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SUMMARY: 

The principal mathematical concepts and techniques 

of Automatic Control theory are briefly reviewed and those re- 

lating to probability concepts and prediction in particular, are 

discussed more fully. 

A detailed account is given of the two most 

significant prediction theories in the field viz. the Wiener 

theory and the exponentially weighted method. 

The application of prediction theory generally to a 

complex industrial situation and especially to the Electricity 

Supply Industry is explored and an experimentally based investi- 

gation leading to a computer programme is described. A closed-loop 

feedback model incorporating prediction is proposed as a basis 

essential for any systematic study of the relation of prediction 

theory to the practical problem of automatic contol of an optimal 

or near optimal character in the Electricity Supply Industry. 

An appreciation is made of the general relevance 

of prediction theory as it now exists, to the theoretical problem 

of optimization and to the practical problem of effective automatic 

control in the electricity supply industry as understood from 

examination of recent Conference Reports.
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CHAPTER Ls 

GENERAL INTRODUCTION.



1. 

1.1 PREDICTION. 

The main task of a mathematician, employed for any 

Scientific or Industrial work, is to make predictions. As 

such what a mathematician tries to do is to construct a 

mathematical model of a situation from the experimentally— 

determined data which could be used to predict the likely 

future conditions. Mathematical models, (as W.Weaver puts it) 

are a set of assumptions plus the resulting body of pure theory 

which apply with strict accuracy to an idealised physical 

system so that the theory of the idealised system will "explain", 

or at least organise and simplify the real phenomena. These 

models consist of tabulations, graphs, equations and sets of 

equations, and the main advantages of the mathematical models 

are that ~- 

(a) they express the real relations in a highly condensed and 

useful way, 

(b) they are usually suitable for numerical calculation, 

(c) they save a great deal of experimental work, calculating 

what would happen under certain assumed conditions. 

Early scientists after carrying out simple experiments, 

formulated the results into the precise mathematical models. 

This is how, Robert Hooke after using different weights, and 

hence different forces to stretch elastic materials, formulated 

his experience to produce the mathematical model in which the
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extension was precisely proportional to the force. One can 

see how Hooke's law is extremely useful for predicting the 

actual elongation of bars of metals under tension, provided the 

forces and extensions are not too great. Similarly, the knov- 

ledge of Newton's laws of motion enablds one to predict the 

paths of the planets with extreme accuracy. 

Ideally then, the mathematician's job in any Scientific 

or Industrial work should be to = 

(i) Identify a problem, 

(ii) Formulate the problem in the mathematical terms, 

(iii) Solve the mathematical problem and 

(iv) Interprete the solution. 

In gereral, in actual practice, one finds the first two stages 

to be extremely difficult. Stage three, which is the solution 

of the problem, is greatly facilitated by the use of Digital 

computers. 

A mathematician needs to compare his results with the 

results of further experimental measurements. The following 

schematic and a very representative diagram of the process of 

prediction is due to 0.G.Sutton, which can be interpreted as - 
  

      
    

        

        

DATA 

REAL IDEAL PROCESS of SOLUTION of PREDICTION 

PROBLEM PROBLEM SOLUTION By THE IDEAL |» 
[ MATHEMATIcS PROBLEM       

  

    

COMPARISON OF SOLUTION 
OF THE IDEAL PROBLEM 
WITH THE REAL PROBLEM 

  SE EEEeee eS   

Fig. 1-1
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one first specifies - a real problem which is then idealised 

such that it bears a strong resemblance to the real problem 

and to which the existing mathematical techniques can be applied. 

The solution of the ideal problem is then compared with the 

measurements made in the real problem. 

At this point, it would be convemient to distinguish 

between the two kinds of models, viz. the deterministic and 

the stochastic. The models, such as those arising from Hooke's 

Law and Newton's laws of motion do not contain random variables 

and are termed deterministic. The deterministic models give 

definite predictions. A model containing random variables is 

called Stochastic and the future of a stochastic process is 

only partly determined by the past values of the variables. We 

shall confine our discussion mainly to stochastic processes and 

shall work with them in the following chapters. 

Let us now turn our attention to the scientific theory 

of prediction which has its origin in the techniques developed for 

detecting hidden periodicities in a time series. It can be seen 

that, in sciences such as meteorology and astronomy, the observed 

phenomena may be represented by sums resembling a trigonometric 

series of the type - 

aa Cos(wat+da) + ag Cos(watide) + ag Cos(wst+ps) + oe
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Here, although the sum is not a periodic function of t, the 

elements constituting the sum are periodic, the periods being 

fas Be etc. So, if we are measuring the height of the tide 
na? ng 

at any instant at a given place, we need to take account of 

the effects due to the constituent tides such as, Semi—diurnal 

(with a period of half a day), Diurnal (with a period of one 

day), Fortnightly etc., each of which produces its own effect 

independently of others. The actual height then is the sum of 

these effects, and can be represented by an expression of the 

form 

y = aotasCos(mt+ea)+ aaCos(nat+e2)+ asCos(nsttes) +o se 

where each term of the series eorvoupéuds to the coustituent tide. 

The amplitudes a0,81,42,a83, ee. and the phases ©1,&2,83, eee 

can be determined experimentally, which makes it possible to 

predict the height of a tide at any future time, possibly with 

only a small error arising due to certain random elemnts such as 

wind. 

In many other cases, however, the periods are quite 

unknown and the main task of the mathematician becomes one of 

discovering the periods =r, =, etce., of the constituent terms 

by experiment and analysis. Lagrange's work published in 1774, 

appears to be the first mention of an analytical method for 

determining hidden periodicities. More recently, the periodogram
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method for detecting hidden periodicities was developed by 

Sir Arthur Schuster. A periodogram is essentially a plot 

of the correlation ratio, and the recognition of peaks in the 

periodogram is the means by which the hidden perioddcities 

are discovered. 

The most modern theory of prediction and smoothing 

originated by N.Wiener is based on the extension of the idea 

of determination of periodicities in the random time-series. 

Wiener makes an extensive use of autocorrelation functions 

and the most important property of an autocorrelation function 

is the means with which one can discover hidden periodicities. 

AUTOMATIC CONTROL. 

The idea of automatic control dates back to the great 

contributions of James Watt to the development of steam engines 

in the late 18th century. These steam engines provided power to 

do the jobs which were previously done with human labour and also 

made power available, in a flexible form, to do various other 

jobs. A great amount of research, that followed the development 

of steam engines, was mainly in the field of controlling of the 

power-driven machines; however, the first analysis of the speed 

Governor which is the first real automatic controller did not 

appear until 1868 when Maxwell published his paper "ON GOVERNORS". 

During the first world war period, Minorsky developed
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the concept of a systen which would automatically maintain 

a ship in a prescribed course. A signal, the difference 

between the desired course and the actual course, actuated 

a mechanism which continuously reset the ship's rudder to 

maintain the proper course. Minorsky in his paper published 

in 1922, considered problems of the reduction of steady state 

errors and of increasing the stability of a closed-loop control 

systen. The present-day techniques of linear analysis have 

grown from the original work of H.Nyquist in the field of 

electronic amplifiers. Nyquist's famous criteria of the 

stability of Feedback control systems, found almost immediate 

and important applications in various fields. 

A great deal of development in Automatic control 

occurred during the second world war. By that time, the 

previous anti-aircraft devices proved inadequate for the greatly 

increased speed achieved by the aircraft and this gave a great 

impetus to research into the effective means of adequate 

detection and tracking. The development of many allied 

techniques followed around the same period. 

With the progress in the field of automatic control, 

there arose a need to design many complex control systems. The 

study of such complex systems is greatly faciliated by the 

science of Cybernetics, born soon after the war. This science 

is mainly a result of the research done by N.Wiener and
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Arturo Rosenbleuth aimed at understanding certain neurological 

phenomena, It was realised that, in the workings of a human 

body, there are already superb examples of control systems, the 

designs of which are far more sophisticated than anything that 

has bem achieved by a man. For example, the body temperature 

remains almost constant even when there are large and sudden 

changes in the surrounding temperature. Similarly, the eye 

rapidly changes its optical characteristics with the changing 

distances, The benefit of the study of Cybernetics reflects in 

the field of machine control, particularly feedback processes 

and the understanding of feedback mechanisms and malfunctions 

which occur in the diseases of man. At present, the main 

research work in Cybernetics is directed towards understanding 

the mechanism of the human brain, and toward the alternate 

communication paths which may permit the deaf or blind to 

“hear” or "see", 

The field of automatic control is now extended to the 

various branches of science and Engineering. The basic essentials 

of automatic control, however, are common to all these branches; 

these are - i) a CONTROLIED CONDITION, e.g. temperature, ii) a 

MEASURING UNIT for measuring the value of the controlled condition, 

iii) a REGULATING UNIT which is an apparatus capable of effecting 

a change in the controlled condition and iv) a CONTROLLING UNIT
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which is a means for operating the regulating unit in response 

to the measuring unit. The closed-loop is achieved through the 

controller and the basic arrangement of an automatic control 

system is as depicted in the figure below. However, in practice, 

the actual examples vary considerably in their layout and 

  

  

      

        

    

construction. 

AUTOMATIC 

CONTROLLER 

A 

PLANT 
—_—_—_—_——_>——_] REGULATION > OR y MEASUREMENT} 

SYSTEM               
  

  

Fig.1-2. Basic arrangement of Automatic Control System. 

CLASSIFICATION OF THE CHAPTERS: 

After reviewing some of the basic concepts and 

definitions necessary to understand Wiener's theory in chapter 2, 

the Wiener theory of Linear least square smoothing and prediction 

is reviewed in eiceboe 3 Chapter 4 contains a survey of the 

more recently developed techniques of Exponentially weighted 

prediction and the other methods. The purpose of chapter 5 

is to consider the applications of the various prediction
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techniques reviewed, in the light of a specific problem. The 

problen considered is one of Electricity demand prediction 

in an area, up to several hours ahead. 

The sixth chapter is on “Automatic control". The 

first section of the chapter contains a review of the techniques 

which form a basis for the modern automtic control theory, and 

in Section II, a specific problem of automatic control in the 

Electricity supply is considered, where a proposed general 

systen for power-—flow control is depicted by means of a block 

diagram and is discussed to some extent. General discussion and 

conclusion appears in the last chapter.
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SOME CONCEPTS AND DEFINITIONS.



LO. 

2.el RANDOM PROCESSES: 

One can cite a wide range of natural phenomena which 

constitute random processes. For example, meteorological 

phenomena such as, temperature variations, wind velocity, 

light intensity etc., and certain economic fluctuations, thermal 

noise in electric circuits etc., are all random processes. The 

main characteristic of a random process is that, it is very 

difficult to decide the future course, just from the knowledge 

of the past behaviour of a single random record, The most one 

can do is to draw reasonable conclusions about the probable 

spread in future values from estimates of mean and mean square 

values derived from an ensemble or large collections of records. 

Consider, for instance, the daily time records of certain 

meteorological phenomena at a particular place. This would 

exhibit random fluctuations about an average value. What one could 

do is to calculate probabilities of exceeding certain arbitrary 

values from all of the records, and in this way estimate how 

future records might behave. 

Definition: A random process, also called time-series 

or a stochastic process, is an ensemble or assembly (i.e. large 

collections of records) comprised of functions of time {x(t)}, 

such that the ensemble can be characterised through \the statistical 

properties. 

