A THEORETICAL NND PRACTICAL STUDY OF TIE LORLINZ-TYPE INDUCTOR-ALTERNATOR

a thesis submitted for the degree of DOCTOR OF PHILLOSOPH

RODNEY KINTORE LAY
TIE UNIVERSITY OF ASTON IN BIRITNGILM

THE UNIVERSITY OF ASTON IN B
15MAY 1967
THES 151128167
621.3133
LAY

Sumnary:

Throughout this work the emphasis is laid on developing the theory in a form which contributes directly to the design technique; each stage is verified experimentally.

Relevant literature falls into two distinct categories: one, classical in form, based on the permeance of assumed magnetic circuits: the second, presenting corputed solutions to models of detailed field problens. This thesis extends the classical approach to bring its capacity for analysis closer to the level of detail offered by the model/solution concept.

After a full analysis of these theories, the experinental machine's design, manufacture and instrumentation are reported. Problens connected with 'darping undesirable flux variations' and 'accounting for anomalous loss mechanisms' formed the original investigation. Their solution is presented in the complete analysis of tooth and core flux distribution, which leads to a detailed description of the on-load flux density distribution across the surface of a rotor tooth.

The theory derived to solve these carly problems is extended to form an alternative technique to existing practice in the complete solution of the loaded machine. The expressions combine the load current and voltage with the field current and, in addition, are dependent on the airgap geometry, the load circuit power factor and the leakage reactance. By expressing the parameters in two equations, one limited by the load conditions and the second dependent on the characteristics of the particular machine, successful predeterminations of field requirenents for practical non-linear conditions are obtained.

A paper on the history and changing fortunes of this class of nachine is included, demonstrating its unique character and contribution to technology. From a rescarch viewpoint great potential lies in the
conbination of medium frequency and an unusual airgap geonetry; this has allowed the detection and analysis of characteristics which, in other types of machine, are individually unidentifiable.

CONTENTS

CAAPTER 1 An Introduction to the machine and the theories

1.1 The origins of the Iorenz-tyne inductor-alternator 3
1.2 An appreciation of the major contributions to inductoraltemator theory
. 1 The two main types of theoretical amproach6
. 2 Survey and discussion of papers by J.If. Walker 8
. 3 Survey and discussion of papers by E.A.Erdelyi 44
1.3 The relationship of this thesis to existing studies 48
1.4 The main characteristics of the theory in this thesis 50
GINTHR 2 The Experimental Machine
2.1 The design 54
2.2 Building the experimontal machine
. 1 Reasons for building in the laboratory 57
. 2 Proparing and asserbling the core laminations 57
. 3 Windings 59
2.3 Instrumenting the experirontal machine 62
2.4 Supporting apparatus
. 1 The driving motor 65
. 2 The load 65°
. 3 Signal integrating and moasuring circuit 66
GIAPTER 3 Distribution of fluw within the stator
3.1 Distribution of stator flux under open circuit conditions
. 1 Introduction 71
. 2 The conducting paper analogue 72
. 3 Investigation by measuremont 78
. 4 Theoretical investigation 86
. 5 Comparison of investigations by theory and moasuroment 92
. 6 Comparison of fundanental fluxes passing behind the ficld slot and across the pole pitch 96
3.2 Distribution of stator flux due to amature reaction r.m.f.
. 1 Introduction 101
. 2 Theoretical investigation 101
. 3 Justification for applying theory to several amature slots 105
3.3 Darping windinçs
. 1 Introduction 107
. 2 Sumary of altomating voltages induced in a field coil and the effect of a short circuited darming tum 107
. 3 Sumary of altomating fluxes in the stator core and the effect of a short circuited darming tum 111
GINPTER 4 Rotor surface flux donsity distribution
4.1 Flux density clistribution across a rotor tooth airgapsurface under open circuit conditions
. 1 Theory 114
. 2 Displaying the search coil simals 114
. 3 Veasurements 117
4.2 Flux density distribution across a rotor tooth airgapsurface under loaded conditions
. 1 Theory 121
. 2 Interpretation of signal display 123
. 3 :'easurements 126
4.3 Comarison of the experimental results with the computed theoretical distribution
. 1 The conputer prograrmo 129
. 2 Comparison of experimental and theoretical results 131
CIMPILR 5 Voltase reneration
5.1 The gencration of open circuit voltage
. 1 The theoretical dorivation of an expression for opencircuit voltage136
. 2 Cormarison of calculated and reasured values of open circuit voltage 138
5.2 The teminal voltage on load
. 1 Introduction141
. 2 Theoretical dorivation of voltase generated by armature reaction m.m.f. (E_{a}) 143
. 3 Theoretical derivation of intomal generated voltage on load (L) 147
. 4 Goneral expression for teminal voltage on load (V) 148
. 5 Coneral analysis of teminal vol.tace expression 151
5.3 Application of the teminal voltage expressions to experinontal and industrial machines
. 1 Tho examples of comarisons betreen measured and calculated voltage characteristics 155
. 2 The relationship betreen ficlel current and teminal voltage 161
GIAPMER 6 Future work - sore thourhts on starting Doints summestod by this thesis
6.1 The calculation of iron losses 174
6.2 Self-excitation 179
6.3 An output expression for studying balanced designs 181
6.4 The output waveform 183

GIAPTLR 7 References and Aclnowlodments

7.1 Synivols 195
7.2 Bibliography 109
7.3 Equations 203
7.4 Aclonov1edgrments 204
COPTER 8 Appendices
8.1 Instruments 206
8.2 Supply circuits for altemator field and driving motor 207
8.3 Tooth contributions to core flux
. 1 due to $B_{o c}$. 2 due to B_{a}210
8.4 Coefficients for $B_{\text {oc }}$ from conducting paper analogue 214
8.5 Variations of airgap flux density with time due to field slot leakage 217
8.6 Expansion and selection of terms from equation (5), 3.2.2, for use in 4.2.1 220
8.7 Armature reaction flux density patter relative to therotor
. 1 Malysis of major components 221
. 2 Verification of sampling teclinique, 4.2.2 225
8.8 Solution of equation (6) using computer. 1 Components of the complete space distribution of airgapflux density on-load, relative to the rotor227
. 2 The computer programme 228
8.9 Proof of identity $\sum_{n=0 d d}^{\infty} \frac{1}{n^{2}-4}$ in 5.2 .2 230
8.10 Cencral test curves for experimental machine 232
S. 11 Supporting papers 238

CHAPTER 1 An introduction to the machine and the theories

1.1 The origins of the Lorenz-type inductor-alternator. 3
1.2 An appreciation of the major contributions to inductor- alternator-theory.
. 1 The two main types of theoretical approach. 6
. 2 Survey and discussion of papers by J.H. Walker. 8
. 3 Survey and discussion of papers by E.A. Erdelyi. 44
1.3 The relationship of this thesis to existing studies. 48
1.4 The main characteristics of the theory in this thesis. 50

Chapter 1 introduces the machine, existing theory, and an extension to the theory which forms the basis for this work. The new analysis is derived from an expression for the airgap field; hence many aspects of design are involved.

To provide comparisons between this approach and previous work it is necessary to summarise the existing theory point by point. This introduces the machine in detail rather than in the general form which is already satisfactorily presented by Walker ${ }^{2}$.

Papers by Walker and Erdelyi are considered to represent the major contributions to inductor-alternator theory and these form the basis for the summaries. It is convenient to include under each heading contributions both from other sources, and from the new analysis, with references to subsequent chapters.

In this way a detailed assessment of published work is combined with the findings of this thesis, presenting a comprehensive survey of design techniques for the Lorenz-type inductor-alternator.

1.1 Origins of the Lorenz-type Inductor-Alternator

In a paper, included as appendix 8.11, titled 'The History and changing fortunes of the inductor-alternator' the writer has traced the progress of the inductor-alternator class of machine from its inception in the late 1880 's to the present day. The single phase heteropolar Lorenz-type inductor-alternator referred to by Dr. Walker in section 2.2.1 of reference 2 is the subject of this thesis.

The term 'Lorenz' would appear to be derived from the company of C. Lorenz at Berlin - Tenplehof. In 1914 this company patented 20 an alternator due to Dr . Schmidt which was later designated type S^{21}, fig 1.

Fig 1: $100 \mathrm{Kw}, 500 \mathrm{c} / \mathrm{s}, 1500 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Type 'S' from reference 21

The major contribution of the patent was the introduction of a winding layout wherein both field and armature coils were wound in the same plane. The earlier distinction between homopolar and heteropolar ${ }^{23}$, which was solely concerned with the relative angular position of two rotor cores, had lapsed before the type S was manufactured. This made available the term 'heteropolar' to describe the new field system which
had alternate directions of flux spaced around the airgap periphery ${ }^{22}$. From 1925 onwards the inductor-alternator was used to supply coreless induction furnaces for melting and sme1ting. This process required frequencies within the range $500 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{Kc} / \mathrm{s}$, which coincided with the efficient application of the Lorenz design. The action of 'skin effect' in limiting the penetration of eddy currents in the workpiece led to the technique of surface heat treatments by induction. This process required higher frequencies (of the order $8-12 \mathrm{kc} / \mathrm{s}$) for which a design of the type patented by Guy ${ }^{22}$ was suitable. The distinction between the Lorenz design and Guy's patent lay in the airgap surface geometry of the stators. The Lorenz design stator was that of an induction motor with a number of slots enlarged to take the field coils: in manufacturing terms this was its major advantage. The armature slot openings were 'semiclosed', consistent with winding techniques and acceptable leakage reactance. The field slots were sometimes enlarged without altering their opening but more often the advantages of pre-formed field coils led to 'open' slot designs. However, for the purposes of definition ${ }^{22}$, the Lorenz design has 'semiclosed armature slots and an otherwise smooth stator-airgap surface between field slots'.

The essence of Guy's patent had been to arrange that several rotor tooth pitches (i.e. a.c. pole pairs), matched by identical inductors on the stator, should lie within one armature coil pitch. Thus the 'stator-airgap surface between field slots' for this design consisted of open unwound slots (i.e. inductors), fig 2.

The necessity to differentiate between the designs has produced a terminology ${ }^{22}$ which, in the U.K., distinguishes these two main variations in stator slotting as Lorenz-type and Guy-type. On the continent 'Lorenz' remains a definition of 'heteropolar' as in the original 'type S^{\prime}. In the writer's opinion the clearest description of a design is achieved by limiting the terms 'Lorenz' and 'Guy' to describing slotting while the terms 'homopolar' and 'heteropolar' describe
field systems. Nevertheless it must be recognised that 'homopolar-Lorenz' is a contradiction in terms to some designers.

Fig 2: Guy slotting from reference 24

1.2
 An appreciation of the major contributions to inductor-alternator theory

1.2.1 The two main types of theoretical approach

Relevant publications fall naturally into two categories which are characterised by the approach to, or model for, their respective theories. The broad definitions of these categories are:
(a) containing representation and analysis of 'total fluxes' (per pole, per tooth, etc.) from consideration of the m.m.f. imposed upon the magnetic circuit, assuming the flux paths are known.
(b) containing representation and analysis of the field throughout the machine by potential equations (Laplacian, two dimensional) limited by boundary conditions approximating to the iron and copper geometries.

Inductor-alternators as a class of machine are not unique in being the subject of two widely differing types of analysis: compared with most other machines there are, however, remarkably few publications in either group.

Undoubtedly a major work in group (a) is Walker's 1942 paper ${ }^{l}$ on the 'Theory of the Inductor-alternator'. Very nearly every author in the field makes reference to this paper and often also to a second paper ${ }^{2}$ by Walker in 1946. The first combines the contributions of references 3 to 9 to present a theory which is also a practical design technique. In his second paper Walker classifies single and polyphase, Guy and Lorenz-type designs, considers armature windings in detail, and identifies the positive and negative sequence components of armature-reaction flux. These two papers will be studied in detail in section 1.2.2.

Group (b) publications are the work of one man (et al); E.A.Erdelyi, at the University of Colorado. Since 1963 the U.S. Army Research and

Development Laboratories have supported the application of the analytical methods developed in reference 10. This is the parent paper to references 11 to 19 in which the partial differential field equations for a variety of design problems are established and solved. The solutions are numerical, involving 'over-relaxation of the potentials and permeabilities alternately'. These papers will be studied in section 1.2.3.

Therefore, to sumarise the philosophies of these two approaches:
group (a) The m.m.f. is applied around a 'classic magnetic circuit', taking account of the complete machine's actual dimensions, thus deriving values for flux per pole or per teeth. This theory is unable to comment on flux density distribution within the core or teeth; it must calculate on-load field requirements by applying armature reaction m.m.f. to the same magnetic circuit. This restricts accurate calculation and understanding to operating conditions where the field and armature reaction m.m.f.s are coincident in space (i.e. ZPF). Further, the non-linear characteristics of the machine are only expressed by the iron manufacturer's B-II curve which does not account for non-uniform tooth and core flux-density distributions.
group (b) Elements of the machine, concentrating on the airgap region, are layed out on a grid so that the copper and iron geometries are described by groups of mesh points. These provide the potential and boundary conditions which lead to a solution for the complete field pattern expressed at each mesh point. This supplies the distribution detail lacking in group (a) and is possibly the only method applicable to very highly saturated conditions. Such a detailed analysis requires considerable computer facilities: to investigate core flux densities and overall machine characteristics by this approach would be to enploy a process of far greater sensitivity than is necessary.

1.2.2 Survey and discussion of papers by J.H. Walker

In this section two papers by Walker ${ }^{1,2}$ are considered in detail. Sumaries on each point drawn directly from Walker are set into the page with a wider margin to distinguish them from the writers own comments and references to subsequent chapters. In this manner the inductor-alternator class of machine will be surveyed in detail: at the same time the relevance of the theoretical and experimental work of this thesis will be indicated.

Each section of the survey is numbered for ease of reference to those features which are investigated in later chapters.

The first summaries are from 'The theory of the inductor-alternator' (ref. 1) and rum from (1) to (13) as follows:
(1) field systems
(2) airgap flux density pattern
(3) generation of e.m.f.
(4) flux utilisation factors
(5) e.m.f./flux equation
(6) comparison of unidirectional and bi-directional flux variation systems
(7) equipotential m.m.f. circles leading to ϕ_{t} and ϕ_{s}
(8) leakage paths
(9) open-circuit characteristic from ($\phi_{\mathrm{t}}-\phi_{\mathrm{S}}$)
(10) armature reaction m.m.f.
(11) darming of undesired pulsations in main flux
(12) calculation of field current on load
(13) losses

(1) Field systems

The homopolar ${ }^{3,22}$ fig. 3, and the heteropolar 4,22 fig, 4, are the two possible field systems shown here with their respective constructions. '

Fig 3: Homopolar inductor-alternator

Fig 4: Heteropolar inductor-alternator
(2) Airgap flux density pattern
'The fundamental operational characteristic of this machine is flux modulation: the simplest physical element is a slot opposite a smooth surface, fig. 5.

Fig 5: Space distribution curve of flux-density

The flux density in such an airgap is given by the equations:

$$
\begin{align*}
& B=B_{\max } \frac{k+1}{x\left[\left\{k+\left(\frac{\beta+\gamma}{2}\right)\right\}\left\{k+\left(\frac{2}{\beta+\gamma}\right)\right\}\right]} \\
& \begin{aligned}
\frac{x}{S}= & \frac{g}{\pi S}\{\operatorname{arcco.....1A} \\
& \quad+\frac{1}{\pi} \arcsin \left\{\left(\frac{2 k+\beta}{\gamma}\right)-\operatorname{arccosh}\left(\frac{2 k^{-1}+\beta}{\gamma}\right)\right\}
\end{aligned} \\
&
\end{align*}
$$

where $s=$ width of rotor slot
$t=$ width of rotor tooth
$g=$ length of airgap over rotor tooth
$\beta=(\mathrm{s} / \mathrm{g})^{2}+2$

$$
\begin{aligned}
\gamma= & \pm s / g \vee\left\{(\mathrm{~s} / \mathrm{g})^{2}+4\right\} \\
\delta= & \pm \frac{\mathrm{s} / \mathrm{g}}{\sqrt{ }\left\{(\mathrm{~s} / \mathrm{g})^{2}+4\right\}} \\
\mathrm{k}= & \text { parameter corresponding to values of } \mathrm{x} \\
\mathrm{x}= & \text { space co-ordinate measured along a rotor slot pitch } \\
& \text { from the axis of a slot }(0<x<(\mathrm{s}+\mathrm{t}) / 2)
\end{aligned}
$$

These equations are due to Carter ${ }^{8}$; they assume an infinitely deep parallel side slot. Coe and Taylor ${ }^{9}$ show that the error is small if the depth is only 'slightly greater' than the width. Indeed, Carter comments that '... inasmuch as the field hardly penetrates beyond the mouth, this (the assunption of infinite slot depth) is of no consequence'. Carter further shows that the field between a smooth surface and a number of such slots is not significantly different from the pattern achieved by repeating the single slot analysis the desired number of times'.

The problem of obtaining and then expressing the flux density pattern in the airgap is central to any study of this type. Other than by testing, the three major methods of obtaining the distribution are a) Graphical b) Mathenatical and c) Measurements on an analogue.

Stevenson and Park ${ }^{25}$ collected and adapted the work of Rogowski, Lehmann and others to present a theory of field determination by graphical means. Weiseman ${ }^{26}$ applied these techniques to the synchronous machine commenting that the '... mathematical solution' was often 'laborious and sometimes impossible'. However, Graphical techniques are by no means easy to apply accurately: they require expertise.

Mathenatical methods are undoubtedly the most rigorous. Unfortunately, their application is limited by the very great increase in conplexity caused by seemingly minor additions to the geometry. The problem of one slot opposite a smooth surface is comparatively simple because of its
symmetry about the slot centreline. The required conformal transformation must describe two right angles and leads to a hyperbolic function. Gibbs ${ }^{27}$ has considered this particular problem in detail including the method by which the flux density wave may be plotted. Transformations of geometries containing more than two right angles will lead to elliptic functions which may not be analytic. A technique for solving a SchwarzChristoffel equation with five constants, by iteration and then numerical integration, is reported by Binns ${ }^{28}$: this requires considerable conputer time.

Analogues for representing fields are many and varied. Some are purely descriptive on which accurate measurements are not practicable. Liebmann ${ }^{29}$ has made the following summary of the most useful analogues:
'Conducting paper
Advantages - Cheap equipment, easy technique; applicable to conplicated geometries.
Disadvantages - Limited accuracy ($2 . \%$), scale distortion, 2-dimensional only. Electrolytic tank
Advantages - Applicable to complicated geometries.
Disadvantages - Limited accuracy, difficult measuring technique.
Resistance network
Advantages - High accuracy, easy technique, applicable to mathematically more complicated problems.
Disadvantages - Cumbersome when applied to complicated geometries.
RC and LC networks
Advantages - Applicable to transient conditions.
Disadvantages - Limited accuracy, specialised applications only, requires simple geometries.

Computer
Advantages - Applicable to complex problems of great variety.
Disadvantages - Expensive equipment, limited accuracy, requires simple geometries.'

The airgap flux density distribution may be obtained by which ever method suits the particular requirements of cost, time and accuracy. Patterns similar to fig. 5 are of direct use in calculating the overall airgap flux level and accounting for the effect of fringing into the slot sides (Carter's coefficient). More detailed investigations require a simple form of equation (1), or expressions for the patterns produced by graphical or analogue methods. A suitable form is achieved by fourier analysis of the patterns into infinite series. The series may be analysed component by component and the desired degree of accuracy simply controlled by the number of components that are considered. A further advantage lies in the series being a cyclic form: the total effect of several repetitions of the pattern is produced by considering the series between suitable limits. This is of special benefit when analysing a heteropolar field since complete field symmetry is about a field pitch, i.e. several rotor slot pitch patterns.

(3) Generation of e.m.f.

'E.m.f. is generated in each side of an armature coil as the flux density wave passes. Since the flux is midirectional the e.m.f.s in each side of a full pitch coil will be 180° out of phase so that when a rotor tooth axis coincides with the coil axis each coil side e.m.f. will be equal and opposite. Similarly, when a rotor slot axis coincides with the coil axis the net e.m.f. around the coil is zero. At all other positions one or other coil sides will lie in a greater flux density and the net e.m.f. will alternate through a complete cycle as the rotor moves through one rotor slot pitch. The frequency of this alternating e.m.f. is given by:

$$
f=(\text { number of rotor slots } x \text { rotor velocity (r.p.s.) })^{\prime}
$$

Fig. 6 is taken directly from ref. 1 showing the open-circuit e.m.f. produced in the manner described.

Fig 6: Waveforms of alternating flux, $\frac{s}{g}=20$,
and open circuit e.n.f.

This process is investigated in Chapter 5 by differentiating the fluxlinkages with the coil with regard to time. The flux-linkages are obtained by integrating the flux density distribution between suitable limits, at which point, the inability of a full pitch coil to sense even harmonic variations in flux is clearly demonstrated. Hence the ' B ' referred to by Walker in fig. 6 is the flux density variation sensed by a full pitch winding, not the actual flux density existing in the airgap. forept in the speeial case of $t / \lambda=0.5$, whieh will include no event hammonics).
(4) Flux utilisation factors
'The desired alternating e.m.f. is sinusoidal: factors ε_{1} and ε_{2} are defined to relate the mean unidirectional and alternating flux levels together with the effective alternating flux. '

Walker's definition of ε_{1} is used in this thesis, i.e.
mean value of alternating flux density
$\varepsilon_{1}=\overline{\text { mean value of total unidirectional flux density crossing the gap }}$
However, it has been the writer's practice to use a slightly different definition of ε_{2} due to Davies and Pederson ${ }^{30}$ i.e.

This definition replaces Walker's 'effective value of alternating flux' by the 'mean fundamental component'. The resulting advantage is detailed in the next section.
(5) E.m.f./flux equation
'The equation relating flux and generated e.m.f. is:
r.m.s. generated e.m.f. $=$
$4 \times$ frequency x effective turns x effective alternating flux. ' When the above definition for ε_{2} is used the peak value of the fundanentai component of flux (ϕ_{ac}) becomes available. If ϕ_{ac} replaces the 'effective alternating flux' in the e.m.f. equation the factor changes from 4 to 4.44, which brings the theory of the inductor-alternator into line with normal machine theory.
(6) Comparison of midirectional and bi-directional flux variation systems
'For the ideal optimum case where the flux wave over a rotor tooth is rectangular and the flux over a rotor slot is zero, the mean unidirectional flux density $=\frac{1}{2} x$ maximum value of $B_{D C}$. An excited rotor alternator (with conventional wound poles) will produce a rectangular flux wave with $\mathrm{B}_{\mathrm{DC}}($ mean $)=\mathrm{B}_{\mathrm{DC}}(\max)$.

This shows that for the same maximum density in the gap the excited-rotor machine will give double the output of an inductor machine. This comparison is made less unfavourable on relatively low frequency machines by the higher densities that the stator core - not being subjected to an alternating flux - can be worked on the inductoralternator. '

Chapter 3 shows that, in fact, the core of a Lorenz-type inductoralternator is subject to alternating flux. However, the comparison is still not justified unless the inductor-alternator is employed to generate frequencies, below $300 \mathrm{c} / \mathrm{s}$ say, at which the wound-pole alternator is more suitable. Even if one considers the currently impractical concept of driving a 200 pole machine at $3000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. ($5000 \mathrm{c} / \mathrm{s}$) the limiting feature becomes one of heating due to losses. This in turn limits the alternating flux density to levels adequately supplied by the inductor principle, i.e. the maxinum flux of the wound field can not be enployed.
(7) Equipotential m.m.f. circles leading to ϕ_{t} and ϕ_{S}
'Referring to fig. 7, let the flux which takes path ' a ' be denoted by ϕ_{t} and that which takes path ' b ' by ϕ_{S}. '

Fig 7: Flux paths between circles of equipotential m.m.f.

The total fluxes carried by the stator teeth under these two conditions (maximum and minimum) are the main design parameters for those whose approach section 1.1 termed group (a).
'Again in fig. 7 'cc' and 'dd' are equipotential circles, since the exciting m.m.f. is constant in magnitude round the stator core periphery. '

Here is the primary assumption upon which this approabh rests. Large numbers of armature slots per d.c. pole pitch or deep armature slots with a shallow core section would produce an m.m.f. equipotential which was not circular. However, such coments on the limitations of this theory not necessarily important limitations) will be considered in section 1.3, where the type of theory which naturally follows from this choice is discussed. (see also 1.2 .2 (12)).
'The sum of the two fluxes ϕ_{t} and ϕ_{S} which passes into the rest of the magnetic circuit is the steady flux due to the field, $\phi . \phi_{t}$ and ϕ_{s} may be expressed in terms of ϕ since

$$
\begin{aligned}
\varepsilon_{1} & \left.=\frac{\phi_{t}-\phi_{S}}{\phi_{t}+\phi_{S}} \quad \text { (ref. } 1 \text { and } 30\right) \\
\text { i.e. } \phi_{t} & =\frac{\phi}{2}\left(1+\varepsilon_{1}\right) \\
\phi_{S} & =\frac{\phi}{2}\left(1-\varepsilon_{1}\right)
\end{aligned}
$$

For a given total flux the anpere-turns required to drive the rotor tooth flux from 'cc' to 'dd' along path 'a' must equal the ampere-turns required to drive the rotor slot flux from ' cc ' to 'dd' along path ' b '. If the stator and rotor teeth are infinitely permeable the equations given above for ϕ_{t} and ϕ_{s} are correct. In practice appreciable m.m.f. is absorbed in driving ϕ_{t} through a saturated path ' a ' whilst in path ' b ' the stator teeth will require negligible m.m.f.
over the working range of the machine. Thus the m.m.f. acting across the gap between stator and rotor surfaces is not uniform, being a maximum over a rotor slot and a minimum over a rotor tooth. For a given exciting m.m.f. this will lead to a reduction in ϕ_{t} and an increase in ϕ_{S}, with a corresponding reduction in effective flux. '

Photographs, in Chapter 4 fig. 42, of an integrated rotor tooth-surface search-coil signal, i.e. displays which are proportional to airgap flux, show a reduction in flux as ϕ_{t} is established. This could in part be accounted for by a reduction in the peak value of ϕ_{t} described by Walker. The increase in ϕ_{S} however is as a ratio of the unidirectional flux at the airgap: while ϕ remains constant ϕ_{S} cannot increase unless new leakage fluxes appear.
(8) Leakage paths
'Leakage paths (such as e, fig. 7) will exist dependent on the slot permeance and armature conductor distribution within the slot. The level of leakage fluxes across armature slots and in core end regions are proportional to ϕ_{t} from which they must be subtracted. It follows that their calculation is iterative: the corrected value of ϕ_{t} must be calculated such that this reduced value plus its associated leakage level equals the original calculation which neglected leakage. A modified slot permeance which allows for the presence of armature conductors may be used to calculate 'linking' leakage fluxes: these are simply added to ϕ_{S} and subtracted from $\phi_{t}{ }^{\prime}$ '
These corrections to values for ϕ_{S} and ϕ_{t} are necessary if the process of evaluating ε_{1} (in terms of $\frac{s}{g}$, $\frac{t}{\lambda}$ and $\frac{d}{g}$) made no provision for the field within the stator teeth and slots, and if a high degree of accuracy is
required. Unpublished derivations of ε_{1} and ε_{2} have used conducting paper to represent the airgap region, thus producing general relationships assuming infinite iron permeability. In $3.1,2$ a conducting paper analogue is described which accounts for the field distribution within stator core and teeth. Allowance is made for the variation in overall circuit reluctance due to the stator slot openings: accounting for the fringing and armature slot leakage paths would be a possible refinement. It is also possible to extend this teclmique to investigate the effects on ε_{1} and ε_{2} when saturated levels of ϕ_{t} exist.
(9) Open-circuit characteristic from ($\phi_{t}-\phi_{S}$)
'Combining the anpere-turns required to support the fluxes in the iron and air of both paths ' a ' and ' b ' leads to fig. 8 (a), showing ϕ_{S} and ϕ_{t} plotted against total path m.m.f. The e.m.f. generated in a pair of adjacent coils (such as A and B fig. 7) is the difference of the e.m.f.s generated in the two individual coils ${ }^{31}$. The maximum flux linking a pair of adjacent coils will thus be the difference between the maximum flux (ϕ_{t}) which links the first and the minimum flux (ϕ_{S}) which links the second. Hence the maximum e.m.f. is proportional to $\left(\phi_{\mathrm{t}}-\phi_{\mathrm{S}}\right)$. The flux to be used in the flux/e.m.f. equation is $\frac{\varepsilon_{2}}{\varepsilon_{1}}\left(\phi_{t}-\phi_{S}\right)$, which allows the open-circuit voltage to be plotted against total exciting anpere-turns, fig. 8 (b). A major characteristic of the inductor principle is evident under saturated conditions: for increase in applied m.m.f. beyond a certain leve1 the induced voltage decreases. This level is fixed by the relative gradients of ϕ_{t} and ϕ_{S} in fig. 8(a). If the gradient of ϕ_{t} becomes less than that of ϕ_{S} then for further increases in m.m.f. $\left(\phi_{t}-\phi_{S}\right)$ must decrease. '

(a)

(b)

Fig 8: (a) Curves of ϕ_{t} and ϕ_{S} as functions of m.m.f.
(b) Open-circuit volts $\propto\left(\phi_{t}-\phi_{S}\right)$
(10) Armature reaction m.m.f.
'The armature reaction m.m.f. may be considered as the product of the turns distribution and the armature current. Fig. 9(b) shows the reaction m.m.f. due to the winding of fig. $9(\mathrm{a})$ in a homopolar field.

(a)

(b)

Fig 9: a) Armature winding
b) Armature reaction m.m.f.

Considering only the m.m.f. due to the conductors, the zero line of this pattern will be ' $\alpha \alpha$ '. When the end windings between cores, fig. 10(a), are axially in line each discontinuous ring is equivalent to a continuous ring having half the number of effective turns of each armature coil, and the zero line will be shifted to ' $\beta \beta$ '.

(b)

Fig 10: End windings between cores
(a) in line
(b) staggered

By staggering the coils in the two cores, fig. 10(b), this can be avoided without altering the effective number of conductors per slot. The fundamental of the full pitch distribution in fig. 9(b) about ' $\alpha \alpha$ ' is expressed by

$$
\left(N_{a} \cos \quad \theta \cdot \quad I_{a} \cos \omega t\right)
$$

$$
\text { where } \begin{aligned}
N_{a}= & \text { effective turns per armature coil } \\
I_{a}= & \text { peak armature current } \\
\theta= & \text { space measurement around airgap } \\
& \text { from an armature coil centreline } \\
& \text { in electrical radians, } \lambda=2 \pi^{c}
\end{aligned}
$$

This can be written in the form

$$
\frac{N_{\mathrm{a}} \mathrm{I} \mathrm{a}}{2}\{\cos (\theta-\omega t)+\cos (\theta+\omega t)\}
$$

The first term, $\cos (\theta-\omega t)$, rotates synchronously with the rotor, demagnetising the rotor tooth and magnetising the rotor slot if it be assumed that the load power factor is zero lagging. This reduces the difference between tooth and slot fluxes. The second term, $\cos (\theta+\omega t)$, may be considered as backward rotating at twice synchronous speed relative to the rotor. This will produce losses and require additional exciting current irrespective of load power-factor. '

Chapter 4 extends this theory by representing both the turns distribution and the armature current waveform by infinite series. The general expressions are derived: then the current waveform is restricted to its fundamental component and expressed with an arbitrary phase displacement from the open-circuit voltage. Thus the field patterns of the forward and backward components of armature reaction are expressed for all load powerfactor values. The manner in which the forward conponent distorts the
open-circuit rotor tooth flux-density distribution is computed: the resulting values compare (favourably) with measurements, fig. 50, 4.3.2. Chapter 5 shows that both forward and backward components are responsible for inducing the 'reactive voltage of armature reaction'. This leads to a definition of load angle for single phase machines which is directly analogous to that existing for polyphase machines, but cannot be expressed in exactly similar terms.

(a)

(b)

Fig 11: Reference 1
(a) fig 19
(b) fig 20

The end winding effects were described by Walker (as reported earlier in this section) by a shift of the armature m.m.f. zero line, fig. 9 (b) . The m.m.f. expression would then require a term to account for this displacement. When considering heteropolar designs Walker refers to figs. 19 and 20 of reference 1 , here produced as figs. 11 (a) and 11 (b), and compares the two windings. Walker suggests that the armature reaction m.m.f. for the winding of fig. 11 (a) requires a displacement term for its expression while the m.m.f. due to the winding of fig. 11(b) does not suffer this inconvenience. The writer finds these diagrams misleading, and the comparison unfounded, for the following reasons. Figs. 11 (a) and 11 (b) may be derived by the technique of 'sunming ampere-conductors' around the airgap periphery. The zero line of such a pattern has meaning as the average of the m.m.f. variations over a complete cycle or a series of identical cycles. The cycle chosen may cither have the pitch of a 'highfrequency' pole or of a field pole. Walker chooses the 'high-frequency' pole pitch for his equations, but in fig. 11(a) takes the zero line over a field pole pitch. In fig. 11(b) both cycles happen to have the same zero line and this leads to the suggestion that there is some fundamental difference between the two windings. In reality this 'difference' solely results from the lack of consistency in the choice of cycles.

Fig. 12 shows the m.m.f. patterns of each winding with zero lines drawn in as the mean level of variations with 'high-frequency' pole pitch. The zero lines for poles A and B are drawn in line sinply because, in the absence of any other m.m.f.s, two isolated symmetrical systems will vary about the same mean level. The rotor is drawn in the position relative to the stator which corresponds to maximum armature current flowing in a ZPF load. At this instant, assuming the rotor slot reluctance to be very much greater than the airgap reluctance, the flux density distribution due solely to the armature ampere-turns is as shown in fig. 12. Chapter 3 investigates fluxes which link the field windings due to armature reaction flux density distributions such as both these windings exhibit. From this analysis

Fig 12: Peak reaction m.m.f.s and resulting flux-densities at ZPF (a) for fig 11 (a)
(b) for fig 11 (b)
neither winding scheme offers any advantage: both produce pulsations at twice line frequency linking subsequent field poles.
'With the elimination of the cos ωt (displacement term)
and $\cos (\theta+\omega t)$ terms the armature reaction m.m.f. per
pole is given by the expression

$$
\left(\frac{I_{a} N_{a}}{2 p_{a}}\right) \text { per phase }
$$

for a full pitch winding where P_{a} equals the number of 'high-frequency' poles ($=2 \times$ rotor teeth). '

Walker presumes that the 'displacement' and 'backward rotating' components will be damped. The previous analysis has shown the 'displacenent term' concept to be inconsistent in that it accounted for the field pole to pole fluxes of armature reaction in the winding of fig. 11(a) but not in the winding of fig. 11(b). Chapter 3 shows that, under practical load p.f. conditions, due to the airgap geometry and what appears to be a distortion of the theoretical field pattern, twice line frequency variations in flux exist but are very much reduced. It may even be unnecessary to danp them with short-circuited turns in the field slots. In Chapters 4 and 5 the backward rotating components are fully accounted for in a treatment of armature reaction which includes all combinations of 'turns distribution' and permeance harmonics which lead to fundamental vaflyations in the reaction field pattern.
(11) Damping of undesired pulsations in main flux
'In the design of homopolar inductor-alternators all the undesired pulsations of main flux due to armature reaction m.m.f. may be damped by fitting copper wedges in the rotor slots which completely close the slot opening at the gap surface, the wedges being short circuited at each end. With rotors made of solid steel or iron there will be a degree of
inherent damping.
With the fully laminated heteropolar design satisfactory danping is more difficult. Pulsations of main flux may be opposed by short circuited turns carried in the field slots. Any form of darming winding carried on the rotor will reduce the main field as it passes under consecutive poles. If the number of 'high-frequency' poles per exciting pole are high (>6), copper wedges in the rotor slots (not short circuited to form a squirrel cage) will reduce pulsations in ϕ_{S}. '
Chapter 3 investigates the distribution of flux throughout the stator together with the factors controlling main and tooth flux pulsations. It is here convenient to introduce expressions for main flux, ϕ 1.2.2(7), due to Raby ${ }^{36}$.

- The m.m.f. between equipotential circles, fig. 7, at any instant, is the algebraic sum of the field and the instantancous armature ampereturns: $\left(F_{f}+F_{a} \cos \omega t\right)$. If we assume sinusoidal permeance variations, and iron of infinite permeability, we may write for the permeance at the same instant:

$$
\Lambda \cdot\left\{1+\varepsilon_{1} \cos (\omega t+k)\right\}
$$

where Λ depends upon the dimensions of the machine and on the unit of flux enployed, and K is the electrical angle representing the phase interval between the instants of peak current and peak permeance.

Thus

$$
\begin{aligned}
\phi= & \left(F_{f}+F_{a} \cos \omega t\right) \Lambda\left\{1+\varepsilon_{1} \cos (\omega t+k)\right\} \\
= & \Lambda\left[\left(F_{f}+\frac{1}{2} F_{a} \varepsilon_{1} \cos k\right)+\left\{F_{f} \varepsilon_{1} \cos (\omega t+k)+F_{a} \cos \omega t\right\}\right. \\
& \left.+\left\{\frac{1}{2} F_{a} \varepsilon_{1} \cos (2 \omega t+k)\right\}\right]
\end{aligned}
$$

i.e. from a combination of fundamental armature reaction m.m.f. and fundamental permeance variation both fumdamental and second harmonic pulsations are produced in the pole to pole flux, ϕ. '

Experiments designed to investigate these pulsations produced anonalous results, the explanations of which (chapter 3) required the analysis of component flux paths. This led naturally to an identification of those flux pulsations which can be damped and those which cannot.
(12) Calculation of field current on load

The calculation of field current on load is an area where the writer offers an alternative technique to that presented by Walker. In section 1.2.2(7), the 'primary assumption' of equipotential circles ('cc' and 'dd', fig. 7) was introduced. The comment was made that this assumption governed the type of theory, (specifically load theory) available to the designer. As previously, the Walker presentation will be summarised; followed by an introduction to the alternative process given in this thesis.

Fig 13
In fig. 13 the terminal voltage is represented by $O B$, and the load current by OI. The power factor of the load current is $\cos \phi$, and in the case shown the current lags on the terminal voltage. The resistance drop BC (in phase with OI) and the reactance drop CD (perpendicular to OI) added vectorially to the terminal voltage $O B$, give the internal e.m.f., OD. The ampere-turns required to
produce this e.m.f. on open-circuit, 1.2.2(9), are represented by $O E$ (in line with $O D$). The armature reaction ampere-turns, $1.2 .2(10)$, to the same scale as OE, are represented by EF (perpendicular to OI). Then for a normal alternator, OF (the vector sum of OE and EF) would represent the total ampere-turns required on load. This is not the case with the inductor-alternator since the demagnetising effect of the armature reaction decreases the flux entering a rotor tooth and increases the flux entering a rotor slot. The demagnetising effect of the armature reaction is thus given by

$$
(O F-O E \cos \psi)=J F
$$

where ψ is the angle between $O E$ and $O F$ in fig. 13. This constant term is used to modify fig. 8 (b) in the manner shown in fig. 14 , shifting the origins of ϕ_{t} and ϕ_{S} to indicate their respective reduction and increase. The required field current is then obtained from that ampereturn ordinate for which the difference between ϕ_{t} and ϕ_{S} corresponds to the terminal voltage. '

This analysis is true for ZPF conditions. For all other values of power-factor the fundamentals of open-circuit and armature reaction flux density will be out of phase; the field and armature reaction m.m.f.s will be acting across different airgap geonetries. Walker's technique is to resolve OE onto OF , i.e. to consider the effect of both m.m.f.s acting along the direct axis of the complete field pattern and to modify the ϕ_{t} and ϕ_{S} curves as for ZPF conditions by the direct component of demagnetisation. Davies and Pedersen ${ }^{30}$ extended this technique for polyphase machines by accounting for both the direct and quadrature components of armature reaction. They introduced the concept of direct

Fig 14: $\begin{aligned} & \text { open-circuit } \\ & \text { on-1oad }\end{aligned}$
and quadrature-axis reactances calculated from analysis of the flux distribution in the airgap region. In fig. 15, IX ${ }_{a q}$ perpendicular to of is added vectorially to OD giving.OC as the axis of the rotor tooth. This agrees with nomal two-axis theory and fig. 15 is a modification of the classical vector diagram for a salient pole machine. The internal voltage $O D$ is resolved into two fictitious voltages $O A$ and $A D$ acting in the $d-$ and q- axes, respectively. Now, the m.m.f. required to produce $O A$ may be calculated by shifting the ϕ_{t} and ϕ_{s} curves through the distance $F_{a d}$ since

Fig 15: Vector diagram of polyphase inductor generator on-load, reference 30
this m.m.f. is directly demagnetising. The volt-drop AD , which has the magnitude $I_{q} X_{a q}$ is proportional to F_{ad}. Thus, the total field m.m.f. which must be supplied is the sum of F_{ad} and the m.m.f. necessary to induce voltage OA. This theory has produced values of field current in good agreement with practice.

Additional problems arise in the treatment of single phase machines, however, which require an alternative analysis. As discussed in 1.2.2(10), the m.m.f. of armature reaction for a single phase machine has forward rotating conponents that may be represented on a vector diagram similar to fig. 15. There are also backward rotating components which cannot be included in such an analysis. In Chapter 5 an c.m.f. associated with the armature reaction m.m.f. alone is added vectorially to the open-circuit voltage induced by the field m.m.f. acting alone. Whereas the components of armature reaction m.m.f. may not appear on the same time vector diagram,
the e.m.f. induced by this m.m.f. may be represented with the open-circuit voltage, their sum being the internal or generated e.m.f.

The on-load vector diagram is therefore 'built up' in the reverse order to the previous examples. Walker (et al) start with a desired terminal voltage and proceed to sum the component m.m.f.s required to support that terminal voltage. Due to the nature of single phase armature reaction, and as a logical extension of the theory developed in Chapters 3 and 4, the process introduced in Chapter 5 starts with the open-circuit voltage induced by the ficld m.m.f. and proceeds to the terminal voltage associated with a current drawn by a load at any arbitrary power-factor. The primary assumptions are not concerned with equipotentials but rather with superposition of fields and with the relationship of armature coil flux linkages to the airgap flux density distribution. This choice of assumptions has led to expressions for teminal voltage, not only in terms of load and field current as would be expected, but also in terms of the load power factor, the airgap geometry, the load angle and the leakage reactances.

