The study is aimed at detecting 

all possible ways in which plants can depart from the intentions of their 

designers. It is based upon the supposition that most problems are missed 

because the system is complex rather than because of a lack of knowledge on the 

part of the design team (17). The technique is based on the critical 

examination approach. 

22



Table 2.1 : Some methods of hazard identification (15) 

  

  

Research and 
development 

Predesign 

Design 

Commissioning 

Operation     

Project stage Hazard identification method 

wonnnnn----- Management and safety audits 

All stages 1. Checklists 
2. Feedback from workforce 

1. Screening and testing for, 
a. Chemical (toxiticy, instability, explosibility) 
b. Reactions (explosibility) 
c. Impurities 

1. Hazard indices 
2. Insurance assessments 
3. Hazard studies (coarse scale) 

1. Process design checks 
a. Unit processes 
b. Unit operations 
c. Plant equipment 

2. Hazard and operability studies (fine scale) 
3. Failure modes and effects analysis 
4. Fault trees and event trees 
5. Hazard analysis 
6. Reliability assessments 
7. Operator task analysis and operating instructions 

1. Checks against design, inspection, examination, 
testing 

2. Non-destructive testing, condition monitoring 
3. Plant safety audits 
4. Emergency planning 

1. Inspection, testing 
2. Non-destructive testing, condition monitoring 
3. Plant safety audits 

  

23 

 



2.1.2 Critical Examination Approach : 

Essentially, the critical examination approach takes a full description of the 

process and seeks to answer definite questions in a systematic manner. Each part 

of the design will be subjected to a number of questions to explore every 

conceivable way in which that design could deviate from the design intention. 

This usually produces a number of theoretical deviations. Each deviation is then 

considered in order to determine whether it is a meaningful or unrealistic one. If 

the deviation is unrealistic then the derived consequences will be rejected (18). 

Some of the consequences may be trivial and would be considered no further. 

The success or failure of the examination will be built on the following aspects : 

i) The accuracy of drawings and other data used as the basis for the 

study. 

ii) The technical skills and insights of the study team. 

iii) The ability of the study team to use the approach as an aid to their 

imagination in visualising deviations, causes and consequences. 

iv) The ability of the study team to maintain a sense of proportion, 

particularly when assessing the seriousness of the hazards which are 

identified. 

However, the purpose of the examination is to identify all possible 

deviations from the way the design is expected to work and to reveal all the 

hazards or the potential hazards associated with these deviations. The level of 

detail and the depth of the study are determined by the objectives of the study. 

Lawley (19,20) has discussed this. Figure 2.1 shows the method of carrying out 

the critical examination method (21) and figure 2.2 shows the hazop procedure 

application on each line the process. 

24



  

  

Beginning y 

    

  

  

Select a vessel 

Explain the general intention of the vessel and its lines 

Select a line 

Explain the intention of the line 

Apply the first guide words 

Develop a meaningful deviation 

Examine possible causes 

Examine consequences 

Detect hazards 

Make suitable records 

Repeat 6-10 for all meaningful deviations derived from first guide words 

Repeat 5-11 for all the guide words 

Mark line as having been examined 

Repeat 3-13 for each line 

Select an auxiliary (e.g. heating system) 

Explain the intention of the auxiliary 

Repeat 5-12 for auxiliary 

Mark auxiliary as having been examined 

Repeat 15-18 for all auxiliaries 

Explain intention of the vessel 

Repeat 5-21 

Mark vessel as completed 

Repeat 1-22 for all vessels on flowsheet 

Mark flowsheet as completed 

Repeat 1-24 for all flowsheets 

Figure 2.1 : Detailed sequence of critical examination (21) 

25



  

Select Line 

! 
Select deviation 

      

  

  

    

  
Move on to next 

deviation 

No 

    

  

  

- What change in 

plant will tell 
him? 

No 

    

  

  e.g. more flow. 

! 
    

  

  
Is more flow possible?   

    

Yes 

  

  

Is it hazardous or does it 

prevent efficient 
operation? 

No 

  

    

, Yes 

  

  
Will the operator know 
that there is more flow?     

Yes 

  

  

  

What change in plant or 

methods will prevent the 
deviation or make it less 

likely or protect against 

the consequences?     

Y 
Is the cost of the 
  

No 

  

  

Consider 
  other cause 

of more flow     

  

  
Consider other 

changes or agree 
to accept hazard 
  

    

change justified? 

y Yes 

      

  

  

Agree change(s). 

Agree who is responsible 

for action. 

  

    

  

  
Follow up to see action 

has been taken     

Figure 2.2 : Hazop procedure (21) 

26 

  

 



2.1.3 Principles of The Hazop Technique : 

The basis of the hazop study may be a word model, a process flow 

sheet, a plant layout or a flow diagram. A word model consists of a set of 

KEY WORDS that stimulate thought. The keywords set consists of two sub-sets 

of words. The first sub-set consists ofp PROPERTY WORDS which focus 

attention on the process design conditions. Typical property words are flow, 

pressure, temperature and level. The second sub-set consists of GUIDE WORDS 

which focus attention onto possible deviations. These are simple words which are 

used to qualify the intention in order to guide and stimulate the creative thinking 

process and so discover deviations. Words like NO, MORE, LESS and AS 

WELL AS are guide words. Table 2.2 shows the different types of the guide 

words and their meaning as published by the Chemical Industries Safety and 

Health Council (22). 

2.1.4 The Hazop Study Team : 

The study is to be carried out by a team of specialists. The study team 

should be carefully chosen to provide knowledge and experience appropriate to the 

objectives of the study and the stage of development of the project. Thus 

important features of the study are : 

1) Intention 

2) Deviations 

3) Causes 

4) Consequences which can be either hazards or operating difficulties. 

ei



  

Table 2.2 : A list of Guide words (22) 

Guide words Meanings Comments 
  

NO or NOT The complete negation 

of these intentions 

-No part of the intentions is 

achieved but nothing else 

happens 
  

MORE 

LESS 

Quantitative increases 

or decreases 

These refer to quantities 

and properties such as flow 

rates and temperatures as 

well as activities like 

"HEAT' and 'REACT' 
  

AS WELLAS 

PART OF 

A qualitative increase 

A qualitative decrease 

All the design and operating 

intentions are achieved 
together with some additional 

activity 

Only some of the intentions 

are achieved; some are not 

  

  
REVERSE 

OTHER   
The logical opposite 

of the intention 

Complete substitution 

This is mostly applicable 

to activities, for example 

reverse flow or chemical 

reaction. It can also be 

applied to substances, e.g. 

‘POISON’ instead of 

‘ANTIDOTE ' or 'D' instead 
of 'L' optical isomers. 

No part of the original 

intention is achieved. 

Something quite different 
happens.     

28 

 



The selection of the team depends on the type of plant which is to be 

studied and the stage of its development. Kletz (23) discusses the team 

construction for both a newly design plant and for an existing plant. This is 

shown in table 2.3 and table 2.4. Sometimes the state of the plant, whether it is a 

continuous or a batch plant, will determine the team structure. However the team 

should have a leader who has a role to play through out the study. Kletz also details 

the way in which the study team should carry out their meetings. 

2.2 Recording of Hazop Information : 

2.2.1 Introduction : 

A hazop study cannot be carried out, for a plant at the design stage, before 

the Process and Instrumentation (P & I) diagrams are complete. The extracted 

information from the study may not follow strictly the P & I diagram, depending 

on the depth of the study (23). The extent to which an operability study is 

recorded is somewhat debatable. Lawley (17) recorded operability data in terms of 

a table of entries of guide word, deviation, possible causes, consequences and 

action required. Another form of hazop information recording is the use of a 

checklist (24,25). To keep the operability records up to date the team must work 

out the remote interactions or the different parts of the plant. Sometimes this is 

too hard to follow due to the complexity and the continuous modification of the 

process design. It will be easier for the study team to follow these modifications if 

the recorded operability data are stored ina computer so that any unexpected 

operating difficulties or changes in the design intentions can be studied. Another 

benefit of storing operability study information in a computer is that remote 

interactions can be displayed as fault trees by a computer algorithm, using the 

stored information. Furthermore the advantage of computer records is that the 

29



Table 2.3 : Team composition for a new plant (23). 

  

Team member Comments 
  

Design engineer 

Process engineer 

Commissioning 
manager 

Instrument design 
engineer 

Research chemist 

Independent chairman     

Usually a mechanical engineer and, at this 
stage of the project, responsible for minimising 
the costs but not for hazards or operating 
problems. 

Usually the chemical engineer who drew up 
the flow sheet. 

Usually a chemical engineer who will start up 
and operate the plant. 

Requirement for plant with sophisticated control 
alarm and trip systems. 

If new chemistry is involved 

An expert in the hazop technique, not the plant. 
Should ensure that the team follow the 
procedure. Leader of the team.   
  

30



' Table 2.4 : Team composition for an existing plant (23). 

  

Team member Comments 
  

Plant manager 

Process foreman 

Plant engineer 

Instrument manager 

Process investigation 
manager 

Independent chairman     

Responsible for operation. 

Someone who knows what actually happens 
rather than what is supposed to happen. 

Resopnsible for mechanical maintenance, and 
therefore knowledgeable of many of the faults 
that occur. 

Responsible for instrument maintenance 
including testing of alarms and trips. 

Responsible for investigating technical 
problems. 

An expert in hazop technique and leader of the 
team. 

  

31 

 



study need not proceed in the direction of flow on the P & I diagram. If there is 

some unresolved doubt about an equipment or a line, the team can study the next 

equipment on the flowsheet and include all the possible deviations in the incoming 

lines, without having established their causes. 

2.2.2 Cause And Symptom Equations : 

Lihou (26) has suggested a method of recording operability information. 

This method, Lihou suggests, will be easy to transfer to a computer. Guide words, 

property words, deviations, causes and consequences are stored in the form of two 

types of equations. The first type of equations are called Cause Equations, which 

describe how deviations could arise in pipelines. The second type of equations are 

called Symptom Equations, which show how items or equipments respond to input 

deviations and transmit deviations into outlet lines. 

2.2.2.1 Coding Of Deviations : 

On the P & I diagram each pipeline, item or control instrument has a 

reference number or an item identifier. The identifier is the same with cause and 

symptom equations but it is not necessary to have the exact lengthy reference name. 

For example, a pipeline which has the reference number LINE201 can be simply 

referred to as L201. If there is NO FLOW in this line, due to a malfunction, the 

deviation state can be recorded as L201 NO FLOW. The guide word is NO and the 

property word is FLOW. Index numbers are the most convenient way to code 

deviations ina computer. Table 2.5 forms the basis for coding the deviations and 

table 2.6 forms the basis for coding causes or failure modes (27). So the deviation in 

the above example can be coded as L201(11), where the bracket is used to separate 

32



the deviation state from the line reference number. The first index number 1 codes 

the property word FLOW. The second index number, which sty chance equal to 

1, codes the guide word NO. It will read as FLOW NO. This is because in 

recording the information on the operability sheet it is easier to record deviations 

under groups of operating conditions like: 

a) Flow 

b) Temperature 

c) Pressure 

If the deviation state of a chemical component is wanted to be recorded, for 

example LESS FLOW of component A in line LINE201, then the coded 

information will be L201(121). The third number 1 in the brackets refers to 

component A : this will depend, of course, on the particular system in use. 

Although seven guide words are sufficient (21), the list of property words can be 

quite extensive, depending upon the key words used to describe normal operations 

on a plant. Examples of other property words are React, Purge, Adiabatic, 

Calorific Value, pH and Viscosity. When an index number exceeds 9 the digits 

should be separated from adjacent index numbers by aslash; for example, (13/1) 

indicates a first index number of 13 and a second index number of 1. 

Malfunctions of equipment, items or control instruments can be represented 

by a single number or letter, in brackets, following the item identifier number. The 

meanings of these codes are shown in table 2.6. The input and output points or 

critical zones inside the equipment can be considered as nodes to indicate the 

symptoms caused by these deviations. 

33



Table 2.5 : Meaning of index numbers in brackets following a line 

or a node number (21). 
  

  

Index number Property word Guide word 

1 Flow NO 

2 Temperature LESS 

3 Pressure MORE 

é Level AS WELL AS 

5 Concentration PART OF / 

FLUCTUATION 

6 Absorb REVERSE 

7 Heat transfer OTHER THAN       
  

34 

 



Table 2.6 : Equipment failure modes indicated by a single index 

number or L (leaking) in brackets (27). 

  

  

  

          

Equipment Index number 

Type 0 “t 1 t 

Compressor | Stopped, Valves Leaking 
unloaded passing 

Controller No signal | Set low Set high 

Filter Fully Partly 

blocked blocked 

Heat exchanger | Tubes fully [Tubes partly Tubes 
blocked blocked leaking 

Indicator No signal | Indicating | Indicating 
low high 

Level switch Stuck low | Stuck high 
or set or set 

high low 

Ee Fully Partly Leaking 
blocked blocked 

Orifice plate Blocked Orifice too | Orifice too 
large, small, 

density density 
low high 

Pnumatic trip Vent branch | Leaking to | Open to 
Valve (3 way) isolated vent vent 

Pump Stopped Low Running | Leaking 
throughput 

Safety interlock Fails to Operates 

operate 

Transmitter or |Nosignal | Indicating | Indicating 
transducer too low too high 

Valve Closed, Insufficien- | open, open | Non- 
blocked tly open, | toomuch | return 

leaking passing 
  

35 

 



2.2.2.2 Cause Equations : 

Deviation states which appear in pipelines are separated from each other by 

a + sign to indicate OR condition, and by * sign to indicate AND condition. The 

causes may be deviations from normal conditions in other lines or they may be 

due to malfunction of equipment. Appendix A shows the rules for writing cause 

equations to avoid illogical fault trees. 

For the sake of illustration, consider figure 2.3 which simulates the P & 

I diagram of the Solvay Process for manufacturing sodium bicarbonate (27). 

To transfer gaseous ammonia from a high pressure cylinder NH3 to the sump of 

the Ammoniation column at a controlled rate, such that a small excess leaves at 

node 2, cause equations for line 1 can be written as follows : 

L1(11) = V1(0) + PRI(O) + NH3(41) = a [1] 

Ti32) eV iCal) ED) oo ee ee [2] 

Teles mV GR) PEL eA ee ne [3] 

beatae) = PRIG)) +NHS62) "oS [4] 

tod) Oe a oe Ee a ee [5] 

Equation [1], a cause equation, explains that no flow in line 1 can be caused 

when valve V1 is closed or the pressure regulator PR1 is closed or the ammonia 

tank NH3 is empty. Equation [5] explains that more pressure than normal is 

caused by high setting of the pressure regulator PR1 only. 

However, additional parentheses can be used if necessary to state the 

priority of logical combination of causes. The AND operator always has higher 

logical priority than the OR operator. For example no flow in line 2 can be shown 

36



( £% 
)uoNE[NuLs 

ssad0id 
ABATOS 

JO 
J
O
Y
S
M
O
T
]
 : 

€°7 
A
N
S
I
 

 
 

 
 

 
 

 
 

  
  

   
 

  
 
 

 
 

 
 

SA 

D<I 
A
N
I
A
 

C
H
N
*
+
d
N
I
a
d
 

L
o
n
d
o
w
d
 

A
N
T
a
a
 

Y
V
A
 1
 

i) 
@ 

Zud 
1
G
 

(
e
r
g
 

CA 

© 
cl 

@ 
o
n
 

61 
Gi) 

 
 

  

  
    

  
  

  
  

  
    

@) 
© 

@ 
x
 

o
e
 

O
V
 

N
W
A
T
O
O
 

Lt 
N
W
Y
T
O
O
 

N
W
N
T
O
O
D
 

N
O
I
L
d
Y
O
S
 
av 

N
O
I
L
L
V
N
O
@
A
V
O
 

N
O
I
L
L
V
I
N
O
W
N
V
 

 
 

  

SW



by the following cause equation : 

L2(11) = P1(0) + T1(41) * (T4(41) + V5(0)) 

No flow in line 2 can be caused by either pump P1 being stopped, or tank T1 

being emptied, either with tank T4 being empty or with valve V5 closed. 

2.2.2.3 Symptom Equations : 

Symptom equations are used to describe how major items of equipment 

respond to single deviations. Physical and chemical ‘changes inside the 

equipment are modelled to allow for a multiplicity of simultaneous responses to 

single causes. The causes are mostly deviations in properties of input streams to 

the equipment; however in some circumstances, output streams can also cause 

symptoms in the equipment which the stream is leaving. For example, changes in 

flow rate of an output liquid stream may cause response in liquid levels in the 

equipment. 

The points where streams enter and leave the equipment are considered as 

nodes and each node is given a unique number. Immiscible streams that undergo 

physical, thermal or chemical exchange are each given unique node numbers. 

Symptom equations differ from cause equations in that the cause is at the 

beginning of the equation, followed by an arrow -> sign and then a list of 

consequences at nodes. Each node symptom is separated from each other by an 

*, to indicate AND. For example, the symptom equations generated from 

different causes in line 1, from the previous example, can be written as follows : 

38



L1(11) -> N1(11)*N1(31)*N2(11)*N4(125)*N4(22)*N6(11) 

L1(12) -> N1(12)*N1(32)*N2(12)*N2(22)*N4(125)*N4(22)*N6(12) 

L1(13) -> N1(13)*N1(33)*N2(13)*N6(13)*N6(23) 

The first symptom equation explains that the cause of no flow in line 1 

can cause the following symptoms in the Ammoniation Column : 

i) no flow in node 1 

ii) no pressure in node 1 

iii) no flow in node 2 

iv) less flow of ammonium hydroxide in node 4 

v) less temperature in node 4, and 

vi) no flow in node 6. 

2.3 Fault Tree Analysis : 

2.3.1 Introduction : 

Fault tree analysis is an approach to reliability and safety analysis and is 

generally applicable to complex dynamic systems. Fault tree analysis provides an 

all inclusive, versatile, mathematical tool for analyzing complex systems (28). The 

logic of the approach makes it a useful visible tool for both engineering and 

management. It provides a deductive functional development of a_ specific 

undesired event through logic statements of the conditions which could cause the 

event (29). 

In 1961 the concept of fault tree analysis was originated by H. A. 

Watson of Bell Telephone Laboratories to evaluate the safety of the Minuteman 

Launch Control System (30). At the 1965 Safety Symposium, sponsored by the 

39



University of Washington and the Boeing Company, several papers were 

presented that expanded the virtues of fault tree analysis (31). Fussell (28) stated the 

fault tree analysis major value in : 

1) Directing the analyst to ferret out failures deductively. 

2) Pointing out the aspects of the system important in respect of the 

failure of interest. 

3) Providing a graphical aid giving visibility to those in system 

management who are removed from the system design changes. 

4) Providing options for qualitative or quantitative system reliability 

analysis. 

5) Allowing the analyst to concentrate on one particular failure at a time. 

6) Providing the analyst with genuine insight into system behaviour. 

In addition recent studies show that the fault tree analysis is of a good help 

in the field of operator training, decision making, start up and shut-down procedure, 

alarm analysis and in writing operating manuals (32,33). In the early 1970's 

great strides were made in the solution of fault trees to obtain complete reliability 

information (34,35,36,37). 

2.3.2 Fault Tree Terminology : 

Different names and terms are used to define a proper act or description 

being associated with the fault tree analysis. Some of these definitions are 

described as follows: A hazard is the term used for a latent condition or set of 

conditions, either internal or external to a system, facility, or hardware end 

item, which when activated, trigger into an event or events that culminate in an 

accident mechanism. An accident is the term used to describe an event or a group 

40



or series of unplanned, unwanted events which have occurred in a static or dynamic 

system to produce a loss or a near loss. An event is the term used for one of a 

series of concurrent or sequential interacting occurrences that either flow or cascade 

into other events, thereby constituting the accident mechanism. This event could 

be a primary or basic failure in a system andcan be described as a system 

component. The development of any group of events results in a branch of the fault 

tree. The branch is complete only when all events in the branch are developed 

to the level of primary failures. The event is developed through a logic gate. A 

logic gate defines the input conditions which must be met in order for a failure 

sequence to propagate up the fault tree toward the final or TOP event. The logic 

gates that are most frequently used to develop fault trees are the basic AND and OR 

Boolean operators. The AND gate provides an output event if, and only if, 

all the input events are simultaneously present. The OR gate transmits an output 

event if one or more of the input events are present. Other logic operators (gates), 

frequently in use, are the Exclusive OR and the NOT gates (38,39). An Exclusive 

OR gate, sometimes given an EOR or XOR abbreviation, has two inputs and 

will produce a TRUE output if one, but not both, of them is TRUE. A fault tree 

containing only simple AND and OR gates is called an s-coherent fault tree (the 

prefix "s-" implies "statistical"). An s-noncoherent fault tree is one which has 

full or partial statistical dependent relationships among its elements. In other words, 

an s-noncoheren* fault tree contains either EOR or NOT gate among its events (40). 

The application of the set theory and the boolean algebra in fault tree 

analysis is well known (41). A path set is represented by the logic configuration 

of the primary events in the tree. A minimal path set is the smallest set of 

component successes that will ensure that the undesired event will not occur. A 

cut set is a set of basic events whose presence cause the occurrence of an 

41



undesired event. But a minimal cut set is the smallest set of primary events in 

which the presence of all events are necessary to cause an undesired event to 

occur. The concepts of minimal paths and minimal cuts have been established by 

Esary and Proschan for coherent structures (42). However, their concepts were 

built up for systems that did not allow complementary events to occur in a 

fault tree. If a primary event is X thenits complementary event is (1-X) or X. 

When complementary events do occur a more general way of specifying 

fundamental modes of behaviour is required. In non-coherent fault trees, the 

minimal cut set concept should be replaced by a set of literals called a prime 

implicant set. A literal is either a primary event or the complementary event in a 

tree which is noncoherent. Another well used termis the common mode failure 

or the common cause failure. Common mode failures are multiple failures that 

result from a single event or failure. Thus, the probabilities associated with the 

multiple failures become, in reality, dependent probabilities. The single event can be 

a common environment, common design or external event. A common external 

event can be caused by a common human operator. Special graphical symbols 

have been used in the graphical representation of fault trees. Appendix B 

shows the most commonly used symbols (43,44). 

2.3.3 General Procedure Of Fault Tree Analysis : 

Generally, the fault tree analysis can be presented in the following four 

steps (28): 

1. System definition 

2. Fault tree construction 

3. Qualitative evaluation 

4. Quantitative evaluation 

42



2.3.3.1 System definition : 

The fault tree analysis begins with the determination of the undesired events 

in a particular piece of equipment in a process or a system (45,46). Since the 

definition of this system is often the most difficult task, a layout diagram, 

showing all the system components is essential. The detail of the diagram is 

dependent upon the study depth. Sufficient information about each component must 

be available to minimize the number of undesired events and to reduce the range 

within which they may occur. However, in addition to this the system boundary 

conditions, such as the top event, must not be confused with the system physical 

bounds. The system boundary conditions define the situation for which the fault tree 

is to be drawn. 

2.3.3.2 Fault Tree Construction : 

The construction of a fault tree is an important task in the overall activity of 

fault tree analysis. Fault tree actual construction is usually done by hand. 

Rasmussen stated that the WASH-1400 study took about 25 man-years of effort to 

complete (47). In the past ten years, computer-aided synthesis of fault trees 

haS attracted considerable attention and several methodologies have been 

proposed. Hassl (48) devised a structure that establishes rules to determine the type 

of gate to use and inputs to the gate. Fussell (45) uses transfer functions as models 

for component failures to construct the final fault tree for electrical systems. His 

technique is known as the Synthetic tree Model (STM) and is based on modelling 

each device in the system by a failure transfer function. The various transfer 

functions, traced through the schematic, are combined and edited to form the 

final fault tree. Powers and Tompkins (49,50) devised a method for automated 

fault tree construction for chemical systems. Their approach is to break down 

43



the system into constituent blocks, and define their operations via unit models, 

then to combine these systematically to form the fault tree. Salem et al. (51) devised 

CAT (Computer Automated Tree) code which presented a general 

computer-implemented approach for modelling nuclear and other complex 

systems involving electrical, mechanical and human interaction. Lapp and Powers 

(52) generate a digraph model (direct graph) for system representation and then 

uses the fault tree synthesis program to deduce the fault tree. Taylor and Hollo (53) 

use algebraic component models to construct a Cause Consequence Diagram 

(CCD) and then generate algebraic equations (54). The generated equations are 

then written for each component and the resulting collection forms the system 

model. This model can then be used to determine the consequences of any 

deviation in the input variables. Finally, Camarda et al. (55) proposed an efficient 

algorithm for fault tree automation synthesis from the reliability graph for large 

systems. 

The qualitative andthe quantitative evaluations of fault trees will be 

discussed in full in chapter three. 

44



CHAPTER THREE 

45



3. RELIABILITY CALCULATIONS 

3.1 Introduction : 

The discipline which is concerned with the application of probabilistic 

methods to the problems of failure in systems generally is known as reliability 

engineering. The earliest developments in reliability engineering occurred during 

the Second World War when the Germans had problems with the reliability of 

the V1 missile (56). Since this beginning the study of reliability has become a 

fully developed discipline. Particular impetus has been given by the reliability 

requirements in the defence (57), aerospace and nuclear industries (47,58). This 

has raised the need for new techniques to be developed and adapted to the new 

technology requirements. In the process industries, reliability analysis is now 

playing an increasingly important role in quantitative assessment of system 

performance for assuring safety, for improving plant performance and plant life 

and for reducing plant operating costs. 

Fault tree analysis, as stated earlier, is considered a powerful tool for the 

qualitative evaluation of potential hazards in a system. The use of reliability 

assessment in conjunction with fault tree analysis considerably increases the 

power of the technique. Different techniques and methods of reliability assessment 

have been developed by the application of probabilistic methods with Boolean 

Algebra. Some reliability assessment methods use stochastic techniques - for 

prediction. Others apply deterministic techniques using Boolean Algebra to describe 

the system reliability in terms of the combined failure components of the system. 

Different factors and criteria are involved in establishing any newly 

46



developed technique. The major factors are: 

1- Aims and goals of the developer 

2- Scope and field of the application 

3- Availability of failure data, and 

4- Type of hardware and software tools used in the study. 

3.2 Stochastic Techniques : 

These techniques fall into two categories. The first category of techniques 

involve the direct application of statistical and probabilistic laws for the analysis of 

fault trees. The second category of techniques involve the use of random variables 

or random numbers using Monte-Carlo simulation methods. The direct 

application of probability laws are limited to simple logical relationships and 

have been found unsuccessful when applied to fault trees which authentically 

represent large complex systems (44) especially if repeated, repaired events are 

involved. Nevertheless, these laws have been found to be successful and can be 

used with some confidence when there is independency among the individual tree 

components. 

3.2.1 Simple Statistical Rules : 

The probability of success P in asystemin which all the components 

must work, if the system is to work, is the product of the individual probabilities 

of success 7 

n 

eda Rp ee ee ie (3.1) 
i=1 

47



It is appropriate to give, at this stage, a brief description of some basic probability 

laws. 

3.2.1.1 Union Of Events : 

The probability of anevent X tooccurif any of the events Aj occurr is 

the union (U ) of those events . 

n 

PES) cP) Bie ge eRe (3.2) 
i=1 

for two events 

P(X) = P(A, U A) 

= P(A] )+P( Ap) - P(Az Ag) cssees (3.3) 

If there are n events then 

P(X) = P(A; )+P( Az) + PC AZ) + weseeseees. + P(A, ) 

- probability of all possible double combination 

+ probability of all possible triple combination 

CO eee rcerererececcvcsscosoes 

Peer erccecscesccseccscesceee 

#1 CAP Pl As You, PUAGY 6 (3.4) 

48



If the events are mutually exclusive, equation (3.4) simplifies to 

n 

PEN) SCAT ee RS mae) (3.5) 
fl 

In general 

n n 

Laake RA) ee a ee (3.6) 
i=1 i=l 

3.2.1.2 Intersection Of Events : 

The probability of anevent X which occurs only if all the n events Aj 

occur is the intersection aul ) of these events: 

BX) oe Pedy ihe Ag) aPC LAT) (3.7) 
ist 

For two events 

PO) =P(A, FI A>) = PAD): (Ad) 3 ncctdeieane (3.8) 

Generally 

n 

BOOas Tt BA) Re Pn (3.9) 
i=l 

49



3.2.1.3 Bayes' Theorem - Conditional Probability : 

The probability of an event X which occurs if the event A and the event B 

have occurred where the event A depends on the event B is 

BU) GRD) we. FORRES) 3 oe or ak (3.10) 

P(A/B) is the conditional probability of A given B. 

For n eventsof A; dependent upon event B: 

n 

P(X) = > P(B/A;) P(A;) 
et 

The above form is a special case of the more general form of Bayes’ 

theorem; givenevents A and B, the probability of event X is: 

PCAB) = P(A/B)PEB) = P(B/A)P(A) = = i cidaccctses i1) 

P(AB) P(B/A)P(A) 
P(A/B) = SS ewmwwwemmenmmmn= sa seanaccnencs Gaz) 

P(B) P(B) 

  

For n_ events, the probability of the kth event A, is: 

P(B/Ay) P(Ay) 
PURER). ey cee eee ere (3.13) 

nN 

> P(B/A,) P(A;) 
© 

50



3.2.2 Failure Rate And Failure Distributions : 

The failure of an equipment is not only a function of its design and quality 

of construction, but also of the environmental conditions which it is placed. 

Predictions of failure can be made from statistical data based on past observations. 

The confidence in such predictions will increase with an increase in the teeta 

of independent observations. So a large number of independent observations and 

well defined system conditions will give a high level of confidence in probabilistic 

predictions. Some other factors which should be considered are failure mode, 

repair time, true running time and time intervals between failure. 

3.2.2.1 Mean Time Between Failures And Failure Rate : 

Different terms are in use to describe different types of failure. Mean Time 

Between Failures (MTBF), Mean Time To Failure (MTTF) and the Mean Time To 

First Failure (MTTFF) are the most widely used terms in reliability engineering 

(59). Formal definitions of MTBF and MTTF are given in the appropriate 

British Standard (60). MTBF has meaning only when applied to a population of 

components, equipments or systems in which there is repair. It is the total 

operating time of the items divided by the total number of failures. If n failures 

have occurred with the interval between successive failures i and i+1 being t 

2 years, then MTBF and its variance 6%” is given by equations 3.14 and 3.15 

respectively. 

51



dt 
i=1 

POR A SR ea a a ory Ne ee (3.14) 
n 

ded 1 n 

o2 he > (t,)2 - et ( > ti 2 i ilssaten (3.15) 

eed n(n-1) = i=1 

MTTF is applied to items without repair and is the mean of distribution of 

times to failure. MTTFF is applied to items with repair and is the mean of the 

distribution of times to first failure. Failure rate is defined as the number of failures 

observed in a very small interval of time divided by the number of non-failed 

systems (61). For an n component parallel system with an exponential failure 

distribution of the individual components and without repair, if y is the failure rate 

of equipment, then : 

n 1 

Mit) eta Wl ee, (3.16) 
j=]. Sy 

and for an n component parallel system with repair, if s is the repair rate of 

equipment , then 

52



If the repair rate $ is zero, equation (3.17) reduces to (3.16). 

3.2.2.2 Failure Distributions : 

The probability that something will fail at a prescribed instant is zero. 

Failure distributions are represented by functions of time f(t), such that when 

integrated over a specified time interval t, to ty, the probability of at least one 

failure being obtained during that time interval is given by : 

to 

as | {00} edt 5 oe on eee (3.18) 

ty 

There are two types of statistical distributions which are fundamental in 

work on reliability. There are either discrete distributions such as binomial, 

multinomial and Poisson or continuous distributions such as exponential, 

normal, lognormal, Weibull, rectangular, gamma, Pareto and extreme value 

distribution. Hastings and Peacock (62) give acomprehensive summary of the 

properties of the above mentioned statistical distributions. Only the exponential 

and the Weibull distributions will be described in this work because of their wide 

use in equipment and systems reliability studies. 

3.2.2.2.1 Exponential Distribution : 

For the exponential distribution the characteristics of instantaneous failure 

rate (z), overall failure rate or failure density (f), reliability (R) and failure 

53



distribution (F) can be expressed as follow : 

ey ea ee ee ek (3.19) 

Paevene CY. oS eae Oe ae (3.20) 

Be POR CVE ee ae er ee, ae (3.21) 

Bee Dee Sk ta ce Re i a aad (3.22) 

where 0 <t<s © 

There is only one parameter y, whichis the failure rate. The failure rate is 

assumed to be independent of time or age or environmental influence; it is the 

reciprocal of MTBF. The reliability of equipment during any time interval of 

MTBF is 0.368. This is usually applied to data in the absence of other information 

and is the most widely used in reliability work. 

3.2.2.2.2 Weibull Distribution : 

There are two forms of the Weibull distribution, one with three parameters 

and one with two. The characteristics of the three parameters form are : 

54



Ap Geh etc) oe rember o> ee a ee Y e 3.2 ( ~ ) (3.23) 

g. Bert Bet ge 
Soe), > Gees J a ate (3.24) 

Y R = exp[- one a ee ae (3.25) 

where the rangeis 0< t < CO 

Here 1 is the characteristic life, [B is the shape factor and y is the 

location parameter. If y is zero, the two-parameter distribution is obtained. A 

high value of 1 indicates a well designed system, good quality control, large 

factors of safety and that equipment is operating below capacity. Table 3.1 

shows the significance of the shape factor on the simulated distribution functions. 

Lihou used the Weibull distribution to calculate the optimum shape factor for 

some equipment in the process industries (63). The resultant graph is shown in 

Appendix C. 

3.2.3 Monte-Carlo Methods : 

Many practical problems cannot be solved by any of the available analytical 

55



Table 3.1 : The effect of the shape factor on the simulated distribution 

  

  

B Simulated distribution Applicability | Hazard rate 

<4 Hyper-exponential Early failure Decreasing 

1 Exponential Random failure Constant 

z Log-normal Repair failure Increasing 

3 Normal Wear out Increasing             

methods and are only soluble by simulation (47). The principle methods in use are 

the Monte-Carlo simulation techniques. 

The procedure for the application of a general Monte-Carlo simulation to 

the determination of reliability or availability of complex systems is as follows: 

1. The system configuration, component failure characteristics, system 

constraints and time period of interest are specified. 

2. The time period is divided into small intervals or increments. The first 

trial is then carried out covering the time period specified. 

3. At the first time increment the probability of failure of the first 

equipment is calculated. This probability is compared with arandom number in 

the range of 0 to 1 generated from a uniform distribution: if the random number 

is less than or equal to the failure probability the equipment fails, otherwise it 

survives. 

4. The state of all the equipment is computed in the same way. Then the 

56



overall state of the system will be determined. 

5. If the total system has failed, the time to first failure has been calculated 

for this simulation. Otherwise steps 3, 4 and 5 are repeated for following time 

increments to the end of the specified time period. 

The whole simulation is repeated a sufficient number of times so that a 

result which has reasonable confidence limits has been obtained. To carry out the 

Monte-Carlo simulation, a computer program is needed. The above procedure 

represents the application of the Crude or Simple Monte-Carlo method. It is also 

known as direct simulation. Crosetti (44) described the steps of using Crude 

Monte-Carlo technique in fault tree analysis. 

Other types of Monte-Carlo methods involve the use of some statistical 

techniques (64, 65,66). Mazumder (67) proposed a Monte-Carlo method with 

variance reducing techniques to decrease the variance of the Monte-Carlo 

estimates reliability. Kumamoto et al.(68) used a Monte-Carlo method for 

estimating the reliability of large complex systems based on a fault tree or reliability 

diagram. Levy and Moore (69) used a Monte-Carlo technique for obtaining system 

reliability confidence limits from component test data. Vesely and Narum (70,71) 

present PREP and KITT fault tree computer programs using a Monte-Carlo 

method, SAFTE (72), RELY4 (73), REDIS (74) and SAMPLE-WASH 1400 

(47) are computer algorithms which already exist for fault tree analysis that use 

the Monte-Carlo simulation methods. Karp and Luby (75) show how to exploit 

knowledge of the failure sets of a network using a Monte-Carlo method. 

57



3.3 Deterministic Techniques : 

3.3.1 Introductory Theory : 

The fault tree technique has been used by reliability engineers as a general 

tool for studying system failures. The technique is based on a graphical 

representation of the logical sequences of causes that lead to the system failure of 

the top event. A qualitative evaluation of a fault tree involves the application of Set 

Theory and Boolean Algebra in order to obtain a Boolean expression known as the 

minimal cut sets of the top event. 

The fault trees in themselves are qualitative in nature, but they provide a 

framework for the probabilistic analysis. A quantitative evaluation of a fault tree 

basically consists of assigning probabilities to each fault (basic event) and of 

combining them as prescribed by the fault tree, to obtain the probability of the top 

event. Usually, this is nota direct substitution of failure data or failure functions 

of the individual events in the tree. In real systems, complexity, dependency, 

repairable components or the existence of repeated events make this technique 

inadequate. So different techniques have been proposed in order to calculate the 

exact system probability. 

3.3.2 Laws of Boolean Algebra : 

Fault trees are originally constructed in graphical form using logical 

operators, mainly AND and OR gates. Boolean algebra is the most appropriate 

tool to represent them in a mathematical form. For example, the OR gate is 

equivalent to the Boolean symbol '+' and represents the union of the events attached 

to the gate as its inputs. The AND gate is equivalent to the Boolean symbol 

.' representing the intersection of events. Table 3.2 (76) shows those Laws of 

58



Table 3.2 : Relevant Laws of Boolean Algebra 

  
Feature Algebraic representation 

  

Commutative law 

Associative law 

Idempotent law 

Complemented law 

Absorption law 

Distributive law 

Reduction law     

a. XY = YX 

b. X+Y = Y+X 

a. X(YZ) = (XY)Z 

b. X+(Y+Z) = (K+Y)+Z 

a. XX = X 

b. X+X = X 

‘.Xik wo 1 

b. 1.f(X) = f(X%) 

a. X(X+Y) = X 

b. X+XY = X 

a. X(Y+Z) + XY+XZ 

b. (K+Y) (X+Z) = K+YZ 

a. X+XY = X+Y 

b. XYPXY aay 

c. XY+XY xX 

  

59 

 



Boolean Algebra most relevant to this work. 

3.3.3 Probability Calculations From Fault Trees : 

Much of the value of fault tree analysis lies in the fact that if probabilities 

can be assigned to the events in the tree, then the probability of the top event can 

be evaluated. This does not necessarily mean that all event probabilities must be 

known: only the basic events probabilities are the essentials. For example, consider 

the tree shown in figure 3.1, where A, B, C and D are independent events.From the 

fault tree logic and probability laws : 

X = A.B.Y P(X) = P(A)P(B)P(Y) 

Y=C+D PCY) = P(C) + P(D) - P(C)P(D) 

Hence, 

X = A.B.C + A.B.D 

P(X) = P(A)P(B)P(C) + P(A)P(B)P(D) - P(A)P(B)P(C)P() 

    
      

Figure 3.1 : A fault tree 

60



If the probability values of individual events are very small then an 

approximation for the result can be made by deleting higher order terms. This 

sometimes helps to reduce the computation time, especially in large trees, 

without giving too much error in the final result. 

3.3.3.1 Effect Of Repeated Events : 

If repeated basic events exist then direct application of probability laws are 

not possible. If they are applied directly in the Boolean expression, a wrong value 

of the top event probability will be obtained. For example, consider the fault tree in 

figure 3.2, originally given in Fussell (77), with the basic events A, B, C and D. 

From the fault tree logic and probability laws : 

XO = X15 P(XO) = P(X1)P(X2) 

Xi AG P(X1) = P(A)P(X3) 

x2 5840 P(X2) = P(B)+P(D)-P(B)P(D) 

TOP 

on 
    
X2       

    

    sl, ©   

Figure 3.2 : A fault tree (77) 

61



Rahal P(X3) = P(B)+P(C)-P(B)P(C) 

Hence, 

X0 = [A.X3][B+D] = A.[B+C].[B+D] = A.B.B+A.B.D+A.B.C+A.C.D 

Bottom up calculation of probabilities in the order P(X3), P(X2), P(X1) and 

hence P(X0) will give the value of the expression 

P(X0) = P(A)[P(B)+P(C)-P(B)P(C)][P(B)+P(D)-P(B)P(D)] 

However, further reduction of the Boolean expression gives 

X0 = A.B+A.C.D 

and the substitution of probabilities into this Boolean expression will give a 

different answer. 

P(X0) = P(A)P(B) + P(A)P(C)P(D) 

In fact both are incorrect. Note that the Boolean expressions are both correct. In 

order to get the right answer, other techniques must be used. 

3.3.4 Minimal Cut Sets And Reduced Logical Expressions : 

As shown in the above examples, Boolean algebra can be used to reduce 

the logical expression to a sum of product expression. In the first example, a sum 

of product expression (SOP) was obtained : 

Fae PB ee Oe easy srnenet (3.26) 

And in the second example, a sum of product expression (SOP) was obtained too : 

62



ABS Pe 2 ABD RO ee an (3.27) 

This means that the expression in (3.26) consists of two sets or what can be called 

cut sets. In expression (3.27), the top event occurrence is represented by 4 cut sets. 

This second expression can be reduced further, using the Boolean absorption law, 

to yield : 

AB + ACD (oe (3.28) 

This is because both of the cut sets ABC and ABD are supersets of the set 

AB. The set in the expression of (3.28) are called the minimal cut sets of the top 

event. 

The concept of minimal cut sets is very important for fault tree evaluation. 

Consider the following example given by Semanderes (34) : 

TOP 
  

    

      

Figure 3.3 : A fault tree (34) 

63



Top=X+Y 

= AB + ABC 

= AB (Minimal cut set) 

This illustrates that the occurrence of the top event is controlled by basic 

events A and B only but not by C. Thus not all basic events are always required for 

the calculation of probability of occurrence of top events. However it is not 

necessarily the case that probabilities can be directly substituted into the 

minimal cut sets expression. 

3.3.5 Methods For Generating Minimal Cut Sets : 

An important step in fault tree analysis is determining its minimal cut sets. 

A minimal cut set is a collection of component failures all of which are necessary 

and sufficient to cause the system failure by that minimal cut set. A complete 

set of minimal cut sets are all the failure modes for a given system (28). Thus 

several algorithms for obtaining the minimal cut sets for the TOP event of a fault 

tree have been proposed. The first algorithms were based on Monte-Carlo 

techniques; later methods are deterministic. These deterministic techniques fall 

into two main approaches, either a bottom-up or a top-down approach. 

In 1970 Vesely and Narum (70,71) made available a set of computer 

programs (PREP) that obtained the minimal cut sets (or minimal path sets) for the 

fault tree and then obtained quantitative system characteristics from these cut sets 

(or path sets). It represents one of the earliest deterministic algorithms. Because 

of the time consuming nature of the algorithm used in PREP, several newer and 

more efficient deterministic programs have been proposed. 

64



Fussell coded MOCUS (77) starting from the top of the fault tree and 

proceeding down to the basic events to determine the minimal cut sets of the TOP 

event. Only AND and OR gates are allowed. The TOP event is replaced by the gates 

and basic events that are input to it. If the TOP event is an AND gate, the inputs are 

listed in a row. If the TOP event is an OR gate, the inputs are listed in a column. 

Each gate in the matrix is now expanded using the same substitution technique. 

The process continues until only basic events are contained in the matrix. The rows 

of this final matrix are the cut sets of the tree. Minimal cut sets are obtained by 

determining supersets from the matrix. The order of a cut set is the number of events 

in the cut set. Output from MOCUS includes all the cut sets up to a desired order. 

In addition to obtaining cut sets for the TOP event, cut sets can also be obtained for 

intermediate events in the tree. 

ELRAFT (34), coded by Semanderes, is a FORTRAN program which 

formulates the simplest logic expression for each secondary event in a fault tree in 

terms of the basic events which combine to cause it. Other well-known 

deterministic programs for determining minimal cut sets are SETS (41), 

ALLCUTS (78), MICSUP (79), BAM-CUTS (80), DICOMICS (81), FATRAM 

(82), BUP-CUTS (83), RESIN (84) and the Jamson-Kai algorithm (85). 

Bengiamin et al. (86) have developed a technique for handling repeated 

basic events in a fault. tree. Koen and Carnino (87) have introduced a pattern 

recognition technique for fault tree evaluation. The basic idea of pattern 

recognition is to prune the fault tree by identifying known patterns, retrieving the 

corresponding mathematical equation, and evaluating the replacement basic events. 

This process is repeated until the original tree is reduced to a single node or the 

65



system reliability. Appendix D shows the standard patterns and their mathematical 

forms as given by Koen and Carnino. 

Wheeler et al. (88) introduced a fault tree analysis program that uses bit 

vector representation of cut sets. Each primary event is assigned a single 1 in a 

unique position in a sequence of zeros (binary digits). 

Kumamoto and Henley (89) have introduced a top-down algorithm to 

obtain prime implicant sets for non-coherent fault trees which are equivalent to 

minimal cut sets in coherent trees. The algorithm produces a sum of product (SOP) 

expression. 

$354 Selected Algorithms And Techniques For Obtaining 

Minimal Cut Sets In Fault Trees With Repeated Basic Events : 

Three different approaches for obtaining the minimal cut sets in fault trees 

which contain repeated basic events are described below. 

3.3.5.1.1 Tree Reduction Technique : 

Bengiamin et al. (86) have developed a technique for obtaining the 

minimal cut set in fault trees that contain repeated basic events. The philosophy of 

the technique is to reduce the influence of repeated events in the fault tree by 

reducing the fault tree itself. This technique, as claimed by Bengiamin et al., will 

reduce the required computing time because of the early elimination of non-minimal 

cut sets. The algorithm which was written in APL consists of three basic steps : 

66



1. The fault tree containing repeated events is reduced. A reduced fault 

tree is obtained by eliminating repeated events which are inputs to OR gates. 

2. The cut sets of the reduced tree are then obtained by conventional 

techniques, namely Fussell and Vesely's method (90). The resultant cut sets are 

referred to as Group 1 cut sets. 

3. Finally, the Group 1 cut sets are then further processed to yield the 

Group 2 cut sets. The cut sets Group 1 and Group 2 are the desired result. 

These three steps are described by Bengiamin et al. (86) as follows : 

I) Step 1 : Produce a Reduced Fault Tree by deleting repeated events which are 

inputs to OR gates, as follows. For each OR gate which has one or more repeated 

event, 

a) If one or more of the input events to the same gate are non-repeated, 

one of them is designated as a partner, and that instance of the repeated event(s) 

eliminated. 

b) If all the input events to the same gate are repeated events, the gate output 

is examined : 

i) If the output event is a transfer event (90) with the same order of 

repetition as any of the input events, then this event is designated the 

partner, and that instance of the repeated event(s) elimimnated. The order of 

repetition is the number of times by which an event is repeated in the same 

tree. 

ii) If the output event is a non-transfer event or an event of different order 

of repetition than all the input events, then a new event is introduced to 

represent the input events (artificial events), and that instance of the repeated 

event(s) eliminated. 

67 

 



a ge 
II) Step 2: Find the cut sets of Group 1 by analysing the reduced fault tree as 

follows, 

a) Generate cut sets of the reduced fault tree by Fussell and Vesely's 

method (90). 

b) To get Group 1, process the obtained group of cut sets as follows, 

i) If all the repeated events of the original tree were inputs to OR 

gates and each OR gate had at least one non-repeated event; then all 

the obtained cut sets are minimal and no processing should be done. 

ii) If all the repeated events of the. original tree were inputs to OR 

gates and some of the partners are compared with each other to 

eliminate any non-minimal ones. 

iii) If some of the repeated events are inputs to AND gates, then the 

obtained cut sets should be compared with each other and with the cut 

sets of Group 2, as they are generated, to eliminate any non-minimal 

ones. 

Ill) Step 3: Find the cut sets of Group 2. Group 2 is obtained from Group 1 

by reinserting the previously eliminated repeated events (step 1) to obtain the 

minimal cut sets which compose these events. The reinsertions follow the 

following steps, 

a) i) Generate all the possible combinations of repeated events. 

ii) Discard from the list of (i) any combination which involve more than 

one repeated event having the same partner. 

b) This step requires two main operations. 

i) For a combination, consider only the cut sets of Group 1 which 

involves partners corresponding to events of the combination. This 

68



operation substitutes events in that combination for their partners. 

ii) Detection of non-minimal cut sets requires comparing the recently 

obtained subgroup of cut sets with itself and with the cut sets of the first 

subgroup (Group 2). This comparison includes the cut sets of Group 1 if 

Step 2(iii) is the case. This operation discards any cut set previously 

obtained. 

Substitutions and comparisons are done as follows, 

1) Substitute the combination of the largest number of events and test the 

obtained subgroup (Group 2) for non-minimal cut sets. 

2) Test all the combinations from Step 3(a) and discard any one existing in 

Group 2. 

3) Substitute the remaining combinations and discard non-minimal cut 

sets as they occur. 

Finally, if any artificial events (Step 1 b(ii)) have been used as partners, then all 

cut sets containing these events are deleted. 

Illustration : 

Consider the simple tree given by Fussell (28) and shown in figure 3.2. The 

partners of the first order repeated event B are the events C and D. The first group 

can be obtained by considering the reduced fault tree of figure 3.4 which is 

composed of non-repeated events only. The TOP event of this tree may be obtained 

by the relation 

BOP I OO FS cre eneensos tt (1) 

69



but, 

eb ee ae ela Sonic (2) 

Substituting (2) into (1) yields 

X0 = D.A.C 

OP 

  

Figure 3.4 : Reduced fault tree 

The first group consists, therefore, of the set of events DAC. The second group 

is obtained from the first group by substituting each of C or D by B. The second 

group consists, therefore, of the set of events BAB which can be reduced by 

Boolean algebra to AB. The minimal cut sets of the original fault tree are 

simply AB and DAC. 

3.3.5.1.2 FATRAM (FAult Tree Reduction AlgorithM) : 

Rasmuson and Marshall (82) have developed a new top-down algorithm, 

70



similar to MOCUS (77) for finding minimal cut sets of fault trees. FATRAM has 

been used successfully as part of the Reliability Analysis System (RAS) (91). 

Rasmuson and Marshall claimed that the main goal for FATRAM, which has 

been run on the CDC Cyber-76 computer, is to obtain the minimal cut sets as 

quickly as possible in the smallest amount of main core memory. The steps of the 

algorithm are : 

1. Resolution begins with the TOP event. If the TOP event is an AND gate, all 

inputs are listed as one set, if itis an OR gate, the inputs are listed as separate sets. 

2. Iterate until all OR gates with gate inputs and all AND gates are resolved. OR 

gates with only basic event inputs are not resolved at this time. 

3. Remove any supersets that still exist. 

4. Process any repeated basic events remaining in the unresolved OR gates. 

For each repeated event do the following : 

a) The repeated event replaces all unresolved gates of which it is an input 

to form new sets. 

b) These new sets are added to the collection. 

c) This event is removed as an input from the appropriate gates. 

d) Supersets are removed. 

5. Resolve the remaining OR gates. All sets are minimal cut sets. 

Illustration : 

Consider the same previous example. The repeated event is B. The 

71



minimal cut sets for the fault tree in figure 3.3 is obtained as follows : 

1. The TOP gate XO is an AND gate, thus we obtain (X1.X2). 

2. Gate X1is an AND gate; thus by Rule 2, it is resolved first yielding : 

(A.X3.X2). 

3. Both X2 and X3 are OR gates with only basic events. So the repeated 

event B should be processed. The repeated basic event B is an input to both the 

gates X2 and X3, so the new set is obtained by replacing the unresolved gates 

(X2) and X3 by B. This gives : (A.X3.X2),(A.B.B). 

4. The repeated event B is removed as an input from the gates X2 and X3. 

Thus the input to the gate X2 is D and the input to the gate X3 is C. Resolving 

these gates gives : (A.C.D), (A.B.B) 

5. The minimal cut sets for the tree are obtained by removing the redundant 

B giving : (A.C.D), (A.B). 

3.3.5.1.3| BUP-CUTS 

Nakashima et al. (83) have developed a bottom-up algorithm called 

BUP-CUTS (Bottom-UP algorithm for enumerating minimal CUT Sets of fault 

tree) and is coded in FORTRAN. The algorithm uses the ANCHEK algorithm 

(83) instead of MULTIPL and ORCHEK algorithms in Bennetts' paper (39), 

upon transforming the logical product of two reduced SOP forms into an 

equivalent, reduced SOP form. The other parts of the program follow Bennetts’ 

algorithm in principle. Nakashima et al. (83) used the following assumptions : 

1. Mutually exclusive primary events are allowed to appear. 

2. The same event can appear in several branches. 

3. No complemented intermediate events can appear at any gate. 

4. Only OR and AND gates are allowed. If logic gates, such as NOT, 

12



Exclusive OR, NAND, appear in the fault tree, then the algorithm can be 

applied after transforming it into an equivalent fault tree containing only OR and 

AND gates by using inversion operations by De Morgan's theorms. 

5. The Boolean function for the TOP event need not be s- coherent. 

Nakashima et al. (83) algorithm begins with primary events and repeats, 

until reaching the TOP event, the process of expanding the logical product ( AND 

gate) orsum (OR gate) of reduced SOP form for two causative (either primary or 

intermediate) events into a SOP form by the distribution rule and then discarding 

redundant terms by applying the idempotence and absorption rules to yield an 

equivalent reduced SOP form. This structure is known as a bottom-up algorithm 

(39,41). Nakashima et al. (83) pointed out that the logical combination of two 

reduced forms having nl and n2 terms yields a SOP form having nlx n2 

terms (for a product) or nl +n2 terms (fora sum) by applying the distribution 

rule; thus there is a sharp increase of terms in the expansion of any combination. 

All pairs of terms must be checked against each other by applying the idempotence 

and absorption rules. Since, for a product, the total number of pairs of nl x n2 

terms is (nl x n2) x (nl x n2- 1), the number of checks by two rules becomes 

greater as the total number of terms increases. Thus the checking for products 

could dominate the computation time, especially fora fault tree having AND gates 

near the top. Process plants, particularly those with repairable items, tends to 

have AND gates towards the top of the fault tree (92,93,94,95). The conventional 

bottom-up algorithms (39,41) do not take notice of this fact. Accordingly, 

Nakashima et al. desired to shorten the computation time of expanding and 

checking for logical product by focusing on this point, and explained this as 

follows: 

73



Consider the process of obtaining T a reduced SOP form from the logical 

product (T1.T2), where T1 consists of the union of setsc1l, c12,... cln and T2 

consists of the union of sets c21, c22,...c2m. Each primary event either common 

primary event (primary event appearing in both sets of T1 and T2) or non-common 

primary event (primary event appearing in only the sets of T1). The algorithm for 

obtaining the T sets contained in T1 and T2 is based on the following principles : 

1. If c contains only non-common primary events, then c is always an 

element of T1. Thus it is not necessary to check c at all. 

2. If c contains at least one common primary event, then only elements of a 

subset (cli U c2j), where i and j are the ith set and the jth set respectively) are 

required to check C. 

The use of these principles appreciably decreases the number of checks. 

The theoretical limit to the number of checks by Nakashima et al. algorithm is (nl x 

n2) x (nl+n2-1) while that by Bennetts’ algorithm (48) is (nl x n2) x (nl x n2 - 1). 

SS ~ Nakashima et al. try not to compare their algorithm with Worrell's algorithm 

(41) and conventional top-down algorithms (81,88) for the following reasons : 

1. Worrell's algorithm is based on the same principle as Bennetts’ 

algorithm. 

2. At each intermediate stage of implementation of the algorithm, a 

top-down algorithm has a SOP form containing not only primary events but also 

intermediate events. Accordingly, the combined treatment of primary events and 

intermediate events is required at each intermediate stage. 

The BUP-CUTS is efficient but the efficiency becomes noticeable with 

74



the decreasing number of common (repeated) primary events. This means that the 

more repeated events in the tree the less efficient BUP-CUTS will be and the 

more processing time is required. Nakashima et al. have used the Bit Manipulation 

Technique (88) in order to reduce both the computation time and storage 

requirement. 

3.3.6 Disjoint Techniques : 

The problem behind the direct substitution into the Boolean expressions 

of a probabilistic expression is that the Boolean domain does not map directly into 

the probabilistic domain. This is because the Boolean domain is governed by the 

Boolean theorems and axioms while the probabilistic domain is governed by the 

probability laws and axioms. The differences are shown in table 3.3 (76). 

3.3.6.1 The Karnaugh Map : 

The Karnaugh map (K-map) was developed to order and displays the 

implicants in a geometrical pattern such that the application of the logic Boolean 

adjacency theorem becomes obvious (96). The K-map was originally a 

geometric layout of the Truth-Table. For the purpose of illustration, consider the 

following SOP expression AB. The K-map plotted for the canonical form (truth 

table) of this expression is plotted in figure 3.5. The truth table shows that if both 

A and B are true then the expression is a true otherwise it is false. 

The K-maps 3.5-c and 3.6-c show the conditions of each individual cells 

in terms of the events names. The symbol indicates INVERT or the opposite of 

75



Table 3.3 : Comparison of probabilities and Boolean Algebras (76) 

  

  

  

  

  

Feature Boolean domain Probability domain 

1. Map Karnaugh map Probability map 

(K-map) (P-map) 

2. Variables Boolean Probabilities 

3. Data Boolean axioms Probability axioms 

manipulations and theorems and theorems 

4. Variables Discrete values Continuous values 

can take values 

of 

of 0 and 1 

corresponding to 

true and false 

ranging from 0 to 1 

with the extremes 

corresponding to 

wholly unreliable and 

wholly reliable 

-respectively 

  

5. Operators     OR (+) 

AND (.) 

INVERT (_) 

Plus (+) 

Minus (-) 

Multiply (x) 

Divide (/) 

invert (R = 1-R)   
  

76 

 



Truth table A 0 

  
  

AB Te 
  

  

    00 | O 1 0 1     01-1 0 

10-10 

11 1         
(a) (b) 

Figure 3.5: AB 

Truth table 

  AB 
ABC E. Cc 
  

  

~ at 

  

        

(c) 

01 11 10 

  

000 
  

001 

  OTD           

O11 

100 

io4 

ees 1 Cc 

lia 

O
s
 

O
r
m
e
 

7 
O
e
 
O
O
 

—
 

©
         

(a) 

Figure 3.6 : A+B+C 

(b) 

01 11 10 

  

ABC ABC | ABC | ABC 
  

  ABC   ABC | ABC | ABC       

7 

(c) 

 



the existence of the particular event. Each cell maps a specific domain. Grouping 

of adjacent cells can overlap certain domains. The way to group and separate the 

individual cells can eliminate the overlapping and thus can introduce direct 

probability calculation. Thus it can be seen that 

A+B+C = A.B.C+AB.C+AB.C+AB.C+AB.C+AB.C+ABC 

Direct substitution of probabilities into this will give the correct result since 

none of the product terms overlap. 

3.3.6.2 The Disjoint Technique : 

The usefulness of this technique is clearer when exact calculations are 

needed and when repeated events are involved. Bennetts (76) summarised the 

theory of the disjoint technique is as follows : 

a) Two conjunctive Boolean terms (i.e. at least one Boolean variable 

appears in both terms) are disjoint if and only if one term contains at least one 

Boolean variable and the other term contains the same variable or variables but in 

its or their complemented forms. By definition the variable and its inverse's map 

different domains on the K-map which means that they are disjoint. 

b) In general let Tl and T2 be non-disjoint product terms in a Boolean 

sum-of-product expression and let EC=T1/T2 be the relative complement of T1 

and T2 then EC will be defined as the non-empty set of 

BO me C81, YZ, cg 0k) k=1,2,3;,... 

78



where Y1, Y2, ... are the missing variables from T2. 

c) The disjoint collection of T1 and T2 is described by the following 

expression (97) : 

Ti? = Tha ¥ 1. Fe Vt YS T+ ViIV2 95 72 +3 

ot COZ Neel Yr) TH co YY YO. er 

Effectively, equation 3.29 is based on a controlled reintroduction of 

missing variables to individual products ona variable by variable basis. To illustrate 

the procedure consider the following SOP expression : 

SOP = AB + AC + BCD 

1) To apply the procedure refer to the first set (AB) as T1 and the 

second set (AC) as T2. Compare the individual remaining terms and introduce 

their complemented form in the second set. The ¢ indicates the set which is being 

disjointed from the remaining sets. The sets processed at this stage are underlined. 

> 

SOP = AB + AC + BCD 

= AB + ABC+ BCD 

Now the first set (AB) is disjointed from the second set (ABC). 

2) Carry on the same procedure with the remaining sets 

> ne 
SOP = AB + ABC + BCD 

= AB + ABC + ABCD 

79



3) Select the next leftmost set (ABC ) and compare with all remaining sets 

> 

SOP = AB + ABC + ABCD 

= AB+ ABC + ABCD 

No modification is necessary on this pass since they are already disjointed. 

Consider another example. Here ( ABC ) is being disjointed from the 

remainder : 

SOP = ABC + ADF + BDF 

1) SOP = ABC + (B + BC) (ADE) + (A + AC) (BDF) 

= ABC + ABDF + ABCDF + ABDF + ABCDF 

Before carry on the second step, any superset or redundant sets must be 

removed. There is one superset in the above expression - ABCDF. The reduced 

SOP will be : 

SOP = ABC + ABDF + ABDF 

Qo a s 
2) SOP = ABC + ABDF + ABCDF + ABDF 

= ABC + ABDF + ABCDF + ABDF 

No modification is needed at this step. All the remaining sets are disjoint from 

each other and no redundant sets still exist. The above expression can be 

interpreted directly as a probabilistic expression, i.e.: 

80



Pgop = P(A)P(B)P(C)+P(A)P(B)P(D)P(F)+P(A)P(B)P(C)P(D) PF) 

+P(A)P(B)P(D)P(F) 

3.3.7 Generation of Probability Expressions From Fault Trees : 

The first step in fault tree evaluation is to find the structural representation 

of the top event in terms of the basic events. One way to accomplish this is to 

find the minimal cut sets. If the rate of occurrence and fault duration of all 

basic events are known, and the statistical dependency of each basic event is 

known, then the probability of the top event can be calculated (98). Chatterjee 

(99), using the concept of decomposition, evaluates the top event probability 

directly from the fault tree. Given the basic event probabilities and starting from 

the bottom of the tree he calculates the lowest level gates which have only basic 

events as inputs. These gates can now be treated as basic events and repetition of 

the same procedure eventually yields the top event probability. The statistical 

independence of basic events is assumed and only an approximate solution can be 

obtained by this method. 

The analysis of noncoherent fault trees proceeds in a similar way. Vesely 

(35) made an important development to the calculation of the top event probability by 

introducing the Kinetic Tree Theory for fault trees containing repairable components. 

Cadarola and Wickenhauser (100) also developed an analytic computer program for 

fault tree evaluation. Cadarola (101) developed a general analytical theory to 

calculate the occurrence of the top event of a multistate system. He modified 

this method to be applicable for s-coherent systems (102). 

81



Koen and Carnino (87) used list processing technique. The procedure 

relies upon the recognition of patterns, ie. standard configurations, and replacing 

known sub-trees or patterns by the equivalent leaves. The process is repeated 

until the original tree is reduced to a single leaf - the system reliability. Chamow 

(103) suggests a new approach based on direct graph (di graph) and related 

matrix methods. The method depends in a major sense on the diagraph 

representations developed for the OR and AND logic elements. 

Lambert (98) developed a computer code called IMPORTANCE to 

compute various measures and cut sets for a fault tree. The code requires as input 

the minimal cut sets, the failure rates and the fault duration time (the repair times) 

of all basic events contained in the minimal cut sets. Finally Clarotti (104) 

Shows the limitation of minimal cut set approach in evaluating reliability of 

systems with repairable components. He stated that the following rules should 

satisfied in order to obtain reasonable results: 

1. System is s-coherent. 

2. Component performances are s-independent of one another. 

3. Non-repairable components have increasing failure rates. 

4. Repairable components have constant failure rates. 

5. Repair rates are non-increasing. 

3.3.8 Methods For Disjoining Cut Sets : 

In coherent fault trees the logical gates are restricted to AND and OR gates 

and the minimal cut sets can be determined by the use of one of the previously 

mentioned techniques. But in non-coherent fault trees, normally of complex 

systems, other types of gates were included, namely NOT and EOR gates (39,89). 

82



The concepts of minimal cut sets can be applied and the minimal cut sets will be 

replaced by the prime implicant sets. The qualitative evaluation of coherent and 

non-coherent fault trees is accomplished by the determination of minimal cut sets 

and prime implicant sets respectively. In order to carry out the quantitative 

evaluation, different techniques should be used depending on the complexity of the 

system, the presence of repeated events and event dependencies (105). 

Bennetts (39) has used the technique of reverse polish notation in order to 

obtain a sum of product (SOP) Boolean expression for the TOP event in a fault 

tree. The TOP event SOP form is presented by the primary events only. This SOP 

expression can be converted into an equivalent disjoint SOP by the use of PK 

(Probability-Karnaugh) map method or what is later known as the disjoint technique 

(76). 