Now, consider the ensemble ix(t)} of the time functions
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which constitutes a random process. We shall denote. by 

Pa(x,t)dx, the probability that x will lie betwen x and 

x+dx at time t. The function Pa(x,t) is the first probability 

distribution from which the ensemble average x(t) can be 

calculated — 

x(t) = fe xP (x,t) dx (2-1.1) 

This formula can be generalised to give mean-squared value of 

x(t) and more generally the nth moment of x{ tye 

x(t)*= the mean squared value of x(t) 

-[-2 Pa (x,t) dx (2-1.2) 

and x(t)"S nth moment of x(t) 

=[ x? Pa (x,t) dx (2-1.3) 

Also, the probability that the total number of pairs in which 

x occurs in the range xy to xa+dx, at tz and in the range x9 

to +d at te can be written as Pe(m ,tasxm »te)dxdm,. The 

func tion P2 (x1, ta ;x2,t2) being the second probability distri- 

bution. From the second probability distribution, the correlation 

func tion C_,(t1,te) can be calculated -
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C__(ta , ta) = x(t1)x(ta) 

@ co 

|. - XaXeP2(xa,t2 3x2, te)dxidme; (2-144) 
a 

This correlation function is also called the AUTOCORRELATION 

FUNCTION OF the random process {x(t)} at the times ta and te. 

It can be noted that for ta= te, the correlation function 

becomes the ensemble average ais which is the mean square 

(ensemble) value of the random process at t = ta. 

Suppose there are two random processes {x(t)} and 

{y(t)}. Then the function 

Cy (ta sta )= x(ta)y(ta) 

& xy Pat(x,ta; yyta) dx dy = (241.5) 
cn id 

is called the CROSS CORRELATION FUNCTION. Pa'(x,ta;y,te) being 

the second joint probability distribution function, 

The above random processes are of the general type 

and are called NON-STATIONARY. The ensemble averages are 

always used to determine their statistical properties. 

Properties of stationary random processes: 

One of the main assumptions on which the Wiener 

theory (next chapter) rests is that the input time series, 

represented by signal s(t) and noise n(t) are stationary random
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processes and for this reason it will be desirable to discuss 

some of the important properties of stationarity. 

A random function is called a stationary random 

function, if all the statistical characteristics of the function 

are time independent. Thus, we can denote by Pa(x) the first 

probability distribution for a stationary random function, i.e. 

P1(x)dx is the probability of finding x between x and x+dx 

and let x(t) be a random function, Then for a stationary 

random function, the ensemble or assembly average and the time 

average are equal, i.e. 

. © s /2 

x(t) = [= P, (x)dx = ae = | x(t) dt; (2-1.6) 

00 igs 

a nas ie 

where the very large record on a single member of the enseanble 

is cut into lengths T, and T is large. 

As above, the formula for assembly average can be 

generalised to the arbitrary powers of x, giving moments. Thus 

2 =| x” Pa (x) ax (2-1.7) 
— 

Mu denotes the nth moment of the first probability distribution. 

It is interesting to see that more and more information 

about Pa(x) can be obtained as more and more moments are known. 

From the first and second moments, one can compute the variance
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o* and thus the standard deviation Oo, which is a measure of 

the probability distribution P1(x) about the average value 

x(t), 

o = (x o x)* - | (xx)? P4 (x) dx =x (x)?; (2-1.8) 

“00 
= 

The third moment gives a measure of skewness of the probability 

distribution. In some cases it is possible to determine the 

distribution from the knowledge of moments. For example, if 

- 4.20 for k= 01,2, ses 

die: k Mj. = 1.3.5 eee (2-1) 0? 

Then the first probability distribution is a Gaussian or normal. 

distribution = 

ee ee = oe (2-1.9) 

For a stationary random function, the second probability 

  Pa (x) = 

distribufion Pg will depend only on the time interval rT = te-ti, 

rather than on ta and te separately. Hence, for a stationary 

random function, the probability of finding a pair of values 

between x1+dx_ and between xeg+dxe at an interval of time equal 

to tT is Pa(x1,m37)dxidx,. The function Pa(m,xm3r) is the second 

distribution function. 

The correlation function can now be written as =
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CAT) = mm = x(t) x(ter) 

=[ - XaXePa(xa,xe37) dx dx (2-1.10) 

00 “oo 

In the case ofa Stationary random function this can also be 

obtained by the time averaging i.e. 

C(t) = 1m. ot fe x(t) x (ter)dt (2-1.11) 
T>ofTf 

ee 

Ctr) measures the inter-relationship of the x's measured at 

two different time instants and is called the autocorrelation 

function of the stationary random process. This inter 

relation weakens with the incrdéase of rt and for large Tt, 

x(t) and x(t+r) will be independent of each other. The second 

probability distribution then becomes the product of Pa (xa) 

and Pe(xe). Thus for large r 

C__(7) -[f 4, %2Pa(x1) Po(xe)dxidxe = (x)? (2-1.12) 
“ce co 

For T = 0, eqwtion (2-1.11) reduces to 

c.(0) = z= (2-1.13) 

Note: If the value of the autocorrelation function eq.(2-1.11) 

and the mean value given by
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"le 
_ Peres 
x = i. fe | x(t) at 

cs mn 
es /2 

do not differ when computed over different sample functions, 

the random process is gaid to be ergodic. Im actual practice, 

random data representing stationary physical phenomena are 

generally ergodic, and hence throughout our discussion of 

the stationary random processes we shall assume ergodicity. 

Autocorrelation and hidden periodicity: 

Let 

x(t) = a sin(wt + ¢) w = Qnf (2-1.14) 

be a single record of a stationary random process where a and p 

are constants. Then the autocorrelation function (from eq.2-1.11) 

fo 
: ap /2 

C(r,x) = we =| sin(wt + ¢) sinlw(t+r) +4] at 

- e eo : 

= a* cos wt (2-1.15) 

It can be seen that C(r,x) is independent of the phase angle ¢, 

an even function of T with a maximum at T = O, and periodic © 

with the same frequency as originally present in e+). 

Similarly, if x(t) is of the form 

N 

x(t) = = + > (a, Cos wt +b Sinw t) 30, = art. 

i 
t
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N 

= co + 2 c. Cos(w, t - 7) (2-1.16) 

oo 4, where ¢o = aa ” = a” + >” 0, = tan’; (b,/a,)- 

The quantities rt and a. represent amplitude and 

phase factors associated with each frequency fo in x(t); 

From (2=1.11) 

N 

C(r,x) = co? + oe Cos(w_7) (2~1.17) 

* j 

C(r,x) is again independent of phase relations in x(t), an even 

function of T with a maximum at t = 0, and containing all of the 

previous periodicities of x(t). 

Thus, if a random function contains such hidden 

periodicities, then the calculation of C(r,x) for large values 

of Tr should uncover them, since otherwise, C(r,x) would be 

expected to vanish for large T. | 

INTEGRAL TRANSFORMS: 

(i) Laplace transform:- 

If f(t) is a function of the time variable t, 

where t > 0, the Laplace transform of f(+) denoted by 

F(s) is given by
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& [£(t)] = F(s) =f eo f(t) at (2-2.1) 

Oo 

where s is a complex variable, (s = 0 + iw), with a 

positive real part, 

When F(s) is known, f(t) can be calculated 

by the inverse Laplace transform: 

V +1100 

£*[R(s)] = £(t) =e Pn) ap (2-2,2) 

V—‘ico 

The actual evaluation of f(t) from this formula, can be 

done, by deforming the path of integration according to 

the singularities of F(s). Laplace transformation is 

found suitable for the problems, where the function f(t) 

is defined by a differential equation with speciti¢e inits al. 

conditions. 

Certain fundamental properties:- 

If fa(t) and fe(t) are of exponential type, 

and c4 and ¢g are any two complex numbers, then 

& (cafa + cefe) = ca L(f1) + ca L(f2) (2=2.3) 

Also, if fa(t) = £*[¥4(s)] and fa(t) = €*[Fe(s)], then 

L-* (caFat ceFe) = ca LY (Ba) + ce tL} (Fe) 

cafa(t) + cafe (t) (2-2.4) ul 

One most important theorem concerns the
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(i) contd. 

convolution (or Faltung) of two functions: If f(t) and 

g(t) are the two given functions, then the convolution 

is defined by the relation - 

t 

f(t) « g(t) | f(u) g(t-u)du (2-2,5) 

o 

The Laplace transform of the convolution is the product 

of the Laplace transforms of the functions i.e. 

&£ [f(t) * g(t)] = F(s) G(s) (2-2.6) 

(ii) Fourier transforms :- 

The Fourier transforms are defined by the 

relations = 

  

  

F(w) = F(f) = J | ry gat: ox (2-2.7) 
q 2a a 

e(t) = F(R) = = | F(w) ott ay (2-2.8) 
21 

co 

Here, the convolution is defined by the expression 

© 

fees =| f(u) g(t - u) du (2-2,.9) 

ge 

Also, if F(w) and G(w) denote the Fourier 

transforms of f(t) and g(t) respectively, then
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(ii) contd. 

( 8 %(f « 2) = Fw) G(w) (22.10) 

Fourier Sine and Cosine transforms are given 

by the relations = 

oo 

F(w) = E | f(t) Sin(wt) dt (2—2.11) 

F(w) = 2 [#0 Cos(wt) at (2-2,.12) 

Oo 

and the inverse of these transforms are given by = 

oo 

f(t) = 2 | F(w) Sin(wt) dw (2-2.13) 

f(t) = 2 | F(w) Cos(wt) dw (2—2,1) 

° 

Probability distribution of sums:— 

Consider a function f(t) as a sum of a signal s(t) 

and noise n(t) where s(t) and n(t) are independent random 

variables. We have 

Sty = Bt) + uft) 

Now ,let p(f), pa(s) and pe(n) be the respective 

probability density functions of {f(t)}, {s(t)}and {n(+t)}. 

Then by convolution
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»(#) | mela) miko ahas (2-215) 

a 

p(f) can also be calculated from the Fourier trans 

forms of the probability densities. For example, if Y(iw), Ya (iw) 

and Yeg(iw) denote the Fourier transforms of p(f), pa(s) and 

pe(n) respectively, then we have 

Y(iw) -| e MT vir) ae 

Ya (iu) -[ BAe Uw) as 
00 
a 

Ya (iw) = | gi a(n) dn, 
00 

ad 

from which it can be shown that 

Y(iw) = Ya(iw) Ye (iw) 

The inverse transform of the last relation gives p(f). Thus 

p(f) = F[Y(iw)] = z | on Ya(iw) Ye(iw) ds; (2-2.16) 

Beg 

2.5 LINEAR SYSTEMS: 

A physical system is mid to be linear when the 

equations which govern it are linear differential equations
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‘i.e. the terms of the equation contain only the first powers 

of the dependent variables or its time derivatives. When 

the coefficients of the differential equation are constants 

independent of time, the system is called constant coefficient 

or fixed parameter system, and when the coefficients are 

functions of time it is called the system with variable co- 

efficients. 

If the terms contain higher powers of the dependent 

variable or crmss products of the dependent variable and its 

derivatives, the differential equation is said to be non-linear 

and the system which is governed by such an equation — a non 

linear system. 