(13) Losses

Walker assumes that all pulsations in the main flux can be elininated and concludes that no variation in flux will occur in the stator core section.
' In the homopolar alternator the iron loss is set up in the stator teeth. In the heteropolar alternator additional losses exist in the rotor teeth and core due to their rotation in the heteropolar exciting field. The figure thus obtained must be multiplied by an empirical constant to allow for the effect of notching, imperfect insulation between laminations etc. This constant will usually be of the order of 2 to 3 and may be obtained from test results on similar machines'.

In the writer's experience, when manufacturing techniques which lead to breakdown in the interlamination insulation (such as machining the airgap surfaces) are avoided, the factor of ' 2 to 3 ' is reduced to one of '1.5 to 2^{\prime}. The increased understanding of conponent flux paths (Chapter 3) and flux density distribution (Chapter 4) provide some explanations (Chapter 6) for the remaining discrepancy between calculated and measured iron losses.

Further to the volume limitations suggested by Walker the following assurptions are made in existing loss calculation procedures:

1) all tooth fluxes are radial, i.e. any 'circunferential' elements are neglected.
2) harmonic flux variations are neglected.
3) rotor flux variations are only considered at 'heteropolar frequencies, i.e. higher frequency variations due to armature reaction are neglected.
4) flux densities are calculated for open-circuit conditions, and assumed uniform across teeth cross-sections.

Since J.J. Thonson ${ }^{32}$, a great volume of investigation has been carried out into the loss mechanism of iron subjected to varying magnetic fields. Recently Wilkins ${ }^{33}$ (et al) has shown the degree of distortion within a batch of laminations, or even within one lamination, when the overall waveform appeared to be pure. Such problems of inhomogeneity complicate the loss calculation for simple volumes of iron. It is inevitable that a degree of 'expertise' must be applied, inproved by feed-back from previous designs which have been tested, when the complex volumes of practical machines are considered.

Copper losses may be calculated in the usual manner and are normally negligible unless proper attention to armature conductor dimensions (if rectangular), and transposing ${ }^{7}$, have been neglected. Excessive radial depth of copper or untransposed conductors will induce eddy currents and circulating currents respectively, resulting in considerable additional 10sses.

The second set of summaries are from 'Iligh-frequency alternators' (ref. 2) and rum from (14) to (22) as follows:
(14) comparison of salient pole and inductor type alternators
(15) comparison of homo- and heteropolar alternators
(16) single and double pitch coils
(17) classification of single and polyphase designs
(18) harmonic content of output voltage
(19) airgap length
(20) noise
(21) armature reaction m.m.f. (additions to $1.2 .2(10)$)
(22) instruments for testing
(14) Comparison of salient pole and inductor type alternators
'With a maximum peripheral velocity of $40 \mathrm{~m} / \mathrm{sec}$ and a minimum pole pitch of 5 cm the maximum frequency that may be generated by a salient-pole alternator (without using special rotor construction) will be in the region of $400 \mathrm{c} / \mathrm{s}$. The cylindrical rotor alternator may generate frequencies up to $1000 \mathrm{c} / \mathrm{s}$ but compares uneconomically with the inductor alternator and is also less efficient. Due mainly to the sirplicity of the rotor construction, the inductor-alternator has been used to the practical exclusion of all other types for generating frequencies above $400 \mathrm{c} / \mathrm{s}$ for many years. With a minimum rotor tooth width of 0.11 cm and a maximum peripheral velocity of $100 \mathrm{~m} / \mathrm{sec}$ the corresponding maximum frequency is $50,000 \mathrm{c} / \mathrm{s}$. '

In Great Britain the change-over from Lorenz slotting to Guy slotting occurs between $2000 \mathrm{c} / \mathrm{s}$ and $5000 \mathrm{c} / \mathrm{s}$. Baffrey ${ }^{34}$ reports the change-over in

French designs at about $10,000 \mathrm{c} / \mathrm{s}$ and also quotes maximum peripheral velocities of $150 \mathrm{~m} / \mathrm{sec}$.
(15) Comparison of homo- and heteropolar alternators
' In general, the homopolar design will be heavier and have a higher inertia providing a severe starting duty for its driving motor. The field losses may be less than for a heteropolar design due to the sinpler field coil arrangement, however, this contributes to a much longer field time, constant. Due to eddy currents in the solid homopolar yoke high transient voltages may persist for long enough to damage the insulation of either the alternator or the load circuit. The efficiency and output coofficients for similar ratings are substantially the same. Since the heteropolar design has a much shorter field time constant and is therefore the easier to control, and since it is also the cheaper to manufacture, this is the design used in most industrial applications. '

As solid state devices increase their power carrying capacity, oscillatory circuits are competing with the inductor-alternator for many industrial applications. The general advantages of rotating machinery, extended by the homopolar alternator's unique rotor construction, have made this type a choice for the extreme environnent of spacecraft. The problems of high operating termeratures in vacuum, or corrosive metal vapour atmospheres, coupled with shock and radiation hazards, form a comprehensive design challenge.
(16) Single and double-pitch armature coils
'A full single-pitch coil, fig. 16(a), spans half of one rotor slot pitch. It will be seen that consecutive armature coils which lie within consecutive field coils carry
currents of the same sense. Therefore they may be replaced by a single coil, fig. 16 (b), with a reduction in copper, a gain in space in the field slot and no reduction in the induced c.m.f. for the total winding. Such a coil is referred to as 'double-pitch'. '

The double-pitch coil is most commonly enployed in designs using Guy slotting. M. Guy, in his patent ${ }^{24}$ showed coils which are in fact doublepitch. It is not clear, however, that Guy attached any significance to this arrangement. The credit for recognising and analysing the potential of the double-pitch coil belongs to Dr. Walker who, together with E.C. Barwick, was granted a patent on the subject in 1941.
(17) Classification of single- and poly-phase designs
'This is a classification of heteropolar designs only; the categories depending upon slotting. Types I - III are single phase; IV - VI are polyphase.

Type I : Lorenz, one ac slot/dc pole
Type II : Guy, one ac slot/dc pole, several rotor slot pitches/dc pole, double-pitch coils

Type III : (Guy), one ac slot/dc pole, one rotor slot pitch $=2 / 3$ stator slot pitch, double-pitch coils

Type IV : Lorenz, one ac slot/dc pole, one armature coil pitch $=3$ field coil pitches
Type V : Guy, six ac coils/field coil
Type VI : (Guy), six ac coils/field coil, rotor slots equal stator slots ± 1
Types III and VI are less efficient than their altematives. They are not Lorenz, nor are they really Guy since the unwound slots peculiar to the stator airgap geometry of Guy machines have been onitted. They have the advantage, however, of being designed for frequencies up to $12,000 \mathrm{c} / \mathrm{s}$ without the stator slot pitch falling below 1.27 cm . They also offer the advantages of requiring simple notching dies and the 'open' slots make for ease of winding on small frame sizes. '

Diagrams for these types are given in ref. 2. A combination slotting has been developed known as Guy-Lorenz. This employs the high-frequency generating potential of Guy slotting with the more economic armature coil to field coil ratios of Lorenz arrangements. An exanple is given in fig. 17

Fig 17: An example of Guy-Lorenz slotting

(18) Harmonic content of output voltage

In general the open-circuit e.m.f. waveform will be identical to a summation of all the odd harmonic components of the open-circuit airgap flux density pattern: the even harmonic conponents having been eliminated by the full pitch armature coil.
'The most important factor is the ratio of the width of rotor tooth to the rotor slot pitch; if this ratio is made large, i.e. 0.5 , the waveform will be flat topped; if too small, i.e. 0.3 , it will be peaked, each wave thus containing a substantial third harmonic. For a homopolar design, the elimination of a particular harmonic (and the incidental reduction of others including the fundamental) can be sinply carried out by displacing the two halves of the rotov core with respect to each other, by the appropriate electrical angle, i.e. $60^{\circ} \mathrm{E}$ for the third harmonic. Skewing the rotor is a similar technique for reducing higher harmonics (ripples). The inportance attached to a pure waveform must be balanced against the
extent to which the machine size must be increased to compensate for the reduction in fundamental e.m.f. '

On load the voltage waveform is modified by the odd harmonic corponents of flux density due to the m.m.f. of armature reaction. Chapter 5 shows that, while the magnitude of these components is of consequence, the most inportant factor is the load angle at which the alternator is operating: this in turn is determined by the relative values of field and armature reaction m.m.f.s together with the power-factor of the load circuit. If the rotor slot opening to slot pitch ratio is chosen carefully, the next most efficient control over voltage waveform on load is the correct choice of 'working-point' (i.e. load angle) for the rated full-1oad conditions. This is discussed further in section 6.A.

(19) Airgap length

> 'In order to obtain the maximum output from an inductoralternator the radial airgap should be made as small as is consistent with reasonable mechanical clearance between rotor and stator bore. It is necessary to use ball and roller bearings, to observe fine tolerances, and to machine the rotor and stator airgap surfaces. '

With Guy slotting for the higher ranges of frequencies, the flux utilisation factors fall to 0.2 . The unwound slot openings become very small and a large percentage of the flux crosses the gap in the slot regions. In an atterpt to increase ε, very short airgaps have been employed with all the associated manufacturing costs and problems. The outputs of the higher frequency machines, however, are usually limited by losses and not by flux density, see section $1.2 .2(6)$. The writer has had some success with designs which sacrified airgap length in order to avoid machining the bore surfaces. The reduction in losses due to the full retention of interlamination insulation more than compensated for the increased field and/or
reduced airgap flux density. This exercise has not been applied to Lorenz designs since the decrease in losses is unlikely to balance the necessary increase in field. However, experience of excessive rotor and stator bore temperatures, coupled with the conclusions of Chapter 6 on surface loss mechanisms, may well be suitable grounds for investigation.

> (20) Noise
> 'Inductor-alternators rated at approximately 100 KVA at 3000 r.p.m. or more, are liable to set up more windage noise than other industrial electrical machines of conparable physical dimensions. The relatively low mean gap densities coupled with stiff stator teeth practically eliminate magnetic vibrations as a source of noise. '

In small alternators ($5 \mathrm{KVA} 500-1500 \mathrm{c} / \mathrm{s}$), magnetic noise has, in one instance, caused customers to change to solid state circuitory. The excessive vibrations were analysed by considering the stator as a dynamically loaded beam ${ }^{33}$. The existing deep field slots produced weak points which in turn governed the natural frequency of the stator core. In practice the machines were redesigned with wider field slots of the same depth as the armature slots (thus avoiding the 'weak points') with a dramatic reduction in noise level. Hence, although the stator teeth may be designed for stiffness and the densities not excessive, care must be taken that the natural frequency of stator, or shaft and rotor, lies well outside the range of frequencies to be generated.
(21) Armature reaction m.m.f.
'Further to section 1.2.2(10), the effect on the armature reaction of saturation in the magnetic circuit is allowed for a) by considering the m.m.f. responsible for the positive sequence component and b) by modifying the negative sequence component with a factor. Typical values
for this factor are given in fig. 18 (fig: 19 of ref. 2). '

Fig 18: Walker saturation factor k/k', 5.2.4 $x \quad x$

In the procedure for calculating terminal on-load voltage presented in Chapter 5 a similar factor arises. This is applied to all the reactive voltages due to leakage and reaction. Points for this factor (k / k^{\prime}) are include in fig. 18 for comparison.

(22) Instruments for testing

'In testing high-frequency alternators it is most inportant that the volmeters and anmeters used should have been calibrated at the frequency concerned. If the waveform deviates appreciably from a sine wave this will also introduce errors. '

Valve voltmeters are suitable for any frequency an inductor-alternator may generate. Armeters suitable for measuring several hundred amps at $10 \mathrm{kc} / \mathrm{s}$, however, are not easily manufactured or calibrated. Galvanometers used with thermo-junctions have been successful after calibration by the N.P.L. The placing of the thermo-junction on the shunt is an empirical operation since the variation of current distribution through the shunt is a very complex function of density and frequency. Recent experiments with a linear-coupler such as is used for transmission line imbalance detection have showed promise. The linear-coupler is an air cored toroid wound in such a manner that an e.m.f. appears across its terminals in response to changes in field within the ring: it is insensitive to external fields. If the current carrying conductor is passed through the linear-coupler (similar to the manner of using a current transformer) and the output e.m.f. is integrated, the resulting signal very closely follows, and is proportional at all times to, the high-frequency current. The two e.m.f.s, one proportional to current and the pther derived from the terminal voltage may possibly be multiplied by suitable amplifiers (such as form the elenents of an analogue computer) to give a signal proportional to instantaneous power regardless of powerfactor. This is under investigation because the conventional watt meter is presently capable of handling power at $2000 \mathrm{c} / \mathrm{s}$ only if specially constructed Instrument makers are unwilling to specify accuracies much above this frequency.

1.2.3 Surveys and discussion of napers by E.A: Erdelyi

The papers by Erdelyi (et al), referred to in section 1.2.1 as 'group (b)', are now considered in more detail. Excerpts from the introduction to ref. 18 serve to indicate the general concept and subsequent problems of this approach.
'Until recently, hand flux-plotting methods have been used to find the magnetic airgap induction of electrical machines. About forty years ago such a method was explained by Stevenson and Park ${ }^{25}$. The classical paper by Wieseman ${ }^{26}$ using hand flux-plotting for synchronous machines, is still a useful tool of many designers. However, this method demands great skill, is very time consuming and can generally not take care of non-1inear applications. For many years effort has been exerted to replace flux-plotting by hand for rotating machines by a computational method. Mamak and Laithwaite ${ }^{37}$ have developed a method based on the magnetic vector-potential, to find the magnetic induction in the air space of heteropolar machines, under the assumption that the magnetic materials are infinitely permeable. In a former paper ${ }^{38}$ the same concept has been used for high-speed aerospace synchronous machines, abandoning the assumption of infinite or of constant permeabilities. The method given there, a first try of this very corplicated problem, has used a relaxation method that converged only slowly. '

In reference 18 Nhamed and Erdelyi changed from Froelich's formula ${ }^{11}$ which had been used to describe the non-linear dependence of the permeability μ on the magnetic field intensity $\overline{i n}$, to an alternative formulation, which involves reluctivity as a function of the flux density, '.... suggested among others by King' ${ }^{39}$. The quality of this type of
analysis rests upon two questions. Firstly, the degree to which the analogue represents the real machine, and secondly, the accuracy of which a practical solution to the model is capab1e.

The second question is answered in the development of group (b). Subsequent papers evolve techniques to speed up the rate of convergence. This allows, in the same cormuter time, either greater accuracy per se or the use of a finer mesh. For exanple, from ref 11:
'.... the solutions were checked in regard to boundary conditions. These have been satisfied and the maximum error was well below 8%, In order to save computer time, the total number of iterations selected was 300 per solution. The accuracy would be increased further by increasing the number of iterations and the number of mesh points. '

The first question, which would be answered by correlating measurements, has unfortunately received only minimal attention.

Ref 11 : 'At present it is rather difficult to estimate the accuracy of the solutions'.

Ref 17 : 'An exact comparison (between tests and calculations) cannot as yet be made because no accurate experinental measurements are available.

Ref 18 : 'Oscillograms of flux-distributions on a similar alternator show that the computed curves have the same shape as the experimental ones'. 'The calculated no-load characteristic of the alternator (agrees well with) a statistical average no-load characteristic of alternators of the sane design...'

At each stage it has been possible to check the theory developed in this thesis by measurements, with the result that parts have been justified, and others have required further investigation. If the findings
of papers 10-19 were substantiated at each step by actual measurement, this approach would be proved to be a very powerful design tool. Increasing computer speeds coupled with developing mathenatical ability to produce iterative solutions with high convergence factors, will reduce the disadvantages associated with computed analogues even further. The designer, however, must also be satisfied that the model, whose solution has attracted so much attention, is valid for his purposes.

Many of the investigations in references $10-19$, which involve airgap flux density distributions, describe for the homopolar altemator the same characteristics which are here studied for the heteropolar machine. A specific example, with measurements which led to 're-thinking' of theory, is given in 3.1.4 during comparisons between fundamental and second harmonic main flux pulsations. Whereas measurements substantiated the theoretical explanation for fundamental pulsations, the same theory was totally inadequate when applied to second harmonic variations. It had been assumed that the space distribution of flux density associated with the rotor, when moving at uniform speed past the stator, would produce uniform time variations in flux density at a point on the stator airgap surface. Further investigations showed that due to the stator slot openings, the field pattern was locally distorted. This had a negligible effect on fundanental, but considerable effect on second harmonic mechanisms.

In reference 14, Surti and Erdelyi introduce an 'approxinate boundary condition' to represent the slot openings 'which accelerates the rate of convergence of the solution but has to be used judiciously'. The authors satisfy the 'second question', referred to earlier, by checking that the model solutions with 'exact' and with 'approximate' boundary conditions are 'very similar'. The final link with practice is missing however: it is a matter for conjecture whether tests would justify their modifications or indicate a similar theoretical wealness to that described in 3.1.4.

In general the conclusions of this group are valuable in that they indicate the parameters which are expected to affect the airgap flux density distribution; they have been helpful during the work reported in this thesis. In this analysis the conditions in practice are dependent on a multitude of factors and variables; the greatest progress has been made when theory and measurement have interacted. Theory has indicated the most suitable measurements and then, often, measurements have led to irproved theory as assumptions have been recognised as invalid or perhaps unnecessary.

Finally, it must be restated that group (b) has potentially the most powerful approach, especially for extremes of magnetic or electric loading. The "Sons of Martha' are well advised, however, to satisfy themselves that the elegance of the solution does not hide deficiencies in the model.

1.3 The relationship of this thesis to existing studies

The two major contributions to inductor-alternator theory considered in section 1.2 are wholly unconnected. On the one hand, group (a) papers may be described as classical in their treatment of the class of machines on a broad front. Comments on construction and application are given a similar amount of attention as the analysis of wave shape and leakage reactance. On the other hand, group (b) papers concentrate on detailed problems of field pattern and their solutions.

The contributions of both groups are directly dependent on the nature of their approach. The classical papers give a feeling for the machine as a type, and lead to a design technique which is somewhat enpirical and restricted but nevertheless successful. The lack of detail as to flux distribution within the iron, the load angle, and the factors governing on-load voltage waveform, arise because the theory is expressed in overall terms of 'flux per tooth' or 'ampere-turns for gap and teeth'.

The detail papers of group (b) give no overall feeling for the class of machine. No inmediate contributions to actual design procedure are forthcoming. They supply instead, complete information on the field pattern in iron and air, which allows the designer to work with more certainty as to the effects of saturation and the higher harmonics of field variations.

This thesis is the result of investigations in the region of theory and practice between the concepts of groups (a) and (b). It seemed desirable to try and extend the accepted theory of the classical approach to a level where the distribution and on-load problems might be investigated: thus avoiding the need for 'models' and iterative solutions for linear or near-linear conditions.

Sinilarly, experinental investigation to discover the distribution of flux in the airgap and within the iron was desirable on several counts. Firstly, it was hoped that the theory would be demonstrated as a useful representation of the real conditions. In fact as outlined towards the end of section 1.2.3 the interaction of tests and theory was of mutual benefit. Secondly, the inductor-alternator's airgap geometry and frequency make it inherently an interesting research 'vehicle'. Both aspects tend to magnify distortions, losses, and reactances, to a level where complicated instrunentation (described in Chapter 2) becomes worthwhile. Further, where a distortion or loss is due to several factors, it is possible to senarate the origins: this is not always feasible in other classes of machine, Finally, in the context of an expanding machines research programe, the experience gained in the techniques of instrumentation would be valuable.

Therefore, the 'relationshiy' to earlier work has been one of extending the classical approach to bring its capacity for analysis closer to the level of detail offered by the model/solution approach. The enphasis has been laid on developing the theory in the form of a design procedure; testing the various stages by experiment, and using the greater analysis detail to understand the on-load mechanisns.

1.4 The main characteristics of theory in this thesis

The classical approach to analysis of flux distribution has been governed by the equation:

$$
\text { Flux }=\text { m.m.f. } x \text { perneance }
$$

This relationship must be applied to a 'flux path' and involves the cross sectional area, thus not lending itself simply to the expression of a continuous function such as a distribution. For the distribution which is required is one of flux-density across individual teeth and sections of the core, not the overall expressions ϕ_{t} and ϕ_{S}.

Flux density has the property of a vector, having magnitude and direction and being expressed at a point. The distribution of flux density in the airgap was considered in section 1.2.2(2) together with techniques for deriving it in series form.

The basis for the theory is a general expression for the open-circuit airgap flux density in series form as a function of angular distance around the airgap. (The stator and rotor airgap surfaces are considered to have the same radii).

The airgap flux density distribution due to armature-reaction n.m.f. has been expressed in terms of the open-circuit distribution qualified by the ratio of field and armature m.m.f.s. This expressing of the load field pattern in terms of the open-circuit conditions was a simplification requiring careful application since it is invalid for the slot opening region. However, the corroboration of theory and test in Chapter 4 justifies the procedure.

This ability to describe the complete on-load airgap field pattern in terms of the open-circuit conditions leads on to a technique for calculating the field requirements on-load, which is offered in Chapter 5 as an alternative to the classical procedure. It is claimed that this
approach is applicable to any condition of load, and tests have demonstrated its ability to represent non-linear conditions, not heavily saturated, but non-linear to the extent expected in an industrial desim. The strength of the technique lies in its dependence on such paraneters as, load angle, load power-factor, airgap geometry and leakage reactance. By attention to these factors the optimum balance between magnetic and electric-loading for the desired working point may be investigated, 6.3. Any process which attempts to describe this many complex factors and the manner in which they interact as the machine settles to a working point, will be limited by assumptions which may be violated under extreme conditions. Within practical working regions this process has shown promise although it involves more parameters than the classical approach and still remains relatively sirple in structure.

Another area in which this work has been concerned in sone detail is that of negative sequence conponents of armature reaction. The denand for polyphase inductor-alternators is small and to have concentrated on this simpler version would have been to neglect a most important facet of the study. Some forward rotating components travel synchronously with the rotor distorting the pattern which existed on open-circuit. This pattern was computed from theory and measurements made to check the calculations. Neither the readings nor the calculations could be made until the negative sequence components were analysed and eliminated.

The concept of 'load-angle' for a single phase machine is analogous to that in the polyphase system but cannot be defined in identical terms because the field due to armature reaction is pulsating rather than rotating. Again, understanding of the difference came from the negative seq̧uence analysis.

Therefore, the main characteristics of this theoretical approach are; flexibility, stenming from the use of the continuous flux density function in general terms; and breadth, in that it involves all the paraneters in one complete expression.

CHAPTER 2 The Experimental Machine

2.1 The design. 54
2.2 Building the experimental machine.
. 1 Reasons for building in the laboratory. 57
. 2 Preparing and assembling the core laminations. 57
. 3 Windings. 59
2.3 Instrumenting the experimental machine. 62
2.4 Supporting apparatus.
. 1 The driving motor. 65
. 2 The load. 65
. 3 Signal integrating and measuring circuit. 66

Summary

This chapter describes the design, building and instrumentation of the 30 KN model of a 300 KV industrial Lorenz-type inductor-alternator.

Sixty-six search conductors were located on the stator and a further twenty on the rotor airgap surface. On either member any two conductors may be selected to form a search coil: thus the distribution of flux in the airgap and throughout the teeth and stator core may be investigated.

The flux waveforms are obtained by integrating the search coil signals. The circuit which both integrates and measures the signals is described, together with the design of the load circuit, and a report on the driving motor.

2.1 The design of the experimental machine

In line with the policy of a Technological University, it was desirable that any theoretical advances be in terms applicable to engineerin design. The smallest standard comercial generator in regular production is 300 NW ; this is much too big for university-laboratory use. Therefore, a 30 kV model to the industrial unit was designed.

Dimensionally the model is closely equivalent on a reduced scale dictated by the output coefficient, except for the armature slots. The leakage reactance was arranged to be identical although the slots differed, but the p.u. armature resistance of the model was 0.017 , against $0.008 \mathrm{p} . \mathrm{u}$. for the normal machine.

There follows a comparison of general dimensions and parameters:

dimension or parameter	model	industrial mit
frequency	1000c/s	1000c/s
speed	$3000 \mathrm{r} . \mathrm{p} . \mathrm{m}$.	$3000 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
output	33 kVA	333kVA
voltage	300/150 volts	1200/600 volts
current	111/222 amps	278/556 amps
power-factor limits	0.9 lead/1ag	0.9 lead/1ag
stator o.d.	40.0 cm	76.2 cm
stator i.d.	29.85 cm	58.42 cm
airgap (g)	0.28 mm	0.76 mm
core length (ℓ)	13.97 cm	38.1 cm
rotor slot pitch (λ)	4.69 cm	9.17 cm
rotor slot depth	1.02 cm	1.14 cm
rotor tooth width (t)	1.59 cm	3.23 cm
slope of tooth sides	20°	20°

dimension or parameter	model	industrial unit
stator slot opening	0.30 cm	0.41 cm
stator slot bridge	0.10 cm	0.20 cm
leakage reactance $\left(x_{\ell}\right)$	$0.32 \mathrm{p} . \mathrm{u}$.	$0.32 \mathrm{p} . \mathrm{u}$.
ε_{1}	0.84	0.84
ε_{2}	0.83	0.83
anpere-turns/pole e rated o.c. voltage	288	600

Fig. 19 shows the manufacturer's design sheet for the model which includes more detailed information on winding sizes and calculated load field requirements. No manufacturer's test data exists because the machine was delivered unwound. This enabled the machine to be cormleted in the laboratory to an experimental specification described in the next section.

Speen. ... Enclosure ...	
kVA 33.3 Connectionp............ P. Speed........ 2230	
kW b.p... 30.0 Amp. per phase.................. Pole Arc.................... $\%$	
Flux $=\frac{150 \times 10^{2}}{444 \times 32 \times 1000}=1056 \mathrm{mgl}$. Field Flux $=$ \qquad mg .	
$A T_{A R}=\frac{\sqrt{2} \times 222 \times 4}{2}=314$........ per inch.	

	Secton	Penty	${ }_{\text {d }}^{\text {ma }}$	Longth	AT
Stator Core	9.56	20.4	53		
Stator Teeth A.c B max ${ }^{2}$ min	$\begin{aligned} & 3.4 \\ & 3.12 \end{aligned}$				
	4.12		61.4	. 015	288
Rotor Teeth	3.31	70			-
Pole Body	17.0		30		
Spider					
$\mathrm{AT}_{\text {SI }}={ }_{a=1.08} \mathrm{SCR}=$		ATo..........			

LOSSES	$\operatorname{Cos} \phi=$			
	F.L.	1 X.F.L.	1 X.F.L.	1 X.F.L.
Windage Bearing		$\begin{gathered} 0.9 \text { LAE } \\ 1.6 \end{gathered}$	$\begin{aligned} & 0.0 .8 \text {. } \\ & 1.6 \end{aligned}$	$\begin{aligned} & 0.9 \text { UAS } \\ & 1.6 \end{aligned}$
Core -		1.51	1.10	0.81 .
TriR Stator $75^{\circ} \mathrm{C}$		S7	. 46	. 57
Eddy		1.71	1.45	1.71
TRR Fiold ${ }^{7} 5^{\circ} \mathrm{C}$. 27	
Excleor				
Total		5:39	4.88	4.69
Output			30	
Input			34.88	
\% Efficiency -			86	
Guarantes/OMer				

Das. by EB/JM RKLIEID......... Appd. by.

Fig 19

2.2.1 Reasons for building in the laboratory

The machine was delivered unwound for two reasons: a) the instrumentation would involve search conductors within the iron circuit: it was necessary therefore to break down the stator core. b) with the intention of studying loss mechanisms during the research it was necessary to ensure that the inter-lamination insulation was satisfactory.

Winding the machine in the laboratory offered the further advantage that the layout could be designed for easy dismantling in the event of failure or the need for additional instrumentation.

2.2.2 Preparing and assembling the core laminations

During manufacture the rotor and stator cores had been built up, skimmed, and the whole assembled in order that the airgap dimension might be checked. The process of 'skinming', although carefully supervised, tended to destroy the inter-lamination insulation at the airgap surface. Each punching was individually inspected and all instances of 'burring over' carefully removed. As a final precaution all the laninations were then 'burr-rolled' and revarnished. Small changes in dimensions due to this process were not sufficient to produce any difficulties in re-assembly, or marked deterioration in the airgap surfaces. The stacking factor fell from .88 to .875 .

To acconmodate the search conductors a special stator-core packet, 1.27 cm long, was fastened together using rivets situated away from the varying fluxes. This was then drilled as show, fig. 20 (a) (b), with 0.025 cm diameter holes. The packet was securely clarmed to minimise burrs. It was not possible to anneal after drilling, because the punchings were already vamished. The effect of drilling on the magnetic characteristics was discussed with a metallurgist and a physicist who in the absence of

Fig 20: Details of search conductors
(a) Position of search conductors in a test stack punching
(b) Test stack with search conductors shoving common strip
(c) Search coil for sensing flux passing behind field slot
(d) Surface search conductors on stator teeth seen from both ends of the core
(e) Surface search conductors on rotor teeth from both ends of core
published data, felt that the error from this source would be small. The laminations on either side of the packet were cut away to allow the introduction of the search wires.

Early attenpts to locate search conductors on the surface of the stator and rotor teeth with Araldite, were short lived under operating conditions. It was necessary to machine channels 0.025 cm wide and 0.02 cm deep along the surface of the tecth using a slotting saw, fig. $20(\mathrm{~d})(\mathrm{e})$. The conductors were then safely set in Araldite so that no part projected into the air space.

2.2.3 Windings

Three windings were required; for amature, field and darming.
The a.c. coils were formed from rectangular copper ($6.1 \mathrm{~mm} \times 2.3 \mathrm{~nm}$) bent on edge as push-through hairpin coils. To allow the winding to be dismantled without difficulty, special links were devised to complete the coils at the connection end, fig 21 (a). 32 a.c. slots each contained four conductors. Two parallel circuits were wound in alternate pairs of poles, i.e. poles 1, 2, 5 and 6 and poles 3, 4,7 and 8 , giving 32 effective turns in series. The 'copper content' of the slots is low, fig 21 (b), in order that slot leakage characteristics might be analysed by varying the separation between conductors.

Each of the eight ficld coils cormprised 270 turns of 0.71 nm diameter wire. The coils were series connected and wound with consecutive coils having opposite directions. The internal connection between coils 1 and 2 was tapped and brought out to enable measurements to be made on ond field coil alone.

The damping windings were in the form of a cage of copper strips lying at the bottom of each field slot. At one end, all the strips were connected to a common end ring. From the other ends individual leads, all of the

Fig 2l: armature winding
(a) end winding connections for one armature coil
(b) slot copper content
the same length, were brought out to a special terminal block at which any number could be connected together.

Fig. 22: Winding diagram for field poles 1 and 2

2.3 Instrumenting the experimental machine

To investigate the flux density distributions within the iron, which were the subject of the theoretical analysis, required a mesh of search coils. The drilling of suitable holes was described in 2.2.2, and fig 20 shows examples of the different locations and constructions enployed. Plots using conducting paper (section 3.1.2) had established the desirability of at least six coils within a main tooth cross section. To avoid removing more than 10% of the iron cross section by drilling, it was necessary to use drills not greater than .025 cm in diameter. If each small area was to be covered by a search coil, each hole must carry two coil sides, which fixed the preferred wire size at .076rm. A trial winding demonstrated just how delicate an operation producing such a system would be, and how limited an operating life must be expected. Further, the failure of one coil would mean the complete loss of any measurements from that area.

Working on the assumption that the inter-lamination planes were field equipotentials, i.e. that flux crossing this space was negligible, it appeared possible to use a conmon connection to all wires at one end of the 'packet' without introducing stray signals. The inmediate advantages would be

1) half the number of wires
2) half the number of external connections
3) an increase in wire size

A pilot scheme was wound and not only proved successful but also demonstrated the very great potential of the resulting mesh. Any two search conductors might be extemally chosen to form a search coil; for n conductors there were $\frac{n}{2}(n-1)$ possible search coils. Further, if one conductor failed the mesh 'pitch' in that area would increase, but a measurement might still be made.

These coils were supplemented by larger coils
a) around the stator core behind the field coil, fig 20(c)
b) in the surface of the stator and rotor teeth, fig 20 (d) and (e)

These coils were rum the whole length of the machine, thus embracing the total flux passing through that section. In hindsight this was a mistake because the stator surface coils and coil (a) above could not then be incorporated into the mesh. The decision was taken before it was certain that the small 'packet coils' would produce signals suitable for anplification and analysis. Since the airgap region was of primary inportance it was decided to extend the surface coils the complete core length and be sure of useful signals.

Inmediately each side of the instrumented packet the laminations were cut out to accomodate the comon connection system, and the wires being led out radially. The stator surface wires were led, suitably twisted, aroumd the back of the core. Both groups emerged through a ventilation port in the frame and were terminated at a double pole multi-way selector switch.

As the programme has developed, considered theoretical analysis has been corroborated using the existing search coils, For further study of the circumferential components of flux in the tooth surface regions it will be necessary to rewind the surface coils to include the 'packet' length only, and then link the surface common connection to the existing system.

The twenty rotor surface search conductors were led to a connection board on the rotor end-plate, from which heavier protected wires were run through a channel in the shaft wider the bearing, out across a nylon
miversal coupling, to the slip ring assembly.
The assembly contained eight slip rings whose terminals were carried on an insulated annulus mounted on the shaft. From the slip ring terminals eight short wander-leads with plugs were connected to any eight of twenty sockets, carried on a board also mounted on the amulus, which represented the terminals of the rotor surface search coils. The brush terminals, mounted on the assembly frane, for any eight socket selections made before the machine was run up, represented twenty-cight possible search coils.

Three thermocouples were buried in the windings to monitor the working temperatures; two in the armature winding, one in the bottom slot and one in the end winding, and the third in the bottom field slot.

2.4 Supporting apparatus for the experimental machine

2.4.1 The driving motor

The driving motor had the following description.
T.E.F.C. Squirrel Cage induction motor No. 172863
Power $45 \mathrm{~h} . \mathrm{p}$.

Full load current 57 amps
Supply voltage $\quad 400$ V. 3 phase $50 \mathrm{c} / \mathrm{s}$
Speed
2,940 r.p.m.
Rating
Manufacturer
Continuous B.S.S. 168-1936
Electric Construction Co. Ltd.
The motor output and efficiency were accurately calibrated at the Witton Laboratories of the General Electric Co. using a $60 \mathrm{~h} . \mathrm{p}$. precision dynamometer.

The motor and the experimental machine were flexibly coupled and mounted on a bed plate. The motor supply circuit is given in 8.2

2.4.2 The load

Several methods for dissipating the alternator output were investigated. The ideal specification would be a pure resistance, infinitely variable from 15Ω to 0.5Ω (10 amps to 300 amps).

Fan cooled load resistors (8.1 item 17) were variable but limited to 10 anps each. Expanded metal cages were capable of dissipating the load but suffered from being bulky and difficult to adjust.

The eventual solution was a nickel helix resistor on a ceranic core. This was small ($3^{\prime \prime}$ dianeter $\times 14^{\prime \prime}$ long) 3Ω maximum, variable by adjusting terminal clamps to any point on the helix, and cheap. Susperided in water which could be continuously changed, this device was capable of
dissipating 50kN. Fortunatcly, the power-factor of this 'load' was effectively unity at $1000 \mathrm{c} / \mathrm{s}$. Only when the resistance was reduced to a low value, say $\frac{1}{2} \Omega$, and the reactance of the main leads became comparable (although they were kept as short as possible), did the power-factor of the load circuit change appreciably.

2.4.3 Signal integration and measuring circuit

The e.m.f. signals supplied by each search coil were proportional to the rate of change of flux (w.r.t. time) linking the coil area. In order to display and analyse the linking flux waveform, each signal was integrated using an operational amplifier (8.1 item 2). The mean level of the flux waveform, when displayed on an oscilloscope (8.1 item 1), may be arranged to lie on a given graticule by adjusting the oscilloscope controls. It may also be moved by injecting a d.c. voltage with the signal. In this manner the trace nay be 'biassed', from peak to peak, or over any other desired dimension of the waveform. By amplifying the trace, and measuring the required bias d.c. input using a digital voltmeter, measurements may be repeated with an accuracy of better than 0.5%. The diagram of the circuit which was used it given in fig. 23.

A general list of other supporting instruments is given in 8.1

Fig 23
3.1 Distribution of stator flux under open-circuit conditions
. 1 Introduction 71
. 2 The conducting paper analogue 72
. 3 Investigation by measurement 78
. 4 Theoretical investigation 86
. 5 Comparison of investigations by theory and measurement 92
. 6 Comparison of fumdamental fluxes passing behind the field slot and across the pole pitch 96
3.2 Distribution of stator flux due to armature-reaction m.m.f.
. 1 Introduction 101
. 2 Theoretical investigation 101
. 3 Justification for applying theory to several armature slots 105
3.3 Damping windings. 1 Introduction107
. 2 Sumnary of alternating voltages induced in a field coil and theeffect of a short-circuited damping turn107
. 3 Summary of alternating fluxes in the stator core and the effect of a short-circuited danping turn 111

Sumary

In this chapter the manner in which flux levels vary throughout the stator iron is studied. The variations fall into the following categories
(a) variations due to design; those that are intended and which would exist in an ideal machine.
(b) variations, and modifications to (a), which exist because slots in the stator iron dictate the paths and magnitude of the flux components.
(c) variations under load conditions which are inherent in the design but which serve no useful purpose.

The differences between the actual and the ideal geonetry of a machine are analysed using a conducting paper analogue. The results are given in the form of flux distributions within each tooth during a cycle; 'these are further analysed in terms of the harmonic content of the resulting flux density waves. The search coils are next used to establish the magnitude and phase relationship of flux components in various sections of the core and teeth, from which it is recognised that the airgap tooth widths control the overall pattern. A theory is derived to express the affect of armature slot opening dimensions. This suggests an open-circuit flux distribution throughout the teeth and core which is corroborated by measurements for fundamental variations. Second-hamonic variations are adequately described as to distribution and a distortion in the ficld close to the armature slot openings is shown to account for the difference between neasured and calculated values.

The theory is extended to describe the flux distribution due to armature-reaction. Variations at twice line frequency due to the combination of the fundanental reaction m.m.f. and permeance variation are expressed in terms of the armature slot opening and an angle proportional
to the load angle. The measured effect of these additional components on load was small compared with theoretical values, and difficuit to isolate in order to establish an explanation (presumably similar in kind to that accounting for the reduced open-circuit second-hamonic components Therefore, the load theory was corroborated from a different approach whic is reported in Chapter 4.

Finally, the greater understanding of flux distribution, and the voltages induced in the field coils, shows that darming turns are an unnecessary waste of field slot space in this particular machine. The losses will be redistributed rather than reduced and the peak induced voltages in the field windings are not excessive.

3.1 Distribution of stator fluxes under open-circuit conditions

3.1.1 Introduction

According to 'group (a)' theory, 1.2.2(4-9), variations in flux level are confined to the tecth and the section of core imnediately behind the armature slots. On open-circuit no variations are expected in the main ficld pole to pole flux. Movement of the rotor past a stator tooth is designed to vary the flux carried by that tooth between a maximum of ϕ_{t} and a minimum of ϕ_{S}. The pattern of change from ϕ_{t} to ϕ_{S} is presumed to bear a linear relationship to the change in permeance of the airgap space facing the stator tooth, since the rotor speed is constant.

This theory was based on an element of the airgap geometry covering one rotor slot pitch. Two possible causes of variations not accounted for by this approach are

1) the 'half-teeth'
2) the overall change in circuit permeance from a maximum when a rotor tooth faces a stator tooth to a minimum when a rotor tooth faces a stator slot.

The conducting paper malogue, 1.2.2(2), offered a comparatively simple technique for a preliminary investigation as to whether the 'practical geometry' differed from the theoretical 'element' in its response. Not only were the tooth fluxes, as functions of time, found to contain substantial harmonic components; but the distribution of flux density within the teeth, and the differences between teeth, were indicatec

These findings also suggested the most useful positions for search conductors in the experimental machine. From the search coil e.m.f.s, values were obtained for flux variations throughout the iron. Analysis of the voltages induced in a single field coil added to the knowledge of flux distribution, but also produced some anomalies.

As a result it was clearly necessary to investigate the nature of each tooth's 'contribution' to the corc fluxes. Since the information already to hand was not consistent with the concept of equipotential m.m.f. circles, 1.2.2(7), a theory based on the airgap flux density distributions was employed. If the tooth distributions were to be analysed, the theory which lumped teeth and gap together had to be abandoned in favour of one which allowed separate, but interclependent, treatment of gap and teeth regions.

This leads to explanations for the anomalies and descriptions of the modifications to the 'ideal' theory required by individual airgap geonetries.

3.1.2 The conducting paper analogue

The theory of conducting paper analogues is well documented ${ }^{29}$. In the majority of applications the paper represents the airgap space, with the iron boundaries as electrodes between which the voltage (analogous to m.m.f.) is applied.

The smallest segment of the stator bounded by radial equipotentials wa a full field pole pitch, as shown in fig. 24. Although this area is symetrical about the middle tooth centre-1ine, the permeances of each 'half field pole pitch airgap space' varies; for only two positions of the rotor are they equal. It is unlikely that the flux density along the field slot centre line will be uniform. However, since the gradient is unknown, and its representation complex enough to detract from the essential simplicity of the analogue, uniform density distribution is assumed. Any inaccuracies are unlikely to seriously affect the tooth ficld pattems.

Therefore, the current is fed in on two electrodes along the field slot centre lines and led out across the tooth airgap boundaries. Each tooth boundary is divided into ten tabs. To the same scale the armature

Fig 24: Full d.c. pole pitch conducting paper analogue and circuit for details of tab connections, see Fig 25.
slot opening is approximately 2 'tabs' width and the rotor, tooth, 8 'tabs' width.

Leading the current out through the eight central tabs on a stator tooth boundary simulates a rotor tooth in line with a stator tooth. Similarly leading the current out through the three tabs on either side of a slot opening, fig 25 , simulates a rotor tooth opposite a stator slot.