Kumamoto and Henly (89), Locks (106,107) and Worrell et al. (108) have 

discussed the use of inversion form to obtain near minimal forms by modularizing 

and minimizing fault trees. Modules are formed by combining certain neighbouring 

components that have the same mutual logical dependence wherever they 

appear on the tree. Case (109) introduced a reduction technique to obtain a 

simplified SOP Boolean expression involving the inverse notation. This technique 

has been modified later by Gopal (110) in order to reduce the time and effort 

for the elimination of redundant and non-minimal cut sets. 

Recently, Bennetts (39,76) developed a disjoint technique to convert the 

SOP Boolean expression, for reliability block diagrams and network systems, into 

an SOP probability expression. Aggarwal (111) commented on the effectiveness 

of the way of classification of primary events in each minimal cut sets. He reduces 

83



the amount of processing by an audiovisual method which can not be implemented | 

easily in the form of an algorithm. Jinogshing (112) also used the disjoint 

technique in an visual way which is implemented either directly on a fault tree 

or on the minimal cut sets of a fault tree. He claimed that his approach reduces the 

amount of computation to less than a half if it is applied directly to the fault tree. 

Finally, Rushdi (113) presented an algorithm to evaluate the symbolic system 

reliability by decomposing the system graph into two subgraphs through a 

minimal cut. The decomposition method inverted the resultant expression into an 

equivalent disjoint expression by direct application. He suggested that although 

the method is manual and graphical _it can be computerised but he did not do it. 

3.3.9 A New Combined Method : 

3.3.9.1 Introduction : 

Clarotti (104) has discussed the limitations of the minimal cut set 

approach in evaluating the reliability of systems and especially if they have 

repairable components. It is also the case that the quantitative evaluation of a system 

by examination of its minimal cut sets may not provide enough information. 

However, as systems become more complex and the consequences of accidents 

becothe catastrophic (114), the need for the quantitative evaluation of fault trees is 

becoming essential in any new technique. 

Most of the present quantitative techniques are either manual (76,112,113) 

or algorithmic (98,100,103,115,116). Some of these algorithms require the 

minimal cut sets as an input for their evaluation. Nevertheless, for complex 

systems, determining the list of all the minimal cut sets becomes a difficult and 

often an impossible task. So any method that requires the list of all the minimal cut 

84



sets as an input is restricted (117). On the other hand the direct implementation of 

the probability expression on a fault tree, with repeated events, or the use of 

Monte-Carlo simulation will make the whole very complicated. And the computation 

time and storage capacity become prohibitive if it is implemented on micro or even 

minicomputers. In addition approximate results, especially in the case of rare 

events in the nuclear industries, are unacceptable. So there is a need to develop a 

technique that has the advantages of giving the exact system reliability (or the TOP 

event probability), quickly and efficiently. Such a technique would use Boolean 

reduction techniques and the disjoint technique together throughout the processing of 

the fault tree. This would reduce redundancy to a minimum. 

3.3.9.2 The Fault Tree Disjoint Reduction Algorithm (FTDRA): 

The Fault Tree Disjoint Reduction Algorithm (FTDRA) has been developed 

by the author as part of the present work. The FTDRA program is applicable to 

coherent fault trees with repeated basic events at the present time but it can be 

applied to non-coherent systems as well. 

The FTDRA algorithm is a top-down algorithm based on both FATRAM 

(82) and the disjoint technique (76) with some modification in such a way that the 

generation of redundant sets is minimum. Gates to be resolved and the stage of 

resolving are selected in such a manner that computation requirements are 

minimised. The steps of the algorithm are : 

1. Resolution begins with the TOP event, 

a) If the TOP event is an AND gate, then all inputs are listed as one set. 

b) If the TOP event is an OR gate, then inputs are listed as separate sets. 

85



2. Iterate until all OR gates with gate inputs and all AND gates are resolved. OR 

gates with only basic event inputs are not resolved at this time. 

3. Remove any supersets that exist. 

4. Apply the disjoint technique on the remaining sets. Each set is disjointed from 

the others in a sequential way by introducing the relative complemented groups to 

the appropriate sets. Each OR gate involved in the disjoint process will be 

introduced to the appropriate sets as an AND gate with its inputs inverted 

according to De Morgan's theorm. 

5. If there are still OR gates with repeated basic events as inputs then do the 

following for each such gate : 

a) Delete the OR pate from the set if one of its inputs is in the same set. 

b) Remove any repeated event from the gate inputs if its complement does 

exist in the same set. 

c) Otherwise process any repeated basic events remaining in the unresolved 

OR gate. For each repeated basic event do the following : 

i) The repeated event replaces all unresolved gates of which it is an 

input to form new sets if the event or its complement is not already 

in the set. 

ii) This event is removed as an input from the appropriate gates. 

6. Resolve the remaining OR gates. No supersets are existed. 

7. Carry on the disjoint technique again. 

86



Illustration : 

Consider the fault tree shown in figure 3.7 (82). Two repeated basic events 

B and C are presented in the tree. Apply the method as follows : 

a) The TOP event is an AND gate then all its inputs are put in one set (Rule 1), 

SOP = GI ;-G2 

b) G1 is an AND gate; thus,by Rule 2 it is resolved first to yield, 

SOP = A.G3.G2 

c) Both G3 and G2 are OR gates, but G3 has only basic event inputs, thus it is 

unresolved at this stage, but G2 must be resolved since it contains G4 as one of its 

inputs, 

SOP = A.G3.(B+D+G4) 

d) G4 is an AND gate and should be resolved. 

SOP = A.B.G3 + A.D.G3 + A.E.G3.G5 

e) Both of G3 and GS are OR gates with basic event inputs only. No supersets 

(Rule 3) exist so the disjoint technique will be applied next (Rule 4). Process the 

first set and disjoint it from the rest, 

SOP = A.B.G3 + A.B.D.G3 + A.B.E.G3.G5 

continue the disjoint for the second set, 

SOP = A.B.G3 + A.B.D.G3 + A.B.D.E.G3.G5 

f) No gate has been inverted in the disjoint process, so apply Rule (5a) on gate 

G3 which contains the repeated event B. 

87



  

G2 
    

ia ° G4 

ba 
b6 

Figure 3.7 : A fault tree (82) 

  

    

        
  

      

  

SOP = A.B + A.B.D.G3 + A.B.D.E.G3.G5 

g) Apply Rule (5b) for the two repeated events B and C. For B; 

SOP = A.B + A.B.D.G3p + A.B.D.E.G3p.G5 

where G3x represents the gate G3 less the input B. No new sets have been formed 

but the repeated event B has been removed from the gate inputs. Do the same for 

G 

88



SOP = A.B + AB.C.D + AB.D.G3g¢ + AB.C.CD.E 

+ A.B.D.E.G3p¢0.G5¢ 

In the new set (A.B.D.C CE) the redundant C is removed. 

h) Resolve the remaining gates (Rule 6), 

SOP = A.B+A.B.C.D+A.B.D.H+AB.C.DE + A.B.D.E.H(F+G) 

SOP = AB +AB.C.D+A.B.D.H + AB.CDE + A.B.D.EFH + AB.DEGH 

i) Carry on Rule (7) to complete the disjunction of all the sets in the SOP form. 

The first set is already disjointed so the second set is processed, 

SOP =AB+AB.C.D+AB.CDH+AB.CDE+AB.CDEFH 

+ A.B.C.D.E.G.H 

the third and the fourth sets are already disjointed. Finally disjoin the fifth set from 

the last one, 

SOP =AB+AB.C.D+ABCDH+AB.CDE+ABCDEFH 

+ AB.C.D.EFGH 

the last expression can be interpreted as a probability expression for the TOP 

event. 

P(TOP) = P(A)P(B)+P(A)P(B)P(C)P(D)+P(A)P(B)P(C)P(D)P(H) + 

P(A)P(B)P(C)P(D)P(E)+P(A)P(B)P(C)P(D)P(E)P(F)P(H) + 

P(A)P(B)P(C)P(D)P(E)P(F)P(G)PH) 

More applications will be discussed in the next chapter. 

89



CHAPTER FOUR 

90



4, APPLICATIONS OF THE FTDRA APPROACH 

4.1 Introduction : 

The technique used in the FTDRA algorithm is a top-down technique 

combined with the disjoint techinque in order to get the exact TOP event probability 

when repeated basic events exist. The FTDRA approach tries to remove redundancy 

at an early stage by cutting the effect of repeated basic events or repeated gates, with 

basic event inputs, before the full expansion of those tree gates which have only 

basic event inputs. This is not the only factor affecting the speed of processing and 

the amount of storage required. The tree size, the relative number of repeated 

events to the total number of events in the tree and the tree configuration are also 

important factors in the speed with which the exact probability of the TOP event is 

obtained. This can be shown by the following examples taken from the literature. 

4.2 Example 1 : 

Consider the fault tree given by Vesely (36) shown in figure 4.1 which 

contains 58 total events, 10 basic events including 9 repeated basic events. Using 

the FTDRA technique the solution is as follows: 

1) SOP = GO = G1 + G2 = G3 + G4 + G5 + G6 

= G7 + G8 + G9 + G10 + G11 + G12 + G13 + G14 + G3.G15 

= 12+ 13+ 2.3 + 1.2.G16+G18.G19+45+4.6+5.6 + G7.G15 + 

G8.G15 + G9.G15 

= 1.2 + 1.3+ 2.3 + 1.2.G16 + G18.G20 + G18.G21+45+46+5.6+ 

1.2.G15 + 1.3.G15 + 2.3.G15 

91



(
3
 

TE 
= 

029 

PEP 
299 

e
e
 

 
 

 
 
 
 
 

At 
et 

en 
CS 

oe 
 
 

 
 

Of 
= 

6
1
2
 

OC. 
= 

Ses 

Cl. 
tae 

S
t
e
p
 

Ul 
= 

65 

  
  

 
 

 
 

x4 

 
 

 
 

6c. 
= 

B15 

S¢ 
= 

Plo 

L
é
s
=
.
0
T
D
 

BE 
9D 

 
 

 
 

 
 

UL 

dol 

8Z 
= 

LTD 

bz 
= 

€19 

02 
= 

69 

91 
= 

$9 

= 
19 

 
 

p
i
e
 

P
e
 

ILS) 

Ea 
sctl 

6T 
=. 

89 

GT 
= 

72): 

e
2
0
5
)
 

 
 

 
 

 
 

e
o
 

Ted bel L
e
e
t
 

Tt) 
7 

Seo 
YY 

Le 

: Example 1 (36) Figure 4.1 

92



=bs.t 1.5 £23445 446 + 5.6 + 19-6154 1.3.G15 + 2,3;G15 + 

1.2.G16 + 1.2.3.G18 + 4.5.6.G18 

2) Removing the supersets yields 

12 +/1.34+2.3--4:5 + 4.6 + 5:6 

3) Applying the disjoint technique to the 6 minimal cut sets yields 

12 3AS6, + 1:3,4:5.69051,23.45:66 125856 

The above result can be interpreted directly as a probability expression for 

the TOP event. 

4.3 Example 2 : 

Consider the fault tree shown in figure 4.2 which has been used by 

Bengiamin et al.(86) and represents a failure in the protection system of a nuclear 

power plant. The tree contains a total of 43 events. There are 3 repeated basic 

events and 8 non-repeated basic events. Using the FIDRA technique the solution 

is as follows: 

1. According to Rule 1 the SOP will be equal to 

SOP = GO = G1.G2 

2. Resolving all AND gates and all OR gates with gate inputs according to Rule 2 

and further removing any supersets according to Rule 3 yields 

D.E.G15.G16 + D.E.G12.G15 + D.E.G12.G16 + D.G9.G13.G15.G16 + 

D.G9.G14.G15.G16 + D.G13.G14.G15.G16 + D.G9.G12.G13.G15 + 

93



  
  

    
          

  

  
  

        
    

      
  

        

    
  

  
    

  

  

                
    

Figure 4.2 : Example 2 (86) 

94



D.G9.G12.G13.G16 + D.G9.G12.G14.G15 + D.G9.G12.G14.G16 4+ 

D.G12.G13.G14.G15 + D.12.G13.G14.G16 

3. Carry out Rule 4 to disjoin the individual sets from each other. This yields 

D.E.G15.G16+B.D.E.M.G12.G15+C.D.E.H.G12.G16+D.E.G9.G13.G15.G16 

+C.D.E.L.G9.G14.G15.G16+A.D.E.J.G13.G14.G15.G16 

+B.D.E.M.G9.G12.G13.G15+C.D.E.H.G9.G12.G13.G16 

+B.C.D.E.M.L.G9.G12.G14.G16+ C.D.E.H.L.G9.G12.G14.G16 

+ A.B.D.E.MJ.G12.G13.G14.G15 + A.CDEHJ.G12.G13.G14.G16 

4. Apply the rest of the rules to get the disjointed result as a probability expression 

for the TOP event 

SOPp= D.E.M.H + C.D.E.M.H + B.D.E.M.H + B.C.D.EMH + BDE. FMH 

+ B.CDEFMH+AB.DEFMH + AB.CD.EFMH +CDEFMH + 

B.C.D.E.F.M.H + A.CDEFMA + AB.CDEFMA + DEMHJL + 

CDEMHJ+CDEMHJL+ BDEMHIJL +B.CDEMHJ + 

B.C.DEMHJL + ADEMHJL + ACDEMHJ+ A.CDEMHIJL + 

A.B.DE.MHJL + AB.CDEMH + AB.CDEMHIJL + 

C.DEMHJKL + BCDEMHJL + B.CDEMHJKL + 

ACDEMHIKL + ABCDEMHIL + ABCDEMHIKL + 

A.B.C.D.E.J + AB.CDEMJK +ABCDEHIL + ABDEMHJK.L + 

BDEFMJKL+AB.DEFMHL +ABDEFMHIJL + 

A.B.D.E.F.M.HJK.L + AB.CDEFM + AB.CDEFMJ + 

AB.C.DEFMJ.K + AB.CDEFMIKI + CDEFMHUJL + 

B.C.DEMHJL + ACDEFMHL + ACDEFMHIL + 

C.DEFMAHL + AB.CDEFMHJL + CDEFMHJEKL + 

F MHBHJIL + B.CDEFMHIJEKL + ACDEFMHKL + 

95



Seer ae 

A.C.DE.F.MHJKL + ABCDEFMHL +ABCDEFMHKL+ 

A.B.C.D.EF.M.HJ.L + AB.CDEFMHIJKL + AB.CDEFMIJK + 

A.B.C.D.EF.M.HJK.L + A.B.CDEFHIJIL + ABCDEFMHIKL 

where SOPp means the probability of the TOP event. 

4.4 Example 3 : 

Consider the fault tree shown in figure 4.3 which has been modified 

by cutting two levels from the bottom of the tree from a similar tree originally given 

by Camarda (55). This represents the failure of an electric power supply system. 

The total number of events despite repetition is 57. The number of basic events is 19 

of which 7 basic events are repeated. Also there are 14 repeated gates in the tree. 

The complete application of the FTDRA technique will not be shown because of 

the long expressions resulting from the application of the appropriate rules. The 

analysis will be carried out up to the end of rule 4. This can be shown as 

follows: 

1) Apply Rule 1 to the TOP event 

SOP = G22 = G20.G21 

2) Apply Rule 2 to resolve all OR gates with gate inputs and all AND gates should 

be resolved. Then remove any supersets still exist according to Rule 3. This will 

yield 

8.9 + 8.19 + 8.22 + 8.23 + 4.8.G7.G8 + 7.8.G7.G8 +8.17.G7.G8+ 8.G3.G7.G8 

+ 9.18 + 18.19 + 18.22 + 18.23 + 4.18.G7.G8 + 7.18.G7.G8 + 17.18.G7.G8+ 

18.G3.G4.G7.G8 + 19.20.21 + 21.22 + 21.23 + 4.21.G7.G8 + 7.21.G7.G8 + 

96



 
 

 
 

 
 

  

o_9 
229 
 
 

 
 

 
 

 
 

  
 
 

 
 

 
 

  
  

 
  
 

 
 

 
 

Ca? 
2
)
 te 

CL 
. 

7 
N
e
 

PPLE 
re 

C
e
e
!
 

 
 

  
  

 
 

dOL 

Figure 4.3 : Example 3 (55) 

97



  

  

    
14 LS 

22 
  

it 
  

    ce) &) @ a 23 

Ge) & & Gy) @ 

Figure 4.3 : Example 3 (continue) 

17.21.G7.G8 + 21.G3.G4.G7.G8 + 3.9.20.G13 + 6.9.20.G13 + 9.13.20.G13 

+9.20.G1.G2.G13 + 3.19.20.G13 + 6.19.20.G13 + 13.19.20.G13 +19.20.G1. 

G2.G13+ 3.4.G7.G8.G13 + 3.7.G7.G8.G13 + 3.17.G7.G8.G13 + 3.G3.G4.G7 

-G8.G13 + 4.6.G7.G8.G13 + 6.7.G7.G8.G13 + 6.17.G7.G8.G13 + 6.G3.G4. 

G7.G8.G13 + 4.13.G7.G8.G13 + 7.13.G7.G8.G13 + 13.17.G7.G8.G13 +13.G3 

.G4.G7.G8.G13 + 4.G1.G2.G7.G8.G13 + 7.G1.G2.G7.G8.G13 +17.G1.G2. 

G7.G8.G13 + G1.G2.G3.G4.G7.G8.G13 

The above SOP, after the deletion of 118 supersets, contains OR gates 

with basic event inputs only. 

98



3) Apply Rule 4 to disjoint the individual terms of the above expression. This yields 

SOP = 14.17 + 14.17.18 +14.17.18.19 +14.17.18.19.20 +14.15.17 +14.15.17.18 
— — —— 

+ 14,15.17.18.19 + 14.15.17.18.19.20 + 14.15. 16.17+ 14.15.16.17.18 + 14.15. 
—_ _—_— —. 

16.17.18.19 + 14.15.16.17.18.19. 20 + 5.13.14.15.16.17.21 + 5.6.13.14.i15.16 

17.21+5.6.9.13.14.15.16.17.214+1.2.5.6.9.13.14.15.16.17.21+5.13.14.15.i16. 

T18a1s56.13. G15 61.1821 + 56 9.13.74.15.16.17.1821 + 12585 

— —— ee eee 

eee eee [4.15.16.17.18.16 

_—_—— 

po
nt
 

—
 

(o
o }

 
+
 

Ay
 

ON
 

—
 w i
o
 Bp po
e eal
 

o |
 I
 

+
 ul
 

al
 

\o
 

o
e
 

wo
 a 5 

rn 
ol

 

— 
oo

l 
ee

e to
 

ic
: 

4
 

—
 N in
 

oO
 

so
 

—
 Ww il
s BR
 

ba
t 

18.19.20 +5.7.8.13.14.15.16.17.18.19.20.G5 + 

+7 Bekay 
woe io an {4.15.16.17.18 

14.15.16.17.18.21.G5 + 5.7.8.13.14.15.16.17.18.19.21.G5 + 5.7.8.13 
74.15.16.17.18.19.20 

eee eee 14.15.16.17.18.19 

eee ieee 14.15.16.17.18.19 

eee eee eee 4.15.16.17.18 

——— enw 

ool
 

al
 

to
 o S
|
 

m
l
 

Q Or
 

+
 I
 

nj
 nv 

— ot
 

ol
 

—
 

-
 

r
e
 

o
l
 

oo
f 

ol
 

ol
 

to
 

=
 Q ~ 

a
e
 Nn
 I 0
0
 

a
 

v
l
 

a
 

-
 

me
 

—
 ool
 

—
 

ty
 

99



_ _ — a oo a — 

21.G5S + 21:5.6.7.8.9.14;15.17- 18-19, 20.91.G5< 5.7°8.13.14.151 ees 18.19.20. 

21.G5+1.2.5.6.7.8.9.14.15.17.18.19.20.21.G5+1.2.5.6.7.8.9.13.14.15.17.18. 

19.20.21.G54+1.5.6.7.8.9.14.15.16.17.18.19.20.21.G5+5.7.8.13.14.15.16.17. 

8.19.20.21.G5+1.2.5.6.7.8.9.14.15.16.17.18.19.20.21.G5+1.2.5.6.7.8.9.13. 

6 

The above expression consists of 75 terms. Only 38 of the terms contain the 

unresolved gate G5. Using the FATRAM technique, if a gate has at least one 

of its inputs as a repeated basic event then it will be involved in the treatment 

process for that particular repeated event. Otherwise, it will not be involved in 

any processing and can be resolved as usual. This means that gate G5 can be 

resolved normally since all its inputs are non-repeated basic events. The resolution 

of gate G5 will increase the total number of terms to 151. Also since gate G5 has 

not been involved in the disjoint process through its presence in the sets, its 

elements will also not need to be disjointed again and they will replace the gate 

position in the particular sets. 

As a general rule a gate needs to be disjointed only once if and only if 

any of its inputs have not been repeated or have not occurred before its resolution. 

This rule has not been applied in the FTDRA technique at the present time and will 

be left for future work: modification is required to the present software. In addition 

an evaluation is required to justify the saving in processing time. 

4.5 The Complexity Of Computation : 

The complexity of computation can be estimated by the time required to 

100



compute a given tree. Of course it is also dependent upon the size of the computed 

tree, upon the number of gate levels and upon the number of repeated basic events 

and their locations in the tree. The size and the number of sets to be handled at 

each stage of the technique should be kept to a minimum in order to reduce the 

required time for comparison and searching for supersets. In addition, the 

intermediate events, i.e. gates, must be resolved as quickly as possible since the top 

event probability is represented in terms of basic events. Usually OR gates slow 

down analysis more than AND gates do. This is because OR gates tend to create 

additional sets for each of their inputs while AND gates do not. From the above 

examples it is clear that the FTDRA technique makes, in comparison with 

existing techniques, savings in computation time and cuts the redundant terms 

gates before resolving them. This is clearly shown in example 1. 

101



CHAPTER FIVE 

102



5. HARDWARE AND SOFTWARE TOOLS 

5.1 Introduction : 

The hardware used in carrying out the work is the ICL Perq 1 personal 

computer (119). The Perq has some features that give it some advantages 

over mainframe computers as well as some other microcomputers. One of the 

ways in which the personal computer differs from the mainframe computer is 

that in carrying out areal time analysis the personal computer is in use by one 

user at a time and this means that processor time is not shared. In the case of the 

mainframe computer this is not the case. The microcomputer is now sufficiently 

powerful to carry out many of the analyses required by the engineer. Most of 

today's microcomputers have a large RAM, a hard disc, good compilers, compact 

size and are easily fitted near process equipment or in control rooms. This makes 

them ideal for use in process control analysis especially when user interference 

is essential. 

5.2 Hardware : 

The Perq 1 consists of five main components. These are : the keyboard, 

the high resolution screen, the floppy disc drive, the processor box and the graphics 

tablet with four button cursor. Figure 5.1 shows these components. 

5.2.1 The Keyboard : 

One of the weak features of the Perq 1 is its keyboard. The keyboard has 

103



   
 

        

  
  

  
 
 

Perq1 workstation Figure 5.1 

A & 10



only the basic alphabetic keys and some but not all the control keys that can be 

found in most of today's terminals or microcomputers. It has a Carriage Return 

key, Control key, Backspace and Delete keys, Shift and Shift-Lock keys and 

finally a Help key. In order to enable the Perq to communicate with other 

computers through its RS232 port, a locally made Break key has been attached to 

the asynchronous port of the Perg. Although the Perq's compilers accept upper 

and lower case letters and treat them as the same, the keyboard is unsuitable for 

text or program typing because it lacks a Lock Capitals key and other word 

processing facilities. A Lock Capitals key differs in its functioning from that of 

the Shift-Lock key. Usually the Lock Capitals key locks the alphabetical keys only. 

It shifts letters from lower case to upper case. The Shift-lock key on the Perq's 

keyboard locks all the keys on the keyboard to their upper characters. Also the 

lack of some sort of special function keys on the Perq's keyboard makes the typing 

of a long program a lengthy business. For example separate numeric keys and the 

four arithmetic operation keys simplify the typing of text mixed with numeric. 

Despite the presence of a puck (the four button cursor) the need for cursor control 

keys is essential especially in communication with other computers in terminal 

emulation mode. 

5.2.2 The High Resolution Screen : 

The Perq is supplied with a rectangular monochrome high resolution screen 

of a 1024 x 768 pixels (27.5 cm in length x 21 cm in width). 

5.2.3 The Floppy Disc Drive : 

The floppy disc drive, which is built in the processor box, has a 1 

105



Megabyte capacity. It takes an 8 inch floppy disc. 

5.2.4 The Processor Box : 

The Perq has a 16 bit proprietary microprogrammable processor. It has 

a 24 Megabyte Winchester hard disc and 1 Megabyte of RAM. There is a general 

purpose interface board fixed at the back which has a special printer port and an 

RS232C serial port. 

5.2.5 Tablet and pointing device : 

The Perq is supplied with a graphics tablet anda four button cursor. The 

cursor is placed on the tablet for pointing. The four buttons are arranged in a 

diamond as shown in figure 5.2. 

Y= Yellow (value = 0) 

W=White (value = 1) 

B=Blue_ (value = 2) 

G=Green (value =3) 

  

Figure 5.2 : Four button cursor 

106



The cursor on the screen follows the movement of the cursor on the 

tablet. If the cursor is in the upper-left hand corner of the tablet the screen cursor 

will be in the upper-left hand corner. The Perq can read the cursor position when the 

cursor is near the tablet surface. If one of the buttons of the cursor is pressed down, 

a signal will be sent to the computer. The cursor is vital for carrying out commands. 

5.3 The Operating System : 

5.3.1 Perq under POS : 

The Perq was originally supplied with POS (the Perq Operating 

System). POS is written in Pascal. POS operating system supports any program 

written in standard pascal and in FORTRAN 77 (119). 

5.3.1.1 The Shell : 

POS was supplied with a program environment called the shell. When the 

user types a command line and presses RETURN, the line is interpreted by the 

shell and is executed appropriately. The Shell is the vital environment for running 

and executing the built-in commands. 

While the Shell is running, the combined list of built-in commands and the 

standard Perq utilities can be displayed. Pressing any of the cursor's buttons causes 

a small window to appear containing an alphabtical list of the commands and the 

utilities. 

107



5.3.1.2 The HELP key : 

When help is required about the use of a utility, the name of the particular 

utility is selected from the pop-up window and the HELP key is pressed. The 

utility then displays information and advice about its use. 

5.3.2 Software available : 

5.3.2.1 Pascal : 

The Perq operating system (POS) is programmed in Pascal, a language 

which is designed to encourage well structured and efficient software. Perq 

Pascal contains several extensions. These make the language more powerful and 

helpful for manipulation of the display. The user's own Pascal programs are 

translated into executable programs by the Perq Pascal compiler and the linker. 

Appendix E.1 shows a flow diagram of how a Pascal program is converted into 

an executable form. 

5.3.2.2 FORTRAN 77 ; 

A FORTRAN 77 compiler is available for running under POS. 

FORTRAN programs are translated into executable programs by the FORTRAN 

compiler and the linker. Appendix E.2 shows a flow diagram of converting a 

simple FORTRAN program. Also FORTRAN 77 program can reference Pascal 

procedures and functions as if they are FORTRAN procedures and functions, 

but function and procedure names may not be passed as arguments. 

Appendices E.3 and E.4 showaflow diagram for compiling, consolidating 

and linking a FORTRAN program which references an independently compiled 

FORTRAN unit. 

108



5.3.2.3 The POS Editor : 

The POS editor makes extensive use of the tablet to enable the user to 

point to parts of the text that need correction and to display various parts of the 

file being edited. Help information is available to show the use of different parts 

of the editor. 

5.3.2.4 The window manager : 

By default, the whole of the display is regarded as one window, that is, a 

rectangular area bounded by a thin line and headed by a thick black line containing 

a title. Since the Perq display has such large capacity, the user will often find it 

valuable to divide the display into several windows. Each window can act as an 

input or an output device under the supervision of the window manager. POS is a 

single tasking operating system and therefore all input and output window devices 

are connected to the same single process. 

5.3.3 Perq under PNX operating system : 

After POS had been in use for about one year, an alternative operating 

system, PNX, was available. 

PNX is an operating system developed from the UNIX operating 

system by ICL (120). UNIX isa multi-tasking operating system originally 

developed and produced by the Bell Laboratories for program development in a 

research environment. It has since become extremely popular throughout the world, 

particularly in universities and has begun to be accepted as an operating system for 

supporting applications in other environments as well. Perhaps its single most 

109



important feature is the speed at which complex applications can be produced by 

connecting together simple, existing programs (121). 

PNX is implemented on the Perq by microcoding, so that the Perq's 

apparent machine code is C-code, which is tailored extremely close to the needs 

of the C language, in which most of the UNIX III operating system version is 

written. Consequently, the PNX software has been updated to include some 

UNIX V and UNIX VII software (122). To access PNX on the Perq some of the 

hardware had to be changed in order to carry on the job. PNX on the Perq has the 

well-known features of the UNIX operating system, plus the advantage of running 

on a powerful graphics-oriented personal computer (123). 

5.3.4 Software available under PNX : 

5.3.4.1 Window management system : 

The Perq has only one display, keyboard and tablet, and yet under PNX 

it could be running several linked or independent processes at the same time, each 

of which needs to use all the Perq components, which must therefore be shared. 

The Perq display can be partitioned into independent areas, known as windows, 

with one window being used by each process or by many processes at the same 

time. 

5.3.4.2 Windows : 

A window is that part , or whole, of the screen that is being used by a 

process or processes and may be linked to the input and/or output devices of the 

process as required by the user. A window together with a share of the input 

110



devices is considered to be a virtual device under PNX. Many windows may be 

visible at the same time. They may overlap, in which case one or more windows 

will be obscured in the overlapped area. All windows are independent of each 

other and behave like terminals in their own right (124). The window manager 

maintains the contents of off-display or obscured parts of the windows so that they 

can be reconstituted as soon as one makes them visible again. While a window 

is in use, the process can alter the terminal control parameters, i.e. the window 

opening and closing, and the hardware pattern (the window appearance and its 

contrast to the background of the screen). For example in using two windows, the 

first window can be used to compile, consolidate, link and run programs whose 

output could be piped as an input to the second window which is being used by the 

user at the same time. The user can determine a window's position and which 

window appears uppermost. A single process can be connected to several windows 

and a single window can be connected simultaneously to several processes. Only 

one window is accessible from the keyboard at a time and this is shown by a thick 

boundary frame around the particular window. 

5.3.5 Languages : 

5.3.5.1 C programming language : 

The PNX operating system is written in C programming language. C is 

a general purpose programming language which features economy of expression, 

modern control flow and data structure, and a rich set of operators. C is not a "very 

high level" language, nora "big" one, and is not specialized to any particular area 

of application. C was originally designed for the implementation of the UNIX 

operating system on the DEC PDP-11 by Ritchie (125). 

111



5.3.5.2 FORTRAN 77 language : 

UNIX FORTRAN 77 Sibates closely to the ANSI FORTRAN 77 

standard as defined in ANSI-1978. However, PNX FORTRAN 77 has a few 

extensions to the language to assist compatibility with other FORTRAN dialects, 

e.g. FORTRAN 66. Also it allows specific features of UNIX on the Perq to be 

exploited or to facilitate communication with C procedures through the 

FORTRAN 77 compiler. 

5.3.53: 2 NA. Pascal: : 

The version of Pascal available under PNX has some extensions over 

ISO levels 0 and 1 and differs in compilation and loading from the Pascal under the 

POS operating system (126). 

5.3.6 Spy editor : 

The Spy editor is a screen based, interactive, modeless text editor. That it 

is screen based means that not only is the text the user is editing available on the 

screen but also all the editing facilities are provided as a display. It is interactive in 

that all the editing actions the user choose to make are immediately effected on the 

text on the screen. In other words, what you see is what you get. Modeless means 

that all the editing facilities are always available. Most other screen based, 

interactive text editors have two modes; one for issuing editing commands and one 

for inserting text. The most natural way to edit text is to change the text 

wherever it is in the file and then move on to the next piece you want to change and 

Spy provides this environment. 

112



5.3.7 The Make Utility : 

One of the important utilities of the UNIX system is ‘make’. This 

utility, under PNX, can save time and effort in compiling, updating and linking 

of any program. The usefulness of using this utility can be clearly demonstrated 

when each part of a package containing is being updated several times. If a part 

or the whole of the package is being updated, the 'make' utility will try to compile 

only the recently updated part(s), link the individual object files and prepare the 

run program. Firstly, it frees the user from errors in recalling the individual parts 

of the package. Secondly, it will save the user considerable time in figuring 

out which part has to be compiled and which object files are to be linked to produce 

the run program. Finally, the utility is also useful in the compilation and the 

linking of programs written in different programming languages. For example the 

hazop package has subroutines in FORTRAN 77 and procedures in C and the 

reliability calculation package is divided into seven parts. 

13



CHAPTER SIX 

114



6. THE HAZOP PACKAGE 

6.1 General Introduction : 

The existing Hazop package, on the Harris mainframe computer at the 

Aston University was developed by a number of people (127,128,129,130, 

131,132,133,134). Originally the package was written for the ICL 1904S 

mainframe computer and was then transferred to the University's Harris system 

(135). Two versions of it have since been developed for the Perq. The first 

version was developed under the POS operating system. The second version was 

developed from the POS version in order to run under the PNX operating system. 

The versionswhich run on the Harris and under POS on the Perq have the same 

attributes. Both analyse cause and symptom equations and then draw the fault trees 

but in different environments. However the POS version is more user interactive - 

than the Harris version: this will be discussed later. The version running under 

PNX does the same functions that the earlier versions do but, in addition, carries 

out a complete reliability study for the displayed fault tree. This means that the 

PNX version achieves the goal of assisting the operator in decision making. 

6.2 The Data Structure : 

The data structure used within the software is common to all the versions. 

As discussed in Chapter 2, in Lihou coding, the operability study information 

is prepared in the form of two types of logic equations: cause equations and 

symptom equations. The operability study information is then translated into 

a data structure. This data structure consists of three arrays. The first array is an 

integer array called CELLS and has a dimension of N rows by 10 columns. This 

array is used to store all the information from the cause equations and some 

115



from the symptom equations. The second array is an integer array called 

SYMPTS and has a dimension of 50 rows by 20 columns. This array is used 

to store the remaining information from the symptom equations. The third array is 

a character array called NAMES. There is an entry in NAMES corresponding to 

each entry in CELLS and each deviant state appearing in either cause or 

symptom equations appears once in this array. 

These three arrays are structured in such a way as to represent the logic of 

the cause and symptom equations. Before discussing each array in detail, the 

logic of the branches of a tree will be discussed. 

6.2.1 Named And Unnamed Branches : 

A fault tree consists of many deviants and gates joined by branches. Some 

of these branches join deviants which have names. Other branches join deviants 

which have no names. Figure 6.1 shows a fault tree with the two types of 

branches: this example is taken from an example by Lihou (26). A branch of the 

type A is called a named branch because it has a named deviant below it. A branch 

of the type B is called an unnamed branch because it has a gate below it with no 

name. It will be coded by a combination representing all the gate inputs. An 

unnamed branch will only occur from a cause equation. 

6.2.2 The SYMPTS Array : 

SYMPTS is an integer array which stores only the information about 

the symptom equations. Each row contains the total information coming from a 

single symptom equation. From the above example, figure 6.1, the following 

columns contain the following information : 

116



  

L2(11) 
      

    

P1(0) 
          

T1(41) 
      
  

        
T4(41) V5(0) 
    

Cause Equation : L2(11) = P1(0)+T1(41)*(T4(41)+V5(0)) 

Symptom Equation : L2(11) -> N1(32)*N2(13)*N3(11)*N4(12)*N4(141) 

*N5(42)*N7(11) 

(A) are named branches. (B) are unnamed branches. 

Figure 6.1 : Named and unnamed branches. 

a) Column 1: This column will contain the address of the branch that occurs 

from the left hand side of that symptom equation. That is the row number in 

array NAMES and consequently the row number in array CELLS. 

b) Column 2 : This column will contain the number of branches that are on the 

right hand side of that symptom equation. This will be equal in the case in figure 

6.1 to 7. 

c) Columns 3 - 20: These columns will contain the row numbers in 

NAMES of these deviant states which are on the right hand side of the arrow sign 

of that symptom equation. 

Let



Suppose, for the sake of argument, that the row numbers in NAMES of the 

above example are as in the following table : 

Deviant state Row number 

L2(11) 8 
N1(32) 11 
N2(13) 12 
N3(11) 13 
N4(12) 14 
N4(141) iD 
N5(42) 16 
N7(11) 17 

Initially all the columns in SYMPTS will have the value zero which 

represents nothing. The final look of particular SYMPTS row representing this 

symptom equation will be: 

871112131415 161700000000000 

Symptom equations, at the present, are limited to a maximum of 18 

branches on their right hand sides. 

6.2.3 The NAMES Array : 

NAMES is a character array which stores in words the names of every 

deviant state appearing in the cause and symptom equations. Initially, all the rows 

of NAMES contain the word EMPTY. EMPTY, in any row of NAMES, means 

nothing is stored in that row. If a branch has a name then its name will be placed in 

the row number in which it appears in CELLS. If a branch is unnamed then an 

118



entry of spaces is made. From the above example the deviant states and their 

branches, for argument, will be stored as in the following table : 

Row no. in NAMES Deviant state 

8 L2(11) 
9 
10 
11 N1(32) 
12 N2(13) 
13 N3(11) 
14 N4(12) 
15 N4(141) 
16 N5(42) 
17 N7(11) 
18 P1(0) 
19 T1(41) 
20 T4(41) 
21 V5(0) 
22 EMPTY 
a EMPTY 

The word EMPTY represents nothing is stored in that row and that that 

row is available for storage of a new deviant state if required. The blank row 

numbers 9 and 10 are for the unnamed branches represented by the AND and the 

OR gates respectively. 

6.2.4 The CELLS Array : 

CELLS is an integer array, which stores information about all the 

branches which occur from the cause and symptom equations whether they are 

named or unnamed branches. Each row of CELLS consists of 10 columns. 

These columns are classified into four types. The CELLS array should be 

initialised first by putting a zero value to each element in it. If there is some 

information to be stored, using the above example, then the following possible 

Lis



values will be stored accordingly : 

a) Column 1: This column may have a value of either 0 or 1 to indicate an 

unnamed branch or a named branch respectively. In this case it will be 1. This entry 

is redundant since the information is also available in the corresponding entry in 

NAMES. 

b) Column 2 : This column may have a value of 0 if the branch has occurred 

from the right hand side of a symptom equation or a value of +1 if the branch is 

connected to the branches below it through an OR gate. The value is -1 where the 

branch is connected to the branches below it through an AND gate. A value of +2 

occurs if the branch is connected to only one branch below it without a gate and a 

value of -2 occurs if the branch is not connected to any other branch. This last 

case is a basic event standing alone. In the previous example an OR gate is 

connected to the deviant state L2(11). Thus a value of +1 is to be stored in this 

column for the L2(11) entry. 

c) Column 3: This column has a value dependent upon the state of the 

branch. If the branch has occurred from the right hand side of a symptom equation, 

then the value will be equal to the number of symptom equations in which the 

branch has occurred on the right hand side. If the branch is connected to its 

branches through a gate, then the value will be equal to the number of the branches 

below the gate. If the branch is connected to only one branch then the value will be 

1, and if the branch is not connected to any branch the value will be 0. From the 

previous example, since an OR gate is connected to the deviant state L2(11), the 

value is equal to 2 in row 8 which is equal to the number of the gate inputs. 

120



d) Columns 4 - 10: These columns contain the addresses in CELLS, which 

have the information about the branches below the gate. That is they contain the 

row numbers in the CELLS array of the deviant states below the gate. If the 

second column has a value of 0 then columns 4 to 10 will contain the addresses in 

SYMPTS, where the symptom equations, in which the branch has occurred on 

the right hand side, are stored. From the previous example, these columns will have 

the values 9,10,18,19,20 and 21. The final look of the CELLS row number 8 will 

be : 

11291000000 

The last five columns have values of 0 which indicate that nothing is stored 

in them. 

Consider another example of a CELLS row as follows: 

1033450000 

The first column indicates that the branch has a name. The second column 

has a value of zero which indicates that the branch has occurred from the right 

hand side of a symptom equation. The third column has a value of 3 which indicates 

that the branch has occurred in three symptom equations on their right hand sides. 

Columns 4, 5 and 6 contain 3, 4, and equations are stored in the row numbers 3, 4, 

and 5 of array SYMPTS. Table 6.1 shows a summary of the possible values of 

each column in CELLS. Appendix F shows a list of cause and symptom equations 

for the Solvay process as coded by Lihou. 

121



Table 6.1 : Column values in array CELLS and their meanings 
  

Column No. Value Meaning 

  

Branch is unnamed. 

Branch has a name. 
  

+1 

+2 

Branch is not connected to any branch 
below it (i.e. basic event) 

Branch is connected through an AND 
gate to its branches. 

Branch has occurred from the right 
hand side of a symptom equation. 

Branch is connected through an OR 
gate to its branches. 

Branch is connected to only one branch 
below it without a gate. 
  

A) Ifcolumn 2 has a value equal to 0, 
then column 3 contains the number 
of symptom equations from which 
the branch has occurred on the right 
hand side. 

B) If column 2 has a value equal to -1, 
+1 or +2, then column 3 contains 
the number of branches below the 
gate. 

C) If column 2 has a value equal to -2, 
then column 3 contains 0. 
  

  4to 10     A) If column 2 has a value equal to 0, 
then columns 4 to 10 will contain the 
addresses in array SYMPTS, where 
the symptom equations, from which 
the branch has occurred, are stored. 

B) If column 2 has a value other than 0, 
then columns 4 to 10 will contain the 
addresses in array CELLS, which 
have the information about the 
branches below the gate, starting 
from the left hand side. 

  

122 

 



6.3 Harris Version of The Package : 

The package consists of three major parts. The first part deals with the 

main calling program and the selection of the available tasks. The second part 

deals with the analysis of cause and symptom equations and the extraction of 

information into a data structure. The third part deals with the manipulation and 

the drawing of fault trees on an appropriate VDU. 

6.3.1 Part One : 

This part, simply called the main program, starts by asking the user to specify the 

terminal type. The calling program splits into two types of VDU: graphical VDU 

and non-graphical VDU. 

For graphical terminals the main calling program calls the appropriate 

subroutines to run the different tasks by simply introducing them in the form of a 

menu. The available tasks are Analyse, Draw, Translate, Edit and Help. The 

selection is made by moving the cursor to the appropriate task using a light pen. - 

In fact, from the above menu, only Analyse, Draw and Help are functional. 

Translate and Edit are simulated forms for future modification. 

For non-graphical terminals, the choices are the same and the selection is 

made by inputting the characters A,B,C,D and E from the keyboard. The characters 

A,B,C,D and E refer to the menu choices: Analyse, Draw, Translate, Edit and Help 

respectively. At the present only Analyse and Help choices are in action. Draw 

cannot work on a non-graphical device. 

123



6.3.2 Part Two : 

This part represents the translation of the cause and symptom equations 

into the specified data structure, viz CELLS, SYMPTS and NAMES. This is done 

as follows : 

1. Initialize the arrays CELLS, SYMPTS and NAMES by putting zero values in 

each element of CELLS and SYMPTS and the word 'EMPTY' in each element of 

NAMES. This is done by subroutine PART1. 

2. Distinguish whether an equation is a cause or a symptom equation. This is done 

by the subroutine DISTNT. 

3. If the equation is a symptom equation, then : 

a) The deviant state on the left hand side of this equation will be 

allocated a position in NAMES. This is done by subroutine ALLOC. 

b) The row number in NAMES will be stored in the first column of the 

first empty row of SYMPTS. 

c) The first deviant state on the right hand side of the symtom equation will 

be allocated a position in NAMES. The entry number in NAMES will be stored in 

column 3 of the row in SYMPTS. A position in CELLS corresponding to this entry 

will be allocated and the number of the row in SYMPTS will be entered in the row 

of CELLS, 

d) If the deviant state has already occurred in another symptom equation 

then the entry number in NAMES of that state will be stored in column 3 of the 

currentrow of SYMPTS. The number of the current row will be placed in the entry 

row for that state in CELLS. 

e) The program processes all the remaining branches from the right hand 

side of that symptom equation in the same way as that for the first deviant state. 

124



4. If the equation is a cause equation, then the deviant state on the left hand 

side of this equation will be allocated a position in NAMES. 

5. The program then translates the right hand side of the cause equation into a 

alg ebmic expression using subroutines TRNSLT, POLISH and CAUSE as discussed 

in paragraph 6.2.4. 

6.3.3 Part Three : 

After the analysis is finished, the next step is to draw the appropriate fault 

tree according to the stored information in the data structure. This is done by 

subroutine PART2. This can be described briefly as follows : 

1. Initialise a character array called FLAG, which is dimensioned (10,40)*40, 

by putting the word 'EMPTY' in each element of it. 

2. Initialise a Graphics Subroutine Library file (136) to assign the appropriate values 

of the corresponding VDU which is being in use. 

3. Check if the data exists by calling subroutine DATA to read the appropriate 

deviant from the list of names in array NAMES. 

4. Call the subroutine ANCELL to analyse the data structure and store the 

information in FLAG. The way of coding is started with the deviant state being 

called by subroutine DATA. This is given the code 'Z' and placed in the middle of 

the first row of array FLAG. The branches below this data are placed in the next row 

of array FLAG and given the codes AZ, BZ, CZ, DZ and so on. The new branches 

from AZ will be placed in the third row of array FLAG and given the codes 1AZ, 

125



2AZ, 3AZ and so on. Similarly the branches from BZ will be given the codes 1BZ, 

2BZ, 3BZ and so on. The branches from 3C will be given the codes 13C, 23C, 

33C and so on. Subroutine BRANCH will check the number of branches and 

subroutine FILLF will attempt to fill the information inside FLAG. 

5. The length, left and right margins of the drawing area are checked by the 

subroutine EXCEED, CHECK1 and CHECK2 so that the length, left hand side and 

the right hand side margins of the drawing area are not crossed. 

6. Finally subroutine DRAWTR is called to draw the tree from the mapping of 

array FLAG using the subroutines of the Graphics Subroutine Library (136). 

A summary of the course of the package development, which was coded 

in FORTRAN 77, is shown in table 6.2. 

Table 6.2 : The development of the Harris version 

  

  

Name of the coder} Program purpose 

Moraes (128) To analyse the equations and to form the data 
structure. 

Varelas (129) To draw the fault trees on a graphical VDU. 

Spirakos (131) To draw the fault trees on a non-graphical 
VDU. 

Jordan (134) To translate the cause and symptom equations. 

Patel (135) To modify the library HAZLIB which collects 
the individual parts into a main program.         

126



6.4 POS Version of The Package : 

The Harris version did not work directly on the Perq workstation due to 

the difference in the software support and the non-existence of a Graphics 

Subroutine Library to handle the graphical part. New subroutines were written in 

order to make the package more user interactive and friendly. The changes which 

involve the three major parts are described below. 

6.4.1 Changes in Part One : 

Because the Perq has a graphical capability, development has been 

concentrated on the graphical part. The main calling program has been rewritten in 

order to change the calls to involve the new interactive subroutines which deal with 

the graphical mode and to remove the non-graphical tasks. So the menu requests 

the name of the terminal type, a third choice, PERQ. If this last choice is 

selected then a subroutine called perq is called to initialise the screen parameters 

and the alternative Graphics Subroutine Library on the Perg. Some subroutines 

of the original Graphics Subroutine Library, used for the Harris version and 

dealt with character size and mode as well as for the light pen control, have been 

omitted because of irrelevancy in the new situation. The new Graphics Subroutine 

Library will be discussed later. The menu is now provided ina window. The 

selection is made by moving the cursor to the required option and pressing one of 

the cursor's buttons. 

6.4.2 Changes in Part Three : 

This part has undergone considerable changes for two reasons: firstly, 

the windowing facility of the Perq can be used and, secondly, input and output can 

be improved with the better facilities of the Perq. This gives the package both more 

aay



flexibility and a more friendly user interface than before. Subroutine PART2, 

especially, is rewritten for this purpose and now acts as follows : 

1. Initialise a Graphics subroutine Library file to set up the terminal values. 

2. Divide the screen into five parts by creating five windows, each for a 

specific purpose. The first window is a graphical window and is used to display 

the fault trees. The second window is for command handling and data input. The 

third window is to clear the screen. The fourth window is used to switch the 

process control from the cursor to the keyboard. Finally the fifth window is used 

to issue the command to end the run. Figure 6.2 shows a schematic diagram for 

the screen layout. 

3. For the first run the input of data is directly from the keyboard. After that the 

input is made by pointing the cursor to the appropriate deviant box. After the 

display of the fault tree, the user cancontinue with the display by pointing 

the cursor to any deviant state and pressing the cursor button. A new display of 

the appropriate fault tree is then displayed, beginning with the selected deviant state 

as the top event. The user can continue this sequence, if there are still unrevealed 

states, until the last quarter of the display window is reached. At this stage a 

message window appears on the screen asking the user to clear the screen for more 

input to be possible. The user then points to the CLEAR window and presses one 

of the cursor's buttons. All the windows will then be closed and reopened again as 

fresh windows. 

4. If the user does not point accurately inside one of the deviant boxes, then a 

window carrying an error message will appear on the screen asking the user to try 

again making his input, this time, from the keyboad. This will happen also if the 

128



  

  

Graphical window 

  

  

STOP ||CLEAR 
window |] window 

Input window [KEYS | 

window 
\L o 

                  

    
Figure 6.2 : Schematic diagram for the screen layout of the 

hazop version under POS. 

user enters an unknown deviant state: such a state is one which has not occurred 

in any cause or symptom equation. 

5. If the user wants to end his run then he should point to the STOP window and 

press one of the cursor's buttons. If he isin the keyboard mode he can enter the 

129



word STOP or any part of the word to stop the run. Appendix G shows a listing 

for the source programs of the hazop POS version. 

6.4.3 The TRYOUT Subroutine Library : 

This package is coded in Perq Pascal (138). It consists of several 

procedures and modules to handle information relating to the screen cursor 

position or the tablet position. The operating system ensures that the screen cursor 

tracks the position of the tablet other than on those occasions when tracking 

the tablet would move the screen cursor off the screen. Data can be retrieved for 

each of the following positions : 

a) the tablet position; 

b) the cursor position relative to the entire screen; 

Cc) the cursor position relative to the current window. 

Different procedures for cursor handling are written. These are: 

1- Procedure getcur: This procedure reads screen cursor position relative to 

the top left hand corner of the screen. 

2- Procedure rdcurs : This procedure reports the depression of any of the tablet 

buttons. | 

3- Procedure strtab: This procedure senses and reports back the existence of 

the cursor on the tablet. If the puck is not on the tablet, it will return the value 

false. 

4- Procedure tabpush : This procedure recognizes the release of a cursor button 

following its depression. 

5- Procedure trakcurs: This procedure enables the application to read 

the position of the cursor on the screen within defined limits. If the cursor leaves 

these limits, its position is no longer available to the application. 

130



6- Procedure setcur: This procedure sets up the cursor to be an arrow when 

linked to an application rather than the window manager. 

7- Procedure scrclir : This procedure clears the screen. 

8- Procedure linexx : This procedure draws a line on the screen between any 

two given points. The dimensions are in screen coordinates. 

9- Procedure line77 : This procedure is the same as linexx but in different 

coordinates. The dimensions are in the relative current window coordinates. 

10- Procedure window : This procedure creates a window of a specified 

origin, width, length and title. 

11- Procedure chnwin: This procedure makes it possible to switch the input 

from the current window to another window by changing the current window 

identifier to that of the new one. 

12- Procedure putchr : This procedure enables characters to appear on the 

screen or in a definite window at the required position. 

13- Procedures rs232rd, rs232wrt and rsbaudrd : These procedures 

are written for the rs232s serial port for perq communication with other computers. 

These procedures are used for reading data from remote computers, writing data 

to remote computers and setting the baud rate for communication. 

The above procedures have been written in Pascal and are used as 

external functions in the Graphics Subroutine Library on the Perq. 

6.4.4 The GINO-F Library on the Perq under POS : 

The GINO-F Library, earlier referred to as the Graphics Subroutine 

Library, is a General Purpose Graphical Subroutine Library created by the 

Computer Aided Design Centre (136). In order to carry out graphics on the Perq 

using the software written for the Harris a new version of GINO-F had to be 

131



written. Akebe and Jordan (137) wrote a subset of GINO-F coded in 

FORTRAN 77 which however, was not written on the Perq. The original 

package required only one system subroutine to draw a line from one screen 

coordinate to another. During this research, this GINO-F library, was expanded 

to 40 subroutines and was ported to run under POS. The library contained some of 

the usual GINO calls such as MOVTO2, MOVBY2, LINTO2, LINBY2, ARCTO2. 

In addition to these, special subroutines for window selection, handling, switching 

and cursor control were included. The GINO library is assisted by the 

TRYOUT package discussed above. Appendix H shows the listing of the source 

programs of this library. 

A brief presentation about the special subroutines of the GINO-F library 

written to run under POS is described as follows : 

1- PERQ : This subroutine sets the initial values of the for X and Y extents of 

the screen, pen position and transformation matrix on the Perg. It clears the 

screen before the set of the parameters. 

2- PICCLE : This subroutine clears the screen. It calls the TRYOUT procedure 

scrclr. It carries out the same job as that of the standard GINO-F subroutine. 

3- CURSOR : This subroutine calls the procedures strtab and rdcurs to define 

the cursor set up mode and to read the cursor position. The action is the same 

as that of the standard GINO-F subroutine. 

4- LINTO2 : This subroutine carries out the same job as the standard GINO-F 

subroutine. It is used to draw a line from the current position to a specified point 

in screen coordinates. It uses the TRYOUT procedure linexx. 

5- CHAHOL : This subroutine writes any string of characters in the required 

position on the screen. It uses the TRYOUT procedures getcur, setcur and putchr. 

6- WINDOWI : This subroutine draws a window as large as the screen itself 

using the TRYOUT procedure linexx. 

132



7- MMULT2 : This subroutine is written to create an axis transformation, in 

two dimensions, between the screen coordinates and the absolute picture 

coordinates. 

8- M2INV : This subroutine finds and returns the inverse of any matrix for the 

purpose of axis transformation in two dimensions. 

In addition to the GINO-F library on the Perg, subroutines for window 

handling have been written to run under POS as follows : 

1- WINDIN : This subroutine is written for drawing the layout of the fault tree 

manipulation. It creates, using the TRYOUT procedure window, five windows 

for fault tree drawing, input information, clear screen, key input and stop the 

running. 

2- CHWIN : This subroutine calls the TRYOUT procedure chwin for window 

switching. 

6.5 PNX Version of The Package : 

After the Perq operating system (POS) was changed to the PNX operating 

system, a new version of the package was written. This new version has a 

similar layout to that of the POS package but with an extended option for reliability 

calculations. Thus in addition to the fault tree display, a reliability study can be 

carried out while running the package. This modification gives the user the power 

to extend the use of the package in the area of decision making as well as in carrying 

out a sensitivity analysis on a particular top event. New subroutines have been 

written for the three major parts of the package. Also some of the old subroutines 

had to be altered to cope with the new system supported programming language. 

Thus the auxiliary, TRYOUT, package had to be changed from Pascal to C 

language. The new auxiliary package is called MAX. Other changes are made in 

133



dealing with the acknowledgement messages. Each question or error message has 

to be acknowledged first before any action is taken. This will give the user more 

confidence in making his next choice. Some of the old subroutines have been 

deleted because of irrelevancy. 

6.5.1 Changes in Part One : 

The main calling program was rewritten again to give the user the option of 

entering the cause and symptom equations from a file of his choice. This is done 

through a message window on the screen. After this the program asks the user, 

through another message window, if he wants any reliability calculations. If so, 

then the program will ask the user to enter the data file name. This data file must 

contain all the failure rates of the basic events of the process in question. 

The menu option 'HELP’ was changed to an information option about 

cause and symptom equations enabling the user to scroll through this file. 

Previously this option had the same function but without the user ability to abort 

the choice and return to the menu. The new menu is shown in figure 6.3. 

6.5.2 Changes in Part Three : 

The changes done in the POS version were also carried out for this 

version. The whole screen is replaced by a graphical window which in turn 

is subdivided into six parts. The first and the larger part is used for the 

fault tree drawing. The second part is occupied by another window for the 

purpose of input from the keyboard. The third window is used to switch the 

input from the tablet cursor to the keyboard: selection of this part enables the user 

134



The menu 

135  



to input data to the second window. The fourth window is used to clear the 

screen by closing all the windows and reopening them again. The fifth part is 

used to stop and end the run. Finally the sixth part is used to carry out the top 

event probability calculation. Figure 6.4 shows the screen layout. 

Appendix I shows the listing of source programs of the hazop PNX version. 

6.5.3 The MAX Package : 

This package is coded in the C language. It consists of a main program with 

procedures for cursor control, line drawing, communications and window 

handling. This package supports the GINO-F subset described above. The 

package has the following procedures : 

1- wopen : This procedure opens a specified window. This means that a 

window, firstly, has to be created as a special file using the utility ‘'Mkwind'. The 

utility 'Mkwind' is supplied with the window features such as height, width and 

the position of the top left hand corner in screen coordinates. 

2- wclose : This procedure closes a specified window. 

3- wlin : This procedure draws a line between any two given points. The 

dimensions are in window coordinates. 

4- wstrng : This procedure enables the characters to appear inside the current 

window at the cursor's current position. 

5- wpuck : This procedure returns the position of the cursor in either the tablet, 

screen or window coordinates when a depression takes place. By default the cursor 

with respect to the window coordinates is used. 

6.5.4 The GINO-F Library on the Perq under PNX : 

When the POS operating system was changed to the PNX operating 

136



Figure 6.4 : Screen layout under the PNX system 

137  



system, the system's software language changed from Pascal to C. This raised the 

need for another auxiliary package to replace the TRYOUT package in order that 

most of the GINO-F subroutines could be used as they stood. The new auxiliary 

package is called MAX. Minor changes were made to the previously mentioned 

subroutines in order to handle the new system software. MAX procedures were 

substituted for all the TRYOUT procedures. Also some new subroutines were 

added to the library which now stands at 49 subroutines. 

A brief description for the newly added subroutines is given below : 

1- CCLOSE : This subroutine calls the MAX procedure wclose to close the 

graphical window. 

2- COPEN : This subroutine calls the MAX procedure wopen to open the 

graphical window. 

3- LINEXX : This subroutine calls the MAX procedure wlin to draw a line 

between any two given points in the graphical window. 

4- FINAL : This function is written to count and find the end of a string of 

characters. 

5- COMAND : This subroutine constructs the layout of the graphical window 

and sets up the commands windows and their positions in the graphical window. 

Appendix J shows the listing of source programs of this library. 

138



CHAPTER SEVEN 

139



7. IMPLEMENTING THE FAULT TREE DISJOINT 

REDUCTION ALGORITHM 

7.1 The Data Structure : 

7.1.1 Introduction : 

The data representation is an important factor affecting the running time 

of algorithms whatever the programming language in use. Semanderes (34) and 

Wheeler et.al. (88) have improved the performance of their cut set enumeration 

algorithm by using better data representations for cut sets. Rosenthal (139) has 

discussed three data representations for cut sets. 

Major concerns of theoretical computer Science are estimating the time 

and storage resource requirements of algorithms, determining the data 

representations (i.e. data structures) used, and synthesising the programs which 

implement them (140,141). Better data representations or more clever coding can 

considerably reduce the resources needed for solving problems involving large and 

complex fault trees. 

7.1.2 Basis Of The Data Structure : 

This reduction algorithm uses as input data the results from the analysis of 

cause and symptom equations. The data are represented in two forms of matrices, 

namely CELLS and SYMPTS. These have been discussed in Chapter 2. 

Although FORTRAN 77 is not a very efficient language for handling 

information which includes sets and pointers it is good at handling input and 

output files. Also writing the program in FORTRAN 77 renders it almost totally 

machine independent. To reduce the amount of storage and the searching time 

140



a technique has been developed in which variable length sets are stored in a 

number of fixed length arrays. Three arrays have been created : 

i) Array STARTS - a one dimensional integer array 

ii) Array SETS -atwocolumn, multiple row integer array 

ili) Array NORMAL - a one dimensional logical array 

The elements of sets are held in the array SETS. The first column of 

SETS holds the element value while the second column holds a pointer to the row 

of SETS containing the next element of that set. Clearly we need to identify the 

start and end of each set held in SETS. Identification of the last element of a set is 

given the pointer in the second column of SETS having a value of zero. The 

starting row of each set in SETS is given by an entry in the array STARTS. Thus 

set ihas an entry at STARTS(i) which is a pointer to the first element in set i. 

For this fault tree disjoint reduction algorithm some elements in SETS have 

to be identified as being inverted and so foreach rowin SETS there is a 

corresponding element of NORMAL which is set to .TRUE. if the set element is 

not inverted and is set to .FALSE. if it is inverted. 

All rows of SETS not currently in use for the storage of set elements are 

linked together in the empty set. 

Two integer variables, which act as pointers, EMPTY and FINISH, have 

been added to the total data structure. EMPTY contains a pointer to the first entry 

in the empty set and FINISH points to the last entry in the empty set. Finally the 

logical variable FULL indicates that no more items can be added to SETS: this 

happens when all rows of SETS are in use for set element storage. 

141



7.1.3 Subroutines For The Data Structure Manipulation : 

The set storage system is explained below in terms of the subroutines used. 

7.1.3.1 Subroutine INIT : 

This subroutine initialises the set structure. For each element of STARTS a 

value of -1 is assigned to indicate that this entry is empty and not occupied by a set, 

i.e. not in use. In SETS all pointers in the second column are set to point to the 

next row. Thus the entry in row 1 points to row 2, in row 2 to row 3 and so on. 

Only the last entry of SETS contains a zero pointer. EMPTY is initialised to point 

to row 1 of SETS and FINISH points to the last row of SETS. Thus SETS is set 

up initially to consist only of the empty set. The logical variable FULL is set to 

-FALSE. Figure 7.1 illustrates the individual parts of the data structure which is 

created by subroutine INIT. 

The code permits the size of SETS and STARTS to be set prior to 

compilation. STARTS currently has 1000 elements. There may therefore be 1000 

sets of variable length stored. There are currently 10000 rows in SETS, allowing 

up to 10000 set elements to be stored. 

7.1.3.2 Subroutine NEWSET : 

This subroutine creates the entries for a new set in the set structure and 

returns its entry number in the set structure. Thus the user does not assign a 

number to a set but has the set number returned by the subroutine. The ith 

element in STARTS is assigned the value 0 instead of the empty value -1. This 

subroutine is always called when a_ new set has to be created within the set 

structure. The routine checks each entry of the array STARTS and the first -1 

142



STARTS SETS NORMAL EMPTY 
  
  

  

      

  
  

  
  

  

        
  

  

      

  
  

  
  

1 -1 Ll ao 2 FALSE 1 

2-1 2430 3 FALSE FULL 

Oo: el 3 4 FALSE FALSE 

FINISH 

10000 

999 1-4 9999] O }10000 | | FALSE 

1000 -1 10000} 0 0 FALSE                 
  

Figure 7.1: The initialised set structure 

value found will be substituted by 0 and its entry number is then returned to the 

calling program. Elements of STARTS can therefore have one of three sets of 

values: 

-1 indicates this set number is currently not in use 

0 indicates a null set 

a positive anumber indicates that there is non-null set and points to the 

first element entry in STARTS. 

This is illustrated in figure 7.2. 

143



  
  

  

  

  
  

  
  

  

  
  

  

  
  

  

  
  

                
  

  

ry +h 0 tet 

Bd at 2] <1 2140 

Ser et oT 1 an se 

999 tl 999} -1 999 fo :<1 

1000 | -1 1000} -1 1000} -1 

(a) (b) (c) 

a) No set has been created. b) One set has been created. 

c) Two sets are created with the first set as a non-empty set. 

Figure 7.2 : Process of creating sets. 

7.1.3.3 Subroutine ADDITM : 

If an item or items are to be added to the set structure then subroutine 

ADDITM must be called. The subroutine ADDITM is not only to added items to a 

particular set but it also adds subsets into a main set. If the added items were 

subsets then they would be add to the main set sequentially. If the added item are 

not subsets then subroutine ADDITM sorts the set's elements and executes two 

Boolean algebra rules, namely the Idempotent Law and the Complemented Law. 

The work of subroutine ADDITM can be summarised as follows: 

a- To add a new item to a particular set in an ascending order. 

b- If the same item does exist in the set then no action will take place 

(Idempotert Law). 

144



c- If the complement of the item(to be added) does exist in the set then the 

whole set will be eliminated (Complemented Law). 

d- The subroutine distinguishes the type of the item to be added via a 

logical flag. If the item to be added is a subset then it will be added at the 

end of the set if not then the above steps hav to be performed. 

Illustration : 

The following set of four items 3, 9, 7 and 2 is to be put in the empty 

set structure. The first step is to initialise the set structure, using subroutine 

INIT, as shown in figure 7.1. Then create the new set as shown in figure 7.2-a 

by calling subroutine NEWSET. The subroutine ADDITM is then called. 