In actual practice, there are no perfect linear 

systems, because any physical system when analysed in great 

detail is always non-linear, It is only under some assumptions 

that a system may be correctly represented by a linear scheme, 

It is found that a large number of engineering systems fall into 

the category of linear systems with constant parameters, 

Some properties: 

For a system denoted by tht, the relationship between 

all the input signals x(t) and all the output signals y(t) is 

of the type - 

y(t) = h [x(t)] (2-3.1)
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and the following properties of additivity and homogeneity 

follow - 

h[xa(t) + x(t)] 

hla x(t)] 

where a is a constant. For a time independent or constant 

h[xa(t)] + nlxe(t)] (2=3.2) 

a h{x(t)] (2—3,3) 

parameter system — 

y(t +7) = blx(t-+17)]J (2-3 1) 

Consider, that an input x(t) = oer is applied to 

a linear constant parameter, infinite operating system. Using 

(2-3.4), the output signal is 

y(t +r) = nf (t47)] 

nfl euttty QloT 

y(t) e#T (2-345) 

In particular, for’ t= 0. 

y(r) =y(0) en" (2-3.6) 

is the response of a given system to the input signal a, 

Now, let x(t) be a signal for which a Fourier transform 

X(iw) exists, i.e. 

X(iw) = F[x(t)] = ett x(t) at (2-3.7) 

al 

co 

| x(ia)etay — (2-3,8) 
and then 

x(t) = F*[x(aw) = S 

00. 

al
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From (2-3.1) we have 

$ly(+t)] = Y(iw) = X(iw) H(iw) (2-3.9) 
the inverse of which gives - 

y(t) =1X(iw) H(iw)] 

= # f X(iw) H(iw) eM@* ay (2-3.10) 
00 

The respons® or the output of a linear sys ten 

(or filter) subjected to a unit impulse signal x(t) = 6(t) 

as an input, is of particular significance. This unit 

impulse function 6(t) is called the Dirac-delta function and 

is mathematically defined by 

6(-t) = 6&(t) =0 for + #0 

S(t) =o fort=0 ( 23.11) 

| 6(t)dt = 1 and [30 dt = 1/2 (2—3.12) 

For the function f(t) continuous at t = to, the 
Dirac-delta function has four characteristic properties — 

[ f(t) 8(t-to)dt = £(to) = [-2(+) 5(to-t) dt; (2=3.13) 

[209 5(t-to)dt 

00 
\ © 

*[-a(tato)at ad (2-3 .15) 
00 

sf 

1/2 £(2); if tots or toxtas (23.14) 

a =



aD. 

Zed: Cond. 

to a 
| 8 (t—to) dt = [. d(t-to)dt = 1/2 (2-3 .16) 

a to 

Example. 

| #(t) 8(at-b)at = | £(u/a) &(u-b) du/a = 1/a £(b/a) 
I 

a Vm 5 

Thus, in case of a unit impulse input signal to a 

linear system 

[x(+)] = x(a) =F[8(t)] = je oi at = 1; (2-3.17) 

From equations (2-3.9) and (2-3.17), 

Y(iw) = 1. H(iw) (2-3.18) 

and from (2=3.10) and (2~3.18) 

y5(t) = z, |-#(0) aw ay (2-3.19) 
pe | 

00 
2) 

The last relation is an inverse Fourier transform 

of H(iw)ani hence the following relations hold 

oe 

h(t) = Ys(t) = g, |-H(w) et ay (2=3.20) 

H(iw) = [eo a ax (2-3.21) 

Ht 

If the unit’ impilse response h(t) = 0 for t <0,
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the linear system is said to be physically realisable. 

Response of a linear system: 

Using relations (2-3.10) and (2-3.21), we can write 

oo ao 

y(t) = [ alr) are = [ae ney aa 

The second integral is the inverse Fourier transform of X(iw) 

evaluated at tr, which is written as x(t-r) and hence 

y(t) -[ h(r) x(t-r)dr ; h(r) = 0, T< 0 

ee 
eo 

| n(r) x(t-r) ar (2~3.22) 
o 

The equivalent form is 

oo 

es ‘i sey chlor ar 

= 

a x(r) h(t-r)dr ( 2=3423) 

09 
4 

Dirac-delta function and Wiener's prediction theory and filter 
problem, 

Wiener's prediction theory and the filter problem 

will be discussed to some extent in the next chapter. If we 

consider the problem of determining the optimum constant
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parameter linear system for stationary random processes 

and infinite operating times, then in pure filtering cases, 

the desired output is the signal input s(t) and hence 

att) = | AG) acer (2=3.2h) 
00 

where as above, 8(r) is a Dirac-delta (or unit impulse) 

function defined by 

&(r)=0 fort £0 

t 

| S(7) dr.= 1°. for any + > 0 

=t 

In case of prediction, the desired output is the 

future value of the signal input, so that with a> 0 

a t+a) = | 8¢r4a) sf hie Nar (2-3.25) 
moael 

So, the only change’ needed to go from a filtering problem to 

a prediction problem is to replace 8(r) by 8(T+a). Also when 

a = 0, the problem becomes one of filtering without prediction. 

The solution to a practical example of a combined filter 

prediction problem will appear at the end of the next chapter. 

2.4 POWER SPECTRUM OF A STATIONARY RANDOM FUNCTION: 

Consider the autocorrelation function given by
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28. 

contde 

sig /s 
cr) = tm | x(t) x(ter)at 

ae =, 

This can be reduced to the form = 

or) = [-@) Castle) as (2-1) 

=4 fe) oT ay (2nlb42) 
at 

and by the inversion formula 

o 

g(w) = 2 | G(r) Cos(wr) ar (2-163) 
Oo 

¢() in this case is called the power spectrum of a stationary 

random function. The last two relations are Wiener—Khinchine 

relations. 

Example: If the correlation function is given by a Gaussian 

curve, 

G(r) = C(0) oe. 

then the power spectrum is 

¢(w) = = (0) [: Cos(wr) Sage en) 
0 

for a ,the power spectrum becomes constant and independent 
~ 

£ of frequency; C(r) becomes zero i.e. xts are not correlated
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at all. This most chaotic random function is called "white 

noise", 

Relationship between the power spectrum of the input 
and the power spectrum of the output: 

Let x(t) be the stationary random input to a linear 

system and y(t) be its output. If h(t) is the response of the 

linear system to a unit impulse at t = 0, then the output in 

terms of the response function is = 

t 

Ht2 | x(r) h(ter)ar (21.5) 
oo 

The upper limit cambe extended to +c in which Casey 

y(t) =|. x(r) h(t-r) dr =f. x(t-u) h(u) dus (24,..6) 
00 

y! ay 

ax F( s) denotes the transfer function of the linear 

system, it is the Laplace transform of h(t) and thus 

F(iw) = i a" n(u)au (2—1,..7) 
° 

Now, if $(w) and g(w) are the power spectra of input 

and output respectively, then it can be proved that = 

g(#) = |F(iw)|? $(w) (2-..8) 
which gives the power spectrum of the output in terms of the 

power spectrum of the input and the frequency response of a 

linear system.
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2.5 MEASUREMEN? OF THE STATISTICAL FUNCTIONS: 

(i) 

AC) A 

X+On 

The probability density functions: 

For the measurement of a probability density function 

(p.d.f.), let us consider the sample time history record 

x(t) as illustrated in the figure below. 

co
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    Fig. 2-1 Probability measurement ‘ 

If say T, is the total amount of time (2 = y Ot) 

ist 
for which x(t) takes values between x and x + Ax, and 

if T is the total observation time, the probability that 

x(t) assumes a value within the range x and x + Ax 

may be obtained by taking the ratio of T fis With T 

approaching infinity, aft approaches an exact probability 

description, i.e. 

oe 
ant 

Lim Prob [x < x(t) < x + Ax] = rae (2-5.1) 

The first order probability density function pa(x), 

for small Ax can be defined by the relation
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(i) contd. 

Prob [x < x(t) < x + Ax] ~ pa(x) Ax (2-5.2) 

and more precisely, 

  

_ lim Prob [x < x(t) < x + Ax] 
pa (x) = Ax-> 0 oie 

lim lim 1/? 
o Ax + 0.8% * (2) (2-5-3) 

(ii) Autocorrelation function:= 

The autocorrelation function for random data 

describes the general dependence of the values of the 

data at one time on the values at another time. Let us 

consider the sample time history record as in the 

fig.(2-2). Then an estimate for the autocorvelation 

between the values of x(t) at time t and t4r may be 

obtained by taking the product of the two values and 

averaging over the observation time T. This average 

wikl approach an exact autocorrelation function as 

T +> oo i.e. +) 
fe 

x c_(r) = io = | x(t) x(ter)at
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(ii) contd. 

Ct) 

* 

  

    
Fig. 2-2 Autocorrelation measurement. 

C_,(r) has a maximum value at r = 0, and 

6 (ar) = 6 _(r) (25.4) 
C.(0) » |C_(r)| for all r (2=5.5) 

Also, the mean and the mean square values of x(t) in 

tems of the autocorrelation function are given by the 

relations 

x(t) = ATI) (2-5.6) 
and x(t)? = c__.(0) (2-5.7) 

The major application of an autocorrelation function 

measurement of physical data is to establish the 

influence of values at any time over values at a future
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(ii) 

(414) 

contd. 

time. The autocorrelation function for random data 

diminishes to zero for large time displacement whereas 

for the deterministic data it persists over all time 

displacements. Thus, autocorrelation measurement 

provides a powerful tool for distinguishing deterministic 

data from random data. 

The joint probability density functions:— 

The prbability that two random sample records will 

simultaneously assume values within some defined pair of 

ranges at ae instant of time is given by their joint 

probability density function. For instance, considering 

the pair of time history records x(t) and y(t) as illus- 

trated in fig.(2-3), the probability that x(t) assumes 

a value within the range between x and x + Ax while 

y(t) simultaneously assumes a value within the range 

between y and y + Ay is given by taking the ratio o, [ 

where my is the total time for which x(t) and y(t) 

fall simultaneously inside the ranges (x, x+\x) and 

(y,y+Ay), respectively during an observation time T. 

The ratio tf? will approach an exact probability 
3 

description as T > o i.e. 

~
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265 contd, 

(iii) contd. 
Ct) 

m4 A és. ES 
2 a x ee 

2 

Ye) 

Y+ay 

(iv) 

  
  

      OL ee 
  v. Ke iT: Seas         Pig. 2-3 Joint probability measurement. 

Prob [x < x(t) <x + Ax; y < y(t) € yidy] = re 4 “Eat (2-5.8) 

For small values of Ax and Ay, the joint ped.f. is given by 

Prob [x < x(t) < xtAx; y < y(t) € y+Ay] ~ P(x,y) Ax Ay 

or more precisely, 

  

4 lim Prob [x < x(t) € xx; y < y(t) < yy] as keg - (Ax) (Ay) : 
Ay = 0 

Lin iges E ee 
Ax>O0T+>o T = (2-5.9) 
Ay 2 0 v 

Cross-correlation function:= 

The general dependence of the values of one set of 

random data on the other can be described by the Cross—
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(ix contd, 

i correlation function for two sets of data. If we consider 

the pair of time history records x(t) and y(t) as illus- 

trated in the figure below, an estimate of the Cross- 

correlation function of the values of x(t) at time 

t and y(t) at time t+ + rT may be obtained by taking the 

  

  

average 

x(t) 

* 

cata yn aa 

: Kode 2 S T is 

y¢t) 

k——T   

    
Fig. 2-4 Cross-correlation measurement.   

product for the two values over the observation time Ls 

as is done for autocorrelation functions. With T > co, the 

resulting average product will approach an exact Cross~ 

correlation function i.e.
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(iv) contd. 

i v/a 
C(r) = oe = | x(t) y(ter)at. 

te Z Ty, 

Ul When G(r) 0, x(t) and y(t) are said to be un- 

correlated.