Fig 25: Detail of airgap surface 'tabs' on conducting paper analogue fed by resistors representing the airgap
(a) position 1 , set 1
(b) position 19, set 2
(c) position 2, set 1 .

The circuit is completed through parallel resistors, one for each tab in operation, which represent the airgap. Thus for 'rotor tooth opposite stator slot' the number of parallel resistors is reduced from eight to six, increasing the total resistance of the circuit and therefore representing a decrease in permeance. The value of each resistor is calculated so that $\frac{\rho \text { gan }}{\rho \text { iron }}=\mu_{r}$; the value for μ_{r} is a function of tooth flux density.

Hence, by moving two sets of eight connections across the stator boundary 'tabs', the field pattern was investigated for several rotor positions, fig 26. The equipotential lines were plotted by selecting a ratio (with the helical potentioneter) and tracing the locus of points which gave no galvanometer deflection. This is a standard technique: the field density is proportional to the proximity of the equipotentials.

Converscly the potentials at two points may be measured. The average potential gradient between the two points is proportional to the mean field density along a line joining the two points. Hence, by subtracting the potentiometer reading at the first point from that at the second point, for different 'rotor positions', a cycle of readings proportional to the variation of flux density was obtained. The choice of 'points' governed the region within the teeth and the direction of the cormonent which was investigated. Fig 26 shows the variation in ficld direction close to the airgap boundary. Readings there were taken as 'radial' and 'circunferentia components and used to investigate surface loss mechanisms, 6.1. Through the root of the teeth the field direction was close to radial throughout a cycle.

Variations of density in the main and half teeth roots were fourier analysed. Fig 27 shows the respective plots and table 1 the harmonic content of these variations.

position
21

Fig 26: Orthogonal sketches from central tooth of conducting paper analogue

Fig 27: Cycles of variation in $B(\propto V / \ell)$ at centre of each tooth root from conducting paper analogue, see Table 1 for analysis.

Table 1: Harmonic content (\%) of cyclic. variations in flux density at the stator teeth roots from measurements on a conducting paper analogue

harmonic order	half tooth	coil tooth	central tooth
fund.	100	100	100
2nd	38	14	14
3rd	2	2	4
4th	5	5	8
5th	2	5	3

The conducting paper analogue showed in a qualitative fashion, and a relatively short time, the nature of the field pattern within the stator teeth. This was invaluable, both for the placing of search conductors, and in the interpretation of readings subsequently taken on the experimental machine.

3.1.3 Investigation of the flux distribution by measurements

In the design of the conducting paper analogue it was assumed that the flux passing behind the field slots did not vary in time. To investigate the conditions in fact, a search coil was wound, fig 20(b), anc the field winding was tapped in order that one coil might be used as a large 'field slot to slot' search coil. Fig 28 shows the harmonic analysis of the voltage induced in this single field coil under open-circuit conditions. Each harmonic was measured with and without the damping circui connected.

When the harmonic fluxes passing behind the field slot were measured, for similar conditions, and compared with the fluxes linking the field coil, unexpected flux/voltage relationships appeared.

Fig 28: Harmonic voltage modulations present in a single ficld coil on rated open circuit $\left(V_{\text {rms }}\right)$
(a) undamped
(b) damped
$\begin{aligned} \text { Note: } & \text { Sum of all modulations across whole field winding } \\ & <1.0 \text { volt }\end{aligned}$

Table 2: Comparison of harmonic fluxes measured behind the field slot with those calculated from the voltages induced in the field coil.

harmonic	daniped/ undamped	open-circuit flux measured $\mu \mathrm{W}$	open-circuit flux required to induce measured voltage $\mu \mathrm{Wb}$
1	undarmed damped	$\begin{aligned} & 191 \\ & 189 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 3.1 \end{aligned}$
2	undanped damped	$\begin{gathered} 15 \\ 2.6 \end{gathered}$	$\begin{gathered} 19 \\ 2.5 \end{gathered}$
3	undamped damped	$\begin{aligned} & 20 \\ & 19 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 0.3 \end{aligned}$
4	undamped damped	$\begin{aligned} & 7.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 0.4 \end{aligned}$
5	undarmed damped	$\begin{aligned} & 4.6 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 0.2 \end{aligned}$
6	undanned damped	$\begin{aligned} & 4.4 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 0.2 \end{aligned}$

Table 2 shows clearly that
a) the even-hamonic fluxes agree reasonably with the voltages they induce. They are substantially reduced by damming.
b) the odd-harmonic fluxes have much greater magnitudes than are required to induce the voltages found in the field coil. The fundanental and third harmonics are almost unaffected by danping, suggesting that the vector suo of the two fluxes behind adjacent field slots does not vary within the danming winding of that pole.

It was evident that odd and even harmonic flux components are distributed throughout the stator iron in separate and distinct patterns. first attempt to learn more about these differences by measurements using thr 'packet' search conductors is tabulated in fig 29.

Fig 29: Harmonic components of peak flux, in $\mu \mathrm{Wb}$, in core and teeth at rated open circuit voltage
(a) Fundamental
(b) Second
(c) Third
(d) Fourth
(e) Fifth
(f) Sixth

Bracketed values refer to damped conditions

The following facts emorged:
a) odd-hamonic components behind the field slots are of the same order as conponents crossing the central tooth centre-line. Even components behind the field slots are in general smaller than those crossing the pole.
b) odd-hamonic components passing through the half tooth and 'half of the central tooth' roots, are approximately half the magnitude of components passing through the 'coil' tooth root. Even cormonents from the half tooth are much greater than from other teeth.

The second stage measurements concentrated on fundamental and second harmonic components in smaller regions; they are tabulated in fig 30 (a) (b). The values indicate the peak flux variations sensed by each coil. Since these variations are not necessarily in phase they do not, in themselves, add to the information on overall distribution. Coupled with the readings in fig 29, however, they suggest the following:
c) the fundamental time variations of flux in all parts of each tooth are in phase. The components crossing the pole and passing behind the field slot are not in phase with the tooth variations.
d) the second-harmonic time variations of flux in different parts of the 'coil' and 'central' teeth are not in phase, whereas in all parts of the 'half' tooth the flux variations are in phase.

This led to the recognition that the distribution of a certain hamonic cormonent is related to the ratio of the tooth width to the space distribution of that harmonic in the airgap. The fundanental variations are uniformly distributed within the 'coil' and 'central' teeth, whose width equals half the fundamental space wavelength. The second-hamonic variations are mifomly distributed within the 'half' tooth, whose width equals half the second-hamonic space wavelength.

More evidence was obtained by cormaring the waveforms of flux variations crossing behind the armature slots, fig 31.

Packet coil readings x ll to represent complete core length

Effect of damping: negligible excent behind field slot

Fig 31: Comparison of flux waveforms behind consecutive armature slots

These waveforms were predominately composed of fundanental and secondhamonic; fig 29 shows the remaining components to be small. The numbering of the search conductors is show in fig 31.

The previous findings were correlated as follows:

1) the fundamental components for each half of the coil tooth (20-32) and $(9-20)$ are in phase as suggested in (c), whilst the dissymmetry in these waveforms, i.e. the second-harmonic, is out of phase. Similarly comparison of (1-9) and ($9-20$) shows the 'half' and 'coil' tooth variations to be out of phase.
2) comparison of $(9-13)$ and $(32-28)$ shows the fundamental components to be 180° out of phase, suggesting that the flux paths from each tooth split, passing behind the armature slots in opposite directions. The dissymmetry in (9-13) and (32-28) suggests that the second-hamonic components are shifted 90° from the fundanental but in phase with each other. If the fundamental is in tems of ' $\cos \omega t$ ' then the secondhamonic will be in terms of ' $\sin 2 \omega t$ ' and, at any instant, the directions of these second-hamonic corponents behind the armature slots will be the same.

At this point in the investigation the pattern of paths taken by various components was becoming clearer in a qualitative fashion. However, the complex of odd and even, inphase and out-of-phase, cosine and sine components had not indicated a common mechanism which might be responsible for their existence.

3.1.4 Theoretical investigation of the flux distribution

The pattem of the fluxes contributed by each tooth to the corc indicated a dependence on the relationship between tooth width and the space distribution of the airgan field. The flux variations at the stator airgap surface were caused by the modulation of a constant m.m.f. by a variablereluctance pattem. Fig 32 (a) shows the rotor and airgap which produced tho

Fig 32: Ideal stator and rotor geometry with open-circuit flux-density wave.
Reference axes showing position of rotor reference relative to stator reference at time $t=0$
variable-reluctance. If constant excitation is applied to this airgap, and stator slotting is neglected, the flux density pattern shown in fig 32 (b) results. This can be analysed into a steady flux densìty on which is superimposed a fundamental, of wavelength equal to the rotor slot pitch, and its harmonics. The flux density wave show in fig 32 (b) moves with the rotor. If the stator slots are negligibly small and the active pole width an exact number of rotor pitches, it is seen that the total flux entering the pole on open-circuit will be constant, irrespective of rotor position. There will be flux density variations in the iron at all the frequencies present in the original flux density wave, but there will be no change of flux linkages with the field.

With these 'ideal' conditions, i.e. a continuous stator airgap surface between field slots, the open circuit airgap flux density distribution relative to the stator reference axis, is given by

$$
\begin{equation*}
\bar{B}_{o c}=\sum_{m=0.1 .2 \ldots}^{\infty} B_{m} \cos m(\theta-\omega t-\pi / 2) \tag{2}
\end{equation*}
$$

The total flux linked by a coil having conductors at θ_{1} and θ_{2} of active length ℓ would be

$$
\phi_{\theta_{1}}^{\theta_{2}}=\frac{l \lambda}{2 \pi} \int_{\theta_{1}}^{\theta_{2}} \bar{B}_{o c} d \theta
$$

Integrating between $-\pi$ and 3π gives the net flux that will link the field winding, ignoring field-slot leakage:

$$
\begin{aligned}
& \phi_{-\pi}^{3 \pi}=\frac{\ell \lambda}{2 \pi} \int_{-\pi}^{3 \pi} B_{o c} d \theta=\sum_{m=0}^{\infty} \frac{\ell \lambda}{2 \pi}\left\{\frac{B_{m}}{m} \sin m\left(\theta-\omega t-\frac{\pi}{2}\right\}\right. \\
& =\sum_{-\pi}^{3 \pi} \frac{\ell \lambda}{2 \pi} \frac{B_{m}}{m}\left\{\cos m \omega t\left(2 \sin 2 m \pi \cos m \frac{\pi}{2}\right)\right. \\
& \left.+\sin m \omega t\left(2 \sin 2 m \pi \sin m \frac{\pi}{2}\right)\right\}
\end{aligned}
$$

$=0$ for m odd or even
For $m=0, B_{o c}$ is constant. Therefore no time-varying flux linkages with the field coil can exist if
a) the stator airgap surface between field slots is smooth and continuous, and b) the field pole pitch at the airgap is an even multiple of π electrical rad.

In the practical machine, the stator ac. slotting is a major divergence from this ideal. This interrupts the stator surface between field slots and forces the fundamental and harmonic pole fluxes to close
by different paths from the natural ones. This is especially true of the odd harmonics, which would have to take different paths even if the a.c. slots were very narrow. It also applies to the even harmonics, since nomal tooth widths are less than an integral number of harmonic pole pitches. Tables 3 and 4 summarise the contributions of individual teeth to the core flux at fundamental and second-hamonic frequencies, respectively, in terms of the stator-slot opening σ (electrical rad). The tooth numbering is shown in fig 33 (a) and the expressions are derived in detail in Appendix 8.3.1. These expressions led to explanations for the anomalies and to methods for calculating the various components of flux which had been measured.

Table 3: Sumnary of fundanental frequency contributions to core flux, (open-circuit).

Tooth	fundamental frequency contribution in units of $\frac{e \lambda^{B} 1}{2 \pi}$
1	$\cos \sigma / 2 \sin \omega t-(1-\sin \sigma / 2) \cos \omega t$
2	$-2 \cos \sigma / 2 \sin \omega t$
3	$2 \cos \sigma / 2 \sin \omega t$
4	$-2 \cos \sigma / 2 \sin \omega t$
5	$\cos \sigma / 2 \sin \omega t+(1-\sin \sigma / 2) \cos \omega t$
6	$\cos \sigma / 2 \sin \omega t-(1-\sin \sigma / 2) \cos \omega t$

The sum of the terms in 'sin ωt ' (table 3) over one d.c. pole pitch, i.e. teeth $1-5$, is zero. The second term, $\cos \omega t$, for tooth 5 can be balanced by contributions from either tooth 1 (passing across the d.c. pole) or tooth 6 (passing behind the ficld slot), fig 33(b). The relative flux levels depend upon path reluctances and will be further studied in 3.1.6, but, as there is symmetry in successive poles, the net flux entering a pole is zero. This explains how there can be fundanental
flux passing behind the field slot with the machine on open circuit without voltages being induced, either in the damping winding or in the field coil, by these fluxes. These remarks are true even if σ is very small; only the complete elimination of slotting will give the ideal conditions previously analysed.

Table 4: Sumary of second-harmonic frequency contributions to core flux, (open-circuit).

Tooth	second-harmonic contribution in units of $\frac{e \lambda^{B_{2}}}{4 \pi}$
1	$-\sin \sigma \cos 2 \omega t-(1+\cos \sigma) \sin 2 \omega t$
2	$-2 \sin \sigma \cos 2 \omega t$
3	$-2 \sin \sigma \cos 2 \omega t$
4	$-2 \sin \sigma \cos 2 \omega t$
5	$-\sin \sigma \cos 2 \omega t+(1+\cos \sigma) \sin 2 \omega t$
6	$\sin \sigma \cos 2 \omega t+(1+\cos \sigma) \sin 2 \omega t$

Table 4 shows that the terms in $\cos 2 \omega t$ are additive; their paths from pole to pole can only be completed by passing behind the field slot, fig 33(c). This explains the correct relationship noted between measured fluxes and voltages and the reduction in this flux due to damping (table 2). These terms are critically dependent on the angle σ, tending to zero as σ itself goes to zero. Table 4 also shows that the $\sin 2 \omega t$ terms of teeth 1 and 5 sum to zero, and that those of teeth 5 and 6 are of the same sign. Hence, these second-harmonic fluxes are closed within a d.c. pole, and do not pass from pole to polc. Further, they are not eliminated by making o small; only complete removal of the slotting will eliminate them. These fluxes cause losses, but do not induce voltages in the field or damper windings.

Fig 33: Distribution of open-circuit flux variations (even a.c. slots per.d.c. pole)
(a) numbering system
(b) paths of fundamental components
(c) paths of second-harmonic components

3.1.5 Comparison of investigations by theory and measurement

Table 3 gives the theoretical fundanental contributions from teeth 2,3 and 4 as having magnitude $\frac{\ell \lambda B_{1}}{\pi} \cos \frac{\sigma}{2} \sin \cdot \omega t$.
For the experimental machine the relevant design values are

$$
\begin{aligned}
\mathrm{B}_{1} & =0.55 \mathrm{mb} / \mathrm{m}^{2} \\
\ell & =\text { (active core length) } \times \text { (stacking factor) }=12.22 \mathrm{~cm} \\
\lambda & =4.69 \mathrm{~cm} \\
\sigma & =0.46 \text { electrical rad (26.35 electrical deg) }
\end{aligned}
$$

If $\phi_{x y}$ denotes the peak x th harmonic component of flux contributed to the core by tooth y,

$$
\begin{aligned}
\phi_{12} & =-\phi_{13}=\phi_{14}=-977 \mu \mathrm{~W} \\
\text { and } \phi_{11} & =\frac{l \lambda B_{1}}{2 \pi}\left\{\cos \frac{\sigma}{2} \sin \omega t-\left(1-\sin \frac{\sigma}{2}\right) \cos \omega t\right\} \\
& =\text { vector } \operatorname{sim} \text { of } 488 \sin \omega t \text { and } 387 \cos \omega t \\
& =623 \mu \mathrm{~W}
\end{aligned}
$$

Assuming that the cos ωt component of ϕ_{11} is split equally between the two possible circuits, fig 33 (b), then 'flux behind field slot' = 'flux across pole pitch' $=193 \mu \mathrm{~Wb}$.

Table 4 gives the theoretical second-harmonic contributions from teeth 2,3 and 4 as having magnitude $\frac{l \lambda B_{2}}{2 \pi} \sin \sigma \cos 2 \omega t$

$$
\begin{aligned}
\mathrm{B}_{2} & =0.39 \mathrm{~B}_{1}(\text { see } 8.4 \text { Tab1e } 17 \text { and note Table 1) } \\
& =0.21 \mathrm{~Wb} / \mathrm{m}^{2} \\
\text { then }-\phi_{22} & =-\phi_{23}=-\phi_{24}=84 \mu \mathrm{~W} \\
\text { and }-\phi_{21} & =\frac{\ell \times \mathrm{B}_{2}}{4 \pi}\{\sin \sigma \cos 2 \omega t+(\cos \sigma+1) \sin 2 \omega t\} \\
& =\text { vector } \operatorname{sim} \text { of } 42 \cos 2 \omega t \text { and } 180 \sin 2 \omega t \\
& =185 \mu \mathrm{~W}
\end{aligned}
$$

The value of $B_{1}=0.55 \mathrm{mb} / \mathrm{m}^{2}$ is the design value for rated open circuit voltage, 150 V . With the field adjusted for $B_{1}=0.55 \mathrm{~W} / \mathrm{m}^{2}$ the actual voltage is $151 V$. For this field setting the flux from teeth 1 and 2 was measured together with the flux crossing the pole and passing behind the field slot. Table 5 compares the calculated and measured values for these regions.

Table 5: Core flux (μ W) , field set for designed open-circuit fundamental flux density.

	Fundanental		Second-harmonic	
	Calculated	Measured	Calculated	Measured
From tooth 1	623	645	180	152
From tooth 2	977	990	84	4
Behind field slot	193	189	168	10
Across pole pitch	193	189	185	159

The fundamental measured and calculated values show good agreement, suggesting that the distributions discussed in 3.1.4 are soundly based. Equally, the values of second-hamonic contributions from tooth 1 , which theory suggests cross the pole pitch to tooth 5 , are corroborated. However, the contribution from tooth 2 is clearly affected by another mechanism. Since the flux measured behind the field slot is approximately twice that contributed by tooth 2 , the path suggested in 3.1.4 seems correct; it is the magnitude which has to be investigated.

Fig 34 (a) shows measured second-harmonic flux levels in tooth 2 and fig 34 (b) the flux which links an array of search coils along the airgap surface of tooth 2 , at rated open-circuit voltage. The average surface search coil flux is $74 \mu \mathrm{~m}$. Correcting for pitch this establishes the presence of $187 \mu \mathrm{Vb}$ of second-harmonic flux in the airgap. (This agrees with the theory of 3.1.4, since for $\sigma=\pi / 2$, i.e.

in the gap: 187
(b)

Fig 34: Detail of fluxes measured in tooth 2
(a) Second-harmonic fluxes, in $\mu \mathrm{Hb}$, in the airgap and at various cross-sections
(b) Lettering system for surface conductors with second-harmonic fluxes, in $\mu \mathrm{iVb}$, measured by coils made up from adjacent pairs
tooth width equal to half a second-hamonic wavelength, $\left.\phi_{22}=190 \mu \mathrm{~m}\right)$. However, for the experimental machine the theory leads to a value of $84 \mu \mathrm{VF}$ (Table 5) where only $32 \mu \mathrm{VF}$ is measured. Further, the assumption that whatever flux penetrates the tooth surface will be contributed to the core without loss is shown to be unacceptable; only $4 \mu \mathrm{VB}$ is in fact contributed. The theory of 3.1.4 depends upon the basic assumption that sinusoidal time variations of flux density in the stator teeth are the result of the uniform motion of the rotor with its associated sinusoidal space distribution of flux density. Since the second-harmonic flux per pole and the pitch of the tooth-surface coils are know, measurement of second-harmonic voltage in these coils can be corpared with calculated values, using the known flux, to show any flux distortion that is present. Table 6 shows the actual pitch and the expected voltage, together with the measured voltage and the pitch that will correspond to those measurements.

Table 6: Calculated and measured second-harmonic voltages with corresponding values of pitch for the tooth-surface search coils, fig 34 (b)

	de	df	ae	af	ag	bh	ah	ai
Calculated voltage Actual pitch	0.49	0.95	1.53	1.61	1.53	1.53	1.30	0.95
0.1	0.2	0.4	0.5	0.6	0.6	0.7	0.8	

Since the difference between actual and 'measured' pitch increases for coils covering the tooth tip region, distortion is suspected in this area. It is presumed that more of the second-harmonic flux distribution is able to complete its path within the tooth surface than
is expected, reducing the contribution to the tooth proper from 84μ in to $32 \mu \mathrm{Vb}$. The flux not finding a path from one harmonic pole to the next within a tooth width is, by the theory of 3.1 .4 proportional to the slot opening. The distortion of the flux distribution has effectively reduced the slot opening to a quarter its actual dimension (coil ai, 0.95 instead of 0.8).

Fig 35: Postulated distortion of second-hamonic flux in tooth 2
(a) Flux entering tooth surface
undistorted flux \qquad
distorted flux
lower curve is spatial second-harmonic component of airgap flux
(b) Assumed distribution of flux within tooth

Fig 35 (a) shows the spatial distortion of the second-harmonic component of airgap flux density at the tooth surface, with the associated redistribution of time-varying flux donoted by the vector arrows. The constriction of the teeth, due to the slotting, distorts the flux pattern at the sides of the teeth even further, fig 35 (b). The combination of these postulated distortions at the gap surface and in the tooth make the assumed linearity invalid and allow the flux within the tooth to complete more of its pole-to-pole path, reducing the contribution to the core below that expected from theory.

3.1.6 Comparison of fundamental fluxes passing behind the field slot and across the pole pitch

In Table 5 measured values of fumdanental flux passing behind the field slot and across the pole pitch are recorded as $189 \mu \mathrm{~W}$ and $186 \mu \mathrm{ib}$ respectively. The permeance coefficients for the two paths are very similar and therefore, with the evidence of the measurements, it seems valid to divide the' $\cos \omega t$ ' component from tooth 1 by two and use these values for comparison.
lowever, when it is recognised that the path behind the field slot carries the ficld flux while ϕ_{11} is the only component crossing the pole, the equality of the two measurements becomes more of a curiosity than something to be expected.

Fig 36 shows the manner in which the fluxes vary for a range of field settings. The flux passing behind the core (57-58) reaches a peak for approximately open-circuit rated field conditions. The flux passing across the pole (41-39) continues to increase in value as the field current is increased. These two curves cross at approximately rated open-circuit field conditions; this explains the equality of the measurements recorded in Table 5.

Since the major component of ϕ_{11} is in terms of 'sin ωt ' while the split path components are in terms of 'cos ωt ', the vector difference of flux from tooth $1(1-9)$ and flux passing behind the adjacont armature slot $(9-13)$ is calculated and included in fig 36. The fact that these calculated values agree closely with measurements of flux passing behind the field slot $(57-58)$ is further demonstration that the theoretical distributions, fig 33 (b) are correct.

Because the path behind the field slot carries the d.c. field flux, the component of ϕ_{11} taking this route varies about a high mean level. The path across the pole is comparatively lightly loaded magnetically; at the pole centre line the ϕ_{11} component is the only flux present. Thus the path behind the field slot experiences a reduction in incremental permeance as the overall flux level increases. This accounts for the reduction in flux sensed by ($57-58$) and more of $\phi_{11}(\cos \omega t)$ passing ($41-39$) as the ficld is increased. Fig 37 shows the good agreement between the calculated value of $\phi_{11}(\cos \omega t)$ and the sum of measurements made by coils (57-58) and (39-41).

Fig 38 shows the fundanental voltage induced in one field coil as the field is increased. Sinilar to the flux recorded in fig 37, the voltage induced in an undarped coil reaches a peak for approxinately rated open-circuit conditions. When the coil is danped the peak induced volts are reduced to a third of their undanped value. However, due to the redistribution of flux at higher overall densities, the undamped values of induced volts falls below the darmed value for approximately rated full-load field conditions. This and other factors influencing the decision to use damping coils are discussed in 3.3. The fundanental voltage of fig 38 is not accounted for by the theory. It is due to a small flux (calculated in Table 2) possibly arising from assymetrical conditions such as are considered in 8.5.

3.2 Distribution of flux in the stator due to armature reaction m.m.f.

3.2.1 Introduction

As in other machines, the problem of load behaviour is concerned. with the interaction of the amature reaction m.m.f. (procluced by the stator windings) and the airgap permeance, superimposed on existing o.c. conditions. In the Lorenz macline the problem is complicated by the use of a single phase, 1 slot/pole/phase stator winding, so that the amature reaction m.m.f. produced by an ideal winding concontrated at discrete points, ignoring slots, will be a square wave fixed in space with magnitude varying sinusoidally in time phase with the variation of the load current. In a practical machine, the amature reaction wave is not square but trapezoidal, because the windings are spread over the width of a stator a.c. slot. The mathematical treatmont using a trapezoidal wave becones uwieldy; however, the fact that in practice the distribution is trapezoidal and not square allows the following theory, based on square waves, to be applied across several stator slot pitches: This is covered more fully in 3.2.3.

3.2.2 Theoretical doscription of the aircan flux density distribution due to amature reaction

If θ is measured from the coil axis, fig 32, the distribution of armature tums is expressed by

$$
\left(\frac{4}{\pi} \sum_{n=0 d d}^{\infty} \frac{1}{n} \sin \frac{n \pi}{2} \text { cosno}\right) \text { per turn }
$$

being a unit full-pitch square wave. If the armature current reaches its peak value at time $t=(\delta / \omega)$, the m.m.f. due to amature reaction $\left(F_{a}\right)$ is expressed by

$$
\begin{equation*}
\frac{4 N_{\mathrm{a}} I_{a}}{\pi} \sum_{n: \text { odd }}^{\infty} \frac{1}{n} \sin \frac{n \pi}{2} \cos n \theta \cos (\omega t-\delta) \tag{3}
\end{equation*}
$$

where δ is the time phase angle by which peak open-circuit voltage leads the peak amature current.

When an m.m.f. F_{1} is applied to the airgap of a rotating electrical machine, the distribution of the resulting flux density may be expressed as B_{1}. Both F_{1} and B_{1} may be functions of (θ, t). A second m.m.f. F_{2} will produce a flux density wave B_{2}, F_{1} and F_{2} may have different magnitudes and time-dependence but providing they have identical space distributions acting on the same permeance:

$$
\frac{F_{1}}{F_{2}}=\frac{B_{1}}{B_{2}}
$$

Thus, if $B_{o c}$ results from F_{f} and B_{a} from F_{a}, then

$$
\begin{equation*}
B_{a}=\left(\frac{F_{a}}{F_{f}}\right) B_{o c} \tag{4}
\end{equation*}
$$

Combining equations (3) and (2) in (4)

$$
\bar{B}_{a}=\frac{4 N_{a} I_{a}}{\pi^{1} f} \sum_{m=0.1 .2 \ldots}^{\infty} \frac{B_{m}}{n} \sin \frac{n \pi}{2} \cos n \theta \cos (\omega t-\delta) \cos n(\theta-\pi / 2-\omega t) \ldots(5)
$$

Equation (5) is analysed in detail in 8.3.2 where it is shown that for conditions of $(n+m)$ even, time varying flux components link the field winding even though the pole iron is an integral number of rotor slot pitches in width. The major components are the result of the fundanental space distribution of ammature m.m.f. (pulsating at fundanental frequency) combining with the fundamental variation in permeance (represented by B_{1}). The analysis of 3.1.4 and 8.3.1 is repeated in 8.3.2, i.e. the slot opening is described by σ (electrical rad), with the added complication of δ affecting the results.

Tables 7 and 8 sumarise the expressions for two simple values of δ.
Table 7: Susmary of tooth contributions to core flux due to armature reaction m.m.f., $\delta=+\pi / 2$ i.e. ZPF lagging

Tooth	Components for $n=m=I$ in units of $\frac{\mathrm{C}_{1} \ell \lambda}{2 \pi}$
1	$\frac{1}{2}(\sin \sigma+\sigma-\pi)(1-\cos 2 \omega t)-(1+\cos \sigma) \sin 2 \omega t$
2	$(\sin \sigma+\sigma-\pi)(1-\cos 2 \omega t)$
3	$(\sin \sigma+\sigma-\pi)(1-\cos 2 \omega t)$
4	$(\sin \sigma+\sigma-\pi)(1-\cos 2 \omega t)$
5	$\frac{1}{2}(\sin \sigma+\sigma-\pi)(1-\cos 2 \omega t)-(1+\cos \sigma) \sin 2 \omega t$

Table 8: Summary of tooth contributions to core flux due to amature reaction m.m.f. $\delta=0$ i.e. a leading power factor

Tooth	Components for $n=m=1$ in units of $\frac{C_{1} l \lambda}{2 \pi}$
1	$\frac{1}{2}(\sin \sigma+\sigma-\pi) \sin 2 \omega t-(1+\cos \sigma)(\cos 2 \omega t+1)$
2	$(\sin \sigma+\sigma-\pi) \sin 2 \omega t$
3	$(\sin \sigma+\sigma-\pi) \sin 2 \omega t$
4	$(\sin \sigma+\sigma-\pi) \sin 2 \omega t$
5	$\frac{1}{2}(\sin \sigma \div \sigma-\pi) \sin 2 \omega t-(1 \div \cos \sigma)(\cos 2 \omega t+1)$

The significance of δ is discussed in more detail in chapters 4 and 5. Whereas the values $\delta= \pm \pi / 2 \mathrm{can}$ only represent ZPF conditions, $\delta=0$ applies to a leading power factor condition which in turn is determined by the balance of field and armature reaction m.m.f.s together with the leakage reactance. $\left(C=\frac{N_{a} I_{a}}{\pi F_{f}}\right.$.

For $n=m=1$, Tables 7 and 8 record the twice line frequency compononts from each tooth. This mechanism for the Lorenz machine is similar to that reported by Raby ${ }^{36}, 1.2 .2(11)$, for the Guy machine. Since all the components have the same sense under one pole, they must link the field coil and induce twice line frequency voltages.

For ZPF load conditions the flux varies from zero to $8(\sin \sigma+\sigma-\pi) \frac{\mathrm{CD}_{1} l \lambda}{2 \pi}$ with a period of $\left(\frac{\pi}{2 \omega}\right)$. For $\delta=0$ the fluax varies between $\pm 4(\sin \sigma+\sigma-\pi) \frac{\mathrm{CB}_{1} \ell \lambda}{2 \pi}$ with the sane period, $\left(\frac{\pi}{2 \omega}\right)$. These are the maximum variations that must be allowed for, since, at load conditions when $\delta=\pi / 4$ the pole to pole flux alternates between zero and $4 \sqrt{2}(\sin \sigma+\sigma-\pi) \frac{C B_{1} \ell \lambda}{2 \pi}$, a reduction of 30%. As with the open circuit conditions, components also pass across the pole from 'half tooth' to 'half tooth'; these do not link the field winding since there is no altemative path behind the field slot open to then.

Combinations of $\mathrm{n}=0$ and 2 with $\mathrm{n}=1$ will produce fundamental and third-harmonic time varying components which theoretically may sum to zero within any pole similar to the 'sin ω t' terms in fig $33(\mathrm{~b})$. However, the components from 'half teeth' either side of a field slot are 180° out of phase, i.e. the flux from such a 'half tooth' may pass behind either the field or the ammature slot. This accounts for additional odd harmonic voltages appearing in the analysis of voltages induced in a field coil under short-circuit $\left(\delta=+\frac{\pi}{2}\right)$ conditions, fig 39. As with the open circuit analysis, the even hamonic components of the combined fluxes are considerably reduced by damping. The odd-hamonic components are slightly increased: no clear explanation for this has been discovered. Possibly the overall reduction in the major (even) variations and the consequent lower peak flux densities is responsible.

Fig 39: Harmonic voltage modulations present in a single field coil on rated short-circuit ($\mathrm{V}_{\mathrm{rms}}$)
(a) undarnped
(b) damped

Note - sum of all modulations across whole field winding < 1.0 volt

3.2.3 Justification for amplying equation (4) to several armature slots

The amature reaction n.m.f. (F_{a}) is constant at any instant in time across an amature coil pitch. The rectangular representation of the previous section assumes an instantaneous change in the sense of F_{a} at slot centre lines, which if applied rigorously; leads to incompatible ficld boundaries for consecutive coil pitches. Fortunately, the actual distribution of F_{a} at the stator airgap surface more closely resombles a trapezoid since the amature slot openings interrupt the field
and the coils occupy a finite width. This allows the transition from peak values under one coil to the opposite peak values to occupy a finite tine as distinct from occurring instantancously. A trapezoidal distribution of F_{a} allows equation (4) to be applied to several armature coil pitches since no boundary incompatibilities exist.

The terms providing the 'instantaneous change of sense' in the rectangular series are small and of very high harmonic order. In any quantitative work using the series, they would probably be neglected. The time field patterm in the slot opening is not completely described by the theory, however, due to the low density of this region (itself the result of the slot opening permeance) any discrepancies are small.

3.3 Damping windings

3.3.1 Introduction

In the writer's experience it is established practice to use danping coils, or to fit damping resistors, in the field circuits of most inductor alternators. Walker ${ }^{1}$ and Raby ${ }^{36}$ have shown the theoretical existence of twice line frequency pole-to-pole fluxes when the machine is loaded. Designers have also been aware, from measurements, that altemating voltages are induced in individual field coils. Nlthough the vector sum of these voltages as seen at the field teminals is small, evidence suggests that across each coil damaging potentials are quite possible.

Therefore short circuited turns are wound in the field slots to reduce the voltages by damping the responsible flux linkages. The established technique for calculating iron losses presunes that all components of flux passing behind the field slots are clininated by these coils. The next two sections sumarise the limitations of short circuited tums wound in the field slots.

3.3.2 Surmary of altermating voltages induced in a field coil and the effect of a short circuited darming turn

Even harmonic voltages were expected on-1oad ${ }^{1,36}$. With rated shore circuit armature current, 80 V second hamonic and 90 V sixth harmonic were measured, fig 39. These were the major components making up the poak value of the composite induced voltage waveform given in fig 40 (b).

Odd harmonic voltages were not expected on load; those measured were due to the same fluxes which induced odd harmonic voltages in the field. coil when the alternator was open circuit. The net linking fluxes required to support the odd hamonic voltages were small, Table 2, and presumed to originate from asymetrical pemeance variations of which
leakage into the field slot, 8.5, is one example. Iven hamonic voltages on open circuit were explained theoretically in 3.1.5, although the calculated values did not agree with measurements this was accounted for in fig 35 .

All voltages induced in a field coil are reduced by a short circuited damping tum since the voltages are due to flux linkages, from whatever source, with both the field coil and the darping turn. The important consideration is to what peak value undamped voltages will rise, not considering hamonic by hamonic, but as a composite waveform. Fig 40(a) (b) gives these values for onen circuit and short circuit conditions over a range of field and load currents. Neither maximum 'peak value' is likely to cause an insulation breakdown. With the danping tum at the bottom of the slot (away from the airgap) the induced volts are reduced to approxinately a third of their undamped value. In this particular machine the space taken up by the damping turn would have been more usefully filled with field copper.

Fig 40(a): Peak voltage induced in a sincle field coil on open circuit, darmod and undarmed
Vancl I_{2}

Fig $40(\mathrm{~b})$: Peak voltage induced in a single field coil for short circuit conditions, damped and undarmed

3.3.3 Summary of alternating fluxes in the stator core and the effect of a short circuited field damoing tum

The peak induced voltages give information as to the peak 'linking' fluxes. Since the field coil contained 270 turns, only a comparatively snall flux was required to induce large voltages, especially if the voltage harmonic order was high. Thus the large second- and sixthhamonic voltages were not the result of the major altemating flux components. The tivice line frequency fluxes due to armature reaction, whose theoretical recognition was the main reason for using damping coils, were found to add little to the general pattem of altemating core fluxes present on open circuit. Distortion in the ammature slot-opening-region considerably reduces this potential problem, 3.1.5, and since the slot-openings on the experimental machine are unusually wide (tooth contribution to core only 5% of the airgap second hamonic level), in a nomal design the core flux variations from this origin will be negligible.

With a short-circuited tum wound in the field slots the even harmonic components were reduced; the odd components were unaffected because those passing behind consecutive field slots were 180° out of phase. The odd components will be diverted from this path by short-circuited tums wound, as search coil (57-58), radially from field slot to the stator outside diameter. However these fluxes do not induce large voltages and the redistribution across the pole pitch will not reduce the losses.

If the peak voltages can be reliably calculated a simple decision on whether to use damping coils may be made on that basis, since only small advantages in core loss are in fact forthcoming. Unfortmately, the peak voltages are dependent upon asymmetric pole permeance, incremental permeability, and distortion; all impossible to calculate with accuracy; all, however, contriving to reduce the peak voltage values.

CIAPMER 4 Rotor surface flux density distribution

4.1 Flux density distribution across a rotor tooth airgap surface under open circuit conditions.
. 1 Theory. 114.
. 2 Displaying the search coil signals. 114.
. 3 Neasurements. 117
4.2 Flux density distribution across a rotor tooth airgap surface under loaded conditions.
. 1 Theory. 121
. 2 Interpretation of signal display. 123
. 3 Neasurements. 126
4.3 Comparison of the experimental results with the computed theoretical distribution.
. 1 The computer programe. 129
. 2 Comparison of experimental and theoretical results. 131

This chapter considers the theoretical distribution of flux density in the airgap and compares this with the measured flux density across a rotor tooth surface.

Rotor surface search coil signals are integrated and displayed using a process which allows accurate and consistent neasurements. These are calibrated against flux meter readings taken with the rotor stationary and also compared with calculations based on the signals as 'e.m.f.s in short pitched coils'.

Each reading is adjusted to allow for variations in the coil areas so that the mean flux density over each coil gives one point on an open circuit flux density distribution curve. On-load, the readings require careful interpretation since the search coils are also linked by flux patterns travelling forward and baclward relative to the rotor i.c. at assynchronous speeds. The components which move with the rotor are selected from the theoretical expressions and summed using a computer. The resulting distributions are corroborated by measurements taken in a form suggested by the theoretical analysis. The close agreement between tests and calculations gives confidence in the ability of the theory to describe the airgap field under load conditions.

4.1 Flux density distribution across a rotor tooth airgap surface

 under open circuit conditions
4.1.1 Theory

This section is not so much a 'derived theory' as a statement of the origins of the theoretical approach omployed throughout this thesis. As discussed in 1.2.2(2) and specified in 3.1.4, the open circuit airgap flux density, $\overline{\mathrm{B}}_{\mathrm{oc}}{ }^{\prime}$, is expressed thus

$$
\bar{B}_{o c}=B_{1} \sum_{m=0.1 .2 \ldots}^{\infty} b_{m} \cos m(\theta-\pi / 2-\omega t)
$$

This series is relative to the stator reference axis, fig 32, and differs from equation (2) only in the introduction of a p.u. representation of the coefficients $\left(\mathrm{b}_{\mathrm{m}}\right)$ based on the fundamental coefficient B_{1} as 1 p.u.

When considering this expression relative to the rotor it is convenient, for future theory which involves the armature turns distribution, to take as rotor reference axis the location of the stator axis projected onto the rotor as time $t=0$.

$$
\text { i.e. } \bar{B}_{o c}^{\prime}=B_{1} \sum_{m=0}^{\infty} b_{m} \cos m(\theta-\pi / 2)
$$

4.1.2 Displaying the flux density at the rotor tooth surface

The flux linkages with rotor surface search coils, fig $30(\mathrm{e})$, change as the rotor tooth passes from pole to pole. If a coil is chosen, say two adjacent conductors, which is comparable to the armature slot opening in width, changes in flux linking the coil also occur as it passes from one stator tooth to the next. The e.m.f. signal from such a coil is shown in fig. 41. With the circuit of fig 23 this e.m.f. signal was

Fig 41
integrated, giving a display proportional to the flux linkages changing in time as shown in fig 42 (a). If the search coil is formed from conductors at each side of the rotor tooth surface, the coil is no longer so sensitive to armature slot openings and the resulting display is proportional to the heteropolar flux density wave, fig 42 (b).

With adjacent conductors, fig 42 (a), the effect of each tooth is distinct even to the dip in flux as the coil passes the centre line of a stator tooth. This is presumably due to a variation in the overall permeance of the complete magnetic circuit; a similar pattern was produced by the conducting paper analogue, fig 27.

Fig 42

(a) साण?

(b) स゙गाता?

The gradual, rather than abrupt, changes in flux linkages sensed by a small search coil passing across a field slot opening indicate leakage paths from field slot sides to rotor teeth. Since rotor teeth are not opposite consecutive field slots simultaneously this asymetrical leakage is a source of odd harmonic flux variations in the main flux. This is analysed and investigated further in 8.5.

4.1.3 Measurement of the open circuit airgap flux density distribution across a rotor tooth surface

Taking the rotor tooth surface search conductors in adjacent pairs to form seven search coils, each signal was integrated and displayed, fig $42(a)$, and measured from peak-to-peak, for a field current I_{f}. These measurements, taken with the machine rumning, were calibrated against readings of flux linking the same search coils during a stationary test for a reversal of field current from $+I_{f}$ to $-I_{f}$. This calibration was linear over the available range of field current.

Each coil, however, required a correction for area in order that the signals might be directly compared. Both rotational and stationary tests produced individual 'open circuit curves' for each coil. Assuming the airgap to be uniform and working at flux densities such that the distribution across the rotor tooth was uniform, the gradient of each 'flux plotted against ficld current' is proportional to the area of that coil. Thus each area could be corrected to one seventh of the total tooth surface area. The stationary test was the more fundamental of the two since readings were taken using a flux meter. However, the peak-to-peak measurements of flux display were more sensitive and consistent. The d.c. voltage required to bias the display across the oscilloscope graticule was measured by a digital voltmeter, 2.4. Using the oscilloscope anplifiers to magnify the display and a three decimal place digital voltmeter, enabled considerable consistency to be achieved. Table 9 shows the correction factors obtained from each
method. The second places of the stationary factors are due to readings of parts of a division on the flux meter scale whilst the digital voltmeter reading has been rounded to two decimal places. The similarity between these test results is taken as further proof of the accurate response of the integrating circuit to the search coil signals. Table 9: Area correction factors for rotor surface coils from Stationary and Rotating tests.