ADDITM will check first whether there is any room in array SETS, i.e. if the 

first entry in the empty set is equal to the last entry in the set the logical flag FULL 

is TRUE. The message "There is no more room for further set items" appears 

across the screen and the file "erreport" will be opened and will have stored in it all 

the present set structure. If this is not the case one of the following conditions 

takes place : 

a) If no logical flag is setup, i.e. the item to be added is not a subset then : 

i) If the value in STARTS of this set is 0, i.e. a new set, then the 

integer variable EMPTY gives the pointer to the first entry in the empty set 

row in STARTS in which the element is to be placed; EMPTY initially 

points to row 1 of SETS. The number of the set, to which the entry is 

made, is put in STARTS, i.e. the 0 in array STARTS is replaced by 

number 1. Then the item 3 is placed in the first row of the first column of 

the first column of the array SETS and the corresponding value in the 

second column becomes 0 to indicate the end of this set. The original value 

145



in the second column which was 2 is assigned to EMPTY. Figure 7.3 

shows this arrangement. In addition the corresponding entry in 

NORMAL will be assigned to TRUE. 

ii) The second item is added to the set in ascending numerical order. If it 

duplicates an existing value, no change to the set is made. If the value 

exists but the value of the entry in NORMAL is the inverse of that of the 

new item, then the entire set is deleted. Thus here the new element 9 is 

appended to the existing items. This is illustrated in figure 7.4. 

iii) Using the same rules, the third item 7 is placed in linked order between 

the existing items 3 and 9 in order to retain the ascending numerical order. 

This is shown in figure 7.5. 

iv) When the fourth item 2 is to be added three pointer swapping will take 

place before the addition. The first pointer swapping is between the 

EMPTY and the STARTS pointer. The second swapping is between the 

EMPTY and the first column in row SETS. The third swapping is 

between the second column in row SETS and EMPTY. This is shown in 

figure 7.6. 

b) If the item is a subset then : 

i) If the value in STARTS of this set is 0, ie. a new set, then step (a(i)) 

will be carried out. Figure 7.7 illustrates this case. 

ii) If the value in STARTS is not 0 then the item will be added at the end 

of the set. 

7.1.3.4 Subroutine DELSET : 

To delete a set the value of its pointer in STARTS must be replaced by -1. 

The original value of the pointer will be given to the pointer EMPTY. Since the 

146



STARTS SETS NORMAL EMPTY 
  
  

  

      

  
  

  
  

  

  
  

    

  

  

  

  

1 1 1 3 > TRUE 4 

2 4-1 2 a ae TRUE FULL 

ee a baer 2 TRUE FALSE 

4 4 Foe eS FALSE FINISH 

10000 
      

  
  

9991. -1 9999} 0 10000 | | FALSE 
  
  

1000 -1 10000} 0 0 FALSE                 
  

Figure 7.5: Adding item 7 to the set 

  
  

  

      

  
  

    

  

  
  

  
    

    

  

STARTS SETS NORMAL EMPTY 

1 4 a5 3 TRUE 5 

2 0 4 Bie ® TRUE FULL 

me | Pious TRUE FALSE 

4 a1 @ io TRUE FINISH 

2 ORS FALSE 10000     

  

    

999 | -l 9999} O |10000 || FALSE 
    

1000 -1 10000] 0 0 FALSE                   

Figure 7.6 : Adding item 2 to the set 

148 

 



STARTS SETS NORMAL EMPTY 
  
  

  

      

  
  

  
  

  

      
  
  

  
  

  

1 1 ee 3 TRUE 2 

4 0 24, 2h 4€ TRUE FULL 

a1 Sf TRUE IRALSE 

4 A+ 2420 TRUE FINISH 

5 > es 6 FALSE 10000       
  

    

999° 15-1 9999} 0 }10000 | | FALSE 
    

1000 | -1 | 10000] 0] 0 || FALSE                   

Figure 7.7 : Adding an empty subset to the set. 

pointer EMPTY originally has avalue, so this original value will be passed 

to the second column of the last item of the set to replace the zero value. Now the 

set is deleted since it has no reference pointer in STARTS and the set rows being 

linked to the empty set. Figure 7.8 shows the deletion of set 1 showed in figure 

7.6. 

7.1.3.5 Subroutine DELITM : 

To delete an item from a set one of the following cases will happen : 

i) If the item to be deleted is the first item in the set then pointer 

swapping will be firstly between STARTS and the second item in the set and 

secondly between EMPTY and the second column of the row of the deleted item. 

149



  

  

  

  

  

1 -1 1 

ae ol ¥ 

Oct *k 2 

4 4 

5 2 
  

  

999 ‘4-1 9999 
  

1000 -1 10000       

Figure 7.8 : Functioning of subroutine DELSET 

ii) If the item to be deleted is neither the first item nor the last item then only 

swapping of the applopriate pointers within the set will take place. The deleted item 

  

  

    
  

  

  

    
  

  

  

    

  

    

SETS NORMAL EMPTY 

3| 3 1] TRUE 4 

9| 5 TRUE FULL 

7| 2 TRUE FALSE 

a4 TRUE FINISH 

hs FALSE 10000 

0 110000 || FALSE 

o| o || FALSE           

will be linked to the empty set as the first empty position in it. 

iii) If the deleted item is the last item in the set then a 0 value will be 

placed in the second column of the item in front of the deleted item to indicate the 

new end of the set position. The deleted item will be linked to the empty set as the 

first empty position in it. 

Illustration : 

Consider the following set which consists of the six items: 6, 9, 12, 14, 

15, 20. The above three different cases of item deletion are described into the 

following figures : 

150 

  

  

 



i) Figure 7.9 shows the deletion of the first item in the set, i.e. 6. 

ii) Figure 7.10 shows the deletion of item 9. 

iii) Figure 7.11 shows the deletion of the last item in the set, i.e. 20. 

7.1.3.6 Subroutine INNITTK : 

This subroutine is used to initialise a sequential reporting process for 

the particular set. The usefulness of this subroutine can be shown later in other 

subroutines. 

7.1.3.7 Subroutine TAKITM : 

This subroutine is usually called after subroutine INITTK. It takes 

sequentially an item from the initialised set at a time and retains its value for 

reporting back. 

7.1.3.8 Subroutine NUMSET : 

This subroutine counts the total number of the items in a set. The 

subroutine first looks at STARTS to find the start of the set and then takes, in a 

sequential manner, an item at a time till it reaches the end of the set. The number of 

the items in the set will be reported back. 

7.1.3.9 Subroutine SETERR : 

This subroutine simply returns an error message when on request. 

151



STARTS SETS NORMAL EMPTY 
  
  

  

      

  
  

  
  

  

      
    

  
  

  

        

  

  

    

                      

1 2 lig Se <7 TRUE 1 

24) Zi 93 TRUE FULL 

34-3 3.| 124.+4 TRUE FALSE 

a 4] 14) 5 TRUE FINISH 

7 + ese TRUE 10000 

6 | 20} 0O TRUE 

Oe 8 FALSE 

999. 1-1 9999} 0 |10000 |} FALSE 

1000 -1 10000} 0 0 FALSE 

Figure 7.9 : Deletion of item 6. 

    

  

  

    

    

  

      

    

    

        
  

  

  

    

    

STARTS SETS NORMAL EMPTY 

Pie Leet TRUE 2 

QA ul Bi 9)-e1 TRUE FULL 

3 eer yee TRUE IFALSE 

4 ay i Ss TRUE FINISH 

5 $pisa. 6 TRUE 10000 

6 | 20] 0 TRUE 

i Os FALSE 

999 | -1 9999! 0 [10000 | [FALSE 

1000 | -1 | 10000] 0| O || FALSE                   

Figure 7.10: Deletion of item 9. 

152



  
  

  

  

  

  

  
  

  

  

  

  

  
  

  

      

  

  

    

    

STARTS SETS NORMAL EMPTY 

PAS 3 Bee eh TRUE 6 

2 ttl 24 Se Tt TRUE FULL 

313 a4. 12) TRUE FALSE 

4 4) 14P 5 TRUE FINISH 

5 eis 6 TRUE 10000 

64.201" 2 TRUE 

Ta G1 58 FALSE 

999 | -1 9999] 0 [10000 || FALSE 

1000 | -1 | 10000) 0| O || FALSE                   

Figure 7.11 : Deletion of item 20. 

7.1.3.10 The Logical Function EQUAL : 

This logical function returns either .TRUE. or FALSE. on the comparison 

of any two sets. The number of items in the first set should be less than or equal to 

the number of items in the second set. If the first set proves to be a sub-set of the 

second set then atrue value will be returned. Otherwise a false value will be 

returned. 

7.1.3.11 Subroutine CPYSET : 

This subroutine makes a copy of the required set. This is done by calling 

the following subroutines successively: NEWSET, NUMSET, INITTAK, 

TAKITM and ADDITM. 

153 

 



7.13.12 Subroutine TYPSET : 
This subroutine keeps the sets into three separated and classified groups. 

The first group 'BASIC' contains sets that consist of basic events only. The 

second group 'ORBAS' contains sets that consist of basic events together with OR 

gates with basic event inputs only. The third group 'OTHERS' contains all the sets 

that have gates with gate inputs and any other mixture of gates and basic events 

within them. The classification of the sets into the above category will help in the 

reduction of the search time required for resolving the gates that contain gates 

inputs and also in solving AND gates. In addition to that reshuffling of sets is 

possible after any gate(s) resolving. 

7.1.4 Subroutines For Rules Manipulation : 

7.1.4.1 Subroutines For Rule 1 Manipulation : 

7.1.4.1.1 Subroutine STEP1 : 

This subroutine carries out Rule 1 of the technique by checking whether 

the TOP event is an OR gate or an AND gate. If the TOP event is an AND gate 

then its inputs will be stored in one set. If the TOP event is an OR gate then its 

inputs will be stored in separate sets in accordence with their nature. That is a 

basic event is stored in the first group 'BASIC', an OR gate with basic event 

inputs is stored in the second group 'ORBAS' and any other gate with gate 

inputs is stored in the third group 'OTHERS'. 

7.1.4.2 Subroutines For Rule 2 Manipulation : 

7.1.4.2.1 Subroutine STEP2 : 

This subroutine carries out Rule 2 of the technique. It resolves all the 

154



intermediate events. This means that no sets in the third group 'OTHERS' will be 

left since all AND gates and all OR gates with gates inputs have been resolved. 

7.1.4.2.2 Logical Function TESTP2 : 

This logical function returns a . TRUE. if the questioned item has a gate 

input. Otherwise it returns .FALSE. 

7.1.4.2.3 Subroutine RESTP2 : 

If a .TRUE. is returned from the logical function TESTP2 then subroutine 

RESTP2 is called. This subroutine will carry out the actual job of gate resolution. 

It reshuffles the resultant sets from any gate resolution into the appropriate group, 

i.e either 'BASIC' or 'ORBAS'. 

7.1.4.3 Subroutines For Rule 3 Manipulation : 

7.1.4.3.1 Subroutine STEP3 : 

This subroutine contains three calls only for supersets deletion. It calls 

subroutine RSUP1 for the deletion of supersets with in the group itself. So two 

calls for this subroutine is needed toclear group ‘BASIC' and group 

‘ORBAS' from supersets. The third call is for subroutine RSUP2 to clear supersets 

that ex/st’ between the two groups. 

7.1.4.3.2 Subroutine RSUP1 : 

In order to discover a superset and then to delete it a sequential comparison 

for the individual sets within the group is needed. The time consumed by this 

155



subroutine to carry out a certain job is very important in determining the over all 

time requires to calculate the TOP event probability. This subroutine has to be 

called, as will be described later, every time after any disjointed process. 

7.1.4.3.3 Subroutine RSUP2 : 

This subroutine also is used to search and delete any superset existing 

when the sets of group 'BASIC' is compared with the sets of group ‘ORBAS'. 

7.1.4.4 Subroutines For Rule 4 Manipulation : 

7.1.4.4.1 Subroutine COLCT : 

The job of this subroutine is to collect the sets of the two groupsin one 

group in order to prepare the set for the disjoint process. 

7.1.4.4.2 Subroutine DISJON : 

The Bennetts disjoint procedure has been carried out by subroutine 

DISJON. The subroutine disjoints one set from the rest at a time. When a set is 

compared with another set the items to be disjointed are kept first in a temporary 

set and are not to be disjointed until the comparison between the two sets is 

finished. If it is found that a disjoint process is needed then subroutine MAKDIS is 

called. Otherwise the temporary set will be deleted and the process continues in 

the same manner for the remaining sets. After the completion of each set from 

the remainder a call to subroutine RSUP1 is made if and only if there is more than 

one item to be disjointed, to ensure no supersets are present when another set is 

to be disjointed. 

156



7.1.4.4.3 Subroutine MAKDIS : 

This subroutine carries out the actual changes on the set to be disjointed 

and introduces the appropriate inverted items accordingly. 

7.1.4.5 Subroutines For Rule 5 Manipulation : 

7.1.4.5.1 Subroutine STEPS : 

This is the main subroutine in which all the remaining steps of the 

technique are carried out. It calls several subroutines to carry out the classification 

of sets, the breeding of new sets, if required, for the appropriate repeated 

basic events, the removal of repeated events from gate inputs and finally the 

evaluation of the disjoint of the non-disjointed sets. 

7.1.4.5.2 Subroutine RESOLYV : 

This subroutine has the main task of processing the remaining unresolved 

gates in sequence. It calls another subroutine to check if the particular gate has a 

repeated event in them or not. If the gate does not have a repeated event in it then 

its inputs will replace it in its set. If the gate does have a repeated event then the 

following will take place : 

a) If the repeated event does occur in the same set with the gate then the 

whole gate is deleted from the set. 

b) If the complement of the repeated event does exist in the set then the 

repeated event will be removed from the gate inputs and the remainder will 

replace the gate in its set. 

iS?



7.1.4.5.3 Subroutine CHECK : 

This subroutine is called in order to check whether a gate does has a 

repeated event among its inputs. If so then . TRUE. is returned otherwise .FALSE. 

is returned. 

7.1.4.5.4 Subroutine COLSET : 

This subroutine checks for subsets and transfers them from a two level 

set to a one level set. A two level set means that the set elements are subsets while 

a one level set is the one whose elements are basic events only. 

7.1.4.6 Reporting The Set Structure : 

The reporting back of the data set structure is done by subroutine 

REPORT. It returns the contents of the elements of the arrays STARTS and SETS. 

Appendix K shows the listing of the FTDRA source programs. 

7.2 Real Time Processing : 

The real processing time for several examples has been recorded in terms 

of the CPU (Central Processing Unit) time. Table 7.1 shows the tree 

characteristics for fault trees whose processing times have been recorded. Table 

7.2 shows the number of cut sets after each stage of FTDRA application as well 

as the time required to carry out the individual stages and total time needed to 

obtain the TOP event probability expression in terms of the basic events. 

Example 3 proved to be too large for the program due to more than 1000 sets being 

generated. The program failed in step 4. The full output for these trees is given in 

Appendix L. 

158



Table 7.1 : A general comparison between the characteristics of 
some examples. 
  

  

  

  

  

  

Item Number of events 

Ex:5 Ex.4 Bx:3 BX 2. Exel 

Tree size 16 16 71 43 59 
(total) 

Basic events 9 9 19 11 10 

Repeated basic 2 2 7 3 9 
events 

Figure number 7.12 Set 4.3 4.2 4.1                 

Table 7.2 : A general comparison between the number of sets after the 
application of FTDRA rules with their CPU times for the 
examples given in table 7.1. 
  

  

  

  

  

  

                        

FTDRA 
application Number of sets Time (CPU) seconds 

Up to including} Ex.5} Ex.4) Ex.3} Ex.2) Ex.1} Ex.5} Ex.4) Ex.3] Ex.2|Ex.1 

STEP1 2 2 2 2 24 O7F. 067 097° C.7F 09 

STEP2 5 15:4, 506): 14°), 324: 07). 0.61 3.4) 0.91709 

OL EPS 5 Sere 19 | 26 07 Oe 77.4) 09.) 9 

STEP4 o 4] ----} 13 8 | 0.7] 0.7] ----| 1.0 | 26.3 

STEPS (ALL) | 5 TAY eno iS 6 | 0.7] 0.7] ----} 1.1 | 26.6 

  

159 

 



TOP 

  

  

      

O 20   
G4 

  

    

Figure 7.12 : Example 5 

160 

  
 



CHAPTER EIGHT 

161



8. DISCUSSION AND CONCLUSION 

8.1 Discussion of work done : 

8.1.1 Introduction : 

Lihou (26) suggested a method to code data from hazop studies in the 

form of cause and symptom equations. The Boolean logical operators OR and 

AND are used to form these equations. This means that the method is restricted to 

coding coherent systems only. Symptom equations can have only an AND operator 

while cause equations can have both OR and AND operators. The method uses 

a word model based on keywords that stimulate thought. The keyword set is 

based on two subsets: property words and guide words. These words are 

represented in the cause and the symptom equations by index numbers. The 

numbers, shown between brackets, are used to describe any deviant state. 

The Aston Hazop Package only deals with the Boolean logic used in 

these equations. It takes no account of the coding method for expressing deviant 

States or failure modes. It simply reproduces the codes used in a particular equation. 

So how deviant states and failure modes are expressed is up to the user. For these 

reasons the Lihou method of coding is versatile and is convenient to use with many 

computerisation techniques and languages. Alternatively the usefulness of having 

index numbers to express deviant states is more convenient from the view of 

storage on a computer and in passing the codes to other packages. Boolean 

Algebra manipulation has been used successfully with these codes as shown in the 

Fault Tree Disjoint Reduction Algorithm. 

162



8.1.2 The Fault Tree Disjoint Reduction Algorithm (FTDRA) : 

A number of algorithms for obtaining the minimal cut sets have been 

considered. A fault tree may be one of the following types : 

i) No repeated basic events. . 

ii) Only one repeated basic event in a gate. 

iii) More than one repeated event (basic or intermediate) in a gate. 

The TOP event probability can easily be obtained for the first type. In the second 

type the TOP event probability can be obtained using some techniques like tree 

reduction (90), decomposition and modularisation techniques (142) or the 

transformation of the tree into a binary tree (143). The third type is the more 

difficult and more complex one to analyse. Page and Perry (143) have recently 

published an algorithm for the evaluation of fault tree probabilities without 

determining the minimal cut sets of that tree. However they specifically state 

that this algorithm is most appropriate to trees with fewer than 100 nodes and 

acknowledge that the determination of cut sets may be necessary for trees with 

hundreds of nodes. The alternative to an analytical method is a Monte-Carlo 

approach. However the applicability of Monte-Carlo methods is dependent not 

only on the size of the tree but also on the probability of events within the tree 

(144). If rare events occur a large number of Monte-Carlo simulation runs may 

be required to obtain a result with a reasonable degree of confidence. The 

processing time of the analytical methods is independent of the event probabilities. 

The disjoint technique has been introduced to suit this application. The disjoint 

approach is a top-down type so its application in conjunction with other top-down 

minimal cut sets reduction techniques is natural. A disjoint technique can be 

applied on its own (112) but more time will be spent in cutting out redundant sets. 

From the above description the FTDRA technique has been derived and based. It 

163



uses the benefits of reduction techniques and the disjoint approach together in such 

a way that the processing requirements are minimised. Recently, Page and Perry 

(145) have modified the use of their method to cater for non-coherent fault 

trees of size 50 - 100 events. They claimed that, by using the recursion technique 

offered by Pascal programming language, more savings could be made. The tree 

has to be changed into a binary tree with each parent having exactly two children 

(145). This is done by expanding the tree until it is totally converted into a binary 

tree. By doing this more intermediate events are generated and hence the recursion 

technique may not give substantial processing time reduction. 

The FTDRA technique does not waste time by finding the minimal cut 

sets first and then carrying out the disjoint process. It actually gets to near 

minimal cut sets by leaving the OR gates with basic inputs unresolved, so that 

the number of cut sets is minimum, and then applies the disjoint technique. By 

doing this no time is wasted on redundant events. In reality all the intermediate 

events are redundant items. The FATRAM technique gets rid of most 

intermediate events first and on this basis it has been chosen for the FIDRA 

technique. To justify this selection two other significant techniques, tree reduction 

and bottom-up analysis, were compared with FATRAM in Chapter 3. Limnios and 

Ziani (146) tested the use of MOCUS, Benjamin technique and FATRAM in their 

method to obtain the minimal cut sets of the TOP event. They commented that 

FATRAM applies if the fault tree has at least one OR gate with only events as 

inputs. They also suggested that the algorithm of Benjamin et.al.(86) does . not 

apply if the repeated events of the fault tree are all inputs to AND gates. FATRAM 

was found more natural and simple in its approach. 

164



8.1.3 Implementation Of The FTDRA On The Perg : 

8.1.3.1 The Programming Language : 

FTDRA has been coded in FORTRAN 77 because : 

a) FTDRA has been written firstly as an addition to the existing Aston 

Hazop Package which is coded in FORTRAN 77 and secondly as a stand alone 

reliability calculation package. 

b) FORTRAN 77 is the most familiar programming languages to scientists 

and engineers. 

c) Almost all the reliability calculation programs found in the literature 

were coded in one of the FORTRAN language family of which FORTRAN 77 is 

the most advanced type (142,147). 

d) Standard FORTRAN 77 coding is portable and machine independent. 

This makes the transfer of any program written in FORTRAN 77 language to 

another machine or operating system very easy. 

The other language available throughout this work has been Pascal. C 

was not available on the Perq under POS. Pascal would have had undoubted 

advantages in data structuring and recursion. But the non-standard nature of Pascal 

particularly for input/output would have caused the transfer of the program 

between machines or operating systems to be significantly more complicated. 

All the above facts have been taken into consideration as a starting point 

for the development of the FTDRA technique and as a basis for the present 

work. Not only that but the FORTRAN 77 on the Perq has the ability to deal with 

up to 19 files being opened simultaneously of which some could be special files. 

These special files are windows: either graphical windows or text ones or both. 

165



8.1.3.2 The Set Structure : 

An efficient set structure has been constructed. It consists of three main 

arrays with relevant pointers. This was described in Chapter 7. The set structure 

_ makes use of all the available storage spacein contrast with the CELLS and 

SYMPTS array matrices which waste some of the storage space available to the 

cause and symptom equations. In the set structure a deleted set space will end up 

in the empty set, so no gap between the sets is lost. The pointers, namely 

STARTS and EMPTY ensure that. 

Two Boolean laws have been implemented in subroutine ADDITM. This 

will eliminate redundant items within the set and also eliminate the set as a whole 

when an item and its complement exist in the same set. In addition the items are 

added in ascending order. This will also eliminate the need for any sorting. 

One of the features used in programming the technique is classifying the 

sets into three groups. The groups are: 

i) BASIC: This group contains sets that consist of basic events only. 

ii) ORED : This group contains sets that have basic events with OR 

gates with basic inputs. 

iii) OTHERS: This group contains sets with a mixture of basic events, OR 

gates and AND gates. 

Before the application of the disjoint technique only two groups exist, 

namely BASIC and ORED. In other words no intermediate events exist in the sets 

except OR gates with basic event inputs only. These gates are left unresolved in 

order to reduce the total number of sets to a minimum. In addition to this any OR 

gate involved in the disjoint process will be changed to an AND gate with its inputs 

166



inverted. This means that the number of redundant sets is reduced and that the 

resolution of a gate does not increase the total number of sets. 

8.1.4 The Hazop Package On The Perg Under POS : 

At the beginning of this work a major task was the transfer of the 

existing Aston Hazop package from the Harris system to the Perq coumputer 

running under POS. The reasons for this transfer are : 

1. The package ran ona mainframe computer while a strategy more appropriate 

to current technology is to develop computer packages using single user 

workstations. 

2. The existing package depends on the GINO-F graphical library on the Harris and 

this meant a degree of machine dependency. GINO-F is not universally available in 

all machines. 

3. The updating, linking of the various parts of the package and the running of the 

package on the Harris was most user unfriendly. In particular the process as a 

whole was very slow. 

All these reasons lead to the need to carry out the development of the existing 

Hazop package on a workstation with graphics. The chosen workstation was the 

Perq. Its features were most appropriate to the work in hand: the major drawback 

was the lack of a printer connected directly to the Perq. 

The Aston package consists mainly of two parts in addition to the main 

167



calling program. The main calling program has been rewritten to suit the Perq. 

The first part deals with the Pilate of cause and symptom equations. This part 

has not required any major changes. The second part deals with the graphics and 

the calling of the appropriate GINO-F subroutine library. This part has 

undergone modification especially with the part that involves the input and the 

output of information being written to the screen. For example the original 

package supplied the user with a menu and the pointing device had to be either 

the cursor control key if the terminal was one of the Newbury 8000 series or 

the light pen if the IMLAC terminal was being used. On the Perq, the tablet 

with the cursor is used. The screen menu consists of the following: 

A. Analysis 

B. Draw 

(2: ot 

D. Help 

The Edit option has not been implemented: its purpose is to permit modification to 

a Cause or Symptom equation. The Help option is only an explanation file for what 

is the meaning of Lihou's cause and symptom equations. No exit is possible from 

this file unless the end of the file is reached. 

On the Perq a new layout has been achieved using the window manager. 

Two types of special files (windows) have been established. The first type of the 

special files is that which deals with text input and text output. The second type is 

that which deals with graphical output only. The screen is divided into several 

parts to offer the user a choice of entering the data either from the keyboard or via 

the tablet using the cursor. Other commands such as CLEAR, STOP or 

168



Switching between the cursor and the keyboard are also available as a part of 

the friendly screen manipulation. In addition if the user makes a mistake an 

acknowledgement notice will appear across the screen, so the usercan know what 

the mistake was. 

Most of the GINO-F library calls have been kept the same and this has been 

achieved through a new GINO library written for this purpose using the POS 

system subroutine. To accomplish this goal, procedures for cursor manipulation, 

windows, line and character configuration had to be written in Pascal (the POS 

system language) and then linked with the FORTRAN subroutines through the use 

of EXTERNAL functions and procedures. 

8.1.5 The Hazop Package On The Perg Under PNX : 

When the Perq operating system was replaced by the PNX operating 

system the system language was the C programming langauge. This meant that all 

the user interface subroutines had to be rewritten and the package was now written 

in the FORTRAN 77 and C programming languages only. The same screen 

layout has been carried over to the new version of the package but in addition a 

new facility was added which was PROBABILITY. This new cursor command 

gives the user the choice to carry out reliability calculation and to find out the 

TOP event probability in terms of the basic events CELLS numbers in the data 

file. If the probability data of the basic events are supplied then it is possible to 

calculate the exact TOP event probability using the FTDRA technique. At the 

present moment the probability expression of the TOP event is expressed in terms 

of the basic event entry numbers. This expression is stored in a file which can be 

viewed on request. 

169



The PNX is an ICL version of the UNIX multi-tasking and time sharing 

technique but the present work does not use this facility since it will slow down 

the running speed of the package but it would be interesting to carry out such 

development in the future. 

8.2 Uses of This Work: 

The present work presents a computer aided hazop package with a new 

technique for obtaining the exact top event reliability. The package can be used in 

a number of different fields: 

a) Hazard and operability studies. 

b) Documentation. 

c) Design. 

d) Alarm system analysis. 

e) Operator training and determination of human errors. 

8.2.1 Hazard And Operability Studies: 

The risk evaluation of a chemical plant for fire, explosion and other 

hazards requires a close study of many factors, including the site, structure, 

materials, processes, operations and material handling, operator traning, 

equipment, and the loss prevention program (32). To investigate the existence 

~ of potential hazards and malfunctions within a process, two main methods were 

in use. The first method is the hazard and operability study (hazop) and the second 

method is the hazard analysis study (Hazan) (23). The hazop study is a qualitative 

method which can somtimes extend to contain a quantitaive evaluation as well. The 

170



Hazan method is a quantitative method which can provide full information after a 

hazard has been identified. The former method is the target of the present work. 

The present work found that the use of cause and symptom equations was 

a very appropriate way to code hazop information and then to store them on a 

computer. Lihou had presented several rules for writing cause equations. These 

rules can be extended, depending on the process characteristics. The 

present work uses as its input already formatted cause and symptom equations. 

These equations are at the present time generated by hand by the hazop team. A 

way of automating their generation is by the use of Lihou rules in the form of 

modules. The modules can be put into two main categories: Linkers and units. The 

linkers refer to pipelines and control equipments that occur on P and I diagrams. The 

category of units refers to storage tanks, evaporators, separation columns, 

reactors and the like. From the two categories, sub-categories can be generated 

which may introduce the process physical states such as flow, temperature, 

pressure and level. Another sub-category could include the extension of the deviant 

states as either normal or abnormal. Further work is needed to write additional 

rules to generate cause and symptom equations by computer. 

8.2.2 Documentation : 

One of the difficult tasks for any plant management and process engineer 

is the writing and carrying out of start up and shutdown procedures (149). The 

start up procedure is normally easier than the shutdown procedure. An improper 

shutdown can cause expensive wastes, incomplete products anda long delay. 

The present work can be of help in understanding the sequences of events 

that arise from specific actions. The present system can help the qualitative 

171



evaluation of the appropriate action which can be then carried out more safely 

and quickly. In addition to that a quantitative evaluation can be carried out using 

the present work to help in setting up action priorities. 

8.2.3 Design : 

When a scale up of a process is needed a new evaluation for the process 

individual components has to be carried out. Sizing up and process alteration is not 

straight forward and the type and sequences of deviation may change (150). 

8.2.4 Operator Training And Determination Of Human Errors : 

Human errors and slow response play the major part in most disastrous 

accidents in the chemical industries (151, 152,114). Visual aids can be of help for 

operator training to realise how a specific cause can lead to other causes and this 

could be of great help when this can be presented, say as a fault tree, on a VDU 

screen in the control room. 

8.2.5 Alarm System Analysis : 

One goal of the alarm systems is to help the operator to take necessary and 

the appropriate actions. It will not however guide his decisions. The operator 

must decide for humself the cause of the alarm (8,153). Visual aids can be of great 

benefit in minimising errors but the logic of how one alarm situation can initiate 

others is not shown. The present work could be used as a help to the operator and 

also to the process control engineer in setting up a more easily and 

understandable alarm system. It will help him in grouping and cutting down the 

172



number of unnecessary alarms. It could be of help in setting up some linked alarms. 

For example a failure of a cooling pump will lead to high temperature inside a 

reactor. In the normal case two alarms will be triggered, high temperature and 

pump failure. If the pump failure alarm is not triggered then the operator will 

be confused and may treat the high temperature as a false alarm or as being due to a 

chain reaction. Hence the operator will take the wrong decision. But if the control 

engineer follows the causes and their consequences using a visual hazop study 

then the possible cause of the high temperature might be closed valve or reverse 

flow. So more alarms can be added to indicate the accurate situation. 

8.2.6 Reliability Data : 

The source of reliability data can be either available or predicted. The 

present package oe Boolean algebra for processing a end up with an expression 

that could be used as a reliability expression. So the source and the accuracy of 

the data will determine the accuracy of the final result (33). Since the resultant 

disjointed expression is in terms of the basic events and their complements then 

only the basic event data will influence the final result. 

A sensitivity analysis can be of interest in predicting the influence of the 

_ individual items on the final result as well as the relative sensitivity of the final 

result to repeated basic events. The sensitivity analysis can be treated as a 

qualitative evaluation but evaluated by quantitative means. 

One advantage of the Boolean expression generated by the FTDRA 

technique is that many terms will be the complement of a basic event. If the 

probability of a basic event is very low, the probability of its component can be 

173



approximated by 1.0. Examination of the expression without direct substitution 

of the reliability data but with a knowledge of those basic events with a very low 

probability of occurrence may permit identification of those event sequences which 

are most likely to cause a given dangerous Situation. 

8.3 Proposals For Future Work : 

8.3.1 Improving The FTDRA Set Structure : 

As described in Chapter 7, the set structure consists of STARTS, SETS 

and NORMAL arrays. The beginning of each set has a pointer number in array 

STARTS. To find out the number of items in a set the subroutine NUMSET has 

to be called. This subroutine calls subroutines INITTAK and TAKITM and 

through a Do loop it counts the number of terms in the particular set. Table 8.1 

shows the different subroutines that call subroutine NUMSET within them 

and whether the calls are within a Do loop or not. Since some of these calls are 

within Do loops one way of cutting the processing time would be to store the 

number of items in each set. The way to accomplish this is by redefining the 

array STARTS to be a two dimensional array. Each row represents a set. The 

first element in the row will store a pointer of the set starting point as before. 

The second element will store a counter containing the number of items in the set. 

This modification will substantially cut the processing time. To carry out this 

modification a number of changes have to be carried out on the following 

subroutines : 

1. Subroutine INIT :- 

Replace STARTS (I) =-1 by STARTS (1,1) =-1 

Add STARTS (1,2) = 0 

‘174



Table 8.1: List of names of subroutines that call subroutine NUMSET 
within them. 

  

  

  

Name of subroutine Number of calls of subroutine NUMSET 

In a Do loop Not in a Do loop 

CPYSET - 1 

TYPSET - 1 

STEP2 1 1 

RSUPI1 1 2 

RSUP2 2 2 

COLCT - 1 

DISJON 1 2 

MAKDIS - 1 

RESOLV 2 I 

COLSET aioe 1         
  

2. Subroutine NEWSET :- 

Replace STARTS (1)=0 by STARTS (1,1) =0 

Add STARTS (1,2) = 0 

3. Subroutine ADDITM :- 

Replace STARTS (SETNO) by STARTS (SETNO,1) before each 

RETURN. 

Add STARTS (SETNO,2) = STARTS (SETNO,2) + 1 

175



4. Subroutine DELSET :- 

Add STARTS (SETNO,2) = 0 

5. Subroutine DELITM :- 

After the deletion of the item add 

STARTS (SETNO,2) = STARTS (SETNO,2) -1 

8.3.2 Alternative Languages : 

Normally, FORTRAN 77 is rated as a good language for solving 

mathematical and algebraic equations and other trigonometric functions. It fulfils 

the scientists and engineers needs. The standard FORTRAN 77 source files are 

portable. 

In hazard and operability studies (Hazop), fault tree analysis and even in 

reliability calculations a great deal of the process is carried out by Boolean Algebra. 

Much of the work involves algebraic manipulation rather than arithmetic operation. 

FORTRAN is not particularly appropriate to such manipulation tasks. 

Many alternative high level languages can be suggested for use in carrying 

out fault tree analysis (148). Each language has its strengths with reference to its 

application from reliability techniques point of view. The suggested alternative 

languages are: 

1) Pascal : Although there are various dialects of the Pascal programming language, 

they all share the strong features of a well structured high level language and one of 

them is the recursion facility. Recursion is simply defined as a technique that 

176



allows a formulated procedure to call itself again within itself. This means that the 

number of calls and the stages for carrying out a certain task are minimised. 

FORTRAN in general does not have this facility but some BASIC programming 

languages like QUICKBASIC and FASTBASIC do _ have it. Page and Perry 

(143,145) have demonstrated the usefulness of the recursion impementation in 

their technique for calculating the exact TOP event probability using the USCD 

Pascal. 

2) LISP : Like Pascal, LISP is a high level language with different versions and 

language extensions. LISP is ideal for sets, groups and Boolean manipulations. It 

has more logic orientation than the FORTRAN. Its advanced facilities make it a 

most appropriate language for coding fault tree logic and cut sets evaluation. 

8.3.3 Alternative Coding Of Hazop Data : 

The aims of carrying out this work have been discussed in Chapter 1. One 

of the problems of handling the information of hazop studies is how to store it on a 

computer in such a form that it can be coded with ease according to some rules. 

Lihou coding has been used in The Aston Hazop Package and found to be the 

most appropriate way of storing the hazop information. As mentioned in 

Chapter 2, two types of equations are in use: cause and symptom equations. A 

symptom equation uses the AND operator only while a cause equation uses both 

the AND and the OR operators. This means that Lihou coding is limited to coherent 

systems only. Alternatively only a 2-state system for failures can be expressed by 

this coding. A 2-state system for failures shows its components' state as either a 

failure or a success. 

177



There are other expressions used in industry for stating the malfunctions in 

a process which are still within workable conditions. For example a flow 

controller may have the following responses : 

a- Very high flow 

b- High flow 

c- Normal flow 

d- Low flow 

e- Very low flow 

Obviously there are three states for this system : 

1- The process is functioning satisfactorily (third response). 

2- The process is operating with some malfunctions and some alarms set: 

second and fourth responses are such states. 

3- The process is in an unworkable condition and most of the alarms are 

set: such responses are the first and the fifth. 

Similar arguments can be applied to pressure controllers, temperature 

controllers and level controllers. Such systems are 3-state system with two 

workable states and one failure state. In order to apply this example to the 

present work an assumption has to be made first. The 3-state system has to be 

treated as one success state and one failure state according to the TOP event. This 

will mean that the probability of the top event has a lower bound value and a 

higher bound value. The second state represents the lower bound value of the 

TOP event which has a lower probability value for the system failure while the 

third state represents the higher bound value of the TOP event which is the Higher 

and possible system failure. In both cases Lihou coding can be used but with some 

178



modification and care. 

To modify the Lihou coding, anew symbol could be introduced. This 

would be a colon (:) to go in between the guide word and the property word. For 

example a No FLow in line 1 is coded according to Lihou as L1(11). In the new 

way the coding will be L1(1:1). This will not affect the other rules found by 

Lihou but this modification will be useful in the 3-state system coding. For 

example an L(12) means LESS FLOW in L1. The Guide word LESS indicates 

both slight deviation and severe deviation. In the 3-state system another constraint 

has to be added such as LOW which is not a serious deviation: if no action is taken 

then this could develop the next VERY LOW (LESS) deviation. To code this 

deviation another digit could be used with any guide word: 

a) The figure 1 would indicate the normal deviation; 

b) The figure 2 would indicate the extreme deviation. 

So a VERY LOW flow in L1 would be L1(1:22). Similarly a high flow in L1 is, 

using Lihou's coding, L1(13). The new coding would be L1(1:32). 

A similar modification could be carried out to separate the component 

identification number from the two words. For the sake of argument, suppose the 

component to be ammonia gas and its identification number 3. Then the new coding 

for no flow in L1 would be L1(1:1:3). This gives clearer presentation of 

the coding. To express very high flow of ammonia in L1 the new coding would 

be L1(1:32:3). This is quite useful when two-phase fluids exist in the same line: 

for example when a gas and a liquid flow countercurrently or cocurrently in the 

éame line. Similarly consider saturated steam flowing vertically in line L1 with a 

control valve V1 in the line. If the temperature drops for any reason 

179



condensation would appear in the line and the resultant water will flow downward 

and partially or totally block the control valve. According to Lihou coding less flow 

of steam in L1 could be either due to valve V1 being partially blocked owing to 

scaling or due to reverse flow of condensed water. 

L1(126) = V1(-1) + L1(165) 

The figures in the notation have the following meaning: 

1 refers to flow 

refers to LESS 

refers to water 

O
v
e
 

NO
 

refers to steam/reverse flow 

-1 refers to a partial blockage 

With the new coding the reason for less flow (normal deviation) has the 

possibility of steam condensation or valve partially blocked. If very much less flow 

of steam does occur (severe deviation) then this could be due to simultaneous 

steam condensation and valve partial blockage. Each case has its own cause 

equation as follows: 

L1(1:21:6) = V1(-1) + L1(1:61:5) 

L1(1:22:6) = V1(-1) * L1(1:62:5) 

The first equation represents the normal deviation state while the second equation 

represents the severe deviation. 

Another modification to Lihou coding would be the addition of a slash 

180



(/) to represent an Exclusive OR gate. This is a crucial modification to ensure a 

complete presentation for all coherent fault trees and not only special cases 

where only OR and AND gates exist. 

8.5 Conclusion : 

This work set out : 

- to investigate the use of fault tree analysis in hazop studies. 

- to generate and analyse fault trees on a graphics screen through a friendly 

user interface; 

- to enhance the analysis to permit the assessment of top event probabilities. 

The major result of the work has been the development of a new technique 

for the calculation of the exact probability of occurrence of the TOP event in a tree 

containing repeated events. 

The achievements of the work can be summarised as follows : 

a) A new technique, based on FATRAM top-down Boolean reduction 

approach, has been developed together with the disjoint technique. The resultant 

algorithm is called the Fault Tree Disjoint Reduction Algorithm (FTDRA). 

b) FTDRA technique, in one of its steps, resolves all the intermediate 

events except OR gates which have its inputs as basic events. This results in a near 

minimal cut sets expression. 

c) A disjoint technique based on Bennetts’ disjoint technique (76) has 

been applied to convert the near minimal cut sets into a iat of products 

expression. The Boolean domain is mapped into the probability domain, permitting 

181



the resultant expression to be interpreted directly as a probability expression. 

d) A hazop package has been developed on the Perq workstation under 

two different operating systems. The first package was coded in FORTRAN 77 and 

Pascal under the POS operating system. The second package has been coded 

in FORTRAN 77 and C under the PNX operating system. 

e) A friendly menu drive user interface has been developed for the 

hazop package on the Perq workstation. 

f) A version of the graphical library GINO-F has been written for the Perq 

workstation. 

g) A windowing environment has been successfully developed for the 

hazop package on the Perq workstation. 

h) A method has been suggested to modify Lihou's method of coding to 

identify more accurately the causes of different deviations. 

The use of hazard and operability studies is now accepted throughout 

the process industries. Computer aided design is increasingly widely used at all 

stages of the design process. The integration of hazard and operability studies 

into CAD using techniques such as those developed in this work seems an inevitable 

development. 

182



APPENDICES 

183



APPENDIX A 

RULES FOR WRITING CAUSE EQUATIONS 

APPENDIX A-1 : CAUSE EQUATIONS FOR PIPELINES 

APPENDIX A-2 : CAUSE EQUATIONS FOR VESSELS 

184



APPENDIX A-1 : CAUSE EQUATIONS FOR PIPELINES 

In writing cause equations, the following rules have been 

devised by Lihou, to avoid illogical fault trees. 

1. Pipelines 

  

  

Index Meaning Cause 

11 FLOW NO _ a) No flow in the line(s) immediately upstream 
b) No flow at the node where the line leaves an 
equipment 
c) The supply tank empty 
d) A valve shut in the line 
e) A filter fully blocked in the line 
f) A pump in the line stopped 

  

hy) FLOW LESS - a) Less flow in the supply line(s) immediately 
upstream 
b) Less flow at node where the line leaves an 
equipment 
c) Vent blocked on a storage tank 
d) More flow in a branch line (judged by the relative 
magnitude of the normal flows) 

e) A valve insufficiently open, filter or exchanger 
tubes 
partly blocked, in a line without flow or pressure 
control 

f) The flow control valve fully open and a valve in the 
line insufficiently open or some other restrictions 
g) A valve insufficiently open down stream of a 
pressure control 
h) A pressure or flow controller set too low 
i) A pressure or flow transmitter indicating too high 
j) A pneumatic trip valve leaking to vent 
k) Leak(s) down stream of a flow transmitter 
1) Bypass around a pump open or leaking 
m) Pump delivery reduced by cavitation or speed 
reduction 

  

13 FLOW MORE a) More flow in the line(s) down stream 
b) More flow at the nodes where the line leaves or 
enters an equipment 
c) Leak in the line(s) down stream without flow control 
d) Leak upstream of flow controllers in down stream 
line(s). Leaks from a line are equated to drain or bleed 
valves open or leaking, filters leaking, etc. 
e) Pressure or flow controller set too high 
f) Pressure or flow transmitter indicating too low 

185



  

  

  

  

  

  

  

  

  

  

Index Meaning Cause 

g) Control valve stuck open 
h) Bypass around a control valve fully open 
i) Bypass flow around a pump too low 

14 FLOW AS a) Contamination of inlet lines 
WELL AS b) Contamination in supply tank 

c) Supply tank level low allowing air plus liquid 
to enter the discharge pipe 
d) Steam or nitrogen purge valves leaking 
e) Tubes leaking in exchangers 
f) Steam trap leaking orits bypass valve leaking 

15 FLOW a) Caused by an on/off controller or an unstable 
FLUCTUAT- control loop 
ION 

16 FLOW a) Caused by differential pressures, unequal levels 
REVERSE unequal levels and no non-return valves leaking 

bi FLOW a) Caused by gas or vapour entering the discharge 
OTHER pipe from an empty supply tank 
THAN 

22 TEMPERAT- a) Low temperature at the node where the line 
URELESS leaves an equipment 

b) Trace heating not on or failed 
c) Temperature controller set low 
d) Temperature indicator indicating too high 

an TEMPERAT- a) High temperature at the node where the line 
URE MORE leaves an equipment 

b) Trace heating on when it should be off 
c) Temperature controller set high 
d) Temperature indicator indicating too low 

De PRESSURE a) Less pressure in the supply line 
LESS b) Less pressure at the node where the line leaves 

an equipment 
c) A valve insufficiently open down stream of a 
pressure controller 
d) Pressure or flow controller set low 
e) Presssure or flow transmitter indicating too high 
f) Pneumatic trip valve leaking to vent 
g) Control valve fully open and a valve in the line 
insufficiently open or other blockage 

33 PRESSURE a) High pressure at the beginning of a line and no 
HIGH pressure or flow control in the line 

b) High pressure at the end of the line and flow is 
controlled 
c) Pressure or flow controller set high 
d) Control valve stuck open 
e) Bypass cvalve around a control valve is fully open 
f) Flow is controlled and flow tramsmitter is indicating 

186



Index Meaning Cause 

too low 
g) Pressure is controlled and pressure transmitter is 
indicating too low 
h) Pressure regulator set high or its valve stuck open 
(down stream pressure controller valve only if two 
are used in series) 

2. Pipeline Junctions 

Where line L3 is supplied by lines L1 and L2, the following rules are 

used to construct cause equations for line L3: 

1. No flow is caused by no flow in L1 AND no flow in L2. 

2. For less and more flow, temperature and pressure an 

OR gate is use between the equivalent deviations in L1 

and L2. 

187



APPENDIX A-2 : CAUSE EQUATIONS FOR VESSELS 

In writing cause equations, the following rules have been devised by 
Lihou, to avoid illogical fault trees. 

  Index Meaning Cause 

  41 LEVEL NO a) Means the vessel is empty 

  42 LEVEL LOW a) No flow into vessel 
b) Less flow into vessel 

c) Level transmitter indicating too high 
d) Level controller set low 
e) Low isolating valve on the level indicator 
or transmitter is closed 

f) Level control valve on the discharge line is stuck 
open 
g) Bypass valve open around a down stream level 
control valve 

  42 LEVEL a) Level transmitter indicating too low 
HIGH b) Level controller set high 

c) Upper isolation valve on the level indicator or 
transmitter is closed 
d) Level control valve stuck open if on a supply line or 
stuck closed if on the discharge line 
e) Bypass valve open around the level control valve in a 
supply line 

f) Kick-back liquid flow going to a non-supply storage 
tank 

  

186



APPENDIX B : SYMBOLS COMMONLY USED IN FAULT TREE 
GRAPHICAL REPRESENTATION. 

A 
ee 
  

      

> Out 

AND Gates : Coexistance to all inputs 
required to produce output. 

OR Dates : Output will exist if at least 
one input is present. 

RECTANGLE : A fault tree usually 
resulting from the combination of more 
basic faults acting through logic gates. 

CIRCLE : A basic component fault - An 
independent event. 

DIAMOND : A fault event not developed 
to its cause. 

TRIANGLE : A connecting or transfer 
symbol. 

UPSIDE DOWN TRAINGLE : A similar 
transfer but not identical to the like 
identified input. 

189



      

  

    

    
  

  
    

  
    

  

          

  

  

    

  
eee ane eee g nee etree bees « 

: * ‘ eS eS 
        I 

t 
t   

    
    
  
              

  
      
  
                

  

        
  

  

  
  
      

  
            

              
                                    
      

is         
190



  

   

      

       

   

Seas Se 
Se adaran | 
a ie | Pottars 

  

[-(]-a) 4 a 

iY (l-bac) 

- 
va | Cle b2tI-e) 

BYC(DL ABACDAA | = abcd | 
foe Ay jofANBHCAO: 

| (©! | see 
hice i 

Soe | Gh | apsi-tiechs 

Ps | O MY We Hoy Gee | edt) 

OOOO oe ei 
      ee | 

ne 
Pg A FORBIDDEN FOR ORIENTEO TREES 

  

  

Le OE © % ; 
rey H)-(1-o)sGi-bM 

Po Or Wy ia “L| ABVCDVA | : 

OO OC LB PLU | WC cdatt- ot 
  ne ene a emer nfpe emer mone 

  

l-(Cl-axt)s 

(leoxd) 

  

ol ABACHAY 

| 1-(-axb)x 
ay 4 A 13 

h2 | OQ |G Pee eee lag seatled) 
SOOO| Hey” 

ra 
Pix | @) (@) | FORBICDEN FOR ORIENTED TREES 

  
  

      

pe 
{= (1-a)(1-b) 

ra | O iat en 
OOOO (a » (-e)(I-d)     Ca 

L 
comet eee ~       

  
  

191



APPENDIX E.1 : CONVERTING A PASCAL PROGRAM 

Other 

Flow.PAS P.PAS 

    

  

      

  

  

      

v 

PASCAL 

Other 

Flow.SEG P.SEG 

LINK 

Flow.RUN 

192



APPENDIX E.2 : CONVERTING A SIMPLE FORTRAN PROGRAM 

Calc.FOR 

  

FORTRAN 

      

Cale:SEG 

  

LINK 

      

Calc.RUN 

193



APPENDIX E.3 : CONVERTING A FORTRAN PROGRAM WHICH 
REFERENCES A PASCAL MODULE 

  

      

  

    

  

      

Plot.FOR 

FORTRAN 

Other 
Plot.SEG P.SEG 

Vv 
(required at both stages) 

LINK 

Plot.RUN 

194



APPENDIX E.4 : CONVERTING A FORTRAN PROGRAM WHICH 
REFERENCES AN INDEPENDENTLY COMPILED 
FORTRAN UNIT 

Stress. FOR 

  

FORTRAN 
    
  

  

  

    
     

     
  

Stress.SEG 

CONSOLIDATE 

Replace 

{ Other.SEG 
—— if input 

Stress.SEG 

  

    
  

ee



APPENDIX F : LISTING OF CAUSE AND SYMPTOM EQUATIONS 

OF THE SOLVAY PROCESS 

NOTE : SYMPTOM EQUATIONS ARE WRITTEN WITH - RATHER THAN -> 

196



'L1(11)=V1(0)+PR1(0)+NH3(41)' 
'L1(12)=V1(-1)+FI1(1)' 
'L1(13)=V1(1)+FI1(-1)' 
'L1(32)=PR1(-1)+NH3(42)' 
'L1(33)=PR1(1)' 
'L2(11)=P1(0)+T1(41)*(T4(41)+V5(0)) 
'L2(12)=P1(-1)' 
'L2(13)=P1(1)' 
'L2(142)=T1(23)*T1(532)*L2(22)+L1(142)' 
'L2(22)=L2(73)' 
'L2(23)=T1(23)+T4(23)' 
'L2(522)=T1(533)+T3(533)' 
'L2(535)=T4(535)' 
L1(11)eN1(11)*N1(31)*N2(11)*N4(125)*N4(22)*N6(11)' 
'L1(12)2N1(12)*N1(32)*N2(12)*N2(22)*N4(125)*N4(22)*N6(12)' 
'L1(13)*N1(13)*N1(33)*N2(13)*N6(13)*N6(23)' 
"L2(11)sN1(32)*N2(13)*N3(11)*N4(12)*N4(141)*N5(42)*N7(11)' 
'L2(13)sN1(33)*N2(142)*N3(13)*N4(525)*N5(43)*N7(13)' 
'L2(142)»N1(33)*N5(142)*N7(142)' 
'L2(22)3N2(22)*N3(22)*N7(22)' 
L2(23)»N2(13)*N2(23)*N3(23)*N4(125)*N4(23)*N7(23)' 
'L2(522)*N4(522)' 
'L2(533)»N2(13)' 
'L3(12)sN1(33)*N5(43)' 
'L3(13)eN1(32)*N2(13)*N4(13)*N4(125)*N4(23)*N5(42)*N6(23)' 
'$J(72)N4(23)*N5(23)' 
'L3(11)=P2(0)' 
'L3(12)=P2(-1)+N4(12)' 
'L3(13)=P2(1)' 
'L3(125)=N4(125)' 
'L3(141)=N4(141)' 
'L3(23)=N4(23)' 
'L3(522)=N4(522)' 
'L5(11)=V3(0)+PR2(0)+CO2(41)' 
'L5(12)=V3(-1)+F13(1)' 
'L5(13)=V3(1)+FI3(-1)' 
'L5(32)=PR2(-1)+C02(42)' 
'L5(33)=PR2(1)' 

197



'L3(11)>N9(13)*N9(22)*N 10(11)*N11(12)*N12(42)*N14(22)*N13(32)*N14(11)' 
'L3(12)*N9(13)*N9(23)*N10(12)*N11(12)*N11(146)*N14(22)*N14(12)' 
'L3(13)2N10(13)*N11(13)*N 1 1(532)*N14(22)*N13(33)*N14(13)' 
'L3(125)2N9(13)*N9(23)*N11(128)*N11(532)*N14(22)' 
'L3(141)sN9(131)*N11(128)*N14(22)' 
'L3(23)*N9(131)*N9(23)*N 10(23)*N 1 1(128)*N12(23)*N14(23)' 
'L3(522)2N11(128)*N11(146)' 
'L5(11)*N8(11)*N9(11)*N11(128)*N11(145)*N12(22)*N13(11)*N13(32)' 
'L5(12)*N8(12)*N9(12)*N11(128)*N12(22)*N13(32)*N14(22)' 
'L5(13)eN8(13)*N9(13)*N12(23)*N13(33)' 
'L4(13)2N9(131)*N9(23)*N11(144)*N 12(42)*N13(32)*N14(22)' 
'L6(11)=N9(11)' 

'L6(12)=N9(12)' 

'L6(13)=N9(13)' 

'L6(131)=N9(131)' 

'L6(22)=N9(22)' 

'L6(23)=N9(23)' 

'L7(11)=N2(11)+L2(13)*L1(12)' 
'L7(12)=N2(12)' 

'L7(13)=N2(13)' 
'L7(22)=N2(22)' 

'L7(23)=N2(23)' 

'L9(11)=P3(0)+T3(41)' 

'L9(12)=P3(-1)' 
'L9(13)=P3(1)' 

'L9(23)=T3(23)' 

'L9(522)=T3(533)' 
'L7(11)*N15(12)*N15(32)*N18(22)' 
'L7(12)»N15(12)*N15(32)*N18(22)' 
'L7(13)>N15(13)*N15(33)*N18(148)*N 18(23)*N21(23)' 
'L7(23)2N18(23)*N21(23)' 
'L6(11)2N15(12)*N15(32)*N16(11)*N20(11)' 
'L6(12)2N15(12)*N15(32)*N16(12)*N20(12)' 
'L6(13)9N15(13)*N15(33)*N16(13)*N20(13)' 
'L6(131)2N18(148)*N18(23)*N21(23)' 
'L6(23)9N18(23)*N21(23)' 
'L9(11)9N15(32)*N16(13)*N 16(141)*N17(11)*N18(12)*N18(22)*N19(42)*N21(11)' 
'L9(12)3N15(32)*N17(12)*N18(12)*N18(23)*N19(42)*N21(12)' 

198



'L9(13)9N15(33)*N17(13)*N18(13)*N19(43)*N21(13)' 
'L9(23)2N16(141)*N17(23)*N18(23)*N21(23)' 
'L9(522)»N18(522)' 
'L8(12)*N15(33)*N19(43)' 
'L8(13)2N15(32)*N18(22)*N20(13)*N21(23)' 
'L10(11)=N16(11)' 
'L10(12)=N16(12)' 
"L10(13)=N16(13)' 
'L10(141)=N16(141)' 
'L8(11)=V4(0)+L8(0)' 
'L8(12)=V4(-1)+N18(12)' 
'L8(13)=V4(1)+N18(13)' 
'L8(23)=N18(23)' 
'L8(522)=N18(522)' 
'L11(11)=V5(0)+T4(41)' 
'L11(12)=L8(12)+V5(-1)' 
'L11(13)=L8(13)+V5(1)' 
'L11(142)=T3(23)*T3(532)*T4(22)' 
'L4(11)=V2(0)+L4(0)' 
'L4(12)=N11(12)+V2(-1)' 
'L4(128)=L4(12)+N11(128)' 
'L4(13)=N11(13)+V2(1)' 
'L4(145)=N11(145)' 
'L4(146)=N11(146)' 
'L4(22)=N11(22)' 
'L4(23)=N11(23)' 
'L4(532)=N11(532)' 
'END' 

T93



APPENDIX G : LISTING OF THE SOURCE PROGRAMS OF 

THE HAZOP POS VERSION 

200



FRIAR AR IAA AR CRI OR IO IG AOR OR IO IO OI kK kok kk ok 

*OBJECTIVE : THE HAZOP PACKAGE WRITTEN TO RUN ON THE HARRIS HAS 

R
i
t
 

E
e
e
,
 
F
S
 

  

  

BEEN MODIFIED TO BE RUN ON THE PERQ WORKSTATION 

UNDER THE POS OPERATING SYSTEM. IT ENABLES THE USER 

TO SELECT THE PACKAGE ROUTINE OF HIS/HER CHOICE AND 

THE PROGRAM PROVIDES A CONSTANT INTERACTION BETWEEN 

HIM/HER AND THE TERMINAL. THE PACKAGE MAKES USE OF 

THE TABLET'S CURSOR TO CHOOSE FROM THE PROVIDED MENU. 
2¥e He fe 2 fe 2h 2 2h 2 fe he 2 ie 2 fe 2 2 fe 2 2 2 2 fe 2 fe 2 ie ee eg 2 2 2 oe 2 2 2 ie 2 ao a ok eo oi 2 2 oe ok 2 oo oo ok kok ok ok ak ok ok 

INTEGER CLR,CLC, SMR, SMC, NML, ERRNO, VALUE 

PARAMETER ( CLR = 500, 

+ CLC = 10, 

+ SMR = 50, 

+ SMC = 20, 

+ NML = 12) 

INTEGER CELLS ( CLR, CLC ), SYMPTS ( SMR, SMC ) 

CHARACTER NAMES ( CLR ) * (NML ) 

LOGICAL RQST,CHECK,TEST, YESNO 

CHARACTER SELCTN(5)*80,HELP(5)*80 

DATA HELP(1),HELP(2), HELP(3),HELP(4)//) ANALYSE CALLS SBR. 

1 EQTS FOR THE ANALYSIS OF CAUSE & SYMPTOM EQNS',' DRAW CALLS SBR. 

1TREES FOR THE DRAWING OF FAULT TREES FROM C & S EQNS',’ TRANSLATE 

1 CALLS SBR. WORDS FOR THE TRANSLATION OF C & S EQNS INTO WORDS';' 

1 EDIT CALLS SBR. EDIT FOR THE EDITING OF C & S EQNS’ 

DATA(SELCTN(1),I=1,5)/' A. ANALYSE CAUSE & SYMPTOM EQNS USING SBR 

1. EQTS',’ B. DRAW FAULT TREES FROM CAUSE & SYMPTOM EQNS USING SBR 

1. TREES',’ C. TRANSLATE CAUSE & SYMPTOM EQNS.INTO WORDS USING SBR 

1. WORDS',’ D. EDIT CAUSE & SYMPTOM EQNS. USING SBR. EDIT’, E. 

1 DISPLAY DETAILED EXPLANATION OF PACKAGE’ 

1 ERRNO=0 

Cc 

C**** SELECT GRAPHICAL OR NON-GRAPHICAL OPTIONS 

Cc 

PRINT *,' ( 

PRINT *,’ ARE THERE GRAPHICAL FACILITIES AVAILABLE AT YOUR TERMINA 

Te 

PRINT * 

PRINT *,' INPUT YES OR NO' 

PRINT *,' ? 

Cc 

C**** SUBPROGRAM YESNO(TYPE) ENABLE YES OR NO ANSWER 

201



S 

RQST=YESNO(TYPE) 
IF(RQST)THEN 

CALL DRIVER ( 1, VALUE, ERRNO ) 
IF (ERRNO .NE. 0 ) THEN 

GO TO 1 

END IF 

DO 5 MM=1,4 

CALL GRFTRI1(IFLAG,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 

C**** SIMULATION OF EXECUTION OF INDIVIDUAL PARTS OF THE PACKAGE FROM 
C**** GRAPHICAL MODE OF OPERATION BY MEANS OF A FLAG RETURNED FROM EACH 
SBR. 
Cc 

Cc 

IF(FLAG.EQ.1)THEN 
PRINT *,'CAUSE & SYMPTOM EQNS ANALYSED’ 
PRINT * 
ELSEIF(IFLAG.EQ.2)THEN 
PRINT *,,FAULT TREES DRAWN' 
PRINT * 
ELSEIF(IFLAG.EQ.3)THEN : 
PRINT *,'CAUSE & SYMPTOM EQNS TRANSLATED' 
PRINT * 
ELSEIF(IFLAG.EQ.4)THEN 
PRINT *,'CAUSE & SYMPTOM EQNS EDITED’ 
PRINT * 
ENDIF 
CONTINUE 
STOP 
ELSE 

CtF** 

Cs SELECT NON-GRAPHICAL OPTIONS 

PRINT * — 
PRINT *," 
PRINT *,,HAVE YOU HAD PREVIOUS EXPERIENCE USING THIS PACKAGE?’ 
PRINT *,,PLEASE ENTER YES OR NO' 
PRINT *;' : 
RQST=YESNO(TYPE) 
DO 15 I=1,4 
IF(RQST)THEN 
CALL EXPRC(HELP, IFLAG,SBR,I,CHECK, TEST,CELLS,CLR,CLC,SYMPTS, 

* SMR,SMC,NAMES,NML) 
ELSE 
CALL GUIDE(SELCTN, IFLAG,M1,1,SBR,CELLS,CLR,CLC,SYMPTS, 

* SMR,SMC,NAMES,NML) 
ENDIF 
IF(SBR.EQ.1.)THEN 
PRINT *,'CONFIRMATION OF USER CHOICE ' 

  

  

202



PRINT 20,SELCTN(M1) 
20 FORMAT(A) 

& 

PRINT * 
PRINT * 
PRINT *,' ‘ 
ENDIF 

  

C**** STIMULATION OF EXECUTION OF INDIVIDUAL PARTS OF PACKAGE BY MEANS 
C**** OF FLAG MESSAGES FROM SBR'S USING NON-GRAPHICAL MODE. 
Cc 

IF(FLAG.EQ.1)THEN 
PRINT *,'CAUSE & SYMPTOM EQNS ANALYSED' 
PRINT = 
ELSEIF(IFLAG.EQ.2)THEN 
PRINT *,"FAULT TREES DRAWN ON NON-GRAPHICAL VDU' 
PRINT * 
ELSEIF(IFLAG.EQ.3)THEN 
PRINT *,'CAUSE & SYMPTOM EQNS TRANSLATED' 
PRINT * 
ELSEIF(IFLAG.EQ.4)THEN 
PRINT *,'CAUSE & SYMPTOM EQNS EDITED' 
PRINT * 
ENDIF 

15 CONTINUE 

* 

* 

ENDIF 
STOP 
END 

SUBROUTINE DRIVER ( ENTRY, VALUE, ERRNO ) 

**** SUBROUTINE TO SET UP GINO DRIVER 

+ 
2 

R
t
 

2
S
 

* 
* 

ENTRY = 1 FOR INITIALISATION OF TERMINAL 
ENTRY = 2 FOR CALL OF DRIVER 
ENTRY = 3 TO RETURN VALUE OF TERMINAL TYPE 

ERRORS GENERATED ARE 

FOR ENTRY = 1 

ERRNO = 1 IF TERMINAL TYPE NUMBER NOT WITHIN RANGE 

FOR ENTRY = 3 

ERRNO = 50 IF DRIVER NOT PREVIOUSLY CALLED 

THIS S/R TO BE UPDATED FOR THE USE OF NEW GRAPHICS TERMINALS 

INTEGER ENTRY, TRMNL, ERRNO, VALUE 

203



LOGICAL YESNO 
REAL TYPE 
SAVE TRMNL 

IF (ENTRY .EQ. 1 ) THEN 

= INITIALISATION 

1 PRINT *,'ENTER THE TYPE OF TERMINAL YOU ARE USING:' 
PRINT *, ‘IS IT" 
PRINT * 
PRINT *,' 1. ANEWBURY 8000 SERIES' 
PRINT *,' 2. ADYNAGRAPHICS ( IMLAC )' 
PRINT *," 3. A POS OPERATING SYSTEM ( PERQ )' 
PRINT * 
PRINT *, 'ENTER THE NUMBER OF THE TYPE, I.E. 1,2 OR 3' 
READ *, TRMNL 
IF (TRMNL.LT. 1 .OR. TRMNL .GT. 3 ) THEN 

PRINT *, 'WAS YOUR ENTRY CORRECT?! 