CHAPTER Sa 

LINEAR LEAST SQUARE SMOOTHING AND PREDICTION THEORY.
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This theory was originated by Wiener and Kolmogoroff 

during the second world war. Wienerts theory in its original 

form, involves rather difficult mathematical treatment and. 

hence is difficult for Engineers and Scientists who may not 

possess such a deep understanding of mathematical techniques. 

However, Engineers soon realised its usefulness in the 

systematic designing of filters and have tried to make it 

more practicable by generalising, interpreting, extending and 

modifying the original W-K theory. Amongst the principal 

contributors were Bode and Shannon, Zadeh and Ragazzini, 

Booton, Darlington, Lanning and Battin, Bendat. 

The WK theory was formulated for the purpose of 

optimal separation of a signal which has been perturbed by the 

addition of noise or random process, by the use of linear 

filter, The input data is a time function f(t) which is a 

combination of a signal s(t) and noise n(t) ise. 

f(t) = s(t) + n(t) 

where s(t) and n(t) are typical members drawn from the ensembles 

of these functions, which have certain known statistical 

characteristics. The central problem then is one of the 

derivation of an estimate f(t) of s(t) in the form, 

£, (+) = s(t+a) 

where for a> 0, £ (+) gives a smoothed prediction of s(t). 

This prediction will involve some errors in which case,
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£, (+) = s(t+a) + e(t) 

e(t) being the error tem. Then, the objective of the W-K theory 

is to ddtermine specific conditions and operations which will 

minimise e(t). 

The assumptions which limit the range of application 

of the W-K theory are: 

(2) 

(>) 

(c) 

5el 

that the time series represented by the signal s(t) and 

the noise n(t) are stationary; 

that the optimum system is characterised as having a 

minimum mean square ensenble system error, and 

that the system is a constant parameter linear device. 

Wiener's theory of Prediction:- 

Wiener's theory may be considered to be derived 

from the techniques for detecting hidden periodicities in 

a time series, using the method of the periodogram, as 

developed by Sir Arthur Schuster, The full appreciation 

of the theory, however, demands a knowledge of several 

special mathematical fields, including Lebesgue integration, 

the Stieltje's integral, Fourier transforms, Generalised 

Harmonic analysis, Orthogonal functions (in particular, 

Laguerre functions), Integral equations and the theory of 

functions of a complex variable. 

Wiener's work, as one can see, was mainly directed 

towards predicting the path of an enemy aircraft and for the
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purposes of fire control. Since the war, it has been 

modified and extended in various ways so as to constitute 

a major tool of considerable potential value for research 

into effective methods of prediction, both in engineering 

and economics. 

It will be sufficient to discuss the theory for 

a single time series. The problem here is - fora given 

function f(t), find an operator which when operating upon 

its past and present values yields f(t+a). For a> 0, f(t+a) 

gives a smoothed prediction of T(t)... ae stated: above, it 

is required that the operator should be linear, invariant 

with respect to the choice of the origin of time and 

dependent only on the past and present values of f(t). 

It is assumed that the prediction should be the "best 

PREDICTABLE" in the "mean squaré" sense, that is to say, if 

£,(t) is the predicted value of f(t+a), then 

t 

. meg z | ” [f(t+a) = £ (+)? at (3-1.1) 

gs of 
is to be a minimum, 

Wiener's theory assumes the existence of a function 

K(r), such that the Stieltje's integral 

/ f(t-r) dK(r) 

fe)
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is a predictable value, £ A(t) and that K(r) can be so 

determined as to minimise the expression (3-1.1). This 

expression can thus be regarded as a measure of the extent 

to which the operator K(r) fails to predict the value of 

f(t+a). 

The concepts chiefly employed in the solution oF 

the problems are = 

(a) the autocorrelation function 

hi. if f(ter) £(t) at Lao fT 

? 

which is analogous to the autocorrelation coefficient 

N 
Lim 1 

sae. Shel 2 *Kej 7% 

in its normalised form, and 

(b) The Fourier transform pais f(t) and g(w) related by 

the equations 

f(t) = = [ew et ay and g(w) = a fete) ot at 
\ 20 2a 

co 
a0 

The condition for the minimum of the expression 

(3-1.1) may be obtained by adding to K(r) the expression 

t(8K(r)), differentiating with respect to t, equating the 

derivative to zero, and then letting t tend to zero. (This
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technique belongs to the calculus of variations). 

This leadsto the condition 

C (a+r) = [-0¢-¥) dK(t), forr>o (3-1.2) 

o 

Thus, if the autocorrelation function is known, 

then K(t) can be determined by solving the integral 

equation (3-1.2). Wiener's method of solving this equation 

is to introduce the Fourier transform ¢(w) of C(t), that 

is to say, 

oe iwt C(t) = —/|/ $(w) ed and 
f2r [> 

= : c(t) e Mt ag 
on 

00 

¢(w) = 
Soh 

If we know the poles and zeros (for definition 

see ch.6) of $(w) regarded as a function of the complex 

variable w, then, in the case where $(W) is an even rational 

function, it can be expressed in the form 

ou - A ee (o-w,.) (w-w,,) 

q (o-w ;) (u-a 5) 
j= 

  

where Wy. is the complex conjugate of @).
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w, is the complex conjugate of ws 

and A is real, and the imaginary parts of each w,. and. as 

are positive. Under these conditions $(w) can be factorised, 

that is to say, 

p(w) = oa(w) Ya(w) where 

va (w) = . i (omw,,) and $2(w) = A y (u-w,,) 

1 (om 5) T (ww) 

From the function ya(w), the inverse ¢(t) can 

be obtained by the relationship 

B 

w(t) = a" ee | va(w) o”® ay (3-14) 
~B 

Wiener then shows that K(r) canbe obtained by solving the 

equation t 

[ Gr) a(n) = (oa) (341.5) 

To solve (3-1.5), we write 

[ ott* axce) = xu) 

and,taking Fourier transforms of both sides of (3=1.5), 

i ¢(a+t) et dt = %a (w)k(w)
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so that 

e(e) = | g(ast) eM at is (w) 

oe Fmt of iw (tH) k(w) = va(o) | dt si pa (w) dw 

knowing k(w), the solution is easily completed. 

The complete process may be illustrated by a simple 

example. Let us assume that the autocorrelation function 

C(r) of the time series f(t) has a Fourier transform 

A. 

    

Mle Te 

Now, 

Fo tek eT 1 
Lee ee eT 

so that we identify ¢1(w) = ~ y+ Hence   

  

~j =igt iw (t+) 
k(w) = Sa at | —— w 

Now applying the calculus of residues, 
° oil (t+0 

/ dw = 27i. residue atw = i.   

Wi 

co 

To determine this residue, we write
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qi (t+2) : ei( tra) (w-i+i) : oi ( tra) (w-i)  i(tea)i 

Wi - =i e Wi, 

5 g(t) | ei(t+a) (wi) | 
“ mii 

Hence the residue is on (BFS) | Therefore, 

eo 

k(w) = ei | gE ons oh He) dt 
A 2ir 

0 

= i(w-i)e*, {27 | yo ee 

oO 

= iwi) eo. JBr | geet 
° 

= i(w-i)e*. J or Ee te) 

° 

=e" | on 

Now, the predicted value of f(t+a) is 
oo 

| £(tr) aK(r) where 
O 

+. ia c(t) = & 
q Qi 

At this point it is convenient to introduce a new 

function h(t) defined by dK(t) = h(t) dt. So that we have
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5, -eontdy 

co 

_ | oe h(t) dt =e” 
N 2a L 

and the predicted value of f(t+a) is 

| e(ter) n(r) ar (a) 
O° 

Now, the expression (A) is a convolution integral. Its 

transform is 

F(w) H(w) 

where F(w) is the Fourier transform of f(t) and H(w) is the 

Fourier transform of h(r). Hence the predicted value of 

f(t+a) is such that its Fourier transform is 

F(w) H(), 

we and hence, the predicted value of f(t+a) is But, H(w) =e 

the inverse transform of F(w) e ”, which is t(t).< 

In this example, we have taken as our starting point 

the function 

L 
$(w) = sor 

This, in fact, is the Fourier transform of a function of time 

Boel 
Thus the normalised autocorrelation func tion eit leads to the 

equal to 

transform
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1 -\s] 

HO" 
¢(w) = Si

n 

eS
 

L
o
 

  

The graph of ml has properties consistent with those 

of an autocorrelation function, 

Another example, starting with an autocorrelation 

function of the form of Sech mr, leads to the Fourier transform 

2 L 
Sech TT 

iE Lae 

  
  

In each of these two examples, the prediction problem can 

be solved by the analytical procedure indicated. 

In practice, the autocorrelation function must be 

determined empirically. Having obtained it, we must then 

see whether it can be represented with sufficient accuracy 

by a linear combination of functions, such as 

ik aL 

lw ? Lew 

and other rational fraction functions of w. In so far as 

this can be done, the Wiener method leads to a result. 

Wiener gives some further examples of the function 

$(w), namely
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2 Lew? 1: 
ae : and. es 

(1+w*) L+w (142) 

2 2 
= —T which is an approximation to e » the transform of e ° 

He also hints at the possible expression of the auto- 

correlation function in such a way that orthogonal 

functions, and, especially Laguerre functions, may be 

used, but he does not enlarge upon this. 

A_GENERAL THEORY OF LINEAR PREDICTION AND FILTERING. 

In the generalised form, the collections of input 

signal {s(t)} and noise {n(t)} are considered to be non= 

stationary and the linear system to be time varying with 

its characteristic weighting function h(t,r), denoting the 

response of the time-varying system at time t to a unit 

impulse applied at time t-r. If for an arbitrary input time, 

the input combination 

f(t) = s(t) + n(t) 

passes through this time-varying system for a finite sampling 

time T, then the actual output response is given by 

dh 

g(t) =| h(t,7) £(t-r)ar (3-2.1) 
o 

Now, if the desired output is s(t+a), then the 

system error e(t) is given by
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T 

e(+t) oy h(t,7) £(ter) ar - s(t+a) (3-2.2) 
° 

The weighting function h(t,r) is to be determined such. 

that the mean square error is minimum. From (3-2.2) 

T * 
e*(t) = [ sun f(t-r)dr = a) | | [ acerneteran 

Oo 
Oo oe s( ta) 

> 

=| [ een) h(t,7") £(t-r)f(t-r')ar art 

’ 

= s(t+a) | h(t,r) f(t-r) ar 

T 

+ [ aCeyre) e(tar') art |: s(t+a) s (tea); (342.3) 
‘ : : 

This is because, the value of a definite integral is independent 

of the variable of integration Tr or Tr, (3-2.3) is then 

simplified to 

2: 2 

e* (+) =| | See h(t,r') £(t-r) £(ter')ar art 

- 

oe | n(tyr') £(tor*) s(t) ar + s(t+a) s(tea) (3-201) 
oO 

By averaging (3-2.4) we get
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~ 

e*(t) =| | h(t,r) h(t,r') f(t=r) f(t=r") a art 

o 60 

m 

“ 2 | h(t,r') f(t-r") s(tea) dr? + (tea) s(tea) 

° 

But, f(t-r) f(t-r*) = the autocorrelation function Cop ter, tor!) 

f(ter')s(t+a) = the cross-correlation function Co (tar! ta) 

s(t+a) s(t+a) = the autocorrelation function C(t, t+0) 

and therefore, 

Be 

e*(t) =| | h(t,7) h(t,7') Cap(t-r, t-r') dr drt 

o Oo 4 

c 

= 2 | h(t,7r') Ch (tr', s+a) drt + Ci (sta,sta) (3-2.5) 
. : 

Consider now, that the response function h(t,r) 

is varied by mh(t,T), 7 being an arbitrary real constant. 