Search conductors (fig 43)	$5-6$	$6-7$	$7-8$	$8-9$	$9-10$	$10-11$	$11-12$
Stationary (flux meter)	.88	1.09	.97	1.0	.97	.98	.89
Rotating (peak to peak)	.88	1.02	.98	1.00	1.00	.98	.89

As a further comparison between stationary and rotating conditions, the signal from search coil (8-9), see fig 43, was analysed at heteropolar frequency. The r.m.s. signal voltage was divided by the search coil pitch factor to give the fundanental pitch voltaģe: this led to the peak a.c. fundanental flux. This peak value was converted into the rectangular wave from which flux per tooth and thus flux per coil, during rotation, was calculated. Table 10 shows the comparison between flux measured with a fiux meter during the stationary test and the calculate value of flux from the coil simal during rotation.

Table 10: Stationary (flux meter) and Rotating (calculated from coil signal) measurements of a.c. flux $=\mu \mathrm{im}$, $\operatorname{coil}(8-9)$

Field current	0.2	0.4	0.6	0.8	1.0
Flux meter	71	149	220	283	350
Calculated	73	148	219	285	336

4.1 .3

Whereas the analysis of the search coil signal is also a more fundamental approach to measuring flux than calibrating the integrated signal, greater consistent accuracy is possible with the sccond technique. The search coil pitch factor is .0297. Small changes in pitch factors of this size greatly affect the value of calculated flux. Wave analysers must be calibrated over the expected signal range since typical accuracies are not better than $\pm 1 \mathrm{db}$.

Hience the open circuit flux density distributions for a range of field current from 0.2 to 2.0 amps , given in fig 43, are derived from calibrated measurements. Coil (8-9) has been analysed at field currents from 0.2 to 1.0 amps ; these values of flux density are included as a check.

							-	-																				
			2.0																									
		Wb																										
		m^{2}																									3.	
																											2	
			1.6																									
																				-	-1							
																											1.	4
			1.2																									
																											-	
	+																											
	$\cdot \mathrm{r}$																											
	9																											
	8																										0.0	
	rod																											
			. 0																									
																											0.6	
	F																											
	$1+$.	
			-4																									
	11																											
			0																									
	17								6			7			8			9			10			11	1		12	

Fig 43: Distribution of flux density across rotor tooth surface - open circuit calculated x x measured

4.2.1 Theory

The completed airgap flux density distribution on load is expressed by

$$
\begin{equation*}
\bar{B}=\bar{B}_{o c}\left(1+\frac{F_{\mathrm{a}}}{\bar{F}_{\mathrm{f}}}\right) \tag{6}
\end{equation*}
$$

assuming superposition of the distributions due to field and armature reaction m.m.f.s relative to the stator.

The open circuit distribution relative to the rotor has been expressed in 4.1.1. Equation (5), 3.2.2, represented the complete flux density pattern due to the armature reaction when the armature current is restricted to its fundamental conmonent. The full general expression is

$$
\overline{\mathrm{B}}_{\mathrm{a}}=\frac{4 \mathrm{~N}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}}{\pi \mathrm{I}_{\mathrm{f}}} \sum_{\substack{m: 0.1 .2 . \\ n=0.1}}^{\infty} \frac{\mathrm{B}_{\mathrm{m}}}{\mathrm{n}} \sin \frac{\mathrm{n} \pi}{2} \cos n \theta \cos (\omega t-\delta) \cos m(\theta-\pi / 2-\omega t)
$$

To select the terms which describe the density distribution relative to the rotor will require two operations,
(i) select terms in $n(\theta-\omega t)$ only,
(ii) remove from this expression all ' ωt ' components,
this refers the expression to the rotor, i.e. giving the space. distribution relative to the rotor.

Equation (5), 3.2.2, is expanded in 8.6 , expressing the forward rotating fundanental component of the flux density distribution across the rotor tooth surface due to armature reaction as

$$
\frac{N_{\mathrm{a}} \mathrm{I}_{\mathrm{a}} \mathrm{~B}_{1}}{\pi \mathrm{~F}_{\mathrm{f}}}\left\{2 \mathrm{~b}_{\mathrm{o}} \cos (\theta+\delta)-\mathrm{b}_{2} \cos (\theta-\delta)\right\}
$$

To obtain the complete loaded distribution this must be superimposed on the fundamental of the B_{oc} wave relative to the rotor: $\mathrm{B}_{1} \sin \theta$
i.e. the complete distribution is expressed by

$$
\mathrm{B}_{1}\left[\sin \theta+\frac{N_{a} \mathrm{I}_{\mathrm{a}}}{\pi \mathrm{~F}_{f}}\left\{2 \mathrm{~b}_{0} \cos (\theta+\delta)-\mathrm{b}_{2} \cos (\theta-\delta)\right\}\right] \ldots(7)
$$

In section 3.2.2 (δ / ω) was defined as the time at which the amature current reached its peak value. At time $t=0$ the rotor position was chosen such that the voltage induced by ϕ_{Oc} was at its peak value. Hence the angle δ describes the phase shift in tine by which the armature current lags or leads the open circuit voltage for the chosen field conditions.

Thus δ is dependent on the power factor and the load angle associated with the load. By reference to fig 44 with the assumption that the vector difference between open circuit volts and terminal volts lies perpendicular to a vector describing the armature current, a simple expression for δ at any load is obtained

$$
\cos \delta=\frac{V_{T} \cos \phi}{V_{f}}
$$

where $\mathrm{V}_{\mathrm{T}}=$ terminal volts for ficld F_{f}
$V_{f}=$ open circuit volts for field F_{f}
$\phi=$ power factor of loack circuit

Fig 44

4.2.2 Interpretation of the on-1oad signal disnlays

Fig 45 compares the e.n.f. signal from a rotor scarch coil on open circuit and on load. On open circuit, the effect of armature slot openings is symmetrical, allowing analysis of the heteropolar frequency, 4.1.3. On load, the mequal flux density either side of an armature slot opening produces a signal whose fundanental is not solely due to the heteropolar characteristics. Thus the direct approach to measuring flux, using signal e.m.f.s and an harmonic analyser, is irpracticable.

It is therefore necessary to examine carefully the actual nature of the flux that links a rotor search coil under load conditions and to use this lnowledge to approximate to the steady load flux which moves with the rotor. There are four main components of the total flux linking a rotor search coil, fig 46.
(i) the 'steady' component caused by field excitation. This is constant across a d.c. pole but reverses at each pole, so that a signal of heteropolar frequency appears in the search coil.
(ii) the 'steady' component caused by the forward synchronous conponent of armature reaction: this also varies at heteropolar frequency.
(i) and (ii) are the required signals.
(iii) dips in the steady cormonents which occur at the stator a.c. slot openings. These occur regularly at easily recomised intervals and can be used as timing marks to define the instantaneous position of the search coil.
(iv) all the non-synchronous conponents of armature reaction which form harmonic poles of various wavelengths moving at different speeds with respect to the rotor search coil. These are studied in detail in 8.7.1.

Fig 45: e.m.f. from 隹एग

(a) open circuit

(b) on load

Fig 46: Integrated signal from Nएगात
(on load)

(a)

(b)

The output signal from each rotor search coil is the time rate-of-change of the total flux linking the coil from all four sources. Thus, from fig 46, conponents (i) and (ii) must be extracted taking account of the existence of cormonents (iii) and (iv). Fig 46(b) is an enlargement of fig 46 (a) during the time taken to pass from the centre line of one armature slot to the next; the instants of passing these two centre lines may be arbitrarily defined as $t=0$ and $t=(\pi / \omega)$. The time at which the search coil links maximum flux, having moved across the slot opening and cone fully under the influence of the stator tooth, is taken as t_{1}, as show: the corresponding time when the coil leaves the same stator tooth is $\left(\frac{\pi}{\omega}-t_{1}\right)$. Sinilarly points may be defined t_{1} either side of the 'centre line tine' at $\left(\frac{\pi}{2 \omega} \pm t_{1}\right)$.

In section 8.7.2, it is shown that the general term for time varying flux through a search coil, when sampled at these four points, sums to zero for the 2nd, 6th, 10th etc. time harmonics, which includes the most inportant terms. This is an extension of the identity.

$$
\begin{aligned}
& \sin n(\theta+\alpha)+\sin n(\theta+\pi-\alpha)+\sin n\left(\theta+\frac{\pi}{2}+\alpha\right)+\sin n\left(\theta+\frac{\pi}{2}-\alpha\right)=0 \\
& \text { for } n=2,6,10 \text { etc. }
\end{aligned}
$$

4.2.3 Neasurenents of peak flux density across the rotor tooth surface

To eliminate the major terms of type (iv), 4.2.2, in order that the readings should be proportional to the flux density distribution moving with the rotor, four peak-to-peak measurements of the integrated signal were taken at the points shown in fig 46 (b) and averaged. As each pole flux, indeed each tooth flux, is not identical due to manufacturing and material tolerances, the readings were taken consistently on certain teeth on certain poles; these were chosen because their measurements were
found to agree closely with the average of all the peal-to-peak readings between all possible combinations, for selected exarmies.

As with the presentation of the open circuit flux density distribution across a rotor tooth surface, the values of 'steady' flux linkages for each corrected coil area were converted into values of mean flux density for each coil, thus giving seven points across the tooth surface. Fig 47 shows the points measured by using the above methods on test results under two conditions of loading with different power factors, and with the alternator short-circuited. It shows clearly the distortion of the no-load flux pattern due to armature reaction and the direct demagnetization at ZPF lagging.

Fig 47: Measured on-load flux density distribution across rotor tooth surface

4.3 Comparison of the experimental results with the computed theoretical distribution

4.3.1 The computer progranne to calculate $\bar{B}^{\prime}{ }_{o c}+\bar{B}^{\prime}{ }_{a}$

Selected components of equations (2) and (5) relative to the rotor, of which equation (7) is the fundamental component, are given in 8.8.1 to the 10 th harmonic of θ. The sumnation of this series for the cormlete airgap flux density distribution on load, as a function of θ and δ, was prograrmed using Algol, 3.8.2, and rum on an Elliott 803 digital conputer. The series is in p.u. form and the data for a particular machine consists of values of δ, F_{a}, F_{f} and b_{m} for $m=0$ to $m=11$. For the experimental machine values for b_{m} were obtained by Fourier analysis of the open circuit wave (also computed, using a library programe), which in turn was derived from flux plots using a conducting paper analogue, 8.4

The programme was run for a range of values of F_{a} and F_{f}. For each value of δ the results were printed in the form of $p . u$. values of flux density ($\mathrm{b}_{1}=1 \mathrm{p} . \mathrm{u}$.) at twenty points during a complete cycle of θ, i.e. every 18 electrical degrees.

All the components due to $\mathrm{B}^{\prime}{ }_{a}$ have a conmon factor $\mathrm{C}\left(=\frac{\mathrm{F}_{\mathrm{a}}}{\pi \mathrm{F}_{\mathrm{f}}}\right)$. By arranging the 'print-out' to supply open circuit and armature reaction components separately each combination of F_{a} and F_{a} need not be computed: a standard set of results for several values of δ and say rated full-load armature and field current may be scaled α C to describe any load condition.

If results for the required value of δ have not been computed they may be derived in p.u. form from the curves in fig 48. For each 'computed point' across the rotor tooth surface the 'standard' value of B_{a} has been plotted as a ratio of B_{1} against a range of δ.
(

The curves formed by these points provide intermediate p.u. values of the B_{a} distribution.

With the knowledge of B_{1} / I_{f} from tests or calculations, the cormuted distribution may be plotted directly in $\mathrm{Wb} / \mathrm{m}^{2}$: fig 49 shows the 'standard set'.

4.3.2 Comparison of experimental and theoretical results

Table 11 shows the load conditions at which the cormparison was made. Armature current, voltage and power were measured on a test set accurate at $1000 \mathrm{c} / \mathrm{s}$. The load, 2.4 , was resistive; for high currents, however, the load resistor had to be reduced to a level where lead reactance affected the inpedance presented to the alternator. Knowing the open circuit voltage at each field current, δ was calculated using the expression of section 4.2 .1 . $\delta=45^{\circ}$ and 90° were computed points; for $\delta=77^{\circ}$ fig 48 was required.

The close agreement between test and calculated flux densities under load conditions give confidence both in the assumptions involved in superimposing the fields due to F_{f} and F_{a} and in the method ermployed to measure the flux density distribution which rotates with the rotor of this single phase alternator.

Table 11: Measured values of load current, voltage, power factor and field current, together with derived values of $\delta, 4.2 .1$. Flux density distributions at these loads are compared in fig 50 (a) and (b)

Load	I_{a}	V	$p \cdot f$.	I_{f}	δ
Resistive	104	122	1.0	1.0	45°
Inpedance	165	39	.94	1.0	77°
Short circuit	100	6	0	0.58	90°

CHAPTER 5 Voltage generation

5.1 The generation of open circuit voltage.
. 1 The theoretical derivation of an expression for open circuit voltage.

. 2 Comparison of calculated and measured values of open circuit
voltage.
5.2 The teminal voltage on load.
. 1 Introduction.
. 2 Theoretical derivation of voltage generated by armature reaction m.m.f. (E_{a}).
. 3 Theoretical derivation of intemal generated voltage on load (E). 147
.4 General expression for terminal voltage on load (\bar{V}). 2.48
. 5 Goneral analysis of terminal voltage expression.
5.3 Application of the terminal voltage expressions to experimental
and industrial machines.
.1 Tho examples of comparisons between measured and calculated
voltage characteristics.
. 2 The relationship between field current and terminal voltage. 161

Susmary

In this chapter the equations for airgap flux density are used to express the voltages induced in the ammature windings due to the permeance variations conbined with the armature reaction effects.

After the open circuit expressions have been corroborated by measurements and their form related to the normal flux/e.n.f. equation, the voltage that would be induced if B_{a} acted alone is expressed in terms of the open circuit voltage. Vector combination leads to expressions for the internal generated voltage which in turn is combined. with a reactive voltage due to leakage effects to give an expression for the terminal voltage.

During the process of writing the expressions in p.u. form, factors are presented to account for the non linear relation between the voltage and field current p.u. systems, and to express the ratio of field and armature reaction m.m.f.s which has appeared previously in the theory. These are related but not identical to factors developed by previous writers.

For a particular load the alternator 'settles' to a working point which is a balance between the characteristics of the machine and the restrictions of the load. The'characteristics' and the 'restrictions' are expressed by two simultaneous equations in terms of the 'non linear' factors whose solution presents the field requirements on load.

Exanmles are given which correlate the theoretical expressions with measurements on the experimental machine. Finally, the on load field requirements of the industrial unit (on which the experimental machine was modelled) are accurately 'pre-determined'. The corroborating test values were supplied by the manufacturer, which gives confidence in the technique being a useful design tool.

5.1 The generation of open circuit voltage

5.1.1 The theoretical derivation of an expression for open circuit voltage

The open circuit airgap flux density distribution in series form is given in equation (2), 3.1.4 and 4.1.1, as

$$
B_{o c}=\sum_{m=0.1 .2 \ldots}^{\infty} B_{m} \cos m(\theta-\pi / 2-\omega t)
$$

The integration of this equation with regard to θ gives an expression for the total flux linking the area (between the linits of integration, per unit length) as a function of time t. Differentiation of this flux with regard to time leads to an expression for the voltage per turn resulting from $B_{\text {oc }}$ which would be induced in a coil situated at the limits of the previous integration.

This assumes that the coil sides are concentrated at points or that all the airgap flux theoretically linking these points on the airgap surface also links the coil. In Chapter 3, Table 3, the fundanental flux contributed by a 'coil tooth' was modified by the term $\left(\cos \frac{\sigma}{2}\right)$. In section 3.1 .5 it was further demonstrated that the slot opening field distortion was equivalent to reducing the opening width to a quarter of its actual dimension for the purpose of calculating flux entering the tooth. Hence, the time varying value of flux linkages will be modified by the term $\left(\cos \frac{\sigma}{8}\right)$.

Fig 51: Basic inductor alternator airgap geometry with armature coil sense and rotor positioned for peak ZPF armature current condition

Typical armature coil side centre lines lie at $\theta= \pm \pi / 2$, fig 5I, and the total flux linking this coil is

$$
\begin{aligned}
\bar{\phi}_{\mathrm{Oc}}^{+\pi / 2} & =\frac{l \lambda}{2 \pi} \cos \frac{\sigma}{8} \sum_{m=0.1 .2}^{\infty} \int_{-\pi / 2}^{+\pi / 2} B_{m} \cos m(\theta-\pi / 2-\omega t) d \theta \\
& =\frac{l \lambda}{2 \pi} \cos \frac{\sigma}{8} \sum_{m=0.1 .2}^{\infty} \ldots \\
& \left.\frac{B_{m}}{m}-\sin m(-\omega t)+\sin m(\pi+\omega t)^{-7}\right] \\
& =0 \\
& \quad-\frac{l \lambda}{\pi m} \cos \frac{\sigma}{8} \sin m \omega t \text { Bur for } m=1,3,5 \text { etc. } \\
& \quad \text { for } m=0,2,4 \text { etc. }
\end{aligned}
$$

Therefore, the open circuit generated voltage $\bar{E}_{o c}$, is expressed by

$$
\begin{aligned}
& -N_{a} \frac{\partial}{\partial t}\left(-\sum_{m=1.3 .5}^{\infty} \frac{\ell \lambda}{m \pi} B_{m} \cos \frac{\sigma}{8} \sin m \omega t\right) \\
E_{o c}= & \sum_{m=1.3 .5}^{\infty} N_{a} \frac{\ell \lambda}{\pi} \omega B_{m} \cos \frac{\sigma}{8} \cos m \omega t
\end{aligned}
$$

from which the fundamental r.m.s. open circuit voltage is expressed as

$$
E_{o c}=\sqrt{2} N_{a} \text { el .fin } B_{1} \cos \frac{\sigma}{8}
$$

since $\sigma=26.35^{\circ}$ (electrical), $\cos \frac{\sigma}{8}=.997$; this is considered to be a negligible modification.

Comparing the expression above with the standard e.m.f/peak ac. flux equation

$$
\mathrm{E}_{\mathrm{oc}}=\sqrt{2} \pi \mathrm{~N}_{\mathrm{a}} f \phi_{\mathrm{ac}}
$$

the flux $\left(\ell \lambda \mathrm{B}_{1}\right)$ is equivalent to $\pi \phi_{\mathrm{ac}}$, i.e. the flux over a coil area
$\left(\frac{l \lambda}{2} \quad B_{1}\right)=\left(\frac{\pi}{2} \quad \phi_{a c}\right)$ which shows that the derived expression is in terms of the mean of the peak alternating flux.

It is interesting to conmare the designed value of $\phi,(.00256 \mathrm{~m}$, 2.1, fig 19), and the value obtained from this analysis, not solely to show that they are identical, but also to establish the group of parameters relating the two approaches.

$$
\begin{aligned}
E_{o c} & =\sqrt{2} N_{a} \ell \lambda f \frac{c}{\ell \lambda} \phi_{1} \\
& =c \sqrt{2} N_{a} f \phi_{1}
\end{aligned}
$$

where c is Carters coefficient as used in the design.

$$
\begin{aligned}
\text { since } \phi_{\mathrm{ac}} & =\phi \frac{\varepsilon_{2}}{2} \text { from 1.2.2(4) definition for } \varepsilon_{2} \\
\mathrm{E}_{\mathrm{oc}} & =\frac{\varepsilon_{2}{ }^{\pi}}{\sqrt{2}} \mathrm{~N}_{\mathrm{a}} f_{\phi} \\
\text { and } \phi & =\left(\frac{2 c}{\varepsilon_{2} \pi}\right) \phi_{1} \quad \text { or } \phi_{\mathrm{ac}}=\frac{c}{\pi} \phi_{1}
\end{aligned}
$$

$$
\left[\begin{array}{rl}
\text { i.e. from this analysis } \phi_{1} & =\left(\frac{\text { rated fundamental o.c. volts }}{c \sqrt{2} N_{a} f}\right) \\
& =.00134 \mathrm{~Wb} \\
\text { and } \phi & =\frac{2 c}{\varepsilon_{2}{ }^{\pi}}(.00134)=.00253 \mathrm{JW}
\end{array}\right]
$$

5.1.2 Comparison of calculated and measured values of open circuit voltage
The calculation of open circuit voltage is primarily dependent on the calculation of airgap flux density. The designed value of airgap flux density, 2.1, is 61.4 Klines per in 2 at 1.1 amps field current for a
gap of $.015^{\prime \prime}$. The actual gap dimension of the experimental machine, averaged over several readings, was .013'. Thus the 'corrected' designed value was 70.8 Klines per in^{2} or $1.09 \mathrm{mb} / \mathrm{m}^{2}$.

In section 8.4 the Fourier analysis of the analogue flux plot gives the ratio of the fundamental coefficient to the maximum level of the complete pattern as $1: 1.79$. Hence the fundamental flux density wave at $I_{f}=1.1 \mathrm{anp}$ has a peak value $\frac{1.09}{1.79}=.609 \mathrm{mb} / \mathrm{m}^{2}$.
For $I_{f}=1.0$ anp the corresponding value is $.554 \mathrm{ib} / \mathrm{m}^{2}$.
The airgap flux density was measured, 4.2 .3 , as $1.06 \mathrm{~Wb} / \mathrm{m}^{2}$ for $I_{f}=1.0 a r m$. The fundamental equivalent sine distribution of this 'short pitched' square wave will have a peak value $B_{1}=\frac{2}{\pi} B_{\max } \sin \left(\frac{t}{\lambda} \pi\right)$ where $\frac{t}{\lambda}=0.33$.
Hence $B_{1}=\left(\frac{2 \times 1.06}{\pi} \frac{\sqrt{3}}{2}\right)=0.584 \mathrm{Nb} / \mathrm{m}^{2}$
The favourable cormparison between 'designed' and measured values was expected, but nevertheless had to be established, before any theoretical expression for voltage employing B_{1} might be tested against measurements. Having shown good agreement the measured value ($B_{1}=.584 \mathrm{~Wb} / \mathrm{m}^{2}$) is used to calculate $\mathrm{E}_{\mathrm{oc}}\left({ }^{=} \sqrt{2} \mathrm{~N}_{\mathrm{a}} \ell \lambda \mathrm{fB}_{1}\right)$

$$
=\left(\sqrt{2} \times 32 \times 0.14 \times 0.047 \times 10^{3} \times 0.584\right)=174 \text { volts }
$$

$\mathrm{E}_{\text {oc }}$ was defined as the fundamental r.m.s. component of the open circuit voltage. This was analysed and measured at $I_{f}=1.0$ anm to be 175 volts.

Since the calculated value for voltage is directly proportional to flux density, comparison of one value is sufficient to demonstrate the claim of the theory to describe open circuit conditions. To calculate the open circuit characteristic into the region of non linearity requires a knowledge of the flux density under saturated conditions. This restriction applies to all expressions for voltage. The open circuit
characteristic ($\mathrm{E}_{\mathrm{oc}} / \mathrm{I}_{f}$) is a source of information as to the nonlinear characteristics of that particular machine; this will be used to express on load field requirements in 5.3 .2 . There exist successful techniques for calculating this characteristic.

5.2 The teminal voltage on load

5.2.1 Introduction

Section 5.1 has described an expression for the open circuit voltage, $\bar{E}_{\text {oc }}$, derived from the open circuit airgap flux density pattern. Similarly a voltage, \bar{E}_{a}, may be derived from the airgap flux density distribution due to armature reaction. The vector combination, fig $52(\mathrm{a})$, of $\bar{E}_{o c}$ and E_{a} will produce E, the intemal generated voltage on load, assuming superposition. A relationship between \bar{E} and the terminal voltage, dependen upon power factor and leakage reactance, leads to an expression for terminal voltage in p.u. terms of load and field currents, the load power factor, and the leakage reactance.

The base values chosen for the p.u. systems are:
Terminal voltage : rated r.m.s. open circuit voltage $: V_{o}$

$$
\text { i.e. } V=v V_{0}
$$

Amature current : rated peak full load curren : : $I_{\text {ao }}$

$$
\text { i.e. } I_{a}=i I_{a o}
$$

Inpedance : ratio of rated voltage and current $: \frac{V_{0} \sqrt{2}}{I_{a 0}}$
Field current : that current required to establish $V_{o}: I_{\text {fo }}$ where the subscript 'o' indicates a 'rated' value.

At a given excitation $\mathrm{E}_{\mathrm{oc}}=\mathrm{kV} \mathrm{o}_{\mathrm{o}}$

$$
I_{f}=\cdot k^{\prime} I_{f o}
$$

the combination of the two factors k and k ' is a point by point representation of the open circuit characteristic and the ratio k / k^{\prime} is the non linear factor relating the two p.u. systens, when calculating working points in the region where the iron circuit ampere-turns are no longer negligible.

Fig 52

(b)

5.2.2 Theoretical derivation of $\overline{\mathrm{E}}_{\mathrm{a}}$ (voltage generated by armature

reaction m.m.f.)

Equation (5), 3.2.2, for the airgap flux density distribution due to mature reaction may be expanded:

$$
\bar{B}_{a}=C_{1} \sum_{\substack{m=0.1 \\
n=0 d d}}^{\infty} \frac{b_{m}}{n} \sin \frac{n \pi}{2}\left[\begin{array}{r}
\cos \left\{(m+n) \theta-(m-1) \omega t-\delta-m \frac{\pi}{2}\right\} \\
+\cos \left\{(m+n) \theta-(m+1) \omega t+\delta-m \frac{\pi}{2}\right\} \\
+\cos \left\{(m-n) \theta-(m-1) \omega t-\delta-m \frac{\pi}{2}\right\} \\
+\cos \left\{(m-n) \theta-(m+1) \omega t+\delta-m \frac{\pi}{2}\right\}
\end{array}\right]
$$

The terms in θ represent the space distribution: the terms in ωt give the frequency at a given point in space. If we restrict the solution to effects that are fundamental in time, only terms in ωt are needed i.e. $m=0$ or 2 , giving an expression for the fundamental component of \bar{B}_{a},

$$
\begin{aligned}
& B_{a}=C B_{1} \sum_{n=o d d}^{\infty} \frac{1}{n} \sin \pi \frac{\pi}{2}\left[\begin{array}{ll}
b_{o} & \{\cos (n \theta+\omega t-\delta)+\cos (n \theta-\omega t+\delta) \\
& +\cos (n \theta-\omega t+\delta)+\cos (n \theta+\omega t-\delta)
\end{array}\right. \\
&+b_{2} \begin{array}{l}
\{\cos (\overline{n+2} \cdot \theta-\omega t-\delta-\pi) \\
\\
+\cos (\overline{2-n} \cdot \theta-\omega t-\delta-\pi)\}
\end{array} \\
&=C B_{1} \sum_{n=o d d}^{\infty} \frac{1}{n} \sin n \frac{\pi}{2} \quad 2 \cos n \theta\left\{2 b_{0} \cos (\omega t-\delta)-b_{2} \cos (2 \theta-\omega t-\delta)\right\}
\end{aligned}
$$

The fundamental frequency flux linking an armature coil due to B_{a} will be similar to that due to $B_{o c}$ (but qualified by the ratio of the mean armature reaction ampere turns to the field ampere turns), ie. the integration of B_{a} between limits defined by the positions of the coil sides $\phi_{a}^{+\pi / 2}=\frac{l \lambda B_{1}}{\pi} \frac{2 N_{a} I_{a}}{\pi \pi^{2} F_{f}} \sum_{n=0 d d}^{\infty} \frac{1}{n}\left\{\frac{4 b_{0}}{n} \cos (\omega t-\delta)+\frac{2 n b_{2}}{n^{2}-4} \cos (\omega t+\delta)\right\}$
since $\sum_{n=\text { odd }}^{\infty}\left(\frac{1}{n^{2}}\right)=\frac{\pi^{2}}{8}$ and $\sum_{n=\text { odd }}^{\infty}\left(\frac{1}{n^{2}-4}\right)=0$, see 8.9
the fundamental armature reaction flux linking the reference coil is expressed by

$$
\begin{equation*}
{\mathrm{Cl} \lambda \mathrm{~B}_{1} \mathrm{~b}_{0} \cos (\omega t-\delta)}^{2} \tag{8}
\end{equation*}
$$

With the simplification of \bar{B}_{a} into B_{a}, C and b_{o} may be regrouped into more meaningful terms with reference to existing inductor-altomator conventions.

Fie 53: B oc
fund
steady - - -

In fig 53 the $B_{o c}$ distribution is shown together with its steady and fundamental components. Thus

$$
\varepsilon_{2}=\left(\frac{2 B_{1}}{\pi B_{0}}\right)=\left(\frac{2}{\pi D_{0}}\right)
$$

$$
\therefore \quad \phi_{a-\pi / 2}^{+\pi / 2}=\frac{2 C}{\varepsilon_{2}} \cdot B_{1} \frac{2 \lambda}{\pi} \cos (\omega t-\delta)
$$

Raby ${ }^{36}$ defined a design parameter

$$
' \mathrm{a}^{\prime}=\frac{\text { peak armature reaction anmere tums }}{\varepsilon \times \text { open circuit rated field anpere turns }}
$$

This was specifically for Guy-type designs and was later modified to allow for the effects of damping circuits. Chapter 3 has investigated the undesired flux variations and their damping in Lorenz-type desims: these effects are very small compared to those experiences with Guy-type designs, since the Guy-slotting represents the 'idcal' geometry for producing the undesired second hamonic flux linkages with the field winding.

It is proposed to use 'a' for Lorenz-type designs such that at any operating condition

$$
\begin{align*}
a= & \frac{\text { mean armature reaction ampere tums }}{\varepsilon \times \text { ficld ampere turns }}=\frac{2 N_{a} I_{a}}{\pi \varepsilon_{2} \cdot N_{f} I_{f}} \\
& +\pi / 2 \tag{9}
\end{align*}
$$

Hence, $\phi_{a-\pi / 2}=a B_{1} \frac{l \lambda}{\pi} \cos (\omega t-\delta)$
The r.m.s. fumdamental e.m.f. due to \bar{B}_{a} is derived by differentiating equation (9) with regard to time

$$
\begin{aligned}
E_{a} & =\sqrt{2} N_{a} a B_{1} \text { ldf } \sin (\omega t-\delta) \\
& =a E_{o c} \cos (\omega t-\pi / 2-\delta)
\end{aligned}
$$

where $-(\pi / 2+\delta)$ defines the phase angle between E_{a} and $E_{o c}$, see fig 54.

Fig 54: (a) lagging p.f. (b) leading p.f.

5.2.3 Theoretical derivation of the internal generated voltare

$$
\text { on load, } \mathrm{E} \text {. }
$$

For the field setting which establishes B_{1}, combining $E_{o c}$ and E_{a} gives an expression for the internal generated voltage on load, E.

$$
\begin{aligned}
E & =E_{o c}+E_{a} \\
E & =E_{o c}\{(1-a \sin \delta) \cos \omega t-a \cos \delta \sin \omega t\} \\
& =E_{o c} A \cos (\omega t-\psi) \\
\text { where } A & =V\left\{(1-a \sin \delta)^{2}+(a \cos \delta)^{2}\right\} \\
& =V\left(1-2 a \sin \delta+a^{2}\right) \\
\text { and } \cos \psi & =(1-a \sin \delta) / A
\end{aligned}
$$

The time relationship of the peak values of ($\phi_{f}, \phi_{\mathrm{a}}$) and ($E_{o c}, E_{a}$ and E), the fluxes linking and the fundanental r.m.s. voltages induced in the stator reference coil, may be represented by the vector diagram of fig $52(\mathrm{a})$.

For a polyphase machine this diagram would also represent the space relationships of rotating field and amature m.m.f.s for one phase, leading to a combined on load m.m.f. generating E. The angle between ϕ_{E} and ϕ_{f}, fig $52(\mathrm{~b})$, in polyphase synchronous machine theory is luown as the load anglc. If this theory were applied to a polyphase inductoralternator, the load angle would be given by ψ.

However, the machine being investigated is single phase. The two cominant components of the ammature reaction flux are fundanental in space and contra-rotating at synchronous speed. Only the forward rotating component may appear on a synchronously rotating space diagram with the field flux which, because it depends on the rotor geometry, is itsclf rotating forward synchronously. Nore importantly, the conbination of these tivo fields would lead to a value of load angle given by ' α ' in fig 52 (c) if the polyphase definition for load angle were accepted. This
is the angle by which the position of the peak fundamental sinusoidal m.m.f. on load moves fron the corresponding position on mo load: it is a combination of real rotor movement and a shift of the resultant m.m.f. distribution. Since the concept of 'load angle' is employed to express the relative displacement of 'rotor' and stator field pattems with load, it is proposed to consider the angle ' ψ ' as the load angle for this machine. It has been shom to be directly analogous with polyphase theory and is more simply expressed than ' α '. Further, ' ψ ' gives the total effect of amature reaction rather than the partial effect represented by ' α '. This is discussed further in 6.3
5.2.4 The relationship between $E_{o C}, E$, and V leading to a general expression for the terminal voltare on-load

The generated voltage (E) supplies the terminal voltage (V) through the impedance of the armature windings. This depends upon the slot and end-winding leakage paths together with the resistance of the amature windings; the latter being usually negligible. The reactive voltage due to leakage fluxes (E_{ℓ}) will therefore depend on the leakage reactance X_{ℓ} and have the same direction as E_{a},

$$
E_{\ell}=\frac{I_{a}}{\sqrt{2}} \chi_{\ell} \cos (\omega t-\pi / 2-\delta)
$$

Thus the terminal voltage is expressed by the solution of the vector triangle in fig 54

$$
V=V\left\{\left(E_{o c} A\right)^{2}+\left(\frac{I_{a}}{\sqrt{2}} X_{\ell}\right)^{2}+2 E_{o c^{A} \frac{I_{a}}{\sqrt{2}}}^{X_{\ell}} \sin (\psi-\delta)\right\}
$$

at an angle $(-\delta \pm \phi)$ to $I_{o c}$ (+ for lagging $p . f$.) or, in tems of the load power factor rather than the load angle.

$$
E=V\left\{V^{2}+\left(\frac{I_{a}}{\sqrt{2}} X_{\ell}\right)^{2} \pm 2 V \frac{I_{a}}{\sqrt{2}} X_{\ell} \sin \phi\right\}(+v e \text { for lagging } p \cdot f .)
$$

The complexity of these expressions for the terminal voltage are due to the separate derivations of E_{a} and E_{ℓ}, with the intermediate expression for E. Whereas E_{a} stems directly from B_{a}, i.e. is resultant on the airgap flux distribution, E_{ℓ} is introduced to account for flux distributions on load which are not controlled by the airgap region. For the purposes of this analysis the well tried concepts of leakage reactance ${ }^{35}$ which were used in the design of the experimental machine are employed.
E_{a} and E_{ℓ} may be combined as one reactive voltage due to armature reaction in the following manner.

$$
\begin{aligned}
E_{a} & =a E_{o c} \quad \text { from } 5.2 .2 \\
& =\left(a_{0} i \frac{k}{k^{\prime}} V_{o}\right) \\
\text { if } a_{0} & =\frac{2 N_{a} I_{a 0}}{\varepsilon_{2} \pi N_{f} I_{f o}}=a \frac{k^{\prime}}{i} \\
E_{l} & =\frac{I_{a}}{\sqrt{2}} X_{l}=i x_{l} V_{0}
\end{aligned}
$$

if x_{ℓ} is the pu. leakage reactance $\left(=X_{\ell} \frac{I_{a 0}}{V_{0} \sqrt{2}}\right)$
The assumption is made that, similar to $\mathrm{E}_{\mathrm{a}}, \mathrm{E}_{\ell}$ must be modified by the factor $k /{ }_{k}$, to allow for non-linear effects. (Walker ${ }^{2}$ refers to a similar 'saturation factor').

Hence $\quad E_{a}+E_{\ell}=i \frac{k}{K^{\prime}}\left(a_{0}+x_{\ell}\right) V_{o}$

Using this combined voltage in the solution of the vector triangle in fig 54 leads to a complete expression for V in terms of $E_{o c}$.

$$
\begin{aligned}
& \left(E_{o c}\right)^{2}=V^{2}+\left(E_{a}+E_{\ell}\right)^{2} \pm 2 V\left(E_{a}+E_{\ell}\right) \sin \phi \\
& \left(k V_{o}\right)^{2}=V^{2}+\left\{i \frac{k}{k^{\prime}}\left(a_{0}+\dot{x}_{\ell}\right) V_{o}\right\}^{2} \pm 2 V V_{o} i \frac{k}{K^{\prime}}\left(a_{0}+x_{\ell}\right) \sin \phi
\end{aligned}
$$

Dividing by V_{0}^{2} and re-arranging into the quadratic solution form gives the pu. expression, (since $V=v V_{0}$)

$$
\begin{equation*}
v=\mp i \frac{k}{k^{\prime}}\left(a_{0}+x_{\ell}\right) \sin \phi \pm V\left[k^{2}-\left\{i \frac{k}{k^{\prime}}\left(a_{0}+x_{\ell}\right) \cos \phi\right\}^{2}\right] \tag{10}
\end{equation*}
$$

In fig 55, equation (10) is represented by

$$
O A=\mp A B \pm O B
$$

Thus for positive $O B$, the negative value of $A B$ represents a lagging power factor condition. With simplifications the pu. r.m.s. terminal voltage on load is given by

$$
\begin{align*}
& v=\downarrow \cdot\left\{k^{2}-(N \cos \phi)^{2}\right\} \mp M \sin \phi \quad \text { (-v e:lagging p.f.) } \tag{11}\\
& \text { where } M=i \frac{k}{k},\left(a_{0}+x_{\ell}\right)
\end{align*}
$$

Equation (11) has restricted applications as discussed in 5.2 .5 since the following must be known -
a) open-circuit characteristic
b) load and field currents at the operating point
c) leakage reactance
d) load power factor
(a)

(b)

Fig 55: (a) lagging p.f. (b) leading p.f.

5.2.5 Cenoral analysis of the teminal voltage expression

The expression for teminal voltage on load given by equation (11) requires a knowledge of the particular relationship of load current to field current for the machine being studied. Thus it may be used for analysis of existing machines, to indicate the effect of a change in design or operating conditions, but not for new design calculations.

In 5.3.1 the experimental machine is analysed for two conditions of loading to compare the thooretical and actual results. It is fully reconnised that far reaching assumptions are involved both in the series representation of flux density pattems, and in the superposition of fields required to establish this theory. The conditions peculiar to this machine which allow these assumptions are, respectively, that the b_{0}, b_{1} and b_{2} tems included in the theory fom the major components of the space distribution and, that where the airgap is Smail, hamonic pole to pole leakage within the gap is negligible.

Because the theoretical derivation of armature reaction is based on open circuit conditions the teminal voltage is expressed in tems of the factors k and k '. Equation (11) may be re-arranged in the form

$$
k^{\prime}=f\left(i, v, \varepsilon_{2}, \phi, x_{l} \text { and } k\right)
$$

This nomalised form may be presented graphically by plotting k^{\prime} against k. Families of curves result; for a range of p.u. current. while v, ϕ, ε_{2} and x_{ℓ} are held constant; for a range of power factors while i, v, ε_{2} and x_{ℓ} are held constant; etc, as shown in figs 60 and 61.

Of these paraneters, i and v are $p . u$. values, ε_{2} and x_{l} are due to the 'geonetry' of the design and will have particular values for a given machine while $\cos \phi$, the load circuit power factor, will have conventional values say mity of ± 0.9. Therefore, the five fanilies of curves represent conditional relationships between k and k^{\prime} for all possible loads and machine geometries (within the assumptions).

A second relationship between k^{\prime} and k, peculiar to each machine, is obtained from the open circuit characteristic, fig 56. The intersection of any one curve from $k^{\prime}=f\left(i, v, \varepsilon_{2}, \phi, x_{\ell}\right.$ and $\left.k\right)$ and the open circuit k ' k relationship represents a simultancous satisfaction of the normalised load conditions and the open circuit non-linearity
particular to that machine. This technique is possible because the field pattern due to load is expressed in terms of open circuit parmeters. The use of this process to pre-dotemine machine characteristics depends upon the ability to pre-deternine the open circuit characteristic: this is accepted practice.

Section 5.3.2 describes this process of building up the load characteristic point by point for level regulation. The result is a curve which accurately pre-determines the necessary field current for practical load currents at conventional power factors.

5.3 Application of the terminal voltage expressions to experimental and industrial machines
5.3.1 Tho examples of cormarisons between measured and calculated voltage characteristics
(1) Measurements of terminal voltage are taken when the alternator is supplying a constant impedance load; for a range of field current values, load current, terminal voltage and open circuit voltage are measured. These are given in Table 12 together with corresponding values for k, k^{\prime} and k / k^{\prime}.

Table 12: Test values with corresponding pu. factors for constant impedance load.

The remaining information required to calculate V at each of the measured points is as follows:

1) load circuit power factor $=.973$ lag (measured average of readings at each point)
2) p.u. leakage reactance $=0.32$, by design, section 2.1
3) $a_{0}=\left(\frac{2}{\varepsilon_{2} \pi} \frac{N_{a} I_{a 0}}{N_{f} I_{f 0}}\right)$ or $\left(b_{0} \frac{N_{a} I_{a 0}}{N_{f} I_{f o}}\right)$, these are theoretically equal, 5.2 .2 , but $\left(\frac{2}{\pi b_{0}}\right)=0.89$ compared with the design value for ε_{2} of 0.83 . The comparison between calculations using both values is given in fig 57.

$$
\frac{N_{\mathrm{a}} \mathrm{I}_{\mathrm{ao}}}{\mathrm{~N}_{\mathrm{I}} \mathrm{I} \text { fo }}=\frac{1 \times 314}{270 \times 0.88}=1.322
$$

using the 'design' value for ε_{2}, $a_{0}=1.013$
using the 'theoretical' form, $a_{0}=0.938$
calculations are presented in Table 13 using the 'theoretical' form i.e. $M=i k / k^{\prime}\left(a_{0}+x_{\ell}\right)=1.258 \mathrm{ik} / k^{\prime}$

Table 13: Components of equation (11) leading to the calculated value of V for corparison with Table 12

I_{f}	M	$M^{2} \cos ^{2} \phi$	$\begin{aligned} & k^{2} \\ & b \end{aligned}$	(b-a)	$V(b-a)$	$\begin{gathered} M \sin \phi \\ \mathrm{~d} \end{gathered}$	$(c-d)$	V
. 25	. 184	. 032	. 094	. 062	. 249	. 043	. 206	30.9
. 5	. 368	. 128	. 359	. 231	. 481	. 085	. 396	59.4
. 75	. 534	. 270	. 762	. 492	. 701	. 123	. 578	86.7
1.0	. 649	. 399	1.173	. 774	. 880	. 150	. 730	109.5
1.25	. 709	. 476	1.503	1.027	1.013	. 164	. 849	127.4
1.5	. 730	. 505	1.769	1.264	1.124	. 169	. 955	143.3
1.75	. 720	. 491	1.949	1.458	1.207	. 166	1.041	156.2
2.0	. 693	. 455	2.053	1.598	1.264	. 160	1.104	165.6

(2) In the second example, measurements of teminal characteristics are taken when the altemator is supplying a varying impedance load: the ficld current is held constant which results in k, k^{\prime} and k / k^{\prime}, having constant values. Each point is associated with a different value of load power factor which is calculated from Table 14.