IF (.NOT. YESNO ( TYPE ) ) THEN 

GOTO 1 

ELSE 

ERRNO = 1 
RETURN 

END IF 

ELSE 

RETURN 

END IF 

ELSE IF (ENTRY .EQ. 2 ) THEN 

. CALL GINO DRIVER 

101 IF(TRMNL EQ. 1.OR. TRMNL . EQ. 2) THEN 

* CALE PERO 
PRINT *,’ SORRY, NO ACCESS TO THIS TYPE AT THE MOMENT' 
PRINT *,,.DO YOU WANT TO TRY AGAIN ?' 
IF ( YESNO ( TYPE ) ) THEN 
PRINT *,,INPUT THE NUMBER OF THE TYPE' 
READ *,TRMNL 
GO TO 101 
ELSE 

STOP 
END IF 

204



ELSE IF( TRMNL EQ. 3 ) THEN 
CALL PERQ 
END IF 
RETURN 

ELSEIF ( ENTRY .EQ. 3 ) THEN 
IF (TRMNL .LT. 0 ) THEN 

ERRNO = 100 

RETURN 

END IF 

VALUE = TRMNL 

END IF 

END 

CEE 

Crtre 

Cree 

| Bi aude ie 

Cree 

c 

* 

SUBROUTINE GUIDE OPERATES A MORE ILLUSTRATED NON-GRAPHICAL 
SELECTION MODE IN WHICH THE USER IS PRESENTED WITH A MENU 
LIST OF THE PACKAGE ROUTINES - SELECTION IS MADE BY INPUTING 
A, B, C, DOR E EACH CHARACTER CORRESPONDING TO A PACKAGE 
ROUTINE. 

SUBROUTINE GUIDE(SELCTN, IFLAG,M1,K,SBR,CELLS,CLR,CLC,SYMPTS, 
SMR,SMC,NAMES,NML) 

INTEGER CLR,CLC, SMR, SMC, NML 
INTEGER CELLS ( CLR, CLC ), SYMPTS ( SMR, SMC ) 
CHARACTER NAMES (CLR ) * (12) 
LOGICAL FILE,CHECK,TEST,TEST1 
CHARACTER TEX*4,X1*1,SELCTN(5)*(*),X*1 
INTEGER FIRST 

C 

C 
C**** ARRAY SELCTN CONTAINS THE MENU LIST OF THE PACKAGE ROUTINES 

DO 25 MsK,5 
PRINT 15,(SELCTN(J),J=1,5) 

15 FORMAT(A/) 
PRINT * 
PRINT *,'INPUT YOUR CHOICE BY PRINTING A, B, C, D OR E' 
PRINT * 
PRINT *,'TO END RUN PRINT STOP' 
PRINT *,' ! 
READ(UNIT=5,FMT="(A)')TEX 
IF(TEX.EQ.'STOP") STOP 
IF(.NOT.(TEX.GE.'A'’.AND.TEX.LE.'E’)) THEN 
PRINT *,' YOUR INPUT SHOULD BE A, B, C, D OR E' 

205



ENDIF 
SBR=1. 

ic 
CUTS 

C 
TEST FOR SELECTION OF PACKAGE ROUTINE 

DO 30 M1=1,5 
N=FIRST(SELCTN(M1)) 
N1=FIRST(TEX) 
X1=TEX(N1:N1) 
X=SELCTN(M1)(N:N) 

Cc 
GCrETe 

Carre 

CTTTe 

Cteee 

Oh ttiasiye 

CALS 

c 

C 
Conee 

C 

CHECK IF DATA FROM ANALYSIS OF CAUSE AND SYMPTOM EQNS. HAVE 
BEEN STORED IN DETAILS FROM PREVIOUS RUN IF NOT OPTION IS 
GIVEN TO STORE THE INTERMEDIATE DATA IN A DATAFILE AND USED 
AS INPUT TO THE OTHER PACKAGE ROUTINES.- THE DATA OBTAINED 
FROM THE ANALYSIS OF CAUSE AND SYMPTOM EQNS FORM THE DATA 
STRUCTURE FOR THE REST OF THE ROUTINES IN THE PACKAGE. 

TEST FOR SELECTION OF ROUTINE 

" 9000 IF ( NOT. X1.EQ.X) GO TO 9010 
IF(M1.EQ.1)THEN 
TEST1=TEST.AND.CHECK 
IF(TEST1)THEN 
PRINT *;' ‘ 
PRINT *,,WARNING CAUSE & SYMPTOM EQNS HAVE ALREADY BEEN ANALYSED’ 
PRINT *,'DATA HAVE BEEN STORED IN DATA FILE OPEREQNS' 
PRINT * 
PRINT *,' : 
IFLAG=5 
RETURN 
ELSE 
CHECK=FILE(I) 
CALL EQTS(IFLAG,CHECK,TEST,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 
ENDIF 
ELSEIF(M1.EQ.2)THEN 
CALL TREES! (IFLAG,TEST) 
ELSEIF(M1.EQ.3)THEN 
CALL WORDS(IFLAG,TEST) 
ELSEIF(M1.EQ.4)THEN 
CALL EDIT(IFLAG,TEST) 

ELSEIF(M1.EQ.5)THEN 
CALL:-DEXPLN 

IFLAG=5 
ENDIF 
RETURN 
GO TO 9000 

9010 CONTINUE 

  

  

206



30 CONTINUE 
25 CONTINUE 

END 

C**** = SUBROUTINE EXPRC OPERATES NON-GRAPHICAL SELECTION MODE 
Ctt** BY INPUT OF KEYWORDS 
Cc 

SUBROUTINE EXPRC(HELP, IFLAG,SBR,K,CHECK,TEST,CELLS,CLR,CLC, 
_ SYMPTS,SMR,SMC,NAMES,NML) 

INTEGER CLR,CLC, SMR, SMC, NML 
INTEGER CELLS ( CLR, CLC ), SYMPTS ( SMR, SMC ) 
CHARACTER NAMES (CLR ) * (12) 
LOGICAL FILE,COMPR,TEST,TEST1,CHECK,A 
CHARACTER C1*9,C2(5)*9, HELP(4)*80 
DATA(C2(1),I=1,5)/‘ANALYSE',DRAW','TRANSLATE’, EDIT’, ‘HELP? 
SBR=2 
DO 22 J=1,5 
PRINT *, INPUT KEYWORD OR STOP TO END RUN' 
READ(UNIT=5,FMT="(A)')C1 
IF(C1.EQ.'STOP’) STOP 

c 
C**** SUBPROGRAM COMPR(C1,C2(1)) COMPARES INPUT KEYWORD WITH SPECIFIED 
c**** KEYWORD 
Cc 

DO 20 I=1,5 
A=COMPR(C1,C2(1)) 

9000 IF (.NOT. A) GO TO 9010 
c 
C**** OPTION GIVEN AS TO WHETHER TO STORE DATA OBTAINED FROM SBR. EQTS 
C**#* INTO INTERMEDIATE FILE FOR LATER USE. 
c 

Cc 
C**#*** TEST FOR SELECTION OF PACKAGE ROUTINE 
C 

IF(I.EQ.1)THEN 
TEST1=TEST.AND.CHECK 
IF(TEST1)THEN 
PRINT *,' ' 
PRINT *,‘WARNING CAUSE & SYMPTOM EQNS HAVE ALREADY BEEN ANALYSED’ 
PRINT *,'DATA HAVE BEEN STORED IN DATAFILE OPEREQNS' 
PRINT *,' 
IFLAG=5 
RETURN 
ELSE 

  

  

¢ 
C**** TIF DATA HAVE ALREADY BEEN STORED IN DATAFILE WARNING IS GIVEN IF 
C***#* NEXT SELECTION IS TO ANALYSE CAUSE & SYMPTOM EQNS ELSE OPTION IS 
C**** GIVEN FOR THE STORAGE OF THE DATA FROM THE ANALYSIS OF CAUSE & 
C**** SYMPTOM EQNS INTO A DATAFILE. 

207



CHECK=FILE(I) 
CALL EQTS(IFLAG,CHECK,TEST,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 
ENDIF 
ELSEIF(I.EQ.2)THEN 
CALL TREES1(IFLAG, TEST) 
ELSEIF(I.EQ.3)THEN 
CALL WORDS(IFLAG,TEST) 
ELSEIF(I.EQ.4) THEN 
CALL EDIT(IFLAG,TEST) 
ELSEIF(I.EQ.5)THEN 
CALL DEXPLN 
IFLAG=5 
ENDIF 
RETURN 
GO TO 9000 

9010 CONTINUE 
20 CONTINUE 

CALL EXPLN(HELP) 
22 CONTINUE 

END 

C**** SUBROUTINE GRFTR1 HAS BEEN PREPARED FOR GRAPHICAL TERMINALS 
C**** WITHOUT LIGHT PEN FACILITIES ,IN WHICH CASE THE USER IS PRESENTED 
C**** WITH A MENU LIST OF THE PACKAGE ROUTINES.-SELECTION IS MADE BY 
C**** MOVING THE CURSOR TO THE ITEM TO BE SELECTED AND PRESSING THE 
C**** RETURN BUTTON.THIS SUBROUTINE HAS MORE COMMON APPLICATION SINCE 
C**** MOST GRAPHICAL TERMINALS HAVE GOT CURSOR FACILITIES. 
Cc 

SUBROUTINE GRFTR1(IFLAG,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 

INTEGER CLR,CLC,SMR,SMC,NML, ERRNO, VALUE 
INTEGER CELLS ( CLR, CLC ), SYMPTS ( SMR, SMC ) 
INTEGER ICOM -: 
REAL X, Y 
CHARACTER NAMES ( CLR ) * (12) 

CHARACTER CHS(S5)*15 
LOGICAL TEST,CHECK,TEST1,FILE 
DATA (CHS()),I=1,5)/' A. ANALYSE’, B. DRAW',' C. TRANSLATE',' 
TDI EDIT;) Ey HELP/ 
DATA TEST, CHECK / 2 * .FALSE. / 

CALL DRIVER ( 2, VALUE, ERRNO ) 
CALL UNITS(5.) 
CALL SHIFT2(10.,20.) 
CALL MOVTO2(0.,0.) 
CALL MOVTO2(0.,5.) 
CALL PICCLE 
CALL MOVTO2(0.,5.) 

208



CALL CHAHOL('SELECT YOUR PACKAGE ROUTINE BY MOVING THE CURSOR’) 
CALL MOVTO2(0.,4.) 
CALL CHAHOL(' TO THE ITEM OF THE MENU LIST AND PRESS ANY’) 
CALL MOVTO2(0.,3.) 
CALL CHAHOL(' CHARACTER KEY’) 
CALL MOVTO2(0.,0.) 
CALL CHAHOL('MENU LIST OF PACKAGE ROUTINES’) 

GC 
Cos SET UP MENU LIST 
Cc 

DO 10 I=2,10,2 
X=! 
CALL MOVTO2(0.,-X) 
KK=I/2 
CALL AKCHAR(CHS(KK)) 

10 CONTINUE 
iS 
C**** = MAKE THE CURSOR APPEAR 
Cc 

CALL CURSOR(ICOM, X,Y) 
Cc 
C***#* MOVE THE CURSOR TO THE ITEM OF THE MENU LIST TO BE SELECTED 
C**#* AND PRESS RETURN 
c 

CALL CHAMOD 
Cc 
Cre CLEAR THE GRAPHICAL SCREEN 
C 

CALL CHAHOL ('') 
CALL PICCLE 

Cc 
C**** = TDENTIFY ITEM SELECTED BY ANALYSING PICTURE SEGMENT 
Crer* COORDINATE ¥; 
C 

IF(Y.GT.18.0.AND.Y.LT.19.0)THEN 
TEST1=TEST.AND.CHECK 
IF(TEST1)THEN 
PRINT *,' Y 
PRINT * 
PRINT *,,;WARNING CAUSE & SYMPTOM EQNS HAVE ALREADY BEEN ANALYSED' 
PRINT *,,.DATA FROM ANALYSIS OF CAUSE & SYMPTOM EQNS HAVE BEEN ' 
PRINT *, STORED IN DATAFILE OPXXXXXX. PRESS RETURN TO CONTINUE' 
PRINT * 
PRINT %,' ; 

  

  

* READ * 

IFLAG=5 
RETURN 
ELSE IF ( TEST ) THEN 

209



PRINT *,' ; 
PRINT * 

PRINT *,’THE ANALYSED CAUSE AND SYMPTOM EQUATIONS HAVE ALREADY' 
PRINT *,'BEEN READ IN FROM DATAFILE OPXXXXXX' 
PRINT * 
PRINT *,' : 

ELSE 
CHECK=FILE(I) 
CALL EQTS(IFLAG,CHECK,TEST,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 
ENDIF 
ELSEIF(Y.GT.16.0.AND.Y .LT.17.0)THEN 
CALL TREES(IFLAG,TEST,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 
ELSEIF(Y.GT.14.0.AND.Y.LT.15.0)THEN 
CALL WORDS(IFLAG,TEST) 
ELSEIF(Y.GT.12.0.AND.Y.LT.13.0)THEN 
CALL EDIT(IFLAG,TEST) 
ELSEIF(Y.GT.10.0.AND.Y.LT.11.0)THEN 
CALL CCLOSE 
CALL DEXPLN 
IFLAG=5 
ENDIF 
CALL DEVEND 
END 

C**** SUBROUTINE EQTS IS USED TO SIMULATE THE ANALYSIS OF 
C**** CAUSE & SYMPTOM EQNS AND MAY EASILY FACILITATE THE 
C***#* PROGRAM TREES WHICH ANALYSES CAUSE & SYMPTOM EQNS. 
Cc 

SUBROUTINE EQTS(IFLAG,CHECK,TEST,CELLS,CLR,CLC,S YMPTS,SMR,SMC, 
s NAMES,NML) 

INTEGER CLR,CLC,SMR,SMC,NML 
LOGICAL TEST,CHECK 
INTEGER CELLS ( CLR, CLC ), SYMPTS ( SMR, SMC ) 
CHARACTER NAMES (CLR ) * (12) 

CALL PART1(CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 
TEST = TRUE. 

o 
C**** CHECK IF THE USER HAS REQUESTED TO STORE DATA FROM ANALYSIS 
C***#* =~=OF CAUSE & SYMPTOM EQNS INTO A FILE. 
C 

IF(CHECK)THEN 
OPEN(3,FILE='OPXXXXXX',FORM='UNFORMATTED', 

* ACCESS = 'SEQUENTIAL’) 
REWIND 3 
DO 111 =1, CLR 
WRITE(3)(CELLS(I,J),J=1,CLC) 

210



11 CONTINUE 
DO 12K = 1,SMR 
WRITE(3)(SYMPTS(K,L),L=1,SMC) 

12 CONTINUE 
DO 13M=1,CLR 
WRITE(3)NAMES(M) 

13 CONTINUE 
CLOSE(3) 
ENDIF 
IFLAG=1 
END 

SUBROUTINE TREES1(IFLAG,TEST) 
LOGICAL TEST 
CHARACTER DEQTS*90 
IF(TEST)THEN 
OPEN(3,FILE='OPXXXXXX',FORM="UNFORMATITED', 

* ACCESS='SEQUENTIAL’) 
REWIND 3 
READ(3)DEQTS 
WRITE(3)DEQTS 
CLOSE(3) 
ELSE 

C**** — INSERT PROGRAM TREES1 FOR NON-GRAPHICAL FAULT TREES. 
c 

IFLAG=2 
ENDIF 
END 

Cc 
C**** SUBROUTINE WORDS SIMULATES THE TRANSLATION OF CAUSE & SYMPTOM 
C**** EQNS INTO WORDS AND USES AS ITS DATA STRUCTURE THE ANALYSIS 
C**** OF CAUSE AND SYMPTOM EQNS . THE EXISTING PROGRAM WORDS MAY 
C**** BE INSERTED WITHIN THIS SUBROUTINE . 
cc 

SUBROUTINE WORDS(IFLAG,TEST) 
LOGICAL TEST 
CHARACTER DEQTS*90 

Cc 
C**** TEST WHETHER DATA STRUCTURE FOR THE SUBROUTINE IS TO BE READ 
C***#* FROM FILE CONTAINING THE ANALYSIS OF CAUSE & SYMPTOM EQNS 
C**** OR IS TO BE TRANSFERED VIA SUBROUTINE ARGUMENTS. 
GC 

IF(TEST)THEN 
OPEN(3,FILE='OPXXXXXX',FORM='UNFORMATTED’, 

* ACCESS='SEQUENTIAL’) 
REWIND(3) 
READ(3)DEQ7TS 
CLOSE(3) 
ENDIF 

c 
Cas INSERT PROGRAM WORDS 
C 

IFLAG=3 

a4



Cc 
C**#** SUBROUTINE EDIT SIMULATES THE EDITING OF CAUSE & SYMPTOM 
C**** EQNS AND ONCE MORE THE DATA STRUCTURE FOR THIS SBR. COMES 
C**** FROM THE ANALYSIS OF CAUSE & SYMPTOM EQNS. THE SBR. MAY 
C**** FACILITATE THE NEWLY PREPARED PROGRAM FOR EDITING. 
C 

SUBROUTINE EDIT(IFLAG, TEST) 
LOGICAL TEST 
CHARACTER DEQTS*90 

¢ 
C**** TEST WHETHER DATA OF ANALYSIS OF C&S EQNS IS TO BE READ FROM 
C**** A FILE OR TRANSFERED AS AN ARGUMENT OF THE SBR. 
¢ 

IF(TEST)THEN 
OPEN(3,FILE='OPKXXXXX',FORM='UNFORMATITED’, 

* ACCESS='SEQUENTIAL’) 
REWIND(3) 
READ(3)DEQTS 
CLOSE(3) 
ENDIF 
IFLAG=4 
END 

Cc 
C**** SUBROUTINE DEXPLN OUTPUTS A DETAILED ILLUSTRATED EXPLANATION 
Cute OF THE PACKAGE 
Cc 

SUBROUTINE DEXPLN 
CHARACTER LINE*80,REP*4 

* OPEN ( UNIT =4, FILE = 'ZXC') 
DO 15J=1,4 

Cc 
C**** — QUTPUT EXPLANATION OF PACKAGE AT INTERVALS OF 50 LINES 
Cc 

DO 20 I=1,60 
C 
C*#** READ THE TEXT OF THE EXPLANATION OF THE PACKAGE FROM FILE ZXC 
Cc 
* — READ(4,100)LINE 
* 100 FORMAT(A) 

READ(9,'(A)')LINE 
IF(LINE.EQ.'@@@')THEN 

~ CLOSE ( UNIT = 4) 
* RETURN 

GO TO 15 
ELSE 

Cc 
C**** =OQUTPUT THE TEXT OF EXPLANATION FROM FILE ZXC TO THE SCREEN. 
GC 

WRITE(UNIT=*,FMT='(A)')LINE 

rg



ENDIF 
20 CONTINUE 

WRITE(16,FMT=*)'PRESS RETURN TO CONTINUE' 
READ(UNIT=*,FMT='(A)')REP 

15 CONTINUE 
RETURN 
END 

Cc 
C**** SUBROUTINE TREES SIMULATES THE DRAWING OF FAULT TREES 
C**** FROM CAUSE & SYMPTOM EQNS ON A GRAPHICAL TERMINAL 
C**** AND CAN EASILY FACILITATE THE PROGRAM TREES FOR THE 
C**** ACTUAL DRAWING OF FAULT TREES. 
Cc 

SUBROUTINE TREES(IFLAG, TEST,CELLS,CLR,CLC,SYMPTS,SMR,SMC, 
. NAMES,NML) 

INTEGER CLR,CLC,SMR,SMC,NML,IFLAG 
INTEGER CELLS (CLR, CLC ), SYMPTS ( SMR, SMC ) 
CHARACTER NAMES ( CLR ) * (12) 
LOGICAL TEST 

c 
C**** TEST WHETHER DATA FROM ANALYSIS OF CAUSE & SYMPTOM EQNS 
C**** ARE GOING TO BE READ FROM A FILE OR TO BE TRANSFERED AS 
C**** ARGUMENTS FROM THE SUBROUTINE. 
iC 

IF(.NOT. TEST)THEN 
OPEN(3,FILE='OPXXXXXX',FORM = 'UNFORMATTED', 

* ACCESS = 'SEQUENTIAL’) 
REWIND(3) 
DO 111 =1, CLR 
READ(3)(CELLS(I,J),J=1,CLC) 

11 CONTINUE 
DO 12 K = 1,SMR 
READ(3)(SYMPTS(K,L),L=1,SMC) 

12 CONTINUE 
DO 13M =1,CLR 
READ(3) NAMES(M) 

13. CONTINUE 
CLOSE(3) 
ENDIF 

CLOSE(18) 
CALL PART2(CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 

IFLAG=2 
END 

2t2



C#ERK 

C* eK 

C#eRK 

C#FRK 

Cree 

C**E 

C*eE 

Cc 

SUBROUTINE GRFTRM HAS BEEN SPECIALLY PREPARED FOR TERMINALS 
WITH GRAPHICAL FAILITIES.- THE USER IS PRESENTED WITH A LIST 
OF PACKAGE ROUTINES IN THE FORM OF A MENU .- SELECTION IS 
MADE BY POINTING A LIGHT PEN AT THE ITEM OF YOUR CHOICE. 
THIS SUBROUTINE COMPRICES OF SPECIAL GINO GRAPHICS COMMANDS 
WHICH DO NOT COMPLY WITH MOST GRAPHICAL TERNMINALS WITHOUT 
LIGHT PEN FACILITIES. 

SUBROUTINE GRFTRM(IFLAG,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 
INTEGER CLR,CLC,SMR,SMC,NML, ERRNO, VALUE 
INTEGER CELLS (CLR, CLC ), SYMPTS ( SMR, SMC ) 
CHARACTER NAMES ( CLR ) * (12) 
CHARACTER CHS(S5)*15 
LOGICAL CHECK, TEST,TEST1,FILE 
COMMON/GFEVEN/KEY ,IMPKEY,IMPDAT,NSEG, XPIC, YPIC,NARGS,ARGS(80) 
DATA (CHS(1),I=1,5)/' A. ANALYSE',’ B. DRAW',’ C. TRANSLATE',' 
1D, EDIT, 5 HERP] 
CALL DRIVER ( 2, VALUE,ERRNO ) 
CALL UNITS(S.) 
CALL SHIFT2(2.,15.) 
CALL MOVTO2(0.,0.) 

Cc 
Crete SET UP MENU LIST 
Cc 
Cer SET UP PICTURE SEGMENTS 
Cc 

DO 10 I=1,5 
CALL PICBEG(I) 
X=! 
CALL MOVTO2(0.,-X) 
CALL AKCHAR(CHS(I)) 

10 CONTINUE 
© 
GEARS 

oe 
CLOSE PICTURE SEGMENTS 

CALL PICEND 
. 
Cee 

Cc 
PREPARE FOR PENHIT 

CALL EVESET(2) 
DO 11 J=1,5 

. 
Crtt* 

¢ 
MAKE PICTURE SEGMENT SENSITIVE TO PENHIT 

CALL PICSEN(J,1) 
11 CONTINUE 
J1=2 

Cc 
Corre 

Cc 
CALL TO EVENT EXPECTS EVENT OF TYPE PENHIT 

214



CALL EVENT(J1) 

S 
C**** — ELIMINATE PICTURE SEGMENT SENSITIVITY TO PENHIT 
Cc 

DO 12 N=1,5 
CALL PICSEN(N,0) 

12 CONTINUE 

Cc 
Cree END OF EVENT 
Cc 

CALL EVEDEL(2) 

C 
Oktay ENABLE TRANSFER OF PICTURE SEGMENT NUMBER NSEG FROM 
Chrys GRAPHICAL SCREEN TO ALPHANUMERIC SCREEN. 
iC 

CALL CHAMOD 

c 
Cra IDENTIFY ITEM SELECTED C e 

IF(NSEG.EQ.1)THEN 
TEST1=TEST.AND.CHECK 
IF(TEST1)THEN 
PRINTS, : : 
PRINT * 
PRINT *,' WARNING CAUSE & SYMPTOM EQNS HAVE ALREADY BEEN ANALYSED' 
PRINT *,’ DATA HAVE BEEN STORED IN DATA FILE OPEREQNS' 
PRINT * 
PRINT *,' ; 
IFLAG=5 
RETURN 
ELSE 
CHECK=FILE(I) 
CALL EQTS(IFLAG,CHECK,TEST,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 
ENDIF 
ELSEIF(NSEG.EQ.2)THEN 
CALL TREES(IFLAG,TEST,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 
ELSEIF(NSEG.EQ.3)THEN 
CALL WORDS(IFLAG,TEST) 
ELSEIF(NSEG.EQ.4)THEN 
CALL EDIT(IFLAG,TEST) 
ELSEIF(NSEG.EQ.5)THEN 
CALL DEXPLN 
IFLAG=5 
ENDIF 
CALL DEVEND 
END 

  

  

ato



, 
C**#* — SUBROUTINE AKCHAR PREPARES CHARACTER STRINGS TO BE READILY 
C**** — USED WITH THE GINO COMMAND CALL CHAARR(L,M,N) WHICH OUTPUTS 
c**** A CHARACTER STRING. 
c 

SUBROUTINE AKCHAR(STRING) 
PARAMETER(LENGTH=20) 
CHARACTER STRING*(*) 
INTEGER FINAL 
NCHAR=FINAL(STRING) 

c 
C**** — OUTPUT STRING OF CHARACTERS 
¢C 

CALL CHAHOL(STRING(1:FINAL(STRING))) 
END 
LOGICAL FUNCTION YESNO(TYPE) 
CHARACTER ANSWER*3 
LOGICAL REPLY 

9000 CONTINUE 
READ (*,16)ANSWER 

16 FORMAT(A) 
IF(ANSWER.EQ.'YES'.OR.ANSWER.EQ.'YE'.OR.ANSWER.EQ.'Y'.OR.ANSWER. 
+EQ.'yes'.OR. ANSWER.EQ.'ye'.OR.ANSWER.EQ.'y') THEN 
REPLY=.TRUE. 
YESNO=.TRUE. 
ELSEIF(ANSWER.EQ,'NO'.OR.ANSWER.EQ.'N'.OR.ANSWER.EQ.'NO'.OR. 
+ANSWER.EQ.'N')THEN 
REPLY=.TRUE. 
YESNO=.FALSE. 
ELSE 
PRINT *,,°YOUR ANSWER SHOULD BE YES OR NO' 
REPLY=.FALSE. 
ENDIF 
IF (.NOT. REPLY) GO TO 9000 
RETURN 
END 
SUBROUTINE EXPLN(HELP) 
CHARACTER HELP(4)*80 
LOGICAL RQST, YESNO 
PRINT *,' 
PRINT *,/PLEASE TRY AGAIN KEYWORD WRONGLY INPUTED' 
PRINT *,,DO YOU REQUIRE EXPLANATION OF KEYWORDS?ENTER YES OR NO' 
PRINT * 
PRINT *;' 
RQST=YESNO(TYPE) 
IF(RQST)THEN 
PRINT 20,(HELP(1),I=1,4) 

20 FORMAT(A/) 
PRINT *,' 
PRINT * 
PRINT *,'IF DETAILED EXPLANATION OF PACKAGE IS REQUIRED PRINT’ 
PRINT *,'HELP- THIS PRODUCES LISTING TO THE SCREEN ' 

  

  

  

216



PRINT * 
PRINT *,' ; 
ELSE 
PRINT *,' 
ENDIF 
END 

  

  

LOGICAL FUNCTION COMPR(C1,C2) 
CHARACTER C1*(*),C2*(*) 
INTEGER FIRST,FINAL 
IF(C1(FIRST(C1):FINAL(C1)).EQ.C2(FIRST(C2):FINAL(C2))) THEN 
COMPR=.TRUE. 
ELSE 
COMPR=.FALSE. 
ENDIF 
RETURN 
END 

INTEGER FUNCTION FIRST(C) 
CHARACTER C*(*) 
INTEGER COUNT 
DO 10 COUNT=1,LEN(C) 
IF(C(COUNT:COUNT).NE.. ')THEN 
FIRST=COUNT 
RETURN 
ENDIF 

10 CONTINUE 
FIRST=LEN(C) 
RETURN 
END 

INTEGER FUNCTION FINAL(C) 
CHARACTER C*(*) 
INTEGER COUNT 
DO 15 COUNT=LEN(C),1,-1 
IF(C(COUNT:COUNT) NE. ')THEN 
FINAL=COUNT 
RETURN 
ENDIF 

15 CONTINUE 
FINAL=0 
RETURN 
END 

LOGICAL FUNCTION FILE(I) 
LOGICAL RPLY,YESNO 
PRINT *,' , 
PRINT *,,DO YOU INTEND TO TERMINATE RUN BEFORE OBTAINING FINAL RES 
1ULTS?' 

  

217



PRINT *,'IF YES INTERMEDIATE RESULTS FROM ANALYSIS OF CAUSE AND SY 
1MPTOM EQNS ' 
PRINT *,'MAY BE STORED IN DATA FILE AND USED ON REQUEST' 
PRINT * 
PRINT *,' : 
RPLY=YESNO(TYPE) 
IF(RPLY)THEN 
FILE=.TRUE. 
ELSE 
FILE=.FALSE, 
ENDIF 
RETURN 
END 

  

Ec 
CFSESETE 

C 

* 

SUBROUTINE PART1(CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 

INTEGER CLR,CLC, SMR, SMC, NML 
INTEGER AT,OP,PO,EQ,AX,TP,NAM,SYMP,SIGN,1I,Q,N,POS,M,K,P,S,R,J 
INTEGER LIMT,FIM,TNML 
PARAMETER (AT=30,OP=20,PO=30,EQ=200,AX=30,TP=9, TNML=12) 
INTEGER CELLS ( CLR, CLC ), SYMPTS ( SMR, SMC ) 
INTEGER DIST,TEST,ATRNS(AT),OPSTK(OP),POLLSH(PO), AUX(AX),TEMP(TP) 
CHARACTER NAMES(CLR)*(12), BRANCH*(TNML) 
CHARACTER EQN*(EQ) 

'INITIALISING ARRAYS' 

DO 10 I=1,CLR 
NAMES(I)="EMPTY' 

10 CONTINUE 

DO 20 I=1,SMR 
DO 21 J=1,SMC 
SYMPTS(I,J)=0 

21 CONTINUE 
20 CONTINUE 

DO 22 I=1,CLR 
DO 23 J=1,CLC 
CELLS(L,J)=0 

23 CONTINUE 
22 CONTINUE 

WRITE ( UNIT = *, FMT = 24 ) 
24 FORMAT (T30,'D A T A‘/T30,7('*')) 

WRITE ( UNIT = *, FMT =*) 
OPEN(8,FILE='SOLVAY',FORM='FORMATTED') 
REWIND(8) 

100 READ( UNIT = 8, FMT = * ) EQN 

218



WRITE ( UNIT = *, FMT = '(2A)')'EQN : ‘JEQN 

Q=0 
N=0 
IF(EQN.EQ.'END')THEN 
GO TO 2000 
END IF 

CALL DISTNT (EQN, DIST,Q ) 

POS=Q-1 

BRANCH=EQN(1:POS) 

CALL ALLOC(BRANCH,R,TEST,NAMES,NML,CLR) 

NAM=R 

IF(IST.EQ.0)THEN 

GO TO 350 

END IF 

IF(TEST.EQ.-1)THEN 

CELLS(NAM, 1)=1 
CELLS(NAM,2)=-2 

END IF 

M=0 

50 M=M+1 

‘IF(M.GT.SMR)THEN 

PRINT*, ‘SYSTEM CANNOT ACCEPT MORE EQS.' 

GO TO 300 

END IF 

IF(SYMPTS(M, 1).NE.0)THEN 

GO TO 50 

END IF 

SYMPTS(M,1)=NAM 

SYMP=M 

K=1 

60 P=Q+1 

S$=0 

SIGN=0 

70 Q=Q+1 

S=S+1 

IF(S.GT.NML+1)THEN 

PRINT*, 'THERE IS A MISTAKE, IT IS NOT A SYMPTON EQN. 

PRINT*, INPUT EQUATION WAS' 

PRINT*, EQN 

GO TO 300 

END IF 

IF(EQN(Q:Q).EQ.™')THEN 
BRANCH=EQN(P:Q-1) 

ELSE 

IF(EQN(Q+1:Q+1).EQ.' '\ THEN 
BRANCH=EQN(P:Q) 

SIGN=-1 

ELSE 

GO TO 70 

END IF 

END IF 

CALL ALLOC(BRANCH,R,TEST,NAMES,NML,CLR) 

IF(TEST.EQ.-1)THEN 

Rito



CELLS, 1)=1 

CELLS(,2)=0 

CELLS(@,3)=1 

ELSE 

CELLS(R,3)=CELLS(R,3)+1 

END IF 

J=CELLS@,3) 

CELLS(R,3+J)=SYMP 

SYMPTS(SYMP,2+K)=R 

K=K+1 

IF(K.GT.SMC-2)THEN 

PRINT*, 'THERE ARE MORE THAN 18 BRANCHS IN A SYMPTON EQN. 

GO TO 300 

END IF 

IF(SIGN.EQ.0) THEN 

GO TO 60 

END IF 

SYMPTS(SYMP,2)=K-1 

GO TO 100 

350 IF(TEST.EQ.-1)THEN 
CELLS(NAM,1)=1 
END IF 

CALL TRNSLT(EQN,Q,ATRNS,I,LIMT,EQ,AT,CELLS,CLR,CLC,NAMES,NML) 

CALL POLISH(ATRNS,I,POLLSH,N,LIMT,FIM,OP,PO,AT,OPSTK,AUX) 

CALL CAUSE(POLLSH,NAM,FIM,PO,TP,CELLS,CLR,CLC,NAMES,NML, TEMP) 

GO TO 100 

2000 DO 1500 J=1,CLR 
IF(CELLS(J,3).EQ.0)THEN 
IF(NAMES(J).NE.'EMPTY')THEN 
CELLS(J,2)=-2 
CELLS(J,1)=1 

ELSE 
GO TO 200 
END IF 
END IF 

1500 CONTINUE 

200 WRITE ( UNIT = *, FMT =*) 
WRITE ( UNIT = *, FMT = 205 ) 

205 FORMAT (T42,'C E L L S/T42,9('*')) 
WRITE ( UNIT = *, FMT = * ) 
DO 210 I=1,CLR 
WRITE ( UNIT = *, FMT = 220 ) I, (CELLS (1,J), J = 1, CLC) 

220



220 FORMAT (T5,13,T20,10(3X,13)) 
210 CONTINUE 

WRITE ( UNIT = *, FMT = *) 
WRITE ( UNIT = *, FMT = 215) 

215 FORMAT (T60,'S Y MP T S/T60,11('*")) 
WRITE ( UNIT = *, FMT = *) 
DO 230 I=1,SMR 
WRITE ( UNIT = *, FMT = 240 )I,(SYMPTS(I,J),J=1,SMC) 

240 FORMAT (T5,I3,T20,(10(2X,13))) 
230 CONTINUE 

WRITE (UNIT =*, EMT = *) 
WRITE ( UNIT = *, FMT = 265 ) 

265 FORMAT (T10,'N A ME S‘T10,9('*')) 
WRITE ( UNIT = *, FMT = *) 
DO 250 I=1,CLR 
WRITE ( UNIT = *, FMT = 260 ) LNAMES(1) 

260 FORMAT (T5,I3,T10,A) 
250 CONTINUE 
300 RETURN 

END 

SUBROUTINE DISTNT(EQN,DIST,Q ) 

C*** * THIS SUBROUTINE DETERMINES WHETHER AN EQUATION IS A CAUSE OR 
Gre A SYMPTOM EQUATION. 
Cree * 

erat EQN - CHARACTER - THE EQUATION IN QUESTION 
Cree DIST -INTEGER - RETURNS -1 FOR SYMPTOM 
Cree > RETURNS 0 FOR CAUSE 
Ca Q_ -INTEGER - RETURNS POSITION OF - OR = IN EQN 
Crt * 

CHARACTER EQN * ( * ) 
INTEGER DIST, Q, NXTNSP 

Q = INDEX ( EQN, ')') 

IF (Q EQ. 0) THEN 

CALL INERR ( EQN ) 
STOP 

ELSE 

. LOOK FOR NEXT NON-SPACE CHARACTER 
* 

Q=Q+NXTNSP (EQN (Q+1:LEN (EQN) )) 

221



IF (EQN (Q:Q) EQ.'-') THEN 

DIST =-1 
RETURN 

ELSE IF (EQN (Q:Q) .EQ.'=') THEN 

DIST =0 
RETURN 

ELSE 

CALL INERR ( EQN ) 
STOP 

END IF 

END IF 

END 

SUBROUTINE ALLOC(BRANCH,R,TEST,NAMES,NML,CLR) 

INTEGER CLR,NML 
INTEGER R, TEST, NEXT 
PARAMETER ( TNML = 12 ) 
CHARACTER BRANCH*(*),NAMES(CLR)*(12) 

DATA NEXT/ 1/ 

IF (BRANCH .NE.'') THEN 

DO 10,R =1, NEXT 

IF ( BRANCH .EQ. NAMES (R ) ) THEN 

TEST =0 
RETURN 

END IF 

10 CONTINUE 

END IF 

IF (NEXT .EQ. CLR ) THEN 

PRINT *, ‘SYSTEM CANNOT ACCEPT MORE EQUATIONS ' 
STOP 

ELSE 

NAMES ( NEXT ) = BRANCH 

+ 

222



R = NEXT 
NEXT = NEXT + 1 
TEST = -1 

RETURN 

END IF 

END 
OR Ae Ae fs 2 He He ee 2 ee ee 2 Ae Ag 2 He 2 He He 2 Ae 2 2 2 Ae 2 A 2 2 2 2 2 EE OK OK OK OK 

***** SUBROUTINE PART2 
***4** TO INTERPRETE A DATA STRUCTURE, WHICH REPRESENTS 
**##* CAUSE AND SYMPTOM EQUATIONS AS CODED BY 
**#4** DR. D. A. LIHOU FROM OPERABILITY STUDY RECORDS, 
***4* AND TO DRAW A REPRESENTATION OF THE ABOVE 
***4** EQUATIONS IN THE FORM OF A FAULT TREE USING 
ert GINO LIBRARY 
2 ie Ae hs 2 he he 2 ee ee ee 2 ie he 2 he 2 He ee He ee ee 2 ee ee Oe 2 2 HO OE OE RK OK OE EE OK KK OR OK 

SUBROUTINE PART2 (CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 

INTEGER CLR,CLC,SMR,SMC,NML, ERRNO, NOTERM 
PARAMETER ( IW = 10, IL = 40) 
PARAMETER ( YMAX=350.0, XMAX=1030.0 ) 
COMMON /ONE/ FLAG 
COMMON /TWO/ JLJ, KLJ, KR, IOPT 
COMMON/SHIN/SHX,SHY,SCX,SCY 
INTEGER CELLS(CLR,CLC), IOPT(3), SYMPTS (SMR, SMC ) 
CHARACTER NAMES(CLR)*(12), INDATA*40, FLAG(IW,IL)*40 
REAL X,Y 
INTEGER ICOM 
LOGICAL CLEAR,EXIST,ERROR 

CLEAR = .FALSE. 
Cre 

1 CONTINUE 
ILI = 1 
KR =-1 

C**** INITIALISE THE ARRAY FLAG 
DO 10JK = 1,IL 
DO 10JR = 1,IW 

10 FLAG(JR,JK) = EMPTY’ 
CALL BOXSTR(1,’_',0.,0.,0.,0.,. ERROR) 
IF (CLEAR ) THEN 
GO TO 19 

END IF 
C**#* READ THE OPTIONS AND ACT APPROPRIATELY 

CALL DAWRI( 'EMPTY',1,CELLS,CLR,CLC,NAMES,NML) 
C**#* INITIALISE A GINO FILE 

CALL DRIVER (2, NOTERM, ERRNO ) 
C***** SET UP THE SHIFT FACTORS ( SHX AND SHY ) AND THE SCALE FACTORS 
C**##* (SCX AND SCY ) FOR THE GINO GRAPHICS 

CALL DRIVER ( 3, NOTERM, ERRNO ) 
IF (NOTERM EQ. 1 ) THEN 
CALL HARCHA 

22:5



END IF 
IF (NOTERM .EQ. 1 ) THEN 

C**** TE, A NEWBURY SERIES 8000 
SHX = -25 
SHY = 140 
SCX = 0.7 
SCY, 2 077 

ELSE 
Crt 1B: A DYNAGRAPHIGS 

SHX = 0 
SHY = 250 
SCX = 0.7 
SCY =0.7 

END IF 

CALL SHIFT2 ( SHX,SHY ) 
CALL SCALE2(SCX,SCY) 
CALL ROTAT2 (270. ) 
CALL CHASWI (1) 
CALL PENSEL( 1,0.0,0 ) 

19 CLEAR = FALSE. 

CALL WINDIN(1) 
CALL WINDIN(2) 
CALL WINDIN(3) 
CALL WINDIN(4) 
CALL WINDIN(5) 
CALL CHWIN(2) 

C**** READ, WRITE OUT IF REQUIRED, AND CHECK THE INPUT DATA 
PRINT *, TF THE SCREEN IS CLEAR THEN INPUT DATA FROM KEYS 
+ONLY' 

PRINT *,’ IF NOT THEN YOU CAN CHOOSE INPUT BY;' 
PRINT *; 1 CURSOR’ 
PRINT *)) 2eKE YS! 

20 READ(10, '( A ))INDATA 
99 CALL DAWRI( INDATA,2,CELLS,CLR,CLC,NAMES,NML ) 

CALL DATA( INDATA,I,CELLS,CLR,CLC,NAMES,NML, CLEAR, EXIST ) 

IF (CLEAR ) THEN 
GOTO1 
END IF 
IF ( .NOT. EXIST ) THEN 
GO TO 20 

END IF 
KR = KR+1 

C**** ANALYSE THE DATA STRUCTURE AND STORE THE INFORMATION 
C**** IN THE ARRAY FLAG 

KLJ = JLJ 
CALL ANCELL(KLJ,I,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 
KLJ = KLJ+1 

C**** USING GINO DRAW THE FAULT TREE CREATED IN ARRAY FLAG 
CALL CHWIN(1) 
CALL DRAWTR(I,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 

C**** UPDATE THE COUNTER JLJ AND READ THE NEXT ITEM OF DATA 

224



88 

JLJ = KLJ+1 

CALL CHWIN(4) 
PRINT * 
PRINT *,'KEYS' 
PRINT * 
CALL CHWIN(2) 
PRINT * 
PRINT *,'**NOW YOU MUST USE CURSOR FOR CHOOSING INPUT**' 
PRINT * 
CALL CURSOR(ICOM,X, Y) 
IF(X.GE.182.AND.X.LE.210.AND.Y.GE.18.AND.Y.LE.36)THEN 
GOTO 1 

ELSEIF(X.GE.182.AND.X.LE.210.AND.Y.GE.0.AND.Y.LT.15)THEN 
CALLCHWIN(4) 
PRINT * 
PRINT - RK ARK 

PRINT.*;**KEYS**' 
PRINT = KK KK 

CALL CHWIN(2) 
GO TO 20 
ELSEIF(X.GE.0.AND.X.LE.210.AND. Y.GE.40.AND.Y.LE.120)THEN 
CALL CHWIN(2) 

1 * * 1 PRINT a 2H ee fe he ee ee Ae Ae ae ee 2 ee 2 ke 2 2 2 eo OK OK OK OK EE 

PRINT *,'***NOW CLEAR THE SCREEN FOR MORE INPUT*' 
oe ie 2 oe ok ok ok ok 3 Re A a oR 28 KK A L PRINT 3 2K KK 2 KR A 

GO TO 20 
ELSEIF(X.GE.154.AND.X.LT.182.AND.Y.GE.18.AND.Y.LE.36)THEN 
CALL CHWIN(2) 
PRINT *,'*** END OF DATA88' 
STOP 
ELSE 
CALL BOXSTR(3,INDATA,X, Y,0.,0.,ERROR) 
CALL CHWIN(2) 
PRINT *, INDATA 
IF(ERROR)THEN 

' * ' PRINT % 2H ee Fe ee 2 fe fe ie fe fe oe 2 a a 2 a ok 2 ie a a ok 

PRINT *,'########* TRY AGAIN 33: RIE! 
PRINT +, 22 ARH ABH HEE AE aE OE a ro Ix ak! 

ENDIF 
GO TO 99 
END IF 
END 

SUBROUTINE DATA( INDATA,I,CELLS,CLR,CLC,NAMES,NML, CLEAR, EXIST ) 

INTEGER CLR,CLC,NML,I 
CHARACTER NAMES(CLR)*(12), INDATA*40 
INTEGER CELLS(CLR,CLC) 
LOGICAL CLEAR, EXIST 

IF (INDATA .EQ. 'STOP'.OR.INDATA .EQ. 'STO'.OR.INDATA.EQ.'ST" 
+.OR.INDATA.EQ.'S'.OR.INDATA.EQ.'STOP'.OR.INDATA.EQ.'STO'.OR. 

22>



+INDATA.EQ.'ST".OR.INDATA.EQ.'S') THEN 
PRINT * 
PRINT. *,*2*2" END ORINEUT DATA 444" 
CALL GINEND 
CALL DAWRI( 'EMPTY’,3,CELLS,CLR,CLC,NAMES,NML ) 
STOP 

ELSE IF ( INDATA .EQ. 'CLEAR' .OR. INDATA .EQ. 'CLEA'.OR.INDATA 
+.EQ.'CLE’.OR.INDATA .EQ. 'CL'.OR.INDATA.EQ.'C'.OR.INDATA.EQ. 
+'CLEAR'.OR.INDATA.EQ.'CLEA'.OR.INDATA.EQ.'CLE'.OR.INDATA.EQ. 
+'CL'.OR.INDATA.EQ.'C’) THEN 

CALL PICCLE 
CLEAR = .TRUE. 
RETURN 
END IF 
DO 101 = 1,CLR 

IF (INDATA .EQ. NAMES(I)) THEN 

EXIST = -TRUE. 
. RETURN 
END IF 

10 CONTINUE 
PRINT * 
PRINT) ""*" DATA: GIVEN NOE CORRECT: 
PRINT *,'**** THIS DEVIANT STATE WAS NOT CONTAINED IN THE' 
PRINT *,'**** INPUT EQUATIONS - ENTER CLEAR TO CLEAR SCREEN' 

EXIST = .FALSE. 

RETURN 
c 

END 
Cc 
Crss* 

. 
SUBROUTINE TRNSLT(EQN,Q,ATRNS,I,LIMT,EQ,AT,CELLS,CLR,CLC, 

> NAMES,NML) 

INTEGER EQ,AT,CLR,CLC,NML 

INTEGER Q,ATRNS(AT),I,LIMT,PS,MEM,R,TEST,CELLS(CLR,CLC) 

CHARACTER BRANCH*(12),EQN*(*),NAMES(CLR)*(12) 

DO 51 I=1,AT 

ATRNS(1)=0 

51 CONTINUE 

I=1 

PS=Q+1 

55 Q=Q+1 

IF(EQN(Q:Q).EQ.'(‘)THEN 
IF(EQN(Q+1:Q+1).NE.'(‘)THEN 

IF(Q.EQ.PS)THEN 

ATRNS(I=-4 

T=I+1 

PS=PS+1 

GO TO 55 

226



ELSE 

MEM=INDEX(EQN(PS: ),')') 

BRANCH=EQN(PS:PS+MEM-1) 

CALL ALLOC(BRANCH,R,TEST,NAMES,NML,CLR) 

IF(TEST.EQ.-1)THEN 

CELLS(R,1)=1 

END IF 

ATRNS(D=R 

I=I+1 

PS=PS+MEM 

Q=PS-1 

GO TO 55 

END IF 

ELSE 

ATRNS(I)=-4 

I=I+1 

PS=PS+1 

GO TO 55 

END IF 

END IF 

IF(EQN(Q:Q).EQ.’)') THEN 
ATRNS(I)=-3 

I=I+1 

PS=Q+1 

GO TO 55 

END IF 

IF(EQN(Q:Q).EQ.'"*')THEN 

ATRNS(I)=-1 

I=I+1 

PS=Q+1 

GO TO 55 

END IF 

IF(EQN(Q:Q).EQ.'+')THEN 
ATRNS(I)=-2 

I=I+1 

PS=Q+1 

GO TO 55 

END IF 

IF(EQN(Q:Q).NE.' ')THEN 

GO TO 55 

ELSE 

LIMT=I-1 

END IF 

RETURN 

END 

G 
Crete 

Cc 
SUBROUTINE POLISH(ATRNS,I,POLLSH,N,LIMT,FIM,OP,PO,AT,OPSTK,AUX) 

INTEGER OP,PO,AT,FIM,N,1,L,J,LIMT,X 
INTEGER POLLSH(PO),ATRNS(AT),OPSTK(OP),AUX(OP) 

I=0 

2et



N=0 
J= 

X=0 

500 I=I+1 

IF(.GT.LIMT)THEN 

IF(J.NE.0)THEN 

DO 555 L=J,1,-1 

N=N+1 

POLLSH(N)=OPSTK(L) 

555 CONTINUE 

END IF 

FIM=N 

RETURN 

END IF 

IF(ATRNS(I).LT.0) THEN 

IF(J.EQ.0)THEN 

J=J+1 

OPSTK(J)=ATRNS(I) 

GO TO 500 

END IF 

X=X+1 

AUX(X)=ATRNS(1I) 

IF(AUX(X).GT.OPSTK(J)) THEN 

J=J+1 

OPSTK(J)=AUX(X) 

AUX(X)=0 

X=X-1 

GO TO 560 

ELSE 

IF(AUX(X).NE.OPSTK(J)) THEN 

IF(AUX(X).EQ.-4) THEN 

J=J+1 

OPSTK(J)=AUX(X) 

AUX(X)=0 

X=X-1 

GO TO 500 

END IF 

IF(AUX(X).EQ.-3)THEN 

570 N=N+1 

POLLSH(N)=OPSTK(J) 

OPSTK(J)=0 

J=J-1 

IF(OPSTK(J).NE.-4)THEN 

GO TO 570 

“HESE 

J=J+1 

OPSTK(J)=AUX(X) 

AUX(X)=0 

X=X-1 

GO TO 560 

END IF 

END IF 

580 N=N+1 

POLLSH(N)=OPSTK(J) 

OPSTK(J)=0 

228



J=J-1 

IF(J.GT.0)THEN 

IF(OPSTK(J).EQ.POLLSH(N))THEN 

GO TO 580 

END IF 

END IF 

J=J+1 

OPSTK(J)=AUX(X) 

AUX(X)=0 

X=X-1 

GO TO 500 

ELSE 

IF(AUX(X).GT.-3) THEN 

DO 590 L=I+1,LIMT 

IF(ATRNS(L).LT.0) THEN 

IF(ATRNS(L).NE.-3)THEN 

IF(ATRNS(L).NE.AUX(X))THEN 

J=J+1 

OPSTK(J)=AUX(X) 

AUX(X)=0 

X=X-1 

GO TO 500 

END IF 

END IF 

END IF 

590 CONTINUE = 

N=N+1 

POLLSH(N)=AUX(X) 

AUX(X)=0 

X=X-1 

GO TO 500 

END IF 

END IF 

END IF 

560 IF(OPSTK(J)+OPSTK(J-1).EQ.-7)THEN 

OPSTK(J)=0 

OPSTK(J-1)=0 

J=J-2 

END IF 

GO TO 500 

ELSE 

N=N+1 

POLLSH(N)=ATRNS(I) 

GO TO 500 

END IF 

END 

c 
Cex 

Cc 

SUBROUTINE CAUSE(POLLSH,NAM,F1M,PO,TP,CELLS,CLR,CLC, 
= NAMES,NML,TEMP) 

INTEGER CLR,CLC,NML,TP,PO 

229



CHARACTER NAMES(CLR)*(12) 
INTEGER CELLS(CLR,CLC),POLLSH(PO), TEMP(TP),FLAG,STEP,FIM,NAM 
+, LASTOP,L,K,S,M,I, TEST 
DO 700 L=1,TP 
TEMP(L)=0 

700 CONTINUE 
K=0 
FLAG=1 

710 K=K+1 
IF(POLLSH(K).GE.0)THEN 
IF(K.GE.F1M)THEN 
IF(FLAG.EQ.1)THEN 
CELLS(NAM,2)=2 
CELLS(NAM,3)=1 
CELLS(NAM,4)=POLLSH(K) 
RETURN 

ELSE 
DO 720 S=1,TP 
CELLS(NAM,S+1)=TEMP(S) 

720 CONTINUE 
RETURN 
END IF 

ELSE 
GO TO 710 

END IF 
END IF 
IF(FLAG.EQ. 1) THEN 

" LASTOP=POLLSH(K) 
IF(LASTOP.EQ.-1)THEN 
TEMP(1)=-1 

ELSE 
TEMP(1)=1 

END IF 
TEMP(2)=2 
TEMP(3)=POLLSH(K-2) 
TEMP(4)=POLLSH(K-1) 
IF(F1M.EQ.3)THEN 
DO 730 M=1,3 
POLLSH(M)=0 

730 CONTINUE 
FIM=1 
K=0 
FLAG=0 
GO TO 710 

END IF 
CALL COMPRS (POLLSH,PO,K,F1M,FLAG) 
GO TO 710 

END IF 
IF(POLLSH(K).EQ.LASTOP)THEN 
IF(POLLSH(K-2).EQ.0) THEN 
TEMP(2)=TEMP(2)+1 
STEP=TEMP(2) 
TEMP(2+STEP)=POLLSH(K-1) 
IF(F1M.EQ.3)THEN 
DO 750 M=1,3 

230



POLLSH(M)=0 
750 CONTINUE 

FIM=1 
FLAG=0 
K=0 
GO TO 710 

END IF 
CALL COMPRS (POLLSH,PO,K,F1M,FLAG) 
GO TO 710 

END IF 
IF(POLLSH(K-1).EQ.0)THEN 
TEMP(2)=TEMP(2)+1 
STEP=TEMP(2) 
TEMP(2+STEP)=POLLSH(K-2) 
IF(F1M.EQ.3)THEN 
DO 780 M=1,3 
POLLSH(M)=0 

780 CONTINUE 
FIM=1 
FLAG=0 
K=0 
GO TO 710 

END IF 
CALL COMPRS (POLLSH,PO,K,F1M,FLAG) 
GO TO 710 

END IF 
END IF 
LASTOP=POLLSH(K) 

850 CALL ALLOC(' _',], TEST,NAMES,NML,CLR) 
NAMES())=" 
DO 920 S=1,TP 
CELLS(I,S+1)=TEMP(S) 

920 CONTINUE 
DO 930 S=1,TP 
TEMP(S)=0 

930 CONTINUE 
DO 931 L=K-1,1,-1 
IF(POLLSH(L).EQ.0) THEN 
POLLSH(L)=I 
GO TO 935 

END IF 
931 CONTINUE 
935 IF(LASTOP_EQ.-1)THEN 

TEMP(1)=-1 
ELSE 
TEMP(1)=1 
END IF 
TEMP(2)=2 
TEMP(3)=POLLSH(K-2) 
TEMP(4)=POLLSH(K-1) 
IF(F1M.EQ.3)THEN 
DO 940 M=1,3 
POLLSH(M)=0 

940 CONTINUE 
FIM=1 

aot



K=0 
FLAG=0 
GO TO 710 
END IF 
CALL COMPRS (POLLSH,PO,K,F1M,FLAG) 
GO TO 710 
END 
SUBROUTINE COMPRS (POLLSH,PO,K,F1M,FLAG) 
INTEGER PO 
INTEGER POLLSH(PO),K,F1M,FLAG,S 
POLLSH(K-2)=0 
DO 950 S=K+1,F1M 
POLLSH(S-2)=POLLSH(S) 

950 CONTINUE 
FIM=F1M-2 
FLAG=0 
K=0 
END 

SUBROUTINE ANCELL( ILJ,KS,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 

INTEGER CLR,CLC,SMR,SMC,NML 

PARAMETER (IW=10, IL=40, LVECT=50) 
COMMON /ONE/ FLAG 
COMMON/SYGIN/FD 

INTEGER CELLS(CLR,CLC), NM(IW), NJ(IW), K(IW), NZ(IW), 
+ VECTOR (LVECT ),SYMPTS ( SMR,SMC ) 
CHARACTER NAMES(CLR)*(12), FLAG(IW,IL)*40 

c 
C**** INITIALISE THE ARRAY K 
C 

K(1) = KS 
DO 5, I=2,1W 

K(I)=0 

5 CONTINUE 

c 
C**#* CHECK THE LENGTH OF THE DRAWING AREA 
¢ 

CALL EXCEED( ILJ,IL,CELLS,CLR,CLC,NAMES,NML ) 
C 
C**** PUT THE TOP BOX OF THE TREE IN THE MIDDLE OF A ROW 
C**** OF ARRAY FLAG AND CODE NAME IT 
Cc 

IF (2*(IW/2) .EQ. IW) THEN 
FLAG(W/2,ILJ) = 'Z' 
KIW =IW/2 

ELSE 

R32



FLAG(1+IW/2,ILJ) = 'Z' 
KIW = 1+IW/2 

END IF 
Cc 
C**** FIND THE NUMBER OF BRANCHES AND MARK THEM IN THE NEXT 
C**** ROW OF ARRAY FLAG 

CALL BRANCH(ILJ,K(1),KTIW,CELLS,CLR,CLC,NAMES,NML) 
C 
C**** CHECK TO SEE IF ALL THE BOXES MARKED IN THE LATEST ROW 
C**** OF ARRAY FLAG HAVE NAMES 
Cc 
10L=0 
J=1 
N8 =0 
DO 401 = 1,1W 

IF (K(I) .NE. 0) THEN 

CALL SETROW ( VECTOR, K (1), CELLS, SYMPTS, CLR, CLC, SMR, 
+ SMC ) 

N1=3 

DO 20M =J,IW 

IF (FLAG(M,ILJ+1) .NE. 'EMPTY') THEN 

N1 =N1+41 

IF (VECTOR (N1).EQ.0) THEN 

GO TO 30 

END IF 

N8 = N8+1 

IF (CELLS(VECTOR(N1),1) .EQ. 0) THEN 

L=L+1 

NM(L) =I 

NJ(L) =N1 

NZ(L) = N8& 

END IF 

END IF 

20 CONTINUE 

Cc 

30 J=M 

ELSE 

GO TO 50 

END IF 

40 CONTINUE 

C 

50 IF (L.EQ. 0) THEN 

RETURN 

END IF 

Cc 

C**** TF THERE ARE UNNAMED BOXES CONTINUE WITH THE ANALYSIS 

C**** OF THE DATA IN ARRAY CELLS 

Cc 

ILJ = ILJ+1 

GC 

C**** CHECK THE LENGTH OF THE DRAWING AREA 

Cc 

2e5



CALL EXCEED( ILJ,IL,CELLS,CLR,CLC,NAMES,NML ) 
Cc 
C**** DEAL WITH EACH UNNAMED BOX IN TURN 
c 

DO 80LA = 1,L 
KA=0 
DO 60 LB = 1,IW 

IF (FLAG(LB,ILJ) .NE. 'EMPTY') THEN 
KA = KA+1 

IF (KA .EQ. NZ(LA)) THEN 
GO TO 70 

END IF 
END IF 

60 CONTINUE 
C 

C**** FIND THE ROW OF ARRAY CELLS WHICH HAS INFORMATION ABOUT 

C**** THE UNNAMED BOX AND USE THE SUBROUTINE BRANCH TO FIND 

C**** THE NUMBER OF BRANCHES BELOW IT AND TO MARK THEM IN 

C**** THE NEXT ROW OF ARRAY FLAG 

Cc 

70 K1=CELLS(K(NM(LA)),NJ(LA)) 

CALL BRANCH(ILJ,K1,LB,CELLS,CLR,CLC,NAMES,NML) 

80 CONTINUE 

CS 

C**** FIND THE ROWS OF CELLS WHICH HOLD INFORMATION ABOUT THE 

C**** MARKED BOXES IN THE LATEST ROW OF ARRAY FLAG 

c 

ML=0 

DO 100 LD = 1,1W 

IF (K(LD) .NE. 0) THEN 

DO 90 LF = 4,CLC 

IF (CELLS(K(LD),LF) .NE. 0) THEN 

ML = ML+1 

NM(ML) = CELLS(K(LD),LF) 

ELSE 

GO TO 100 

END IF 

90 CONTINUE 

ELSE 

GO TO 110 

END IF 

100 CONTINUE 

GC 

C**** STORE THE ROWS FOUND ABOVE IN ARRAY K AND START AGAIN 

C**** CHECKING THE LATEST ROW OF ARRAY FLAG 

¢ 

110 DO120LP=1,IW 

IF (LP .LE. ML) THEN 

K(LP) = NM(LP) 
ELSE 

K(LP) = 0 

END IF 

120 CONTINUE 

GO TO 10 

Cc 

234



END 

SUBROUTINE BRANCH(MLJ,K2, KMW,CELLS,CLR,CLC,NAMES,NML) 

INTEGER CLR,CLC,NML 

PARAMETER (IW=10, IL=40) 

COMMON /ONE/FLAG 
COMMON/SYGIN/FD 

INTEGER CELLS(CLR,CLC) 

CHARACTER FLAG(IW,IL)*40, NAMES(CLR)*(12) 
Cc 
C**** CHECK THE SECOND ELEMENT IN THE ROW OF ARRAY CELLS 
c 
C**** FIND THE NUMBER OF BRANCHES AND CHECK THE WIDTH 
C**** OF THE DRAWING AREA 
Cc 

NUM = CELLS(K2,3) 
IF (NUM .GT. IW) THEN 

PRINT *,'***** WIDTH OF DRAWING AREA TOO SMALL ****#'! 
CALL GINEND 
CALL DAWRI( 'EMPTY',3,CELLS,CLR,CLC,NAMES,NML ) 
STOP 

END IF 
e 
C**** CHECK TO SEE IF THE NUMBER OF BRANCHES IS EVEN OR ODD 
C**** AND USE SUBROUTINE FILLF TO MARK THEM IN THE NEXT 
C**** ROW OF ARRAY FLAG 
Cc 

IF (2*(NUM/2) .EQ. NUM) THEN 
CALL FILLF(KMW,NUM,MLJ,CELLS,CLR,CLC,NAMES,NML) 

ELSE 
FLAG(KMW,MLJ+1) = '10' 
CALL FILLF(KMW,NUM,MLJ,CELLS,CLR,CLC,NAMES,NML) 

END IF 

END 

SUBROUTINE FILLF(KMW,NUM,MLJ,CELLS,CLR,CLC,NAMES,NML) 

INTEGER CLR,CLC,NML 

PARAMETER (IW=10, IL=40) 

COMMON /ONE/ FLAG 
COMMON/SYGIN/FD 

CHARACTER FLAG(IW,IL)*40, CHARA, NAMES(CLR)*(12) 
INTEGER CELLS(CLR,CLC) 

239



C**** DERIVE A CODED NAME FOR EACH MARKED ELEMENT OF ARRAY FLAG 
IF (FLAG(KMW,MLJ) .EQ. 'Z') THEN 

IT = ICHAR('A') 
ELSE 
1 =ICHAR( 1") 

END IF 
Cc 
C**** CODE NAME THE MIDDLE ELEMENT OF THE NEXT ROW OF THE 
C**** ARRAY FLAG IF IT IS MARKED 
Cc 

IF (FLAG(KMW,MLJ+1) .EQ. '10') THEN 
CHARA = CHAR( IT+NUM/2 ) 
FLAG(KMW,MLJ+1) = CHARA(1:1)//FLAG(KMW,MLJ) 

END IF 
Cc 
C**** MARK THE LEFT HAND SIDE BRANCHES IN THE NEXT ROW OF 
C**** THE ARRAY FLAG AND CODE NAME THEM 
Cc 

KLW = KMW 
DO 20 N = 1,NUM/2 

IF (KLW-N .LT. 1) THEN 
Cc 
C**** USE SUBROUTINE CHECK1 TO SEE IF THE MARKED BOXES 
Carte. CAN, BE- MOVED; TO: THE, RIGHT 
c 

CALL CHECK1( KLW,MLJ,CELLS,CLR,CLC,NAMES,NML ) 
ELSE 

iC 
C*t** USE SUBROUTINE SHIFT TO SEE IF THE ELEMENT OF THE 
C**** ARRAY FLAG ABOUT TO BE MARKED CAN BE MARKED AND 
C**** TF NOT TRY TO MOVE THE ALREADY MARKED BRANCHES 
Cc 

CALL SHIFT( MLJ,KMW,KLW,N,CELLS,CLR,CLC,NAMES,NML ) 
END IF 
CHARA = CHAR( IT+NUM/2-N ) 
FLAG(KLW-N,MLJ+1) = CHARA(1:1)//FLAG(KMW,MLJ]) 

20 CONTINUE 
© 
C**** MARK THE RIGHT HAND SIDE BRANCHES AND CODE NAME THEM 
Cc 

DO 40N = 1,NUM/2 
IF (KLW+N .GT. IW) THEN 

Cc 
C**** USE SUBROUTINE CHECK2 TO TRY AND MOVE THE MARKED 
Crt “BRANCHES TO: THESEErT 
c 

CALL CHECK2( MLJ,KLW,CELLS,CLR,CLC,NAMES,NML ) 
END IF 
CHARA = CHAR( IT+NUM/24N ) 
FLAG(KLW+N,MLJ+1) = CHARA(1:1)//FLAG(KMW,MLJ) 

40 CONTINUE 

END 

236



SUBROUTINE CHECK1( KLW,MLJ,CELLS,CLR,CLC,NAMES,NML ) 

INTEGER CLR,CLC,NML 

PARAMETER (IW=10, IL=40) 

COMMON /ONE/ FLAG 

INTEGER CELLS(CLR,CLC) 

CHARACTER FLAG(IW,IL)*40, NAMES(CLR)*(12) 

KLW = KLW+1 
DO 20 IA = 1,I1W 

IF (FLAG(IA,MLJ+1) .EQ. 'EMPTY') THEN 
DO 10 IB =IA,2,-1 

10 FLAG(IB,MLJ+1) = FLAG(IB-1,MLJ+1) 
FLAG(1,MLJ+1) = 'EMPTY' 
GO TO 30 

END IF 
20 CONTINUE 

Cc 
30 IF (FLAG(1,MLJ+1) .NE. 'EMPTY') THEN 

PRINT *,'"***** DRAWING AREA NOT WIDE ENOUGH ****#' 
CALL GINEND 
CALL DAWRI( 'EMPTY',3,CELLS,CLR,CLC,NAMES,NML ) 
STOP 

END IF 

END 

SUBROUTINE CHECK2( MLJ,KLW,CELLS,CLR,CLC,NAMES,NML ) 

INTEGER CLR,CLC,NML 

PARAMETER (IW=10, IL=40) 

COMMON /ONE/ FLAG 

CHARACTER FLAG(IW,IL)*40, NAMES(CLR)*(12) 

INTEGER CELLS(CLR,CLC) 

KLW = KLW-1 
DO 20 IA = IW,1,-1 

IF (FLAG(IA,MLJ+1) EQ. 'EMPTY') THEN 
DO 10 IB = IAIW-1 

10  FLAG(IB,MLJ+1) = FLAG(IB+1,MLJ+1) 
FLAG(IW,MLJ+1) = 'EMPTY' 
GO TO 30 

END IF 
20 CONTINUE 

233)



e 
30 IF (FLAG(IW,MLJ+1) .NE. EMPTY") THEN 

PRINT *,'***** DRAWING AREA TOO NARROW ***##! 
CALL GINEND 
CALL DAWRI( 'EMPTY',3,CELLS,CLR,CLC,NAMES,NML ) 
STOP 

END IF 

END 

SUBROUTINE SHIFT( MLJ,KMW,KLW,N,CELLS,CLR,CLC,NAMES,NML ) 

INTEGER CLR,CLC,NML 

PARAMETER (IW=10, IL=40) 

COMMON /ONE/ FLAG 

CHARACTER FLAG(IW,IL)*40, NAMES(CLR)*(12) 

INTEGER CELLS(CLR,CLC) 
Cc ‘ 

10 KSW = KLW 
K=0 
DO 110 1A = IW,KSW-N,-1 

IF (FLAG(IA,MLJ+1) .NE. 'EMPTY') THEN 

IF (FLAG(IA,MLJ+1)(2:) NE. FLAG(KMW,MLJ)) THEN 

IF (NALEN( FLAG(KMW,MLJ) ) EQ. 2) THEN 
IF (FLAG(IW,MLJ) .EQ. 'EMPTY' .AND. 