Then the corresponding variation to the first order in 

e(t) is given by 
4 T 

ne*(t) = 2 | nh(t,7T*) {| h(t,7) Cop(t-r, ter')dr 
5 

Oo 

= t ’ Cp. (t-r : ta | dr 

This variation must vanish, if h(t,7) is the response function 

of the op‘imum filter. It will be so, when
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- ; 

[ xen) Coo(t-r, ter!) dr = Cn ( tar! , tra) 5 (O <r! € 7). (32.6) 

o 

(3-8.6) is the modified form of the Winer-Hopf equation. 

Substituting from (3-2.6) in (3-2.5) we get 

T 

a(t) en = C (tra, t+o) -| h(t,7) Cp (tor, tra) drt 5 (3=2.7) 

oO 

The main problem in the applicability of this 

theory is the solving of the appropriate integral equation 

(3-2.6) using particular correlation functions involved. 

BODE AND SHANNON'S INTERPRETATION OF WIENER'S THEORY 

In Winerts theory, as opposed to the general 

theory, the problem is one of determining the optimum 

constant parameter linear system (or filter), for stationary 

random inputs and infinite operating times. 

Let the system be characterised by its weighting 

function h(r) and the total input to it be the sum of ine 

dependent signal and noise terms. Now, if Y(iw) is the 

transfer function of the linear system then at a particular 

frequency wa ’ the contribution to the error due to nase 

is given by
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|¥(iws)|? 9 (ws) (3-a) 

where $,,(w4) is the average power due to noise at frequency 

wa and 

Y(iw, ) | n{r) eo“? a 

=00 

The contribution to the error due to a signal is given by 
ruxal, nt P. 463. 

xp. arises because z 

ope output 1s | Y( ams ) a sot 
$ (wt) (3-B) 

aput x timedelay : : 

whe re $,,(wa) denotes the average power due to the signal at 

frequency w1. Here, the component of frequency w4 is 

advanced in phase by Qa. 

At frequency wa, the total mean square error 

will be the sum of (3=A) and (3B) ise. 

Bus = |v(ine)|? § (oa) + |¥(iwa)- 4]? @ (we)s (3-301) 

and for all frequencies, the total mean square error will be 

given by 

E =| | (aa) |? $(w) + |X (iw) et 2 $,(w) jw ( 3~3.2) 

E is to be minimised with a proper choice of Y(iw). Also, 

¥(iw) should be physically realisable, 

The condition that Y¥(iw) should be a physically 

realisable transfer function, creates the main difficulty 

in minimising E, The condition of physical realisability
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of the filter is thus waived temporarily and all choices 

of Y(iw) are allowed with the result that h(r) is not 

required to be zero for T < 0. However, this phy si cally 

impossible condition must be corrected later. We are assuming 

that the entire function f(t) = s(t) + n(t) from t =-0 

to t = + is available for use in prediction. The 

minimisation of (3~3.2) over all possible Y(iw) yields a 

"theoretical" frequence response fuaction. 

In (3-3.2) suppose = 

Y(iw) = C(w) Bl) 
where C(w) and B(w) are real functions of w. Then 

E | [0° (w) (a) + {0° (w)s1-20(w) cos(B(w)—a0) fs, (0) | ay 

00 

) 

It will be clear from this, that in order to minimise E, the 

best choice of B(w) is B(w) = aw, which maximises Cos (B(w) —aw) 

and then 

a= [ [ore (,(0)+4, (0) -26(w) $,(u) +9, (0) |aw 
=00 

Completing the square in C(w) by adding and sub— 

tracting, 

$,&) 
$,() + $,,(@) 7 

we get
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eo 

a | o(orf 9,6, (0) P20) g.(0) + __ by (w) 
. $,()+ $e) 

- = $,(o) | do 

2 
= f C(w) Ad (w)+b. (a)= $,(a) = $,(w) $,(w) } des “ 8 n Baye = = $ (oo) 3 

The bracketed term is the square of a real 

number and therefore positive or zero. From the last ex- 

pression, for minimum E, the bracketed term must be zero 

i.e. 

ia) ite (543.3) O° FOTW) ae 
and hence 

(0) 
¥(iw) = $)+ 6) (33 lt) 

The mean square error then becomes 

nef +) 4,00) ay (5-3.5) 1 $,(a)* $0) 

and the best weighting function in this case - 

h(t) = F*[¥(iw)]



303 

lee 

GOnGd. 

= i | $,(w) ‘ eia(t+a) 5 (345,6) 

Consider a signal s(t) with spectral density 

a 

(2 foo 

The signal is additively mixed with white noise, which is 

chargcterised by a constant power spectral density 

¢,(#) = N, a constant 

Let @ = 0, then for an optimum filter - 

  

Y(iw) = $ (0) = Re 
$ (oy+ N = + @ 

it: or 

oh S Ea
 

+ & wV
 

2
1
h
 

  

(1 + =) + oF 

The corresponding weighting function will be 

u(t) = 4 [ am) Pusiuar™ tt 

ou 

=00 

meee | hh ee J 
However, this particular weighting function h( t) is not 

ul 

  

physically realisable, 

In general, h(t) in (3=3.6) will extend from 

t == to t = +o and does not represent the impulsive 

response of a physical filter. However, it is a perfectly
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good weighting function and if one could wait until all the 

function s(t) + n(t) is available, it will be a proper one to 

apply in estimating s(t+a). This means that the weighting 

func tion h(r) ,can be obtained in physical filter if sufficient 

delay is allowed so that h(r) is substantially zero for the 

future. Although Y(iw) in (3-3.4) is non-physical, ¥(iw) eo 2 

will be physical, or nearly so, if B is taken sufficiently 

large, 

The optimum physically realisable filter is obtained 

by first designing a shaping filter (see next example), for 

input s(t)+n(t). Let Ya (iw) be the transfer function of this 

filter and Yi7*(iw) be its inverse. If we pass s(t)+n(t) 

through Ya"*(iw), the output will be a white noise. Both 

Ya(iw) and Ya~*(iw) ara physically realisable. The knowledge 

of the input and output of this filter are Stelveiont: The 

best linear operation on the output will give the same prediction 

as the corresponding best linear operation on the input s(t)+n(t). 

The following steps are followed in cons truc ting 

the optimum physically realisable filter 

(a) Construct 

Ya (iw) = Y(iw) Ya (iw) (3-3.7) 

where Y(iw) is givdn by (33.1). 

For a prediction interval a, this can be written as
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(a) 

(b) 

(da) 

(e) 

contd. 

Ye (iw) = eM” you (iw) (33.8) 
where Ye*(iw) denotes the sum of the partial fractions. 

Denote by Ye*(iw), the sum of those terms of Ye*(iw) 

which are physically realisable. 

Calculate 

a(t) = a} Yo*(iw) o(t+a) a, (3=3.9) 

Then hg(t) for t > O represents the optimum physically 

realisable weighting function to use on the white noise 

output created by the shaping filter Y4~*(iw). 

The corresponding transfer function for the white noise 

is given by 

Ys (iw) =| hg (t) gw ia (3-3.10) 

oO 

Lastly, the transfer function of the optimum filter is 

given by 

Ya (iw) = Ys(iw) Ya"*(iw) (3-3.11) 

Thus, the optimum least square prediction is 

obtained by passing s(t)+n(t) through a filter whose transfer 

function is given by 

Ya (iw) = Ys (iw) Ya"*(iw), 

One can best illustrate this method by an 

examples
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Examples; 

Consider again, the signal s(t) with power 

spectral density function 

(a Te 
and assume the noise is white which is characterised by a 

constant power spectrum 

(a) = N, a constant. 

The problem is to find a transfer function of the optimum 

constructible filter for a prediction time interval « , 

From (3-3.4), the optimum theoretical frequency 

response function is given by 

a iwa 

i) = a a cain 
The shaping filter is determined from 

|x(aw) |? = 9,(0) + 9) = Gsm? (3-3.13) 1+ 

and hence 2 
Ya (iw) = et (3-35.14) 

From equation (3-3.7) 

Ye (iw) = Y(iw) Ya (iw) 

iwa A. ae 
e (2.4N)2 + in?a 

(14+N) + Nw ° L+ Ww



Dod 

58. 
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iwa 

[ (+N)? -— ain tw] (1+iw) 

pes iw |————sr—-——t T : oe (3=3.15) 
Ta (1+N) 2—an?w 

ee" yoetag) (3-3.16) 

where : : 

je pe N)2 a= Ee 4b oy toting = GE 
N*+ (+N)? N* 

¥ 1 ; and Baars FEF (3=3.17) 
N°+(1+N)* N*(1 +p) 

Only the second term of Ye*(iw) is physically 

realisable and hence using (3~3.9) 

  

oe aes iw(t+a) 
OO oe ee . - 

00 

a 

= pe ta) for t > 0 (3-3.18) 

and then 

Ys (iw) = f B of t+a) . oe at 

oO 

Be” (3=3.19) Tae = 

Thus, the optimum constructible filter will 

have the transfer function given by
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B a 
SS (3-3.20) 

(14N) °+iNn? 
Y4(iw) = Ys(iw) Y47*(iw) = 

Substituting for B from (3-3.17) 

%(iw) = (W(l4))°* a 
p+ a * 

DISCUSSION 

In this chapter we have reviewed the linear pre- 

diction and filter ther y as developed by Winer, Bode and 

Shannon and the general theory developed by Booton and Bendat. 

Zhe theory is of particwlar importance in designing optimum 

engineering systems, either for projecting of past information 

into the future, or in the recovery of desired Signals that are 

distorted by random noise disturbances. One can see that the 

applications of the theory exist not only in communication fields 

but also in meteorological forecasting and economic analysis. 

As already stated, the Wiener's theory is b ased on 

the three main assumptions and before using it one must carefully 

consider each of them with regard to the particular smoothing or 

prediction problem involved. 

The general theory provides a method for optimisation 

over the class of time-variable linear system with a non-stati onary 

input and the more realistic finite sampling time instead of the 

smaller subclass of constant-parameter linear system with station-
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ary input and the non-existent infinite sampling periods. 