Table 14: Neasurements of r.m.s. teminal load current, voltage and power together with calculated values for power factor. Ficld current $=1.0$ armp .

$\mathrm{Ia} / \sqrt{ } 2$	V	Kw	$\cos \phi$
0	163	-	1.0
62.5	143.5	8.92	.995
104	121	12.46	.99
120	104	12.29	.985
155	62.6	9.51	.98
165	39.2	6.08	.94
168	24.5	3.58	.87

Thus $\left.\begin{array}{rl}k & =163 / 150=1.087 \\ k^{\prime} & =1.0 / 0.88=1.136\end{array}\right\} \quad \mathrm{k} / \mathrm{k}^{\prime}=0.957$
and equation (11) sirplifies to the form

$$
v=V\left\{1.181-(1.204 i \cos \phi)^{2}\right\}-1.204 i \sin \phi
$$

Table 15 gives the components of this equation leading to the calculated values of V using the 'theoretical' derivation of ε_{2}. Fig 58 shows the calculated values of V both from Table 15 and when using the 'design' value for ε_{2}, together with the measured values. Vector diagrans representing approximately the 60 anp and 160 amp points of fig 58 are given in fig 59.

Fig 58: Tominal volts against load current Variablo load - constant ficla!
200

Table 15: Components of equation (11) leading to the calculated value of V for comparison with Table 14

| $I a / \Omega$ | i | M | $M^{2} \cos ^{2} \phi$
 a | $\left(k^{2}-a\right)$
 b | b
 c | $i \sin \phi$
 d | $(c-d)$
 V | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | - | - | - | 1.182 | 1.089 | - | 1.089 | 163 |
| 62.5 | .281 | .338 | .113 | 1.049 | 1.024 | .034 | .990 | 148 |
| 104 | .468 | .563 | .311 | .870 | .933 | .079 | .854 | 128 |
| 120 | .540 | .650 | .410 | .771 | .878 | .112 | .766 | 115 |
| 155 | .698 | .840 | .678 | .493 | .702 | .167 | .535 | 80 |
| 165 | .743 | .895 | .708 | .473 | .688 | .305 | .383 | 57 |
| 168 | .756 | .910 | .627 | .554 | .744 | .449 | .295 | 44 |

5.3.2 The relationship between field current and terminal voltage

For lagging power factor equation (11), 5.2.4, may be rearranged in terms of $M=i k / k^{\prime}\left(a_{0}+x_{\ell}\right)$,

$$
\begin{gathered}
M^{2}+2 v \sin \phi M+\left(v^{2}-k^{2}\right)=0 \\
\text { or } \quad M=-v \sin \phi \pm v\left\{v^{2} \sin ^{2} \phi-\left(v^{2}-k^{2}\right)\right\}
\end{gathered}
$$

taking the positive square root as previously, 5.2.4,

$$
\begin{equation*}
k^{\prime}=\frac{i k\left(a_{0}+x_{l}\right)}{\sqrt{\left(k^{2}-v^{2} \cos ^{2} \phi\right)-v \sin \phi}} \tag{12a}
\end{equation*}
$$

similarly for leading power factor conditions

$$
\begin{equation*}
k^{\prime}=\frac{i k\left(a_{0}+x_{l}\right)}{v\left(k^{2}-v^{2} \cos ^{2} \phi\right)+v \sin \phi} \tag{12~b}
\end{equation*}
$$

Figs 60 and 61 are examples of fanilies of curves for k^{\prime} plotted against k, representing the effect of one parameter varying while the rest were held constant. Since k^{\prime} is directly proportional to i , all the curves in fig 60 are in fact the same curve; each level of i sets a different scale to the axes. In fig 61 the variable is ϕ; each curve is unique and subject to limits dependent on the constant values chosen for the remaining paraneters.

Neasurements were made of load and field current on the experimental machine adjusted for level regulation at each load. Table 16 presents these readings with p.u. values for the load current and calculated values of the load power factor.

Table 16: Measurements of field current, load current and power together with calculated power factor; each setting adjusted for $V=150$ volts.

$\mathrm{Ia} / \sqrt{2}$	i	Kw	pf	I_{f}
62.5	.281	9.32	.994	1.03
88.8	.400	13.25	.995	1.14
99.4	.447	14.79	.992	1.18
104.8	.472	15.50	.986	1.21
127.8	.575	18.88	.985	1.32
138.2	.622	20.43	.985	1.49
202.3	.910	30.00	.988	1.78

Although some significance may be attached to the variation in calculated load power factor in that it tends to decrease as the load resistance decreases, consistent reading of the watt meter to this accuracy is not practical. Therefore the calculations are made for $\cos \phi=.995$ and $\cos \phi=.985$; representing the two extreme values.

Fig 64: Ficld curront against p.u. load curront at . 995 p.f. and .985 1.f.
Calculated for $\left(\varepsilon_{2}:\right.$ desimn $\left.=.83\right)$
ieasured on experimental $\mathrm{n} / \mathrm{C} 65328 \mathrm{~J} \times \mathrm{X}$
(2.0

5.3 .2

The procedure for calculating the curve representing I_{f} against I_{a} has two parts as follows,
(1) k^{\prime} is plotted against k . The values are taken from a measured (or calculated) open circuit characteristic. On the same graph portions of a family of curves similar to fig 60 are plotted to establish the points of intersection.
(2) Each intersection describes the necessary p.u. field current (k^{\prime}) required to support the p.u. armature current associated with that particular curve of the family. Hence the values of k^{\prime} and I_{a} at each intersection lead to a curve of I_{f} against I_{a} for a specific voltage and power factor.

Fig 62 represents part (1) above for the experimental machine and fig 63 the resulting calculations of the load characteristic for both .985 and . 995 lag power factors. Measurements are marked by crosses for comparison with the theoretical curves, which used $\varepsilon_{2}=\frac{2}{\pi b_{o}}$. Fig 64 shows the same measurements together with calculated curves using the 'design' value of ε_{2}.

The open circuit characteristic of the industrial machine (on which this experimental alternator is mode1led), 2.1, is shown in fig 65 in the form of k^{\prime} against k . The manufacturer's load measurements were made with a load power factor described as being '...... certainly between UPF and 0.98 lag and ... probably between 0.99 and unity'. Accordingly the variable i families were plotted for $\cos \phi=1.0$ and 0.98 lag in the region of their intersection with the open circuit characteristic. Fig 66 shows these intersections converted into load characteristics and corpared with the manufacturer's measurements. The theory suggests that the load power factor was 0.995 lag ; this corroborates the manufacturer's expectations.

Thus, calculations based on the theory derived in this thesis, both for the experimental and for the industrial machine, have agreed closely with the experimental measurements and the manufacturer's tests respectively.

$$
\text { CHAPTER } 6 \frac{\text { Future worl }- \text { some thoughts on starting noints }}{\text { suggested by this thesis }}
$$

6.1 The calculation of iron losses 174
6.2 Sclf-excitation 179
6.3 An output expression for studying balanced designs 181
6.4 The output waveform 183

This thesis presents an analysis of the cistribution of flux throughout the stator and airgap of a Lorenz-type inductor-altemator. It is therefore a basis for investigations into many aspects of this class of machine which have not yet been studied in the linited literature.

The motive for extending the 'classical' theory has been fully discussed in Chapter 1 and subsequent chapters have deronstrated its capacity to usefully describe conditions in practice. Nany of the techniques, both theoretical and practical, which have cvolved during the derivation and corroboration of the theory, are by no means restricted to this particular class of machine.

This chapter discusses two recognised problems, losses and selfexcitation, which have not been solved during the work but which, it is hoped, will now be more tractable. During the theoretical and experirental analysis two further areas of great interest have developec. The first concems the concept of 'load-angle' which arose when considoring the inductor-altemator's similarities to the synchronous macinine. This leads to an expression for power output dependent on terms describing the electrical and magnetic balance of the clesign.

The second area which the analysis describes in new detail concems the mamer in which the output waveform is produced. Due to the square nature of the open circuit wave and the sinusoidal nature of the major components of amature reaction, the combination is clearly seen in a series of traces of open circuit and on-load terminal volts.

6.1 The calculation of iron losses

It has becore accepted practice in the calculation of iron loss for inductor-altemators, to multiply the calculated value by an ermirical factor (ranging between 2 and 3) to arrive at the value expected from tests.

The discovery that altemating fluxes exist in regions which previously were presumed to carry d.c. flux only, suggests a primary source of additional loss. The distribution of flux within the teeth, investigated with the conducting paper analoque, suggests a further loss mechanisn associated with the harmonic pole to pole paths completed in the tooth surface.

Neasurements of the flux density distribution along a slot centre line radius, fig 67, showed that the majority of the loss occurred close to the slots. Calculations of corc loss with this distribution gave lower values than the existing practice of considering' mean tooth flux density filling a depth of core equal to half a tooth width. With the additional components passing behind the field slot, the total loss comes close to the design value, fig 19. Losses due to second-hamonic fluxes are calculated to add 6% to the fundanental frequency losses. On-1oad, the general distribution of cormonents remains very similar to the open circuit pattern. The additional second hamonic corponents appear to be reduced below their theoretical value in the sane mamer that open circuit second hamonic components are affected by distortion. There is evidence, however, that the field pole to pole paths suggested by the extension of the open circuit theory in Chapter 3, are not the only possible paths. Only small values of second hamonic flux appear to leave a rotor tooth and complete a field pole to pole path through the rotor core. For values of load angle when the rotor tooth is opposite an armature slot i.e.opposite parts of two adjacent stator teeth, at the

Fig 67: Donsity of fuodarental flux passing behind amature slot, at open circuit rated voles tadamed
instant of peak amature current, the amature reaction flux may pass through the rotor tooth surface, fig 68. In terms of the composite onload airgap flux distribution, hamonic pole to pole paths exist in the rotor tooth surface.

Fig 68: Rotor surface path for amature reaction flux

The losses resulting from these 'surface paths' are very similar to pole-shoe tooth-ripple losses which have been considered in sone detail for salient pole altemators. Greig and Nukherji ${ }^{41}$ have shom experimental verification of theories presented by Bondi and Mulherji ${ }^{42}$ which show that two different modes of flux penetration exist in the surface of laminated pole-shoes. The first is in accordance with the 'classical' depth of penetration employed by Carter ${ }^{43}$ and Gibbs ${ }^{44}$. The second involves a penetration of much greater depth of the order of a slot pitch. Neasurements on the Lorenz experimental machine show that even harmonic fluxes complete surface paths within the first third of the stator tooth length (i.e. within a depth equal to the third hamonic wavelength). Further into the tooth the flux variations lose any 'space' distribution and are varying in time with magnitudes dictated by the tooth width at the airgap.

Following further experimentation, Greig and Sathirakul 45 conclude that the discrepancies between theory and practice for $.016^{\prime \prime}$ laminations were not inconsistent with the phenonenon normally referred
to as the 'loss anomaly'. In this comnection it is interesting to note the findings of Boon and Thompson ${ }^{1 / 0}$ who show, for polycrystalline 3\% silicon-iron sheet at $50 \mathrm{c} / \mathrm{s}$, that the ratio of rotational to altemating loss is, approximately, two.

Analysis of the conducting paper analogue studies has demonstrated the rotational nature of flux densities in the surface regions of Lorenz stator teeth. A mathematical treatment (neglecting the 'classical' effects of eddy currents) has expressed this density in tems of radial and circunferential components of the form

$$
\begin{aligned}
& \overline{B_{x}}=\exp \frac{-\pi y}{a} \sin \frac{\pi x}{a} \\
& \overline{B_{y}}=\exp \frac{-\pi y}{a} \cos \frac{\pi x}{a} \\
& \bar{B}=\overline{B_{x}^{2}+B_{y}^{2}}=\exp \frac{-\pi y}{a}
\end{aligned}
$$

where x is measured circunferentially along the tooth surface and y, radially into the tooth iron.

These equations are very similar to those used by Freeman ${ }^{46}$, although derived in a different manner. For any penetration y, as x takes values from 0 to $2 a, \bar{B}$ has the magnitudeexp $\frac{-\pi y}{a}$ and direction $\frac{\pi x}{a}$ radians from the y axis; this describes a complete cycle of rotation as the source of the hamonic space distribution, i.e. the rotor, moves a hamonic wavelength.

Chapter 3 demonstrated the simultaneous existence of 'sin ωt ' and 'cos ω t' components of flux in the half teeth and core of the stator; i.e. their combination may also be considered as a rotational flux.

Therefore, a future study of loss mechanisms and their calculation must

6.1

1) consider qualifications to the pole-shoe theories to accome for the effect of slots in the stator and rotor, perhaps by investigating in greater depth analogue studies which sirulate the tooth boundaries.
2) consider the additional loss present when the flux density is rotational, and in which regions of the iron this is significant.

In the writer's opinion rotational surface losses will account for the present discrapancy between calculation and measurement. The stator iron is subjected to an extreme form of tooth ripple flux while the rotor experiences the negative sequence cormonents of single phase amature reaction: both are, at present, neglected in the loss calculations and both contain rotational characteristics.

6.2 Self-excitation

Due to the comparatively high pu. synchronous reactance $\left(a+x_{\ell}\right)$ inherent for inductor-altemators, the natural regulation characteristic is poor. Improvement both in regulation and the overall magnetic to electrical balance of a design is obtained by stoplying the load through a series capacitor. This is loom as compensation; the degree of compensation is defined as (x_{c}) where x_{c} represents the $\left(a+x_{l}\right)$
p.u. capacitive reactance.

If x_{c} is made equal to $\left(a+x_{\ell}\right)$ i.e. 100% compensation, a short circuit fault in the load circuit would result in a resonance condition, theoretically reducing the load on the machine to the armature resistance alone. Naturally this disastrous possibility is avoided. If two or more machines are required to be paralleled, synchronous operation depends upon the paralleling circuit impedance having an inductive component. Thus over-compensation introduces a restriction on the design's application.

Two types of self excitation occur in under-conmensated systems.

1) asynchronous self-excitation
2) self-excitation clue to ferromagnetic resonance.

Both depend upon the 'tuning' of the machine reactance with the capacitance of the load circuit.

1) Asynchronous self-excitation occurs during mun up. It is dependent upon a frequency (less than rated frequency) at which the load capacitance times with the synchronous reactance. Characteristic signs are a low frequency induced in the field circuit and a mixing of this and the generated frequency in the output circuit.

This much is industrial experionce. Given a tuned condition, the phenomenon would appear to depend on the mutual incluctance of the amature and field coils. Giapter 3 has evolved techniques for studying the components of flux linking both coils expressed in tems of the combined ficld and amature m.m.f.s. These may well lead to a fuller understanding of the mechanism and suggest appropriate winding characteristics, or darping circuits, to limit the effects.
2) Thereas 'asynchronous self-excitation' is primarily a fault phenomenon, transient surge conditions may also stimulate selfexcitation. One explanation suggests that momentary saturation of the iron circuit may reduce the effective machine reactance to a level at which it equals the load capacitance; the resulting resonance may be transiont or sustained.

Since the expressions for teminal volts on-load, derived in Ghapter 5, are dependent on a saturation factor (k / k^{1}) , the conditions controlling a reduction in machine reactance as described above may be analysed theoretically. It is the writer's opinion that a solution to 'ferro-magnetic resonance' will form one part of a general transient analysis. The major application for inductor-altemators at present is to supplying coreless induction fumaces; these present a highly inductive load. The p.f. may be as low as 0.1, dependent upon frequency and lining thichness. By using shmt capacitors to corpensate for the large wattless current, the necessary altemator size is very greatly reduced. Change in load p.f., as seen by the altemator, occurs during the melt; hence it is necessary to vary the value of the capacitors to limit this power factor variation.

A full transiont analysis of such a system is necessary to ostablish operating criteria, without which present designs must contain substantial overload capacity.

6.3 Mn output expression for studying bal anced dosims

The Lorenz-type inductor-altemator has many of the characteristics of salient pole synchronous machines. Because adjacent direct axes have dissinilar pemeance coefficients and the quadrature axis pemeance is unsymetrical, nomal two axis theory is inapplicable. If a transform function with a period of 2π (electrical rad) is discovered a modified two-axis theory will follow. Until such a discovery continuous expressions for the composite field at any point in the airgap must be used.

In Chapter 5 it was shown that the fundanental vector diacram was very similar to that of a synchronous machine and that, for the single phase alternator, a paraneter analogous to the conventional 'load-angle' might be expressed.

$$
\text { i.c. } \cos \psi=(1-a \sin \delta) / A
$$

Continuing the analogy, assuming the peak energy stored in the gap to be $\frac{\mu_{0}}{2}\left(\frac{F_{f} A}{g}\right)^{2}$, a fictitious combination of F_{f} and F_{a} regardless of the contra-rotating nature of F_{a}, the load angle may be written into an expression for power of the form

$$
\text { Power }=\frac{\text { poles }}{2} \frac{\pi}{2} \frac{2 \mathrm{Rrw}_{\mathrm{r}}}{\mathrm{gc}} \mathrm{~F}_{f}^{2} \mathrm{~A} \sin \psi
$$

Eliminating ψ and substituting $\frac{V_{T}}{V_{f}} \cos \phi$ for $\cos \delta$

$$
\text { Power }=\text { poles } \times \frac{R e_{W_{r}}}{g \varepsilon_{2} \mathrm{C}} F_{f} F_{a} \frac{V_{T}}{V_{f}} \cos \phi
$$

Not sumprisingly, the load circuit power factor $(\cos \phi)$, the angular velocity $\left(W_{r}\right)$ and the regulation ($\frac{V_{T}}{V_{f}}$) control the output power. The 'design for optimum magnetic to electric balance' may be studied by
reference to the dimension term $\frac{\mathrm{Rl}}{\mathrm{g} \varepsilon_{2} \mathrm{C}}$ governing flux densities in the iron, and the terms F_{f} and F_{a} representing the m.m.f.s resulting from the electrical loading.

The open circuit voltage waveform will be proportional to all the odd hamonic components of the open circuit airgap flux density pattem: consequently it is 'flat topped' as shown in fig $69(a)$. Since the major cormonents of reactive voltage due to armature reaction, 5.2.4 and 8.7, are at fundamental frequency, the on-load voltage waveform is a conbination of the open circuit pattem and a sinusoidal pattem due to the armature currents. The amplitude of the sine pattem is proportional to the load: further, the axis of the sine pattem moves relative to the open circuit pattern as the load-angle varies. The resulting change in waveform with load is shown in fig 69: this accounts for the industrial experience that on-load waveforms are in general closer to being sinusoidal than open circuit waveforms.

Two factors require further study:

1) The flux variations at the tooth surface contain substantial 3rd, 5 th etc. hamonic components, whilc the flux variations at the tooth root are predominantly fundanental. The voltage waveform reserbles the tooth surface flux pattern rather than a conbination of the two extremes. Perhaps the waveform nay be much improved, at the expense of increased leakage paths, by locating the armature conductors further from the airgap. This investigation would include another important study: the distribution of current between the conductors in a coil side.
2) If the airgap distribution controls the output waveform it would seem possible to design the full load conditions for optimum harmonic content. In Chapter 4 tems from the composite airgap flux density expression were chosen to describe the pattem moving with the rotor. By selecting temn linking the reference coil at each hamonic frequency and considering their simultancous minimum values, criteria will appear
in tems of $b_{0} b_{2} b_{3}$ ctc. and δ. Thus correct airgan goometry and electrical to mamnetic balance of desimn may remove the necessity to sken and stagger the rotor core, $1.2 .2(18)$

Fig 69: Output waveforms $I_{f}=0.2 \mathrm{~A}$
(a) $V_{\text {oc }}=36$

(b) $\mathrm{V}_{\mathrm{a}}=34.5$

$$
I_{a}=9.25
$$

- 185 -

Fig 69: Output waveforns $I_{f}=0.4 \mathrm{~A}$
(c) $\mathrm{V}_{\mathrm{oc}}=75$

$$
\text { (d) } \begin{aligned}
\mathrm{V}_{\mathrm{a}} & =69 \\
\mathrm{I}_{\mathrm{a}} & =\mathbb{4} 3.5
\end{aligned}
$$

- 186 -

Fig 69: Output waveforms $I_{f}=0.6 \mathrm{~A}$
(e) $V_{O C}=110$

(f) $\mathrm{V}_{\mathrm{a}}=101.5$
$I_{a}=28.2$

Fig 69: Output waveforms $I_{f}=0.8 \mathrm{~A}$
(g) $\mathrm{V}_{\mathrm{oc}}=141.5$

(h) $\mathrm{V}_{\mathrm{a}}=128.5$
$I_{a}=35.7$

Fig 69: Output waveforms $I_{f}=1.0 \Lambda$
(i) $\mathrm{V}_{\mathrm{oc}}=165$

(j) $\mathrm{V}_{\mathrm{a}}=153.5$ $I_{a}=42.9$

Fig 69: Output wave forms $I_{f}=1.5 \mathrm{~A}$
(k) $\mathrm{V}_{\mathrm{oc}}=200$

(1) $\mathrm{V}_{\mathrm{a}}=191.5$
$I_{a}=54.0$

Fig 69: Output waveforms $I_{f}=2.0 \mathrm{~A}$
(il) $\mathrm{V}_{\mathrm{oc}}=215.5$

(n) $\mathrm{V}_{\mathrm{a}}=208$
$I_{a}=59$

Fig 69: Typical ZPF lag output waveform

GIAPTER 7 References and Acknowledments

7.1 Symibols 195
7.2 Bibliography 199
7.3 Equations 203
7.4 Λ cknowledgnents 204

Gencral

Numerals e.g. 3.1.4, refer to chapter three, section one, subsection four. Exceptions occur (a) in 1.2.2 where further divisions are denoted by $1.2 .2(1), 1.2 .2(2)$ etc., and (b) in chapter eight section one which deals with instruments; 8.1 iten 5 refers to the fifth instrument in that list.

Pare references

Numerals in the top right hand comer of each page refer to the General section that starts or is continued on that page. Each page is also numbered sequentially; these figures appear bottom centre.

Bibliography

References to the Bibliography are given as superscript numerals, e.g. 20.

Equations

Bracketed nunerals in the right hand margin or in the text refer to equations; these are listed in 7.3.
7.1 Symbols - in order of introduction
section

B	flux density ($\mathrm{Wb} / \mathrm{m}^{2}$)	1.2.2(2)
s	width of rotor slot (m)	1.2.2(2)
t	width of rotor tooth (m)	1.2.2(2)
g	length of airgap over rotor tooth (mm)	1.2.2(2)
B	$(\mathrm{s} / \mathrm{g})^{2}+2$	1.2.2(2)
γ	$\left.\pm \frac{s}{g} \sqrt{ }\left\{\left(\frac{s}{g}\right)^{2}+4\right\} \quad\right\}$ section 1.2 only	1.2.2(2)
δ	$\pm \frac{s / g}{\left\{v\left(\frac{s}{g}\right)^{2}+4\right\}}$	1.2.2(2)
K	parameter corresponding to values of x	1.2.2(2)
x	space co-ordinate measured along a rotor slot pitch from the axis of a slot $\left(0 \leqslant x \leqslant \frac{s+t}{2}\right)$	1.2.2(2)
f	frequency (c / s)	1.2.2(3)
λ	rotor slot pitch ($=\mathrm{t}+\mathrm{s}$) (m)	1.2.2(3)
$\varepsilon_{1} \varepsilon_{2}$	flux utilisation coefficients	1.2.2(4)
	peak fumdamental component of alternating	1.2.2(5)
	flux (Wb)	
${ }^{\text {B }}$ DC	steady flux density ($\mathrm{Wb} / \mathrm{m}^{2}$)	1.2.2(6)
ϕ_{t}	flux in stator tooth opposite a rotor tooth (W)	$1.2 .2(7)$
ϕ_{S}	flux in stator tooth opposite rotor slot (Wb)	1.2.2(7)
ϕ	flux passing into core ($=\phi_{S}+\phi_{t}$) (Wb)	1.2.2(7)
d	depth of rotor slot	1.2.2(8)
: ${ }^{\text {a }}$	$2 \pi \times$ frequency	1.2.2(10)
N_{a}	effective turns per armature coil	1.2.2(10)
I_{a}	peak armature current	1.2.2(10)

θ space measurement around airgap in electrical
radians where $\lambda=2 \pi^{\mathrm{C}}$
time (sec)
number of 'high frequency poles'
($=2 \times$ rotor teeth)

$$
\begin{aligned}
& \text { pu. coeffic } \\
& B_{1}=1 \text { p.u. }
\end{aligned}
$$

$\overline{\mathrm{B}}_{\mathrm{a}} \quad$ airgap flux density distribution due to F_{a} $\frac{\mathrm{N}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}}{\mathrm{TF}_{\mathrm{f}}} \propto$ ratio of armature and field m.m.f.s
open circuit airgap flux density distribution relative to the rotor
load circuit power factor
terminal voltage for a specific value of I_{f} and I_{a}
open circuit voltage for a specific value of I_{f} complete series expression for open circuit voltage
E_{oc}
${ }^{\phi} \mathrm{CC}_{-\pi / 2}$
${ }_{1}$
c Carter's coefficient for airgap fringing complete series expression for voltage due to armature reaction m.m.f.
fundamental r.m.s. component of \bar{E}_{a} complete series expression for the internal generated voltage on load
E fumdanental r.m.s. component of E rated full load peak armature current
p.u. armature current
rated open circuit r.m.s. voltage
p.u. terminal voltage
field current required to establish V_{0}
p.u. system non-linear factors
$\frac{2 N_{a} I_{a o}}{\pi \varepsilon_{2} N_{f} I_{f o}}$
a
ϕ_{f}
ϕ_{E} $f(\theta, t)$

$$
+\pi / 2
$$

fundamental peak component of $\phi_{\mathrm{oc}_{-\pi / 2}}$
(i/k') a_{0}
fundanental flux vector due to field m.m.f.
fundamental flux vector associated with E
flux linking 'reference coil' on open circuit

ψ B_{a}	angle between ϕ_{f} and ϕ_{E} and/or E_{oc} and E fundamental (in time) component of $\overline{\mathrm{B}}_{\mathrm{a}}$	5.2.2
$\phi_{a_{-\pi / 2}}^{+\pi / 2}$	fundamental (in time) component of flux linking reference coil due to armature reaction m.m.f.	"
X_{ℓ}	leakage reactance (Ω) 5	5.2 .3
∇	complete series expression for on-1oad terminal voltage	"
V	fundamental r.m.s. component of $\bar{\nabla}$	"
E_{ℓ}	fundanental r.m.s. reactive voltage due to leakage fluxes	"
α	phase-shift between forward synchronously rotating open circuit and on-load m.m.f.s	"
A	$E / E_{o c}=\sqrt{ }\left(1-2\right.$ asin $\left.\delta+a^{2}\right)$	"
M	$i \frac{k}{k^{\prime}}\left(a_{0}+x_{l}\right)$	"
${ }^{\text {c }}$	reactance (p.u.) due to capacitive compensation 6	6.2
R	airgap radius dimension 6	6.3
w_{r}	rotor angular velocity	
D	$\frac{\ell \lambda B_{m}}{2 m \pi}$	8.3.1
$D^{\text {d }}$	$\frac{\ell \lambda N_{a} \mathrm{I}_{\mathrm{a}} \mathrm{B}_{1}}{2}$ - 8	8.3.2
	$2 \pi^{2} \mathrm{~F}_{\mathrm{f}}$	8.3.2

7.2 Bibliography

1. WALIER J.II. : 'The theory of the inductor alternator', J.IEEE, 1942, Pt. II, pp 227-241
2. WALKER J.H. : 'High frequency altemators', J. IEIB, 1946, Pt II, p. 67
3. SGMIDT K. : 'Die Maschinen futr drahtlöse Telegraphic', Elektrotech. Z., 1921, 42, p. 245
4. SADIDT K. : 'Fortschritte in Bau von t ittel - und Hochfrequenzmaschinen', Elektrotech. Z., 1928, 49,p1565
5. ARNOLD E. : 'Die Wechselstromtechnik',

1913, 2nd ed., 4, p. 35
6. ROSENBERG F. : 'Wirbe1ströme in massivem Eisen', Elektrotechnik und Maschinenbau, 41, p.317, 1923
7. POilL R. : 'Eine einfache Theorie der žusätzlichen Verluste im Nutenkupfer von Welchselstrommaschinen',
Elektrotech, Z., 1920, 41, p. 908
8. CARTER F.W. : 'The magnetic field of the Dynamo-Electric Machine', J.IEE, 1926, 64, p. 1115
9. COE R.T., TAYLOR H.W. : 'Some problems in Electrical machine design involving elliptic functions',
Philospphical Magazine, 1928, 6, p. 120
10. TRUTT F.C., ERJELYI E.A., JACKSON R.F. : 'The non-linear potential equation and its numerical solution for highly saturated electrical machines', IEEE Trans. Acrospace, 1963, Λ S-1 No. 2, p. 430-39
11. TRUTT F.C., ERDELYI E.A. : 'No-load flux distribution in saturated high-speed homopolar inductor alternators',
IEEE Trans. Aerospace, 1963, AS-1 No. 2, p.417-28
12. ERDELYI E.A., TRUTT F.C., HOPKINS R.E. : 'Flux distribution in saturated high-speed homopolar alternators with purely reactive loads', IEEE Trans. Aerospace, 1963, AS-1 No. 2, p. 407-11
13. LANDGRAFF R.W., ERDELYI E.A. : 'Influence of airgap curvature on the flux distribution in saturated homopolar alternators',
IEEE Trans. Aerospace, 1964, $\Lambda 5-2$, No. 2, p. 904-912
14. SURTI K.K., ERDELYI E.A. : 'The effects of slotting on the flux distribution in saturated high-speed homopolar inductor alternators', IEEE Trans. Aerospace, 1964, AS-2, No. 2, p. 937-47
15. ERDELYI E.A. : 'Influence of inverter loads on the airgap flux of Aerospace homopolar alternators',
IEEE Trans. Aerospace, 1965, AS-3 No. 2, p. 7-12
16. HOPKINS R.E., ERDELYI E.A. : 'Optimization of rotor tootin shape of Aerospace homopolar alternators',
IEEE Trans. Aerospace, 1965, AS-3 No. 2, p. 12-18
17. ERDELYI E.A., AHMED S.V., JACKSON R.F., SHAH M.J. : 'Eddy current losses in the rotor teeth of Aerospace homopolar alternators', IEEE Trans. Aerospace, 1965, AS-3, No. 2, p. 24-32
18. NIMMED S.V., ERDELYI E.A., HOPKINS R.E. : 'Non-linear theory of heteropolar electrical machines'
ILEE Trans. Aerospace, 1965, AS-3 No. 2, p. 32-39
19. ERDELYI E.A., HOPKINS R.E. : 'Saturated high speed homopolar
alternators at balanced loads',
IEEE Trans. Aerospace, 1964, AS-2 No. 2, p. 929-936
20. German patent DRP 303321 (30th October, 1914)
21. LAFFOON C.M. : 'H-F Alternator developments',

Electrical Review 1929, 104, p. 674
22. LAY R.K. : 'Inductor-alternator terminology'

JIEE, 1966, 12, p. 287
23. THOMPSON S.P. : 'Dynano-electric machinery' (Spon, 1905, 7th edn. p. 121-122)
24. French patent 307264 (21st Jan. 1901, with additions 17th Jan.1902)
25. STEVENSON A.R., PARK R.H. : 'Graphical determination of magnetic fields', Trans. AIEE, 1927, 46, p. 112
26. WIESEN R.N. : 'Graphical determination of magnetic fields', Trans. AIEE, 1927, 46, p. 141
27. GIBBS W.J. : 'Conformal transformation in electrical engineering, (Chapman and Ha11, 1958)
28. BINNS K.J. : 'Calculation of sone basic flux quantities in induction and other doubly-slotted electrical machines',
Proc. IED, 1964, III No. 11, p. 1847
29. LIEBMANN : 'Electrical Analogues', Brit.J.Appl.Physics, 1953, 4, p. 193
30. DAVIES E.J., PEDERSEN N.P. : 'An experimental and theoretical study of the Lorenz-type inductor-alternator under load',
IEEE Trans. Applic. Indust. 1963, No. 67, p. 174
31. IETZLER K. : 'Die Magnetisierungscharacteristik der GleichpolInduktortype', Archiv. fill Elektrotechnik, 1927, 19, p. 57
32. TIOMSON J.J. ; 'On the heat produced by eddy currents in an iron plate exposed to an alternating magnetic field', The Electrician, 1892, p. 599 - (also see Phil. Mag. Nov. 1891)
33. MLKINS F.J., DRAFE A.E. : 'Measurement and interpretation of power losses in electrical sheet stee1', Proc. IEE, 1965, 112, No.4,p. 771
34. BAFFREY A.R. : 'Rotating machines for generating nedium frequencies', 1965, Nov., Revue General de 1'ectricite
35. ALGER P.L. : 'The nature of Induction Machines' (Gordon and Breach, 1965, 1st edn.)
36. RABY K.F. : 'Inductor Alternators for $10 \mathrm{Kc} / \mathrm{s}$ ', Student's Quarterly Journal IEE, Sept. 1950, p. 15
37. MANK R.S.; LATTHNAITE E.R. : 'Nomerical evaluations of inductance and A.C. resistance', Proc. IEE, 1960 Part C, 108, pp.240-246
38. NINRED S.V., ERDELYI E.A. : 'Non-linear vector potential equations for highly saturated heteropolar electrical machines', IEEE Trans. Aerospace, 1964, AS-2 No. 21, pp. 896-903
39. KING R.W.P. : 'Fundanental Electromagnetic Theory', (Dover Publiciations, 1963, 2nd edn., p.139)
40. BOON C.R., THOMPSON J.E. : 'Alternating and rotational power loss at $50 \mathrm{c} / \mathrm{s}$ in 3% silicon-iron sheets', 1965, Proc. IEE, 112 No. 11 , p. 2147-51
41. GREIG J., MUKIERJI K.C. : 'An experimental investigation of toothripple flux pulsations in smooth laninated pole-shoes', 1957, IEE ionograph 223 S
42. BONDI H., MUKIERJI K.C. : 'An analysis of tooth-ripple phenomena in snooth laminated pole-shoes', 1957, IEE Monograph 225 S
43. CNRTER F.W. : 'Pole-face losses', 1916, Journal IEE, 54, p. 168
44. GIBBS W.J. : 'Tooth-ripple losses in unwound pole shes', 1947, Journal IEE, 94 Pt. II, p. 2
45. GREIG J., SATIIRAKUL K. : 'Pole-face losses in Altemators', 1960 IEE Nonograph 404S
46. FREEMAN E. : 'A Study of Tooth-Ripple Eddy Current Losses in laminated pole-shoes', 1964, a thesis submitted to Kings College Faculty of Engineering, University of London

7.3 List of equations

Reference	Description	Section
1A 1B	Flux density distribution due to Carter	1.2.2(2)
2	Open circuit B distribution	3.1 .4
3	Armature turns distribution	3.2 .2
4	Armature reaction flux density in terms of the open circuit flux density	"
5	Equation (4) expanded	"
6	Combination of equations (2) and (5) to give complete on-load flux density expression relative to the stator	4.2.1
7	Equation (6) relative to the rotor	"
8	Expression of flux due to armature reaction fundanental conponent	5.2.2
9	Equation (8) rewritten to include ' a^{\prime}	"
10	p.u. terminal volts	5.2.4
11	Equation (10) rewritten to include 'M"	"
12A 12B	Equation (10) rewritten in terms of the nonlinear factors k ' and k	5.3.2

7.4 Ackaoviedgments

Firstly the writer wishes to acknowledge with gratitude the continuous advice and encouragement given by Professor E.John Davies, Professor in Electrical Engincering, the University of Aston in Bimingham, who has supervised the work from which this thesis is drawn.

The writer also wishes to thank the following:
Associated Electrical Industries Ltd. for manufacturing the experimental machine and Messrs. K.F. Raby and E. Beedham at A.E.I. (Rugby) both at the manufacturing stage, with test results (5.3.2), and discussion later.

Messrs. $\Lambda . S t e v e n s o n$ and M.J. E1lett for invaluable work in connection with assembling and instrunenting the experimental machine: in particular for producing a system of search conductors probably more delicate and numerous than has previously been attempted on a machine of this size. Without the successful and continuous service of these search conductors the theories of this thesis must have remained untested,

Miss Sally Fitch and Mr. J.T. Whittle to whom the writer is indebted for the typing and reproduction of the manuscript.