1 FLAG(IW,MLJ+1) .EQ. 'EMPTY') THEN 
DO 20 IB = IW,KMW+1,-1 

20 FLAG(IB,MLJ) = FLAG(IB-1,MLJ) 
FLAG(KMW,MLJ) = 'EMPTY' 
KMW = KMW+1 
DO 30 IC = IW,IA+2,-1 

30 FLAG(IC,MLJ+1) = FLAG(IC-1,MLJ+1) 
FLAG(IA+1,MLJ+1) = 'EMPTY' 
KLW = KLW+1 
K=1 

END IF 
IF (FLAG(1,MLJ) .EQ. 'EMPTY' .AND. 

1 FLAG(1,MLJ+1) EQ. 'EMPTY') THEN 
DO 40 ID = 1,.KMW-2 

40 FLAG(ID,MLJ) = FLAG(ID+1,MLJ) 
FLAG(KMW-1,MLJ) = 'EMPTY' 
DO 50 IE = 1,IA-1 

50 FLAG(IE,MLJ+1) = FLAG(IE+1,MLJ+1) 
FLAG(IA,MLJ+1) = 'EMPTY' 

K=K+2 

END IF 
END IF 
IF (K .EQ. 3) THEN 
GO TO 120 

238



ELSE IF (K .EQ. 2) THEN 
GO TO 90 

END IF 
DO 601G = 1,IA-1 

IF (FLAG(IG,MLJ+1) .EQ. 'EMPTY') THEN 
GO TO 70 

END IF 
60 CONTINUE 

70 IF (IG LT. IA) THEN 
DO 80JA =I1G,IA-1 

80 FLAG(JA,MLJ+1) = FLAG(JA+1,MLJ+1) 
FLAG(IA,MLJ+1) = EMPTY’ 
K = K+5 

END IF 
IF (K .EQ. 6) THEN 
GO TO 120 

END IF 

90 IF (FLAG(IW,MLJ+1) .EQ. 'EMPTY') THEN 
DO 100 JB = IW,IA+2,-1 

100 FLAG(IJB,MLJ+1) = FLAG(JB-1,MLJ+1) 
FLAG(IA+1,MLJ+1) = 'EMPTY' 
KLW = KLW+1 
K=8 
GO TO 120 

END IF 
END IF 

END IF 
110 CONTINUE 

IF (K .EQ. 0) THEN 
IF (FLAG(KLW-N,MLJ+1) .NE. 'EMPTY') THEN 
PRINT *,'***** WIDTH OF DRAWING AREA EXCEEDED *****' 
CALL GINEND 
CALL DAWRI( 'EMPTY',3,CELLS,CLR,CLC,NAMES,NML ) 
STOP 

END IF 

RETURN 
END IF 

120 GO TO 10 
Cc 

END 

SUBROUTINE BOXSTR(KEY,ANAME,XX1,YY1,XX2,YY2,ERROR) 

PARAMETER (NML=12) 
REAL COORD(40,4),XX1,YY1,XX2,YY2 
INTEGER KEY,POINTA 
CHARACTER ANAME*(*),LIST(40)*(NML) 

LOGICAL ERROR 
SAVE COORD,POINTA 

IF(KEY.EQ.1)THEN 

aoe



POINTA = 1 
DO 101 =1,40 
DO 5J=1,4 

COORD(I,J) = 0 
5 CONTINUE 

10 CONTINUE 
ERROR = FALSE. 
ELSEIF(KEY.EQ.2)THEN 
IF(POINTA.GT.40) THEN 
ERROR = .TRUE. 
RETURN 
ENDIF 

LIST(POINTA) = ANAME 
COORD(POINTA, 1) = XX1 
COORD(POINTA,2) = YY1 
COORD(POINTA,3) = XX2 
COORD(POINTA,4) = YY2 
POINTA = POINTA + 1 
ERROR = .FALSE. 
ELSEIF(KEY.EQ.3)THEN 
DO 100 I = 1,POINTA-1 
IF(XX1.GE.COORD(I,1).AND.XX1.LE.COORD(I,3).AND.YY1 

+.GE.COORD(I,2).AND.YY 1.LE.COORD(I,4)) THEN 
ANAME = LIST(1) 
ERROR = .FALSE. 
RETURN 
ENDIF 

100 CONTINUE 
ERROR =.TRUE. 
ENDIF 
RETURN 
END 

SUBROUTINE DRAWTR(I,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 

INTEGER CLR,CLC,SMR,SMC,NML 
PARAMETER (IW=10, IL=40, LVECT=50) 
COMMON /ONE/ FLAG 
COMMON /TWO)/ JLJ, KLJ, KR, IOPT 

INTEGER CELLS(CLR,CLC), TAV(IW), SAV(IW), IOPT(3), 
+ SYMPTS (SMR, SMC ), VECTOR ( LVECT ) 
CHARACTER NAMES(CLR)*(12), FLAG(IW,IL)*40 

DIMENSION X1(IW), X2(IW), Y1(IW), Y2(IW) 

: 
C**** INITIALISE THE ARRAYS: TAV SAV X1 X2 Y1 Y2 

DO 5, INIT = 1, IW 

TAV (INIT) =0 
SAV (INIT) =0 
X1 (INIT) =0 

240



X2 (INIT) =0 
Y1 (INIT) =0 
Y2 (INIT) =0 

5 CONTINUE 

Cc 
C**** POSITION THE PEN TO DRAW THE TOP BOX OF THE FAULT TREE 

XPOS = (JLJ-1)*20.0 + KR*10.0 
C 

DO 10 LB = 1,IW 
IF (FLAG(LB,JLJ) EQ. 'Z') THEN 
GO TO 20 

END IF 
10 CONTINUE 

é 
20 YMID = (2*LB-1)*17.0 

CALL MOVTO2( XPOS, YMID ) 
Cc 
C**** DRAW THE BOX AND WRITE IN IT 

CALL ABOX(NAMES(I),NML) 

Cc 
C**** DRAW THE GATE IF THERE IS ONE 

CALL MOVTO2(XPOS+7, YMID) 

IF (CELLS(1,2) EQ. 0 .AND. CELLS(I,3) .GT. 1 
* OR. CELLS (I, 2) .EQ. 1) THEN 
CALL LINBY2( 4.0,0.0) 
CALL ORED 

ELSE IF (CELLS(I,2) EQ. +2 .OR. CELLS(I,2) EQ.0 .AND. 
* CELLS(I,3) EQ.1) THEN 
CALL LINBY2( 9.0,0.0) 

ELSE IF (CELLS(I,2) EQ. -1) THEN 
CALL LINBY2( 4.0,0.0) 
CALL ANDED 

END IF 
Cc 
C**** FIND THE POSITION OF EACH BOX IN THE NEXT ROW OF FLAG 

L5=0 
L6=4 
DO 50 LD = 1,1W 

IF (FLAG(LD,JLJ+1) .NE. 'EMPTY') THEN 
DO 30 LF = L6,CLC 

CALL SETROW ( VECTOR, I, CELLS, SYMPTS, 
+ CLR, CLC, SMR, SMC ) 

IF (VECTOR(LF) .NE. 0) THEN 
LS = L5+1 
IF (LS EQ. 1) THEN 
LD1=LD 
LD2 = LD 

ELSE 
LD2 = LD 

END IF 

241



c 
Cre SAVE THE ROW OF ARRAY CELLS WHICH HOLDS 
cree INFORMATION ABOUT THE BOX 

TAV(L5) = VECTOR(LF) 
L6 = LF+1 
GO TO 40 

ELSE 
PRINT *,'***#* ERROR IN ANALYSIS OF DATA STRUCTURE ****#*' 

CALL GINEND 
CALL DAWRI( 'EMPTY',3,CELLS,CLR,CLC,NAMES,NML ) 
STOP 

END IF 
30 CONTINUE 

c 
C**** — POSITION THE PEN FOR DRAWING 

40 XPOS1 = XPOS + 20.0 
YMID = (2*LD-1)*17.0 
CALL MOVTO2( XPOS1,YMID ) 

C 
C**#* = SAVE THE CO-ORDINATES OF THE PEN'S POSITION 

X1(LD) = XPOS1 - 4.0 
Y1(LD) = YMID 

C 
Cc**#* CHECK TO SEE IF THE BOX HAS A NAME INSIDE IT 

IF (CELLS(TAV(L5),1) EQ. 1) THEN 
C 

Cx#e* DRAW THE BOX AND WRITE IN IT 
CALL ABOX( NAMES(TAV(L5)),NML) 

CALL MOVTO2(X1(LD)+7,Y 1(LD)) 
CALL MOVBY2 -7.0,0.0 ) 
CALL LINBY2( 4.0,0.0 ) 

END IF 
END IF 

50 CONTINUE 
G 
C**** CONNECT THE DRAWN BOXES BETWEEN THEM AND TO THE GATE 
G 

IF (L5 NE. 0) THEN 

CALL MOVTO2( X1(LD1), Y1(LD1) ) 
CALL LINTO2( X1(LD2),Y1(LD2) ) 

END IF 

iC 
C**** DO THE REST OF THE DRAWING BY CONSIDERING THE ROWS 
C**** OF ARRAY FLAG ONE AT A TIME 

DO 110 MD = JLJ+1,KLJ 
L7=0 
L9=0 

C 
C**** FIND THE POSITION OF EACH BOX IN THE NEXT ROW 
C**** OF ARRAY FLAG 

DO 90 MA = 1,IW 

242



IF (FLAG(MA,MD) .NE. 'EMPTY') THEN 
L7 = L7+1 

Cee FIND OUT IF THE BOX IS NAMED 
IF (CELLS(TAV(L7),1) EQ. 1) THEN 

IF (CELLS(TAV(L7),2) .EQ. -2) THEN 
CONTINUE 

ELSE 

Cx SHOW THE NUMBER OF BRANCHES BELOW THE BOX 
NUM = CELLS(TAV(L7),3) 
CALL MOVTO2( X1(MA)+11.0,Y1(MA) ) 
CALL NUMBRA( NUM ) 

END IF 
ELSE 

Cre FOR EACH UNNAMED BOX DRAW THE BRANCHES BELOW IT 
L5=0 
L6=4 
DO 80 KA = 1,IW 

IF (FLAG(MA,MD) .EQ. FLAG(KA,MD+1)(2:)) THEN 
L9 = L9+1 
DO 60 LF = L6,CLC 

CALL SETROW ( VECTOR, TAV (L7 ), CELLS, 
+ SYMPTS, CLR, CLC, SMR, SMC ) 

IF (VECTOR(LF) .NE. 0) THEN 
L5 = L5+1 
IF (L5 .EQ. 1) THEN 
KA1=KA 
KA2=KA 

ELSE 
KA2 = KA 

END IF 

Crs SAVE THE ROW OF CELLS WHICH HAS 
Cust INFORMATION ABOUT THE BOX 

SAV(L9) = VECTOR(LF) 
L6 = LF+1 
GO TO 70 

ELSE 
PRINT *,***** DATA STRUCTURE NOT ANALYSED WELL ****#"' 

CALL GINEND 
CALL DAWRI( 'EMPTY’,3,CELLS,CLR,CLC, 

. NAMES,NML ) 
STOP 

END IF 
60 CONTINUE 

Cre POSITION THE PEN TO DRAW THE BOX 
70 XPOS1 = XPOS + (MD+1-JLJ)*20.0 

YMID = (2*KA - 1)*17.0 
CALL MOVTO2( XPOS1,YMID ) 

Ca SAVE THE CO-ORDINATES OF THE PEN'S POSITION 

243



X2(KA) = XPOS1-4.0 
Y2(KA) = YMID 

Crs CHECK TO SEE IF THE BOX HAS A NAME 
IF (CELLS(SAV(L9),1) .EQ. 1) THEN 

| Ohosak d? DRAW THE BOX AND WRITE IN IT 
CALL ABOX( NAMES(SAV(L9)),NML ) 

CALL MOVTO2(X2(KA)+7,Y2(KA)) 
CALL MOVBY2 -7.0,0.0 ) 
CALL LINBY2( 4.0,0.0 ) 

END IF 
END IF 

80 CONTINUE 

Cree CONNECT THE DRAWN BOXES BETWEEN THEM 
Cte AND TO THE GATE 

CALL MOVTO2( X2(KA1),Y2(KA1) ) 
CALL LINTO2( X2(KA2),Y2(KA2) ) 

Cxeee DRAW THE GATE 
Y3 = (Y2(KA1) + Y2(KA2)) / 2.0 
CALL MOVTO2( X1(MA),Y1(MA) ) 
CALL LINTO2( X2(KA1)-5.0,Y3 ) 
IF (CELLS(TAV(L7),2) EQ. 1) THEN 
CALL ORED 

ELSE IF (CELLS(TAV(L7),2) .EQ. -1) THEN 
CALL ANDED 

ELSE 
PRINT *,"***** DATA STRUCTURE CONTAINS ERRORS ****#' 
CALL GINEND 
CALL DAWRI( 'EMPTY',3,CELLS,CLR,CLC,NAMES,NML ) 
STOP 

END IF 
END IF 

END IF 
90 CONTINUE 

DO 100 KB = 1,I1W 
TAV(KB) = SAV(KB) 
X1(KB) = X2(KB) 

100 Y1(KB) = Y2(KB) 
e 
110 CONTINUE 

CALL CHAMOD 

END 

SUBROUTINE ABOX(A,NML) 

INTEGER NML, ERRNO, VALUE,FINAL 
REAL POSX, POSY, POSZ, AWID, ALEN1 
PARAMETER (ALEN=24.0, BLENG=50 ) 
CHARACTER A*(12)



LOGICAL ERROR 

CALL DRIVER ( 3, VALUE, ERRNO ) 

IF ( VALUE .EQ. 1) THEN 

ALEN1 = 30 
AWID=7 

ELSE 

ALEN1 = FINAL (A) * 3.68 
AWID =7 

END IF 
ALET = (ALEN1 / 2.0) 
CALL LINBY2( 0.0,ALET ) 
CALL POSPIC(XX2,YY2) 
CALL LINBY2( AWID,0.0 ) 
CALL LINBY2( 0.0,-ALEN1 ) 
CALL POSPIC(XX1,YY1) 
CALL LINBY2( -AWID,0.0 ) 
CALL LINBY2(0.0,ALET ) 
CALL POSSPA ( POSX, POSY, POSZ ) 
CALL BOXSTR(2,A,XX1, YY 1,XX2,YY2,ERROR) 

CALL MOVBY2( AWID - 1, -ALET+1 ) 
NC = NALEN( A) 
CALL CHAHOL (A (1: FINAL(A))) 

* 

**** TAKE ALTERNATIVE ACTIONS FOR DIFFERENT OUTPUT DEVICES 
**** FOR CHARACTER OUTPUT 
* 

IF (VALUE EQ. 1 ) THEN 

CALL CHASIZ ( 2.6, 4.2 ) 
CALL MOVBY?2 (2.5, (15.-NC)/2+1) 

ELSE 

CALL CHASIZ( (ALEN1-1)/NC,5.0 ) 
CALL CHAANG ( 90.0 ) 
CALL PENSEL( 7,0.0,0 ) 

END IF 

IF ( VALUE EQ. 1 ) THEN 

CALL MOVTO2 ( POSX + 7.0, POSY ) 

ELSE 

245



YP = -(NML*(ALEN1-1)/NC) + ALET - 1.0 
CALL MOVBY2( 1.0,YP ) 
CALL PENSEL( 1,0.0,0 ) 

END IF 
END 

SUBROUTINE ORED 

CALL LINBY2( 0.0,5.0 ) 
CALL LINBY2( 5.0,0.0 ) 
CALL LINBY2( 0.0,-10.0 ) 
CALL LINBY2( -5.0,0.0 ) 
CALL LINBY2( 0.0,5.0 ) 
CALL MOVBY72( 5.0,0.0 ) 
END 

SUBROUTINE AND 
CALL MOVBY2( 5.0,-5.0 ) 
CALL ARCBY2( 0.0,5.0,0.0,10.0,0 ) 
CALL MOVBY72( 0.0,-5.0 ) 
END 

SUBROUTINE STAR 
INTEGER NOTERM, ERRNO 
CALL PENSEL( 2,0.0,0 ) 
CALL LINBY2( 2.0,0.0 ) 
CALL ARCBY2( 2.0,0.0,0.0,0.0,0 ) 
CALL MOVBY2( 3.0,-1.0 ) 

CALL DRIVER ( 3, NOTERM, ERRNO ) 

IF (NOTERM EQ. 1 ) THEN 

NEWBURY TERMINAL 

CONTINUE 

ELSE 

CALL CHASIZ( 3.0,2.0 ) 
CALL CHAANG ( 90.0 ) 

END IF 

CALL PENSEL( 5,0.0,0 ) 
CALL CHAASC( 42 ) 

246



C 

C 

CALL PENSEL( 1,0.0,0 ) 
END 

SUBROUTINE NUMBRA(I) 

INTEGER NOTERM, ERRNO 
CALL PENSEL( 2,0.0,0 ) 
CALL LINBY2( 2.0,0.0 ) 
CALL ARCBY2( 2.0,0.0,0.0,0.0,0 ) 
CALL MOVBY2( 3.0,-1.0 ) 

CALL DRIVER ( 3, NOTERM, ERRNO ) 

IF (NOTERM EQ. 1 ) THEN 

NEWBURY 

CALL MOVBY2 (3., 2. ) 

ELSE 

CALL CHASIZ( 3.0,2.0 ) 
CALL CHAANG ( 90.0 ) 

CALL PENSEL( 5,0.0,0 ) 
CALL CHAINT(I,1 ) 

END IF 
CALL PENSEL( 1,0.0,0 ) 
END 

SUBROUTINE EXCEED( ILJ,IL,CELLS,CLR,CLC,NAMES,NML ) 

INTEGER CLR,CLC,NML 
COMMON /TWO/ JLJ, KLJ, KR, IOPT 
CHARACTER NAMES(CLR)*(12) 
INTEGER IOPT(3), CELLS(CLR,CLC) 

C**** CHECK TO SEE IF THE LENGTH OF THE DRAWING AREA 
C**** HAS BEEN EXCEEDED 

IF ( ILJ+1 .GT. IL ) THEN 
IF(JLJ.EQ.1)THEN 

PRINT *,"***** LENGTH OF DRAWING AREA TOO SMALL ***#*#' 
CALL GINEND 
CALL DAWRI( 'EMPTY',3,CELLS,CLR,CLC,NAMES,NML ) 
STOP : 

END IF 
PRINT *,'***** PROGRAM RUN OUT OF DRAWING AREA ***#*#' 
PRINT *, '***#* PLEASE START AGAIN WITH THE REST OF THE 
1IDATA KKK 

CALL GINEND 

247



Cc 

CALL DAWRI( 'EMPTY',3,CELLS,CLR,CLC,NAMES,NML ) 
STOP 

END IF 
END 

SUBROUTINE GINEND 

PARAMETER ( YMAX=350.0, XMAX=1030.0 ) 
COMMON /TWO/ JLJ, KLJ, KR, IOPT 
INTEGER IOPT(3) 

C**** DRAW A FRAME AND CLOSE GINO 
CALL MOVTO2( 0.0,0.0 ) 
CALL SHIFT2( -15.0,-5.0 ) 
CALL MOVTO2( 0.0,0.0 ) 
XPOS = KLJ*20.0 + KR*10.0 + 30.0 

NO FRAME ON INTERACTIVE TERMINAL 

GO TO 10 

CALL FRAME( XPOS, YMAX,]1 ) 
CALL FRAME( XPOS-2.0,YMAX-2.0,2 ) 
CALL FRAME( XPOS-4.0,YMAX-4.0,5 ) 
CALL FRAME( XPOS-6.0,YMAX-6.0,7 ) 

10 CALL DEVEND 

* 

END 

SUBROUTINE FRAME( XPOS, YMAX,ICOL ) 

CALL PENSEL( ICOL,0.0,0 ) 
CALL LINBY2( XPOS,0.0 ) 
CALL LINBY2( 0.0, YMAX ) 
CALL LINBY2( -XPOS,0.0 ) 
CALL LINBY2( 0.0,-YMAX ) 
CALL MOVBY2( 1.0,1.0 ) 
END 

SUBROUTINE DAWRI(INDATA,INDEX,CELLS,CLR,CLC,NAMES,NML) 

INTEGER CLR,CLC,SMR,SMC,NM 
PARAMETER (IW=10, IL=40) 
COMMON /ONE/ FLAG 
COMMON /TWO/ JLJ, KLJ, KR, IOPT 
INTEGER CELLS(CLR,CLC), IOPT(3) 
CHARACTER NAMES(CLR)*(12), INDATA*(*), FLAG(IW,IL)*40 

IF (INDEX .EQ. 1) THEN 
IF (IOPT(1) .EQ. 1) THEN 

248



c 
c**** WRITE OUT THE CONTENTS OF ARRAYS CELLS AND NAMES 
. WRITE (32,10) ( (CELLS(I2,11), I1 = 1,CLC), I2 = 1,CLR) 

10 FORMAT (1H1,'CONTENTS OF ARRAY CELLS:'/ 1H, 27('*) 
1 Ill SO(AH , 2(5(5X,15) /)/ ) ) 

WRITE (32,25) (NAMES(I),I=1,CLC) 
25 FORMAT(1H1,'CONTENTS OF ARRAY NAMES:'/ 1H, 27(‘*') 

1 /l/ (1H, A20) ) 
END IF 

ELSE IF (INDEX .EQ. 2) THEN 
IF (IOPT(2) EQ. 1) THEN 

SAEED WRITE OUL THE INPULADATA USED 
IF (JLJ .EQ. 1) THEN 
WRITE (32, '(1H1, "INPUT DATA USED:"/ 

1 tH 18%) 1/2) 
END IF 
WRITE (32, '(1H , A20)' ) INDATA 

END IF 
ELSE IF (INDEX .EQ. 3) THEN 

IF (IOPT(3) .EQ. 1) THEN 

**4* WRITE OUT THE CONTENTS OF ARRAY FLAG 
WRITE (32,30) ( (FLAG(J1,J2), J1 = 1,1W), J2 = 1,IL+1) 

30 FORMAT (1H1,'CONTENTS OF ARRAY FLAG:;'/ 1H , 26('*') 
1 /1/ A0(1H , 10A10/) ) 
END IF 

END IF 
C 

END 
INTEGER FUNCTION NALEN( A ) 

* 
*¥ 

®¥ 
¥
Q
Q
 

* 
K
K
 

K
K
 

KO
QT

EQ
 
K
K
 

H
H
 

H
K
 

Cc 
C**** TT COUNTS THE CHARACTERS OF A CHARACTER VARIABLE 
C**** BEFORE THE FIRST BLANK CHARACTER 
Cc 

PARAMETER ( NML=12 ) 
CG 

CHARACTER A*(*) 
Cc 

DO 10 K = 1,NML 
IF (A(K:K) .EQ.'’) THEN 
GO TO 20 

END IF 
10 CONTINUE 

c 
20 NALEN = K-1 
END 

SUBROUTINE FSOPEN ( FILNAM, UNIT, FORMAT ) 

THIS SUBROUTINE OPENS A SEQUENTIAL FILE 
. IF THE FILE ALREADY EXISTS, IT IS JUST OPENED 

249



+ 
&£ 

& 
& 

& 
& IF THE FILE DOES NOT EXIST, IT IS CREATED FIRST 

FILNAM - CHARACTER - THE NAME OF THE FILE 
UNIT - INTEGER - UNIT NUMBER FOR OPENING 
FORMAT - CHARACTER - EITHER 'FORMATTED' OR 'UNFORMATTED' 

INTEGER UNIT 
CHARACTER FILNAM * 12, FORMAT * ( * ), STATUS * 7 
LOGICAL THERE 

INQUIRE ( FILE =' //FILNAM, EXIST = THERE ) 

IF (THERE ) THEN 

STATUS = 'MODIFY' 

ELSE 

STATUS = 'NEW' 

END IF 

OPEN (FILE =' /IFILNAM, UNIT = UNIT, 
+ STATUS = STATUS, FORM = FORMAT, ERR = 900 ) 
REWIND(UNIT) 
RETURN 

900 PRINT *, 'ERROR IN OPENING FILE’, FILNAM 

* 

STOP 
END 

INTEGER FUNCTION NXTNSP ( TEXT ) 

**** RETURNS THE POSITION OF THE FIRST NON-SPACE CHARACTER IN TEXT 
**#* RETURNS 0 IF NO NON-SPACE CHARACTER 
* 

CHARACTER TEXT * ( * ) 
INTEGER TEMP 

DO 10, TEMP = 1, LEN ( TEXT ) 

IF (TEX? ( TEMP:: TEMP.).NE.») THEN 

NXTNSP = TEMP 
RETURN 

END IF 

250



10 CONTINUE 

NXTNSP = 0 
RETURN 

END 
SUBROUTINE INERR ( EQN ) 

* 

*#4* ~~ PRINTS OUT ERROR MESSAGE AND THE FAULTY EQUATION 
* 

CHARACTER EQN * ( * ) 

OPEN(UNIT=9,FILE='ERROR’) 
WRITE ( UNIT = 9, FMT = 900 ) 

900 FORMAT ( /// 1X, 80('*') /// ) 
PRINT *, 'THE FOLLOWING LINE OF INPUT IS NOT A CORRECT EQUATION' 
PRINT * 
PRINT *, EQN 
WRITE ( UNIT = 9, FMT = 900 ) 
RETURN 
END 

SUBROUTINE SETROW ( VECTOR, NUMBER, CELLS, SYMPTS, 
+ CLR, CLC, SMR, SMC ) 

INTEGER CLR, CLC, SMR, SMC 
INTEGER VECTOR (CLC ), CELLS ( CLR, CLC ), SYMPTS ( SMR, SMC), 

+ COUNT, NUMBER 

IF (CELLS (NUMBER, 2) .EQ. 0 ) THEN 

DO 104, COUNT = 1, CLC 

VECTOR ( COUNT ) = 0 

104 CONTINUE 

DO 105, COUNT = 1, 3 

VECTOR ( COUNT ) = CELLS ( NUMBER, COUNT ) 

105 CONTINUE | 

DO 106, COUNT = 4, 3 + CELLS ( NUMBER, 3 ) 

VECTOR ( COUNT ) = SYMPTS ( CELLS ( NUMBER, 
+ COUNT ), 1) 

106 CONTINUE 

251



ELSE 

DO1T, COUNT = 1; CLC 

VECTOR ( COUNT ) = CELLS (NUMBER, COUNT ) 

ta CONTINUE 

END IF 

RETURN 

END 

252



APPENDIX H : LISTING OF THE SOURCE PROGRAMS OF 

THE GINO-POS VERSION 

€03



C 

SUBROUTINE PERQ 
THIS SUBROUTINE SETS THE DEFAULT VALUES FOR GRAPHICAL OUTPUT. 
REAL PPOS,OTR 
REAL VPOS,XMIN,XMAX, YMIN, YMAX 
INTEGER IW 
LOGICAL FLAG,LOGIC 
COMMON /PICC/PPOS(3),XMIN,XMAX,YMIN, YMAX,IW 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 

CALL PICCLE 
XMIN = 0.0 
XMAX = 210.0 
YMIN = 0.0 
YMAX = 275.0 
Iw =0 
Reto 
TOL = 0.05 
ITYPE = 0 
FLAG =.TRUE. 
LOGIC = FALSE. 
NOW INITIALISE THE TRANSFORMATION MATRIX AND THE START POINT. 
DO 101 =1,3 
DO 5J=1,3 
OTR(LJ) = 0.0 
CONTINUE 

OTR(L]) = 1.0 
VPOS(I) = 0.0 
PPOS(I) = 0.0 

10 CONTINUE 
VPOS(3) = 1.0 
RETURN 
END 

SUBROUTINE PICCLE 
EXTERNAL / PASCAL / SCRCLR 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 

CALL SCRCLR 
RETURN 
END 

SUBROUTINE CURSOR(I,X,Y) 
EXTERNAL / PASCAL / STRTAB 
EXTERNAL / PASCAL / RDCURS 
LOGICAI FLAG, LOGIC 
REAL X,Y 
INTEGER I, IX,IY 
CHARACTER*3 ANS 
CHARACTER*6 BUTTON(0:3) 
COMMON/PICC/PPOS(3), XMIN, XMAX, YMIN, YMAX,IW 
COMMON/ENQY/FLAG,R, TOL, INC,LOGIC,ITY PE 

254



a
.
Q
 

© 

BUTTON(0) = 'YELLOW' 
BUTTON(1) = 'WHITE' 
BUTTON(2) = 'BLUE' 
BUTTON(3) = 'GREEN' 
CALL STRTAB 
CALL RDCURS(LIX,IY) 
X = 210.*X1/767/R 
Y = (275. - 275.*Y 1/1023)/R 
RETURN 
END 

SUBROUTINE ROTAT2(ALPHA) 
ANGLE ALPHA IN DEGREES 
ALPHA POSITIVE = ANTICLOCKWISE ROTATION ABOUT ORIGIN 
ALPHA NEGATIVE = CLOCKWISE ROTATION ABOUT ORIGIN 
REAL PI,A,ALPHA,ROT(3,3) 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 

DO 21 =1,3 
DO2ZJ=13 
ROT(I,J) = 0.0 

2 CONTINUE 
ROT(3,3) = 1.0 
PI = 4.0 * ATAN(1.0) 
A = PI*ALPHA / 180.0 
ROT(1,1) = COS(A) 
ROT(2,2) = COS(A) 
ROT(2,1) = SIN(A) 
ROT(1,2) = -SIN(A) 
CALL RFRESH(ROT) 
CALL MATINV(ROT) 
RETURN 
END 

SUBROUTINE SCALE2(SX,SY) 
REAL SX,SY,SCA(3,3) 
INTEGER LJ 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
DO2 T= 13 
DO2 J=1,3 
SCA(LJ) = 0.0 
CONTINUE 
SCA(1,1) = SX 
SCA(2,2)'= SY 
SCA(3,3) = 1.0 
CALL RFRESH(SCA) 
CALL MATINV(SCA) 
RETURN 
END 

425



10 

SUBROUTINE SCALE(S) 
REAL S,SCA(3,3) 
INTEGER I,J 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 

DO 101 = 1,3 
DO 5J=1,3 
SCA(LJ) = 0.0 
CONTINUE 
CONTINUE 

SCA(1,1) = S 
SCA(2,2) = S 
SCA(3,3) = 1.0 
CALL RFRESH(SCA) 
CALL MATINV(SCA) 
RETURN 
END 

SUBROUTINE SHEAR2(IDEP,A) 
REAL A,SHE(3,3) = 
INTEGER IDEP,I,J 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 

DO 10I=1,3 
DO5 J=1,3 
SHE(I,J) = 0.0 
CONTINUE 

SHE(L,I) = 1.0 
CONTINUE 

IF(IDEP.EQ.1) THEN 
SHE(2,1) = A 

ELSE IF(IDEP.EQ.2) THEN 
SHE(1,2) = A 

ELSE 
WRITE(3,100) 
END IF 
CALL RFRESH(SHE) 
CALL MATINV(SHE) 

100 FORMAT(1X,'ERROR: FIRST ARGUMENT IN ROUTINE SHEAR2 
! MUST BE 1 OR 2’) 
RETURN : 
END 

SUBROUTINE SHIFT2(DX,DY) 
REAL DX,DY,SHI(3,3) 
INTEGER I,J 

256



10 

10 

LOGICAL FLAG,LOGIC 

COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 
DO 10 I=1,3 
pos Je13 
SHI(I,J) = 0.0 
CONTINUE 

SHI(LD = 1.0 
CONTINUE 

SHI(1,3) = DX 
SHI(2,3) = DY 
CALL RFRESH(SHI) 
RETURN 
END 

SUBROUTINE VIEWSE(NHORIZ) 
REAL VIE(3,3) 
INTEGER I,J,NHORIZ 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 

DO 10 I= 1,3 
DO 5J =1,3 
VIE(LJ) = 0.0 
CONTINUE 

VIE(LD = 1.0 
CONTINUE 

IF(NHORIZ.EQ.2) THEN 
VIE(1,1) = 0.0 
VIE(1,2) = 1.0 
VIE(2,1) = 1.0 
VIE(2,2) = 0.0 
CALL RFRESH(VIE) 
ELSE IF(NHORIZ.EQ.1) THEN 
RETURN 
ELSE 
WRITE(3,100) 
END IF 

100 FORMAT(1X,"ERROR: ARGUMENT IN ROUTINE VIEWSE MUST BE 2 
! IF AXIS TO BE PERMUTED, OR 1 IF NOT TO BE’) 
RETURN 
END 

SUBROUTINE LINEXX(M1,N1,M2,N2) 
INTEGER I,WLIN,M1,N1,M2,N2 

I=WLIN(FD,M1,N1,M2,N2) 
RETURN 
END 

SUBROUTINE LINTO2(S,T) 
EXTERNAL / PASCAL / LINEXX 
REAL X(2),¥(2),U(2),V(2) 

cor



10 

20 

INTEGER M(2),N(2),IW 
LOGICAL FLAG,LOGIC 
COMMON /PICC/PPOS(3),XMIN,XMAX,YMIN, YMAX,IW 
COMMON/SPCD/ VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 

CALL MMULT(OTR,VPOS,PPOS) 
X(1) = PPOS(1) 
Y(1) = PPOS(2) 
VPOS(1) = S 
VPOS(2) = T 
CALL MMULT(OTR,VPOS,PPOS) 
X(2) = PPOS(1) 
Y(2) = PPOS(2) 
IF(W .EQ.2 .OR. IW .EQ. 1) THEN 
CALL WCUTS(X,Y,U,V) 
IF(U(1).EQ.-50.0 .OR. U(2).EQ.-50.0) RETURN 
DO 101 = 1,2 
X(D = UD) 
Y(I) = V() 
CONTINUE 

END IF 
DO 201 = 1,2 
M() = NINT(767/210.0 * X(I) ) 
N(I) = NINT(1023 - (1023/275.0 *Y(1)) ) 
CONTINUE 
CALL LINEXX(M(1),N(1),M(2),N(2)) 
RETURN 
END 

SUBROUTINE LINBY2(X,Y) 
REAL X,Y,V1,V2,VPOS 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 

V1 = VPOS(1) +X 
V2 = VPOS(2) + Y 
CALL LINTO2(V1,V2) 
RETURN 
END 

SUBROUTINE MOVTO2(X, Y) 
REAL X,Y,VPOS 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R, TOL,INC,LOGIC,ITY PE 

VPOS(1) = X 
VPOS(2) = Y 
RETURN 

258



END 

SUBROUTINE MOVBY2(X,Y) 
REAL X,Y,VPOS 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 

VPOS(1) = VPOS(1) + X 
VPOS(2) = VPOS(2) + Y 
RETURN 
END 

SUBROUTINE DRAW2(X,Y,IABS,IVIS) 
REAL X,Y 
LOGICAL FLAG,LOGIC 
INTEGER IABS,IVIS 

COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 
IF(IABS.EQ.0 .AND.IVIS.EQ.0) THEN 
CALL MOVBY2(X,Y) 
ELSE IF(IABS.EQ.0 .AND.IVIS.EQ.1) THEN 
CALL LINBY2(X.Y) 
ELSE IF(IABS.EQ.1 .AND.IVIS.EQ.0) THEN 
CALL MOVTO2(X,Y) 
ELSE IF(IABS.EQ.1 .AND.IVIS.EQ.1) THEN 
CALL LINTO2(X,Y) 
ELSE 
PRINT *,'ERROR IN IABS OR IVIS IN ROUTINE DRAW2' 
END IF 
RETURN 
END 

SUBROUTINE CHAHOL( STRING ) 
EXTERNAL / PASCAL / GETCUR, SETCUR, PUTCHR 
CHARACTER STRING * ( * ) 
REAL TEMP ( 3, 3) 
INTEGER X,Y 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON / SPCD / VPOS(3),OTR(3,3) 
COMMON/PICC/PPOS(3),XMIN,XMAX, YMIN, YMAX,IW 

CALL MMULT(OTR, VPOS,PPOS) 
RX = PPOS(1) 
RY = PPOS(2) 
X = INT( 767 /210.* RX) 
Y = INT(1023- 1023 / 275.* RY ) 
CALL SETCUR(INT(767 * RX/210.), 

259



+ INT( 1023 - 1023 * RY/ 275.) 
DO 10, I = 1, LEN (STRING) 

CALL PUTCHR ( STRING (I:1)) 
10 CONTINUE 

CALL GETCUR ( X,Y) 
Y= 1023 -¥ 
VPOS (1) = 210. * X/ (767) 
VPOS (2) = 275.* Y/ (1023 ) 
VPOS (3):=1 
DO 20, I= 1, 3 
DO 15,3 =1;3 
TEMP (I,J) = OTR(I,J) 

15 CONTINUE 
20 CONTINUE 

CALL MATINV ( TEMP ) 
RETURN 
END 

SUBROUTINE ARCTOL(T) 
REAL T,TOL 
LOGICAL FLAG,LOGIC 

COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 
IF(T.EQ.0.0) THEN 
TOL = 0.05 
LOGIC = FALSE. 

ELSE 
TOL = Tf 

END IF 
RETURN 
END 

SUBROUTINE ARCINC(N) 
INTEGER N,INC 
LOGICAL FLAG,LOGIC 

COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
IF(N.EQ.0 ) THEN 

- INC=0 
LOGIC = FALSE. 

ELSE 
INC =N 
LOGIC = .TRUE. 

END IF 
RETURN 
END 

SUBROUTINE ARCENQ(I,NINCS,TOL) 
REAL TOL 
INTEGER I,NINCS 
LOGICAL FLAG,LOGIC 

260



10 

COMMON/ENQY/FLAG,R,ATOL,INC,LOGIC,ITYPE 

I =ITYPE 
NINCS = INC 
TOL = ATOL 
RETURN 
END 

SUBROUTINE IRCBY2(DXC,DYC,DXE,DYE, ISENSE) 
REAL DXC,DYC,DXE,DYE,XC,YC,XE, YE 
INTEGER ISENSE 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 

XC = VPOS(1) + DXC 
YC = VPOS(2) + DYC 
XE = VPOS(1) + DXE 
YE = VPOS(2) + DYE 
CALL IRCTO2(XC,YC,XE, YE,ISENSE) 
RETURN 
END 

SUBROUTINE IRCTO2(XC, YC,XE, YE,ISENSE) 
REAL XC,YC,XE,YE,AX,AY,AL,X,Y,RAD 
INTEGER ISENSE 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 

RAD = SQRT( (XC-VPOS(1))**2 + (YC-VPOS(2))**2 ) 
AXGKE- XC 
AY = YE- YC 
AL = SQRT( AX**2 + AY**2) 
X =RAD * AX/AL 
Y =RAD * AY/AL 
CALL MOVTO2(X,Y) 
RETURN 
END 

SUBROUTINE POLBY2(DXARR,DYARR,NPTS) 
REAL DXARR(NPTS),DYARR(NPTS) 
INTEGER I 
LOGICAL FLAG,LOGIC 
COMMON/ENOQY/FLAG,R,TOL,INC,LOGIC,ITY PE 

DO 101=1,.NPTS 
CALL LINBY2(DXARR(I),DY ARR(I)) 
CONTINUE 
RETURN 
END 

261



10 

SUBROUTINE POLTO2(XARR, YARR,NPTS) 
REAL XARR(NPTS),YARR(NPTS) 
INTEGER I 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R, TOL,INC,LOGIC,ITY PE 

DO 101 = 1,NPTS 
CALL LINTO2(XARR(I), YARR(D) 
CONTINUE 
RETURN 
END 

SUBROUTINE WINDO2(X1,X2,Y1,Y2) 
REAL X1,X2,Y1,Y2 
INTEGER IW 
LOGICAL FLAG,LOGIC 
COMMON/PICC/PPOS(3),XMIN,XMAX, YMIN, YMAX,IW 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 

XMIN = X1 
XMAX = X2 
YMIN = Y1 
YMAX = Y2 
RETURN 
END 

SUBROUTINE WIND(I]) 
EXTERNAL / PASCAL / LINEXX 
INTEGER IW,M(4),N(4) 
LOGICAL FLAG,LOGIC 
COMMON /PICC/PPOS(3),XMIN,XMAX, YMIN, YMAX,IW 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 

IW =I 
IF(IW .EQ. 2) THEN 
XMIN = 0.0 
XMAX = 210.0 
YMIN = 0.0 
YMAX = 275.0 

END IF 
IF(IW.EQ.2 .OR. IW.EQ.1 ) THEN 
M(1) = NINT(767/210.0*XMIN) 
N(1) = NINT(1023 - (1023/275.0*YMIN)) 
M(2) = NINT(767/210.0*XMAX) 
N(2) = N(1) 
M(3) = M(2) 
N(3) = NINT(1023 - (1023/275.0* YMAX)) 
M(4) = M(1) 

262



N(4) = N(3) 
DO 101 =1,3 
CALL LINEXX(M(D),N(1),M(+1),N(I+1)) 

10 CONTINUE 

A
A
 

CY
 A
A
 

© 

CALL LINEXX( M(4),N(4),M(1),N(1) ) 
END IF 
RETURN 
END 

SUBROUTINE WCUTS(X,Y,U,V) 
MAKES USE OF EQUATION OF STRAIGHT LINE : 

X = X1 + DELTA * (X2-X1) 
Y = Y1 + DELTA * (Y2-Y1) 

TO FIND WHERE INTEDED LINE CUTS THE WINDOW. 
FUNCTIONS DEFINED ARE : DXY AND FNXY 

REAL X(2),¥(2),U(2),V(2),A(2),B(2),DELTA,HOR, VER 
REAL XMIN,XMAX,TMIN, TMAX 
INTEGER I,J,K 
LOGICAL FLAG,LOGIC 
COMMON/PICC/PPOS(3),XMIN,XMAX, YMIN, YMAX,IW 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 

DXY(XY1,XY2,XY) = (XY - XY1)/(XY2- XY1) 
FNXY(XY1,XY2,DELTA) = XY1 + DELTA * (XY2 - XY1) 
IF(X(1).GE.XMIN .AND. X(1).LE.XMAX .AND. 

! Y(1).GE.YMIN .AND. Y(1).LE.YMAX ) THEN 
IF(X(2).GE.XMIN .AND. X(2).LE.XMAX .AND. 

!  ¥(2).GE.YMIN .AND.Y(2).LE.YMAX ) THEN 
DO31=1,2 
Ud) = X(@) 
V(I) = Y() 

3. CONTINUE 
RETURN 
END IF 
END IF 
CASE WHERE ONE OR BOTH POINTS LIE OUTSIDE THE WINDOW. 
J=1 
[at 
HOR = YMIN 
VER = XMIN 
DO 4K =1,2 
A(K) = -50.0 
B(K) = -50.0 

4 CONTINUE 
5 IF(Y(1).NE.Y(2)) THEN 

DELTA = DXY( Y(1),¥(2), HOR) 
TEMP = FNXY( X(1),X(2),DELTA) 
IF(DELTA.GE.0.0 .AND. DELTA.LE.1.0 .AND. 

! TEMP.GE.XMIN .AND.TEMP.LE.XMAX) THEN 
A(J) = TEMP 
B(J) = HOR 
HOR = YMAX 

263



C 

J =2 

ELSE 

HOR = YMAX 

END IF 

ELSE 

HOR = YMAX 

END IF 

IF( X(1).NE.X(2) ) THEN 

DELTA = DXY( X(1),X(2), VER ) 

TEMP = FNXY( Y(1),Y(2),DELTA) 

IF(DELTA.GE.0.0 .AND. DELTA.LE.1.0 .AND. 

! TEMP.GE.YMIN .AND.TEMP.LE.YMAX ) THEN 

A(J) = VER 

B(J) = TEMP 

VER = XMAX 

J =2 

ELSE 

VER = XMAX 

END IF 

ELSE 

VER = XMAX 

END IF 

I=J+1 

IF(I.NE.3) GOTO 5 

TEST FOR NUMBER OF INTERSECTIONS. 

IF( X(1).GT.XMIN .AND. X(1).LT.XMAX .AND. 

! Y(1).GT.YMIN .AND. Y(1).LT.YMAX ) THEN 

IF( X(2).LT.XMIN .OR. X(2).GT.XMAX .OR. 

! Y(2).LT.YMIN .OR. Y(2).GT.YMAX ) THEN 

U(1) = X(1) 

V(1) = Y(1) 

U(2) = A(1) 

V(2) = B(1) 

RETURN 

END IF 

ELSE IF( X(1).LT.XMIN .OR.X(1).GT.XMAX .OR. 

! Y(1).LT.YMIN .OR. Y(1).GT.XMAX ) THEN 

IF( X(2).GT.XMIN .AND. X(2).LT.KXMAX .AND. 

! Y(2).GT.YMIN .AND.Y(2).LT. YMAX ) THEN 

U(1) = A(1) 

V(1) = B(1) 

U(2) = X(2) 

V(2) = Y(2) 

RETURN 

END IF 

END IF 

HAVING GOT THIS FAR, CONTINUE TO THE END 

SMIN = MIN( A(1),A(2) ) 

TMIN = MIN( B(1),B(2) ) 

SMAX = MAX( A(1),A(2) ) 

TMAX = MAX( B(1),B(2) ) 

IF( X(2).GE.X(1) .AND. Y(2).GE.Y(1) .OR. 

! X(2).LE.X(1) .AND. Y(2).LE.Y(1) ) THEN 

IF( X(2).GT.X(1) .OR. Y(2).GT.Y(1) ) THEN 

U(1) = SMIN 

264



V(1) = TMIN 
U(2) = SMAX 
V(2) = TMAX 

ELSE 
U(1) = SMAX 
V(1) = TMAX 
U(2) = SMIN 
V(2) = TMIN 

END IF 
ELSE IF( X(2).GT.X(1) ) THEN 

U(1) = SMIN 
V(1) = TMAX 
U(2) = SMAX 
V(2) = TMIN 

ELSE 
U(1) = SMAX 
V(1) = TMIN 
U(2) = SMIN 
V(2) = TMAX 

END IF 
RETURN 
END 

SUBROUTINE RFRESH(PTR) 
C DOES MATRIX MULTIPLICATION, C = OTR*PTR 

REAL PTR(3,3),C(3,3) 
INTEGER I,J,K 
LOGICAL FLAG,LOGIC 
COMMON /PICC/PPOS(3),XMIN,XMAX, YMIN, YMAX,IW 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC, ITY PE 

DO 20 I= 1,3 
DO 10J =1,3 
C(LJ) = 0.0 
DOSK=1,3 
C(L,J) = C(L,J) + OTR(LK) * PTR(K,J) 

5 CONTINUE 
10 CONTINUE 
20 CONTINUE 

DO 1001 = 1,3 
DO 90J =1,3 
OTR(LJ) = C(,J) 

90 CONTINUE 
100 CONTINUE 

RETURN 
END 

SUBROUTINE MATINV(A) 
C FINDS INVERSE OF MATRIX PTR AND RETURNS IT IN RTP 

REAL A(3,3),B(3,3),VAP(3) 
LOGICAL FLAG,LOGIC 

265



COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENOQY/FLAG,R,TOL,INC,LOGIC,ITYPE 

DEFINE INDENTITY MATRIX OF SAME DIM. AS A(3,3) 
DO 101 = 1,3 
DO 5J=1,3 
B(LJ) = 0.0 
CONTINUE 

BLD = 1.0 
CONTINUE 

DO4I=1,3 
DO 2K =1,3 
IF (K.EQ.1) GO TO 2 
CONST = -A(K, DAD 
DO Lial;3 
A(K,J) = A(K,J) + CONST*A(LJ) 
B(K,J) = B(K,J) + CONST*B(L,J) 
IF (J.EQ.1) A(K,J) = 0.0 
CONTINUE 
CONTINUE 
CONST = A(L,D 
HO3l<33 
A(LJ) = A(L,J)/CONST 
B(LJ) = B(I,J)/CONST 
A(LI) = 1.0 
CONTINUE 
INVERSE OF MATRIX A IS IN MATRIX B 
NOW FIND POSITION(VPOS), W.R.T. NEWLY DEFINED AXIS 
CALL MMULT(B,VPOS, VAP) 
DO 1001 = 1,3 
VPOS(I) = VAP() 

100 CONTINUE 
RETURN 
END 

SUBROUTINE MMULT(OTR,VPOS,APOS) 
REAL OTR(3,3),VPOS(3),APOS(3) 
INTEGER I,J 
LOGICAL FLAG,LOGIC 
COMMON/ENOQY/FLAG,R,TOL,INC,LOGIC,ITY PE 

DOAOTa31;3 
APOS(I) = 0.0 
DO5J =1,3 
APOS(I) = APOS(I) + OTR(I,J) * VPOS(J) 
CONTINUE 

CONTINUE 
RETURN 
END 

SUBROUTINE WINENQ(IW,IB1,NB,BOUNDS) 

266



REAL BOUNDS(NB) 
INTEGER IW,IB1,1 
LOGICAL FLAG,LOGIC 
COMMON/PICC/PPOS(3),W(4),JW 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 

Iw =Jw 
IF(IB1.EQ.0 .OR. NB.EQ.0 ) RETURN 
DO 51=1,NB 
BOUNDS(I) = W(IB1) 
IB1 = 1B1+1 
IF(IB1.GT.4) IB1 = 1 

5 CONTINUE 
RETURN 
END 

SUBROUTINE TURNA4 
LOGICAL FLAG,LOGIC 
COMMON /PICC/PPOS(3),XMIN,XMAX,YMIN, YMAX,IW 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 

CALL SHIFT2(0.0,275.0) 
CALL ROTAT2(-90.0) 
PERM1 = XMIN 
PERM2 = XMAX 
XMIN = YMIN 
XMAX = YMAX 
YMIN = PERM1 
YMAX = PERM2 
RETURN 
END 

SUBROUTINE UNITS(XMILS) 
DEFINES RATIO OF SCALES AND PLACES IT IN COMMON. 
REAL R,XMILS 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R, TOL, INC,LOGIC,ITY PE 

R = XMILS 
CALL SCALE(R) 
RETURN 
END 

SUBROUTINE POSPIC(X,Y) 
RETURNS CURRENT PEN POSITION W.R.T. THE PICTURE COORDINATES. 
REAL X,Y 
LOGICAL FLAG,LOGIC 
COMMON/PICC/PPOS(3),XMIN,XMAX, YMIN, YMAX,IW 

267



COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 

X = PPOS(1)*R 
Y = PPOS(2) *R 
RETURN 
END 

SUBROUTINE POSSPA(X, Y,Z) 
RETURNS CURRENT PEN POSITION W.R.T. MOST RECENTLY DEFINED 
SPACE COORDINATES. 
REAL X,Y,Z 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 

X = VPOS(1) *R 
Y = VPOS(2) *R 
RETURN 
END 

SUBROUTINE DEVEND 
REALR 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 

FLAG = FALSE. 
RETURN 
END 

SUBROUTINE M2INV(A) 
FINDS INVERSE OF MATRIX PTR AND RETURNS IT IN RTP 
REAL A(2,2),B(2,2),V AP(2) 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 

DEFINE INDENTITY MATRIX OF SAME DIM. AS A(2,2) 
DO 101 = 1,2 
DO 5J =1,2 
B(LJ) = 0.0 
CONTINUE 

BD = 1.0 
CONTINUE 

DO 41 =1,2 
DO2ZK = 1,2 
IF (K.EQ.I) GO TO 2 

268



CONST = -A(K,D/A(LD) 
DOTS 382 
A(K,J) = A(K,J) + CONST*A(LJ) 
B(K,J) = B(K,J) + CONST*B(LJ) 
IF (JEQ.I) A(K,J) = 0.0 

1 CONTINUE 
2 CONTINUE 
CONST = A(L,]) 
DO 3J =1,2 
A(1,J) = A(I,J)/CONST 

3 BC,J) = B(I,J)/CONST 
A(LD = 1.0 

4 CONTINUE 
C 
6 

INVERSE OF MATRIX A IS IN MATRIX B 
NOW FIND POSITION(VPOS), W.R.T. NEWLY DEFINED AXIS 
CALL MMULT2(B, VPOS, VAP) 
DO 1001 = 1,2 
VPOS(I) = VAP(1) 

100 CONTINUE 
RETURN 
END 

SUBROUTINE MMULT2(OTR,VPOS,APOS) 
REAL OTR(2,2), VPOS(2), APOS(2) 
INTEGER LJ 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 

DO 101 = 1,2 
APOS(I) = 0.0 
DOS J =1,2 
APOS(I) = APOS(I) + OTR(I,J) * VPOS(J) 
CONTINUE 

CONTINUE 
RETURN 
END 

SUBROUTINE ARCBY2(DXC,DYC,DXE,DYE,ISENSE) 
REAL DXC,DYC,DXE,DYE,XC, YC,XE, YE 
INTEGER ISENSE 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R, TOL, INC,LOGIC, ITY PE 

XC = VPOS(1) + DXC 
YC = VPOS(2) + DYC 
XE = VPOS(1) + DXE 
YE = VPOS(2) + DYE 
CALL ARCTO2(XC, YC,XE, YE,ISENSE) 
VPOS(1) = XE - DXE 
VPOS(2) = YE - DYE 
RETURN 

269



END 

SUBROUTINE ARCTO2(XC, YC,XE, YE,ISENSE) 
REAL XC, YC,XE, YE,RAD,DX,DY,X,Y, THETA,ALPHA 
INTEGER ISENSE,N 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 

FIND RADIUS OF ARC 
RAD = SQRT( (XC-VPOS(1))**2 + (YC-VPOS(2))**2 ) 
THETA = 2 * ACOS(1 - TOL/RAD/S.) 
L = 2 * (RAD -TOL) * TAN(THETA/2) 
DX = VPOS(1) - XC 
DY = VPOS(2) - YC 
N = 3.14159/THETA 
IF(ISENSE.EQ.1)THEN 
THETA = THETA 
ELSE 
THETA = -THETA 
ENDIF 
ALPHA = 0.0 
IF(YC.EQ. YE)THEN 
N =2*N 
ELSE 
N=N 
ENDIF 
DO 101 =1,N+1 
ALPHA = THETA + ALPHA 
X = DX*COS(ALPHA) - DY*SIN(ALPHA) + XC 
Y = DX*SIN(ALPHA) + DY*COS(ALPHA) + YC 
CALL LINTO2(X, Y) 

10 CONTINUE 
RETURN 
END 

SUBROUTINE WINDIN (1) 
EXTERNAL / PASCAL / WINDOW 
INTEGER I,J,K,L,M,N 
IF (1.EQ.1 )THEN 
CALL WINDOW (1,0,0,767,873,' DRAWING OF FAULT TREES’) 

ELSEIF (1.EQ.2)THEN 
CALL WINDOW (2,0,873,555,150,, | INPUT INFORMATION ') 

ELSEIF (1.EQ.3) THEN 
CALL WINDOW (3,660,873, 107,75,,;COMMAND’) 
PRINT * 
PRINT *,’ CLEAR’ 

ELSEIF (1.EQ.4) THEN 
CALL WINDOW (4,660,948, 107,75,,INPUT FROM’) 
PRINT * 
PRINT *,' KEYS' 

270



ELSEIF (1.EQ.5)THEN 
CALL WINDOW (5,560,873,100,75,,;COMMAND') 
PRINT * 
PRIN T7,; STOP: 

END IF 
RETURN 
END 

SUBROUTINE CHWIN (1) 
EXTERNAL / PASCAL / CHNWIN 
INTEGER I 
CALL CHNWIN(I) 
RETURN 
END 

SUBROUTINE CHAMOD 
END 

SUBROUTINE PICBEG(1) 
END 

SUBROUTINE PICEND 
END 

SUBROUTINE EVESET(I) 
END 

SUBROUTINE PICSEN(I,J) 
END 

SUBROUTINE EVENT(D) 
END 

SUBROUTINE EVEDEL(I) 
END 

SUBROUTINE HARCHA 
END 

SUBROUTINE CHASWI(I) 
END 

SUBROUTINE PENSEL(I,W,J) 
END 

PIP



SUBROUTINE CHASIZ(W,H) 
END 

SUBROUTINE CHAANG(A) 
END 

SUBROUTINE T4010 
END 

SUBROUTINE CHAASC(]) 

CALL CHAHOL(CHAR(J)) 
END 

SUBROUTINE CHAINT(LJ) 
END 

module drawings; 

exports 
imports screen from screen; 

imports io_others from io_others; 
imports io_unit from io_unit; 
imports rs232baud from rs232baud; 
procedure getcur ( var x, y : long ); 
procedure scrclr; 

procedure rs232rd(var str : string); 

procedure rsbaudwt; 
procedure rsbaudrd; 

procedure rs232wrt(var str : string); 

procedure line77; 

procedure linexx(var x1,y1,x2,y2 : long ); 

procedure rdcurs( var i,x, y : long ); 
procedure strtab; 
procedure trakcurs; 

procedure tabpush ( var down : long ); 
procedure window (var windx, orgx, orgy, width, height : long ; var title : string ); 

procedure setcur ( var x, y : long ); 

procedure putchr ( var letter : string ); 

procedure chnwin ( var windx : long ); 

private 

procedure getcur; 
var 
Sx, Sy : integer; 

begin 
sreadcursor ( sx, sy ); 

X t= Stretch (sx ); 

y := Stretch ( sy ); 

end; 
procedure scrclr; 

begin 
screenreset; 

Zih2



end; 

procedure rs232rd; 

var ch : char; 

error : integer; 

begin 
repeat 
until iocread (9, ch ) = 1; 

str[1]:= ch; 

end; 

procedure rsbaudwt; 

begin 
setbaud ( ‘9600’, false ); 

end; 

procedure rsbaudrd; 

begin 
setbaud ( '9600', true ); 

end; 

procedure rs232wrt; 
var ch: char; 

begin 
ch := str [1]; 

repeat 
until iocwrite (10,ch ) = 1; 

end; 

procedure chnwin; 
begin 
changewindow ( shrink ( windx ) ); 

end; 

procedure putchr; 
var ch: char; 

begin 
ch := letter [ 1 J; 

sputchr ( ch ); 

end; 
procedure linexx ( var x1, yl, x2, y2: long ); 

begin 
line ( drawline, shrink(x1), shrink(y1), shrink(x2), shrink(y2), sscreenp ); 

end; 
procedure rdcurs; 

var xx,yy : integer; 
begin 

trakcurs; 

repeat until tabswitch; 
while tabswitch do 

begin 
ioreadtablet ( xx,yy ); 

if tabyellow then i := 0; 
if tabwhite then i := 1; 

if tabblue then i := 2; 

if tabgreen then i := 3; 

end; 

X := Stretch (xx); 

y := Stretch (yy); 
end; 

procedure strtab; 

213



begin 
iosetmodetablet ( reltablet ); 

end; 

procedure trakcurs; 

begin 

iocursormode ( trackcursor ); 

end; 

procedure tabpush ( var down : long ); 

begin 

if tabswitch then down :=1 else down := 0; 

end; 

procedure line77; 
var style : linestyle; 

x1,x2,y1,y2 : integer; 

p: rasterptr; 

orgx,orgy,width, height : integer; 
title : string; 

windx :winrange; 

letter : char; 

m: cursmode; 

begin 
screenreset; 

m := trackcursor; 

iosetmodetablet(reltablet); 

iocursormode ( m ); 

for windx := 1 to 2 do 

begin 
orgx := 100*windx; 
orgy := 100*windx; 

width := 300; 

height := 500; 
title := ‘window 1'; 

letter := 'A'; 

Style := drawline; 
xl:= 10; 

x2 :=700; 

yl :=20; 
y2 := 650; 
Pp := sscreenp; 

for x1 := 1 to 76 do 

line ( style, x1*10,20,x1*10,1000, p ); 

for y1 := 1 to 100 do 
line ( style, 5, y1*10, 765, y1 * 10, p); 

createwindow ( windx, orgx, orgy, width, height, title ); 

for x1 := 1 to 100 do 

sputchr ( letter ); 

end; 

repeat until tabswitch; 

end; 

procedure setcur ( var x, y : long ); 

begin 

ssetcursor ( shrink ( x ), shrink (y ) ); 

end; 

procedure window ; 
begin 
create window(shrink(windx), shrink(orgx),shrink(orgy),shrink(width), 

shrink(height), title) 

end. 