However, one of the limitations of the theory, which still 

reamins is that when we minimise the mean-square error, we ares 

in effect, weighting large errors more heavily than the small 

eCrrorse
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EXPONENTIALLY WELGHTED PREDICTION AND OTHER METHODS.
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The first mention of the technique of exponential 

smoothing seems to be by C.C.Holt in 1957. Several different 

writers have discussed methods of exponential smoothing since 

then with different applications of the technique in mind. A 

readable account is due to R.G.Browm (1959) anda description 

of a more ambitious scheme incorporating seasonals by Winters 

(1960). The theoretical papers by Professor Bernard (1959) 

and Box and Jenkins (1962) throw considerable light on the 

validity of the technique. D.R.Cox (1961) in his theoretical 

paper considers exponential weighting when no provision is 

made for trend. 

In this chapter, we shall briefly review some of 

the methods of' exponentially weighted prediction and certain 

other methods. 

41 Exponentially weighted moving averages (e.w.m.a.); 

Probably one of the earliest and simplest methods 

of prediction of future values in any time series is by 

moving averages. It can be seen that moving averages do 

not have adaptive qualities, which are essential for many 

of the prediction problems. It does not account for trend, 

seasonal variations etc. and hence is seldom used. 

Given se. x(t-1), x(t), a stochastic process in 

discrete time, a more réalistic approach to estimate
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%,(t) - a value for the period (t+1) - would be to use the 

formula 

%(+) = aax(t) + agx(t-1) + agx(t-2) +... (4-1.1) 

where a. > a. + 1 and 
aL re 

a a, = Ls a,'s are called weighting factors. 

However, Holt suggested a method of exponentially 

weighted moving averages (e.w.m.a.) which is a special case 

of (4-1.1). Here as form a geometric progression, ag 

being the constant fraction of aa,a3 of ag and so on. 

beSe 22 _ SoH  . . = constep 
ad, ag as 

andp<i. This reduces (4-1.1) to the form 

$,(+) aax(t) + (1-24) £ (+1) (4-1. 2) 

%,(+-1) + aa[x(t) - £,(t-1)] (4m 3) ul 

where a4 is the exponentially weighted factor and 

O< a < 1. 

Substituting for %,(t-1) from (4=1.2) in (4-1.3) 

and repeating it further it can be shown that in general, 

the value of the process at time (t+h) is given by the 

predictor %, (+,h3a) where a 

S(t, hya) =a 3 (1-a)™ x(t-n) (ueLe4) 
n=o 

a x(t) + (l~a) & (+4, h3a) = (41.5) 

u
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for |al <1. 

That is to say the estimated value for the period 

(t+1) is equal to the estimated value for the period (t) 

plus the portion of the error between the immediately 

previous value and the immediately previous estimate. 

The main problem here is that of choosing an 

appropriate value for the portion of error ag which is 

also known as "smoothing constant". However, one can start 

with some arbitrary value, say a4 = 0.4 and observe the 

central tendency. ag should be increased to follow the 

central tendency more closely and decreased to suppress 

more of the random variations. It is found that for slowly 

increasing or decreasing trends, a value of aa equal to 

O.1 or 0.2 gives a useful prediction and for a sharply in= 

creasing or decreasing trend, a much higher value, say 

a = 0.8 or 0.9 should be chosen. 

Though the problem of choosing a smoothing constant 

is great, the e.w.m.a. has a tremendous advantage over many 

other methods for the obvious reason of being extremely 

easy to compute. Also, the method is extremely valuable 

when large number of predictions are required. The pre— 

dictor is adaptive to any change in mean, but a disadvantage 

is that these predictors are not optimal for stationary time 

seriese
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i) Allowance for trend:- 

Trend is a rate of change. For increasing or de- 

creasing values a second variable ee is introduced, 

denoting the estimated trend at the period t. So the 

value for the period (t+1), predicted at the end of time 

t, will now be 

A 
%,(+t) Te 

In general, the prediction at the end of the period ty 

for the period (t+h), is given by 

&.(t,h) = 2 (t) +h T (4-16) 

Using (4-1.6) we can modify (4-1.2) and (4-1.3) +o 

take account of the trend. Thus 

R(t) = aax(t) + (1-aa ) [2 (+-1) + Oe (4-147) 

Let the error be given by 

e, = x(t) = [£,(t-1) + Ted (4-148) 

Then we can write 

%, (+) = (2%, (+-1) + T1.1+ a4.e, (4-1.9) 

If it is found that the trend itself changes 

gradually, T, can be derived from co by adding to it 

a quantity bie,, where by is a small positive function, 

LeGe a Te Thy + Dae ree) 
ii) Allowance for seasonal variation:— 

If there is a reason to expect seasonal variation,
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allowance must be madd for that. Consider the seasonal 

variations about the current mean to be Si 9S2 5585 00's 

Then the prediction for the period (t+h) made at the end 

of period t will be given by 

%(t,h) = 2.(t) +h Tht BS, (4—1.11) 

also, (4-1.8) will then become 

eC =x, = [ %_(t-1) + i 4 5,] (4-1.12) 

The seasonal pattern is usually expressed as 

proportions of the moving average, in which case (4-1.6) 

becomes 

4 = 
el %(t,h) = [&.(t) + br, ] Gin (4-1.13) 

where CG. dénote the proportional seasonal constants and 

(4-1.8) takes the form 

ey, = x(t) = [%,(+-1) + ric, (4-114) 

4.2 Box and Jenkins method: 

While investigating the adaptive optimisation 

problem, Box and Jenkins were led to the problems of adaptive 

control which in turn, lead to the problems of prediction 

and smoothing of a time series. (In their paper (Ref. 8 ) 

they have suggested another variation on Holtts method. 

The formula suggested is
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Aa 

Z =Z + vesAe + voe + as 
P+t Pp p Pp Pp 

which can be interpteted in our notations as 

t 

%, (+) = x, (t-1) + Coa Coyne) + Coe, + Ca » (4-2.1) 

p=o 
where as before 

e, = x(t) - x, (t-1) 

For the discrete processes the terms Ga (ep-e, _) sCoe, 

t 

and e2 ¥ . correspond respectively to first difference, 

p=o 

proportional and cumulative terms. The control is obtained 

through these three, in which case they are referred to 

difference control, proportional control and cumulative 

control. 

From (4—2,1) it can be seen tat we constantly need 

to take into account the difference between the two most 

recent errors (e,-e,_ Ds the latest error in prediction Crs 

t 

and the cumulative sun ) eo of the previous errors in 

p=o 

prediction. However, it can be observed that when Ges = 0, 

Co = a and CG, = by, the predictions obtained by the Box 

and Jenkins' method are identical with those obtained by 

Holt's method.
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Assuming x(t) and T, to be the best unbiased 

estimates of x(t) and rT, the following relationship 

follows = 

t . 
x, (4,1) = x, (+t) + Ca y e,*2 ce ~ | Co7=LC4 Cua he (42.2) 

p=o 

and for h steps ahead 

t 
- x a (Go? —1Ga Gn. x, (t,h) = x,[(t-1) ,h]+ Ca os e + r Co “40a Cua oe, (42,3) 

p=o 

Generally the term 41Co it —CaCaa } is negligible, 

The following predictors are said to be optimal. 

i) For one step ahead 

t 
Aa 

i 

x(t) = x (tl) + Gna (e ge.) + Goe, + Cx : e, 
° p= 

ii) For two steps ahead 

t 
a a 
x, (t,1) = x, (t) + Ca _ zi = Ca2e, 

Pp=o 

iii) and for h> 2 
t 

a a eae 
x, (+,b) = x,(t-1,h) + Ca 8 

P=o
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403 Double smoothing :;= 

R.G.Brown suggested double smoothing for the linear 

growth models. Double smoothing is achieved through a 

parameter B which is thought of as the rate at which an 

observation loses its importance every period. In this case = 

X(t) = F(t-1) +7, + (1487) @, (4-341) 
and T. = 7, , + (148)? e, (4=3 2) 

This is a particular case of Holtts method. 

All these methods are quite easy for computation and 

are extensively used in industry and economics. It can be 

shown, that the predictors obtained by e.w.m.a,. are the same 

aS would be obtained by Wiener theory for a process with 

rational spectral density - 

g(z) = 3 — 

where 24 is a polynomial ratio and that for P(z) = l-az and 

2 

  

Q(z) = 1-82, the Wiener predictor obeys the relation 

. h Tater) = (a-p)ahe(t) + 6 % (+,n1) 
which is similar to (4-1.5). 

4e4 Prediction of a process by its characteristic modes:- 

Farmer suggested a method for prediction of a process
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by its characteristic modes. Characteristic modes arise 

from the physical nature of the sourcd of a particular 

process and generally for stochastic processes, sample 

func tions can be expressed in terms of a small number of 

such characteristic modes. Wiener predictor is not found 

appropriate because, the calculation of autocorrelation 

function involves a large number of sample functions and 

more so for the reason that it is modes that characterise 

the process rather than the correlation func tion. 

Let x(t)» m= 1,2, ..., M, be the M sample function 

of a stochastic process. The first mode can be specified 

by seeking a function %&(t), a scaling factor ae and a 

set of codfficients a |, in such a manner that Aaa Ze (t) 

approximates to x(t), in a least square sense, over the 

interval (0,T). Similarly seeking functions, scaling factors 

and the set of coefficients for second, third and so on modes, 

we can write 

4 a id 
x(t) = Aa®a,, 2a (+) + e®a,_ Z(t) + Asa z(t) + eco (44.1) 

where R 

A,2,(t) = ‘ R(t,7)Z, (t) dr (4m.62) 
° 

and
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a #42 | z,(t)x,(t) at (4nt63) 
Oo 

R(t,7) is a correlation function ice. 

M 
L R(t,r) = 2 ¥ x, (+t), (r) Culbat) 

m=. 

It has been established that the autocorrelation 

R(r,T"), can be expanded in terms of the characteristic modes 

of a process, as under 

R(r,7*) =) Aa (7) 2, (7 *) (nls5) 
k=1 

A. > 0 and that if the process is expanded to k terms as a 

combination of its characteristic modes, then the time inte- 

grated square error is given by 

T K : 
ET -/ (R(r,r')art = de (ish 06) 

: a 

For achieving a specified accuracy, the number of terms 

K can be derived by using (4-4.6). 

If we know in advance, the values of a sample function 

x(t) of a non-stationary process in the interval (0, To), then 

the prediction problem becomes one of estimating values of x(t) 

in the interval (To,T). 

Lf Gy. is a set of coefficients, then to the specified
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accuracy, the sample function x(t) can be expressed in the 

form K 

x(t) = e C,2, (+t) 3 Cx t< f (4mly-e7) 

+ 

As this is valid over the whole interval (0,T) it 

must be valid over (To,T) which is included in (0,T). This 

method automatically treats the sanple function x(t) as a 

combination of its characteristic modes, and hence the pre~ 

diction problem is reduced to one of determining the constants 

Che 

It is assumed that the values of x(t) are known over 

the interval (0,To). One can therefore choose the coefficients 

Gi such that (4-127) is the best mean square approximation to 

x(t) over (0,To). 