The writer's colleagues in the departments of Electrical Engineering and Mathematics for many hours of helpful discussion.
8.1 Instruments 206
8.2 Supply circuits for alternator field and driving motor 207
8.3 Tooth contributions to core flux 1 due to $B_{o c}$ 208
due to B_{a} . 2210
8.4 Coefficients for $B_{\text {oc }}$ from conducting paper analogue 214
8.5 Variations of airgap flux density with time due to field slot leakage 217
8.6 Expansion and selection of terms from equation (5), 3.2.2, for use in 4.2.1 220
8.7 Armature reaction flux density pattern relative to the rotor . 1 Analysis of major components 221
. 2 Verification of sampling technique, 4.2.2 225
8.8 Solution of equation (b) using computer
. 1 Components of the cormlete space distribution of airgap fluxdensity on-load, relative to the rotor227
. 2 The computer programe 228
8.9 Proof of identity $\sum_{n=0}^{\infty} \frac{1}{n^{2}-4}$ in 5.2.2230
8.10 General test curves for experimental machine 232
8.11 Supporting papers 238

8.1 Instruments

	Item	Nanufacturer Type	Serial No.
1	Oscilloscope	Tektronix 533A	100677
2	Operational amplifiers	Tektronix 0	003118
3	Dual trace anplifiers	Tektronix CA	104363
4	Canera	Tektronix Cl2	005207
5	Wave analyser	Muirhead Parmetrada	D489 GM
6	Wave analyser	Marconi TF 2330	52410/024
7	Frequency analyser	Venner TSA 3336/2	L9519
8	Test Set	Canbridge $\quad 20-2000 \mathrm{c} / \mathrm{s}$	L386 768
9	Electronic Voltmeter	Bruel \& Kjoer 2409	135726
10	Digital voltmeters	Digital Measurements 2003	$\begin{aligned} & 15190 \\ & 15654 \end{aligned}$
11	Double element watt meter	Sangamo Weston 579.1.56	AP 63488
12	Ameter (d.c.)	Sangamo Weston AP.S82	AP 56386
13	Voltmeter (d.c.)	Sangano Weston S82	AP 31660
14	Micro anmeter (d.c.)	Sullivan T2010	641379
15	D.C. supply	Farnell L30	1373
16	Starter	Electrical Apparatus	L608872
17	Variable load	Educational Measurements (10	amps max)
18	Decade resistors	Cambridge	$\begin{array}{ll} \text { L } 397934 \\ \text { L } 397885 \end{array}$
19	Variable resistor	Bereostat 15s 4.7anm	447

8.2 Simply circuits for Altomator Field and Driving Motor

8.1 item 19

Field supply circuit

Driving motor supply circuit

8.3 Tooth contributions to core flux

8.3.1 Contributions to B_{oc}

In practice, the stator airgap surface between field slots is interrupted by a.c. slot openings of width σ electrical radians. Section 3.1.4 and fig 33 (a) describe the teeth and their airgap peripheral limits. as:

$$
\begin{aligned}
& \text { Tooth } 1 \quad-\pi \rightarrow\left(\frac{\pi}{2}+\frac{\sigma}{2}\right) \\
& 2-\left(\frac{\pi}{2}-\frac{\sigma}{2}\right) \rightarrow\left(\frac{\pi}{2}-\frac{\sigma}{2}\right) \\
& 3\left(\frac{\pi}{2}+\frac{\sigma}{2}\right) \rightarrow\left(\frac{3 \pi}{2}-\frac{\sigma}{2}\right) \\
& 4 \\
& \left(\frac{3 \pi}{2}+\frac{\sigma}{2}\right) \rightarrow\left(\frac{5 \pi}{2}-\frac{\sigma}{2}\right) \\
& 5 \quad\left(\frac{5 \pi}{2}+\frac{\sigma}{2}\right) \rightarrow 3 \pi \\
& 6 \\
& 4 \pi \rightarrow\left(\frac{9 \pi}{2}-\frac{\sigma}{2}\right)
\end{aligned}
$$

The total net flux contributed to the core by tooth 1 due to $B_{o c}$ is $\phi_{o c l}$

$$
\begin{aligned}
\phi_{o c l} & =l R \int_{-\pi}^{-\left(\frac{\pi}{2}-\frac{\sigma}{2}\right)} B_{o c}^{d \theta}=\sum_{m=0}^{\infty} \frac{l \lambda}{2} \pi\left[\frac{B_{n}}{m} \sin m\left(\theta-\omega t-\frac{\pi}{2}\right)\right]_{-\pi}^{-\left(\frac{\pi}{2}-\frac{\pi}{2}\right)} \\
& =\sum_{m=0}^{\infty} D\left\{\operatorname{sinm}\left(-\pi-\frac{\sigma}{2}-\omega t\right)-\sin m\left(-\frac{3 \pi}{2}-\omega t\right)\right\} \\
& \text { where } D=\frac{l \lambda B_{m}}{2 m \pi}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{m=0}^{\infty} \begin{aligned}
D & \left\{-\sin n\left(\frac{\sigma}{2}+\omega t\right) \cos n \pi\right. \\
& \left.+\sin \frac{3 n \pi}{2} \cos m \omega t+\cos \frac{3 n \pi}{2} \sin m \omega t\right\}
\end{aligned} \\
& =\sum_{m=0}^{\infty}\left\{D f_{1}(\omega t)\right\}
\end{aligned}
$$

Thus for each tooth, by integrating the $B_{o c}$ wave between appropriate limits;

$$
\begin{aligned}
& f_{1}(\omega t)=\left\{-\cos m \pi \sin m\left(\frac{\sigma}{2}+\omega t\right)+\sin \frac{3 \pi \pi}{2} \cos m \omega t+\cos \frac{3 m \pi}{2} \sin m \omega t\right\} \\
& f_{2}(\omega t)=\left\{-\sin n\left(\frac{\sigma}{2}+\omega t\right)-\operatorname{cosin} \pi \sin m\left(\frac{\sigma}{2}-\omega t\right)\right\} \\
& f_{3}(\omega t)=\left\{-\operatorname{sinm}\left(\frac{\sigma}{2}-\omega t\right)-\operatorname{cosin} \pi \operatorname{sinn}\left(\frac{\sigma}{2}+\omega t\right)\right\} \\
& f_{4}(\omega t)=\left\{-\cos 2 m \pi \sin m\left(\frac{\sigma}{2}+\omega t\right)-\cos m \pi \sin m\left(\frac{\sigma}{2}-\omega t\right)\right\} . \\
& f_{5}(\omega t)=\left\{-\cos 2 m \pi \sin n\left(\frac{\sigma}{2}-\omega t\right)+\sin \frac{5 n \pi}{2} \cos n \omega t-\cos \frac{5 n \pi}{2} \sin m \omega t\right\} \\
& f_{6}(\omega t)=\left\{-\cos 4 m \pi \sin m\left(\frac{\sigma}{2}+\omega t\right)-\sin \frac{3 m \pi}{2} \cos m \omega t+\cos \frac{3 n \pi}{2} \sin m \cdot \omega t\right\}
\end{aligned}
$$

When comparing the directions of these contributions at any instant in time, to establish the paths followed by the various components, allowance must be made for tooth six lying within a pole of opposite sense to that containing teeth 1 - 5. Therefore, when comparing contributions from teeth 5 and 6 , the correct expressions are

$$
\sum_{m=0}^{\infty} D f_{5}(\omega t) \text { and }-\sum_{m=0}^{\infty} \text { D } f_{6}(\omega t)
$$

8.3.2 Tooth contributions to core flux due to B_{a}
$B_{a}=\frac{F_{a}}{F_{f}} B_{o c}$
for the fundamental components of F_{a} and B_{a}

$$
=\frac{2 N_{a} I_{a} B_{1}}{F_{f}}\{\cos (\theta+\omega t-\delta)+\cos (\theta-\omega t+\delta)\} \cos \left(\theta-\omega t-\frac{\pi}{2}\right)
$$

Hence ϕ_{a} between limits (1) and (2)

$$
\begin{aligned}
=\frac{N_{a} I_{a} I_{1} \ell \lambda}{2 \pi^{2} F_{f}}[& -\frac{1}{2}\left\{\sin \left(2 \theta-\delta-\frac{\pi}{2}\right)+\sin \left(2 \theta-2 \omega t+\delta-\frac{\pi}{2}\right)\right\} \\
& \left.+\theta\left\{\cos \left(2 \omega t-\delta+\frac{\pi}{2}\right)+\cos \left(\delta+\frac{\pi}{2}\right)\right\}\right]_{(2)}^{(1)}
\end{aligned}
$$

where the limits are taken for each tooth with the same rotation as in 8.3.1 for tooth 1 , lying between ($-\pi$) and ($-\frac{\pi}{2}-\frac{\sigma}{2}$)

$$
\begin{aligned}
\phi_{a l}=D^{\prime}\left[-\frac{1}{2}\{ \right. & \sin \left(-\frac{3 \pi}{2}-\sigma-\delta\right)-\sin \left(-\frac{5 \pi}{2}-\delta\right) \\
& \left.+\sin \left(-\frac{3 \pi}{2}-\sigma-2 \omega t+\delta\right)-\sin \left(-\frac{5 \pi}{2}-2 \omega t+\delta\right)\right\} \\
& \left.+\left(\frac{\pi}{2}-\frac{\sigma}{2}\right)\left\{\cos \left(2 \omega t-\delta+\frac{\pi}{2}\right)+\cos \left(\delta+\frac{\pi}{2}\right)\right\}\right]
\end{aligned}
$$

where $D^{\prime}=\frac{N_{a} I_{a} B_{1} l \lambda}{2 \pi^{2} F_{f}}$

$$
\begin{aligned}
\phi_{a l}=D^{\prime}[& -\frac{1}{2}\{\cos (\sigma+\delta)+\cos \delta+\cos (\sigma+2 \omega t-\delta) \\
& \left.\left.+\cos (2 \omega t-\delta)+\left(\frac{\pi}{=}-\frac{\sigma}{2}\right)-\sin (2 \omega t-\delta)-\sin \delta\right\}\right]
\end{aligned}
$$

For lagging ZPF loads $\delta=\frac{\pi}{2}$, then
$\phi_{a l}(\mathrm{ZPF})=D^{\prime}\left[-\frac{1}{2}\{-\sin \sigma+\sin (\sigma+2 \omega t)+\sin 2 \omega t\}\right.$

$$
\left.+\frac{1}{2}(\pi-\sigma)(\cos 2 \omega t-1)\right]
$$

$$
=\frac{D^{\prime}}{2}\{(\sin \sigma-\pi+\sigma)(1-\cos 2 \omega t)-(1+\cos \sigma) \sin 2 \omega t
$$

For leading p.f. load $\delta=0$, then

$$
\begin{aligned}
\phi_{a l}(\delta=0)= & D^{\prime}\left[-\frac{1}{2}\{\cos \sigma+1+\cos \sigma \cos 2 \omega t-\sin \sigma \sin 2 \omega t+\cos 2 \omega t\}\right. \\
& \left.+\frac{1}{2}(\pi-\sigma)(-\sin 2 \omega t)\right] \\
= & \frac{D^{\prime}}{2}\{(\sin \sigma-\pi+\sigma) \sin 2 \omega t-(1+\cos \sigma)(\cos 2 \omega t+1)\}
\end{aligned}
$$

Thus for each tooth, by integrating the B_{a} wave between appropriate limits;

$$
\begin{aligned}
& f_{1}(2 \omega t)_{Z P F}=\frac{1}{2}\{(\sin \sigma-\pi+\sigma)(1-\cos 2 \omega t)-(1+\cos \sigma) \sin 2 \omega t\} \\
& \mathrm{f}_{2}(2 \omega t)_{Z \mathrm{PF}}=(\sin \sigma-\pi+\sigma)(1-\cos 2 \omega t)=f_{3}(2 \omega t)_{Z P F}=f_{4}(2 \omega t)_{Z P F} \\
& f_{5}(2 \omega t)_{Z P F}=\frac{1}{2}\{(\sin \sigma-\pi+\sigma)(1-\cos 2 \omega t)+(1+\cos \sigma) \sin 2 \omega t\}
\end{aligned}
$$

$$
f_{1}(2 \omega t)_{\delta=0}=\frac{1}{2}\{(\sin \sigma-\pi+\sigma) \sin 2 \omega t-(1+\cos \sigma)(\cos 2 \omega t+1)\}
$$

$$
f_{2}(2 \omega t)_{\delta=0}=(\sin \sigma-\pi+\sigma) \sin 2 \omega t=f_{3}(2 \omega t)_{\delta=0}=f_{4}(2 \omega t)_{\delta=0}
$$

$$
f_{5}(2 \omega t)_{\delta=0}=\frac{1}{2}\{(\sin \sigma-\pi+\sigma) \sin 2 \omega t+(1+\cos \sigma)(\cos 2 \omega t+1)\}
$$

The combination of $m=n=1$, therefore, produces twice line frequency components of flux. Each tooth contribution within a field pole has the same sign, i.e. these components must link the field winding.

Considering the general case (neglecting coefficients)
3π
$\phi_{n, m}=\left[\begin{array}{l}\cos \left\{\frac{\pi}{2}(6 n+5 m)+(1-m) \omega t-\delta\right\} \\ +\cos \left\{\frac{\pi}{2}(6 n-5 m)+(1+m) \omega t-\delta\right\} \\ +\cos \left\{\frac{\pi}{2}(6 n+5 m)-(1+m) \omega t+\delta\right\} \\ +\cos \left\{\frac{\pi}{2}(6 n-5 m)-(1-m) \omega t+\delta\right\}\end{array}\right]$

$$
-\cos \left\{\frac{\pi}{2}(-2 n-3 m)+(1-m) \omega t-\delta\right\}
$$

$$
-\cos \left\{\frac{\pi}{2}(-2 n+3 m)+(1+m) \omega t-\delta\right\}
$$

$$
-\cos \left\{\frac{\pi}{2}(-2 n-3 m)-(1+m) \omega t+\delta\right\}
$$

$$
\left[-\quad \cos \left\{\frac{\pi}{2}(-2 n+3 m)-(1-m) \omega t+\delta\right\}\right]
$$

for $\mathrm{n}=1$ and $\mathrm{m}=0$
$\phi_{1}, 0$ per pole $=$

$$
\begin{aligned}
& {\left[\begin{array}{r}
\cos (3 \pi+\omega t-\delta)+\cos (3 \pi+\omega t-\delta) \\
+ \\
\cos (3 \pi-\omega t+\delta)+\cos (3 \pi-\omega t+\delta) \\
- \\
-\cos (-\pi+\omega t-\delta)-\cos (-\pi+\omega t-\delta) \\
- \\
\cos (-\pi-\omega t+\delta)-\cos (-\pi-\omega t+\delta)
\end{array}\right] } \\
&=2\{-\cos (\omega t-\delta)-\cos (\omega t-\delta)+\cos (\omega t-\delta)+\cos (\omega t-\delta)\}=0
\end{aligned}
$$

$$
\begin{aligned}
& f_{n, m}=4 \cos n \theta \cos (\omega t-\delta) \cos m(\theta-\omega t-\pi / 2) \\
& =\left[\begin{array}{ll}
& \cos \{(n+m) \theta+(1-m) \omega t-\delta-m \pi / 2\} \\
+ & \cos \{(n-m) \theta+(1+m) \omega t-\delta+m \pi / 2\} \\
+ & \cos \{(n+m) \theta-(1+m) \omega t+\delta-m \pi / 2\} \\
+ & \cos \{(n-m) \theta-(1-m) \omega t+\delta+m \pi / 2\}
\end{array}\right]
\end{aligned}
$$

Similarly $\phi_{1,2}$ per pole $=$

$$
\begin{aligned}
& {\left[\begin{array}{r}
\cos (8 \pi-\omega t-\delta)+\cos (-2 \pi+3 \omega t-\delta) \\
+ \\
\cos (8 \pi-3 \omega t+\delta)+\cos (-2 \pi+\omega t+\delta) \\
- \\
\cos (-8 \pi-\omega t-\delta)-\cos (2 \pi+3 \omega t-\delta) \\
- \\
\cos (-8 \pi-3 \omega t+\delta)-\cos (2 \pi+\omega t+\delta)
\end{array}\right]} \\
& =2\{\cos (\omega t+\delta)+\cos (3 \omega t-\delta)-\cos (\omega t+\delta)-\cos (3 \omega t-\delta)\}=0
\end{aligned}
$$

Thus, steady and second-harmonic components of the B_{oc} distribution combining with the fundamental of armature-reaction do not produce net linkages from field pole to pole. Linkages are produced only if ($n+m$) is even.

8.4

8.4 Coefficients of B_{oc} from a conducting paper analogue

A model of the airgap over a rotor slot pitch for a smooth stator, fig 70, was cut from conducting paper. Although the model was symmetrical about a slot centre-line, i.e. all the available information might be gained from one half, the advantages of short electrodes dictated that the model be of a full slot pitch.

By passing current from one electrode to the other the potential at two points (narked as $\mathrm{x} x$ in fig 70) may be measured with a Wheatstone bridge. The resistance between these points is proportional to $\frac{(d \theta)}{\ell}$. Hence the orthogonal analogy between resistance and permeance coefficient per unit core-length, which is also proportional to $\frac{(d \theta)}{\ell}$. Thus, assuming the resistance of a unit square of the conducting ${ }^{l}$ paper is constant as is the pemeability of a unit volume of the airgap, the resistance between ' x ' is analogous to the flux (the m.m.f. is assuried to be uniform across the rotor slot pitch). By taking a series of values of resistance for equal widths across the rotor slot pitch the analogy may be extended to equating the relative values of resistance to relative levels of flux density.

Fig 70 shows these relative values of resistance plotted to a scale such that the flux density at the rotor tooth centre-line is taken as 1.0 p.u. Points taken from this graph were Fourier analysed (by computer). Table 17 gives the first fifteen harmonic components in terms of a fundamental (100%) of rotor slot pitch wavelength. These are the values required for the coefficients of equation (2), 3.1.4, in terms of $B_{1}=1.0$ p.u., i.e. $B_{m}=b_{m} B_{1}$.

Table 17: Harmonic content of B wave, fig 70, plotted from conducting paper analogue and Fourier analysed

Hamonic component (n)	$\%$	b_{n}	Harmonic cormonent (n)	$\%$	b_{n}
Steady (0)	71.3	.71	8	4.6	.05
1	100.0	1.0	2	6.0	.06
2	38.5	.39	10	8.3	.08
3	10.5	.11	11	2.1	.02
4	24.0	.24	12	5.0	.05
5	10.6	.11	13	6.0	.06
6	7.4	.07	14	0.8	.01
7	12.8	.13	15	4.5	.05

Computed open circuit points, $\mathrm{B}_{1}=1$ p.u. SQ average across tooth surface 1.7906
0.1430
0.3959
1.7899
1.7569
1.8444
1.7520
1.3444
1.7569
1.7899
0.3959
0.1430
0.0641
0.1006
0.0381
0.1021
0.0380
0.1021
0.0381
0.1006
0.0642

8.5 Variations of airgap flux density with time due to field slot leakage

Neglecting the a.c. slots, fig 71 (a) shows the position of the rotor teeth relative to the d.c. pole at four points during a cycle.

A permeance variation with time exists due to the leakage through the field slot opening, first at the leading edge and then at the trailing edge of the field pole arc. This appears always as an addition to the
steady permeance. The area of rotor tooth exposed to leakage fluxes varies linearly between zero and maximum, fig 71 (b).

Considering the simple case of circular leakage paths from the field slot side to the surface of the approaching tooth fig $72(a)$, at time t the leakage path permeance is expressed by

$$
\begin{aligned}
\qquad \Lambda_{\ell} & \bumpeq \frac{2}{\pi} \ln \frac{\pi}{2(g+x)} \\
\text { where } x & =\left(\frac{\pi}{2}-\omega t\right) \\
\text { i.e. } \Lambda_{l} & \bumpeq \frac{2}{\pi} \ln \frac{\pi}{2\left(g+\frac{\pi}{2}-\omega t\right)}
\end{aligned}
$$

Fig 72

This leads to the logarithmic pattern of permeance shown in fig $72(\mathrm{~b})$, which may be approximately expressed by

$$
\frac{2}{\pi} \ln \frac{\pi}{2 g}\left(1+\frac{4}{\pi} \sum_{r=o d d}^{\infty} \frac{1}{r} \sin r \omega t\right)
$$

Consecutive poles of opposite sense experience leakage permeance variations π radians out of phase. Hence there can be no net linkage with the whole field winding although in each individual coil odd-harmonic voltages will be induced. These will be reduced by short circuited damping turns in the field coil plane.

$$
B_{a}=\frac{N_{a} I_{a} B_{1}}{\pi F_{f}} \sum_{\substack{m=0.1 .2 \\
n=0 d d}}^{\infty} \frac{b_{m}}{n} \sin \frac{n \pi}{2}\left[\begin{array}{c}
\cos \left\{(n+m) \theta-(m-1) \omega t-\frac{m \pi}{2}-\delta\right\} \\
+\cos \left\{(n+m) \theta-(m+1) \omega t-\frac{m \pi}{2}+\delta\right\} \\
+\cos \left\{(m-n) \theta-(m-1) \omega t-\frac{m \pi}{2}-\delta\right\} \\
+\cos \left\{(m-n) \theta-(m+1) \omega t-\frac{m \pi}{2}+\delta\right\}
\end{array}\right]
$$

$$
\text { For } m=0 \text { and } n=1 \quad B_{a}=\frac{N_{a} I_{a} \dot{B}_{1}}{\pi F_{f}}\left\{2 b_{0} \cos (\theta-\omega t+\delta)\right\}
$$

$$
\text { For } m=2 \text { and } n=1 \quad B_{a}=\frac{N_{a} I_{a} B_{1}}{\pi F_{f}} \cdot\left\{-b_{2} \quad \cos (\theta-\omega t-\delta)\right\}
$$

These are the only terms in $(\theta-\omega t)$ which are available, i.e. the forward rotating fundamental space components. To relate these stator terms to the rotor, the ' ωt ' components are removed leaving

$$
\frac{N_{a} I_{a} B_{1}}{\pi F_{f}}\left\{2 b_{0} \cos (\theta * \delta)-b_{2} \cos (\theta-\delta)\right\}
$$

These terms may also be found, relative to the rotor, in section 8.7.1 as ($\mathrm{BO1}+\mathrm{CO1)}$ and (C21)

8.7 Armature reaction flux density pattern relative to the rotor

8.7.1 Analysis of major components

Relative to the rotor, the armature turns distribution is moving backwards at synchronous speed and the open circuit flux density pattern B_{oc} is stationary. Thus, the armature reaction flux density pattern relative to the rotor, $\mathrm{B}_{\mathrm{a}}^{\prime}$, becomes

$\sin \frac{n \pi}{2} \cos m\left(\theta+\frac{\pi}{2}\right) \cos n(\theta+\omega t) \cos (\omega t \pm \delta)$

$$
\sin \frac{n \pi}{2}\left[\begin{array}{l}
\cos \left\{(m+n) \theta+(n+1) \omega t-\frac{n \pi}{2}-\delta\right\} \\
+\cos \left\{(m+n) \theta+(n-1) \omega t-\frac{m \pi}{2}+\delta\right\} \\
+\cos \left\{(m-n) \theta-(n-1) \omega t-\frac{m \pi}{2}-\delta\right\} \\
+\cos \left\{(m-n) \theta-(n+1) \omega t-\frac{m \pi}{2}+\delta\right\}
\end{array}\right] C D A
$$

Expanding each component gives Table 18 on the next page.
Terms with no ' $\omega \mathrm{t}$ ' component are those describing the constant (in time distribution across the rotor tooth.

Terms with no ' θ ' component are constant in space across rotor tooth but have magnitudes dependent on time.

All other combinations describe patterns moving relative to the rotor tooth either forward or backward.

Table 18: 'm n ' expressions of cormonents A B C and D

Each term is subject to the factor $\left\{\frac{b_{m}}{n} \sin \frac{n \pi}{2}\right\}$. Each component of amature reaction flux density in Table 18 may be integrated w.r.t. θ to provide corresponding expressions for flux (linking the area defined by the limits of integration) varying in time.
i.hen integrating w.r.t. θ, the factor qualifying each conponent of Table 18 must be divided by the relevant coefficient of θ. Table19 shows the relative magnitudes and specds (on a l. p.u. base of synchronous speed) of each component for $m=0,1$ and 2 and $n=1,3$ and 5 .

Table19: Relative magnitudes and speeds (synchronous speed $=1$. p.u., forward direction positive) for ' m, n ' expressions of components | A B | C and $D .$, when integrated w.r.t. θ, i.e. \propto flux. |
| :---: | :---: |
| | 0 |

Magnitude Speed Magnitude Speed Magnitude Speed

		Magnitude K	Speed $\left(x n_{s}\right)$	Maģnitude K	$\begin{array}{r} \text { Speed } \\ \left(\times n_{s}\right) \end{array}$	Magnitude K	Speed $\left(x n_{s}\right)$
A	1	. 71	-2	. 50	-1	. 13	-2/3
	3	. 08	-4/3	. 08	-1	. 03	-4/5
	5	. 03	-6/5	. 03	-1	. 01	-6/7
B	1	. 71	0	. 50	0	.13	0
	3	. 08	-2/3	. 08	$-1 / 2$. 03	-2/5
	5	. 03	-4/5	. 03	$-2 / 3$. 01	-4/7
C	1	. 71	0	1.0	0*	. 39	0
	3	. 08	$-2 / 3$. 16	-1	. 13	-2
	5	. 03	-4/5	. 05	-1	. 02	-4/3
D	1	. 71	-2	1.0	O+	. 39	+2
	3	. 08	-4/3	. 16	-2	. 13	-4
	5	. 03	-6/5	. 05	-3/2	. 02	-2

$K=$ magnitude $\frac{b_{m}}{n\left(m^{ \pm} n\right)} \quad$ for $b_{0}=.71, b_{1}=1.0, b_{2}=.39$

* component CII has no space nor time variation.
+ component D11 is constant in space but varies with time.

Table19 shows those terms moving synchronously with the rotor to be: BOl, B11, B21, CO1 and C21. These combine to form the flux distribution travelling with the rotor which will lead to the flux density distribution across a rotor tooth surface.

Neglecting components with magnitudes < 0.1, Table19 shows the main flux distributions moving relative to the rotor to be from: A 01, A 11, A $21, \mathrm{C} 13$, C 23 , D 01, D 21, D 13 and D 23, as underlined. In detail these are:
a) backward at $4 \times$ synchronous speed:

$$
0.13 \sin (\theta+4 \omega t-\delta) \quad \text { D } 23
$$

b) backward at $2 \times$ synchronous speed:

$$
\begin{aligned}
1.42 \sin (\theta+2 \omega t-\delta) & \text { A } 01 \text { and D 01 } \\
0.13 \sin (\theta+2 \omega t+\delta) & \text { C } 23 \\
-0.16 \cos (2 \theta+4 \omega t-\delta) & \text { D } 13
\end{aligned}
$$

c) backward at $1 \times$ synchronous speed:

$$
\begin{array}{ll}
-0.5 \cos (2 \theta+2 \omega t-\delta) & \text { A } 11 \\
-0.16 \cos (2 \theta+2 \omega t+\delta) & \text { C } 13
\end{array}
$$

d) backward at $2 / 3 \times$ synchronous speed:

$$
\begin{equation*}
-0.13 \sin (3 \theta+2 \omega t-\delta) \tag{A 21}
\end{equation*}
$$

e) forward at $2 \times$ synchronous speed:

$$
\begin{equation*}
-0.39 \sin (\theta-2 \omega t+\delta) \tag{D 21}
\end{equation*}
$$

Thus, the major contribution to the distributions moving relative to the rotor come from components A and D for $m=0$ and $n=1$. This contribution is fundamental in space moving at twice synchronous speed backward.

Components B and C for $m=0$ and $n=1$ are the major contributions to the distribution travelling synchronously with the rotor. These two patterns represent the fundamental contra-rotating components of the pulsating armature reaction flux.

8.7.2 Verification of sampling technique used in section 4.2.2

Integrating the armature reaction flux density distribution provides an expression for the flux, as a function of time, linking a general surface coil with sides at $\theta=\alpha$ and $\theta=\beta$

$$
\phi_{a}^{\prime}(t)_{\alpha \beta}=\frac{\ell d}{2 \pi} \int_{\beta}^{\infty} B_{a}^{-} d \theta
$$

For component A of the expression for B_{a}^{\prime} (Section 8.1.1) the flux is:

$$
\frac{l \lambda}{2 \pi} \sum_{\substack{m=0.1 \\ n=0.2}}^{\infty} \frac{b_{m}}{n(m+n)}
$$

where $P=\cos \left\{(m+n) \alpha-\frac{m \pi}{2}-\delta\right\}-\cos \left\{(m+n) \beta-\frac{m \pi}{2}-\delta\right\}$

$$
Q=\sin \left\{(m+n) \alpha-\frac{m \pi}{2}-\delta\right\}-\sin \left\{\left(m+n \beta-\frac{m \pi}{2}-\delta\right\}\right.
$$

Considering the time dependent terms,
at time $t=t_{1}: p \sin (n+1) \omega t_{1}+Q \cos (n+1) \omega t_{1}$

$$
\begin{array}{lll}
t=\left(\frac{\pi}{2 \omega}-t_{1}\right) & P \sin (n+1) \omega t_{1}-Q \cos (n+1) \omega t_{1} & n=1 \text { and } 5 \\
t=\left(\frac{\pi}{2 \omega}+t_{1}\right) & -P \sin (n+1) \omega t_{1}+Q \cos (n+1) \omega t_{1} & n=1 \text { and } 5 \\
t=\left(\frac{\pi}{2 \omega}-t_{1}\right) & -P \sin (n+1) \omega t_{1}-Q \cos (n+1) \omega t_{1}
\end{array}
$$

Thus the sum of four measurements of flux taken at $t=t_{1},\left(\frac{\pi}{2 \omega}-t_{1}\right),\left(\frac{\pi}{2 \omega}+t_{1}\right)$ and $\left(\frac{\pi}{\omega}-t_{1}\right)$ will be zero for component A when $n=1,5,9$ etc.

Similarly component D of the expression for B_{a} a leads to flux linking the general area between $\theta=\alpha$ and $\theta=\beta$:

$$
\frac{\mu}{2 \pi} \sum_{\substack{m=0.1 .2 \\ n=0 d d}}^{\infty} \frac{b_{m}}{n(m-n)} \sin \frac{n \pi}{2}\{R \sin (n+1) \omega t+S \cos (n+1) \omega t\}
$$

where $R=\cos \left\{(m-n) \beta-\frac{m \pi}{2}+\delta\right\}-\cos \left\{(m-n) \propto-\frac{m \pi}{2}+\delta\right\}$

$$
S=\sin \left\{(m-n) \alpha \frac{m \pi}{2}+\delta\right\}-\sin \left\{(m-n) \beta-\frac{m \pi}{2}+\delta\right\}
$$

Hence the same conditions apply to flux resulting from component D. For $\mathrm{n}=1,5,9$ etc., the sum of four measurements at the above times is zero.

8.8 Solution of equation (6) using a commuter

8.8.1 Components of the complete space distribution of airgap flux density on load relative to the rotor

Each component is pu., where $\mathrm{B}_{1}=1$ and the term $\frac{\mathrm{F}_{a}}{\pi F_{f}}$ is
vented by C. represented by C .

AIR GAP FLUX DENSITY DISTRIBUTION RELATIVE TO ROTOR'

BEGIN REAL B0, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D, D0D, D1D, D2D, D3D, D4D, D5D, D6D, D7D, D8D, D9D, D10D, DD, DDD, X, Y,
N1, PI, FF,
CX1, CX2, CX3, CX4, CX5, CX6, CX7, CX8, CX9, CX10, SX1, SX2, SX3, SX4, SX5, SX6, SX7, SX8, SX9, SX10, CY, SY'

BO: $=0.713^{\prime}$ B2: $=0.385^{\prime}$ B3 $:=-0.105^{\prime} B 4:=-0.24^{\prime}$
$\mathrm{B5}:=-0.106^{\prime} \mathrm{B} 6:=0.074^{\prime} \mathrm{B} 7:=0.128^{\prime} \mathrm{B} 8:=0.046^{\prime}$
B9: $=-0.06^{\prime} \quad$ B10 $:=-0.083^{\prime}$
NI $:=170 \cdot 0^{\prime} \mathrm{PI}:=3 \cdot 1416^{\prime} \mathrm{FF}:=270 \cdot 0^{\prime}$
FOR \quad Y: $=-3.1416$ STEP 0.3927 UNTIL 2.7489 DO
BEGIN PRINT ££L4?DELTA=?, ALIGNED $(4,2)$, SAMELINE,Y*57.2956, £DEGS?, ££L2S4? SQ£S13??, ZEBA THETA\&S10? B THETA?'

FOR $\quad X:=0$ STEP 0.31416 UNTIL 5.96904 DO
BEGIN CX1:= $\cos (X)^{\prime}$

$$
\begin{aligned}
& \operatorname{cx} 2:=\cos (2 \cdot x)^{\prime} \\
& \operatorname{cx} 3:=\cos (3+x)^{\prime} \\
& \text { CX4:= } \operatorname{Cos}(4 * X)^{\prime} \\
& \operatorname{cx} 5:=\cos (5 * x)^{\prime} \\
& \operatorname{cx} 6:=\cos (6 \cdot x)^{\prime} \\
& \text { CX7: }=\operatorname{Cos}(7 \cdot x)^{\prime} \\
& \operatorname{cx8}:=\cos (8 \cdot x)^{\prime} \\
& \operatorname{cx9:}=\cos (9 * x)^{\prime} \\
& \text { CX10: }=\operatorname{Cos}(10 * X)^{\prime} \\
& \text { SX1:= SIN(X)' } \\
& \begin{array}{l}
\operatorname{Sx} 2:=\sin (2 * x)^{\prime} \\
\operatorname{Sx} 3:=\sin (3 * x)^{\prime}
\end{array} \\
& \text { Sx4:= } \operatorname{Sin}(4 \cdot x)^{\prime} \\
& \text { SX5: }=\operatorname{Sin}(5 * X)^{\prime} \\
& \text { Sx6:= } \sin (6 \cdot x)^{\prime} \\
& \text { SX7: }=\sin (7 * X)^{\prime} \\
& \text { Sx8:= } \sin (8 * x)^{\prime} \\
& \text { SX9:= Sliv(9*X)' } \\
& \operatorname{SX10}:=\operatorname{Sin}(10 * X)^{\prime} \\
& C Y:=\operatorname{Cos}(Y)^{\prime}
\end{aligned}
$$

$$
D O D:=-S Y^{\prime}
$$

$$
\begin{aligned}
& \text { D1: }:=S X 1^{\prime} \\
& \text { D1D: }:=2 \cdot B 0 \cdot(C X 1 * C Y-S X 1 * S Y) \\
& \quad-B 2 *(C X 1 * C Y+S X 1 * S Y)^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{D} 2: & =-B 2 * C X 2 \\
\text { D2D: }: & =(S X 2 \cdot C Y+C X 2 * S Y) \\
& -B 3 *(S X 2 * C Y-C X 2 * S Y)^{\prime}
\end{aligned}
$$

$$
\text { D3 }:=-83 \cdot 5 \times 3^{\prime}
$$

$$
D 3 D:=-B 2 \cdot(C \times 3 \cdot C Y-S X 3 \cdot S Y)
$$

$$
+B 4 \cdot(C X 3 * C Y+5 X 3 * 5 Y)^{\prime}
$$

$$
D 4:=B 4 * C \times 4^{\prime}
$$

$$
\text { DAD: }=-B 3 \cdot(S X 4 * C Y+C X 4 * S Y)
$$

$$
+\mathrm{B} 5 \cdot(\mathrm{SX} 4 * \mathrm{CY}-\mathrm{CX} 4 \cdot \mathrm{SY})^{\prime}
$$

$$
\text { D5 }:=85 \cdot \mathrm{SN}^{\prime}
$$

$$
\text { DS }:=B 4 * \cdot(C \times 5 \cdot C Y-S X 5 * S Y)
$$

$$
-B 6 \cdot(C \times 5 \cdot C Y+S X 5 \cdot S Y)^{\prime}
$$

$$
D 6:=-B 6 \cdot \mathrm{CX} 6^{\prime}
$$

$$
D 6 D:=B 5 \cdot(S X 6 \cdot C Y+C X 6 \cdot S Y)
$$

$$
-37 \cdot(S \times 6 \cdot C Y-C X 6 \cdot S Y)^{\prime}
$$

$$
\begin{aligned}
D 7:= & -B 7 * S X 7^{\prime} \\
D 7 D:= & -B 6 *(C X 7 * C Y-S X 7 * S Y) \\
& +B 8 *(C X 7 * C Y+S X 7 * S Y)^{\prime}
\end{aligned}
$$

$$
\text { D8 }:=\text { B8*C×8 }{ }^{\prime}
$$

$$
\text { D8D: }=-B 7 *(S X 8 * C Y+C X 8 \cdot S Y)
$$

$$
+\mathrm{B} 9 *(\mathrm{SX8} * \mathrm{CY}-\mathrm{CX8} \cdot \mathrm{SY})^{\prime}
$$

$$
D 9:=89 \cdot 5 \times 9^{\prime}
$$

$$
\text { D9D: }=B 8 \cdot(\text { CX } \cdot \text { CY }+ \text { SX9•SY })
$$

$$
-\mathrm{B} 10 \cdot(\mathrm{CX9} \cdot \mathrm{CY}+\mathrm{SX} 9 \cdot \mathrm{SY})^{\prime}
$$

D10: $=-$ B10*CX10 ${ }^{1}$
D10D: $=B 9 *(S X 10 * C Y+C X 10 * S Y)$

$$
-B 11 \cdot(S X 10 * C Y-C X 10 \cdot S Y)^{\prime}
$$

D. $:=D 0+D 1+D 2+D 3+D 4+D 5+D 6+D 7+D 8+D 9+D 10^{\prime}$
$D D:=(D 0 D+D 1 D+D 2 D+D 3 D+D 4 D+D 5 D+D 6 D+D 7 D+$ $D 8 D+D 9 D+D 10 D) \cdot(N I /(P 1 * F F))$
DDD: $=D+D D^{\prime}$
PRINT ALIGNED $(4,4), D$, SAMELINE , £LS8???,
DD, £ES8??,DDD END ${ }^{\prime}$

END ${ }^{\prime}$
8.9 Proof of identity $\sum_{n=0 d d}^{\infty}\left(\frac{1}{n^{2}-4}\right)=0$

To $\operatorname{sun}\left(\frac{1}{n^{2}-4}\right)$ for odd values of $n \rightarrow \infty$ is equivalent to summing $\left(\frac{1}{(2 n-1)^{2}-4}\right)$
for all values of $n \rightarrow \infty$
$S_{\infty}=\sum_{n=1}^{\infty}\left\{\frac{1}{(2 n-1)^{2}-4}\right\}$
but $\frac{1}{(2 n-1)^{2}-4}=\frac{1}{4}\left\{\frac{1}{(2 n-1)-2}-\frac{1}{(2 n-1)+2}\right\}$

$$
=\frac{1}{4}\left\{\frac{1}{2 \mathrm{n}-3}-\frac{1}{2 \mathrm{n}+1}\right\}
$$

Therefore S_{∞}

$$
=\frac{1}{4}\left\{\sum_{n=1}^{\infty} \frac{1}{2 n-3}-\sum_{n=1}^{\infty} \frac{1}{2 n+1}\right\}
$$

Let $S_{1}=\sum_{n=1}^{n=N} \frac{1}{2 n-3}$ and $S_{2}=\sum_{n=1}^{n=N} \frac{1}{2 n+1}$
where N is a positive integer $\geqslant 2$
Then $S_{\infty}=\frac{1}{4}\left(S_{1_{N=\infty}}-S_{2_{N}=\infty}\right)$
If S_{1} and S_{2} are expanded;

$$
\begin{aligned}
& \mathrm{s}_{1}=\frac{1}{2-3}+\frac{1}{4-3}+\frac{1}{6-3}+\frac{1}{8-3}+\ldots \ldots+\frac{1}{2 \mathrm{R}-3} \\
& \mathrm{~S}_{2}= \\
& \frac{1}{2+1}+\frac{1}{4+1}+\ldots \ldots+\frac{1}{2 \mathrm{R}-3}+\frac{1}{2 \mathrm{R}-1}+\frac{1}{2 \mathrm{R}+1}
\end{aligned}
$$

Since the 'central block' of terms are identical, the difference $S_{1}-S_{2}$ is simply the first two terms of S_{1} less the last two terms of S_{2}
i.e. $S_{1}-S_{2}=\left\{\frac{1}{(2-3)}+\frac{1}{(4-3)}-\frac{1}{(2 R-1)}-\frac{1}{(2 R+1)}\right\}$

$$
=-\left\{\frac{1}{(2 \mathrm{~N}-1)}+\frac{1}{(2 \mathrm{~N}+1)}\right\}
$$

As N tends to ∞ clearly $S_{1}-S_{2}$ tends to zero and therefore S_{∞} with $N=\infty$ is also zero.

The writer is grateful to N.R. Tomlinson, Associate Research Fellow in the Department of Mathematics, University of Aston in Bimingham, for this proof.

8.10 General test curves for experimental machine 65328 J

a) Open circuit characteristic
b) Short circuit characteristic Fig 57
c) $\sin \psi$ (sine of 'load-angle', 5.2.3)

Fig 73
Fig 74 against output
d) Efficiency against output

Fig 75
e) Load current (U.P.F.) against field current

Fig 76
f) Total losses against output

Fig 77

	1	-	,	T	,	-			,										
						π							\square						
													2						
											H								
				Fi8 7		\sin				oad					St				
				-		outpr		at U	UP1	for	OX	orir	mont				ine		
						65328													
		0.4											,						
		$\sin \psi$																	
		Sin																	
		0.2			1														
																-			
		0																	
									,					W			30		
		\ldots																	

8.11 Supporting papers

a) 'Stator Flux distributions in Lorenz-type mediun-frequency inductor-alternators' E.J. Davies and R.K.Lay, 1966, Proc. IEE, Vol 113 No. 12, p. 2023
b) 'Rotor surface flux distributions in Lorenz-type mediunfrequency inductor-alternators'
E.J. Davies and R.K.Lay, accepted for publication in the Proceedings IEE, 16th March, 1967
c) 'The History and Changing Fortunes of the inductor-alternator' R.K.Lay, read before the South Midland, the Mersey and North Wales, and the Sheffield Graduate and Student Sections of the I.E.E. 1966/67

Stator flux distributions in Lorenz-type mediumfrequency inductor alternators

E. J. Davies, B.Sc., Ph.D., Sen.Ním.I.E.E.E., C.Eng., M.I.E.E., and R. K. Lay, B.Sc.(Eng.), Mem.I.E.E.E., Graduate I.E.E.

Synopsis

Abstract

This theoretical and experimental analysis of the magnitudes and distribution of stator-flux harmonic components in a Lorenz-type inductor alternator is part of a broad investigation into this class of machine. The test alternator is a specially designed 30 kW model of the standard 300 kW industrial unit. Current designs employ field damping to reduce second-harmonic flux modulations expected by analogy with the Guy-type inductor alternator on load. The paper shows that no modulation of the field flux could exist in an ideal Lorenz-type alternator. However, the practical machine, with a.c.-slot openings interrupting the stator surface between field slots, will have harmonic components of flux, both on open circuit and on load, whose magnitudes depend on the width of the a.c.-slot opening. Damping is shown to be sucessful in reducing second- (and other even-) harmonic components, whilst being totally ineffective against fundamental variations in field flux and odd-order-harmonic fluxes. A theory is given that explains these effects. Measurements on the experimental model verify this theory. The paper introduces a technique for relating fluxes to the geometry of the airgap surfaces, and has shown the distribution for inductor alternators to be somewhat more complex than was presumed. It is expected that this analysis will solve the problem of accurate loss calculation in these machines.

List of symbols

$B_{o c}=$ open-circuit airgap flux-density wave, $\mathrm{Wb} / \mathrm{m}^{2}$
$\boldsymbol{B}_{\boldsymbol{m}}=$ peak value of \boldsymbol{m} th harmonic component of $\boldsymbol{B}_{o c}$ wave, $\mathrm{Wb} / \mathrm{m}^{2}$
$I=$ effective core length, m
$\lambda=$ rotor-pole pitch, m
$\lambda_{s}=$ stator-slot pitch, m
$\sigma=$ a.c.-slot opening, electrical rad.
$t_{w}=$ rotor-tooth width at the airgap surface, m
$\phi_{k n}=$ peak k th-harmonic magnetic flux contributed to the core by tooth $n, \mathrm{~Wb}$
$\omega=$ fundamental angular frequency of $B_{o c}$ wave, $\mathrm{rad} / \mathrm{s}$
$t=$ time
$E=$ voltage induced in field
$N=$ number of turns
$f=$ frequency, i / s
$\phi=$ magnetic flux, Wb
$t_{r}=$ rotor tooth width, m

1 Introduction

Inductor generators are used at frequencies that are physically impossible for conventional wound-pole machines, because the rotor-pole pitch would be too small and the rotor windings difficult to retain. As the frequency rises to $1000 \mathrm{c} / \mathrm{s}$, say, the rotor windings are omitted and the fluxdensity variation at the stator surface is produced by modulations of the airgap permeance with rotor teeth. If the machine is homopolar, ${ }^{1}$ the stator windings in the polyphase case will be similar to the conventional machine, although they are usually wound 1 slot/pole per phase, single phase in practice. The heteropolar ${ }^{1}$ version of this machine is the subject of this paper. It was invented by Schmidt, ${ }^{2}$ patented ${ }^{3}$ and manufactured, and is described in Section 2.1. Still higher frequencies are required for surface-heating applications $(8-10 \mathrm{kc} / \mathrm{s}$ at $3000 \mathrm{rev} / \mathrm{min})$. The rotor-pole pitch is now only about 5 mm for a 30 cm rotor diameter and the I slot/pole per phase stator winding becomes impracticable. At these frequencies, Guy ${ }^{4}$ slotting is used with unwound teeth to modulate the pole flux on both stator and rotor.

Paper 5139 P, first received 13th July and in revised form 25th August 1966
Mr. Davies and Mr. Lay are with the Department of Electrical Engineering. The University of Aston in Birmingham, Birmingham 4, England

This machine has been described in detail by Raby, ${ }^{5}$ including a discussion of the interaction of the armature-reaction m.m.f. with the airgap permeance in producing second-harmonic effects in the field windings.

This paper is concerned with stator harmonics in the Lorenz machine, as part of a general investigation. It has been the practice to fit damping windings in the field slots, by analogy with the Guy machine, whereas our calculations showed that there would be no second harmonic in the ideal Lorenz machine. Tests showed that even-harmonic voltages were present both on load and on open circuit, and were amenable to damping. Also, substantial odd-order-harmonic fluxes were present, again on load and on open-circuit; these were not eliminated by a field-damping winding. The paper gives experimental and calculated results, and shows that these harmonic fluxes and voltages are due to the a.c. slotting interrupting the natural flux paths. The redistribution explains the inability of the damping windings to reduce the odd-order-harmonic fluxes and relates the magnitude of tooth and core fluxes to the width of the stator tooth at the airgap surface.