274



APPENDIX I: LISTING OF THE SOURCE PROGRAMS OF 

THE HAZOP PNX VERSION 

275



SOOO ICG GR GG ICI I OO OIG EOI IG Rd kkk kok ak ak ak ak 

* COMMENT : THIS PACKAGE IS WRITTEN FOR THE ICL-PERQ TOCARRY * 
= OUT THE HAZARD AND OPERABILITY STUDY (HAZOP) AND GIVE * 
_ ACCESS TO RELIABILITY CALCULATIONS ESPECIALLY WITH * 
s REPEATED BASIC EVENTS * 
2 2 is 3 fe ee 2 fe oe 2 fe 2 fe 2 2 fe 2 ee 2 fe 2 ee 2 2 oe 2 oo 2 OR OK OK RK KR RK 

INTEGER CLR,CLC, SMR, SMC, NML 

PARAMETER ( CLR = 500, 
+ CLC = 10, 
+ SMR = 50, 
+ SMC = 20, 
o NML = 12) 

INTEGER CELLS ( CLR, CLC ), SYMPTS ( SMR, SMC ) 
CHARACTER NAMES ( CLR ) * ( NML ), S*80 

OPEN (19,FILE='SCLEAR.W’) 
S="WELCOME TO THE HAZOP PACKAGE RUNNING ON THE PERQ ICL’ 
CALL FORM1(S) 

DO 5 MM=1,4 
CALL GRFTR1(IFLAG,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 

Cc 
C**** SIMULATION OF EXECUTION OF INDIVIDUAL PARTS OF THE PACKAGE FROM 
C**** GRAPHICAL MODE OF OPERATION BY MEANS OF A FLAG RETURNED FROM EACH 
CEttt SBR: 
Cc 

IF(FLAG.EQ.1)THEN 

S='CAUSE & SYMPTOM EQNS ANALYSED' 
ELSEIF(IFLAG.EQ.2)THEN 

S='FAULT TREES DRAWN' 
ELSEIF(IFLAG.EQ.3)THEN 

S='CAUSE & SYMPTOM EQNS TRANSLATED' 
ELSEIF(IFLAG.EQ.4)THEN 

S='CAUSE & SYMPTOM EQNS EDITED. ' 
ELSEIF(IFLAG.EQ.5)THEN 
GO TO 5 

ENDIF 
CALL FORM 1(S) 

5 CONTINUE 
CLOSE(19) 
END 

276



C**** SUBROUTINE GRFTR1 HAS BEEN PREPARED FOR GRAPHICAL TERMINALS 
C**** WITH A MOUSE ,IN WHICH CASE THE USER IS PRESENTED WITH A MENU 
C**** LIST OF THE PACKAGE ROUTINES. SELECTION IS MADE BY MOVING THE 
C**** CURSOR TO THE ITEM TO BE SELECTED AND PRESSING THE MOUSE 
C**** BUTTON. THIS SUBROUTINE HAS MORE COMMON APPLICATION SINCE MOST 
C**** MODERN TERMINALS HAVE GOT MOUSE-CURSOR FACILITIES. 
c 

SUBROUTINE GRFTR1(IFLAG,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 

INTEGER CLR,CLC,SMR,SMC,NML 
INTEGER CELLS ( CLR, CLC ), SYMPTS ( SMR, SMC ) 
INTEGER ICOM 
REAL X, Y 
CHARACTER NAMES (CLR ) * (12 ) 

CHARACTER CHS(5)*45 ,S*300 
LOGICAL TEST,CHECK,TEST1,FILE 

DATA (CHS(1),I=1,5)/' A. ANALYSE',’ B. DRAW',' C. EDIT’,' E. A 
1BOUT CAUSE & SYMPTOM EQNS.',’ F. QUIT’ 
DATA TEST, CHECK / 2 * FALSE. / 

CALL PERQ 
CALL PICCLE 
CALL UNITS(S.) 
CALL SHIFT2(10.,25.) 
CALL MOVTO2(0.,5.) 
CALL CHAHOL('‘SELECT YOUR PACKAGE ROUTINE BY MOVING THE CURSOR’) 
CALL MOVTO2(0.,4.) 
CALL CHAHOL('TO THE ITEM OF THE MENU LIST AND PRESS THE MOUSE’) 
CALL MOVTO2(0.,3.) 
CALL CHAHOL(‘BUTTON(S)’) 
CALL MOVTO2(0.,0.) 
CALL CHAHOL('MENU LIST OF PACKAGE ROUTINES’) 

C 
Cites SET UP MENU LIST 
¢ 

DO 10 I=2,12,2 
X=! 
CALL MOVTO2(0.,-X) 
KK=I/2 
CALL AKCHAR(CHS(KK)) 

10 CONTINUE 
Cc 
C**** MAKE THE CURSOR APPEAR 
C 

CALL CURSOR(ICOM,X, Y) 
Cc 
C**** MOVE THE CURSOR TO THE ITEM OF THE MENU LIST TO BE SELECTED 
C**** AND PRESS THE MOUSE BUTTON 
c 
C**** = IDENTIFY ITEM SELECTED BY ANALYSING PICTURE SEGMENT 

21



C*ter COORDINATE Y. 
Cc 

IF(Y.GT.23.0.AND.Y.LT.24.0)THEN 
TEST1=TEST.AND.CHECK 
IF(TEST1)THEN 

S='WARNING CAUSE & SYMPTOM EQNS HAVE ALREADY BEEN ANALYSED. 
+ DATA FROM ANALYSIS OF CAUSE & SYMPTOM EQNS HAVE BEEN STO 
+RED IN DATAFILE OPXXXXXX:' 
CALL FORM1 (S) 

IFLAG=5 
RETURN 
ELSE IF ( TEST ) THEN 

S="THE ANALYSED CAUSE AND SYMPTOM EQUATIONS HAVE ALREADY BEEN 
+READ IN FROM DATAFILE OPXXXXXX.' 
CALL FORM1 (S) 

ELSE 
CHECK=FILE(I) 

C**** CLEAR THE GRAPHICAL SCREEN AND REOPEN IT FOR DRAWING FAULT TREES 
CALL CCLOSE 
CALL EQTS(IFLAG,CHECK, TEST,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 
ENDIF 
ELSEIF(Y.GT.21.0.AND.Y.LT.22.0) THEN 
CALL TREES(IFLAG,TEST,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 
ELSEIF(Y.GT.19.0.AND.Y.LT.20.0)THEN 
CALL EDIT(IFLAG,TEST) 
ELSEIF(Y.GT.17.0.AND.Y.LT.18.0) THEN 
CALL CCLOSE 
CALL DEXPLN 
IFLAG=5 
ELSEIF(Y.GT.15.0.AND.Y.LT.16.0) THEN 
STOP 
ENDIF 
CALL DEVEND 
RETURN 
END 

C***#* SUBROUTINE EQTS IS USED TO SIMULATE THE ANALYSIS OF 
C*#*** CAUSE & SYMPTOM EQNS AND MAY EASILY FACILITATE THE 
C**** PROGRAM TREES WHICH ANALYSES CAUSE & SYMPTOM EQNS. 
c 

SUBROUTINE EQTS(IFLAG,CHECK,TEST,CELLS,CLR,CLC,SYMPTS,SMR,SMC, 
sg NAMES,NML) 

INTEGER CLR,CLC,SMR,SMC,NML 
LOGICAL TEST,CHECK 
INTEGER CELLS ( CLR, CLC ), SYMPTS (SMR, SMC ) 

278



CHARACTER NAMES (CLR ) * (12) 

CALL PART1(CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 
TEST =,TRUE. 

Cc 
C**** CHECK IF THE USER HAS REQUESTED TO STORE DATA FROM ANALYSIS 
C**** OF CAUSE & SYMPTOM EQNS INTO A FILE. 
Cc 

IF(CHECK)THEN 
OPEN(3,FILE='OPXXXXXX',FORM='UNFORMATTED', 

* ACCESS = 'SEQUENTIAL'’) 
REWIND (3) 
DO 111 =1, CLR 
WRITE(3)(CELLS(I,J),J=1,CLC) 

11 CONTINUE 
DO 12 K = 1,SMR 
WRITE(3)(SYMPTS(K,L),L=1,SMC) 

12 CONTINUE 
DO 13M =1,CLR 
WRITE(3)NAMES(M) 

13. CONTINUE 
CLOSE(3) 
ENDIF 
IFLAG=1 
END # 

SUBROUTINE FORM 1 (S) 

CHARACTER S*(*), KEY 

OPEN (1,FILE="INTROD.W’) 
OPEN (2,FILE="INTROD.W') 
WRITE (LEM Dash) BER SRR Re RE EA RE ER RIO ER AOR 8 

f EER EREEREE ES EEE EER EEG RE ERE EH EY 

WRITE (1,FMT=*)S 
WRITE (LEM Tact) S28 RS CERERAER ER EERRERE ERE ERA REESE REESE ER EAE HE 

PRES ESERERERSEE LETS RAKE EL EHS! 

WRITE (1,FMT=*) 
WRITE (1,FMT=*)' PLEASE, PRESS RETURN KEY TO CONTINUE' 

11 READ (2,'(A)')KEY 
IF (KEY .EQ. CHAR(32)) THEN 
CLOSE (1) 
CLOSE (2) 
ELSE 
GOTO 11 
END IF 
RETURN 
END 

SUBROUTINE FORMIA (S1,S2) 

CHARACTER S1*(*),S2*(*), KEY 

279



OPEN (1,FILE="INTROD.W’) 
OPEN (2,FILE="INTROD.W’) 
WRITE (1,FMT=*)S1 
WRITE (1,FMT=*)S2 
WRITE (1,FMT=*)' PLEASE, PRESS RETURN KEY TO CONTINUE’ 

11 READ (2,'(A)')KEY 
IF (KEY EQ. CHAR(32)) THEN 
CLOSE (1) 
CLOSE (2) 
ELSE 
GO TO 11 
END IF 
RETURN 
END 

SUBROUTINE FORM2 (S, YESNO) 

CHARACTER S*160, ANSWER*3 
LOGICAL YESNO, REPLY 

OPEN (3,FILE="INTROD.W’) 
OPEN (4,FILE="INTROD.W’) 

9000 CONTINUE 
WRITE (3,FMT=*)S 
READ (4,16)ANSWER 

16 FORMAT(A) 
IF(ANSWER.EQ.'YES'.OR.ANSWER.EQ.'YE.OR.ANSWER.EQ.'Y'.OR.ANSWER. 
+EQ.'YES'.OR.ANSWER.EQ.'YE'.OR.ANSWER.EQ.'Y')THEN 
REPLY=.TRUE. 
YESNO=.TRUE. 
ELSEIF(ANSWER.EQ.'NO'.OR.ANSWER.EQ.'N'.OR.ANSWER.EQ.'NO'.OR. 
+ANSWER.EQ.'N')THEN 
REPLY=.TRUE. 
YESNO=.FALSE. 
ELSE 
S="YOUR ANSWER SHOULD BE YES OR NO [Y/N]' 
REPLY =.FALSE. 
ENDIF 
IF (.NOT. REPLY) GO TO 9000 
CLOSE(3) 
CLOSE(4) 
RETURN 
END 

Gra 

Gere 

Cree 

Crean 

SUBROUTINE EDIT SIMULATES THE EDITING OF CAUSE & SYMPTOM 
EQNS AND ONCE MORE THE DATA STRUCTURE FOR THIS SBR. COMES 
FROM THE ANALYSIS OF CAUSE & SYMPTOM EQNS. THE SBR. MAY 
FACILITATE THE NEWLY PREPARED PROGRAM FOR EDITING. 

280



SUBROUTINE EDIT(IFLAG, TEST) 
LOGICAL TEST 
CHARACTER DEQTS*90 

(e: 
C**** = TEST WHETHER DATA OF ANALYSIS OF C&S EQNS IS TO BE READ FROM 
C**** A FILE OR TRANSFERED AS AN ARGUMENT OF THE SBR. 
G 

IF(TEST)THEN 
OPEN (3,FILE='OPXXXXXX',FORM='UNFORMATTED', 

* ACCESS='SEQUENTIAL'’) 
REWIND(3) 
READ(3)DEQTS 
CLOSE(3) 
ENDIF 
IFLAG=4 
END 

Cc 
C**** SUBROUTINE DEXPLN OUTPUTS A DETAILED ILLUSTRATED EXPLANATION 
Cree. OF THE PACKAGE 
& 

SUBROUTINE DEXPLN 
CHARACTER LINE*80,REP*4 

OPEN(UNIT=15,FILE='HELP.W') 
OPEN(UNIT=16,FILE="HELP.W') 
OPEN(UNIT=9,FILE='ZXC.TEXT') 
REWIND(9) 

C 
C**** =OQUTPUT THE TEXT OF EXPLANATION FROM FILE ZXC TO THE SCREEN. 
Cc 
10 J=1 
20 READ(9,'(A)')LINE 

WRITE(UNIT=16,FMT='(A)')LINE 
IF (LINE.NE.' @@@')THEN 
J=J+1 

G 
C**** OUTPUT EXPLANATION OF PACKAGE AT INTERVALS OF 65 LINES 
Cc 

IF (J.EQ.65)THEN 
WRITE(16,FMT=*)'PRESS RETURN TO CONTINUE' 
READ(UNIT=15,FMT='(A)')REP 
IF(REP.NE.CHAR(32))THEN 
CLOSE(9) 
CLOSE(16) 
CLOSE(15) 
RETURN 
ELSE 
GO TO 10 
END IF 

END IF 
GO TO 20 

ELSE 
WRITE(16,FMT=*)'PRESS ANY KEY TO QUIT' 
READ(15,FMT='(A)')REP 

281



END IF 
CLOSE(9) 
CLOSE(16) 
CLOSE(15) 
RETURN 
END 

Cc 
C**** SUBROUTINE TREES SIMULATES THE DRAWING OF FAULT TREES 
C**** FROM CAUSE & SYMPTOM EQNS ON A GRAPHICAL TERMINAL 
C**** AND CAN EASILY FACILITATE THE PROGRAM TREES FOR THE 
C**** ACTUAL DRAWING OF FAULT TREES. 
C 

SUBROUTINE TREES(IFLAG,TEST,CELLS,CLR,CLC,S YMPTS,SMR,SMC, 
* NAMES,NML) 

INTEGER CLR,CLC,SMR,SMC,NML,IFLAG 
INTEGER CELLS ( CLR, CLC ), SYMPTS ( SMR, SMC ) 
CHARACTER NAMES ( CLR ) * (12) 
LOGICAL TEST 

GC 
C**** ~=TEST WHETHER DATA FROM ANALYSIS OF CAUSE & SYMPTOM EQNS 
C**** ARE GOING TO BE READ FROM A FILE OR TO BE TRANSFERED AS 
C**** ARGUMENTS FROM THE SUBROUTINE. 
Cc 

OPEN(UNIT=18,FILE='SYEND.W’) 
WRITE(18,FMT=*)' READING DATA FROM ANALYSIS OF' 
WRITE(18,FMT=*)' CAUSE & SYMPTOM EQNS' 
CALL FLASH(18) 
IF(.NOT. TEST)THEN 
OPEN(3,FILE='OPXXXXXX',FORM = 'UNFORMATTED', 

* ACCESS = 'SEQUENTIAL’) 
REWIND(3) 
DO 11I=1, CLR 
READ(3)(CELLS(I,J),J=1,CLC) 

11 CONTINUE 
DO 12 K = 1,SMR 
READ(3)(S YMPTS(K,L),L=1,SMC) 

12 CONTINUE 
DO 13M = 1, CLR 
READ(3) NAMES(M) 

13 CONTINUE 
CLOSE(3) 
CALL ASYR 
ENDIF 
CLOSE(18) 
CALL PICCLE 

CALL PART2(CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 

IFLAG=2 
END 

282



- 
C**** SUBROUTINE AKCHAR PREPARES CHARACTER STRINGS TO BE READILY 
C**** ~~ USED WITH THE GINO COMMAND CALL CHAARR(L,M,N) WHICH OUTPUTS 
C**** =A CHARACTER STRING. 
c 

Cc 

SUBROUTINE AKCHAR(STRING) 
PARAMETER(LENGTH=20) 
CHARACTER STRING*(*) 
INTEGER FINAL 
NCHAR=FINAL(STRING) 

Gtt**- OUTPUT STRING OF CHARAGTERS 
Cc 

¢ 

CALL CHAHOL(STRING(1:FINAL(STRING))) 
END 

LOGICAL FUNCTION FILE(I) 
LOGICAL RPLY 
CHARACTER S*400 

S='DO YOU INTEND TO TERMINATE RUN BEFORE OBTAINING FINAL RESULTS? 
1 IF [Y] INTERMEDIATE RESULTS FROM ANALYSIS O 
2F CAUSE AND SYMPTOM EQNS MAY BE STORED IN DAT 
3A FILE AND USED ON REQUEST ' 
CALL FORM2 (S,RPLY) 
IF(RPLY)THEN 
FILE=.TRUE. 
ELSE 
FILE=.FALSE. 
ENDIF 
RETURN 
END 

CETRFEN® 

g 

* 

* 

* 

SUBROUTINE PART1(CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 

INTEGER CLR,CLC, SMR, SMC, NML 
INTEGER AT,OP,PO,EQ,AX,TP,NAM,SYMP,SIGN,I,Q,N,POS,M,K,P,S,R,J 
INTEGER LIMT,FIM,TNML 
PARAMETER (AT=30,OP=20,PO=30,EQ=200,AX=30,TP=9, TNML=12) 
INTEGER CELLS ( CLR, CLC ), SYMPTS ( SMR, SMC ) 
INTEGER DIST,TEST,ATRNS(AT),OPSTK(OP),POLLSH(PO), AUX(AX), TEMP(TP) 
CHARACTER NAMES(CLR)*(12), BRANCH*(TNML) 
CHARACTER EQN*(EQ), DNAME*8,SS*50,SA*(EQ) 
LOGICAL SAY2 

_‘INITIALISING ARRAYS' 

DO 10 I=1,CLR 
NAMES(I)='EMPTY' 

10 CONTINUE 

283



DO 20 I=1,SMR 
DO 21 J=1,SMC 
SYMPTS(LJ)=0 

21 CONTINUE 
20 CONTINUE 

DO 22 I=1,CLR 
DO 23 J=1,CLC 
CELLS(I,J)=0 

23 CONTINUE 
22 CONTINUE 

OPEN (13,FILE="INTROD.W’) 
OPEN (17,FILE="INTROD.W’) 
WRITE (17,FMT=*)'INPUT THE NAME OF THE CAUSE & SYMPTOMS EQNS. FILE 

a 

READ(13,'(A)’)DNAME 
SS='DO YOU WANT TO SEE A DISPLAY OF THE CAUSE & SYMPTOM EQNS. WITH 

+ THEIR ANALSIS?' 
CALL FORM2(SS,SAY2) 
CLOSE (17) 
CLOSE (13) 
IF (NOT.SAY2)THEN 
OPEN(UNIT=16,FILE='SYEND.W’) 
WRITE(16,FMT=*)' WAITING FOR THE ANALYSIS TO BE FINISHED’ 
CALL FLASH(16) 
END IF 
OPEN(8,FILE=>DNAME,FORM="FORMATTED’) 
REWIND(8) 

100 READ( UNIT = 8, FMT = *) EQN 
Q=0 
N=0 
IF(EQN.EQ.'END') THEN 
GO TO 2000 

END IF 

CALL DISTNT (EQN,DIST,Q ) 
POS=Q-1 
BRANCH=EQN(1:POS) 
CALL ALLOC(BRANCH,R,TEST,NAMES,NML,CLR) 
NAM-=R 
IF(DIST.EQ.0)THEN 
GO TO 350 
END IF 
IF(TEST.EQ.-1)THEN 
CELLS(NAM,1)=1 
CELLS(NAM,2)=-2 
END IF 
M-=0 

50 M=M+1 
IF(M.GT.SMR)THEN 
SS= 'SYSTEM CANNOT ACCEPT MORE EQS.' 
CALL FORM1(SS) 
GO TO 300 
END IF 

284



IF(SYMPTS(M, 1).NE.0)THEN 

GO TO 50 

END IF 

SYMPTS(M,1)=NAM 
SYMP=M 

K=1 

60 P=Q+1 

S=0 

SIGN=0 

70 Q=Q+1 

S=S+1 

IF(S.GT.NML+1)THEN 

SS='THERE IS A MISTAKE, IT IS NOT A SYMPTON EQN. INPUT EQUATION 

+WAS' 

SA=EQN 

CALL FORMIA(SS, SA) 

GO TO 300 

END IF 

IF(EQN(Q:Q).EQ."*')THEN 
BRANCH=EQN(P:Q-1) 

ELSE 

IF(EQN(Q+1:Q+1).EQ.' ')THEN 

BRANCH=EQN(P:Q) 

SIGN=-1 

ELSE 

GO TO 70 

END IF 

END IF 

CALL ALLOC(BRANCH,R,TEST,NAMES,NML,CLR) 

IF(TEST.EQ.-1)THEN 

CELLS(R,1)=1 

CELLS(R,2)=0 

CELLS(R,3)=1 

ELSE 

CELLS(R,3)=CELLS(R,3)+1 

END IF 

J=CELLS@,3) 

CELLS(R,3+J)=SYMP 

SYMPTS(SYMP,2+K)=R 

K=K+1 

IF(K.GT.SMC-2)THEN 

SS='THERE ARE MORE THAN 18 BRANCHS IN A SYMPTON EQN.' 

SA=EQN 

CALL FORMIA(SS, SA) 

GO TO 300 

END IF 

IF(SIGN.EQ.0)THEN 

GO TO 60 

END IF 

SYMPTS(SYMP,2)=K-1 

GO TO 100 

350 IF(TEST.EQ.-1)THEN 
CELLS(NAM, 1)=1 
END IF 

285



CALL TRNSLT(EQN,Q,ATRNS,I,LIMT,EQ,AT,CELLS,CLR,CLC,NAMES,NML) 

CALL POLISH(ATRNS,I,POLLSH,N,LIMT,FIM,OP,PO,AT,OPSTK,AUX) 

CALL CAUSE(POLLSH,NAM,FIM,PO,TP,CELLS,CLR,CLC,NAMES,NML,TEMP) 

GO TO 100 
2000 CLOSE(8) 

CLOSE(16) 

DO 1500 J=1,CLR 
IF(CELLS(J,3).EQ.0)THEN 
IF(NAMES(J).NE.'EMPTY')THEN 
CELLS(J,2)=-2 
CELLS(J,1)=1 

ELSE 
GO TO 200 

END IF 
END IF 

1500 CONTINUE 
200 IF (SAY2)THEN 

OPEN(14 ,FILE = 'HELP.W’) 
OPEN(18,FILE=DNAME,FORM='FORMATTED’) 
REWIND(18) 
WRITE(14,*) 
WRITE (14;*) SARttee ";\DNAME, ' 2K KOK 

WRITE(14,*)' 
WRITE(14,*) 

111 READ( UNIT = 18, FMT = * ) EQN 
WRITE ( UNIT = 14, FMT = '(2A)') EQN : ‘EQN 
IF(EQN.NE.'END')THEN 
GOTO 111 
END IF 
CLOSE(18) 
WRITE ( UNIT = 14, FMT =*) 
WRITE ( UNIT = 14, FMT = 205 ) 

205 FORMAT (T42,'C E LL $/T42,9('*')) 
WRITE ( UNIT = 14, FMT = * ) 
DO 210 I=1,CLR 
WRITE ( UNIT = 14, FMT = 220) I, (CELLS (I,J ), J = 1, CLC) 

220 FORMAT (T3,13,T20,10(3X,13)/) 
210 CONTINUE 

  

WRITE ( UNIT = 14, FMT = *) 
WRITE ( UNIT = 14, FMT = 215) 

215 FORMAT (T42,'S Y M PT S/T42,11("*")) 
WRITE ( UNIT = 14, FMT = *) 
DO 230 I=1,SMR 
WRITE ( UNIT = 14, FMT = 240 )I,(SYMPTS(1,J),J=1,SMC) 

240 FORMAT (T3,13,T6,(10(3X,13)/)) 
230 CONTINUE 

286



WRITE ( UNIT = 14, FMT = *) 
WRITE ( UNIT = 14, FMT = 265) 

265 FORMAT (T10,'N AME S!T10,9('*’)) 
WRITE ( UNIT = 14, FMT = *) 
DO 250 I=1,CLR 
WRITE ( UNIT = 14, FMT = 260 ) LNAMES(1) 

260 FORMAT (T5,14,T10,A) 
250 CONTINUE 

CALL FLASH(14) 
CLOSE(14) 
END IF 
OPEN(7, FILE = ‘LOCAL’ ,FORM = 'FORMATTED’) 
REWIND(7) 
DO 400 L=1,CLR 
WRITE(UNIT=7,FMT=420)(CELLS(L,K),K=1,CLC) 

-420 FORMAT(10(13,3X)) 
400 CONTINUE 

DO 450 L=1,SMR 
WRITE(UNIT=7,FMT=440)(SYMPTS(L,K),K=1,SMC) 

440 FORMAT(10(13,3X)) 
450 CONTINUE 
300 CONTINUE 

CLOSE (7) 
RETURN 
END 

G 
CEEAETEX 

c 
SUBROUTINE DISTNT(EQN,DIST,Q ) 

C*** * THIS SUBROUTINE DETERMINES WHETHER AN EQUATION IS A CAUSE OR 
C*** * A SYMPTOM EQUATION. 
Crete 

C**** EQN -CHARACTER - THE EQUATION IN QUESTION 
C**** DIST - INTEGER - RETURNS -1 FOR SYMPTOM 
Cres RETURNS 0 FOR CAUSE 
C**** Q  -INTEGER - RETURNS POSITION OF [-] OR [=] INEQN 
Cx * 

CHARACTER EQN * ( *) 
INTEGER DIST, Q, NXTNSP 

Q = INDEX ( EQN, ’)') 

IF (Q EQ. 0) THEN 

CALL INERR ( EQN ) 
STOP 

ELSE 

- LOOK FOR NEXT NON-SPACE CHARACTER 

287



Q=Q+NXTNSP ( EQN (Q+1:LEN( EQN) )) 

IF (EQN (Q: Q) EQ. '-') THEN 

DIST = -1 
RETURN 

ELSE IF (EQN (Q: Q) EQ.'=') THEN 

DIST =0 
RETURN 

ELSE 

CALL INERR ( EQN ) 
STOP 

END IF 

END IF 
END 

SUBROUTINE ALLOC(BRANCH,R,TEST,NAMES,NML,CLR) 

INTEGER CLR,NML 
INTEGER R, TEST, NEXT 
PARAMETER ( TNML = 12) 
CHARACTER BRANCH*(*),NAMES(CLR)*(12) 

DATA NEXT / 1/ 

IF (BRANCH .NE. '') THEN 

DO 10,R=1, NEXT 

IF (BRANCH .EQ. NAMES (R ) ) THEN 

TEST =0 
RETURN 

END IF 

10 CONTINUE 

END IF 

IF (NEXT .EQ. CLR ) THEN 

PRINT *, ‘SYSTEM CANNOT ACCEPT MORE EQUATIONS ' 
STOP 

ELSE 

NAMES ( NEXT ) = BRANCH 

288



R = NEXT 

NEXT = NEXT + 1 

TEST = -1 

RETURN 

END IF 

END 

C 
Cet 

GC 
SUBROUTINE TRNSLT(EQN,Q,ATRNS,I,LIMT,EQ,AT,CELLS,CLR,CLC, 

: NAMES,NML) 

INTEGER EQ,AT,CLR,CLC,NML 

INTEGER Q,ATRNS(AT),I,LIMT,PS,MEM,R,TEST,CELLS(CLR,CLC) 

CHARACTER BRANCH*(12),EQN*(*),NAMES(CLR)*(12) 

DO 51 I=1,AT 

ATRNS(I)=0 

$1 CONTINUE 

I=1 

PS=Q+1 

55 Q=Q+1 

IF(EQN(Q:Q).EQ.'(‘)THEN 
IF(EQN(Q+1:Q+1).NE.'(‘) THEN 

IF(Q.EQ.PS)THEN 

ATRNS(I)=-4 

I=I+1 

PS=PS+1 

GO TO 55 

ELSE 

MEMS=INDEX(EQN(PS: ),')') 

BRANCH=EQN(PS:PS+MEM-1) 

CALL ALLOC(BRANCH,R,TEST,NAMES,NML,CLR 

IF(TEST.EQ.-1)THEN : 

CELLS(R,1)=1 

END IF 

ATRNS(D=R 

I=I+1 

PS=PS+MEM 

Q=PS-1 

GO TO 55 

END IF 

ELSE 

ATRNS(I)=-4 

I=I+1 

PS=PS+1 

GO TO 55 

END IF 

END IF 

IF(EQN(Q:Q).EQ.')') THEN 
ATRNS(I)=-3 

I=I+1 

289



PS=Q+1 

GO TO 55 

END IF 

IF(EQN(Q:Q).EQ.'*')THEN 

ATRNS(D=-1 

I=I+1 

PS=Q+1 

GO TO 55 

END IF 

IF(EQN(Q:Q).EQ.'+')THEN 

ATRNS(I)=-2 

I=I+1 

PS=Q+1 

GO TO 55 

END IF 

IF(EQN(Q:Q).NE.' ')THEN 

GO TO 55 

ELSE 

LIMT=I-1 

END IF 

RETURN 

END 

Cc 
Cee 

G 

SUBROUTINE POLISH(ATRNS,I,POLLSH,N,LIMT,FIM,OP,PO,AT,OPSTK,AUX) 

INTEGER OP,PO,AT,FIM,N,1LL,J,LIMT,X 
INTEGER POLLSH(PO),ATRNS(AT),OPSTK(OP), AUX(OP) 

I=0 

N=0 

J=0 

X=0 

$00 I=I+1 

IF(I.GT.LIMT)THEN 

IF(J.NE.0)THEN 

DO 555 L=J,1,-1 

N=N+1 

POLLSH(N)=OPSTK(L) 

$55 CONTINUE 

END IF 

FIM=N 

RETURN 

END IF 

IF(ATRNS(I).LT.0) THEN 

IF(J.EQ.0)THEN 

J=J+1 

OPSTK(J)=ATRNS(I) 

GO TO 500 

END IF 

X=X+1 

AUX(X)=ATRNS(I) 

IF(AUX(X).GT.OPSTK(J)) THEN 

290



J=J+1 

OPSTK(J)=AUX(X) 
AUX(X)=0 
X=X-1 
GO TO 560 

ELSE 

570 

580 

IF(AUX(X).NE.OPSTK(J))THEN 

IF(AUX(X).EQ.-4) THEN 

J=J+1 

OPSTK(J)=AUX(X) 

AUX(X)=0 

X=X-1 

GO TO 500 

END IF 

IF(AUX(X).EQ.-3) THEN 

N=N+1 

POLLSH(N)=OPSTK(J) 

OPSTK(J)=0 

J=J-1 

IF(OPSTK(J).NE.-4) THEN 

GO TO 570 

ELSE 

J=J+1 

OPSTK(J)=AUX(X) 

AUX(X)=0 

X=X-1 

GO TO 560 

END IF 

END IF 

N=N+1 

POLLSH(N)=OPSTK(J) 

OPSTK(J)=0 

J=J-1 

IF(J.GT.0)THEN 

IF(OPSTK(J).EQ.POLLSH(N))THEN 

GO TO 580 

END IF 

END IF 

J=J+1 

OPSTK(J)=AUX(X) 

AUX(X)=0 

X=X-1 

GO TO 500 

ELSE 
IF(AUX(X).GT.-3)THEN 
DO 590 L=I+1,LIMT 

IF(ATRNS(L).LT.0)THEN 
IF(ATRNS(L).NE.-3) THEN 
IF(ATRNS(L).NE.AUX(X))THEN 
J=J+1 

OPSTK(J)=AUX(X) 
AUX(X)=0 
X=X-1 
GO TO 500 

END IF 

2951



END IF 

END IF 

590 CONTINUE 

N=N+1 

POLLSH(N)=AUX(X) 

AUX(X)=0 

X=X-1 

GO TO 500 

END IF 

END IF 

END IF 

560 IF(OPSTK(J)+OPSTK(J-1).EQ.-7)THEN 

OPSTK(J)=0 

OPSTK(J-1)=0 

J=J-2 

END IF 

GO TO 500 

ELSE 

N=N+1 

POLLSH(N)=ATRNS(D 

GO TO 500 

END IF 

END 

. 
Creer ag 

. 

SUBROUTINE CAUSE(POLLSH,NAM,F1M,PO,TP,CELLS,CLR,CLC, 
c NAMES,NML,TEMP) 

INTEGER CLR,CLC,NML,TP,PO 
CHARACTER NAMES(CLR)*(12) 
INTEGER CELLS(CLR,CLC),POLLSH(PO), TEMP(TP),FLAG,STEP,FIM,NAM 

+,LASTOP,L,K,S,M,I, TEST 
DO 700 L=1,TP 
TEMP(L)=0 

700 CONTINUE 
K=0 
FLAG=1 

710 K=K+1 
IF(POLLSH(K).GE.0)THEN 
IF(K.GE.F1M)THEN 
IF(FLAG.EQ.1)THEN 
CELLS(NAM,2)=2 
CELLS(NAM,3)=1 
CELLS(NAM,4)=POLLSH(K) 
RETURN 

ELSE 
DO 720 S=1,TP 
CELLS(NAM,S+1)=TEMP(S) 

720 CONTINUE 
RETURN 

END IF 
ELSE 

2:92



GO TO 710 
END IF 
END IF 
IF(FLAG.EQ.1)THEN 
LASTOP=POLLSH(K) 
IF(LASTOP.EQ.-1)THEN 
TEMP(1)=-1 

ELSE 
TEMP(1)=1 

END IF 
TEMP(2)=2 
TEMP(3)=POLLSH(K-2) 
TEMP(4)=POLLSH(K-1) 
IF(F1M.EQ.3)THEN 
DO 730 M=1,3 
POLLSH(M)=0 

730 CONTINUE 
FIM=1 
K=0 
FLAG=0 
GO TO 710 
END IF 
CALL COMPRS (POLLSH,PO,K,F1M,FLAG) 
GO TO 710 
END IF 
IF(POLLSH(K).EQ.LASTOP)THEN 

_ IF(POLLSH(K-2).EQ.0)THEN 
TEMP(2)=TEMP(2)+1 
STEP=TEMP(2) 
TEMP(2+STEP)=POLLSH(K-1) 
IF(F1M.EQ.3)THEN 
DO 750 M=1,3 
POLLSH(M)=0 

750 | CONTINUE 
F1M=1 
FLAG=0 
K=0 
GO TO 710 

END IF 
CALL COMPRS (POLLSH,PO,K,F1M,FLAG) 
GO TO 710 

END IF 
IF(POLLSH(K-1).EQ.0)THEN 
TEMP(2)=TEMP(2)+1 
STEP=TEMP(2) 
TEMP(2+STEP)=POLLSH(K-2) 
IF(F1M.EQ.3)THEN 
DO 780 M=1,3 
POLLSH(M)=0 

780 CONTINUE 
F1M=1 
FLAG=0 
K=0 
GO TO 710 

END IF 

ae5



CALL COMPRS (POLLSH,PO,K,F1M,FLAG) 
GO TO 710 

END IF 
END IF 
LASTOP=POLLSH(K) 

850 CALL ALLOC(' _ '\, TEST,NAMES,NML,CLR) 
NAMES(I)=' : 
DO 920 S=1,TP 
CELLS(I,S+1)=TEMP(S) 

920 CONTINUE 
DO 930 S=1,TP 
TEMP(S)=0 

930 CONTINUE 
DO 931 L=K-1,1,-1 
IF(POLLSH(L).EQ.0)THEN 
POLLSH(L)=I 
GO TO 935 

END IF 
931 CONTINUE 
935 IF(LASTOP.EQ.-1)THEN 

TEMP(1)=-1 
ELSE 
TEMP(1)=1 
END IF 
TEMP(2)=2 
TEMP(3)=POLLSH(K-2) 
TEMP(4)=POLLSH(K-1) 
IF(F1M.EQ.3)THEN 
DO 940 M=1,3 
POLLSH(M)=0 

940 CONTINUE 
F1M=1 
K=0 
FLAG=0 
GO TO 710 
END IF 
CALL COMPRS (POLLSH,PO,K,F1M,FLAG) 
GO TO 710 
END 
SUBROUTINE COMPRS (POLLSH,PO,K,F1M,FLAG) 
INTEGER PO 
INTEGER POLLSH(PO),K,F1M,FLAG,S 
POLLSH(K-2)=0 
DO 950 S=K+1,FIM 
POLLSH(S-2)=POLLSH(S) 

950 CONTINUE 
F1M=F1M-2 
FLAG=0 
K=0 
END 

SUBROUTINE ANCELL( ILJ,KS,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 

294



INTEGER CLR,CLC,SMR,SMC,NML 

PARAMETER (IW=10, IL=40, LVECT=50) 
COMMON /ONE/ FLAG 
COMMON/SYGIN/FD 

INTEGER CELLS(CLR,CLC), NM(IW), NJ(IW), K(IW), NZ(IW), 
+ VECTOR (LVECT ),SYMPTS ( SMR,SMC ) 
CHARACTER NAMES(CLR)*(12), FLAG(IW,IL)*40 

c 
C**#** INITIALISE THE ARRAY K 
¢ 

K(1) = KS 
DO 5, I=2,IW 

K(1)=0 

5 CONTINUE 

Cc 
C**** CHECK THE LENGTH OF THE DRAWING AREA 
c 

CALL EXCEED( ILJ,IL,CELLS,CLR,CLC,NAMES,NML ) 
Cc 
C**** PUT THE TOP BOX OF THE TREE IN THE MIDDLE OF A ROW 
C**** OF ARRAY FLAG AND CODE NAME IT 
Cc 

IF (2*(IW/2) .EQ. IW) THEN 
FLAG(IW/2,ILJ) = 'Z' 
KIW =IW/2 

ELSE 
FLAG(1+IW/2,ILJ) = 'Z' 
KIW = 1+IW/2 

END IF 
Cc 
C**** FIND THE NUMBER OF BRANCHES AND MARK THEM IN THE NEXT 
C**** ROW OF ARRAY FLAG 

CALL BRANCH(ILJ,K(1),KIW,CELLS,CLR,CLC,NAMES,NML) 
a 
C**** CHECK TO SEE IF ALL THE BOXES MARKED IN THE LATEST ROW 
C**** OF ARRAY FLAG HAVE NAMES 
Cc 
10 L=0 

J=1 
N8 =0 
DO 401 =1,IW 

IF (K(I) .NE. 0) THEN 

CALL SETROW ( VECTOR, K (1), CELLS, SYMPTS, CLR, CLC, SMR, 

+ SMC ) 

N1=3 
DO 20M = J,IW 

IF (FLAG(M,ILJ+1) NE. 'EMPTY') THEN 

2915



N1 =N1+41 

IF ( VECTOR (N1).EQ.0) THEN 

GO TO 30 

END IF 

N8 = N8+1 

IF (CELLS(VECTOR(N1),1) EQ. 0) THEN 

L=L+l 

NM(L) =I 

NJ(L) =N1 

NZ(L) = N8 

END IF 

END IF 

20 CONTINUE 

GC 

30 J=M 

ELSE 

GO TO 50 

END IF 

40 CONTINUE 

€ 

50 IF (L.EQ.0) THEN 

RETURN 

END IF 

c 

C**** TF THERE ARE UNNAMED BOXES CONTINUE WITH THE ANALYSIS 

C**** OF THE DATA IN ARRAY CELLS 

€ 

ILJ = ILJ+1 

Cc 

C**** CHECK THE LENGTH OF THE DRAWING AREA 

¢ 

CALL EXCEED( ILJ,IL,CELLS,CLR,CLC,NAMES,NML ) 

Cc 

C**** DEAL WITH EACH UNNAMED BOX IN TURN 

C 

DO 80LA = 1,L 

KA=0 

DO 60 LB = 1,IW 

IF (FLAG(LB,ILJ) .NE. 'EMPTY') THEN 

KA = KA+1 

IF (KA .EQ. NZ(LA)) THEN 

GO TO 70 

END IF 

END IF 

60 CONTINUE 

G 

C**** FIND THE ROW OF ARRAY CELLS WHICH HAS INFORMATION ABOUT 

C**** THE UNNAMED BOX AND USE THE SUBROUTINE BRANCH TO FIND 

C**** THE NUMBER OF BRANCHES BELOW IT AND TO MARK THEM IN 

C**** THE NEXT ROW OF ARRAY FLAG 

C 

70 Ki =CELLS(K(NM(LA)),NJ(LA)) 

CALL BRANCH(ILJ,K1,LB,CELLS,CLR,CLC,NAMES,NML) 

80 CONTINUE 

Cc 

296



C**** FIND THE ROWS OF CELLS WHICH HOLD INFORMATION ABOUT THE 

C**** MARKED BOXES IN THE LATEST ROW OF ARRAY FLAG 

C 

ML=0 

DO 100 LD = 1,IW 

IF (K(LD) .NE. 0) THEN 

DO 90 LF = 4,CLC 

IF (CELLS(K(LD),LF) .NE. 0) THEN 

ML = ML+1 

NM(ML) = CELLS(K(LD),LF) 

ELSE 

GO TO 100 

END IF 

90 CONTINUE 

ELSE 

GO TO 110 

END IF 

100 CONTINUE 

¢ 

C**** STORE THE ROWS FOUND ABOVE IN ARRAY K AND START AGAIN 

C**** CHECKING THE LATEST ROW OF ARRAY FLAG 

€ 

110 DO 120 LP = 1,IW 

IF (LP .LE. ML) THEN 

K(LP) = NM(LP) 

ELSE 

K(LP) = 0 

END IF 

120 CONTINUE 

GO TO 10 

END 

SUBROUTINE BRANCH(MLJ,K2,KMW,CELLS,CLR,CLC,NAMES,NML) 

INTEGER CLR,CLC,NML 
PARAMETER (IW=10, IL=40) 
COMMON /ONE/FLAG 
COMMON/SYGIN/FD 
INTEGER CELLS(CLR,CLC) 
CHARACTER FLAG(IW,IL)*40, NAMES(CLR)*(12) 

¢ 
C**** CHECK THE SECOND ELEMENT IN THE ROW OF ARRAY CELLS 
Cc 
C**** FIND THE NUMBER OF BRANCHES AND CHECK THE WIDTH 
C**** OF THE DRAWING AREA 
C 

NUM = CELLS(K2,3) 
IF (NUM .GT. IW) THEN 
PRINT *,'"***** WIDTH OF DRAWING AREA TOO SMALL **##*' 
CALL GINEND : 
CALL DAWRI( 'EMPTY',3,CELLS,CLR,CLC,NAMES,NML ) 
STOP 

END IF 

BOL



C**** CHECK TO SEE IF THE NUMBER OF BRANCHES IS EVEN OR ODD 
C**** AND USE SUBROUTINE FILLF TO MARK THEM IN THE NEXT 
C**** ROW OF ARRAY FLAG 
CG 

IF (2*(NUM/2) .EQ. NUM) THEN 
CALL FILLF(KMW,NUM,MLJ,CELLS,CLR,CLC,NAMES,NML) 

ELSE 
FLAG(KMW,MLJ+1) = '10' 
CALL FILLF(KMW,NUM,MLJ,CELLS,CLR,CLC,NAMES,NML) 

END IF 
END 

SUBROUTINE FILLF(KMW,NUM,MLJ,CELLS,CLR,CLC,NAMES,NML) 

INTEGER CLR,CLC,NML 
PARAMETER (IW=10, IL=40) 
COMMON /ONE/ FLAG 
COMMON/SYGIN/FD 
CHARACTER FLAG(IW,IL)*40, CHARA, NAMES(CLR)*(12) 
INTEGER CELLS(CLR,CLC) 

C**** DERIVE A CODED NAME FOR EACH MARKED ELEMENT OF ARRAY FLAG 
IF (FLAG(KMW,MLJ) EQ. 'Z') THEN 

IT = ICHAR('A') 
ELSE 

IT = ICHAR('1') 
END IF 

Cc 
C**** CODE NAME THE MIDDLE ELEMENT OF THE NEXT ROW OF THE 
C**#* ARRAY FLAG IF IT IS MARKED 
e 

IF (FLAG(KMW,MLJ+1) EQ. '10’) THEN 
CHARA = CHAR( IT+NUM/2 ) 
FLAG(KMW,MLJ+1) = CHARA(1:1)//FLAG(KMW,MLJ) 

END IF 
G 
C**** MARK THE LEFT HAND SIDE BRANCHES IN THE NEXT ROW OF 
C**** THE ARRAY FLAG AND CODE NAME THEM 
e 

KLW = KMW 
DO 20N = 1,NUM/2 

IF (KLW-N .LT. 1) THEN 
Cc 
c**** USE SUBROUTINE CHECK1 TO SEE IF THE MARKED BOXES 
c**** CAN BE MOVED TO THE RIGHT 
e 

CALL CHECK1( KLW,MLJ,CELLS,CLR,CLC,NAMES,NML ) 
ELSE 

C 
c**** USE SUBROUTINE SHIFT TO SEE IF THE ELEMENT OF THE 
c**##* — ARRAY FLAG ABOUT TO BE MARKED CAN BE MARKED AND 
c**** IF NOT TRY TO MOVE THE ALREADY MARKED BRANCHES 
Cc 

298



CALL SHIFT( MLJ,KMW,KLW,N,CELLS,CLR,CLC,NAMES,NML ) 
END IF 
CHARA = CHAR( IT+NUM/2-N ) 
FLAG(KLW-N,MLJ+1) = CHARA(1:1)//FLAG(KMW,MLJ) 

20 CONTINUE 
c 

C**** MARK THE RIGHT HAND SIDE BRANCHES AND CODE NAME THEM 
C 

DO 40N = 1,NUM/2 
IF (KLW+N .GT. IW) THEN 

GC 

C**** ~~ USE SUBROUTINE CHECK2 TO TRY AND MOVE THE MARKED 
Can BRANCHES TO THE LERT 
Cc 

CALL CHECK2( MLJ,KLW,CELLS,CLR,CLC,NAMES,NML ) 
END IF 
CHARA = CHAR( IT+NUM/24N ) 
FLAG(KLW+N,MLJ+1) = CHARA(1:1)//FLAG(KMW,MLJ) 

40 CONTINUE 

END 

***4** ~~ SUBROUTINE PART2: TO INTERPRETE A DATA STRUCTURE, 
*#4#4*%* ~~ WHICH REPRESENTS CAUSE AND SYMPTOM EQUATIONS 
***** AS CODED BY DR. D. A. LIHOU FROM OPERABILITY STUDY 
***** ~~ RECORDS, AND TO DRAW A REPRESENTATION OF THE ABOVE 
*###* EQUATIONS IN THE FORM OF A FAULT TREE USING PERQ'S GINO PACKAGE 

SUBROUTINE PART2 (CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 

INTEGER CLR,CLC,SMR,SMC,NML 
PARAMETER ( IW = 10, IL = 40) 
PARAMETER ( YMAX=350.0, XMAX=1030.0 ) 
COMMON /ONE/ FLAG 
COMMON /TWO/ JLJ, KLJ, KR, IOPT 
COMMON/SYGIN/FD 
COMMON/SHIN/SHX,SHY,SCX,SCY 
INTEGER CELLS(CLR,CLC), IOPT(3), SYMPTS ( SMR, SMC ) 
CHARACTER NAMES(CLR)*(12), INDATA*40, FLAG(IW,IL)*40 
REAL X,Y 
INTEGER ICOM 
LOGICAL CLEAR,EXIST,ERROR 
CLEAR = .FALSE. 

1 CONTINUE 
IJ <1 
KR’ ad 

C*##* INITIALISE THE ARRAY FLAG 
DO 10JK = 1,IL 
DO 10JR = 1,IW 

10 FLAG(IR,JK) = 'EMPTY' 
C**** INITIALISE THE BOXSTORE COORDINATES'S ARRAY FLAG 

299



CALL BOXSTR(1,'_',0.,0.,0.,0.,ERROR) 
IF (CLEAR ) THEN 
CALL COMAND 
GO TO 19 
END IF 

C**** READ THE OPTIONS AND ACT APPROPRIATELY 
CALL DAWRI( EMPTY’, 1,CELLS,CLR,CLC,NAMES,NML) 
CALL COMAND 

C**** INITIALISE A GINO FILE 
C***** SET UP THE SHIFT FACTORS ( SHX AND SHY ) AND THE SCALE FACTORS 
C***** (SCX AND SCY ) FOR THE GINO GRAPHICS ON THE PERQ 

SHX =0 
SHY = 250 
SCX = 0.7 
SCY = 07, 

19 CALL SHIFT2 ( SHX,SHY ) 
CALL SCALE2(SCX,SCY) 
CALL ROTAT2 ( 270. ) 
CLEAR = .FALSE. 

C**** CONSTRUCT THE DRAWING AREA BY OPENING A SPECIAL WINDOW FILES 

OPEN(10,FILE='SINPUT.W’') 

OPEN(11,FILE='SINPUT.W') 

C**** READ, WRITE OUT IF REQUIRED, AND CHECK THE INPUT DATA 
WRITE(11,FMT=*)'IF THE SCREEN IS CLEAR THEN INPUT DATA FROM KEYS 
+ONLY' 

WRITE(11,FMT=*)' IF NOT THEN SELECTION AND INPUT ARE FROM CURSOR 
‘! 

20 READ(10,'( A )')INDATA 

C**** CLOSE THE ACKNOWLEDGEMENT WINDOWS 
CLOSE (12) 
CLOSE(14) 

* CALL DAWRI( INDATA,2,CELLS,CLR,CLC,NAMES,NML ) 
77 CALL DATA( INDATA,I,CELLS,CLR,CLC,NAMES,NML, CLEAR, EXIST ) 

IF (CLEAR ) THEN 
DO 25 I=10,19 
CLOSE(1) 

25 CONTINUE 
CALL PICCLE 
GOTO 1 
END IF 
IF (.NOT. EXIST ) THEN 
GO TO 20 
END IF 
KR = KR+1 

C**** ANALYSE THE DATA STRUCTURE AND STORE THE INFORMATION 
C**** IN THE ARRAY FLAG 

KLJ = JLJ 
CALL ANCELL(KLJ,I,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 
KLJ = KLJ+1 

300



C**** USING GINO DRAW THE FAULT TREE CREATED IN ARRAY FLAG 
CALL DRAWTR(I,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 

C**** UPDATE THE COUNTER JLJ AND READ THE NEXT ITEM OF DATA 
JLJ = KLJ+1 

C**** NOW USE THE CURSOR TO DIRECT INPUT THROUGH DIFFERENT COMMAND ZONES 
88 CALL CURSOR(ICOM,X,Y) 

IF(X.GE.182.AND.X.LE.210.AND. Y.GE.18.AND.Y.LE.36)THEN 
C***#* CLEAR THE SCREEN 

INDATA = 'CLEAR' 

GO TO 77 
ELSEIF(X.GE.182.AND.X.LE.210.AND.Y.GE.0.AND.Y.LT.18)THEN 

C**** INPUT THROUGH KEYBOARD 
GO TO 20 
ELSEIF(X.GE.0.AND.X.LE.210.AND.Y.GE.40.AND.Y.LE.120)THEN ° 

C**** OPEN ACKNOWLEDGEMENT WINDOW TO FRESH (CLEAR) THE SCREEN 
CALL NOTE(1) 
GO TO 88 

ELSEIF(X.GE.154.AND.X.LT.182.AND.Y.GE.18.AND.Y.LE.36)THEN 
C**** STOP THE PACKAGE 

INDATA = 'STOP' 
GO TO 77 
ELSEIF(X.GE.154.AND.X.LT.182.AND.Y.GE.0.AND.Y.LT.18)THEN 

C**** DO THE RELIABILITY CALCULATION OF CURRENT TOP EVENT USING 
C**** FTDRA TECHNIQUE 

CALL RLIABL(I) 
GO TO 88 
ELSE 

C**** INPUT DATA BY POINTING TO A SPECIFIC EVENT-BOX 
66 CALL BOXSTR(3,INDATA,X,Y,0.,0..ERROR) 

IF(ERROR)THEN 
CALL NOTE(2) 
ELSE 
GO TO77 
ENDIF 
GO TO 20 
END IF 
RETURN 
END 

SUBROUTINE NOTE(KEY) 

INTEGER KEY 

IF(KEY.EQ.1)THEN 

OPEN(13,FILE='SYEND.W’) 
WRITEE(13, FM T=*) 2203 RE aE aE IEE IEE IC AAA IA IIIA! 

WRITE(13,FMT=*)'*****NOW CLEAR THE SCREEN FOR MORE INPUT****#"' 
WRITE(13,FMT=*)'****#*####4* USING THE CURSOR ** #4 HH! 

W?RITE(13, FM T=") 23a a ea ea a oie idocieaiciioiiciicioi icc itt! 

CALL FLASH(13) 

ELSEIF(KEY.EQ.2)THEN 

OPEN(12,FILE='SERROR.W') 
WRITE(12,FMT=*) 3H HH HEE Hor eiiciioiiiiic it! 

WRITE(12,FMT=*)'******* TRY AGAIN ** #044 

WRITE(12,FMT=*)'****INPUT FROM KEYS ONLY*****" 
WRITE(12, FMT =*)'* #44444 H REAR AE REAR AAA ARE 

301



CALL FLASH(12) 
ENDIF 
RETURN 
END 

SUBROUTINE DATA( INDATA,I,CELLS,CLR,CLC,NAMES,NML, CLEAR, EXIST ) 

INTEGER CLR,CLC,NML,I 
CHARACTER NAMES(CLR)*(12), INDATA*40 
INTEGER CELLS(CLR,CLC) 
LOGICAL CLEAR, EXIST 

IF (INDATA .EQ. 'STOP'.OR.INDATA .EQ. 'STO'.OR.INDATA.EQ.'ST' 
+.OR.INDATA.EQ.'S'.OR.INDATA.EQ.'STOP'.OR.INDATA.EQ.'STO'.OR. 
+INDATA.EQ.'ST’.OR.INDATA.EQ.'S') THEN 
OPEN(14,FILE='SYEND.W’) 
WRITE(14,FMT=*)' (20H sb bs bb br bb boi! 

WRITE(14,FMT=*)'  **** END OF DATA *****#4#! 
WRITE(14,FMT=")' FESO AA IR! 

CALL FLASH(14) 
CLOSE(14) 
STOP 

ELSE IF ( INDATA .EQ. 'CLEAR' .OR. INDATA .EQ. 'CLEA'.OR.INDATA 
+.EQ.'CLE'".OR.INDATA .EQ. 'CL'OR.INDATA.EQ.'C'.OR.INDATA.EQ. 
+'CLEAR'.OR.INDATA.EQ.'CLEA'.OR.INDATA.EQ.'CLE'.OR.INDATA.EQ. 
+'CL'.OR.INDATA.EQ.'C’) THEN 
CLEAR = .TRUE. 
RETURN 
END IF 

DO 101 =1,CLR 
IF (INDATA .EQ. NAMES(I)) THEN 
EXIST = -TRUE. 
RETURN 

END IF 
10 CONTINUE 

OPEN(14,FILE='SYEND.W’) 
WRITE(14,FMT=*)'*##**** DATA GIVEN NOT CORRECT **#####! 
WRITE(14,FMT=*)'*#***## THIS DEVIANT STATE WAS NOT CONTAINED IN THE 
+INPUT EQUATIONS ***' 
WRITE(14,FMT=*)'******* TRY AGAIN #8 
CALL FLASH(14) 
CLOSE(14) 
EXIST = FALSE. 
RETURN 
END 

302



SUBROUTINE CHECK 1( KLW,MLJ,CELLS,CLR,CLC,NAMES,NML ) 

INTEGER CLR,CLC,NML 

PARAMETER (IW=10, IL=40) 
COMMON /ONE/ FLAG 
COMMON/SYGIN/FD 
INTEGER CELLS(CLR,CLC) 
CHARACTER FLAG(IW,IL)*40, NAMES(CLR)*(12) 

KLW = KLW+1 
DO 201A = 1,IW 

IF (FLAG(IA,MLJ+1) .EQ. 'EMPTY') THEN 
DO 10 IB =IA,2,-1 

10 FLAG(IB,MLJ+1) = FLAG(IB-1,MLJ+1) 
FLAG(1,MLJ+1) = 'EMPTY' 
GO TO 30 

END IF 
20 CONTINUE 

‘ 
30 IF (FLAG(1,MLJ+1) .NE. 'EMPTY') THEN 

PRINT *,'***** DRAWING AREA NOT WIDE ENOUGH ****#' 
CALL GINEND 
CALL DAWRI( 'EMPTY',3,CELLS,CLR,CLC,NAMES,NML ) 
STOP 

END IF 
END 

SUBROUTINE CHECK2( MLJ,KLW,CELLS,CLR,CLC,NAMES,NML ) 

INTEGER CLR,CLC,NML 
PARAMETER (IW=10, IL=40) 
COMMON /ONE/ FLAG 
COMMON/SYGIN/FD 
CHARACTER FLAG(IW,IL)*40, NAMES(CLR)*(12) 
INTEGER CELLS(CLR,CLC) 

KLW = KLW-1 
DO 201A = IW,1,-1 

IF (FLAG(IA,MLJ+1) .EQ. 'EMPTY') THEN 
DO 10 IB = IA,IW-1 

10 FLAG(IB,MLJ+1) = FLAG(IB+1,MLJ+1) 
FLAG(IW,MLJ+1) = 'EMPTY' 
GO TO 30 

END IF 
20 CONTINUE 
30 IF (FLAG(IW,MLJ+1) .NE. 'EMPTY') THEN 

FRING, or DRAWING AREA 1OO NARROW: 4****" 
CALL GINEND 
CALL DAWRI( 'EMPTY',3,CELLS,CLR,CLC,NAMES,NML ) 
STOP 

END IF 
END 

303



eo: 

SUBROUTINE SHIFT( MLJ,KMW,KLW,N,CELLS,CLR,CLC,NAMES,NML ) 

INTEGER CLR,CLC,NML 
PARAMETER (IW=10, IL=40) 
COMMON /ONE/ FLAG 
COMMON/SYGIN/FD 
CHARACTER FLAG(IW,IL)*40, NAMES(CLR)*(12) 
INTEGER CELLS(CLR,CLC) 

10 KSW = KLW 

K=0 
DO 110 IA = IW,KSW-N,-1 

IF (FLAG(IA,MLJ+1) .NE. 'EMPTY') THEN 
IF (FLAG(IA,MLJ+1)(2:) NE. FLAG(KMW,MLJ)) THEN 

IF (NALEN( FLAG(KMW,MLJ) ) EQ. 2) THEN 
IF (FLAG(IW,MLJ) .EQ. 'EMPTY' .AND. 

1 FLAG(IW,MLJ+1) .EQ. 'EMPTY') THEN 

DO 20 IB = IW,KMW+1,-1 
20 FLAG(IB,MLJ) = FLAG(IB-1,MLJ) 

FLAG(KMW,MLJ) = 'EMPTY' 
KMW = KMW+1 

DO 30 IC = IW,IA+2,-1 
30 FLAG(IC,MLJ+1) = FLAG(IC-1,MLJ+1) 

FLAG(IA+1,MLJ+1) = 'EMPTY' 

KLW = KLW+1 

K=1 
END IF 

IF (FLAG(1,MLJ) EQ. 'EMPTY' .AND. 
1 FLAG(1,MLJ+1) .EQ. 'EMPTY') THEN 

DO 40 ID = 1,KMW-2 
40 FLAG(ID,MLJ) = FLAG(ID+1,MLJ) 

FLAG(KMW-1,MLJ) = 'EMPTY' 
DO 50 IE = 1,JA-1 

50 FLAG(IE,MLJ+1) = FLAG(IE+1,MLJ+1) 
FLAG(IA,MLJ+1) = 'EMPTY' 
K = K+2 

END IF 
END IF : 
IF (K .EQ. 3) THEN 
GO TO 120 

ELSE IF (K .EQ. 2) THEN 
GO TO 90 

END IF 
DO 60 IG = 1,IA-1 

IF (FLAG(IG,MLJ+1) .EQ. 'EMPTY') THEN 
GO TO 70 

END IF 
60 CONTINUE 

70 IF (IG .LT. IA) THEN 
DO 80 JA =IG,IA-1 

80 FLAG(JA,MLJ+1) = FLAG(JA+1,MLJ+1) 
FLAG(IA,MLJ+1) = 'EMPTY' 
K = K+5 

END IF 

304



IF (K .EQ. 6) THEN 
GO TO 120 

END IF 
90 IF (FLAG(IW,MLJ+1) .EQ. 'EMPTY") THEN 

DO 100 JB = IW,IA+2,-1 
100 FLAG(JB,MLJ+1) = FLAG(JB-1,MLJ+1) 

FLAG(IA+1,MLJ+1) = 'EMPTY’ 
KLW = KLW+1 
e..8 
GO TO 120 

END IF 
END IF 

END IF 
110 CONTINUE 

IF (K .EQ. 0) THEN 
IF (FLAG(KLW-N,MLJ+1) .NE. 'EMPTY’) THEN 
PRINT *,'***** WIDTH OF DRAWING AREA EXCEEDED *****' 
CALL GINEND 
CALL DAWRI( 'EMPTY',3,CELLS,CLR,CLC,NAMES,NML ) 
STOP 

END IF 
RETURN 

END IF 
120 GO TO 10 

END 

SUBROUTINE BOXSTR(KEY,ANAME,XX1,YY1,XX2,YY2,ERROR) 

PARAMETER (NML=12) 
REAL COORD(40,4),XX1,YY1,XX2,YY2 
INTEGER KEY,POINTA 
CHARACTER ANAME*(*),LIST(40)*(NML) 
COMMON/SYGIN/FD 
LOGICAL ERROR 
SAVE COORD,POINTA 

IF(KEY.EQ.1)THEN 
POINTA = 1 
DO 101 =1,40 
DO 5J =1,4 

COORD(I,J) = 0 
5 CONTINUE 
10 CONTINUE 

ERROR = .FALSE. 
ELSEIF(KEY.EQ.2)THEN 

IF(POINTA.GT.40)THEN 
ERROR = . TRUE. 
RETURN 
ENDIF 

LIST(POINTA) = ANAME 
COORD(POINTA, 1) = XX1 
COORD(POINTA,2) = YY1 
COORD(POINTA,3) = XX2 
COORD(POINTA,4) = YY2 

305



POINTA = POINTA + 1 
ERROR = .FALSE. 
ELSEIF(KEY.EQ.3)THEN 
DO 1001 = 1,POINTA-1 
IF(XX1.GE.COORD(I,1).AND.XX1.LE.COORD(L3).AND.YY1 

+.GE.COORD(I,2).AND.YY 1.LE.COORD(I,4)) THEN 
ANAME = LIST(1) 
ERROR = .FALSE. 
RETURN 
ENDIF 

100 CONTINUE 
ERROR =.TRUE. 
ENDIF 
RETURN 
END 

SUBROUTINE DRAWTR(I,CELLS,CLR,CLC,SYMPTS,SMR,SMC,NAMES,NML) 
Cc 

INTEGER CLR,CLC,SMR,SMC,NML 
PARAMETER (IW=10, IL=40, LVECT=50) 
COMMON /ONE/ FLAG 
COMMON /TWO/ JLJ, KLJ, KR, IOPT 
COMMON/SYGIN/FD 
INTEGER CELLS(CLR,CLC), TAV(IW), SAV(IW), IOPT(3), 
+ SYMPTS ( SMR, SMC ), VECTOR ( LVECT ) 
CHARACTER NAMES(CLR)*(12), FLAG(IW,IL)*40 
DIMENSION X1(IW), X2(IW), Y1(IW), Y2(1W) 

G 
C**** INITIALISE THE ARRAYS: TAV SAV X1 X2 Y1 Y2 

DOS, INIT = 1, IW 

TAV (INIT) =0 
SAV (INIT ) = 0 
X1 (INIT) =0 
X2 (INIT)=0 
Y1 (INIT) =0 
Y2 (INIT) =0 

5 CONTINUE 

C 
C**** POSITION THE PEN TO DRAW THE TOP BOX OF THE FAULT TREE 

XPOS = (JLJ-1)*20.0 + KR*10.0 
C 

DO 10 LB = 1,IW 
IF (FLAG(LB,JLJ) .EQ. 'Z') THEN 
GO TO 20 

END IF 
10 CONTINUE 

o 
20 YMID = (2*LB-1)*17.0 

CALL MOVTO2( XPOS, YMID ) 

306



C**** DRAW THE BOX AND WRITE IN IT 
CALL ABOX(NAMES(I),NML) 

( 
C**** DRAW THE GATE IF THERE IS ONE 

CALL MOVTO2(XPOS+7,YMID) 

IF (CELLS(I,2) .EQ. 0 AND. CELLS(I,3) .GT. 1 
* OR. CELLS (I,2) EQ. 1) THEN 

CALL LINBY2( 4.0,0.0 ) 
CALL ORED 

ELSE IF (CELLS(I,2) .EQ. +2 .OR. CELLS(I,2) EQ.0 .AND. 
* CELLS(I,3) .EQ.1) THEN 

CALL LINBY2( 9.0,0.0 ) 
ELSE IF (CELLS(I,2) EQ. -1) THEN 
CALL LINBY2( 4.0,0.0 ) 
CALL ANDED 

END IF 
4 
C**** FIND THE POSITION OF EACH BOX IN THE NEXT ROW OF FLAG 

LS =0 
L6=4 
DO 50 LD = 1,I1W 

IF (FLAG(LD,JLJ+1) .NE. ‘EMPTY') THEN 
DO 30 LF = L6,CLC 

CALL SETROW ( VECTOR, I, CELLS, SYMPTS, 
+ CLR, CLC, SMR, SMC ) 

IF (VECTOR(LF) .NE. 0) THEN 
L5 = LS+1 
IF (LS .EQ. 1) THEN 
LD1 =LD 
LD2 = LD 

ELSE 
LD2 = LD 

END IF 

Ceeee SAVE THE ROW OF ARRAY CELLS WHICH HOLDS 
Cee INFORMATION ABOUT THE BOX 

TAV(LS) = VECTOR(LF) 
L6 = LF+1 
GO TO 40 

ELSE 
PRINT *,'***#* ERROR IN ANALYSIS OF DATA STRUCTURE *****! 