Thus the expansion error 

K 

e(t) = x(t) -) C4, (t) 

k= 

gives the integrated square error 

To K 2 

E = i x t) = s 0,24,(¢) | dt (4-1..8) 

k= 

Also, E is minimum when
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— = 0 > Es Ly, eee K 

k 

This gives 

K To 
To 

i a | Z,(r)4,, (7) ar = } x(r)Z, (7) ar; k = 1Ly2ye0ek (ip).9) 

ktm . . 

This is a set of simultaneous equations and determines C, 

uniquely, x(t) can now be predicted by applying (4=4..7) 

over the time interval (To,T). 

Winter's Method: 

A seasonal pattern around a trend movement is a 

common feature in many economic time series. One can assume 

an additive seasonal pattern and a linear trend for this 

purpose (as in Sec.4-1), but Winter has pointed out that the 

multiplicative seasonal pattern and an exponential rather than 

a linear trend will be more realistic. By taking logarithms, 

however, the exponential trend can be transformed into a linear 

one and simultaneously the multiplicative seasonal pattern into 

a linear one, 

Consider again the relation = 

x,(+) = A x(t) + (1-A) %,(t-1) 

Let the periodicity of the seasonal effect be L. If the period
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is a month, L would be 12 months. Winter suggests the 

predictor 

x(t) =A 20). (aa) & (2) 5.054 <1 (4-5.1) 
2 to, 

where 

3 Se ae cee Pe ee a . x_(t) ‘gn, e 

which represents the current estimate of the seasonal factor 

for the period t. The new estimate, fay is again a weighted 

sum of the current estimate, au » and the previous estimate 
x {%) Bh 

f.3 The expected value for the following period is given by 

x.(t,l) = £(t) f ( ) Per ek? te he5 05 

More generally, for T periods ahead 

z(t) le x, (+) 2 te SS (etd) 

Incorporating trend effect:- 
  

Here (4-5.1) becomes = 

t A 7 
x, (+) = an. a + (1-A) [ £,(+2) 1 Rea [3 (4m5.5) 

where Ri is the most recent estimate of the additive trend. 

factor, The trend estimate can be revised by the relation
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R= 6 | £,(+) ws x, (t-L) | + ao ex 4 = (45.6) tm. 

and the predictor becomes 

a 

x, (+,T) = [ 2,4) +7 R, | Pe tam } T= 1,2, eoet  (4-5.7) 

We shall consider Winter's model, in detail, in the next 

chapter. 

Concl usion:~ 

The exponentially weighted prediction methods are 

easier from the computational point of view as compared to 

the Wiener's theory, where, a calculation of the autocorrelation 

function involves a large number of sample functions. But, 

although the above exponentially weighted prediction methods 

explain precisely how the predictors are formulated, they are 

far from explicit with respect to the justification of the 

method. For this reason, the optimal values of the parameters 

have to be determined empirically. The complete model is dis= 

cussed in the next chapter.



CHAPTER 5 

APPLIC ATIONS



156 

In this chapter, we shall discuss the preceding 

theories in the light of a specific problem. The problem con 

sidered is one of electricity demand prediction in an areas up to 

several hours ahead. The load predictions are necessary for the 

purposes of ordering generating plant, loading of plant and check~ 

ing the security of power flow in advance . As we shall see in the 

next chapter, if Automatic Control is to be applied to a power flow 

system then load prediction by means of a digital computer becomes 

a necessity. 

5el WIENER'S THEORY: 

One is always tenpted to apply Winer's theory to a 

prediction problem as far as possible. But the two kinds of 

problem = (a) obtaining data; Stationariness, spectra, 

corrdation between the useful part of the inputs (message) 

and that due to noise etc., which necessitates a minute study 

both in theory and by experiment of the environment of the 

system and (b) the realisation of the synthetic transfer 

function obtained by calculation, which is not necessarily 

possible (and even if it is, it may not be without approximations) - 

make its application difficult in actual situations. However, 

if one decides to apply it one can surely expect some useful 

information. 

Also, in the generalised form it is seen [equation 

(3=2.6] that the autocorrelation function Cop(t-r,ter'), specifies
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the response function h(t,r) of the Wiener filter. Clearly, 

the application of the generalised predictor depends on the 

possibility of constructing a representative and realistic 

autocorrelation function, which should in practice, be 

physically realisable with a finite number of sample functions, 

Then, if the autocorrelation function is formed from the M 

sample functions f ft), M = 12s eg 

M 

Cop(terster!) = = ys £ (tr) £,(tr'). 
m=2 

The sample functions £ Ct) have to be determined by performing 

M sets of measurement under identical conditions. However, 

in actual practice, due to certain uncontrollable variations 

in one or more parameters of the process, the number of sample 

functions which one could measure under identical conditions 

is severely limited. For example, if f(t) were to represent 

the electricity demand curves, the number of sample functions 

to be used in calculating the autocorrelation function will be 

limited by the seasonal trend of the load and by the economic 

growth in demand. 

Moreover, in the problem of electricity demand 

prediction, the sample functions can be expressed in terms 

of a small number of characteristic modes [see Sec (4-4) and 

also the next section], in which case, the calculation of a
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autocorrelation function is neither necessarynor desirable 

and hence the Wiener predictor is not found useful. 

Prediction by the Characteristic modes: 

The method of prediction by characteristic modes 

is quite useful for the problem of electricity demand 

prediction. Following the method outlined in Sec.(4-4), 

the calculation of weighting coefficients etc. can be 

performed on a computer, For its application to the problem 

of electricity demand prediction, we divide each load curve 

into part-day periods of several hourst duration. The 

prediction problem is one of estimating the load values 

over the interval (To,T), from the values over the interval 

(0,To). The load during each of these periods depends on 

many factors of which the meteorological ones have the 

greatest influence. So the load xan for the mth period 

and at the nth instant is expressible in the form 

, ee (r + V fo (L. + 8 fs w+ ese (5~2.1) 

where f4 (t) 4 <6 (Ls fs (W) are respectively the functions 

of temperature Ty Light intensity Li Wind velocity Wie The 

quantity a represents the base load and the factors 

Bos ve 6 allow for the varying importance of weather 

parameters with the time of day. As it becomes obvious
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from (5—2.1) each load vector is linearly dependent on 

the vectors 4,6,V55, ee. 3 however, if the load is expanded 

to K terms as a combination of its characteristic modes, 

the quantity Xan takes the form — 

K 

Zan =) Co Ain 

k= 

The mode vectors 4. minimise the expansion error 

and if the mode vectars are replaced by K linearly indepen- 

dent combinations then the error is unchanged. Here the 

modes describe the basic trends of the load under average 

weather conditions for the period of the records whereas the 

wei ghting coefficients C depend on the meteorological 

parameters relevant to the mth period. 

TESTING AN ADAPTIVE PREDICTION (OR EXPONENTIALLY WEIGHTED 
PREDICTION) MODEL: 

Two weeks* hourly electricity demand data, for 

this purpose, have been obtained. The data consists of 20 

readings for 10 days, (Monday to Friday - 5 days a week). 

The total data is divided into two parts of 120 readings egeh., 

the first of which is used to develop initial values and the 

later part is used to try out the method by pretending that 

the future is unknown, 

We can use the following symbols:
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Predicted demand for the period t + T, after 

incorporating the trend and seasonal effects. 

the estimate of denand for the period t + als 

made in period t. 

actual denand for the period +t 

smoothing factor; 0 < W, a 

seasonal factor ; 0< Ws €1 

trend factor s; O.« We aeik 

additive trend adjustment 

multiplicative seasonal factor 

the cyclic period 

the prediction error for the period t + T. 

For the input data sheet with following data see 

Initial estimate of demand, 

Initial estimate of Ava in t =, 

The maximum value of t in the pretest data (=120). 

The cyclic period (=2). 

Total number of periods for which the data is available 

(=2)0) . 

Actual demand in each of s periods
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Formulae used: 

D,. 
D — 

= i, at +2 GeW) (D7 + Ay) (53.1) 

tL 

af D . = My et (1-W,)S,_, (5—3-2) 

D,. 

= wi@,-5,,)+ (2-W,) Ae (5=343) 

et (ete Ae So (5~3 elt) 

a 

ei Dee a Down (5-325) 

t 
te 2 

roa “4,0 (5-326) 

to 

Steps in Computations: 

1. 

2. 

Je 

Lee 

De 

66 

Te 

8. 

Make use of equation (5—3.1) to find Dy 

Use (5-3-2) to find 8, and stare as 8, | 

Use (5-3.3) to find A, and store as Avs 

When t 2 H, use (5-3.4) to find predicted values 

Use (5-3.5) to find a 

Square and acummulate error values 

Print Standard Deviation along side the combination of 

values of W WoW 

Repeat steps 1 to 7 for the sequence of values of WoW, oW.-
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9. Select the optimum set of WoW, 9M, by visual inspection 

i.e. the set for which the S8.D. is minimum (see 

Appendix C) 

10. Repeat 1 to 7 using optimal set and printing the 

D all Dy ip values. 

See Appendix B and Appendix D for the computer programme 

and results respectively. 

Note on initial values: 

If DoD greeesD. 55 (k = 1,2, »sex524), denote the 

demand during the lst, 2nd, and so on days, the total demand 

for days is - (For data see appendix A); 

24 24 

e Ds = 5429.7 ae 5935.5 

a 4 
24 24 ae 
2 Dis = 5564.6 - Ds = 56571 

> £ 

24 

i Ds = 5640.7 

a 

giving 

Th = 226.2,. De = 24703, De = 231.8, 

Te-= 235.7). Tk =°23520, 

To know the trend we calculate —



ELECTRICITY DEMAND “TiMeE SERIES 

USED FoR MoDEL- BUILDING . ®: 

TABLE 5-1: § = + 
D Hour Day Adjusted 

t Da De Ds Dy Ds Total Average Averages 

1 .@446 0.60 0.64 0.60 6.65 2,05 0.59 0.60 
2 OS Geb? 9559. 0.55 O66 2.75 0.55 0.56 
3 G41. O53. O06  Oi5l ... 0.87 eae 0.51 0.52 
he  Oh2 Oeb6: 4 0059 0455 O60 2,72 05h, 0.55 
5 C549 MSG OS OF GpGe 2,75 0.55 0.56 
A Cay OG. O62, Oe ee ae 0.58 0.59 
We @2,/0. 0.75 O27/. 0.:/5 0579: 3e76 0% /5 0.76 
Be” Eaey -dee2 ips “eee 4x6 “ee 1.05 1606 
oS ae ek ee oe 1.29 1d 

a0 ae ae. GR ee ge eek o 1.30 1.32 
el AEG ape oe ee a Gee 1.25 1.27 
te deed Le. ge ae) Bh 699 1.25 1.27 
ao ete es ES a er 6 ae 1.20 1.21 
es | te Fed I I i ' segb 1.19 1.20 
ae hate al ge me, ae a as 1.18 1.19 
Ae See 1S. Le. Ie ae eae 1.15 lank 

1. SO ey ae ce gh 12h, 1.25 
PO Te 7 lee? ete toe ban 1.28 
i Lae ae ay ie ee ce 1.18 1.19 
00 ee a? Shas Re ea Ge 5 1.15 lelé 
oS ee Pg a - oe Tene 1.12 
Pe Deh C08 2 TMB” 135° Seater 518 1.09 Lalo 
25. eS. 0,999.99. 1465 9.85 4.49 0.98 0.99 
ee Oe Ono. 07, OBL e735 scae 0.77 0.78 

TOTAL 25.90 23.49 23.89 23.81 23,89 118.98 25.72 24.00
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oe a Des - 2 Ds 2 

Ax Qh 

This being small we can neglect the trend factor and thus 

calculate the S factor from the relation 

This factor is calculated for each observation over a period 

of 5 days, The rowwise and the columnwise totals are taken 

and the average § ratio is then calculated, Table 5-1 gives 

the § values. 