2 Lorenz machine

2.1 Description of machine

The upper limit for salient-pole, wound-field generators is set by the minimum practicable pole pitch, say $2-3 \mathrm{~cm}$, combined with the mechanical difficulties of retaining windings at 2 -pole synchronous speed. This limit is not precise, but falls in the $400-800 \mathrm{c} / \mathrm{s}$ region. Melting furnaces are usually supplied at $1 \mathrm{kc} / \mathrm{s}$. Generators for this frequency use the inductor principle; the rotor has unwound teeth, and the flux variations at the stator surface are caused by the modulation of a constant m.m.f. with a variable-reluctance pattern. Fig. $1 b$ shows the rotor of such a machine. If constant excitation is applied to the airgap, and stator slotting is neglected, the flux-density pattern shown in Fig. Ic will result; this pattern is found by flux-plotting or analogue methods. It can be analysed into a steady flux density on which is superimposed a fundamental, of wavelength equal to the rotor-slot pitch, and its harmonics. The stator slotting can be single phase or polyphase, but a I slot/pole per phase, single-phase winding is usual, resulting in two stator slots per rotor slot. A $1 \mathrm{kc} / \mathrm{s}, 3000 \mathrm{rev} / \mathrm{min}$ generator with 30 cm
rotor diameter has 20 rotor slots, 40 stator slots and a statorslot pitch λ_{s} of 2.36 cm . If the machine were homopolar (Fig. 2a), it would be exactly analogous to the normal synchronous machine, except that the armature reaction will act on the slotted rotor instead of an array of poles. ${ }^{6}$ In modern practice, the transient behaviour of the homopolar machine is too slow, because of the solid iron in the magnetic circuit, and the fully laminated heteropolar construction (Fig. $2 b$) is used. This is also cheaper. Figs. $2 c$ and $2 d$ show two possible arrangements of pole slotting in a heteropolar machine. These will be discussed in detail later.

Fig. 1
Basic inductor alternator airgap geometry showing resulting fuxdensity pattern

Fig. 2
Alternative field and armature windings
${ }_{a}$ a Homopolar machine, slotting similar to Fig. I
b Heteropolar slotting
c. Heteropolar Lorenz slotting-odd a.c. slots per d.c. pole
d Heteropolar Lorenz slotting-even a.c. slots per d.c. pole

2.2 Operation of machine

The flux-density wave shown in Fig. ic moves with the rotor. Motion relative to the stator changes the flux linkages with the stator windings; if these have the winding
directions shown in Fig. 1a, the induced voltages will be cumulative. The armature-reaction m.m.f. caused by the load current flowing in the stator windings will be pulsating, not rotating. Fig. 3 shows the $B_{o c}$ wave in more detail to define the co-ordinate system and the. position of the rotor

Fig. 3 ,
Reference axes showing position of rotor reference relative to siator reference at time $t=0$
relative to the stator at any instant. If the stator slots were negligibly small and the active pole width an exact number of rotor pitches, it will be seen that the total flux entering the pole on open circuit would be constant, irrespective of rotor position. There is no change of flux linkages with the field. There will be flux-density variations in the iron at all the frequencies present in this original flux-density wave.

3 Experimental machine
 3.1 General

The work described in this paper is part of a broader investigation of this type of machine. The smallest standard commercial generator in regular production is 300 kW ; this is much too big for university-laboratory use. Our machine is a $30 \mathrm{~kW}, 1000 \mathrm{c} / \mathrm{s}, 0.9$ power-factor alternator, and is a specially built scaled model of the normal machine. Details of the model are as follows:

Stator o.d.	$=40.0 \mathrm{~cm}$
Stator i.d.	$=29.85 \mathrm{~cm}$
Airgap	$=0.28 \mathrm{~mm}$
Rotor teeth	$=20$
D.C. poles	$=8$
Stator-teeth $/$ pole	$=\left(3+2 \times \frac{1}{2}\right)$
Speed	$=300 \mathrm{rev} / \mathrm{min}$
Core length	$=13.97 \mathrm{~cm}$

This model is exactly equivalent to the larger machines of the same type, except that its armature resistance is 0.017 p.u., against $0.008 \mathrm{p} . \mathrm{u}$. for the normal machine.

3.2 Windings

3.2.1 A.C. windings

The a.c. coils are made as push-through hairpin coils. Because the machine was to be used for experimental work, special links were devised to complete the coils at the connection end. These allow the machine to be dismantled without difficulty. 32 a.c. slots each contain four rectangular conductors $(6.1 \mathrm{~mm} \times 2.3 \mathrm{~mm})$. Two parallel circuits are wound in alternate pairs of poles, i.e. poles $1,2,5$ and 6 and poles $3,4,7$ and 8 , giving 32 effective turns in series.

3.2.2 Field windings

Each of the eight field coils comprises 270 turns of 0.71 mm -diameter wire. The coils are series connected and wound with consecutive coils having opposite directions. The internal connection between coils 1 and 2 is tapped and brought out to enable measurements to be made on one field coil alone.

3.3 Search coils

Fig. $4 a$ shows the search conductors incorporated into the machine. A special stator-core packet, $1 \cdot 27 \mathrm{~cm}$ long, was

PROC. IEE, Vol. 113, No. 12, DECEMBER 1966
fastened together using rivets situated away from the varying fluxes. This was then drilled as shown, with 0.025 cm -diameter holes. The packet was securely clamped to minimise burrs.

d

Fig. 4
Details of search conductors
a Position of search conductors in a test stack punching
b Test stack with search conductors showing common strip
c Search coil for sensing flux passing behind field slot
d Surface search conductors on stator teeth seen from both ends of the core
It was not possible to anneal after drilling, because the punchings were already varnished, but it was felt that the error from this source would be small. The laminations on either side of the packet were cut away to allow the introduction of the 0.02 cm -diameter search wires. These were brought in radially (Fig. 4b), passed through their respective holes, and connected to a common strip at the other end. Thus any two search wires may be chosen externally to form a search coil. These search coils are supplemented by bigger coils
(a) around the stator core behind the field coil (Fig. 4c)
(b) in the surface of the stator teeth (Fig. 4d).

These coils run the whole length of the stator and so embrace the total machine flux passing through that section. Since the airgap was designed to be as short as possible consistent with economic manufacture, it was necessary to let the surface search wires into the iron. Channels 0.025 cm wide and 0.02 cm deep were machined using a slotting saw. The search wires were connected to a common strip at one end, set into their channels with Araldite and led, suitably twisted, from the other end of the stator to the selector switches.

3.4 Damping windings

These are in the form of a cage of copper strips lying at the bottom of each field slot. At one end, all the strips were connected to a common endring. From the other ends individual leads, all of the same length, were brought out to a special terminal block at which any number could be connected together.

4 The machine on open circuit
 4.1 Preliminary tests

Tests using the search coils described in Section 3.3 showed that second-harmonic voltages are induced in the field under load conditions. In addition to these, the whole spectrum of odd and even harmonics was present (Fig. 5). It was also found that all the harmonics were relatively insensitive to load-current variations. Next, the flux passing behind a d.c. slot was measured. This was assumed to be the flux linking the field winding, although later this was shown to be incorrect. When the measured flux behind the field slot was checked against the measured voltage induced in the field, using $E=4.44 \phi N f$, the even harmonics agreed fairly well, but the odd harmonics showed no agreement. The conclusions from these preliminary tests were
(a) odd-harmonic fluxes were present which had been assumed not to exist
(b) these odd harmonics showed a peculiar flux/voltage relationship
(c) even harmonics were present on both no load and load
(d) both odd and even harmonics appeared to be independent of load current.

To explain these facts, it was decided to investigate opencircuit conditions fully before continuing the load analysis.

4.2 Open-circuit tests

Fig. 5 shows the harmonic analysis of the voltages induced in a single field coil. The open-circuit and shortcircuit measurements were taken at rated voltage and current, respectively. The voltages induced on open circuit are little changed by loading the machine, suggesting that these harmonics are not load phenomena, as is usually claimed, but are associated with the open-circuit flux patterns. The

Fig. 5
Harmonic voltage modulations present in a single field pole winding (fundamental frequency, $1000 \mathrm{c} / \mathrm{s}$)
numerous coils described in Section 3.3 were used to investigate these, and Fig. 6 shows the flux levels linking the various coils for several harmonic frequencies. The damping winding, described in Section 3.4, would not previously have been expected to be effective under open-circuit conditions, but, in view of the flux variations shown in the preliminary tests, it was decided to measure all fluxes with and without the damping circuit connected. This immediately produced a further anomaly; not all the fluxes apparently linking the field coil were reduced when the damping coil was connected Table 1 shows the fluxes present behind the field slot for each harmonic, damped and undamped, together with the flux that would necessarily link the field coil to induce the voltages given in Fig. 5.
Table 1 shows clearly that:
(a) The even-harmonic fluxes agree reasonably well with the voltages they induce. They are all substantially reduced by damping.
(b) The odd-harmonic fluxes have much greater magnitudes than are required to induce the voltages found in the field coil. The fundamental and third harmonics are almost unaffected by damping, suggesting that the vector sum of the two fluxes behind adjacent field slots does not vary in time within the damping winding of that pole.

Table 1
COMPARISON OF HARMUNIC FLUXES MEASURED BEHIND THE FIELD SLOT WITH THOSE CALCULATED FROM THE VOLTAGES INDUCED IN THE FIELD COIL

Harmonic	($\begin{gathered}\text { Damped/ } \\ \text { undamped }\end{gathered}$	Open-circuit fux measured	Open-circuit flux required to induce measured voltage
		$\mu \mathrm{Wb}$	$\mu \mathrm{Wb}$
1	undamped	191	$7 \cdot 8$
2	damped	189	$3 \cdot 1$
2	undamped damped	15 2.6	19 $2 \cdot 5$
3	undamped	20	$2 \cdot 9$
	damped	19	$0 \cdot 3$
4	undamped	$7 \cdot 7$	$4 \cdot 6$
	damped	$0 \cdot 7$	0.4
5	undamped	$4 \cdot 6$	$1 \cdot 2$
	damped	$2 \cdot 3$	$0 \cdot 2$
6	undamped	$4 \cdot 4$	3.9
	damped	$0 \cdot 3$	$0 \cdot 2$

4.3 Open-circuit flux linkages with the field winding 4.3.1 Effect of slot openings .

For ideal conditions of the stator airgap surface (Section 2.2), i.e. continuous between field slots; Appendix 8.1

Fig. 6
Harmonic components of peak flux, in $\mu \mathrm{Wb}$, in core and teeth at rated open-circuit voltage
$\underset{a}{\text { Bracketed values refer to damped conditions }} \underset{b}{ }$ Second harmonic \boldsymbol{c} Third harmonic d Fourth harmonic eFinth harmonic f Sixth harmonic
establishes that no time-varying flux linkages exist to induce a voltage in the field. In the practical machine, the stator a.c. slotting is a major divergence from this ideal. This interrupts the stator surface between field slots and forces the fundamental and harmonic pole fluxes to close by different paths from the natural ones. This is especially true of the odd harmonics, which would have to take different paths even if the a.c. slots were very narrow. It also applies to the even harmonics, since normal tooth widths are less than an integral number of harmonic pole pitches. Tables 2 and 3 summarize the contributions of the individual teeth to the core flux at fundamental and second-harmonic frequencies, respectively, in terms of the stator-slot opening σ (electrical rad). The tooth numbering is shown in Fig. 7a and the expressions are derived in detail in Appendix 8.2. These Tables lead to explanations of the anomalies and to methods for calculating the various components of flux that exist.

Fig. 7
Distribution of open-circuit flux variations (even a.c. slots per d.c. pole)
a Numbering system
b Paths of fundamental components
c Paths of second-harmonic components
Table 2
SUMMARY OF FUNDAMENTAL-FREQUENCY
CONTRIBUTIONS TO CORE FLUX

Tooth	Fundamental-frequency contribution in units of $I \lambda B_{1} / 2 \pi$
Tooth 1 2 3 4 5 6	$\cos \sigma / 2 \sin \omega t-(1-\sin \sigma / 2) \cos \omega t$ $-2 \cos \sigma / 2 \sin \omega t$ $2 \cos \sigma / 2 \sin \omega t$ $-2 \cos \sigma / 2 \sin \omega t$ $\cos \sigma / 2 \sin \omega t+(1-\sin \sigma / 2) \cos \omega t$ $\cos \sigma / 2 \sin \omega t-(1-\sin \sigma / 2) \cos \omega t$

Table 3
SUMMARY OF SECOND-HARMONIC-FREQUENCY Contributions to core flux

Tooth	Second-harmonic contribution in units of $I 7 . B_{2} / 4 \pi$
Tooth 1	$-\sin \sigma \cos 2 \omega t-(1+\cos \sigma) \sin 2 \omega t$
2	$-2 \sin \sigma \cos 2 \omega t$
3	$-2 \sin \sigma \cos 2 \omega t$
4	$-2 \sin \sigma \cos 2 \omega t$
5	$-\sin \sigma \cos 2 \omega t+(1+\cos \sigma) \sin 2 \omega t$
6	$\sin \sigma \cos 2 \omega t+(1+\cos \sigma) \sin 2 \omega t$

4.3.2 Fundamental frequency

The sum of the terms in $\sin \omega t$ (Table 2) over one d.c. pole pitch, i.e. teeth $1-5$, is zero. The second term, $\cos \omega t$, for tooth 5 can be balanced by contributions from either
tooth 1 (passing across the d.c. pole) or tooth' 6 (passing behind the field slot) (Fig. 7b). The relative flux levels depend upon path reluctances, but, as there is symmetry in successive poles, the net flux entering a pole is zero. This explains how there can be fundamental flux passing behind the field slot with the machine on open circuit without voltages being induced, either in the damping winding or in the field coil, by these fluxes. These remarks are true even if σ is very small; only the complete elimination of slotting gives the conditions described in Appendix 8.1.

4.3.3 Second-harmonic frequency

Table 3 shows that the terms in $\cos 2 \omega t$ are additive; their paths from pole to pole can only be completed by passing behind the field slot (Fig. 7c). This explains the correct relationships between measured fluxes and voltages and the reduction in this flux due to damping (Table 1). These terms are critically dependent on the angle σ, tending to zero as σ itself goes to zero. Table 3 also shows that the $\sin 2 \omega t$ terms of teeth 1-5 sum to zero, and that those of teeth 5 and 6 are of the same sign. Hence, these second-harmonic fluxes must close inside a d.c. pole, and cannot pass from pole to pole. They are not eliminated by making σ small; only complete removal of slotting will eliminate them. These fluxes cause core losses, but do not induce voltages in the fieid or damper windings.

4.4 Calculation of tooth-flux contributions to the core

Table 2 shows the fundamental contributions from teeth 2,3 and 4 to have magnitude $\frac{I \lambda B_{1}}{\pi} \cos \frac{\sigma}{2} \sin \omega t$.

For the experimental machine

$$
\begin{aligned}
B_{1} & =0.55 \mathrm{~Wb} / \mathrm{m}^{2} \\
l & =12.22 \mathrm{~cm} \\
\lambda & =4.69 \mathrm{~cm} \\
\sigma & =0.46 \text { electrical rad }(26.35 \text { electrical deg })
\end{aligned}
$$

Then

$$
\begin{aligned}
& \phi_{12}=-\phi_{13}=\phi_{14}=977 \mu \mathrm{~Wb} \\
& \begin{aligned}
\phi_{11} & =\frac{I \lambda B_{1}}{2 \pi}\left\{\cos \frac{\sigma}{2} \sin \omega t-\left(1-\sin \frac{\sigma}{2}\right) \cos \omega t\right\} \\
& =\text { vector sum of } 488 \sin \omega t \text { and } 387 \cos \omega t \\
& =623 \mu \mathrm{~Wb}
\end{aligned}
\end{aligned}
$$

Assuming that the $\cos \omega t$ component of ϕ_{11} is split equally between the two possible circuits (Fig. 8), then flux behind field slot $=$ flux across pole pitch $=193 \mu \mathrm{~Wb}$ maximum.
The permeances of the two paths 'behind field slot' and 'across pole pitch' are not in fact equal, nor does their ratio vary linearly with flux. Since the path behind the field slot carries the d.c. field flux, the components of ϕ_{11} modulate about a high mean level. The path across the pole pitch is comparatively lightly loaded magnetically; at the pole centre line the ϕ_{11} component is the only flux present. Thus the path behind the field slot will experience a reduction in incremental permeance as the overall flux level increases. The agreement

Fig. 8
Detail of fluxes measured in tooth 2
a Second-harmonic fuxes, in $\mu \mathrm{Wb}$, at various touth cross-sections a Second-harmoring system used with second-harmunic fluses, in $\mu \mathrm{Wb}$, measured by Lettering sys
surface coils
in Table 4 is due to the two ϕ_{11} components being approximately equal for the rated open-circuit-voltage field.

Table 3 shows the second-harmonic contributions from teeth 2,3 and 4 to have magnitude

$$
\begin{aligned}
& \quad \begin{aligned}
& \frac{I \lambda B_{2}}{2 \pi} \sin \sigma \cos 2 \omega t \\
& B_{2}=0 \cdot 36 B_{1}=0 \cdot 2 \mathrm{~Wb} / \mathrm{m}^{2} \\
&-\phi_{22}=-\phi_{23}=-\phi_{24}=80 \mu \mathrm{~Wb} \\
&-\phi_{21}=\frac{I \lambda B_{2}}{4 \pi}\{\sin \sigma \cos 2 \omega t+(\cos \sigma+1) \sin 2 \omega t\} \\
&=\text { vector sum of } 40 \cos 2 \omega t \text { and } 171 \sin 2 \omega t \\
&=176 \mu \mathrm{~Wb}
\end{aligned}
\end{aligned}
$$

Table 4
CORE FLUX: FIELD SET FOR RATED OPEN-CIRCUIT VOLTAGE

	Fundamental		Second harmonic	
	calculated	measured	calculated	measured
	$\mu \mathrm{Wb}$	$\mu \mathrm{Wb}$	$\mu \mathrm{Wb}$	$\mu \mathrm{Wb}$
From tooth 1	623	645	171	152
From tooth 2 .	977	990	80	4
Behind field slot.	193	189	160	10
Across pole pitch	193	186	176	159

The comparison of measured and calculated values for the fundamental components shows good agreement, suggesting that the distributions discussed in Section 4.3.2 are soundly based. Equally, the comparison of second-harmonic fluxes suggests that Section 4.3.3 is not the complete description. The $\sin 2 \omega t$ component from tooth 1 gives calculations of the right size (Table 4), but those for tooth 2 are clearly affected by another mechanism. Since the flux measured behind the field slot is approximately twice that contributed by tooth 2 , the flux paths suggested in Fig. $7 c$ seem correct; so it is the magnitude of the flux in tooth 2 which must be investigated.

The measured values of flux in Table 4 and Fig. 6 were derived from analysis of the search coil e.m.f.s at fundamental and second-harmonic frequencies. These were converted to values of peak flux using the standard expression

$$
\phi=\left(\frac{E}{4 \cdot 44 N f}\right)
$$

4.5 Second-harmonic flux in tooth 2

Fig. $8 a$ shows measured flux levels in tooth 2 and Fig. $8 b$ the flux which linked an array of search coils along the airgap surface of tooth 2 , at rated open-circuit voltage. The average surface search-coil flux was $74 \mu \mathrm{~Wb}$. Correcting for pitch this establishes the presence of $187 \mu \mathrm{~Wb}$ of secondharmonic flux in the airgap. (This agrees with the theory of Section 4.3 , since for $\sigma=\pi / 2$, i.e. a tooth width equal to half a second-harmonic wavelength, $\phi_{22}=181 \mu \mathrm{~Wb}$.) However, for the experimental machine the theory leads to a value of $80 \mu \mathrm{~Wb}$ (Table 4) where only $32 \mu \mathrm{~Wb}$ (Fig. 8a) is
measured. Further, the assumption that whatever flux penetrates the tooth surface will be contributed to the core without loss is shown to be unacceptable; only $4 \mu \mathrm{~Wb}$ is in fact contributed. The theory of Section 4.3 depends upon the basic assumption that sinusoidal time variations of flux density in the stator teeth are the result of the uniform motion of the rotor with its associated sinusoidal space distribution of flux density. Since we know the second-harmonic flux per pole and the pitch of the tooth-surface coils, measurement of seçond-harmonic voltage in these coils can be compared with calculated values, using the known flux, to show any flux distortion that is present. Table 5 shows the actual pitch and the expected voltage, together with the measured voltage and the pitch that would correspond to those measurements. This shows that there is distortion at the tooth tips causing more flux to link those coils than expected.
Thus more of the second-harmonic flux distribution is able to complete its path within the tooth surface than was expected, reducing the contribution to the tooth proper from $80 \mu \mathrm{~Wb}$ to $32 \mu \mathrm{~Wb}$. The flux not finding a path from one harmonic pole to the next within a tooth width is proportional to the armature-slot opening (Section 4.3). The distortion of flux distribution has effectively reduced the slot opening to a quarter its actual dimension (coil ai, 0.95 instead of 0.8). Fig. $9 a$ shows the spatial distortion of the second-harmonic

Fig. 9
Postulated distortion of second-harmonic flux in tooth 2
a Flux entering tooth surface
---- undistorted flux
---- distorted flux
Lower curve is spatial second-harmonic component of airgap flux
b Assumed distribution of flux within tooth

Table 5
calculated and measured second-harmonic voltages with corresponding values of pitch for the tooth-surface search coils (fig. 8b)

	$d e$	$d f$	$a e$	$a f$	$a g$	$b h$	ah	ai
Calculated voltage, V .	0.49	0.95	1.53	1.61	1.53	1.53	1.30	0.95
Actual pitch	0.1	0.2	0.4	0.5	0.6	0.6	0.7	0.8
Measured voltage, V :	0.5	0.95	1.62	1.48	1.05	0.95	0.55	0.25
Corresponding pitch.	0.1	0.2	0.5	0.63	0.77	0.8	0.89	0.95

component of airgap flux density at the tooth surface, with the associated redistribution of time-varying flux denoted by the vector arrows. The constriction of the teeth, due to the slotting, distorts the flux pattern at the sides of the teeth even further (Fig. 9b). The combination of the distortions at the gap surface and in the tooth makes the assumed linearity invalid and allows the flux within the tooth to complete more of its pole-to-pole path, reducing the contribution to the core below that expected from theory (Table 4). Note that the second harmonic in the $B_{o c}$ wave depends upon t_{r} / λ, decreasing as this ratio approaches 0.5 .

4.6 Application of distribution theory to designs having odd a.c. slots per d.c. pole

Since the theory of Section 4.3 was substantiated by the agreement between measured and calculated values in Section 4.4, the theory is now extended to describe the distributions of flux for the design of Fig. 2c. Designs for odd a.c. slots per d.c. pole are produced by removing one or more stator teeth after the armature slots have been notched around the complete periphery. This fixes the field slot opening at $(n \pi+\sigma)$. If $n=2$ (corresponding to two teeth removed), application of the technique of Appendix 8.2 to discover the core-flux contributions leads to Fig. 10a. The fundamental

Fig. 10
Distribution of fundamental open-circuit flux variations (odd a.c. slots per d.c. pole)
a Paths of fundamental components if two stator teeth are removed to form a
field slot
b Paths of fundamental components if one stator tooth is removed to form a
field slot
contributions find satisfactory paths from tooth to tooth, no flux being required to pass behind the d.c. slot. The secondharmonic contributions, however, are all of the same sign within each pole pitch; thus their only path for completion is from pole to pole passing behind the field slot. If $n=1$, the contributions from teeth on either side of a field slot, taking the sense of each pole into consideration, are of opposite sign. Thus the fluxes from these teeth will divide in the ratio of the permeances of the paths, both behind the field slot and into the adjacent tooth of their own pole (Fig. 10b). The second-harmonic distribution for $n=1$ is identical to that of $n=2$; all second-harmonic contributions must pass behind the field slot.

5 Conclusions

It has been shown both by experiment and from theory that the Lorenz machine will have harmonic-flux components that link the field winding caused by the presence of the stator a.c. slotting. The fundamental components in the teeth can be calculated, but the exact route that will be chosen is nebulous, and dependent on the relative permeances of the paths behind the field slot and across the pole face. In either event the damper winding is ineffective. The second-harmonic fluxes do link the field coil, but distortion in the airgap reduces their effect. Measurements on open circuit and on load show that the harmonics are present in roughly the same amounts, suggesting that the mechanisms we have
discussed apply to both conditions. We hope to deal with performance on load and losses in a later paper.

6 Acknowledgments

We gratefully acknowledge the help of Associated Electrical Industries Ltd., in manufacturing the experimental machine described in this paper, and of Messrs. K. F. Raby and E. Beadham at A.E.I. (Rugby) both at the manufacturing stage and with discussions and encouragement later.

7 References

1 LAY, R. K.: 'Inductor alternator terminology', Electronics \& Power, 1966, 12, p. 287
2 schmidt, K.: 'Dic Maschinen für Drahtlone Telegraphie', Electrotech. Z., 1921, 42, p. 245
3 German Patent, DRP 303321, 1914
4 French Patent 307264, 1901
5 RABY, K. F.: 'Inductor alternators at $10 \mathrm{kc} / \mathrm{s}$ ', Students' Quart. J. IEE, 1950, 21, p. 15
6 davies, e. J., and Pedersen, N. p.: 'An experimental and theoretical study of the Lorenz-type inductor alternator under load', IEEE Trans. Applic. Industr., 1963, 82, p. 174

8 Appendix

The net flux linkages with the field winding due to the open-circuit airgap flux-density distribution are calculated for ideal and practical machines.

8.1 Ideal machine

Assume ideal conditions, i.e. continuous stator airgap surface between field slots.

The open-circuit airgap flux-density distribution relative to the stator reference axis (Fig. 3) is given by

$$
B_{o c}=\sum_{m=0}^{\infty} B_{m} \cos m(\theta-\omega t-\pi / 2)
$$

The total flux linked by a coil having conductors at θ_{1} and θ_{2} of active length l will be

$$
\phi_{\theta_{1}}^{\theta_{2}}=\frac{I \lambda}{2 \pi} \int_{\theta_{1}}^{\theta_{2}} B_{o c} d \theta
$$

Integrating between $-\pi$ and 3π gives the net flux that will link the field winding, ignoring field-slot leakage:

$$
\begin{aligned}
\phi_{-\pi}^{+3 \pi} & =\frac{l \lambda}{2 \pi} \int_{-\pi}^{+3 \pi} B_{o c} d \theta=\sum_{m=0}^{\infty} \frac{l \lambda}{2 \pi}\left\{\frac{B_{m}}{m} \sin m(\theta-\omega t-\pi / 2)\right\}_{-\pi}^{+3 \pi} \\
= & \sum_{m=0}^{\infty} \frac{l \lambda}{2 \pi} \frac{B_{m}}{m}\{\cos m \omega t(2 \sin 2 m \pi \cos m \pi / 2) \\
= & +\sin m \omega t(2 \sin 2 m \pi \sin m \pi / 2)\} \\
& \text { odd or even }
\end{aligned}
$$

For $m=0, B_{o c}$ is constant. Therefore no time-varying flux linkages with the field coil can exist if
(a) the stator-airgap surface between field slots is smooth and continuous
(b) the field-pole pitch at the airgap is an even multiple of π electrical rad.

8.2 Practical machine with slots

In practice, the stator airgap surface between field slots is interrupted by a.c. slot openings of width σ electrical rad. Section 4.3 and Fig. 7a describe the teeth and their airgap peripheral limits as:

$$
\begin{array}{rl}
\text { Tooth } 1 & -\pi \rightarrow-(\pi / 2+\sigma / 2) \\
2 & -(\pi / 2-\sigma / 2) \rightarrow(\pi / 2-\sigma / 2) \\
3 & (\pi / 2+\sigma / 2) \rightarrow(3 \pi / 2-\sigma / 2) \\
4 & (3 \pi / 2+\sigma / 2) \rightarrow(5 \pi / 2-\sigma / 2) \\
5 & (5 \pi / 2+\sigma / 2) \rightarrow 3 \pi \\
6 & 4 \pi
\end{array} \rightarrow(9 \pi / 2-\sigma / 2),
$$

The total net flux contributed to the core by tooth 1 due to $B_{o c}$ is

$$
\begin{aligned}
& I R \int_{-\pi}^{-(\pi / 2+\sigma / 2)} B_{o c}^{\infty} d \theta \\
& m=0 \\
&= \sum_{m=0}^{\infty} C\left\{\sin m\left(-\pi-\frac{\sigma}{2 \pi}-\omega t\right)-\sin m\left(-\frac{B_{m}}{m} \sin m\left(\theta-\omega t-\frac{\pi}{2}\right)\right\}_{-\pi}^{-(\pi / 2+\sigma / 2)}\right.
\end{aligned}
$$

$$
\text { where } C=\frac{I \lambda}{2 \pi} \frac{B_{m}}{m}
$$

$$
\begin{aligned}
&=\sum_{m=0}^{\infty} C\left\{-\sin m\left(\frac{\sigma}{2}+\omega t\right) \cos m \pi\right. \\
&\left.\quad+\sin \frac{3 m \pi}{2} \cos m \omega t+\cos \frac{3 m \pi}{2} \sin m \omega t\right\}
\end{aligned}
$$

$$
=\sum_{m=0}^{\infty}\left\{C f_{1}(\omega t)\right\}
$$

Thus for each tooth, by integrating the $B_{o c}$ wave between appropriate limits:
$f_{1}(\omega t)=\left\{-\cos m \pi \sin m\left(\frac{\sigma}{2}+\omega t\right)+\sin \frac{3 m \pi}{2} \cos m \omega t\right.$

$$
\left.+\cos \frac{3 m \pi}{2} \sin m \omega t\right\}
$$

$$
\begin{aligned}
& f_{2}(\omega t)=\left\{-\sin m\left(\frac{\sigma}{2}+\omega t\right)-\cos m \pi \sin m\left(\frac{\sigma}{2}-\omega t\right)\right\} \\
& f_{3}(\omega t)=\left\{-\sin m\left(\frac{\sigma}{2}-\omega t\right)-\cos m \pi \sin m\left(\frac{\sigma}{2}+\omega t\right)\right\} \\
& f_{4}(\omega t)=\left\{-\cos 2 m \pi \sin m\left(\frac{\sigma}{2}+\omega t\right)\right. \\
& \left.-\cos m \pi \sin m\left(\frac{\sigma}{2}-\omega t\right)\right\} \\
& f_{5}(\omega t)=\left\{-\cos 2 m \pi \sin m\left(\frac{\sigma}{2}-\omega t\right)\right. \\
& \left.+\sin \frac{5 m \pi}{2} \cos m \omega t-\cos \frac{5 m \pi}{2} \sin m \omega t\right\} \\
& f_{6}(\omega t)=\left\{-\cos 4 m \pi \sin m\left(\frac{\sigma}{2}+\omega t\right)-\sin \frac{3 m \pi}{2} \cos m \omega t\right.
\end{aligned}
$$

When comparing the directions of these contributions at any instant in time, to establish the paths followed by the various components, allowance must be made for tooth 6 lying within a pole of opposite sense to that containing teeth $1-5$. Therefore, when comparing contributions from teeth 5 and 6 , the correct expressions are $\sum_{m=0}^{\infty} C f_{5}(\omega t)$ and $-\sum_{m=0}^{\infty} C f_{6}(\omega t)$.
Symopsis
The paper considers the fluxes existing in the airgap of
a single-phase Lorenz-type inductor alternator under load conditions. From the interaction of the field and amrature reaction conditions. the rotor perreance, expressions are derived fron the airgap flux density waves. These can be separated into a)cooponents stationary wavefors, whici car be used to caltate in distortion of the no-load and b) coxponents moving with respect to the rotor, of waveform wavelength, which produce surface losses in the rotor. Experinen verification is given for the flux density distribution under load using search coils attached to the rotor surface of a 30 kNi nodel, reasurements of the teropolar nature of the mactine. The by the presence of the ann-symchronous v mribs, signals in the rotor search coils. A novel method of interprate of the search coil siguals is given that substantially elininates
the unvanted corponents. A corputer progran was used to synthesise the load flux density arve fron the no-load wavefore using an angle s, which can be derived fron a sieple phasor diagrar. It is show to
ROTOR SURFACE FUX DISTPIBUTITAS Di LOFEE-TIPE :EDIURmequeicy mavctor alteritiops

Syziols:
$\mathrm{B}_{\propto \mathrm{C}}$
 Effective amature tums in series per phase peak fundanental arrature current. (arps) Arrature reaction n.n.f. (arpere tums)
Airgap flux density distribution due to Airgap flux density distribution due to arrature reaction relative
to the stator Permeance coef Perneance coefficient
Factor: (${ }^{\text {a }}$ (${ }^{7 \mathrm{~F}} \mathrm{f}$) Field current. (x-ps)
 Teminal volts for field F_{f}. Power factor pen-circuit volts Synchronous speed Factor : $\frac{b}{\bar{j}(\pi m a)}$
A, B, C, D coponents of the
A, B,C,D Coxponents of the airgap flux density distribution relative to the rotor Airgap flux density distribution due to amature reaction relative
to rotor
ditto on open-cirauit
$a, 3$ Arbitrary values of θ
$0_{a}^{\circ}(t){ }_{\text {as }}$ Flux due to arrature betheen points a andion (as a finction of tine) which linls the

1. Introduction
in earlier paper ${ }^{(1)}$ discussed the flux distributions in the stator of a Lorenz-type $1000 \mathrm{c} / \mathrm{s}$ inductor altemator. Fig. 1. shoris the stator and rotor slotting of suci a machine with the slots containing the a.c. vinding reduced to zero size. In such an ideal rachine the problers discussed in the earlior paper disappear and the rachine recuces to a srooth stator facing a slotted rotor. Fig. 1a showis the flux-density pattem in the airgap on open-circuit; this pattem noves with the rotor and restits fron the field excitation acting on the airgap permence.
In this paper we are concemed with the fluxes that exist in the airgap under load canditions. These can be used to calculate voltages, waveforrs and losses, so this understanding is ipportant. is in oti.er of the amature-reaction then behaviour is ccrcemed with tie interaction airsay permeance, superifposed on existing a.c, stator windings) and the airgap perreance, superifposed on existing a.c. conditions. In the
Lorenz rechine the probles is corplifated ly tio use of a sinvle nias 1 slot/pole/phase stator winding, so that the armature reacticr. r.n.f. procuced by an ideal winding concentrated at discrete points, ifyoring sinusoidally in scuare wave sixed in space sitt: ragnitude varjing (2) In a practical machine, the arrature reaction :ave is not sourre but trapezoidal, becouse tio windings are sproad ovar the wieth of a stator a.c. slot.
The intoractions of tie arratare reaction, the field excitation and the airgap perrexice are considered ratheratically and expressions given calculate voltages and load faveforms, and fore, thich carn be used to calculate voltages and load vaveforrs, and for tie liamonics that are noving with respect to the rotor, wiich result in harronic frecuenc:
losses in tie stator mad rotor iron at the airgan surface. To prove the thoory is souncly basec, erphasis is placed on the experirental verifieation. This is especially ifportant as tie ratieratics for thie interaction of arrature reaction and rotor perncmes is not strictly
 Direct netiodsh such as l.all erystals, cionot be used in tie restrictod
airgans so indirect netiods, usinz scarci coils, are erploved. Wiese bring consicerable problers of interpretation, wich are cescrijel in detail in Section 3.4.
The cornlications in the theory cone fron the itgitharrenic content arrature reaction wave sinusoidally distrinutad in srace and wring an
sinusoidally in ragnitude with tire. Such a wave can be resolvol' into
$P, Q R, S$ Factors in section 8.1.3
Ceneral flux density terns
Hamnaic order subscripts

- 3 -

2. Theoretical Analysis of airgap flux density distribution on load.
In this section, the equations for the interaction of the field, the
 with the open-circuity flux density distribution and the amature reaction m.m.f. expressed in series forn, the latter is impressed an the rotor
It must be erphasized that this theory is used in a manner that does not strictly satisfy the conditions, as discussed in (2.4), but
nevertheless, the answers it gives agree sufficiently, to justify the use of the rethod. This class of machine always has an airgap that is very short corpared with a rotor tooth pitch, so that the airgap in the
regions of high flux density is short corpared with all the haroonic regions of high flux density is short corpared with all the harconic pole
pitches of any consequence that exist in the airgap. For this reason the harnonic poles carnot produce pole to pole leakage in the airgap itself and the approxiration we have used becores valid.
2.2 Series representation of density and n.n.f. pattems.
The open-circuit flux density distribution around the airgap $\left.{ }^{(}{ }_{o c}\right)$ as in Fig. 1(a) may be described by the series:
$B_{1} \sum_{b} b_{n} \cos n \theta$ relative to a stationary rotor $\sum_{n=0.1 .2 \ldots . .}$
where:-
B_{1} - peak value of the fundarental corponent of $B_{o c}$ associated with
 θ - peripheral angular distance around the airgap measured fron the rotor tooth centre-1ine (electrical rad)
If the rotor roves with angular velocity we and if a rot centre-1ine coincides with a stator a.c. slot at tire $t=0$,
$B_{1} \sum_{m=0,1,2}^{\infty} b_{m} \cos m\left(\theta-\frac{\pi}{2}-\omega t\right)$
relative to the stator.
two contra-rotating sinusoidal waves: ane will nove forward at synchronous speed and will be stationary with respect to the rotor, the other will nove at brice symchronous speed backwards with respect
to the rotor.

The forward corponent will distort tie open-circuit flux
density pattem, producing a nev airgap space distribution. The power factor of the load will deterrine the angular displacenent between the wave and the rotor. At zero p.f. lag, the effect will e wholly denagnetizing; at nomal worling power factors, approaciing unity, the distortion will deragnetize tie loading edge and fagnetize the trailing edgc. This distorted wavefort is the new in the stator winding.

The negative sequence corponent of n.n.f. will interact with the rotor permeance. Losses will be induced in the rotor iron and this cocponent also contributes to ti.e resctive voit-drop seen by the stator winding.

Both these effects could easily be measured in an ideal heteropolar Lorenz rachine by an array of conductors running axially along the rotor surface (see Fig. 5), brought out to slip rings and capable of jeing connected in pairs to forr search coils. The stator would be srooth betieen field slots and advantage could tien be takion of the heteropolar nature to say that whatever happens across one pole reverses sign across the next pole. The "constant" distortion procuced by the fonvard corponent of arrature reaction will tierefore reverse from role to pole at tie d.c. frequency, giving a reasurable signal in the search coils at this frequency. The aegative sequence corfonent will induce voltages at thice rated frequency (rodifiec by the 'heterodyno' effect of the d.c. poles). These could easily be separated. It till ie shown later that these tocinicues are still valic in the presence of the whole spectrua of c.m.f.'s, but that careful intorpretation is needoc.

In tie following sectiens, te shall be looking for those two fundarertal wavelength effects, but in botil tieory and experinent he shall have to allow for the presence of the other iarronics in the armature reaction and for the effocts of stator slotting.
expressed as B_{α}. Both F_{α} and B_{α} may be functions of (θ, τ) where t is time and peripheral airgap distance is measured by θ. A second m.m.f. F_{p} will produce a flux density wave $\mathrm{B}_{\mathrm{p}} . \mathrm{F}_{\alpha}$ and F_{p} nay have different ragnitudes and tix-dependence but providing they have identical space distributions acting on the sare permeance:

$$
\frac{d}{m_{a}}=\frac{d_{i}}{x_{i}}
$$

Thus, if B_{oc} results froo F_{f} and B_{a} from F_{a}, then froe section 2.2
equation (1) and (2)
$\mathrm{Ba}_{\mathrm{a}}=\underline{\mathrm{Fa}_{\mathrm{a}}} \cdot \mathrm{B}_{\propto}$

The complete airgap flux density distribution is expressed by: $\mathrm{B}_{\mathrm{oc}}\left[{ }^{[1}+\mathrm{F}_{\mathrm{a}}\right]$-(5) $\left[\begin{array}{l}\mathrm{F} \\ \mathrm{F}_{\mathrm{f}}\end{array}\right]$ This makes the nomal assurptions of linearity and superposition.

2.4 Justification for equation (3) applied to several arrature coils

 ㅍ पр consecurtive coil pitches to incorpatible field boundaries for at the stator airgap surface nore closely reserbles a trapezoid since the armature siot openings interrupt the field, allowing the
 to occupy a finite time, as distinct fron ocourring instantaneously.

A trapezoidal distribution of F_{a} allows equation (3) to be applied
to several amature coil pitches since no boundary incorpatabilities exist.
 rectangular series are srall and of very high hamonic order. In any quantitative work using the series they would probably be neglected.
described by the theory, however, due to the low density of this region

Sizilarly, vith θ neasured froa the coil axis, the distributicn of
armature turns is expressed by:

$$
\frac{4}{\pi} \sum_{\text {in odd }}^{\infty} \frac{1}{n} \sin \frac{n \pi}{2} \text { cos } n \theta \text { per turn, being a unit rectangular }
$$

full-pitch pattern.
If the armature carrent reaches its peak value at tire $t=(\delta / \omega)$,
the z.n.f. due to arnature reaction $\left(F_{a}\right)$ is expressed by:

$$
\frac{4 N_{a} I_{a}}{\pi} \sum_{n o d d}^{\infty} \frac{1}{n} \sin \frac{n \pi}{2} \cos n \theta \cos (\omega t-\delta)
$$

Sizilarly, vith θ neasured froa the coil axis, the distributicn of
armature turns is expressed by:

$$
\frac{4}{\pi} \sum_{\text {in odd }}^{\infty} \frac{1}{n} \sin \frac{n \pi}{2} \text { cos } n \theta \text { per turn, being a unit rectangular }
$$

full-pitch pattern.
If the armature carrent reaches its peak value at tire $t=(\delta / \omega)$,
the z.n.f. due to arnature reaction $\left(F_{a}\right)$ is expressed by:

$$
\frac{4 N_{a} I_{a}}{\pi} \sum_{n o d d}^{\infty} \frac{1}{n} \sin \frac{n \pi}{2} \cos n \theta \cos (\omega t-\delta)
$$

where,
$\mathrm{N}_{\mathrm{a}}-$ eff
N_{a} = effective amnature turns in series per phase;
I_{a} - peak funderental ammature current;
F_{a} may be thought of in one of two ways;
(1) A pulsating rectangular pattern, stationary relative
to the stator varying in ragnitude with tire.
(2) The corbinaticn of contra-rotating space harmonics i.e. magnitude (equal to half the peak value of the corresponding hamanic corpanent for the 'pulsating' representation)
travelling at $\underline{1}$ th synchronous speed. harnonic corponent for the 'pulsating' representation)
travelling at $\underline{1}$ th synchronous speed.