CALL GINEND 
CALL DAWRI('EMPTY',3,CELLS,CLR,CLC,NAMES,NML ) 
STOP 

END IF 
30 CONTINUE 

Cc 
C**** — POSITION THE PEN FOR DRAWING 

40  XPOS1 = XPOS + 20.0 
YMID = (2*LD-1)*17.0 
CALL MOVTO2( XPOS1,YMID ) 

307



C***#* = SAVE THE CO-ORDINATES OF THE PEN'S POSITION 
X1(LD) = XPOS1 - 4.0 
Y1(LD) = YMID 

Cc 
C**** CHECK TO SEE IF THE BOX HAS A NAME INSIDE IT 

IF (CELLS(TAV(L5),1) EQ. 1) THEN 
C 
CH DRAW THE BOX AND WRITE IN IT 

CALL ABOX( NAMES(TAV(LS)),NML) 

CALL MOVTO2(X1(LD)+7,Y 1(LD)) 
CALL MOVBY2( -7.0,0.0 ) 
CALL LINBY2( 4.0,0.0 ) 

END IF 
END IF 

50 CONTINUE 
Cc 
C**** CONNECT THE DRAWN BOXES BETWEEN THEM AND TO THE GATE 
c 

IF (LS NE. 0) THEN 

CALL MOVTO2( X1(LD1), Y1(LD1) ) 
CALL LINTO2( X1(LD2),Y1(LD2) ) 

END IF 

C 

C**** DO THE REST OF THE DRAWING BY CONSIDERING THE ROWS 
C**** OF ARRAY FLAG ONE AT A TIME 

DO 110 MD = JLJ+1,KLJ 
L7=0 
EJ =0 

Cc 

C**** FIND THE POSITION OF EACH BOX IN THE NEXT ROW 
Cttt*” OF ARRAY FLAG 

DO 90 MA = 1,IW 
IF (FLAG(MA,MD) .NE. 'EMPTY') THEN 

L7 = L7+1 
c 
Gre FIND OUT IF THE BOX IS NAMED 

IF (CELLS(TAV(L7),1) EQ. 1) THEN 
IF (CELLS(TAV(L7),2) .EQ. -2) THEN 
CONTINUE 

EESE 
Cc 
Crd SHOW THE NUMBER OF BRANCHES BELOW THE BOX 

NUM = CELLS(TAV(L7),3) 
CALL MOVTO2( X1(MA)+11.0,Y1(MA) ) 
CALL NUMBRA( NUM ) 

END IF 
ELSE 

Cc 
Cee FOR EACH UNNAMED BOX DRAW THE BRANCHES BELOW IT 

LS =0 
L6=4 

308



DO 80 KA = 1,IW 

IF (FLAG(MA,MD) .EQ. FLAG(KA,MD+1)(2:)) THEN 

L9 = L9+1 

DO 60 LF = L6,CLC 

CALL SETROW ( VECTOR, TAV (L7 ), CELLS, 
“ SYMPTS, CLR, CLC, SMR, SMC ) 

IF (VECTOR(LF) .NE. 0) THEN 
L5 =L5+1 
IF (L5 EQ. 1) THEN 
KA1L=KA 
KA2 =KA 

ELSE 
KA2=KA 

END IF 

Le eS SAVE THE ROW OF CELLS WHICH HAS 
Grr» INFORMATION ABOUT THE BOX 

SAV(L9) = VECTOR(LF) 
L6 = LF+1 

GO TO 70 
ELSE 

PRINT *,'***** DATA STRUCTURE NOT ANALYSED WELL *****'! 
CALL GINEND 
CALL DAWRI( 'EMPTY',3,CELLS,CLR,CLC, 

* NAMES,NML ) 
STOP 

END IF 
60 CONTINUE 

Cree POSITION THE PEN TO DRAW THE BOX 
70 XPOS1 = XPOS + (MD+1-JLJ)*20.0 

YMID = (2*KA - 1)*17.0 
CALL MOVTO2( XPOS1,YMID ) 

Crete SAVE THE CO-ORDINATES OF THE PEN'S POSITION 
X2(KA) = XPOS1-4.0 
Y2(KA) = YMID 

corr CHECK TO SEE IF THE BOX HAS A NAME 
IF (CELLS(SAV(L9),1) EQ. 1) THEN 

Cur DRAW THE BOX AND WRITE IN IT 
CALL ABOX( NAMES(SAV(L9)),NML ) 

CALL MOVTO2(X2(KA)+7, Y2(KA)) 
CALL MOVBY2( -7.0,0.0 ) 
CALL LINBY2( 4.0,0.0 ) 

END IF 
END IF 

80 CONTINUE 

Cbd dts CONNECT THE DRAWN BOXES BETWEEN THEM 
Cree AND TO THE GATE 

CALL MOVTO2 X2(KA1), Y2(KA1) ) 

309



CALL LINTO2( X2(KA2), Y2(KA2) ) 

Cree DRAW THE GATE 
Y3 = (Y2(KA1) + Y2(KA2)) / 2.0 
CALL MOVTO2( X1(MA), Y1(MA) ) 
CALL LINTO2( X2(KA1)-5.0,Y3 ) 
IF (CELLS(TAV(L7),2) EQ. 1) THEN 
CALL ORED 

ELSE IF (CELLS(TAV(L7),2) .EQ. -1) THEN 
CALL ANDED 

ELSE 
PRINT *,"***** DATA STRUCTURE CONTAINS ERRORS ***##! 

CALL GINEND 
CALL DAWRI('EMPTY',3,CELLS,CLR,CLC,NAMES,NML ) 
STOP 

END IF 
END IF 

END IF 
90 CONTINUE 

DO 100 KB = 1,IW 
TAV(KB) = SAV(KB) 
X1(KB) = X2(KB) 

100 Y1(KB) = Y2(KB) 
e 
110 CONTINUE 

Cc 
CALL CHAMOD 
END 

SUBROUTINE ABOX(A,NML) 

INTEGER NML, ERRNO, VALUE,FINAL 
REAL POSX, POSY, POSZ, AWID, ALEN1 

COMMON/SYGIN/FD 
PARAMETER (ALEN=24.0, BLENG=S0 ) 
CHARACTER A*(12) 
LOGICAL ERROR 

CALL DRIVER ( 3, VALUE, ERRNO ) 

IF ( VALUE .EQ. 1 ) THEN 

ALEN1 = 30 
AWID =7 

ELSE 

ALEN1 = FINAL (A) * 3.68 
AWID =7 

END IF 
ALET = (ALEN1 / 2.0) 
CALL LINBY2(0.0,ALET ) 

3T0



CALL POSPIC(XX2,Y Y2) 
CALL LINBY2( AWID,0.0 ) 
CALL LINBY2( 0.0,-ALEN1 ) 
CALL POSPIC(XX1,YY1) 
CALL LINBY2( -AWID,0.0 ) 
CALL LINBY2(0.0,ALET ) 
CALL POSSPA ( POSX, POSY, POSZ ) 
CALL BOXSTR(2,A,XX1,YY1,XX2,Y Y2,ERROR) 

CALL MOVBY2( AWID - 1, -ALET+1 ) 

NC = NALEN( A ) 

CALL CHAHOL (A (1: FINAL (A))) 

* 

**** TAKE ALTERNATIVE ACTIONS FOR DIFFERENT OUTPUT DEVICES 
*##* FOR CHARACTER OUTPUT 
* 

IF ( VALUE EQ. 1 ) THEN 

CALL CHASIZ ( 2.6, 4.2 ) 
CALL MOVBY?2 ( 2.5, (15.-NC)/2+1) 

ELSE B 

CALL CHASIZ( (ALEN1-1)/NC,5.0 ) 
CALL CHAANG ( 90.0 ) 
CALL PENSEL( 7,0.0,0 ) 

END IF 

IF (VALUE EQ. 1) THEN 

CALL MOVTO2 ( POSX + 7.0, POSY ) 

ELSE 

YP = -(NML*(ALEN1-1)/NC) + ALET - 1.0 
CALL MOVBY2( 1.0,YP ) 
CALL PENSEL( 1,0.0,0 ) 

END IF 

END 

SUBROUTINE ORED 
COMMON/SYGIN/FD 

CALL LINBY2( 0.0,5.0 ) 
CALL LINBY2( 5.0,0.0 ) 

ei.



CALL LINBY2( 0.0,-10.0 ) 
CALL LINBY2( -5.0,0.0 ) 
CALL LINBY2( 0.0,5.0 ) 
CALL MOVBY2( 5.0,0.0 ) 
END 

SUBROUTINE ANDED 

COMMON/SYGIN/FD 
CALL MOVBY2( 5.0,-5.0 ) 
CALL ARCBY2( 0.0,5.0,0.0,10.0,0 ) 
CALL MOVBY72( 0.0,-5.0 ) 
END 

SUBROUTINE STAR 

INTEGER NOTERM, ERRNO 
COMMON/SYGIN/FD 

CALL PENSEL( 2,0.0,0 ) 
CALL LINBY2( 2.0,0.0 ) 
CALL ARCBY2( 2.0,0.0,0.0,0.0,0 ) 
CALL MOVBY2( 3.0,-1.0 ) 
CALL DRIVER ( 3, NOTERM, ERRNO ) 

IF (NOTERM EQ. 1 ) THEN 

NEWBURY TERMINAL 

CONTINUE 

ELSE 

CALL CHASIZ( 3.0,2.0 ) 
CALL CHAANG ( 90.0 ) 

END IF 

CALL PENSEL( 5,0.0,0 ) 
CALL CHAASC( 42 ) 
CALL PENSEL( 1,0.0,0 ) 
END 

SUBROUTINE NUMBRA(I) 
COMMON/SYGIN/FD 
INTEGER NOTERM, ERRNO 

CALL PENSEL( 2,0.0,0 ) 
CALL LINBY2( 2.0,0.0 ) 
CALL ARCBY2( 2.0,0.0,0.0,0.0,0 ) 
CALL MOVBY2( 3.0,-1.0 ) 

312



Fe 

CALL DRIVER ( 3, NOTERM, ERRNO ) 

IF (NOTERM .EQ. 1 ) THEN 

NEWBURY 

CALL MOVBY2 (3., 2.) 

ELSE 

CALL CHASIZ( 3.0,2.0 ) 
CALL CHAANG ( 90.0 ) 

CALL PENSEL( 5,0.0,0 ) 
CALL CHAINT(I,1 ) 

END IF 
CALL PENSEL( 1,0.0,0 ) 
END 

SUBROUTINE EXCEED( ILJ,IL,CELLS,CLR,CLC,NAMES,NML ) 

INTEGER CLR,CLC,NML 
COMMON /TWO/ JLJ, KLJ, KR, IOPT 
COMMON/SYGIN/FD 
CHARACTER NAMES(CLR)*(12) 
INTEGER IOPT(3), CELLS(CLR,CLC) 

C**** CHECK TO SEE IF THE LENGTH OF THE DRAWING AREA 
C**** HAS BEEN EXCEEDED 

IF ( ILJ+1 .GT. IL ) THEN 
IF (JLJ .EQ. 1) THEN 

PRINT *,'***** LENGTH OF DRAWING AREA TOO SMALL *****' 
CALL GINEND 
CALL DAWRI( 'EMPTY',3,CELLS,CLR,CLC,NAMES,NML ) 
STOP 

END IF 
PRINT *,'***** PROGRAM RUN OUT OF DRAWING AREA *****' 
PRINT *, '***** PLEASE START AGAIN WITH THE REST OF THE 
IDATA  *****' 

CALL GINEND 
CALL DAWRI( 'EMPTY',3,CELLS,CLR,CLC,NAMES,NML ) 
STOP 

END IF 
END 

SUBROUTINE GINEND 

PARAMETER ( YMAX=350.0, XMAX=1030.0 ) 
COMMON /TWO/ JLJ, KLJ, KR, IOPT 
COMMON/SYGIN/FD 
INTEGER IOPT(3) 

a13



C**** DRAW A FRAME AND CLOSE GINO 

10 

C 

* 

Cc 
Cc 
* 

* 

* 

* 

* 

* 

* 

* 

* 

Cc 
e: 
* 

* 

CALL MOVTO2( 0.0,0.0:) 
CALL SHIFT2( -15.0,-5.0 ) 
CALL MOVTO2( 0.0,0.0 ) 
XPOS = KLJ*20.0 + KR*10.0 + 30.0 

NO FRAME ON INTERACTIVE TERMINAL 

GO TO 10 

CALL FRAME( XPOS, YMAX,1 ) 
CALL FRAME( XPOS-2.0, YMAX-2.0,2 ) 
CALL FRAME( XPOS-4.0,YMAX-4.0,5 ) 
CALL FRAME( XPOS-6.0,YMAX-6.0,7 ) 
CALL DEVEND 
END 

SUBROUTINE FRAME( XPOS, YMAX,ICOL ) 

CALL PENSEL( ICOL,0.0,0 ) 
CALL LINBY2( XPOS,0.0 ) 
CALL LINBY2( 0.0, YMAX ) 
CALL LINBY2( -XPOS,0.0 ) 
CALL LINBY2( 0.0,-YMAX ) 
CALL MOVBY2( 1.0,1.0) 
END 

SUBROUTINE DAWRI(INDATA,INDEX,CELLS,CLR,CLC,NAMES,NML) 

INTEGER CLR,CLC,SMR,SMC,NML 
PARAMETER (IW=10, IL=40) 
COMMON /ONE/ FLAG 
COMMON /TWO/ JLJ, KLJ, KR, IOPT 
INTEGER CELLS(CLR,CLC), IOPT(3) 
CHARACTER NAMES(CLR)*(12), INDATA*(*), FLAG(IW,IL)*40 

IF (INDEX .EQ. 1) THEN 
IF (IOPT(1) .EQ. 1) THEN 

**** ~~ WRITE OUT THE CONTENTS OF ARRAYS CELLS AND NAMES 
WRITE (32,10) ( (CELLS(12,11), 11 = 1,CLC), I2 = 1,CLR) 

10 FORMAT (1H1, 'CONTENTS OF ARRAY CELLS:'/ 1H, 27(‘*') 
1 Ml SOAH , 2(5(5X,15) /)/ ) ) 

WRITE (32,25) (NAMES(I),I=1,CLC) 
25 FORMAT (1H1, ‘CONTENTS OF ARRAY NAMES:'/ 1H , 27('*') 

1 /// (1H_, A20) ) 
END IF 

ELSE IF (INDEX .EQ. 2) THEN 
IF (IOPT(2) .EQ. 1) THEN 

*4** WRITE OUT THE INPUT DATA USED 
IF (JLJ EQ. 1) THEN 
WRITE (32, '(1H1, "INPUT DATA USED:"/ 

314



1 1H, 18("*") //)') 
END IF 
WRITE (32, '(1H , A20)' ) INDATA 

END IF 
ELSE IF (INDEX .EQ. 3) THEN 

IF (IOPT(3) EQ. 1) THEN 

**#* — WRITE OUT THE CONTENTS OF ARRAY FLAG 
WRITE (32,30) ( (FLAG(J1,J2), J1 = 1,IW), J2 = 1,IL+1) 

30 FORMAT (1H1, ‘CONTENTS OF ARRAY FLAG:'/ 1H, 26('*') 
1 Hl 40(1H , 10A10/)) 
END IF 

END IF 
END 

* 
*¥ 

¥ 
¥
Q
Q
A
Q
 

* 
* 

* 
H
e
 

INTEGER FUNCTION NALEN( A ) 
COMMON/SYGIN/FD 

Cc 
C**** IT COUNTS THE CHARACTERS OF A CHARACTER VARIABLE 
C**** BEFORE THE FIRST BLANK CHARACTER 
: 

PARAMETER ( NML=12 ) 
CHARACTER A*(*) 

C 
DO 10 K = 1,NML 

IF (A(K:K) .EQ. '') THEN 
GO TO 20 

END IF 
10 CONTINUE 

Cc 
20 NALEN = K-1 
END 

SUBROUTINE FSOPEN ( FILNAM, UNIT, FORMAT ) 

THIS SUBROUTINE OPENS A SEQUENTIAL FILE 
IF THE FILE ALREADY EXISTS, IT IS JUST OPENED 
IF THE FILE DOES NOT EXIST, IT IS CREATED FIRST 

FILNAM - CHARACTER - THE NAME OF THE FILE 
UNIT - INTEGER - UNIT NUMBER FOR OPENING 
FORMAT - CHARACTER - EITHER 'FORMATTED' OR 'UNFORMATTED' 

+ 
t
t
 

H
O
 

e
e
 

INTEGER UNIT 
CHARACTER FILNAM * 12, FORMAT * ( * ), STATUS * 7 
LOGICAL THERE 

INQUIRE ( FILE = ' ‘//FILNAM, EXIST = THERE ) 

345



IF (THERE ) THEN 

STATUS = 'MODIFY' 

ELSE 
STATUS = 'NEW' 

END IF 

OPEN ( FILE =' '//FILNAM, UNIT = UNIT, 
+ STATUS = STATUS, FORM = FORMAT, ERR = 900 ) 
REWIND(UNIT) 
RETURN 

900 PRINT *, 'ERROR IN OPENING FILE’, FILNAM 
STOP 
END 

INTEGER FUNCTION NXTNSP ( TEXT ) 

**** RETURNS THE POSITION OF THE FIRST NON-SPACE CHARACTER IN TEXT 
**** RETURNS 0 IF NO NON-SPACE CHARACTER 
* 

CHARACTER TEXT * ( * ) 
INTEGER TEMP 

DO 10, TEMP = 1, LEN ( TEXT ) 

IF ( TEXT ( TEMP : TEMP ) .NE.'') THEN 

NXTNSP = TEMP 
RETURN 

END IF 

10 CONTINUE 

NXTNSP = 0 
RETURN 
END 

SUBROUTINE INERR ( EQN ) 

**** PRINTS OUT ERROR MESSAGE AND THE FAULTY EQUATION 

CHARACTER EQN * (*) 

OPEN(UNIT=9,"ILE="ERROR’) 
WRITE ( UNIT = 9, FMT = 900 ) 

900 FORMAT ( /// 1X, 80('*') ///) 
PRINT *, 'THE FOLLOWING LINE OF INPUT IS NOT A CORRECT EQUATION' 
PRINT * 
PRINT *, EQN 
WRITE ( UNIT = 9, FMT = 900 ) 

316.7,



RETURN 
END 

SUBROUTINE SETROW ( VECTOR, NUMBER, CELLS, SYMPTS, 
+ CLR, CLC, SMR, SMC ) 

INTEGER CLR, CLC, SMR, SMC 
INTEGER VECTOR (CLC ), CELLS ( CLR, CLC ), SYMPTS ( SMR, SMC ), 

+ COUNT, NUMBER 
COMMON /SYGIN/FD 

IF ( CELLS ( NUMBER, 2) .EQ. 0 ) THEN 

DO 104, COUNT = 1, CLC 

VECTOR ( COUNT ) = 0 

104 CONTINUE 

DO 105, COUNT = 1, 3 

VECTOR ( COUNT ) = CELLS ( NUMBER, COUNT ) 

105 CONTINUE 

DO 106, COUNT = 4, 3 + CELLS (NUMBER, 3 ) 

VECTOR ( COUNT ) = SYMPTS ( CELLS ( NUMBER, 
COUNT ), 1) 

106 CONTINUE 

ELSE 

DO 11, COUNT = 1, CLC 

VECTOR ( COUNT ) = CELLS ( NUMBER, COUNT ) 

11 CONTINUE 

END IF 

RETURN 

END 

317



APPENDIX J : LISTING OF THE SOURCE PROGRAMS OF 

THE GINO-PNX VERSION 

318



C 

>) 

THIS IS THE SAME FILE AS THE PROJECT FILE 

SUBROUTINE PERQ 
THIS SUBROUTINE SETS THE DEFAULT VALUES FOR GRAPHICAL OUTPUT. 
REAL PPOS,OTR 
REAL VPOS,XMIN,XMAX, YMIN, YMAX 
INTEGER IW 
LOGICAL FLAG,LOGIC 
COMMON /PICC/PPOS(3),XMIN,XMAX, YMIN, YMAX,IW 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON /SYGIN/FD 
CALL PICCLE 
XMIN = 0.0 
XMAX = 210.0 
YMIN = 0.0 
YMAX = 275.0 
IW =0 
R° =10 
TOL = 0.05 
ITYPE =0 
FLAG =.TRUE. 
LOGIC = FALSE. 
NOW INITIALISE THE TRANSFORMATION MATRIX AND THE START POINT. 
DO101 =1,3 
DO5Jj =1,3 
OTR(L,J) = 0.0 
CONTINUE 
OTR(,I) = 1.0 
VPOS(D) = 0.0 
PPOS(I) = 0.0 

10 CONTINUE 
VPOS(3) = 1.0 
RETURN 
END 

SUBROUTINE PICCLE 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 
COMMON/SYGIN/FD 
CALL CCLOSE 
CALL COPEN 
RETURN 
END 

SUBROUTINE CCLOSE 
INTEGER KK,WCLOSE 
COMMON/SYGIN/FD 
KK = WCLOSE(FD) 
RETURN 
END 

SUBROUTINE COPEN 

29



A
G
)
 

INTEGER FD,WOPEN 
COMMON/SYGIN/FD 
FD = WOPEN(‘SGINO.W') 
RETURN 
END 

SUBROUTINE CURSOR(I,X,Y) 
REAL X,Y 
LOGICAL FLAG,LOGIC 
INTEGER FD,K,WPUCK,X1,Y1,X2,Y2,X3,Y3,PRESS,I 
COMMON/PICC/PPOS(3),XMIN,XMAX, YMIN, YMAX,IW 
COMMON/SYGIN/FD 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
K=WPUCK(FD,X1,Y1,X2,Y2,X3, Y3,PRESS) 
I= PRESS 
X = 210.*X1/767/R 
Y = (275. - 275.*Y1/1023)/R 
RETURN 
END 

SUBROUTINE ROTAT2(ALPHA) 
- ANGLE ALPHA IN DEGREES 
ALPHA POSITIVE = ANTICLOCKWISE ROTATION ABOUT ORIGIN 
ALPHA NEGATIVE = CLOCKWISE ROTATION ABOUT ORIGIN 
REAL PI,A,ALPHA,ROT(3,3) 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON/SYGIN/FD 
DO 21 = 1,3 
DOZI=.1;3 
ROT(I,J) = 0.0 

2 CONTINUE 
ROT(3,3) = 1.0 
PI = 4.0 * ATAN(1.0) 
A = PI*ALPHA / 180.0 
ROT(1,1) = COS(A) 
ROT(2,2) = COS(A) 
ROT(2,1) = SIN(A) 
ROT(1,2) = -SIN(A) 
CALL RFRESH(ROT) 
CALL MATINV(ROT) 
RETURN 
END 
SUBROUTINE SCALE2(SX,SY) 
REAL SX,SY,SCA(3,3) 
INTEGER LJ 
LOGICAL FLAG,LOGIC 
COMMON/SYGIN/FD 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 
DO2 1=1,3 
DO2 Jo13 
SCA(LJ) = 0.0 

320



2 CONTINUE 

10 

S@A(1,1) =SX 
SCA(2,2) = SY 
SCA(3,3) = 1.0 
CALL RFRESH(SCA) 
CALL MATINV(SCA) 
RETURN 
END 

SUBROUTINE SCALE(S) 
REAL S,SCA(3,3) 
INTEGER I,J 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON/SYGIN/FD 
DO 101 =1,3 
DO SJ 1,3 
SCA(LJ) = 0.0 
CONTINUE 
CONTINUE 
SCA(1,1)=S 
SCA(Q@,2)=S 
SCA(3,3) = 1.0 
CALL RFRESH(SCA) 
CALL MATINV(SCA) 
RETURN 
END 

SUBROUTINE SHEAR2(IDEP,A) 
REAL A,SHE(3,3) 
INTEGER IDEP,1,J 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 
COMMON/SYGIN/FD 
DO 10 I=1,3 
DOS J=1,3 
SHE(I,J) = 0.0 
CONTINUE 

SHE(LD) = 1.0 
CONTINUE 

IF(IDEP.EQ.1) THEN 
SHE(2,1) = A 

ELSE IF(IDEP.EQ.2) THEN 
SHE(1,2) = A 

ELSE 
WRITE(3,100) 
END IF 
CALL RFRESH(SHE) 
CALL MATINV(SHE) 

100 FORMAT(1X,'ERROR: FIRST ARGUMENT IN ROUTINE SHEAR2 
! MUST BE 1 OR 2’) 

321



10 

10 

RETURN 
END 

SUBROUTINE SHIFT2(DX,DY) 
REAL DX,DY,SHI(3,3) 
INTEGER I,J 
LOGICAL FLAG,LOGIC 
COMMON /SYGIN/FD 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
DO 10 I=1,3 
DO5 J=1,3 
SHI(LJ) = 0.0 
CONTINUE 

SHI(LD = 1.0 
CONTINUE 

SHI(1,3) = DX 
SHI(2,3) = DY 
CALL RFRESH(SHI) 
RETURN 
END 

SUBROUTINE VIEWSE(NHORIZ) 
REAL VIE(3,3) 
INTEGER I,J,NHORIZ 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 
COMMON/SYGIN/FD 
DOA 1 = 43 
DO5J=1,3 
VIE(I,J) = 0.0 
CONTINUE 

VIE(L,I) = 1.0 
CONTINUE 

IF(NHORIZ.EQ.2) THEN 
VIE(1,1) = 0.0 
VIE(1,2) = 1.0 
VIE(2,1) = 1.0 
VIE(2,2) = 0.0 
CALL RFRESH(VIE) 
ELSE IF(NHORIZ.EQ.1) THEN 
RETURN 
ELSE 
WRITE(3,100) 
END IF 

100 FORMAT(1X,'ERROR: ARGUMENT IN ROUTINE VIEWSE MUST BE 2 
! IF AXIS TO BE PERMUTED, OR 1 IF NOT TO BE’) 
RETURN 
END 

SUBROUTINE LINEXX(M1,N1,M2,N2) 
INTEGER I,WLIN,M1,N1,M2,N2 

322



10 

20 

COMMON/SYGIN/FD 
I=WLIN(FD,M1,N1,M2,N2) 
RETURN 
END 

SUBROUTINE LINTO2(S,T) 
REAL X(2), ¥(2),U(2),V(2) 
INTEGER M(2),N(2),IW 
LOGICAL FLAG,LOGIC 
COMMON/SYGIN/FD 
COMMON/PICC/PPOS(3),XMIN,XMAX,YMIN, YMAX,IW 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 
CALL MMULT(OTR,VPOS,PPOS) 
X(1) = PPOS(1) 
Y(1) = PPOS(2) 
VPOS(1) = S 
VPOS(2) = T 
CALL MMULT(OTR,VPOS,PPOS) 
X(2) = PPOS(1) 
Y(2) = PPOS(2) 
IFW .EQ.2 .OR. IW .EQ. 1) THEN 
CALL WCUTS(X,Y,U,V) 
IF(U(1).EQ.-50.0 .OR. U(2).EQ.-50.0) RETURN 
DO 101 = 1,2 
X(I) = Ud) 
Y() = VD 
CONTINUE 

END IF 
DO 201 = 1,2 
M(1) = NINT(767/210.0 * X(1) ) 
N(I) = NINT(1023 - (1023/275.0 *Y(1)) ) 
CONTINUE 
CALL LINEXX(M(1),N(1),M(2),N(2)) 
RETURN 
END 

SUBROUTINE LINBY2(X,Y) 
REAL X,Y,V1,V2,VPOS 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON/SYGIN/FD 
V1 = VPOS(1) + X 
V2 = VPOS(2) + Y 
CALL LINTO2(V1,V2) 
RETURN 
END 

SUBROUTINE MOVTO2(X, Y) 
REAL X,Y,VPOS 

ons



LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON /SYGIN/FD 
VPOS(1) = X 
VPOS(2) = 
RETURN 
END 

SUBROUTINE MOVBY2(X,Y) 
REAL X,Y,VPOS 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/ VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON /SYGIN/FD 
VPOS(1) = VPOS(1) + X 
VPOS(2) = VPOS(2) + Y 
RETURN 
END 

SUBROUTINE DRAW2(X,Y,IABS,IVIS) 
REAL X,Y 
LOGICAL FLAG,LOGIC 
INTEGER IABS,IVIS 
COMMON/SYGIN/FD 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 
IF(ABS.EQ.0 .AND.IVIS.EQ.0) THEN 
CALL MOVBY2(X,Y) 
ELSE IF(IABS.EQ.0 .AND.IVIS.EQ.1) THEN 
CALL LINBY2(X,Y) 
ELSE IF(IABS.EQ.1 .AND.IVIS.EQ.0) THEN 
CALL MOVTO2(X,Y) 
ELSE IF(IABS.EQ.1 .AND.IVIS.EQ.1) THEN 
CALL LINTO2(X,Y) 
ELSE 
PRINT *,'ERROR IN IABS OR IVIS IN ROUTINE DRAW2' 
END IF 
RETURN 
END 

INTEGER FUNCTION FINAL(S) 
CHARACTER S*(*) 
INTEGER COUNT 
COMMON/SYGIN/FD 
FINAL = 0 
DO 15 COUNT =LEN(S),1,-1 
IF(S(COUNT:COUNT).NE..' ') THEN 
FINAL=COUNT 
RETURN 

324



ENDIF 
15 CONTINUE 

1D 
20 

RETURN 
END 

SUBROUTINE CHAHOL( STRING ) 
CHARACTER STRING *(*) 
REAL TEMP (3, 3) 
INTEGER X,Y, I 
INTEGER OFFSET,MAXBYT,XMAX,WSTRNG,LAST, FINAL 
LOGICAL FLAG,LOGIC 
COMMON/ENOQY/FLAG,R,TOL,INC,LOGIC,ITYPE 
COMMON / SPCD / VPOS(3),OTR(3,3) 
COMMON/PICC/PPOS(3),XMIN,XMAX,YMIN, YMAX,IW 
COMMON/SYGIN/FD 

CALL MMULT(OTR,VPOS,PPOS) 
RX = PPOS( 1 ) 
RY = PPOS(2) 
OFFSET=0 
XMAX=767 
X = INT( 767 /210.* RX ) 
Y = INT(1023- 1023 / 275.* RY ) 

LAST=FINAL(STRING) 
MAXBYT = LAST 
I=WSTRNG(FD,X, Y, STRING,LAST,OFFSET,MAXBYT,XMAX) 
Y= 1023-7 
VPOS (1) = 210. * X/ (767) 
VPOS (2))= 275, * Ye! (1023; ) 
VPOS (3)=1 
DO 20, I= 1,3 
DO 15, J = 1,3 
TEMP (1, J) = OTR (I,J) 
CONTINUE 
CONTINUE 
CALL MATINV ( TEMP ) 
RETURN 
END 

SUBROUTINE ARCTOL(T) 
REAL T,TOL 
LOGICAL FLAG,LOGIC 
COMMON/SYGIN/FD 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
IF(T.EQ.0.0) THEN 
TOL = 0,05 
LOGIC = FALSE. 

ELSE 
1LOL=f 
END IF 
RETURN 
END 

325



SUBROUTINE ARCINC(N) 
INTEGER N,INC 
LOGICAL FLAG,LOGIC 
COMMON/SYGIN/FD 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
IF(N.EQ.0 ) THEN 
INC =0 
LOGIC = .FALSE. 
ELSE 
INC =N 
LOGIC = .TRUE. 
END IF 
RETURN 
END 

SUBROUTINE ARCENQ(LNINCS,TOL) 
REAL TOL 
INTEGER I,NINCS 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R,ATOL,INC,LOGIC,ITYPE 
COMMON/SYGIN/FD 
I=ITYPE 
NINCS = INC 
TOL = ATOL 
RETURN 
END 

SUBROUTINE IRCBY2(DXC,DYC,DXE,DYE,ISENSE) 
REAL DXC,DYC,DXE,DYE,XC,YC,XE, YE 
INTEGER ISENSE 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R, TOL,INC,LOGIC,ITY PE 
COMMON/SYGIN/FD 
XC = VPOS(1) + DXC 
YC = VPOS(2) + DYC 
XE = VPOS(1) + DXE 
YE = VPOS(2) + DYE 
CALL IRCTO2(XC, YC,XE, YE,ISENSE) 
RETURN 
END 

SUBROUTINE IRCTO2(XC, YC,XE, YE,ISENSE) 
REAL XC, YC,XE,YE,AX,AY,AL,X,Y,RAD 
INTEGER ISENSE 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC, ITY PE 
COMMON/SYGIN/FD 
RAD = SQRT( (XC-VPOS(1))**2 + (YC-VPOS(2))**2 ) 
AX = XE - XC 

326



10 

10 

AY = YE - YC 
AL = SQRT( AX**2 + AY**2) 
X = RAD * AX/AL 
Y =RAD * AY/AL 
CALL MOVTO2(X, Y) 
RETURN 
END 

SUBROUTINE POLBY2(DXARR,DYARR,NPTS) 
REAL DXARR(NPTS),DYARR(NPTS) 
INTEGER I 
LOGICAL FLAG,LOGIC 

COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON/SYGIN/FD 
DO 101 = 1,NPTS 
CALL LINBY2(DXARR(I),DYARR(D) 
CONTINUE 
RETURN 
END 

SUBROUTINE POLTO2(XARR,YARR,NPTS) 
REAL XARR(NPTS),YARR(NPTS) 
INTEGER I 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 
COMMON/SYGIN/FD 
DO 101 = 1,NPTS 
CALL LINTO2(XARR(I), YARR(D) 
CONTINUE 
RETURN 
END 

SUBROUTINE WINDO2(X1,X2,Y1,Y2) 
REAL X1,X2,Y1,Y2 : 
INTEGER IW 
LOGICAL FLAG,LOGIC 
COMMON /PICC/PPOS(3),XMIN,XMAX, YMIN, YMAX,IW 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON/SYGIN/FD 
XMIN = X1 
XMAX = X2 
YMIN = Y1 
YMAX = Y2 
RETURN 
END 

SUBROUTINE WIND(I) 
INTEGER IW,M(4),N(4) 
LOGICAL FLAG,LOGIC 
COMMON /PICC/PPOS(3),XMIN,XMAX, YMIN, YMAX,IW



10 

O
O
O
)
.
 C

) 

3 

© 

COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 
COMMON/SYGIN/FD 
IW =I 
IFW .EQ. 2) THEN 
XMIN = 0.0 
XMAX = 210.0 
YMIN = 0.0 
YMAX = 275.0 

END IF 
IF(IW.EQ.2 .OR. IW.EQ.1 ) THEN 
M(1) = NINT(767/210.0*XMIN) 
N(1) = NINT(1023 - (1023/275.0*YMIN)) 
M(2) = NINT(767/210.0*XMAX) 
N(2) = N(1) 
M(3) = M(2) 
N(3) = NINT(1023 - (1023/275.0*YMAX)) 
M(4) = M(1) 
N(4) = N(3) 
DO 101 = 1,3 
CALL LINEXX(M(1),N(1),M(I+1),N(I+1)) 
CONTINUE 

CALL LINEXX( M(4),N(4),M(1),N(1) ) 
END IF 
RETURN 
END 

SUBROUTINE WCUTS(X,Y,U,V) 
MAKES USE OF EQUATION OF STRAIGHT LINE: 

X = X1 + DELTA * (X2-X1) 
Y = Yl + DELTA * (Y2-Y1) 

TO FIND WHERE INTEDED LINE CUTS THE WINDOW. 
FUNCTIONS DEFINED ARE : DXY AND FNXY 

REAL X(2),Y(2),U(2),V(2),A(2),B(2), DELTA,HOR, VER 
REAL XMIN,XMAX,TMIN, TMAX 
INTEGER I,J,K 
LOGICAL FLAG,LOGIC 
COMMON/PICC/PPOS(3),XMIN,XMAX,YMIN, YMAX,IW 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 
COMMON/SYGIN/FD 
DXY(XY1,XY2,XY) = (XY - XY1)/(XY2- XY1) 
FNXY(XY1,XY2,DELTA) = XY1 + DELTA * (XY2 - XY1) 
IF(X(1).GE.XMIN .AND. X(1).LE.XMAX .AND. 
Y(1).GE.YMIN .AND. Y(1).LE.YMAX ) THEN 
IF(X(2).GE.XMIN .AND. X(2).LE.XMAX .AND. 
Y(2).GE.YMIN .AND.Y(2).LE.YMAX ) THEN 
DO31# 12 
U(@ = X() 
V() = Y(D 
CONTINUE 
RETURN 
END IF 
END IF 
CASE WHERE ONE OR BOTH POINTS LIE OUTSIDE THE WINDOW. 

328



J=1 
I=1 
HOR = YMIN 
VER = XMIN 
DO4K =1,2 
A(K) = -50.0 
B(K) = -50.0 

4 CONTINUE 
5 IF(Y(1).NE.Y(2)) THEN 

< 

DELTA = DXY( Y(1), Y(2), HOR) 

TEMP = FNXY( X(1),X(2),DELTA) 

IF(DELTA.GE.0.0 .AND. DELTA.LE.1.0 .AND. 

TEMP.GE.XMIN .AND.TEMP.LE.XMAX) THEN 

A(J) = TEMP 

B(J) = HOR 

HOR = YMAX 

J =2 

ELSE 

HOR = YMAX 

END IF 

ELSE 

HOR = YMAX 

END IF 

IF( X(1).NE.X(2) ) THEN 

DELTA = DXY( X(1),X(2), VER ) 

TEMP = FNXY( Y(1), Y(2), DELTA) 

IF(DELTA.GE.0.0 .AND. DELTA.LE.1.0 .AND. 

! TEMP.GE.YMIN .AND.TEMP.LE.YMAX ) THEN 

A(J) = VER 

B(J) = TEMP 

VER = XMAX 

J =2 

ELSE 

VER = XMAX 

END IF 

ELSE 

VER = XMAX 

END IF 

I=I+1 

IF(I.NE.3) GOTO 5 

TEST FOR NUMBER OF INTERSECTIONS. 

IF( X(1).GT.XMIN .AND. X(1).LT.XMAX .AND. 

! Y(1).GT.YMIN .AND. Y(1).LT. YMAX ) THEN 

IF( X(2).LT.XMIN .OR. X(2).GT.XMAX .OR. 

! ‘Y(2).LT.YMIN .OR. Y(2).GT.YMAX ) THEN 

U(1) = X(1) 

V(1) = Y(1) 

U(2) = A(1) 

V(2) = B(1) 

RETURN 

END IF 

ELSE IF( X(1).LT.XMIN .OR.X(1).GT.XMAX .OR. 

! Y(1).LT.YMIN .OR. Y(1).GT.XMAX ) THEN 

IF( X(2).GT.XMIN .AND. X(2).LT.XMAX .AND. 

! Y(2).GT.YMIN .AND.Y(2).LT. YMAX ) THEN 

529



5 

! 

U(1) = A(1) 
V(1) = B(1) 
U(2) = X(2) 
V(2) = Y(2) 
RETURN 

END IF 
END IF 
HAVING GOT THIS FAR, CONTINUE TO THE END 
SMIN = MIN( A(1),A(2) ) 
TMIN = MIN( B(1),B(2) ) 
SMAX = MAX( A(1),A(2) ) 
TMAX = MAX( B(1),B(2) ) 
IF( X(2).GE.X(1) .AND. Y(2).GE.Y(1) .OR. 
X(2).LE.X(1) AND. Y(2).LE.Y(1) ) THEN 
IF( X(2).GT.X(1) .OR. Y(2).GT.Y(1) ) THEN 
U(1) = SMIN 
V(1) = TMIN 
U(2) = SMAX 
V(2) = TMAX 

ELSE 
U(1) = SMAX 
V(1) = TMAX 
U(2) = SMIN 
V(2) = TMIN 
END IF 

ELSE IF( X(2).GT.X(1) ) THEN 
U(1) = SMIN 
V(1) = TMAX 
U(2) = SMAX 
V(2) = TMIN 

ELSE 
U(1) = SMAX 
V(1) = TMIN 
U(2) = SMIN 
V(2) = TMAX 

END IF 
' RETURN 
END 

SUBROUTINE RFRESH(PTR) 
DOES MATRIX MULTIPLICATION, C = OTR*PTR 
REAL PTR(3,3),C(3,3) 
INTEGER I,J,K 
LOGICAL FLAG,LOGIC 
COMMON/PICC/PPOS(3), XMIN,XMAX, YMIN, YMAX,IW 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON/SYGIN/FD 
DO 20 I= 1,3 
DO 10J =1,3 
C(L,J) = 0.0 
DO 5K =1,3 
C(IJ) = C(IJ) + OTR(I,K) * PTR(K,J) 
CONTINUE 

330



10 
20 

90 

CONTINUE 
CONTINUE 
DO 1001 = 1,3 
DO90J =1,3 
OTR(LJ) = CJ) 
CONTINUE 

100 CONTINUE 

10 

—_
 

RETURN 
END 

SUBROUTINE MATINV(A) 
FINDS INVERSE OF MATRIX PTR AND RETURNS IT IN RTP 
REAL A(3,3),B(3,3),V AP(3) 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 
COMMON/SYGIN/FD 
DEFINE INDENTITY MATRIX OF SAME DIM. AS A(3,3) 
DO 101 = 1,3 
DO 5J =1,3. 
B(LJ) = 0.0 
CONTINUE 
BUD = 1.0 
CONTINUE 
DO 41=1,3 
DO2K = 1,3 
IF (K.EQ.I) GO TO 2 
CONST = -A(K,D/A(L) 
DO 1J =1,3 
A(K,J) = A(K,J) + CONST*A(LJ) 
B(K,J) = B(K,J) + CONST*B(LJ) 
IF (J.EQ.1) A(K,J) = 0.0 
CONTINUE 

2 CONTINUE 
CONST = AG) 
DO3J=1,3 
A(LJ) = A(,J)/CONST 
B(L,J) = B(,J)/CONST 
A(LI) = 1.0 
CONTINUE 
INVERSE OF MATRIX A IS IN MATRIX B 
NOW FIND POSITION(VPOS), W.R.T. NEWLY DEFINED AXIS 
CALL MMULT(B, VPOS,V AP) 
DO 1001 = 1,3 
VPOS(I) = VAP(1) 

100 CONTINUE 
RETURN 
END 

SUBROUTINE MMULT(OTR,VPOS,APOS) 
REAL OTR(3,3), VPOS(3),APOS(3) 
INTEGER I,J 
LOGICAL FLAG,LOGIC 

331



COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON /SYGIN/FD 
DO 10T=1,3 
APOS(I) = 0.0 
DOS Je 153 
APOS(I) = APOS(I) + OTR(,J) * VPOS(J) 
CONTINUE 

CONTINUE 
RETURN 
END 

SUBROUTINE WINENQ(IW,IB1,NB,BOUNDS) 
REAL BOUNDS(NB) 
INTEGER IW, IB1,I 
LOGICAL FLAG,LOGIC 
COMMON /PICC/PPOS(3), W(4),JW 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON/SYGIN/FD 
IW =Jw 
IF(IB1.EQ.0 .OR. NB.EQ.0 ) RETURN 
DO 51=1,NB 
BOUNDS(I) = W(IB1) 
IB1 = IB1 +1 
IF(IB1.GT.4) IB1 = 1 
CONTINUE 
RETURN 
END 

SUBROUTINE TURNA4 
LOGICAL FLAG,LOGIC 
COMMON /PICC/PPOS(3),XMIN,XMAX, YMIN, YMAX,IW 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON/SYGIN/FD 
CALL SHIFT2(0.0,275.0) 
CALL ROTAT2(-90.0) 
PERM1 = XMIN 
PERM2 = XMAX 
XMIN = YMIN 
XMAX = YMAX 
YMIN = PERM1 
YMAX = PERM2 
RETURN 
END 

SUBROUTINE UNITS(XMILS) 
DEFINES RATIO OF SCALES AND PLACES IT IN COMMON. 
REAL R,XMILS 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R, TOL,INC,LOGIC,ITY PE 
COMMON/SYGIN/FD 
R = XMILS 

332



5 

CALL SCALE(R) 
RETURN 
END 

SUBROUTINE POSPIC(X,Y) 

RETURNS CURRENT PEN POSITION W.R.T. THE PICTURE COORDINATES. 
REAL X,Y 
LOGICAL FLAG,LOGIC 
COMMON /PICC/PPOS(3), XMIN,XMAX, YMIN, YMAX,IW 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON /SYGIN/FD 
X = PPOS(1) *R 
Y =PPOS(2) *R 
RETURN 
END 

SUBROUTINE POSSPA(X, Y,Z) 
RETURNS CURRENT PEN POSITION W.R.T. MOST RECENTLY DEFINED 
SPACE COORDINATES. 
REAL X,Y,Z 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 
COMMON/SYGIN/FD 

X = VPOS(1)*R 
Y = VPOS(2) *R 
RETURN 
END 

SUBROUTINE DEVEND 
REALR 
LOGICAL FLAG,LOGIC 
COMMON/ENOQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON/SYGIN/FD 
FLAG = FALSE. 
RETURN 
END 

SUBROUTINE M2INV(A) 
FINDS INVERSE OF MATRIX PTR AND RETURNS IT IN RTP 
REAL A(2,2),B(2,2), VAP(2) 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON/SYGIN/FD 
DEFINE INDENTITY MATRIX OF SAME DIM. AS A(2,2) 
DO 101 = 1,2 
DOS J = 1,2 
B(I,J) = 0.0 
CONTINUE 

oa



10 
Cc 

BLD = 1.0 
CONTINUE 

DO41=1,2 
DO2K =1,2 
IF (K.EQ.1) GO TO 2 
CONST = -A(K,D/A(LD 
DO 1J =1,2 
A(K,J) = A(K,J) + CONST*A(LJ) 
B(K,J) = B(K,J) + CONST*B(LJ) 
IF (.EQ.1) A(K,J) = 0.0 
CONTINUE 

2 CONTINUE 
CONST = A(I,D) 
DO 3J=1,2 
A(LJ) = A(,J)/CONST 
B(L,J) = B(I,J)/CONST 
A(LD = 1.0 
CONTINUE 
INVERSE OF MATRIX A IS IN MATRIX B 
NOW FIND POSITION(VPOS), W.R.T. NEWLY DEFINED AXIS 
CALL MMULT2(B, VPOS, VAP) 
DO 1001 = 1,2 
VPOS(I) = VAP(1) 

100 CONTINUE 
RETURN . 
END 

SUBROUTINE MMULT2(OTR, VPOS,APOS) 
REAL OTR(2,2), VPOS(2), APOS(2) 
INTEGER I,J 
LOGICAL FLAG,LOGIC 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON/SYGIN/FD 
DOA0T= 1;2 
APOS(I) = 0.0 
DOS J =1,2 
APOS(I) = APOS(I) + OTR(I,J) * VPOS(J) 
CONTINUE 

CONTINUE 
RETURN 
END 

SUBROUTINE ARCBY2(DXC,DYC,DXE,DYE,ISENSE) 
REAL DXC,DYC,DXE,DYE,XC, YC,XE, YE 
INTEGER ISENSE 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITY PE 
COMMON/SYGIN/FD 
XC = VPOS(1) + DXC 
YC = VPOS(2) + DYC 
XE = VPOS(1) + DXE 

334



YE = VPOS(2) + DYE 
CALL ARCTO2(XC, YC,XE, YE,ISENSE) 
VPOS(1) = XE - DXE 
VPOS(2) = YE - DYE 
RETURN 
END 

SUBROUTINE ARCTO2(XC, YC,XE, YE, ISENSE) 
REAL XC,YC,XE,YE,RAD,DX,DY,X,Y, THETA, ALPHA 
INTEGER ISENSE,N 
LOGICAL FLAG,LOGIC 
COMMON/SPCD/VPOS(3),OTR(3,3) 
COMMON/ENQY/FLAG,R,TOL,INC,LOGIC,ITYPE 
COMMON/SYGIN/ED 

C FIND RADIUS OF ARC 
RAD = SQRT( (XC-VPOS(1))**2 + (YC-VPOS(2))**2 ) 
THETA = 2 * ACOS(1 - TOL/RAD/S.) 
L =2* (RAD -TOL) * TAN(THETA/2) 
DX = VPOS(1) - XC 
DY = VPOS(2) - YC 
N = 3.14159/THETA 
IF(ISENSE.EQ.1)THEN 
THETA = THETA 
ELSE 
THETA = -THETA 
ENDIF 
ALPHA = 0.0 
IF(YC.EQ. YE)THEN 
N =2*N 
ELSE 
N=N 
ENDIF 
DO 101 =1,N+1 
ALPHA = THETA + ALPHA 
X = DX*COS(ALPHA) - DY*SIN(ALPHA) + XC 
Y = DX*SIN(ALPHA) + DY*COS(ALPHA) + YC 
CALL LINTO2(X,Y) 

10 CONTINUE 
RETURN 
END 

SUBROUTINE COMAND 
COMMON/SYGIN/FD 
CALL PERQ 
CALL MOVTO2(154.,0.) 
CALL LINBY2(0.,36.) 
CALL LINBY2(56.,0.) 
CALL MOVBY2(0.,-18.) 
CALL LINBY2(-56.,0.) 
CALL MOVTO2(182.,0.) 
CALL LINBY2(0.,36.) 
CALL MOVTO2(185.,7.) 
CALL CHAHOL(' KEYS’) 
CALL MOVTO2(158.,25.) 

a35.



CALL CHAHOL(' STOP’) 
CALL MOVTO2(185.,25.) 
CALL CHAHOL(' CLEAR’) 
CALL MOVTO2(155.,7.) 
CALL CHAHOL(PROBABILITY’) 
RETURN 
END 

SUBROUTINE CHAMOD 
END 

SUBROUTINE PICBEG(I) 
END 

SUBROUTINE PICEND 
END 

SUBROUTINE EVESET(1) 
END 

SUBROUTINE PICSEN(L,J) 
END 

SUBROUTINE EVENT(I) 
END 

SUBROUTINE EVEDEL(]) 
END 

SUBROUTINE HARCHA 
END 

SUBROUTINE CHASWI(I) 
END 

SUBROUTINE PENSEL(I,W,J) 
END 

SUBROUTINE CHASIZ(W,H) 
END 

SUBROUTINE CHAANG(A) 
END 

SUBROUTINE T4010 
END 

336



SUBROUTINE CHAASC(I) 

CALL CHAHOL(CHAR(I)) 
END 

SUBROUTINE CHAINT(I,J) 
END 

SUBROUTINE FLASH (UNIT) 
INTEGER UNIT 

WRITE(UNIT=UNIT,FMT='(1000(3A1))')(CHAR(27),'X',CHAR(33),I=1,170) 
RETURN 
END 

#include <wuser.h> 

int wopen_(s) 

char *s; 

{ 
char *s1; 

int fd; 

sl=s; 

fd=open(s1,2); 

return(fd); 

} 
int wlin_(fd,x1,y1,x2,y2) 

int *fd; 
int*x1,*y1,"x2,*y2; 

{ 
int i,fd1; 

short xx1,yy1,xx2,yy2; 
struct LINCtl linargp; 
struct ClipCtl clipp; 
xxl=(*x1); 

yyl=(*y1); 
XxX2=(*x2); 

yy2=(*y2); 
linargp.LINX1=xx1; 

linargp.LINY 1l=yy1; 

linargp. LINX2=xx2; 
linargp.LINY2=yy?2; 

linargp.LINDstInc=1; 
linargp.LINDstBase=0; 
linargp.LINStyle=LDraw; 

fd1=(*fd); 
i=wline(fd1,&linargp,0); 
return(i); 

} 
int wclose_(fd) 

int *fd; 

{ 
int i,fd1; 

337



fd1=(*fd); 
i=close(fd1); 

return (i); 

} 
int wstrng_(fd,x,y,s,last,offset,maxbyte,xmax) 
int *fd,*last; 

int *x,*y,*offset, *maxbyte, *xmax; 

char *s; 

{ 
char str[90]; 
char *ps; 

short xx,yy,offs,xxmax,xmb; 

int fd1; 

int i; 

struct DBCtl dbargp; 
struct ClipCtl clipp; 
for(i=0;i<(*last);i++) 

str[i]=(*(s+i)); 
ps=(&str[0]); 
fd1=(*fd); 

xx=(*x); 
offs=(*offset); 

yy=(*y); 
xxmax=(*xmax); 

xmb=(*maxbyte); 

dbargp.DBX=xx; 
dbargp.DBByteOfset=offs; 

dbargp.DBFunc=ROr; 
dbargp.DBY=yy; 
dbargp.DBMaxX=xxmax; 
dbargp.DBMaxByte=xmb; 
dbargp.DBSrcString=ps; 
dbargp.DBScreen=0; 

dbargp.DBFont=0; 
dbargp.DBDstInc=1; 
i=wdbyte(fd1,&dbargp,0); 
return(i); 

} 
int wpuck_(fd,x1,y1,x2,y2,x3,y3,press) 
int *fd,*x1,*y1,*x2,*y2,*x3,*y3,*press; 

a 
int i; 

short button; 
struct Wgrec buf; 
do { 

i=wegread(*fd,& buf); 

} 
while (buf.grButtons != 0 ); 

do { 

i=wegread(*fd,& buf); 

} 
while (buf.grButtons == 0); 
(*x1)=buf.grWTabx; 
(*yl)=buf.grWTabY; 

338



(*x2)=buf.grSTabxX; 

(*y2)=buf.grSTabY; 

(*x3)=buf.grTTabXx; 

(*y3)=buf.grTTabY; 
button=buf.grButtons; 

if (button&WB_YELLOW){ 
*press=0; 

} 
else if(button& WB_WHITE){ 

*press=1; 

} 
else if(button& WB BLUE){ 

*press=2; 

} 
else if(button&WB_GREEN){ 

*press=3; 

} 
else {*press=4; 

} 
return(i); 

} 

339



APPENDIX K : LISTING OF THE FTDRA SOURCE 

PROGRAMS 

340



SUBROUTINE INIT 

CC TOCREATE SET STRUCTURE AND TO INITIALIZE IT 

PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
INTEGER SETS ,EMPTY ,FINISH STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL 

COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 
+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 

DO 10 I=1,NOSETS 
STARTS(I) = -1 

10 CONTINUE 
DO 20 J=1,NUMENT- 1 
SETS(J,2) = J+1 

20 CONTINUE 
SETS(NUMENT,2) = 0 
EMPTY = 1 
FINISH = 10000 
FULL =.FALSE. 
RETURN 
END 

SUBROUTINE NEWSET (NUMBER) 

CC TO INITIALIZE NEW SET AND TO RETURN ITS ENTRY NUMBER 
CC _ IN THE SET STRUCTURE 

INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 
PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
LOGICAL FULL 

LOGICAL NORMAL 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) EMPTY , 

+ FINISH ,FULL ,TAKNUM(NOSETS) NORMAL(NUMENT) © 
DO 101 = 1,NOSETS 

IF (STARTS(1).EQ. -1)THEN 
NUMBER = I 
STARTS(1) = 0 
RETURN 

END IF 
10 CONTINUE 

OPEN ( UNIT = 7, FILE="ERREPORT) 
REWIND (7) 
WRITE (7,*) EMPTY = EMPTY 
WRITE (7,*) ‘FINISH = ', FINISH 
WRITE (7,*) 'STARTS =' 
WRITE (7, '(15,17)') (IAJ,STARTS(IAJ),IAJ=1,1000) 
WRITE (7,*) ‘SETS =' 
WRITE ( 7,'(15, 17,15, L3)') (IAJ,SETS(IAJ,1),SETS(IAJ,2), 

+ NORMAL(IAJ),IAJ=1,10000) 
CLOSE (7) 

341



CALL SETERR ('NO MORE SETS CAN BE CREATED’) 
RETURN 
END 

SUBROUTINE ADDITM (ITEM ,SETNO ,STATE ,CLASS) 

CC TOADD AN ITEM TO SET SETNO 

PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
INTEGER ITEM ,SETNO ,NEXT ,LAST ,BEGIN ,OLD ,FOLO 
INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL ,STATE ,CLASS 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 

+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 

IF (EMPTY.EQ.FINISH)THEN 
FULL = .TRUE. 

END IF 

IF (FULL)THEN 
OPEN ( UNIT = 7, FILE="ERREPORT’) 
REWIND (7) 
WRITE (7,*) EMPTY = ',EMPTY 
WRITE (7,*) ‘FINISH = ', FINISH 
WRITE (7,*) ‘STARTS =' 
WRITE (7, '(15,17)') (AJ, STARTS(IAJ),IAJ=1,1000) 
WRITE (7,*) 'SETS =' 
WRITE ( 7,'(I5, 17,15, L3)') (IAJ, SETS(IAJ,1),SETS(IAJ,2), 

+ NORMAL(IAJ),IAJ=1,10000) 
CLOSE (7) 
CALL SETERR (' THERE IS NO MORE ROOM FOR FURTHER SET 

+ ITEMS’) 
END IF 

IF (STARTS(SETNO).EQ.0)THEN 
STARTS(SETNO) = EMPTY 
EMPTY = SETS(EMPTY,2) 
SETS(STARTS(SETNO),1) = ITEM 
SETS(STARTS(SETNO),2) = 0 
NORMAL(STARTS(SETNO)) = STATE 
RETURN 

ELSEIF (ITEM.EQ.SETS(STARTS(SETNO),1))THEN 
RETURN 

ELSEIF (ITEM.LT.SETS(STARTS(SETNO), 1)) THEN 
IF (CLASS) GO TO 9 
BEGIN = STARTS(SETNO) 
STARTS(SETNO) = EMPTY 
EMPTY = SETS(EMPTY,2) 
SETS(STARTS(SETNO),1) = ITEM 
SETS(STARTS(SETNO),2) = BEGIN 

342



NORMAL(STARTS(SETNO)) = STATE 
RETURN 

END IF 

9 NEXT = STARTS(SETNO) 
10  LAST=NEXT 

NEXT = SETS(NEXT,2) 

IF (NEXT.NE.0)THEN 
IF (ITEM.EQ.SETS(NEXT, 1)) THEN 

IF (NORMAL(NEXT).EQV.STATE)THEN 
RETURN 

ELSE 
CALL DELSET (SETNO) 
RETURN 

END IF 
ELSEIF (ITEM .LT.SETS(NEXT, 1)) THEN 

IF (CLASS) GO TO 10 
OLD = EMPTY 
FOLO = SETS(LAST,2) 
SETS(EMPTY 1) = ITEM 
SETS(LAST,2) = EMPTY 
NORMAL(EMPTY) = STATE 
EMPTY = SETS(EMPTY,2) 
SETS(OLD,2) = FOLO 
RETURN 

END IF 
GO TO 10 

ELSE 

99 SETS(LAST,2) = EMPTY 
EMPTY = SETS(EMPTY,2) 
SETS(SETS(LAST,2),1) = ITEM 
NORMAL(SETS(LAST,2)) = STATE 
SETS(SETS(LAST,2),2) = 0 
RETURN 

END IF 
RETURN 
END 

SUBROUTINE DELSET (SETNO) 

CC °TO DEEETE SET SETNO 

PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
INTEGER SETNO ,LAST ,NEXT 
INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 

+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 

343



LAST = STARTS(SETNO) 

IF (LAST.EQ.0)THEN 
STARTS(SETNO) = -1 
RETURN 

END IF 

10 NEXT = SETS(LAST,2) 
IF (NEXT.EQ.0)THEN 
SETS(LAST,2) = EMPTY 
EMPTY = STARTS(SETNO) 
STARTS(SETNO) = -1 
RETURN 
END IF 

LAST = NEXT 
GO TO 10 
END 

SUBROUTINE DELITM (ITEM ,SETNO ,STATE) 

CC TO DELETE ONE OCCURENCE OF ITEM FROM SET SETNO IF IT 
C€ OCCURS 

INTEGER ITEM ,SETNO ,NEXT ,LAST ,FOLO 
INTEGER SETS ,EMPTY ,FINISH STARTS ,TAKNUM 
PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
LOGICAL FULL 
LOGICAL NORMAL ,STATE 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 

+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 

NEXT = STARTS(SETNO) 
LAST =-1 

10 IF (NEXT.EQ.0)THEN 
RETURN 
END IF 

IF ((SETS(NEXT, 1).EQ.ITEM).AND.(NORMAL(NEXT).EQV.STATE))THEN 
IF (LAST .EQ.-1)THEN 
FOLO = STARTS(SETNO) 
STARTS(SETNO) = SETS(NEXT,2) 

ELSE 
FOLO = SETS(LAST,2) 
SETS(LAST,2) = SETS(NEXT,2) 

END IF 
SETS(FOLO,2) = EMPTY 
EMPTY = FOLO 
RETURN 
END IF 

LAST = NEXT 
NEXT = SETS(NEXT,2) 

344



GO TO 10 

END 

SUBROUTINE INITTK (SETNO) 

CC TO INITIALIZE THE SEQUENTIAL REPORTING BACK BY SUB. 
CC TAKITM OF THE ITEMS IN SET SETNO 

INTEGER SETNO 
INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 
PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
LOGICAL FULL 
LOGICAL NORMAL 

COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 
+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 

TAKNUM(SETNO) = STARTS(SETNO) 

RETURN 
END 

SUBROUTINE TAKITM (SETNO , VALUE ,STATE) 

CC TO TAKE THE NEXT SEQUENTIAL ITEM FROM SET SETNO AND 
CC RETURNIT IN VALUE 

INTEGER SETNO , VALUE 
INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 
PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
LOGICAL FULL 
LOGICAL NORMAL ,STATE 

COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 
+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 

VALUE = SETS(TAKNUM(SETNO),1) 
STATE = NORMAL(TAKNUM(SETNO)) 
TAKNUM(SETNO) = SETS(TAKNUM(SETNO),2) 
RETURN 
END 

SUBROUTINE NUMSET (SETNO ,NUMBER) 

CC TODETERMINE THE NUMBER OF ITEMS IN SET SETNO 

345



INTEGER SETNO ,NUMBER ,NEXT 
PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL 

COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 
+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 

NUMBER = 0 
NEXT = STARTS(SETNO) 

10 IF (NEXT.LE.0)THEN 
RETURN 
END IF 
NUMBER = NUMBER + 1 
NEXT = SETS(NEXT,2) 
GO TO 10 

END 

SUBROUTINE CPYSET (SETOLD ,SETNEW) 

CC TOGENERATE A NEW SET SETNEW AND TO COPY SETOLD INTO IT 

INTEGER SETOLD ,SETNEW , VALUE ,NUMBER 
PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL ,STATE 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 

+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 

CALL NEWSET (SETNEW) 
CALL NUMSET (SETOLD ,NUMBER) 
CALL INITTK (SETOLD) 

DO 10 I=1,NUMBER 
CALL TAKITM (SETOLD , VALUE ,STATE) 
CALL ADDITM (VALUE ,SETNEW ,STATE, .FALSE.) 

10 CONTINUE 
RETURN 
END 

SUBROUTINE SETERR (MESS) 

CC TO OUTPUT ERROR MESSAGE MESS 

CHARACTER MESS * (*) 

PRINT 900, MESS 
900 FORMAT( // 2 (60('*') /),10X,A/2(60('*')/)) 

STOP 
END 

346



LOGICAL FUNCTION EQUAL (SETNO1 ,NUM1 ,SETNO2 ,NUM2) 

CC TORETURN TRUE IF SETS SETNO1 AND SETNO2 HAVE IDENTICAL 
CC CONTENTS; OTHERWISE RETURNS FALSE. 

INTEGER SETNO1 ,SETNO2 ,NUM1 ,NUM2 ,VAL1 ,VAL2 
PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
INTEGER SETS ,EMPTY ,FINISH STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL ,STATE1 ,STATE2 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 

+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 

CALL INITTK (SETNO1) 
DO 101 =1,NUM1 
CALL TAKITM (SETNO1 ,VAL1 ,STATE1) 
CALL INITTK (SETNO2) 

DO 20 J=1, NUM2 
CALL TAKITM (SETNO2 ,VAL2 ,STATE2) 
IF (VAL1.EQ.VAL2)THEN 

IF (STATE1.EQV.STATE2)THEN 
EQUAL = .TRUE. 
GO TO 10 

END IF 
EQUAL = FALSE. 
RETURN 

END IF 
20 CONTINUE 

EQUAL = .FALSE. 
RETURN 

10 CONTINUE 
EQUAL = .TRUE. 
RETURN 
END 

SUBROUTINE TYPSET (VALUE ,BASIC ,ORBAS ,OTHERS ,CLASS) 

CC TODETERMINE WHETHER THE PRIMARY EVENTS OF THE EVENT IN 
CC ROW NEXT OF CELLS FALL INTO THE CATEGORY OF PUTTING NEXT 
CC INTO THE CATEGORY OF BASIC OR ORBAS OR OTHERS. IF NEXT IS 
CC ABASIC EVENT, THEN VALUE IS PUT INTO SET BASIC. IF NEXT 
CC IS AN OR GATE WITH ONLY BASIC EVENT INPUTS,NEXT IS PUT 
CC INTO ORBAS. IF NEXT IS ANYTHING ELSE, NEXT IS PUT INTO 
C@” OTHERS. 