Note that all the forw
Note that all the forvard rotating hamonics, except the
fundarental, are aoving bachoards relative to the rotor. The harnonic poving forward with respect to the stator at. The ($2 n+1$) moving bacbard at $n_{s}(2 n / 2 n+1)$ w.r.t. the rotor. This, coobined vith its $(2 n+1)$ pole pairs induces a rotor frequency of $2 n f_{1}$. Sirilarly,
the $(2 n+1)$ harmanic moving bacloards with respect to the stator at $n_{s} /(2 n+1)$ is noving bachorard at $n_{s}(2 n+2) /(2 n+1)$ with respect to the rotor and incuces a frequency of $(2 n+2) f_{1}$. All the stator odd hanmonics (except the forward fundarental) tend to produce even harmonics in the rotor and their waves are moving bacloards w.r.t. the rotor. We shall see (8.1.1.) that this is further cocplicated by the interaction of these waves with the rotor perneance.
2.3 Armarre reaction flux density distribution in terss of the opencirarit flux density distribution

Nhen an m.n.f. F_{α} is applied to the airgap of a rotating electrical
machine, the distribution of the resulting flux density may be
-6-
(itself the result of the slot opening perneance) any discrepancies are stall.

2.5 Expression for rotor tooth flux distribution

Equation (4) represents the corplete flux density pattern due to amature reaction. To select the terms which describe the density distribution relative to the rotor will require two operations. 1) Select terms in $n(\theta-\operatorname{lec})$ only.
2) Renove fron this expression all 'ut' corponents. This refers
the expression to the rotor, giving the space distribution relative to the rotor.

Section 8.2 expands equation (4), and gives the forvard rotating fundarental corponent of the flux density distribution across the

$\frac{N_{a} I_{a}{ }^{B}{ }_{1}}{\pi F_{f}} \quad\left\{2 b_{0} \cos (\theta+\delta)-b_{2} \cos (\theta-\delta)\right\}$

To obtain the caplete distribution this fust be superinposed
on the fundanental of the $\mathrm{B}_{\propto c}$ wave relative to the rotor: $\mathrm{B}_{1} \sin \theta$
i.e. $B_{1}\left[\sin \theta+\frac{N_{a}{ }^{I} a}{}\left\{2 b_{0} \cos (\theta+\delta)-b_{2} \cos (\theta-\delta)\right\}\right]$

2.6 The conputer programe

The selected components of section 2.5 fron equation (4) superirposed on the open-circuit wive are given to the 10th hamonic in section 8.3. Using these, the distribution was corputed for a range of δ.

Values of b_{m} for $a=0 \rightarrow 11$ were obtained by Fourier analysis of the open-circuit wave, which in turn was derived fron flux plots.

The value of the ratio of amature and field m.m.f. ($C=F_{\text {a }}$) only
affects the B_{a} distribution, so the print-out was arranged to supply both open-circuit and amature reaction corponents before corbining then. The ammature reaction component could thus be scaled to suit any value of C and aurves derived without the need to corpute every condition of load figures for ane value of C becone a this allowd $m y$ values covered by the coeputed range. Therefore from the 'standard'
of devices reading flux density directly e.g. Hall crystals. This is not practical in a small high speed zachine, therefore an indirect way of reasuring B has to be found.

Taking the conductors in adjacent pairs to form seven search coils, each coil was calibrated using a fluc meter during a stationary test. Use was made of the heteropolar nature of this nachine to corpare rotating and stationary tests. A rotor search coil experiences a assive poles during rotation. Integration of the search coil signals when displayed, Fig. 6(a), clearly shows the alternate sense of the flux under consecutive poles. Fig. 6(b), the Integration of signals from a coil which is srall in corparison with the artature slot opening, shows the fluxes associated with individual stator teeth. The depression in the peak region as the rotor coil passes each stator tooth is associated with the change in overall permeance due to a rotor tooth passing across a stator slot opening.
'easurenents of these displays froc peak to peak for field current I_{f} are calibrated against readings of flux during a stationary test for a reversal of field current fron $+\mathrm{I}_{\mathrm{f}}$ to $-\mathrm{I}_{\mathrm{f}}$. This calibration was linear over the range of I_{f}. Each coil, however, required a correction for area: this care from the gradient of the airgap line. Assuring the airgap to be uniforn and working at flux densities such that the distribution across the rotor tooth was uniform, the gradient of flux plotted against field current is proportional to the area of each coil.
 area. Peak to peak neasurenents of the integrated signals during rotating tests also led to correction factors. The integrating and reasuring circuit is shown in P!g. 7. The d.c. voltage required to bias the display across the oscilloscope graticule is reasured by a digital voltreter.

Using the oscilloscope arplifiers to magnify the display and a three deciral place digital voltuéter enabled considerable accuracy to be achieved in these measurenents.

Table 1 shows the correction factors obtained from each rethod. The second places of the stationary factors are due to readings of parts of a division an the flux reter scale shilst the digital voltueter reading has been rounded to two deciral places.

Table 1: Area Correction for rotor surface coils fron Stationary and

flux that links a rotor search coil under load conditions and to use this
knowledge to approxinate to the steady load fluc. There are four main
teras.

$$
\begin{aligned}
& \text { s. This is an extension of the identity } \\
& \sin n(\theta+\alpha)+\sin n(\theta+\pi-\alpha)+\sin n\left(\theta+\frac{\pi}{2}+\alpha\right)+\sin n\left(\theta+\frac{\pi}{2}-\alpha\right) \\
& \text { for } n=2,6,10 \text { etc. }
\end{aligned}
$$

were taken at the points shom an Fig. 10b and averaged. As each pole flux, indeed each tooth flux, is not identical due to nanufacturing and material tolerances, the readings were taken consistently on certain teeth an certain poles; these were chosen because the neasurenents were found to agree closely with the average of all the peak to peak readings between all possible corbinations, for selected exarples.

- 10 -
components of the total flux linking a rotor search coil:-
i) The "steady" corponent caused by field excitation. This is constant across a d.c. pole but reverses at each pole,
so that a signal of heteropolar frequency appears in the search coil.
ii) The "steady" corponent caused by the forward synchronous corponent of armature reaction. This also varies at heteropolar frequency.
(i and ii) are the required signals.
iii) Dips in the steady components which occur at the stator a.c. slot openings. These occur regularly at easily define the instantaneous position of the search coil.
iv) All the non-synchronous components of amature reaction which form hamonic poles of various wavelengths noving at different speeds with respect to the rotor search coil. hamonics, being very short-pitched for the backward rotating fundarental. It has already been shom ($\mathbf{Z}, 2$) that all these hamonics induce even hamonics in the rotor. Section 8.1.2 shows that these major corponents result from the fundmental of the amature reaction n.an.f. i.e. when $n=1$.
The output signal fron each rotor search coil is the tine rateThe output signal fron each rotor search coil is the tine rate-
of-change of the total flux linking the coil fron all four sources. If integrated, using an operational arplifier, and displayed on an oscilloscope, a waveforn similar to Fig. 10a will be obtained. components i) and ii) above, taking account of the existence of iii) and iv). Fig. 10 b is an enlargesent of Fig. 10a during the tire taken for the coil to pass from the centre line of ane stator a.c. slot to the next and the instants of passing these two centre-lines can be arbitrarily defined as $t=0$ and $t=\pi / w$. The tine at which the search coil links maximan flux, having soved across the slot opening and core fully under the influence of the stator tooth, is taken as t_{1}, as shown; the corresponding tine when the coil leaves the same stator tooth is $\left(\pi / N-t_{1}\right)$. Sinilarly we can define ($\pi / 20 \pm t_{1}$) as $t_{1} \propto n$ either side of the tooth centre line.
In Section 8.1.3, it is show that the general term for time varying flux through a search coil, when smpled at the four points

$$
\begin{aligned}
& \text { - } 13 \text { - } \\
& \begin{array}{l}
\text { 5. Conclusions } \\
\text { The close agreerent between test and calculated flux densities } \\
\text { under load conditions give confidence both in the assurptions involved } \\
\text { in using the product of n.r.f. and pemeance in the short airgaps of } \\
\text { these rachines and in the nethod exployed to measure the flux dersity } \\
\text { distribution under load. A carpanion paper is being prepared that } \\
\text { uses these results to calculate the load excitation of this type of } \\
\text { machine. } \\
\text { 6. Acloolledgrents } \\
\text { Ne gratefully aclnowledge the help of Associated Electrical } \\
\text { Indistries Linited in manufacturing the experirental rachine described } \\
\text { in this paper. } \\
\text { 7. References }
\end{array} \\
& \text { Lorenz-type xediun frequency inductor alternators'. } \\
& \text { Proc. IEE 1966, } 115 \text { No. 12, p. } 2023 \\
& \text { 2. wNLER J.H. : 'The theory of the inductor altemator'. } \\
& \text { J.IEE 1942, 39, Pt.II, P. } 227
\end{aligned}
$$

Corparison of reasured flux density distributions and corputed arrves
The average of the four 'peak to peak' readings at chosen tires for
ead Table 3: 'easured values of load current, voltage, p.f. and field ourrent, together with derived values of δ (see 2.2). Flux density distributions at these load conditions are
given in Fig. 11.

Load	Ia	Va	p.f.	I_{f}	δ
Resistive	104	122	1.0	1.0	45°
Irpedance	165	39	0.94	1.0	77°
Short-Circuit	100	6	0	0.58	90°

Amature current, voltage and watts were neasured on a test set accurate at $1,000 \mathrm{c} / \mathrm{s}$. The load was resistive; for high currents resistor had to be reduced to a level where lead reactance affected the irpedance presented to the nachine. Knowing the open-circuit voltage at each value of field current δ was calculated using the expression of section 3.7

The corputed values of equation (5) Section 2.3 (expanded in section 8.3) for values of C and δ fron Table 3 , are presented in Fig. 11, the points being the values derived fran measurenents.
tooth, either forward or backward.
Each tern is subject to the factor $\left\{\frac{m}{n} \sin \frac{n \pi}{2}\right.$. Each component of armature reaction flux density in Table 4 may be integrated w.r.t. a to provide corresponding expressions for flux (linking the area defined by the limits of integration) varying in time.
8.1.2 then integrating w.r.t. 9, the factor qualifying each component of Table 4 rust be divided by the relevant coefficient of θ. Table 5 shows of each component for $m=0,1$ and 2 and $n=1,3$ and 5 .

Table 5: Relative magnitudes and speeds (synchronous speed $=1$. p.u., forward direction positive) for ' n, n ' expressions of corponents A_{n} B C and D., when integrated u.r.t. A, i.e. \propto flux.

-

:lapnitule speed :'agnitude Speed :agnituxie Speed \begin{tabular}{cccccc}
κ \& $\left(\times n_{s}\right)$ \& K \& $\left(\times n_{s}\right)$ \& 15 \& $\left(\times n_{s}\right)$

\hline .71 \& -2 \& .50 \& -1 \& .13 \& $-2 / 3$

.50 \& -1

\hline .08 \& -1 \& $\frac{.13}{.03}$ \& $-2 / 3$

\hline .03 \& -1
\end{tabular} $\begin{array}{cc}.01 & -6 / 7 \\ .13 & 0\end{array}$ กㅜㅜ .cl $\quad-4 / 7$ \circ

ก?

ก? . | .39 | +2 |
| ---: | ---: |
| .13 | -4 |
| .02 | | $.02 \quad-2$ $K=$ magnitude $\frac{b_{n}}{n(n P n)} \quad$ for $b_{0}=.71, b_{1}=1.0, b_{2}=.39$ - component C11 has no space nor tire variation.

+ component D11 is constant in space but varies wit Table 5 shows those terms moving synchronously with the rotor to be: 301 , B11, B21, $C 1$ and C21. These combine to form the flux distribution across a rotor tooth surface. across a rotor tooth surface.
Neglecting components wit distributions moving relative to the rotor to be from: A or, A 11 , A 21, C 13 , C 23, D $01, ~ D 21, ~ D ~$
13
and D 23 , as underlined. In detail these are:

Considering the tixe dependent tems in (6);
$\frac{4}{2 \pi} \sum \frac{n}{n(n+n)} \quad \sin \frac{n \pi}{2}\{P \sin (n+1) \omega t+Q \cos (n+1) \omega t\}-(6)$
where $p=\cos \left((m+n) a-\frac{\pi}{2}-\delta\right\}-\cos \left\{(n+n) s-\frac{\pi r}{2}-6\right\}$
$Q=\sin \left((m+n) a-\frac{\pi}{2}-\delta\right)-\sin \left(\left(m+n B-\frac{1}{2}-\delta\right)\right.$ rotor cone from corponents A and D for $m=0$ and $n=1$. This contribution is fundarental in space noving at twice synchronous speed baclorard.
Coeponents B and C for $\mathrm{A}=0$ and $\mathrm{n}=1$ are the major contributions to the distribution travelling symchronously with the rotor. These two pattems represent the fundarental contra-rotating components of the pulsating amature reaction flux.
8.1.3 Verification of saxpling tecinique used in section 3.4
Integrating the amature reaction flux density distribution provides an expression for the flux, as a function of tire, linking a general surface coil with sides at $\theta=a$ and $\theta=8$

$$
\varphi_{a}^{-}(t)_{a B}=\frac{t u}{2 \pi} \int_{0}^{*} B_{a}^{-} d \theta
$$

For corponent A of the expression for B_{a} (Section 8.1.1) the flux is: $\mathrm{n}=0.1 .2$.
$\mathrm{n}=$ odd
at tire $t=t_{1}: P \sin (n+1) u t_{1} \times Q \cos (n+1) u t_{1}$

3.3 Coxponents of the complete space distribution of airgap flux density an load relative to the rotor.
Each corponent is p.u., where $\mathrm{B}_{1}=1$ (section 2.2) and the term $\left(\mathrm{Na}_{2}{ }_{\mathrm{I}}\right.$) is represented by C .

$$
-18-
$$

(8) 01

(9) 9

History and Ileredity.
The Inductor Alternator and the Supply Industry.
Ine Early Days or Wireless.
The Coreless Induction Furnace.
Electronic Equipnent.
Space Craft Generators.
Conclusions.
Acknovledgents.
Seferences.
Superscript numbers in brackets refer to diagrans.
.
History and Ileredity.
The Inductor Alternator and the Supply Industry.
Ine Early Days or Wireless.
The Coreless Induction Furnace.
Electronic Equipnent.
Space Craft Generators.
Conclusions.
Acknovledgents.
Seferences.
Superscript numbers in brackets refer to diagrans.
.
History and Ileredity.
The Inductor Alternator and the Supply Industry.
Ine Early Days or Wireless.
The Coreless Induction Furnace.
Electronic Equipnent.
Space Craft Generators.
Conclusions.
Acknovledgents.
Seferences.
Superscript numbers in brackets refer to diagrans.
.
History and Ileredity.
The Inductor Alternator and the Supply Industry.
Ine Early Days or Wireless.
The Coreless Induction Furnace.
Electronic Equipnent.
Space Craft Generators.
Conclusions.
Acknovledgents.
Seferences.
Superscript numbers in brackets refer to diagrans.
.
History and Ileredity.
The Inductor Alternator and the Supply Industry.
Ine Early Days or Wireless.
The Coreless Induction Furnace.
Electronic Equipnent.
Space Craft Generators.
Conclusions.
Acknovledgents.
Seferences.
Superscript numbers in brackets refer to diagrans.
.
History and Ileredity.
The Inductor Alternator and the Supply Industry.
Ine Early Days or Wireless.
The Coreless Induction Furnace.
Electronic Equipnent.
Space Craft Generators.
Conclusions.
Acknovledgents.
Seferences.
Superscript numbers in brackets refer to diagrans.
.
History and Ileredity.
The Inductor Alternator and the Supply Industry.
Ine Early Days or Wireless.
The Coreless Induction Furnace.
Electronic Equipnent.
Space Craft Generators.
Conclusions.
Acknovledgents.
Seferences.
Superscript numbers in brackets refer to diagrans.
.
History and Ileredity.
The Inductor Alternator and the Supply Industry.
Ine Early Days or Wireless.
The Coreless Induction Furnace.
Electronic Equipnent.
Space Craft Generators.
Conclusions.
Acknovledgents.
Seferences.
Superscript numbers in brackets refer to diagrans.
.
History and Ileredity.
The Inductor Alternator and the Supply Industry.
Ine Early Days or Wireless.
The Coreless Induction Furnace.
Electronic Equipnent.
Space Craft Generators.
Conclusions.
Acknovledgents.
Seferences.
Superscript numbers in brackets refer to diagrans.
.
History and Heredity.
The Inductor Alternator and the Supply Industry.
The Early Days of Wireless.
The Coreless Induction Furnace.
Electronic Equipnent.
Space Craft Generators.
Conelusions.
Acknovledspents.
Beferences.
Superscript numbers in brackets refer to diagrans.
E....
$\rightarrow \quad \infty \quad 4 \quad 0 \quad \infty$

Eistory and Eeredity
 This species of alternator eajoyed rapid recognition and, to quote

Professor Sylvanus P. morpson, "seesed likely in the aineties to supersede all other kinds".

Certain properties of desigh and behaviour set these alternators apart from aschines in general. To understand the sotives leading to their introduction, it is necessary to recount the asior developents in generating machinery.

Paraday first published the findings of his fanous experisents of 1831 by letter to a French journal. Before the year vas over an Italian, Pixii, who vas hepere's instruent maker, bad developed vhat zay be called the first dyamo. It is inportant to note that the experizeaters of the day, vio vere battery or cell orientated, had ao use for periodic currents. Consequently Pixii's sulti-turn iron cored bobbin vas sesiexied to supply direct eurrent through a piroted svitch operated by the shaft carrying the maget. In the folloving year, 1832, fapere suggested the switch be replaced by a split eflindrical contact carried on the shaft. Waus the comutator vas born. Hovever mepere firmiy places the credit on Pixii for realising Faradey's findings in "Machine" fors.

The first clain to aultipolar construction vas by suil Stokrer of

 ane of three cocrutators, series and parallel connectione of the bobbia

 designed by Woolrich for the Eixington vorks. Plating by electrolytic deposition had been discovered by Jacoby in 1833. Woorich's machine rotated bobbins betveen the pole pieces of horseshoe nagnets and a ccepound ecenutator sinilar to Stohrer's enable one, two, three or four plating baths to be supplied.

3y 1857 Professor 7 . H. Holes vas trying to arouse interest in the use of alternating curreat for a.e. are laxps in lighthouses. His design is the first to resemble present day machines since the bobbins vere sounted ∞ the shart vith their axes radial. Tvo sliprings led out the single phase alternating current. Eventually Professor Holees took his

- 3 -

ideas to France viere the Compagnio de L'Nlliance anaufactured several
successinl lighthouse generating sets:
The sext real contribution cane froa Pancinotti in 1860 . His ring arrature vas a great improvement upon the previous bobbin or shuttie
 distributed amature could be both notor and generator. Hovever the concept vas not fully accepted until the Belgian, Grame, reintroduced the idea tea years later.

The serits of a.c. over d.e. for are lemps vas narginai until Jablochkoft introduced his farous 'candles' in 1876. Dese vere much s=aller and more efficient, really turaing the experizents in public lighting systess into cocerercial propositions. In 1878 there vere several hundred Grame aschines in service, the latest type supplying alternating curreat, viich vas found more suitable for the Jablochioff candles. In that year London (sace three years, bebind paris) san its first electric illuminations. The Gaiety Theatre vas lit by six Lontin 1anps. 3illingsgate Fish Market, the Holbora Viaduct and the Thases embankeat betveen waterion and Vestainster bridges, soon folloved.

This skeleton bistory shovs the situation at the beginning of the
1880 s . The generation of electrical pover had ezerged from the laboratories and shed its experizental status. It is true that plating can clain an earlier canercial success; hovever, the universal interest in electric
liguting really forced the art into saturity. The deand vas for a zachine both econconic to nanufacture and operate.
 for inducing voltages in coils by changing the linking flux in direction and agoritude. Fis is clearly traced from the ineritable use of permanest sagrets vita Yorth and South pole pieces. Stobrer's sultipoler sachise set the fashion for increased numbers of "pairs of poles". Since the induction of electrocotive-forses depends upon the rate at vatich linking nagnetic
 possible to design field nagret systens in vilich the flux linking any given part of the asasture simply alters its =acnituce.

A eagnet system vtiek preseats sizilar poles to its arrature is known as becopolar as distinct fros the alternate pole system of a beteropolar

2 THE ISDUCROR ALTEPTATOR ATD REE SUPDLY TMDUSTRY
mis type of machine is characterised by having no moving coaductors. The only moving parts are iron. These are arranged so as to set up
variations of angnetic flux. Professor Thompson suggests that "several early vorkers" had put forvard the concept and that he revived the idea in a pateat in 1883 viich eventually led to a design by Kingden, ${ }^{(2)}$?eported in 1888. (SLIDR 2) Hovever, the first nese of comercial significance appears to be that of Mordey. In 1886 he introduced the hacopolar type of Inductor Nuterator. (SLIDE 3) In 1888 he patented the "Wordey Inductor Alte (SLipg 4) which the Brush Electrical Engineering Compain successfuliy annufactured for a decade. (SLIDE 5)

It would seen that the rugged simplicity of this design, coupled vith its ability to neet the demands for greater outputs, forsed the basis for its vide acceptance. Acceptance, that is, anongst converts to the concept of central stations generating a.c. A bitter battle vas joined betveen the alterrator designers, Mordey, Ferranti and Cordon, and the equally outstanding asezes of Crcepton, Iopkinson and Kensedy, supporters of the continuous current systef.

The a ain advantage of the a.c. systei, that of transaission, vas
 presumed that each saall district vould naturally be served best by its ova pover station. Continuous currents at a suitable voltage could be $\angle Q \mathrm{CO}$ batteries for periods of light load nade the continuous current stations more reliable and econoaic. Any failure at an a.e. station vas liable to cause a sudden and total extinction of all the consumers' lamps. Such accidents vere far froce uncormon. Alternating current vas no better for incandescent lighting and could not be used for driviag motors, since no single phase notors vere yet suitable.

If the business of electricity supply bad been destined to continue in the limited anner originally adopted, there is little doubt that coatinuous current systens vould have prevailed.

The expansion of a.c. pover station outputs
The expansion of a.c. pover station outputs vas held up for soce years
by the early difficulties of paralleling two or more machines. Ironically
it had been Hopkinson (vho fevoured d.c.) who had shown that parallel
field. The substitution of such a magnet in alternators is due to Mordey. The Mordey honopolar field alternator employed the advantage that only one exciting coil is required to establish the field system. (SLIDE 1) A stationary thin discearasture containing ao iron vas positioned in the axial airgap betveen the pole pieces of the branches of the single nagnetic circuit. ${ }^{(1)}$

This design enabled the supply to the field systea to be simplified. Indeed there is no reason that the field coil need rotate, although for sechanical reasons it vas considered preferable to vind it actually on the sagnet core.

The hcaopolar aagret vas ideally suited to the available casting techniques. It vas simple and robust. Yaintenance to the arnature vas easy.. mis vas a sachine both cheap to pperate and nanufacture, and a contribution to the evolution of pover generating equipeent in its own right. Hovever for the purposes of this paper its greaiesi' sighificance lies in the fact that it led naturally to the developnent of the inductor alternator.

[^0]N1gesine and Cans. These vere both single and three phase, homopolar
and heteropolar in construction. (sLidess $6,7,8,9$)
working vas theoretically possible in 1884. By 1887 parallel running
vas a antter of routine in the united States, inecaing aschines being brought in by a leatp.

Hovever, no less a prophet of a.c. supreacy than J.E.E. Cordon comented in 1888 upon the "three or four nisutes jumping in the big machines taking a month's life off 20,000 lamp the practice being, to sav the least, inadrisable".

In anay cases, the real problea vas the uneven torque of the prine movers, although Thoepscan reports the e.m.f. vaves of scoe alternators as having not the slightest resemblance to a sine curre!

In 1891, Mordey arranged a dencastration at vbich two of his alterastors vere paralleled by means of a transforser and lamp vith perfoct success. One set vas then caused to drive the other as a sotor, viich still did not inpress coe stubbora critic. This proceinent engineer claimed that the tests vere not conclusive because the anctines could be pulled out of step vhen paralleled through a resistance capable of absorbing half their ccebined output!

By 189 h parallel running vas comon. Wis year also arrked the beight of the battle. In greater London, 373,000 lamps vere served by contiouous current, vilile 320,000 vere served by a.c. Professor Thompson, also in 1894, read a paper in which he drev attention to the recently in reated Seott systea of $2 / 3$ phase transforner connections. The increase in demand and the advance in transformer technology began to make the advantages of a.c. transmission too obvious to be denied. The introduction of polyphase sotors and generators further added to the desirability of a.c. supplies. With g.E.z. d.e. coning to the fore, it is interesting to note tord Ravleigh's prophecy that direct current vould have its revenge in the final encounter.

Mordey and Perranti alternators had no iron in their arzatures. They vere tersed "copper type" ad distinet frce Cordon's "iron type". Remembering the difficulties cordon reported on paralleling, and the coceparative successes of Mordey, a reason may be discovered for the apparent lack of successful british "iron type" designs. Continental cocpanies vere prolific in "iron type" aschines, notable oer1ikon), Kloben, ${ }^{(6)}$ N1geeine and Cans. These vere both single and three phase, hosopolar
and heteropolar in construction. (sLides $6,7,8,9$)

vas the anchine designed specially to Professor Fessenden's specifications
for continuous supply direet to aerials and vas delivered in 1906. (Suris 10) The undoubted superiority of the continuous supply technique vas imeediately evident, and for the higher frequencies, say $100,000 \mathrm{c} / \mathrm{s}$, the disc machine vas the conly ansver. ${ }^{(9)}$ (SLIDE 11)
The main disadrantage of the dise anchine lay in the dimeter to the bottce of a rotor slot being fixed if frequency and rpe vere specified. The output could only be increased by increasing the external di meter. The nature of the dise also introduced problens of accurate positioning in the sir gap and accurate allovances for any expansion or end pley vhich mikit be involved. Further, the interpolar space on the inductor needed to be filled with non-eagnetic saterial to prevent vhipping, frietion and noise. This vas not an easy mechanical task.
Where the cylindrical design vas feasible it had the following advantages. (a) The output could be increased by the simpler technique of increasing the core length and (b) the asas of the rotor, giving it high inertis, produced good speed refulation.
The proble of attaching lacinations to the peripheral surface of the cylindrical rotor placed a peripheral speed limitation on this cesign. Thus the sajority of cylindricel rotor machines vere direct driven et 3,000 rpe by two pole induction notors. Dee dise rotor hovever, being ruch ligtter and bocogeneous in construction, ay be rotated at nuch higher speeds with certain precautions. For instance, Alexanderson's orifinal nachine vas driven at $20,000 \mathrm{rp}$. At such speeds, it vas not practicable to use a rigid shaft on account of the vibration which vould be set up by small out of balasce forces. A bollov flexible shaft, viich Nloved the disc to revoive around its exact nass centre vas therefore adopted, thus avoiding any centrifugal stresses on the bearings. The rotor and shaft vere carried an two sets of bearings, the outer pair of vitich supported the veigut of the rotating parts. Be inner pair of bearings did not touch the shaft in nomal operation and vere bored out to give 1/64" clearance. Their function vas to prevent excessive vibration of the shart when it passed throush nechanical resonances. ${ }^{(10)}$ (sLine ${ }^{22}$)
\#igh frequency altersators of a sieilar type but having outputs up
to 200 ck were subsequent2y designed by Alexanderson, and employed in

Betveen 1895 and 1899 Marconi carried out his experisents vith Eertzian vaves, wifich culrinated in a cross-Channel link by radio-telegraphy in 1899. This early equipment used a spark coil as a transsitter and a Coherer as the receiver.

The next significant contribution vas due to Professor Fessenden. As early as 1900 he argued the merits of transmitting a continuous vave instead of the pulses obtained fres a spark transmitter. Instead therefore, of deaped veves of $2 \times 10^{6} \mathrm{c} / \mathrm{s}$, be suggested that an alteraator should supply $100,000 \mathrm{c} / \mathrm{s}$ directly to the serials.
while Fessenden vas specifying vhat would be a suitable supply, others vere already beginning to investigate the potential of the inductor aternator for generating higher frequencies. The noted French engineer M. Leblanc, vilist in haerica, anked Mr. Vestinghouse for $a 10,000 \mathrm{c} / \mathrm{s}$ alterastor for certain experiventel vork. The machine vas designed by B.c. Lempe in 1908, and reported to the A.T.E.E. in 1904. (SLITE 9) The alternator generated $10,000 \mathrm{c} / \mathrm{s}$ et 150 v , developing 2 kV power vien ariven at 3,000 rpe. Before this machine all high frequency designs vere vithout iron in the alternator. It vas vell understood that high frequency would lead to very severe losses. Lame bovever, built his aiternator of
individually varnished lecinations . $003^{\prime \prime}$ thick, enabling this to be the first high frequency alterastor vith an iron core.
 desigus, comented that little change had been made since this early nachine. Other than for the introduction of nev naterials, this lack of change afforded "striking evidence of the clear insight into the correct principles vilich govern the original desigx". (Lame by this time vas editing the Electric Journal!) Zhe article recalls that in 1904 a fev
experisents vere made in forming an are vith current at this bigh frequency, suggesting that Leblane any have been investigating the radiation povers of a continuous spark. The Lense nachine vas a hacopolar construetion and may be considered as falling vithin the class characterised as cylindrical. olindrical, that is, as distinguished froe disc.
 the relative nerits of the cylindrical and disc designs of inductor alternator. Larfoon quotes the Latse menchise is as exnaple of the cylindrical rotor, and

TME CORELESS IRDUCTICT PURNACE
$4 \quad 1$
In this asplicatico ve seet the first
In this epplicatices ve reet the first use of h.f. altematery \#tal energed, except perhaps, voltage triplers for 100 frequenciees. Dr. nobiette in his book entitied "Eleetric nelting and meelting practice" desecribee the introduction of the coreless furrace as ... "umdoubtedly representing wee of the sajor ativecee in selting practice" De h.r. pover is
 Ao intease alternating angetic field is generated vithin the coil causing eddy currents to be induced in the charge. Dese currents heat the charge and, in the case of magetic aterials, there is an additioner heative effect due to kyateretis.

Early experibents vith this type of furace emploged static Sencs spark-gap cosverters. Wese suffered froc the disadvantage of having restricted outputs.- i.e. ∞ coly mall quantity furmeces vere feasible. 7 introduetion and muct of the development in this field vas due to Dre. Jorthry in researches et Prisceton thiversity.

It vas soco realised that the $10-20 \mathrm{Kc} / \mathrm{s}$ delivered by Seesle sparkgap converters vas not necessamy for industrial furneces. Metor aitemator sets producing $500-30000 / \mathrm{s}$, and later up to 10\%c/s vere devimeded, tee the first induastrial plant at Waterbury for the Aericican Brass co. started in 1925. The selting of tool steel and other ferrous antericis vas first exploited in this country by \bar{z} gear arien and co. Itd. of Sberfield about a year later.

 of molten setal are required. This dilows the plest to be completaly hat dove betveen nelts and further, it ellowe greater flexibility in nixtory changer.
 application vere those of increasing outputs. De walutions vere thone comon to all rotating electrical machinerg. Improverents in insulation technologe alloved nore copper to carry nore epps in each siot. Fan and veter cooling irpproved th, methocs of extracting the heat due to the lossecs. Bigh frequency nametic naterinis inproved with the additice of silicco.
-टा-
 are not attainable by other existing processes .. notably ferro-silicon.." vilich is to say that the nev capacity for snelting accurate nixtures of ferro-alloys, given to steel makers by the developoent of electric furnaces, vas fed back to the alternator designers, vho vere then able to produce bigger and better furnace supplies.

A further proble peculiar to this application vas concerned vith astching the alternator characteristies to the changing pover factor of an induction furnace coil on load. Because of the high internal reactance of inductor alternators, large changes in terninal voltage oceur with changing load. Autcosatic voltage control is enployed, operating on the field current of the alteraator. This establisbes the preference for heteropolar machines with short field time constants, rather than homopoler zachines whose magnetic circuits are mainly solid iron.

The induction furrace presents a higbly inductive load. The p.f. may be as lou as 0.1 , dependent upon frequency and lining thickness. By using capacitors to cocpensate for the large vattless current, the alternator sise may be reduced to s tenth. Originally, capacitor costs vere probibitive. The rise in popularity of this systen has been closely linked to the ability of capacitor senufacturers to reduce costs.

Change in load p.r., as seen by the alternator, oceurs during the melt. A steel charge when cold presents a high p.f. As the temperature rises aso the naterial loses its nagretiss, the p.f. drops. Even for noo-sagnetic materials, fusion of coeponents reduces the resistivity of the charge slso causing the p.f. to deteriorate. Hence it is necessary to vary the value of the capacitors during the melt.

The technique viich has been established betveen alternator and furnace designers allovs for a series capacitor to be percanently inccircuit. This is apecified by the alternator designer vho guarantees that the nichine vill deliver its rated output providing the load p.f. is kept betveen ± 0.9 sad, vith this capacitor pernanentiy in series. The furmace designer provides the operator or control systen vith variable banks of capscitors in order to meet this specification under all conditions of melting. ${ }^{(11)}{ }^{(12)}$ (SLipms

Altermators for 1 and $3 \mathrm{Kc} / \mathrm{s}$ tend to be designed is units of the 300 Kv to 500kv range and paralleled if necessary, or single units of betveen 1 and 2 NW . World production approaches 300 mw per year.

Meny systens of electronic equipment require stable d.c. supplies.

be dictated by the nature of the particular systen.
At first sight electronic supplies night be thought to have a veight
advantage. This hovever is not usually very ereat because of the sixe of
transformers for nornal frequencies ($50 / 60 \mathrm{c} / \mathrm{s}$). Solid state devices to carry substantial currents have been probibitively costly, thus for a tine favouring rotating anchines. Costs hovever are rapidjy being reduced.

Eigh ambient temperatures nay embarrass seni-conductors scoevhat nore thas sachines. The use of refrigeration nay solve this problem but vill further reduce any veifot advantage electronics ney have offered.

Corrosive or othervise unfriendly stmospheres may be excluded froe
electronics. If aschines are to be used in such conditions it is desirable
 higher than normal' $50 / 60 \mathrm{c} / \mathrm{s}$ are considered. These requirements lead to the choice of Inductor Alternators.

High pover radar systeas for fighting ships and aircraft are examples
of equipaent supplied by Inductor Alternators. The Bystron output valve for such a systen vill require E.E.T. d.e., possible of the order of 50Kv. The alternator output roltage must be suitable transformed before full vave rectification and smoothing is carried out. The equipoent for these operations; transforsers, rectifiers and capacitors all have pover/size capacities proportional to frequency. Thus the additional veight of the inductor alterastar is offset by the reduction in veight of the transformers etc. With one clear advantage. The transforsers must be close the the valve and aerial viich vill be placed, in the instance of a ship, as high as possible, thus adding to the 'superstructure' veight. The Aiteraator at least can be located below decks, adding to the ballast. Moving to bigher frequencies then, allows a sore convenient distribution of veight.

The cboice of frequency is controlled by two factors:

1) Transforser iron losses being proportional to frequency, an upper limit exists froe veight or heating considerationss approximately 2 k e/s
2) Even after scoothing, ripple vill exist at 6 x fundenental frequency (for full vave rectification). For Doppler tracking radar the target region

- 25 -

SPRCE CRNT GBERRMOTS

The latest and most exciting application of inductor alternators is in the field of space craft generators. Present day space flichts of liebt umanned loads or short durations are satisfacorily povered by fuel or soler cells. Projected programes for coeparatively percenent laboratories in space and long jourseys to planets such as Mars, require nuch nore substantial pover units. Life support, propulsion, control systens, cocmunications as vell as a host of uset which have been, or vill be conceived, lift the demand fron kiv to Mr:

Electrocagnetic generators are present2y the only demonstrated source, although other devices are being isvestigated. The problems of space eavironsental conditions and the higb speed of evailable prise movers, have led to the selection of solid rotor hcoopoler inductor alternators.

Equivalent rated vound rotor generators may be maller for a given speed. Hovever solid rotor machines can be designed for nuch higber apeeds, and the alternator of such a high: ppeed syste vill be sanller and liehter. The heat exchange betveen nuclear resctor and turbine employs liquid metals. This systen vorks at teaperatures betveen $700^{\circ} \mathrm{C}$ and $300^{\circ} \mathrm{C}$. Tvo design probless for the alternator imediately arise: it must run at temperatures close to the Curie point for comon sagnetic circuit materials and zust also heve an insulatico syste capable of protecting the conductors froce the highly corrosive setal vapours.

The vorking temperatures demand the use of cobalt steels. These have bigh Curie points and also may be operated at higher flux density levels. The rotor naterial being subjected to bigh stress as vell as temperature, vill be liable to creep. This plastic deforsation oceurs over reiatively 1008 periods ($20^{3}-10^{4}$ hours) and nust seriously affect safety factors.
 other ceramics or mica. An attempt nay be made to check the vapours at the bearing betveen turbine and alterastor. So far (1963) this is colly partiolly successful. Cerazic coefficients of expansion do not match surrounding saterials and conventional conductor and slot insulations crack, forming voids. This leads to investigations into core seals in the airgap, separating the vindings into a coepartsent free of vapours.

First thoughts of increasing the sirgap length to include a send seen
Lotally disadrantageous, since the alterator size must increase to keep

- 2π -
canclusiows
 remarkable developnents during the Electrical Engineering Industry's
 responsible for vhole nev technologies. The art of designing achines must be greatiy involved in utilizing all such improvenents.

The designer aust alao develop the flexibility and inventiveness shovn so clearly by the men in this history. A vealth of ideas vas throvn up in the highly conpetitive period at the end of the aineteenth centruy. Even if they reasin of little specific use, their investigation offers a salutary experience.

The pioneering days are renote nov and the young designer in a large office may not be called upon to consider the origins and fundamentals of his vork. He is often too preoccupied in maintaining the situation be has been presented vith. It aqy be presured that Inductor Alternators vill also be superseded as spacecraft generators. Whatever nev concept does challenge; it vill be the result of the seme flexibility and inventiveness, applied by a nev generation.

- 16 -
its rating. Hovever, a solid rotor has been chosen to make full use of the potential for high speed operation. Pole face losses in such a solid rotor due to airgap permeance fluctuations and harmonics in the armature a.m.f. lead to high rotor temperatures. Increasing the airgap length greatly reduces these pole face losses. Thus a suitable balance between allovable rotor teaperature and output to veight ratio may be caleulated. Further enviroamental factors peculiar to space are vacuum and nuclear rediation. Windage losses for bigh speed rotors would be prohibitive in any medium other than a vacula. Hovever a crack of only . 001 " is a thermal barrier except for the saall heat transfor potential of radistion. Thus rotor heat may only be vithdrawn through the bearings. Indeed the cooling systea of the alterastor is a most important and difficult field of developrent.

Wuclear radiation adversely affects organic materials (insulations, lubricants) and even the physical aature of inorganic insulations, structural materials and conductors. Shielding is an unfortunate addition to the overall veight.

The problens, sa vith all operations in space, are extremely complex. The inductor alternator as a unit of diecirical engineering is possibly the oldest concept to be involved in this nev technolores.

- 6 T -

: $\overline{\cos \pi \times 3} 3$

"pynamo - Electric Machinery" S.P. Mampscn, seventh edition,
E and F.S. Spon Ltd., 1905 E and F.S. Spon Litd., 1905
Mr. Kingdon's praano - Fig. 2 - Electrical Peviev, Vol. 22,
p.178, 1888 . p.178, 1888.
The Early Dasi
The Early Davs of the Pover Station Induastry". R.E. Parsons,
University Press, 1939. Thiversity Press, 1939. Electric Jouraal. Vol. 18 p. 1201921
The Foundations of Modern Redio", L. V. Chubb, C.I. Nlleott,
Data and Testz ca a $10,000 \mathrm{c} / \mathrm{s}$ Nlternator" B.c. Lame,
Trans. A.I.E.E., Vol. 23, p.417, 1904.
"Niteraator for 100,000 cycles" E.F.W.
"Nuterastor for 100,000 cyeles" E.F.V. Neexanderson.
Trans. A.T.E.E. Vol.i28, pt. I p. 399 , 1909
Trans. A.T.E.E. Vol.28, pt. I P. 399,1909
"High Frequency Nteraators" C.M. Larfoce
"High Frequency Nteraators" C.M. Laffoon. Electric Jouraal.
Vol. 21, p.416, 1924.
Vol. 21, p.416, 1924.
"B-F Alternator developments" C.M. Laffoco Electrieal Reviev.
Vol. 104, P. 674,1929
"Electric Melting and Snelting practice" A.G.E. Robiette.
Charles Grifrin and Co. Ltd. 1955

Fia. 5-Howorous ixdectoz Altaxatok jomingon Cal.

Fig. 11.-Circuit diagram for an automatic high-frequency furnace .

Fig. 12. - Load diagram for a $4 \cdot 3$-ton charge of stainless steel during remelting. Melting time (hr 35 min. Specific furnase network)
(a) Furnace voltage
(d) Number of capacitors in the coil circuit

[^0]: elain to be the sost satisfactory prime mover. The inductor type of
 In 1901 derlikon designed a t-pole 3 -phase $1,000 \mathrm{kv}$ zachine. Hovever, the simplicity of slov speed inductor rotors vas lost at witine apeeds. ventilation and balancing problens became excessive. By 1907 all thought of using Inductor Nuternators bad been given up, primarily because of the बisproportionate asount of naterial involved.
 "These vere years?" to quote R. H. Parsons, When every enterprise vas largely of a pioneering nature". The pattern of the future Supply Industry vas dietated by a series of neteoric developments, not least of which vae that of the Inductor Naternator.