INTEGER CLR ,CLC ,SMR ,SMC 
PARAMETER ( NOSETS =1000 ,NUMENT =10000, 

+ CLR = 500 ,CLC = 10 SMR = 50 ,SMC = 20) 

INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 

347



INTEGER VALUE ,TYPE ,CELLS ,SYMPTS 
INTEGER NEXT ,BASIC ,ORBAS ,OTHERS ,ELEM ,NUMITM 
LOGICAL FULL 
LOGICAL NORMAL ,STATE ,CLASS 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) EMPTY , 

+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 
COMMON /SYRS/ CELLS(CLR,CLC),SYMPTS(SMR,SMC) 

CC TYPE = 1 IF BASIC ; 2 IF ORBAS ; 3 IF OTHERS 

TYPE =1 
CALL NUMSET (VALUE ,NUMITM) 
CALL INITTK (VALUE) 
DO 15 I=1 , NUMITM 
CALL TAKITM (VALUE ,ELEM ,STATE) 
IF (CELLS(ELEM,2).EQ.-1 .OR. : 

+ CELLS(ELEM,2) .EQ. +2) THEN 
CALL ADDITM (VALUE ,OTHERS ,STATE ,CLASS) 
TYPE =3 
RETURN 

ELSEIF (CELLS(ELEM,2).EQ.+1.AND.(.NOT.STATE)) THEN 
CALL ADDITM (VALUE ,OTHERS ,STATE ,CLASS) 
TYPE =3 
RETURN 

ELSEIF (CELLS(ELEM,2).EQ.+1)THEN 
DO 20 J =4,CELLS(ELEM,3)+3 
NEXT = CELLS(ELEM,J) 

IF (CELLS(NEXT,2).NE.-2) THEN 
CALL ADDITM(VALUE ,OTHERS ,STATE ,CLASS) 
TYPE =3 
RETURN 

END IF 
20 CONTINUE 

TYPE =2 
ELSEIF (CELLS(ELEM,2).EQ.0)THEN 

DO 30 M =4,CELLS(ELEM,3)+3 
NEXT = SYMPTS(CELLS(ELEM,M),1) 

IF (CELLS(NEXT,2).NE.-2)THEN 
CALL ADDITM (VALUE ,OTHERS ,STATE ,CLASS) 
TYPE =3 

RETURN 
END IF 

30 CONTINUE 
TYPE =2 

ELSEIF (CELLS(ELEM,2).EQ.-2)THEN 
CONTINUE 

END IF 
15 CONTINUE 

IF (TYPE.EQ.1)THEN 
CALL ADDITM (VALUE ,BASIC ,STATE ,CLASS) 
ELSE IF (TYPE.EQ.2)THEN 
CALL ADDITM (VALUE ,ORBAS ,STATE ,CLASS) 
END IF 
RETURN 

348



SUBROUTINE STEP1 (TOP ,BASIC ,ORBAS ,OTHERS) 

CC TOCARRY OUT STEP 1 OF THE FTDRA ALGORITHM 

INTEGER CLR, CLC, SMR, SMC 
PARAMETER ( NOSETS =1000 ,NUMENT =10000, 

‘- CLR = 500, CLC = 10, SMR = 50, SMC = 20) 
INTEGER TOP ,BASIC ,ORBAS ,OTHERS , VALUE ,NEXT 
INTEGER CELLS ,SYMPTS 
INTEGER SETS ,EMPTY FINISH ,STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) EMPTY 

+ FINISH |FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 
COMMON /SYRS/ CELLS(CLR,CLC),SYMPTS(SMR,SMC) 
IF ( CELLS(TOP,2).EQ.-1 )THEN 

CALL NEWSET (VALUE) 
DO 10 I=4,CELLS( TOP,3 )+3 
NEXT = CELLS(TOP,]) 
CALL ADDITM (NEXT , VALUE ,. TRUE. ,.FALSE.) 

10 CONTINUE 
CALL TYPSET (VALUE ,BASIC ,ORBAS ,OTHERS ,.TRUE.) 

RETURN 
ELSE IF ( CELLS(TOP,2).EQ.+1 )THEN 

DO 20 I=4,CELLS( TOP,3 )+3 
CALL NEWSET (VALUE) 
NEXT = CELLS(TOP,]) 
CALL ADDITM ( NEXT , VALUE ,. TRUE. ,.FALSE.) 
CALL TYPSET ( VALUE ,BASIC ,ORBAS ,OTHERS ,.TRUE.) 

20 CONTINUE 
RETURN 

ELSE IF ( CELLS(TOP,2).EQ.+2 )THEN 
CALL NEWSET ( VALUE ) 
NEXT = CELLS(TOP,4) 
CALL ADDITM (NEXT , VALUE ,. TRUE. ,.FALSE.) 
CALL TYPSET ( VALUE ,BASIC ,ORBAS ,OTHERS ,.TRUE.) 
RETURN 

ELSE IF ( CELLS(TOP,2).EQ.-2 )THEN 
CALL NEWSET ( VALUE ) 
CALL ADDITM ( TOP , VALUE ,. TRUE. ,.FALSE.) 
CALL ADDITM ( VALUE ,BASIC ,. TRUE. ,. TRUE.) 
RETURN 

ELSE IF ( CELLS(TOP,2).EQ.0 )THEN 
DO 30 I =4,CELLS( TOP,3 )+3 
CALL NEWSET ( VALUE ) 
NEXT = SYMPTS( CELLS( TOP,I ),1 ) 
CALL ADDITM ( NEXT , VALUE ,. TRUE. ,.FALSE.) 
CALL TYPSET ( VALUE ,BASIC ,ORBAS ,OTHERS ,.TRUE.) 

30 CONTINUE 
END IF 
RETURN 

9 

349



END 

SUBROUTINE STEP2 (BASIC ,ORBAS ,OTHERS) 

INTEGER CLR, CLC, SMR, SMC 
PARAMETER ( NOSETS =1000 ,NUMENT =10000, 

+ CLR = 500, CLC = 10, SMR = 50, SMC = 20) 

INTEGER SET ,CELLS ,SYMPTS 
INTEGER NXTITM ,BASIC ,ORBAS ,OTHERS ,NUMITM ,NUMBER 
INTEGER SETS ,EMPTY ,FINISH STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL ,STATE ,TESTP2 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 

+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 
COMMON /SYRS/ CELLS(CLR,CLC),SYMPTS(SMR,SMC) 

1 CALL NUMSET (OTHERS ,NUMBER) 
IF (NUMBER.EQ.0)THEN 
CALL DELSET (OTHERS) 
RETURN 
END IF 
CALL INITTK (OTHERS) 

DO 101 =1,NUMBER 
CALL TAKITM (OTHERS ,SET ,STATE) 
CALL NUMSET (SET Poe 
CALL INITTK (SET) 

DO 100 J =1,NUMITM 
CALL TAKITM (SET ,NXTITM ,STATE) 
IF (TESTP2(NXTITM))THEN 
CALL RESTP2 (SET ,NXTITM ,BASIC ,ORBAS ,OTHERS) 
GO TO 1 
END IF 

100 CONTINUE 
10 CONTINUE 

GO TO 1 
END 

LOGICAL FUNCTION TESTP2 (ITEM) 

INTEGER CLR, CLC, SMR, SMC 
PARAMETER ( NOSETS =1000 ,NUMENT =10000, 
+ CLR = 500, CLC = 10, SMR = 50, SMC = 20) 
INTEGER J ,ITEM ,NXTITM ,CELLS ,SYMPTS 
LOGICAL TESTP2 
COMMON /SYRS/ CELLS(CLR,CLC),SYMPTS(SMR,SMC) 

IF ( CELLS(ITEM,2).EQ. -2 )THEN 
TESTP2 = FALSE. 

350



RETURN 
ELSE IF ( CELLS(ITEM,2).EQ.+1)THEN 
DO 15 J =4,CELLS(ITEM,3 )+3 
NXTITM = CELLS(ITEM,J) 

IF ( CELLS(NXTITM,2).EQ.-2 )THEN 
CONTINUE 

ELSE 
TESTP2 = .TRUE. 
RETURN 
END IF 

15 CONTINUE 
TESTP2 = .FALSE. 
RETURN 

ELSE IF (CELLS(ITEM,2).EQ.-1.OR.CELLS(ITEM,2).EQ.+2 ) THEN 
TESTE2 = TRUE; 
RETURN 

ELSE IF ( CELLS(ITEM,2).EQ.0 )THEN 
DO 20 J =4,CELLS(ITEM,3 )+3 
NXTITM = SYMPTS(CELLS(ITEM,J),1) 
IF ( CELLS(NXTITM,2).EQ.-2 )THEN 
CONTINUE 

ELSE 
TESTP2 = TRUE; 
RETURN 
END IF 

20 CONTINUE 
TESTP2 = FALSE, 

END IF 
RETURN 

END 

SUBROUTINE RESTP2 (SET ,NXTITM ,BASIC ,ORBAS ,OTHERS) 

INTEGER CLR, CLC, SMR, SMC 
PARAMETER ( NOSETS =1000 ,NUMENT =10000, 

+ CLR = 500, CLC = 10, SMR = 50, SMC = 20) 
INTEGER SET ,NXTITM ,J ,CELLS ,SYMPTS 
INTEGER NEXT ,BASIC ,ORBAS ,OTHERS 
INTEGER SETS ,EMPTY ,FINISH STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 

+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 
COMMON /SY’RS/ CELLS(CLR,CLC),SYMPTS(SMR,SMC) 

IF (CELLS(NXTITM,2).EQ.-1)THEN 
CALL DELITM (NXTITM ,SET ,. TRUE.) 
DO 50 J=4,CELLS(NXTITM,3 )+3 

NEXT = CELLS(NXTITM,J) | 
CALL ADDITM (NEXT , SET ,.TRUE. ,.FALSE.) 

351



50 

60 

70 

CONTINUE 

CALL DELITM (SET ,OTHERS ,.TRUE.) 
CALL TYPSET (SET ,BASIC ,ORBAS ,OTHERS ,.TRUE.) 

ELSE IF (CELLS(NXTITM,2).EQ.+1)THEN 
DO 60 J=4,CELLS(NXTITM,3 )+3 
NEXT = CELLS(NXTITM,J) 
CALL DELITM (NXTITM ,SET ,. TRUE.) 
CALL DELITM (SET ,OTHERS ,. TRUE.) 
CALL CPYSET (SET , VALUE) 
CALL ADDITM (NEXT , VALUE ,. TRUE. ,.FALSE.) 
CALL TYPSET (VALUE ,BASIC ,ORBAS ,OTHERS ,.TRUE.) 

CONTINUE 
CALL DELSET (SET) 

ELSE IF (CELLS(NXTITM,2).EQ.0)THEN 
DO 70 J=4,CELLS(NXTITM,3 )+3 
NEXT = SYMPTS(CELLS(NXTITM,J), 1) 
CALL DELITM (NXTITM ,SET ,. TRUE.) 
CALL DELITM (SET ,OTHERS ,.TRUE.) 
CALL CPYSET (SET ,VALUE) 
CALL ADDITM (NEXT , VALUE ,. TRUE. ,.FALSE.) 
CALL TYPSET (VALUE ,BASIC ,ORBAS ,OTHERS ,.TRUE.) 

CONTINUE 
CALL DELSET (SET) 

ELSE IF (CELLS(NXTITM,2).EQ.-2)THEN 
CONTINUE 

ELSE IF (CELLS(NXTITM,2).EQ.+2)THEN 
CALL DELITM (NXTITM ,SET ,.TRUE.) 
NEXT = CELLS(NXTITM,4) 
CALL ADDITM (NEXT ,SET ,.TRUE. ,.FALSE.) 
CALL TYPSET (SET ,BASIC ,ORBAS ,OTHERS ,. TRUE.) 

RETURN 
END IF 
RETURN 
END 

SUBROUTINE STEP3 (BASIC ,ORBAS) 

INTEGER BASIC ,ORBAS 
PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 
+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 

CALL RSUP!1 (BASIC) 
CALL RSUP1 (ORBAS) 
CALL RSUP2 (BASIC ,ORBAS) 
RETURN 
END 

SUBROUTINE RSUP1 (SETYPE) 

352



INTEGER SETYPE ,NUM ,VAL1 ,VAL2 ,VNUM1 ,VNUM2 
PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
INTEGER VAL1 ,VNUM1 ,VAL2 ,VNUM2 
INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL ,STATE1 ,STATE2 ,EQUAL 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 

+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 

K=1 
15 CALL NUMSET (SETYPE ,NUM) 

IF (K.GE.NUM)THEN 
RETURN 
END IF 
CALL INITTK (SETYPE) 

DO 50 I=1 ,K 
CALL TAKITM (SETYPE, VAL1, STATE1) 

50 CONTINUE 
CALL NUMSET (VAL1, VNUM1) 
DO 100 J=K+1, NUM 
CALL TAKITM (SETYPE, VAL2, STATE2) 
CALL NUMSET (VAL2, VNUM2) 
IF (VNUM1.LE.VNUM2) THEN 

IF(EQUAL (VAL1,VNUM1,VAL2,VNUM2))THEN 
CALL DELSET(VAL2) 
CALL DELITM (VAL2, SETYPE, STATE2) 
GO TO 100 

END IF 
ELSE 

IF (EQUAL(VAL2, VNUM2,VAL1,VNUM1))THEN 
CALL DELSET (VAL1) 
CALL DELITM (VAL1, SETYPE, STATE1) 
K=I 
GO TO 15 

END IF 
END IF 

100 CONTINUE 
K = K+1 
GO TO 15 

END 

SUBROUTINE RSUP2(SETYP1 ,SETYP2) 

INTEGER SETYP1 ,SETYP2,NUM1 ,NUM2 ,VNUM1 ,VNUM2, VAL1 , VAL2 
PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
INTEGER SETS ,CMPTY ,FINISH ,STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL ,STATE1 ,STATE2 ,EQUAL 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 

+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 

CALL NUMSET (SETYP1 ,NUM1) 

353



CALL NUMSET (SETYP2 ,NUM2) 
IF (NUM1.EQ.0.OR.NUM2.EQ.0)THEN 
RETURN 
END IF 
M=1 
CALL INITTK (SETYP1) 

90 IF (M.NE.1)THEN 
CALL INITTK (SETYP1) 
DO 50 K=1,M-1 
CALL TAKITM (SETYP1, VALI, STATE) 

50 CONTINUE 
END IF 
N=4 
DO 100 I=M .NUM1 
CALL TAKITM (SETYP1 ,VAL1 ,STATE1) 
CALL NUMSET (VALI ,VNUM1) 
CALL INITTK (SETYP2) 

110 IF (N.NE.1)THEN 
CALL INITTK (SETYP2) 
DO 60 L=1,N-1 
CALL TAKITM (SETYP2, VAL2, STATE2) 

60 CONTINUE 
END IF 
DO 200 J=N, NUM2 
CALL TAKITM (SETYP2 ,VAL2 ,STATE2) 
CALL NUMSET (VAL2 , VNUM2) 
IF (VNUM1.LE._VNUM2)THEN 
IF(EQUAL(VAL1, VNUM1,VAL2,VNUM2))THEN 

CALL DELSET(VAL2) 
CALL DELITM(VAL2,SETYP2,STATE2) 
NUM2 = NUM2- 1 
N=J 
GO TO 110 

END IF 
ELSE 
IF(EQUAL(VAL2, VNUM2,V AL1,VNUM1))THEN 
CALL DELSET (VAL1) 
CALL DELITM (VAL1,SETYP1,STATE1) 
NUM1 = NUM1- 1 
M=!I 
GO TO 90 

END IF 
END IF 

200 CONTINUE 
100 CONTINUE 

RETURN 
END 

SUBROUTINE STEP4 (BASIC ,ORBAS) 

INTEGER BASIC ,ORBAS 
PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 

: 354



LOGICAL FULL ,NORMAL 

COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 
+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 

CALL COLCT (BASIC ,ORBAS) 
CALL DISJON (BASIC) 
RETURN 
END 

SUBROUTINE COLCT (BASIC ,ORBAS) 

INTEGER BASIC ,ORBAS ,NUMORB , VALUE 
PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL ,STATE 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 

+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 

CALL NUMSET (ORBAS ,NUMORB) 
IF (NUMORB.NE.0)THEN 
CALL INITTK(ORBAS) 
DO 20 J=1,NUMORB 
CALL TAKITM (ORBAS , VALUE ,STATE) 
CALL ADDITM (VALUE ,BASIC ,STATE ,. TRUE.) 

20 CONTINUE 
END IF 
CALL DELSET (ORBAS) 
RETURN 
END 

SUBROUTINE DISJON (BASIC) 

INTEGER BASIC ,NUMG ,ACUMM ,VAL1 ,VAL2 ,ITM1 ,ITM2 
INTEGER VNUM1 ,VNUM2 
PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
INTEGER SETS ,EMPTY ,FINISH STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL ,STATE ,STATE1 ,STATE2 ,ACT 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 

+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 

K=1 
20 CALL NUMSET (BASIC ,NUMG) 

AG@h= FALSE. 
IF (K.LE.NUMG-1)THEN 
CALL INITTK (BASIC) 
DO 10 I=1,K 
CALL TAKITM (BASIC ,VAL1 ,STATE) 

10 CONTINUE 
ELSE 

355



RETURN 

END IF 

CALL NUMSET (VALI , VNUM1) 

DO 100 M=1+K ,NUMG 

CALL TAKITM (BASIC ,VAL2 ,STATE) 

CALL NUMSET (VAL2 ,VNUM2) 

CALL NEWSET (ACUMM) 

CALL INITTK (VAL1) 

DO 40 J= 1,VNUM1 

CALL TAKITM (VALI ,ITM1 ,STATE1) 

CALL INITTK (VAL2) 

DO 50 L=1, VNUM2 

CALL TAKITM (VAL2 ,ITM2 ,STATE2) 

IF ((ITM1.EQ.ITM2).AND.(STATE1.EQV.STATE2))THEN 

GO TO 40 

ELSEIF ((ITM1.EQ.ITM2).AND.(STATE1.NEQV.STATE2))THEN 

CALL DELSET (ACUMM) 

GO TO 100 

END IF 

50 CONTINUE 

CALL ADDITM (ITM1 ,ACUMM ,STATE1 ,.FALSE.) 

40 CONTINUE 

CALL MAKDIS (ACUMM ,VAL2 ,BASIC ,ACT) 

CALL DELSET (ACUMM) 

100 CONTINUE 

IF (ACT)THEN 

CALL RSUP1 (BASIC) 

END IF 

K = K+1 

GO TO 20 

END 

SUBROUTINE MAKDIS (ACUMM ,NVAL2 ,BASIC ,ACT) 

INTEGER CLR, CLC, SMR, SMC 
PARAMETER ( NOSETS =1000 ,NUMENT =10000, 

+ CLR = 500 ,CLC = 10 SMR = 50 ,SMC = 20) 
INTEGER BASIC ,NVAL2 ,ACUMM ,NUMAC ,LOCAL ,JASS ,NEXT 
INTEGER CELLS ,SYMPTS 
INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL ,STATE ,STATE1 ,ACT 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 

+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 
COMMON /SYRS/ CELLS(CLR,CLC),SYMPTS(SMR,SMC) 

CALL NUMSET (ACUMM ,NUMAC) 
CALL INITTK (ACUMM) 
IF (NUMAC.EQ.1)THEN 
CALL TAKITM (ACUMM ,LOCAL ,STATE) 
IF (CELLS(LOCAL,2).EQ.1)THEN 

DO 101 = 4,CELLS( LOCAL,3 )+3 
NEXT = CELLS(LOCAL,]) 
CALL ADDITM (NEXT ,NVAL2.,.FALSE. ,.FALSE.) 

356



10 CONTINUE 
ELSE 

CALL ADDITM (LOCAL ,NVAL2 ,.FALSE. ,.FALSE.) 
END IF 
RETURN 

ELSE 
DO 20 M=1,NUMAC 
CALL TAKITM (ACUMM ,LOCAL ,STATE) 
CALL CPYSET (NVAL2 ,JASS) 
IF (CELLS(LOCAL,2).EQ.1)THEN 
DO 15J = 4,CELLS(LOCAL,3)+3 
NEXT = CELLS(LOCAL,J) 
CALL ADDITM (NEXT ,NVAL2,.FALSE. ,.FALSE.) 

15 CONTINUE 
CALL ADDITM (LOCAL ,JASS ,.TRUE. ,.FALSE.) 
NVAL2 = JASS 

ELSE 
STATE1 = .NOT.STATE 
CALL ADDITM (LOCAL ,NVAL2 ,STATE1 ,.FALSE.) 
CALL ADDITM (LOCAL ,JASS ,STATE ,.FALSE.) 
NVAL2 = JASS 

END IF 
CALL ADDITM (NVAL2 ,BASIC ,. TRUE. ,. TRUE.) 

20 CONTINUE 
CALL DELITM (NVAL2 ,BASIC ,. TRUE.) 
CALL DELSET (NVAL2) 
ACT = .TRUE. 

END IF 
RETURN 
END 

SUBROUTINE STEPS (GENRAL ,GROUP) 

INTEGER GENRAL ,GROUP 
INTEGER CLR, CLC, SMR, SMC 
PARAMETER ( NOSETS =1000 ,NUMENT =10000, 

+ CLR = 500, CLC = 10, SMR = 50, SMC = 20 ) 
INTEGER CELLS ,SYMPTS 
INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 

+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 
COMMON /SYRS/ CELLS(CLR,CLC),SYMPTS(SMR,SMC) 

CALL RESOLV (GENRAL ,GROUP) 
CALL COLSET (GROUP ,GENRAL) 
CALL RSUP1(GENRAL) 
CALL DISJON (GENRAL) 
RETURN 
END 

Sas



33 

22 

SUBROUTINE RESOLV (GENRAL ,GROUP) 

INTEGER GENRAL ,GROUP ,BREED ,SETNUM ,ITMG ,FINE ,NEXT 
INTEGER NUMITM ,PART ,NUMPAR ,LOOM ,LOCAL, LOCNUM ,ELASP 
INTEGER CLR, CLC, SMR, SMC 
PARAMETER ( NOSETS =1000 ,NUMENT =10000, 

+ CLR = 500, CLC = 10, SMR = 50, SMC = 20 ) 
INTEGER CELLS ,SYMPTS 
INTEGER SETS ,EMPTY ,FINISH STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL ,STATE ,GATE ,PASS ,SAME 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 

+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 
COMMON /SYRS/ CELLS(CLR,CLC),SYMPTS(SMR,SMC) 
KK=1 
CALL NEWSET (GROUP) 
CALL NUMSET (GENRAL ,SETNUM) 
CALL INITTK (GENRAL) 
IF (KK.GT.SETNUM)THEN 
RETURN 

END IF 
CALL NEWSET (BREED) 
DO 33 I=1,KK 
CALL TAKITM (GENRAL ,ITMG ,STATE) 
CONTINUE 
M=0 
GATE = .FALSE. 
CALL NUMSET (ITMG ,NUMITM) 
CALL INITTK (ITMG) 
DO 22 J = 1, NUMITM 
CALL TAKITM (ITMG , FINE ,STATE) 
IF (CELLS(FINE,2).EQ.+1)THEN 
GATE = .TRUE. 
CALL ADDITM (FINE ,BREED ,. TRUE. ,.FALSE.) 
CALL DELITM (FINE ,ITMG ,STATE) 
M = M1 

END IF 
CONTINUE 
IF (GATE)THEN 
CALL NEWSET(PART) 
CALL INITTK (BREED) 
SAME = FALSE. 
DO 11K=1,M 
CALL TAKITM (BREED ,LOOM ,STATE) 
CALL NUMSET(PART, NUMPAR) 
IF (NUMPAR.EQ.0)THEN 
CALL CHECK (LOOM ,ITMG ,NUMITM-M ,PASS) 
IF (PASS)THEN 
GO TO 11 

END IF 
DO 44 N=4,CELLS(LOOM,3)+3 
NEXT = CELLS(LOOM,N) 
CALL CPYSET (ITMG, LOCAL) 
CALL ADDITM (NEXT ,LOCAL ,. TRUE. ,.FALSE.) 
CALL ADDITM (LOCAL ,PART ,.TRUE. ,. TRUE.) 

358



Ad CONTINUE 
CALL DELITM (LOOM ,BREED ,STATE) 
SAME = .TRUE. 

ELSE 
CALL INITTK(PART) 
DO 50 L=1,NUMPAR 

CALL TAKITM(PART ,LOCAL ,STATE) 

CALL NUMSET(LOCAL ,LOCNUM) 

CALL CHECK (LOOM ,LOCAL ,LOCNUM ,PASS) 

IF (PASS)THEN 

GO TO 50 

END IF 

DO 55 NN=4,CELLS(LOOM,3)+3 

NEXT = CELLS(LOOM,NN) 

CALL CPYSET (LOCAL ,ELASP) 

CALL ADDITM (NEXT ,ELASP ,. TRUE. ,.FALSE.) 

CALL ADDITM (ELASP ,PART ,. TRUE. ,. TRUE.) 

a5) CONTINUE 

CALL DELSET(LOCAL) 

CALL DELITM (LOCAL ,PART ,STATE) 

50 CONTINUE 

SAME = .TRUE. 

END IF 

11 CONTINUE 

IF(SAME)THEN 

CALL DELSET (ITMG) 

CALL DELITM (ITMG ,GENRAL ,STATE) 

SETNUM = SETNUM-1 

CALL ADDITM (PART ,GROUP ,. TRUE. ,. TRUE.) 

KK = KK 

ELSE 

CALL DELSET (PART) 

KK = KK+1 

END IF 

CALL DELSET (BREED) 

GO TO9 

ELSE 

CALL DELSET (BREED) 

KK = KK+1 

GO TO9 

END IF 

END 

SUBROUTINE CHECK (GATE ,SETT ,STNUM ,PASS) 

INTEGER GATE ,SETT ,STNUM ,NEXT ,SLIM 
INTEGER CLR, CLC, SMR, SMC 
PARAMETER ( NOSETS =1000 ,NUMENT =10000, 

+ CLR = 500, CLC = 10, SMR = 50, SMC = 20) 
INTEGER CELLS ,SYMPTS 
INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL ,STATE1,PASS 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 

ae



+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 
COMMON /SYRS/ CELLS(CLR,CLC),SYMPTS(SMR,SMC) 

PASS = FALSE. 
DO 44 N=4,CELLS(GATE,3)+3 
NEXT = CELLS(GATE,N) 
CALL INITTK(SETT) 
DO 40 NN=1,STNUM 
CALL TAKITM (SETT ,SLIM ,STATE1) 
IF((NEXT.EQ.SLIM).AND.(STATE1.EQV.(.TRUE.)))THEN 
PASS = .TRUE. 
RETURN 
END IF 

40 CONTINUE 
44 CONTINUE 

RETURN 
END 

SUBROUTINE COLSET (SET1 ,SET2) 

INTEGER SET1 ,SET2 ,NUM1 ,VAL1 ,NUMVAL ,EXAC 
PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL ,STATE ,STATE1 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 

~ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 

CALL NUMSET (SET1 ,NUM1) 
IF (NUM1.NE.0)THEN 
CALL INITTK(SET1) 
DO 20 J=1,NUM1 
CALL TAKITM (SET1 ,VAL1 ,STATE) 
CALL NUMSET (VAL1 ,NUMVAL) 
CALL INITTK(VAL]1) 
DO 10 I=1, NUMVAL 
CALL TAKITM(VALI1 ,EXAC ,STATE1) 
CALL ADDITM (EXAC ,SET2 ,STATE1 ,. TRUE.) 

10 CONTINUE 
CALL DELSET (VAL1) 

20 CONTINUE 
END IF 
CALL DELSET (SET1) 
RETURN 
END 

SUBROUTINE REPORT 

INTEGER NEXT ,LAST 
INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 

360



PARAMETER ( NOSETS =1000 ,NUMENT =10000 ) 
LOGICAL USED ( NUMENT ) 
LOGICAL FULL 
LOGICAL NORMAL 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 
+ FINISH FULL ,TAKNUM(NOSETS) NORMAL(NUMENT) 

DO 3, I= 1, NUMENT 

USED (1) = .TRUE. 

3 CONTINUE 

NEXT = EMPTY 

5 USED (NEXT ) =.FALSE. 

IF ( SETS ( NEXT, 2 ) EQ. 0) THEN 

GO TO7 

ELSE 

LAST = NEXT 

NEXT = SETS ( LAST, 2 ) 

GO TO 5 

END IF 

7 OPEN (1,FILE='"RESULT',FORM='FORMATTED’) 

REWIND(1) 

WRITE(1,*)' ** SETS ENTRIES **' 

WRITE(1,*)' _—------------------ : 

WRITE(1,*) 

WRITE(1,*)'SERIAL NO. | ool NOs. START NO, 

WRITE(1,*)' : e . 

J=0 

DO 150, I= 1, NOSETS 

IF (STARTS (1) .NE. -1 ) THEN 

J=J+1 

WRITE(1,FMT=31)J ,I, STARTS (1) 

31 FORMAT(4X, I4, 9X, 14, 8X, 17) 

END IF 

150 CONTINUE 

J=0 

WRITE(1,*) 

WRITE(1,*) ' ** SETS ELEMENTS **' 

WRITE(1,*)'  —_ ==-=-=---=--------- : 

WRITE(1,*) 

WRITE(1,*)'SERIAL NO.',' SET ROW '",,SET ELEM.',"NEXT ROW ','STATE' 

WRITE(1,*)' ve fi : acess! 

DO 200, I= 1, NUMENT 

IF (USED (1) ) THEN 

J=J+1 

WRITE(1,FMT=33)J,1,SETS(L, 1),SETS(1,2), NORMAL(I) 

33 FORMAT(5(5X,14)) 

END IF 

200 CONTINUE 

WRITE(1,*) 

WRITE(1,*) 

WRITE(1,*)'EMPTY = ', EMPTY 

WRITE(1,*) ‘FINISH = ', FINISH 

WRITE(1,*) ' FULL = ', FULL 

END 

  

  

361



SUBROUTINE RLIABL(TOP) 

INTEGER CLR, CLC, SMR, SMC 
PARAMETER ( NOSETS =500 ,NUMENT =10000, 

+ CLR = 500, CLC = 10, SMR = 50, SMC = 20) 
INTEGER TOP ,BASIC ,ORBAS ,OTHERS ,GROUP 
INTEGER CELLS,SYMPTS 
INTEGER SETS ,EMPTY ,FINISH ,STARTS ,TAKNUM 
LOGICAL FULL 
LOGICAL NORMAL 
COMMON / AJSETS / STARTS(NOSETS) ,SETS(NUMENT,2) ,EMPTY , 
+ FINISH ,FULL ,TAKNUM(NOSETS) ,NORMAL(NUMENT) 
COMMON /SYRS/ CELLS(CLR,CLC),SYMPTS(SMR,SMC) 

OPEN (19, FILE='SHOW.W’) 
CALL INIT 
CALL NEWSET ( BASIC ) 
CALL NEWSET ( ORBAS ) 
CALL NEWSET ( OTHERS ) 
CALL STEP1 (TOP ,BASIC ,ORBAS ,OTHERS) 
CALL STEP2 (BASIC ,ORBAS ,OTHERS) 
CALL STEP3 (BASIC ,ORBAS) 
CALL STEP4 (BASIC ,ORBAS) 
WRITE(19,*)' *** DONE ***' 
WRITE(19,*)'**READ FILE "RESULTS"**"' 
WRITE(19,*)'** FOR FULL ANALYSIS**' 
CALL STEPS (BASIC ,GROUP) 
CALL FLASH(19) 
CALL REPORT 
CLOSE (19) 
RETURN 
END 

362



APPENDIX L : REAL TIME RUNS FOR EXAMPLES 
1,2,4 AND5 

363



RESULT OF EXAMPLE 1 
*** reporting step5 *** 

ASSETS ENTRIES. 

SERIALNO. SETNO. STARTNO. 
  

1 1 1229 
2, 3 417 
3 4 255 
4 5 398 
2 6 403 
6 7 805 

** SETS ELEMENTS ** 

SERIAL NO. SET ROW SET ELEM. NEXT ROW STATE 
  

1 14 9 542 1 
2 36 8 14 1 
3 255 4 256 1 
4 256 i 381 1 
D 261 7 408 1 
6 263 4 ST k 1 
7. 264 q} 0 0 
8 381 8 0 0 
9 393 8 400 1 
10 398 4 1060 1 
11 400 9 0 0 
12 403 4 261 1 
13 408 8 466 1 
14 417 4 264 1 
iS 418 3 263 1 
16 466 9 817 1 
7, 542 12 915 0 

18 571 5 1084 1 
19 589 iL 36 1 
20 Ta 7 0 1 
21 805 4 589 1 
22 817 12 0 1 
25 915 13 0 0 
24 1060 y 393 1 
25) 1084 6 771 1 
26 1229 129 418 1 

EMPTY = 229 
FINISH = 10000 
FULL = f



RESULT OF EXAMPLE 2 
*** reporting stepS *** 

** SETS ENTRIES ** 

  

SERIALNO. SETNO. STARTNO. 

1 1 16 
2 5 3 
3 6 7 
4 8 2 
5 9 25 

+e SETS ELEMENTS. 3% 

SERIAL NO. SET ROW SET ELEM. NEXT ROW STATE 
  

O
M
N
I
A
N
A
M
N
A
H
K
W
N
K
E
 

IVER EY; 1] 
FINISH = 10000 
BUGS f 

W
w
o
m
a
o
r
n
r
n
n
h
w
o
n
r
e
 

10 

12 
15 
16 
18 
19 
20 
21 
22 
23 
24 
25 
26 R

N
W
N
O
N
D
W
A
A
N
W
U
O
A
W
U
N
O
N
W
A
N
N
~
 15 

20 

3 

9 

0 

10 

0 

19 
4 

8 

0 

0 

18 

dit 

1 

21 

22 

0 

24 

26 

12 

25 

1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
0 
1 
1 
1 
0 
0 
1 
1 
1 
0 
1 
1



RESULT OF EXAMPLE 4 

“** reporting step5 “** 

Pe Obs ENTRIES As 

SERIALNO. SETNO. STARTNO. 
  

1 1 4 
2 5 3 
3 8 2 
4 9 21 

2) 11 28 
6 12 11 
7 14 47 

** SETS, ELEMENTS ** 

SERIAL NO. SET ROW SET ELEM. NEXT ROW STATE 
  

1 2 2 18 1 
2 3 Zz > 1 
5 4 5 8 1 
4 5 3 0 1 
2 7 9 -12 1 
6 8 8 il 1 
7 9 14 0 1 
8 11 2 34 1 
2 12 11 25 1 
10 18 3 19 0 
11 19 6 20 1 
12 20 9 0 1 
13 21 iz; 22 1 
14 2.0 3 24 0 
15 23 6 40 1 
16 24 4 23 1 
17 Ze 12 o 1 
18 28 2 29 1 
19 29 5 32 0 
20 30 5 31 1 
21 31 6 0 0 
22 32 J 30 1 
2S 34 3 41 0 
24 35 i 36 1 
25 36 6 38 0 
26 37 9 0 1 
27 38 7 37 1 
28 40 9 0 0 
29 41 4 oD 0 
30 42 ad 52 0 
31 45 + 49 0 
32 47 2 48 1 
33 48 3 45 0 

366



34 
55 
36 
37 

EMPTY = 10 
FINISH = 10000 
FULL = f 

49 
50 
51 
52 o

O
o
 

n
w
n
 50 

42 

51 

367 

i 
o
e
 

>
 
e
t



RESULT OF EXAMPLE 5 

*** reporting step5 *** 

*=*SETS ENTRIES * 

  

SERIALNO. SETNO. STARTNO. 

1 1 16 
2 5 3 
3 6 7 
4 8 2, 
5 “ 23 

** SB1S ELEMENTS ** 

SERIAL NO. SET ROW SET ELEM. NEXT ROW STATE 
  

O
M
A
N
 

A
N
N
A
A
R
P
W
N
K
E
 

EMPTY = 17 
FINISH = 10000 
FULL = f 

w
W
w
o
c
m
o
n
r
n
n
h
w
n
r
e
 

10 
11 
12, 
Ls 
16 
18 
19 
20 
21 
22 
23 
24 
25 
26 B

N
W
N
O
A
D
A
W
A
A
U
N
W
O
A
W
A
W
A
W
U
N
A
O
N
W
A
N
N
™
~
 1 

20 
5 
9 
0 

10 

368 

K
K
B
 
O
R
 

KF 
BF 
O
O
R
 

KEP
 

BF 
O
R
F
 
O
R
 

BP
 

Be 
e
e
 
e
e
e



REPERENCES 

369



10. 

i, 

iz 

Lees, F.P. ‘Loss prevention in the process industries’, Vol. 1, pp. 2, 
Butterworths, London, (1980). 

Cornell, C.E. ‘Minimizing human errors', Space Aeronautics, Vol. 49, 
pp.72-81, March (1968). 

Scott, R.L.'A review of safety-related occurrences in nuclear power 
reactors from 1967-1970', Oak Ridge National Laboratories, Tenn., 
USA, ORNL-TM-3435, pp. 13, May (1971). 

Ovenu, H. Inspection service - vital factor in securing maximum plant 
availibilty', Proceedings of American Power stations Conference, 
(1969). 

James, R. and H.P. Bloch Instrumentation for predictive maintenance 
monitoring’, Loss Prevention, CEP, AIChE, Vol.10, pp. 101-107, 
(1976). 

Swain, A.D. 'Some problems in the measurement of human 
performance in man-machine systems’, Human Factors, Vol. 6, pp. 
687-700, December (1964). 

Klaassen, P.L. ‘Importance of software/hardware for safe processing’, 
Loss Prevention, Vol. 12, CEP, AIChE, pp. 118-123, (1979). 

Hix, A. H. 'Safety and instrumentation systems', Loss Prevention 
CEP, AIChE, Vol. 6, pp. 4-13, (1972). 

r 

King, C.F. and D.F. Rudd ‘Design and maintenance of economically 
failure-tolerant processes’, AIChEJ, Vol. 18, pp. 257, (1972). 

Young, J. ‘Using the fault tree analysis technique' Reliability and 
Fault Tree Analysis, SIAM, Philadelphia, pp. 827-847, (1975). 

Keener, E. L. ‘Operator training with a dynamic simulation of a process’, 
ISACC, No. 1, pp. 90, (1970). 

Edwards, E. and F. Lees 'Man and computer in process control’, 
Institute of Chemical Engineers, pp. 118, (1972). 

370



te 

14. 

iS: 

16. 

Fe 

18. 

9. 

20. 

was 

ae. 

aa: 

24. 

Edwards, E. and F. Lees ‘Man and computer in process control’, 
Institute of Chemical Engineers, pp. 171, (1972). 

Kletz, T.A. ‘Practical applications of hazard analysis’, Loss prevention, 
CEP, AIChE, Vol. 12, pp. 34-40, (1978). 

Lees, F.P. "Loss Prevention in the process industries’, Vol. 2, pp. 1049, 
Butturworths, London, (1980). 

Trepa de Faria, F.A. and D.A. Lihou ‘Operability studies and fault 
finding’, Chempor 78 Conference at Braga, Portugal pp. 10/1-15, 
September (1978). 

Lawley, H.G. 'Operability studies and hazard analysis', Loss prevention, 
CEP, AIChE, Vol. 8, pp. 105-116, (1974). 

Elliott, D.M. and J.M. Owen ‘Critical Examination In Process Design’, 
No. 223, The Chemical Engineer (London), pp. 377- 383, November 
(1968). 

Lawley, H.G. 'Operability Studies And Hazard Analysis', CEP, Vol.70, 
No.4, pp.45-56, (1974). 

Lawley, H.G. ‘Size Up Plant Hazards This Way', Hydrocarbon 
Processing, Vol. 55, No. 4, pp.247-261, April (1976). 

Chemical Industries safety and health council'A guide for hazard and 
operability studies', Chemical Industries Association Ltd. (London), 
pp. 5, (1977). 

Chemical Industries safety and health council'A guide for hazard and 
operability studies’, Chemical Industries Association Ltd. (London), 
pp. 7, (1977). 

Kletz, T.A. 'Hazop and Hazan’, Institute of Chemical Engineers 
(London), pp. 8, (1983). 

Chemical Industries safety and health council 'A guide for hazard and 
operability studies’, Chemical Industries Association Ltd. (London), 
pp. 6, (1977). 

371



2, 

26. 

an 

28. 

a. 

30. 

Or 

Ba 

Jou 

34. 

ao) 

36. 

Taylor, J.R. ‘Evaluation of costs, quality and benefits for six risk analysis 
procedures', Internal report, Electronics Department, RISO, N-14-82, 
May (1982). 

Lihou, D.A. 'Computer aided operability studies for loss control’, 3rd 
International Symposium In Loss Prevention And Safety Promotion In 
The Process Industries. Basle- Switzerland, Vol. 2, pp. 7/579, September 
(1980). 

Jordan, A.P.H. ‘Evaluating hazard ranges using the Aston computer 
package’ A short Course On Hazard Evaluation And Control, Dept. of 
Chemical Eng., University of Aston in Birmingham, 27-30 September 
(1982). 

Fussell, J.B. ‘Fault tree analysis - concepts and techniques’ NATO 
Advanced Study, Inst. on Generic Techniques of System Reliability 
Assessment, Nordhoff Publishing Company, pp. 133- 162, July (1973). 

Jones, G.P. ‘Risk analysis in hazardous materials transportation’, 
University of Southern California Los Angles, Institute of Aerospace 
safety and Management, RAPO 737, Vol. 1, pp. 199, March (1973). 

Bell Telephone Laboratories ‘Launch control Safety Study’, Bell 
Telephone Labs., Murray Hill, New Jersey, USA, Vol. 1, section VII, 
(1961). 

System Safety Symposium, Seattle, Washington : The Boeing 
Company, June 8-9, (1965). 

Spiegelman, A. ‘Risk evaluation of chemical plants', Loss Prevention, 
CEP, AIChE, Vol. 3, pp. 1-10, (1969). 

Browning, R.L. ‘Use a fault tree to check safeguards', Loss Prevention, 
CEP, AIChE, Vol. 12, pp. 20-26, (1979). 

Semanderes, S. N. 'ELRAFT a computer program for the efficient 
logic reduction analysis of fault trees’, IEEE Trans. Nuclear Science, 
Vol. NS-18, No.1, pp. 481-487, (1971). 

Vesely, W. E. ‘Analysis of fault trees by kinetic theory’, IN-1330, Idaho 
Nuclear Corp., Idhao Fall, October (1969). 

Vesely, W. E. 'A time-dependent methodology for fault tree analysis’, 
Nuclear Engineering and Design, Vol. 13, pp. 337- 360, August (1970). 

ore



Sh 

38. 

a0: 

40. 

41. 

42. 

43. 

ao 

45. 

46. 

47. 

48. 

Crosetti, P. ‘Computer program for fault tree analysis', Douglas United 
Nuclear Inc., Richard, Washington, DUN-5508, April (1969). 

Lapp, S. A. and G. J. Powers, ‘Computer-aided synthesis of fault trees’, 
IEEE Trans. Reliability, Vol. R-23, p. 51-55, April (1974). 

Bennetts, R. G., 'On the analysis of fault trees’, IEEE Trans. Reliability, 
Vol. R-24, pp.175-185, August (1975). 

Lee, K. K. 'A compilation technique for exact system Reliability’ 
IEEE Trans. Reliability Vol. R-30, No.3, pp. 284-288, August (1981). 

Worrell, R. B. ' Using the set equation transformation system in fault tree 
analysis’, Reliability and fault tree analysis, SIAM, Philadelphia, pp. 
165-185, (1975). 

Esary, J. and F. Proschan 'Coherent structures of non-identical 
components’, Technometrics, Vol. 5, pp.191-209, (1963). 

Mearns, A. B.' Fault tree analysis : The study of unlikely events in 
complex systems', System Safety Symposium, June 8-9, (1965), Seattle: 
The Boeing Company. (Cited in ref.13) 

Crosetti, P.A. ‘Fault tree analysis with probability evaluation’, IEEE 
Trans. Nuclear Science, Vol. NS-18, No. 1, pp. 465-471, (1971). 

Fussell, J. B. 'A formal methodology for fault tree construction’, 
Nuclear Engineering and Design, Vol. 52, pp. 337-360, (1973). 

Salem, S. L., G. E. Apostolakis and D. Okrent 'A new methodology 
for the computer-aided construction of fault tree’ Annals of Nuclear 
Energy, Vol. 4, pp. 417-433, (1977). 

Reactor Safety Study - An assessment of accident risks in U.S. commercial 
nuclear power plants, WASH-1400 (NUREG-75/014), U.S. Nuclear 
Regulatory Commission, Washington, D.C., Appendix II, October 
(1975). 

Haasl, D. F. 'Advanced concepts on fault tree analysis’, System Safety 
Symposium, The Boeing Company, Seattle, Washington, June 8-9 
(1965). 

oT



49. 

50. 

a1. 

a, 

a 

54. 

a5; 

56. 

57. 

58. 

39. 

60. 

Powers, G.J. and F.C. Tompkins ‘Computer aided synthesis of fault tree 
for complex processing’; NATO Advanced Study Institute on Generic 
Techniques of System Reliability Assessment, Nordhoff Publishing 
Company, Liverpool, pp. 307- 314, July (1973). 

Powers, G. J. and F. C. Tompkins ‘Fault tree synthesis for chemical 
processes’, AIChEJ, Vol. 20, pp. 376-387, March (1974). 

Salem, S. L., G. E. Apostolakis and D. Okrent 'A computer-oriented 
approach to fault tree construction’, EPRI NP-288, Electric Power 
Research Institute, November (1976). 

Lapp, S. A. and G. J. Powers 'Computer-aided synthesis of fault trees’, 
IEEE Trans. Reliability, Vol. R-26, pp. 2-13, April (1977). 

Hollo, E. and J.R. Taylor ‘Algorithms and programs for consequence 
diagram and fault tree construction’, Report No. RISO-M-1907, Danish 
Atomic Energy Commission, Roskilde, Denmark, December (1976). 

Nielsen, D. 'Use of cause-consquence charts in practical systems 
analysis’, Reliability and Fault Tree Analysis, SIAM, Philadelphia, pp. 
849-880, (1975). 

Camarda, P., F. Corsi and A. Trentadue 'An efficient simple algorithm for 
fault tree automatic synthesis from reliability graph’, IEEE Trans. 
Reliability, vol. R-27, pp. 215-221, August (1978). 

Bazovisky, I. ‘Reliability theory and Practice’, Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey, USA, (1961). 

Atkinson, J.H. 'The set equation transformation system used in analysis 
of a typical naval weapon system’, Reliability and Fault Tree Analysis, 
SIAM, Philadelphia, USA, pp. 187- 202, (1975). 

Cummings, G.E. ‘Application of the fault tree technique to a nuclear 
reactor containment system’, Reliability and Fault Tree Analysis, SIAM, 
Philadelphia, USA, pp. 805-825, (1975). 

Myers, R.H., K.L. Wong and H.M. Gordy ‘Reliability engineering 
for electronic systems', New York, Wiley, (1964). 

British Standard Institution, BS4200 : part2 : 1967 'Guide on the reliability 
of electronic equipment and parts used there in terminology’. 

374



61. 

62. 

63. 

64. 

65. 

66. 

67. 

68. 

69. 

70. 

ts 

Tk. 

Laviron, A. 'ESCAF for MTBF, time evolution, sensitivity 
coefficients, cut-set importance, and non-coherence of large systems' IEEE 
Trans. Reliability, vol. R-35, No. 2, pp. 139-144, June (1986). 

Hastings, N.A. and J.B. Peacock ‘Statistical distributions’, Butterworths, 
London, (1974). 

Lihou, D. A. ,'Estimation/Calculation of probabilities’, Short Course on 
Hazard Evaluation and Control, Chem. Eng. Dept., Aston University, 
pp. C/3.1-3.17, September (1982). 

Kamat, S.J. and M.W. Riley ‘Determination of reliability using 
event-based Monte Carlo simulation’, IEEE Trans. Reliability, Vol. 
R-24, pp. 73-75, April (1975). 

Kamat, S.J. and W.E. Franzmeier 'Determination of reliability using 
event-based Monte Carlo simulation part II', IEEE Trans. Reliability, 
Vol. R-25, pp. 254-255, October (1976). 

Hammersley, J.M. and D.C. Handscomb ‘Monte Carlo Method’, 
Methuen and Co. Ltd., London, (1967). 

Mazumdar, M. ‘Importance sampling in reliability estimation’, Reliability 
and Fault Tree Analysis, SIAM, Philadelphia, pp. 153-163, (1975). 

Kumamoto, H., K. Tanaka and K. Inone ‘Efficient evaluation of system 
reliability by Monte Carlo method’, IEEE Trans. Reliability, Vol. R-26, 
pp. 311-315, December (1977). 

Levy, L.L. and A.H. Moore 'A Monte Carlo technique for obtaining 
system reliability confidence limits from component test data’, IEEE 
Trans. Reliability, Vol. R-16, pp. 69-72, September (1967). 

Vesely, W.E. ‘Reliability and fault tree applications at the NRYS', IEEE 
Trans. Nuclear Science, Vol. NS-18, No. 1, pp. 472-480, (1971). 

Vesely, W.E. and R.E. Narum 'PREP and KITT: Computer codes for 
the automatic evaluation of a fault tree’, IN-1349, National Technical 
Information Service, Springfield, VA22161 USA, August (1970). 

Garrick, B.J. ‘Principles of unified system safety analysis’, Nuclear 
Engineering and Design, Vol. 13, pp. 245-321, (1970). 

375



79. 

74. 

1; 

76. 

7. 

78. 

Tas 

80. 

81. 

82. 

83. 

Kongsoe, H.E. 'RELY4, a Monte Carlo computer program for systems 
reliability analysis’, Danish Atomic Energy Commission, 

RISO-M- 1500, June (1972). 

Kongsoe, H.E. 'REDIS, a computer program for system reliability 
analysis by direct simulation’, International Symposium on Reliability of 
Nuclear Power Plants, Innsbruck, Austria, April 14-18, (1975). 

Karp, R. and M.G. Luby 'A new Monte Carlo method for estimating 
the failure probability of an n-compnent system’, Computer Science 
Division, University of California, Berekeley, USA, (1983). 

Bennetts, R.G. ‘Analysis of reliability block diagrams by Boolean 
technique’ IEEE Trans. Reliability, Vol. R-31, pp. 159-166, June (1982). 

Fussell, J.B. and N.H. Marshall 'MOCUS- a computer program to obtain 
minimal sets from fault trees', ANCR-1156, Aerojet Nuclear Company, 
Idaho Falls, Idaho, USA, March (1974). 

Van.. Slyke; * Wd.- -and’ D.E.°:: Griffing ““ALLCUTS-<.-a -fast 
- comprehensive fault tree analysis code', ARH-ST-112, July (1975). 

Pande, P.K., M.E. Spector and P. Chatterjee ‘Computerised fault tree 
analysis: TREEL and MICSUP', ORC-75-3, Operations Research 
Center, University of California, Berkeley, California USA, April 
(1975). 

Erdmann, R.C., J.E. Kelly, H.R. Kirch, F.L. Leverenz and E.T. Rumble 
‘A method for quantifying logic models for safety analysis’, Nuclear 
Systems Reliability Engineering and Risk Assessment, SIAM, 
Philadelphia, USA, pp. 732-754, (1975). 

Garribba, S., P. Mussio, F. Naldi, G. Reina and G. Volta ‘Efficient 
construction of minimal cut sets from fault trees’, IEEE Trans. 
Reliability, Vol. R-26, No. 2, pp. 88-94, June (1977). 

Rasmuson, D.M. and N.H. Marshall 'FATRAM - A core efficient cut-set 
algorithm’, IEEE Trans, Reliability, Vol. R-27, No. 4, pp. 250-253, 
October (1978). 

Nakashima, K. and Y. Hattori 'An efficient bottom-up algorithm for 
enumerating minimal cut sets of fault trees’, IEEE Trans. Reliability, 
Vol. R-28, No. 5, pp. 353-357, December (1979). 

376



84. 

85. 

86. 

87. 

88. 

89. 

aoe 

aa: 

92. 

a 

Magee, D. and A. Refsum 'RESIN, A desktop-computer program for 
finding cut sets’, IEEE Trans. Reliability, Vol. R-30, No. 5, pp. 
407-410, December (1981). 

Jasmon, G.B. and O.S. Kai 'A new technique in minimal path and cut 
set evaluation’, IEEE Trans. Reliability, Vol. R-34, No. 2, pp. 136-143, 
June (1985). 

Bengiamin, N.N., B.A. Bowen and K.F. Schenk 'An efficient 
algorithm for reducing the complexity of computation in fault tree analysis’, 
IEEE Trans. Nuclear Science, Vol. NS-23, No. 5, pp. 1442-1446, October 
(1976). 

Koen, B.V. and A. Carnino ‘Reliability calculations with a list 
processing technique’, IEEE Trans. Reliability, Vol. R-23, pp.43-50, April 
(1974). 

Wheeler, D.B., J.S. Hsuan and G.M. Roe ‘Fault tree analysis using bit 
manipulation’, IEEE Trans. Reliability, Vol. R-26, No. 2, pp. 95-99, June 
(1977). 

Kumamoto, H. and EJ. Henley 'Top-down algorithm for obtaining 
prime implicant sets of non-coherent fault trees’, IEEE Trans. Reliability, 
Vol. R-27, No. 4, pp. 242-249, October (1978). 

Fussell, J.B. and W.E. Vesely 'A new methodology for obtaining 
cut sets for fault trees', Trans. American Nuclear Society, Vol. 15, No.1, 
pp. 263, (1972). 

Rasmuson, D.M., N.M. Marshall and G.R. Burdick User's Guide for the 
reliability analysis system (RAS)', Tree-116, NTIS, Sprigfield, VA 
22161 USA, September (1977). 

Prugh, R.W. ‘Applications of fault tree analysis’, Loss Prevention, 
CEP, AIChE, Vol. 14, pp. 1-9, (1981). 

Lapp, S.A. ‘Computer aided fault tree synthesis’, Msc. thesis, 

377



94. 

95. 

96. 

ay. 

98. 

7, 

100. 

101. 

102. 

Carnegie-Mellon University, pp. 20-38, (1976). 

Reactor Safety Study -An assessment of accident risks in U.S. commercial 
nuclear power plants, WASH-1400 (NUREG-75/014), U.S. Nuclear 
Regulatory Commission, Washington, D.C., Appendix II, pp. 19-25, 
October (1975). 

Reactor Safety Study -An assessment of accident risks in U.S. commercial 
nuclear power plants, WASH-1400 (NUREG-75/014), U.S. Nuclear 
Regulatory Commission, Washington, D.C., Appendix II, pp. 255-263, 
October (1975). 

Fletcher, W.I. ‘Engineering approach to digital design’, Prentice-Hall, 
International editions, Englewood Cliffs, N.J., pp. 134, (1980). 

Hirst, K.E. and F, Rhodes ‘Conceptual models in mathematics', George 
Allen and Unwin Ltd., 1971. 

Lambert, H.E. ‘Fault trees for decision making in system analysis’, 
Lawrence Livermore Laboratory, University of California, Livermore, 
UCRL-51829, October (1975). 

Chatterjee, P. 'Modularization of fault trees: A method to reduce the 
cost of analysis', Reliability and fault tree analysis,SIAM, Philadeliphia, 
pp.101-126, (1975). 

Caldarola, L. and A. Wickenhauser 'The Karlsruhe computer program 
for the evaluation of the availability and reliability of complex 
repairable systems’, Nuclear Engineering and Design, Vol. 43, 
pp.463-470, (1977). 

Caldarola, L. ‘fault tree analysis of multistate systems with multistate 
components’, Probabilistic Analysis of Nuclear Reactor Safety, Los 
Angeles, Calefornia, May 8-10, pp. VIII/1- 28, (1978). 

Caldarola, L. ‘Coherent systems with multistate systems’, Nuclear 
Engineering and Design, Vol. 58, pp. 127-139, (1980). 

378



103. 

104. 

105. 

106. 

107. 

108. 

109. 

EQ, 

ai1: 

Chamow, M.F. ‘Directed graph techniques for the analysis of fault trees’, 
IEEE Trans. Reliability, Vol. R-27, No. 1, pp. 7-15, April (1978). 

Clarotti, C.A. ‘Limitations of minimal cut set approach in evaluating 
reliability of systems with repairable components', IEEE Trans. 
Reliability, Vol. R-30, pp.335-338, October (1981). 

Rumble, E.T. and J. Olmos ‘Fault tree analysis incorporating dependent 
events', Probabilistic Analysis of Nuclear Reactor Safety, Topical 
Meeting May 8-10, Los Angeles, California, USA, pp. X.4/1-12, (1978). 

Locks, M.O. ‘Fault trees, prime implicants and noncoherence’, E.I. 
Ogunbiyi ‘Author reply #1', H. Kumamoto and E.J. Henley ‘Author reply 
#2', M.O. Locks ‘Rebuttal’, IEEE Trans. Reliability, Vol. R-29, No. 
2, pp. 130-135, June (1980). 

Locks, M.O. 'Modularizing, minimizing and interpreting the K&H fault 
tree’, IEEE Trans. Reliability, Vol. R-30, No. 5, pp. 411-417, December 
(1981). 

Worrell, R.B, D.W. Stack and B.L. Hulme 'Prime implicant of 
noncoherent fault trees', IEEE Trans. Reliability, Vol. R-30, No. 2, pp. 
98-100, June (1981). 

Case, I. 'A reduction technique for obtaining a simplified reliability 
expression’, IEEE Trans. Reliability, Vol. R-26, No. 4, pp. 248-249, 
October (1977). 

Gopal, K. and S. Rai ‘Discussion on -A reduction technique for 
obtaining simplified reliability expression’, IEEE Trans. Reliability, Vol. 
R-28, No. 1, pp.66-66, April (1979). 

. Aggarwal, K.K. 'Comments on -On the analysis of fault trees', R.G. 
Bennetts ‘Author's Reply’, IEEE Trans. Reliability, Vol. R25, No. 2, pp. 
126-127, June (1976). 

379



itz: 

£13. 

114. 

135. 

116. 

Eis: 

118. 

119. 

120. 

at. 

Jiongsheng, L. 'A new approach for fault tree analysis’, Scientia Sinica, 
Series A, Vol. 25, No. 9, pp. 983-992, September (1982). 

Rushdi, A.M. ‘On Reliability Evaluation by network decomposition’, 
IEEE Trans. Reliability, Vol. R-33, No. 5, pp. 379-383, December 
(1984). 

Lihou, D. 'Bhopal and byond', The Chemical Engineer, No. 414, UK, pp. 
15-15, May (1985). 

Burdick, G.R..'COMCAN -A computer code for common cause 
analysis', IEEE Trans. Reliability, Vol. R-26, No. 2, pp. 100-102, June 
(1977). 

Astolfi, M., S. Contini, C.L. Van der Muyzenberg and G. Volta ‘Fault 
tree analysis by list processing techniques’, Synthesis and Analysis 
Methods for Safety and Reliability Studies, Editors, G. Apostdakis, S. 
Garribba and G. Volta, Plenum, pp. 5-32, (1978). : 

Lee, W.S., D.L. Grosh, F.A. Tillman and C.H. Lie 'Fault tree analysis, 
methods and applications- A review’, IEEE Trans. Reliability, Vol. R-34, 
No. 3, pp. 194-203, August (1985). 

Garrick, B.J. ‘Principles of unified system safety analysis', Nuclear 
Engineering and Design, Vol. 13, pp. 245-321, (1970). 

ICL-Perq 'Interoduction to Perq', first edition, International Computers 
Limited, May (1982). 

ICL-Perq 'PNX operating system for Perq1', International Computers 
Limited, Program product set notice, November (1985). 

Bidmead, C. 'The octopus in your tank’, Practical Computing, Vol. 7, No. 
4, pp. 107-109, April (1984). 

380



ie, 

123, 

124. 

4S 

126. 

127; 

128. 

129. 

130. 

ot; 

ICL-Perq 'Unix program's manual’, Seventh edition, Vollume 1, pp. 189, 
International Computers Limited, November (1985). ; 

ICL-Perq 'Guide to PNX version 5’, International Computers Limited, ICL 
Hous, Putney, London, (1985). 

Gay, B. and A.P.H. Jordan ‘The effect of advanced workstations 
on CAD', People and Computers : Designing the interface, Proceedings 
of the Conference of the British Computer Society, Human Computer 
Interaction, University of East Anglia, pp.(36-401), 17-20 September 
(1985). 

Kernighan, B.W. and D.M. Ritchie 'The C programming language’ 
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, (1978). 

ICL-Perq ‘Developing ICL-Pascal programs under PNX’, First edition, 
International Computers Limited, London, (1984). 

Patel, V.H. 'Computing plant reliability from Hazop studies' M.Sc.Thesis, 
Department of Chemical Engineering, University of Aston in Birmingham, 
pp. 31, October (1982). 

Moraes, I., Computer Project (Course Work), Department of Chemical 
Engineering, University of Asron in Birmingham, March (1981). 

Varelas, T., Computer Project (Course Work), Department of Chemical 
Engineering, University of Aston in Birmingham, March (1981). 

Napinda, A., Computer Project (Course Work), Department of Chemical 
Engineering, University of Aston in Birmingham, March (1981). 

Spirakos, S. E., Computer Project (Course Work), Department of 
Chemical Engineering, University of Aston in Birmingham, March 
(1982). 

381



ez, 

13a, 

134. 

135. 

136. 

i370, 

138. 

159. 

140. 

141. 

Collins, D., Computer Project (Course Work), Department of Chemical 
Engineering, University of Aston in Birmingham, March (1982). 

Kyriacou, A., Computer Project (Course Work), Department of Chemical 
Engineering, University of Aston in Birmingham, March (1982). 

Jordan, A.P.H., Private Communication, 1982. 

Patel, V.H. 'Computing plant reliability from Hazop studies’ M.Sc. 
Thesis, Department of Chemical Engineering, University of Aston in 
Birmingham, pp. 35-40, October (1982). 

User Guide 'GINO-F the general purpose graphical package’, Version 
2.7A, CAD centre ltd., High Cross, Madingley road, Cambridge, October 
(1983). : 

Akabe, R. and A.P.H. Jordan, Computer Project (Course Work), 
Deptartment of Chemical Engineering, University of Aston in 
Birmingham, November (1983). 

Ramadaan, S.Y. 'The use of hazard and operability studies in design and 
control’, First Year Report, Department of Chemical Engineering, 
University of Aston in Birmingham, May (1984). 

Rosenthal, A. ‘Approaches to comparing cut set enumeration 
algorithms’, IEEE Trans. Reliability, Vol. R-28, No. 1, pp. 62-65, April 
(1979). 

Aho, A., J. Hopcroft and J. Ullman 'The design and analysis of 
computer algorithms’, Addison-Wesley, Reading, Massachusetts, 
(1974). 

Knuth, D.E. 'The art of computer programming’, Vol. 1, Second Edition, 
Addison-Wesley, Reading, Massachusetts, (1969). 

382



142. 

143. 

144, 

145. 

146. 

147. 

148. 

149. 

150. 

ADek. 

Strecher, K. ‘Evaluation of large fault trees with repeated events using an 
efficient bottom-up algorithm’, IEEE Trans. Reliability, Vol. R-35, No. 
1, pp. 51-58, April (1986). 

Page, L.B. and J.E. Perry 'A simple approach to fault tree probabilities’, 
Computers and Chemical engineering, Vol. 10, No. 3, pp. 249-257, 
(1986). 

Fishman, G.S. 'A comparison of four Monte Carlo methods for 
estimating the probability of s-t connectedness', [IEEE Trans. 
Reliability, Vol. R-35, No. 2, pp. 145-155, June (1986). 

Page, L.B. and J.E. Perry 'An algorithm for exact fault tree probabilities 
without cut sets', IEEE trans. Reliability, Vol. R-35, No. 5, pp. 544-558, 
December (1986). 

Limnios, N. and R. Ziani 'An algorithm for reducing cut sets in fault tree 
analysis’, IEEE Trans. Reliability, Vol. R-35, No. 5, pp. 559-565, 
December (1986). 

Henley, E.J. and H. Kumamoto ‘Reliability engineering and risk 
assessment’, Prentice-Hill, Inc., Englewood Cliffs, New Jersey, (1981). 

Andow P. 'Expert system in Safety and Reliability’, a lecture orginised by 
the Department of Chemical Engineering, Asto University, 2nd of 
December (1986). 

Nisenfeld, A.E. ‘Shutdown features of in-line process control’, Loss 
Prevention, CEP, AIChE, Vol. 6, pp.1-3, (1972). 

Russell, W.W. ‘Hazard control of plant process changes', Loss 
Prevention, CEP, AIChE, Vol. 10, pp. 80-87, (1976). 

Lees, F.P. 'Loss Prevention in the process industries’, Vol. 2, Appendix 
1, pp. 863-881, Butturworths, London, (1980). 

383



ipa, 

ipa. 

Toth, L.M., A.P. Malimauskas, G.R. Eiden and H.M. Burton 'The three 
miles accident -diagnosis and prognosis’, ACS Symposium Series, 
American Chemical Society, Washington, D.C., pp. 2-26, (1986). 

Andow, P.K. and F. P. Lees 'Process plant alarm systems: General 
considerations’, Loss Prevention and Safety Promotion In The Process 
Industries,Elsevier, Amstrdam, Vol. 1, Pp. 299-307, (1974) 

384