In case, the trend factor is Significant, the S 

factor is given by 

  

3 (+ 2s vies pO)» 

D4’. ACt12) 

ERRORS IN PREDICTION: 

To improve the reliability of a prediction model , 

one will need some criteria to check the results and decide 

on any changes in the parameter values resulting from the 

changing circumstances. This can be achieved through 

appropriate control limits for the errors in prediction. We 

have 
a 

M450 ter ~ Oe 

From the Central Limit Theorem, one expects both the predictions
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and the errors in prediction to be normally distributed. 

It is convenient to employ the mean absolute deviation 

Ne (which is proportional to the Standard Deviation of the 

error distribution o,)» rather than work with o, which 

involves computations of squares of roots. Denoting the 

probability density function by f(D), we have 

E =| (D-5)? £(p) ap (Sate) 

n | [D= D| f(D) ap (5-4..2) 
00 

and for a normal distribution ~ 

7 = doy 5 = 0.79790 (5-4..3) 

Thus for calculations, one can substitute 

So a 
0.7979 

The current estimate of 7 is obtained by single 

smoothing the error series 

nm, = ale,| + (lea) n,) (Sai 4i,) 
Again, an a priori estimate of no vn necessary to begin the 

smoothing operation, 

The confidence limits then take the farm
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Cob. = 3, rt K 74 (5—1..5) 
* 0.7979 

with K setting the level of confidence. By referring to a 

Normal Distribution table, one can find out the probability 

of the observation D 2 falling outside the limits. t+T 

In case, the mean prediction error is ZETO, 

the sum of the prediction errors at any time can be expected 

to be close to zero. 

+ E (5-126) 

R.G.Brown has shown that the variance of the sum of the 

prediction errors = is given by 

o? 

qe) = D (5—lp. 7) 

1 = (1-«)?” 

  

where n stands far the degree of smoothing (n =1 for a 

constant model, 2 for a linear model etc.). By considering 

the mean absolute deviation of the error series 

os a _a(2-a) (5-.48) 
D i 

From (5—.4.7) and (5-08) 

i = 2, |me-«) 
t 2 J1- (1a)?” 

and then the control limits for the error sum become
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CL. = E+ KM fel2 = a) (5-4. 9) 
2 ql -(1-a)??   

K being the normal deviate. 

DISCUSSION: 

Here we have discussed the models for load 

prediction in the Electricity Supply Industry and also sean 

a method to establish the control limits for the predic tion 

errors. The exponentially weighted prediction model as 

developed by Winter mainly for sales forecasting has been 

tested against the data for the electricity demand in a 

particular area. In this model the set of parameter values 

for which the §.D. is minimum gives the optimum prediction. 

For comparison purposes, the results obtained with a slight 

Ul change in parameter values (viz. W, = 0.90, W, = 0.00, W, = 0.90 

instead of W, = 0.85, W, = 0.00, W, = 0.95 as in optimum case), 

have been listed in Appendix E, 

To make further comparison of the results possible, 

one can use the predictor given by equation (4—1.3) LCs 

%(t) Ul x (t-1) + a[x(t) - % (+21)] 
S 

& 
X,(t-1) + ase, 

The 24 hourly moving averages for the purpose are calculated 

by using data for the first five days (see Appendix F) and the 

seasonal variations in the last column are then adjusted such
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that their sum is zero. To find the predicted values, the 

following table (with actual results appearing in Appendix 

G) is used. 

  

  

PREDICTED | ACTUAL Lowe x(t) = SEASONAL 
2 tl) sa40, ADJUSTMENTS | Pz 

(1) (2) (3) (4) (5) (6) 

235 156 

156 27 -39 200 -79 111 
111 108 -3 a7 -89 99 

Mile oe -98 :                 

We begin with the revised value of %(t) for the 

last value in column (5) Appendix F viz. 235. First the pre- 

diction one period ahead Pa is obtained by adding to this 

figure of 235 the seasonal adjustment for the next periods i.e. 

235 - 79 = 156 and so on. The Pa values are copied in column 

(1). When the actual demand for that period is known (117), this 

is inserted in column (2) and the differenca between the actual 

and predicted values (117 - 156 = -39), is inserted in column 

(3); The new value is obtained by adding to the previous value 

of X,(t-1), 0.9 times the difference eps (ise. ¥,(t) = 235+0.9(-39)=200 
to the nearest whole number. Pa values are obtained by adding
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the appropriate seasonal adjustments to the new value 
a 

of x, (+) and the process is repeated for each reading,



CHAPTER 6 

AUTOMATIC _ CONTROL.
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A great deal of theoretical and practical work in 

the field of Automatic Control systems dates back to the second 

world war and the industrial use of such systems has increased 

ever since. This is because of the complexity involved in the 

modern Industrial processes which demand faster and more accurate 

control systems. The applications of automatic control systems 

in Procéss industries, manufacturing, the steering and operation 

of ships and aircraft, and in modern weapons systems have in 

creased tremendously and one could see that the future possibilities 

of such applications greatly depend on the developments in the 

field of digital wmmputers and also the new science of Cybernetics 

(see Sec.1-2). We shall summarise below, some of the important 

features of Digital Computers. 

DIGITAL COMPUTERS:- The general idea of automatic 

control through digital computers, also dates from soon after 

the war, but apart from some small machines, the first really 

large digital computer came into operation in 1951-52. In the 

early stages, these were used only for the scientific and engineering 

calculations, but now, one can see that the majority of the machines 

are used for business applications and it is most likely that a 

substantial number of digital computers will soon find their use 

in control applications. The main purpose of this chapter is to 

explore some of the possibilities of such applications, with the 

Electricity Supply Industry primarily in mind. 

A digital computer consists of a large number of
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vacuum tubes or transistors and though the machine is very 

simple conceptually, the physical realisation involves an 

exceedingly complex network, The programme of elementary 

operations is performed by the control unit which is the central 

organ of the machine. From the users point of view, the complexity 

lies in the programme rather than in the machine and for a 

particular application the writing of a programme can become a 

long and costly undertaking. 

Ordinarily, a digital computer prints its results 

or punches them on cards or paper tapes, but with special output 

devices, it could do other things such as plotting of curves 

(viz. Autocorrelation curves etc.) or giving an alarm to the 

programmer indicating that a certain anticipated situation has 

occurred. The control operations such as switching electric motors 

on or off, adjusting hydraulic valves etc., can also be performed 

with special output arrangements and similarly, information directly 

from the plant can be received with special input connections, 

Let us now turh to the subject matter of this chapter, 

For convenience, we shall divide the following discussion into two 

sections. The first one covering briefly, some concepts, criteria 

and mathematical techniques which form the basis of the modern 

Automatic control theory and the second one dealing with a specific 

problem of automatic control in the Electricity Supply Industry, 

whére we shall discuss a closed loop general systen which could, 

in future, become capable of controlling the power flow automatically.
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is at sa, it is always possible to find a small circular 

region around sa such that no other singularities lie 

within this region. Any rational algebraic function can be 

written as a ratio of the polynomials 

(s-a)(s-b) 4. (s-m) 
(s-agXs—b) ...  (s-mm) ° 

All singularities of the rational algebraic functions are poles. 

In the above form, the poles ard at a1ybi, eee, me. If n of the 

denominator factors are identical, one of the poles is of order 

Ne 

SYSTEMS WITH FEEDBACK AND STABILITY CRITERIA:-— 

In a Feedback system the output is fed back into the 

input part of the system in such a way that it will affect its 

own value. Thus a feedback path, as well as a forward path 

exists within the system, resulting in what is referred to as 

a closed-loop systan. 

Feedback is an essential element in the operation of 

an automatic control system and the performunce of a feedback 

control system is determined by its accuracy and stability. An 

unstable feedback cannot perform any useful control function, 

for which, it is very important to be able to determine whether 

the system with feedback is stable. One can discuss stability 

in terms of the transfer functions represented by blocks. 

In the following control system with single feedback loop,
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Fig. 6-1 Feedback system. 

where I(s), O0(s), F(s) and E(s) represent the Laplace 

transforms of the input function i(t), the output function 

o(t), the feedback function f(t), and the error signal 

e(t) respectively, it can be shown that - 

O(s s G(s 
$53 ~ 14+6(s)H(s) (6-3.1) 

This is the ratio of the transferred output to tle trans- 

ferred input and isc alled the system transfer function. 

Generally G(s) and H(s) are the function of rational poly- 

nomials in s and in that case TOI can be written as 
ERS 

Eye? OCS ae m 1 
G(s) = oa = a? gy + ecco + A Stao (63.2) 

soca arenes 

n n= 
bs + bi § tgs + ba s+bo 

If the unit step function U(t) is applied to the
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system we have, I(s) =< [U(t)] =< and then 

L a coe, go + + 2% S+a0 Ats 
O(s) a G(s) = “R a rt = He, Saye ie 

s(b_s +b, 8 + eee + bastbo) 

The last expression is reducible to the form 

O(s) -; [2+ ey a (63.3) 8 8-8 Ses 
- S=3s 

' n 

where the constants Ko ,Ka,Ke, coe sk are given by the 

Heaviside's formula 

A(s m= P| (ma) Fp |e ms, (6-344) 
s=5, 

Also by using Heaviside's expansion formula - 

n 8, t ip K k a |A(s - pt fF - ne | 2 A(s))e 
cS} -2+ th) BS -S tea 4 =) (6-345) 

k ~/ 8=3, 

- 3 

One can show that the output or response function is given by 

st 
o(t) = £* [o(s)] = [KotKz0® Ya 0 ooo + Ke “ foe) (6-3 .6) o

l
H
 

n 

The first step in this equation represents the steady 

state response, whereas the exponential terms are the transiént 

TeSpONSeS, S1,S2,58, eee, S, represent roots of the polynomial 

in the denominator of the overall transfer function Go(s). 

Corresponding to the roots 3 = + L @)-» the output function is
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K, (o+4 @,)% K. “| i ot 
== @ = — ie e 
b b 
n n | 

and one can see that for o> O, the amplitude of this tem 

increases with time and for o, < 0 the amplitude decreases 

with time, Therefore, positive o|. causes an unstable situation 
s 

and can not be tolerated, Also,o). = 0 will cause sustained 

oscillations of constant amplitude resulting in instability. 

The roots of the polynomial equation are called zeros 

of the polynomial. s1,S2,e0e, Spy eoey5,y are Zeros of the 

denominator of Go(s) or zeros of the polynomial 1 + G(s)H(s). 

Thus the necessary and sufficient condition for the stability 

of a feedback system is that all the zeros of 1 + G(s)H(s) hava 

negativd real parts. 

Alternatively, 51 ,S2ySsy cee, s also represent the 

poles of Go(s) in which case, the necessary and sufficient 

condition for the stability of a feedback system is that the 

poles of its overall transfer function have negative real parts. 

Very often, the solving of the equation 1 + G(s)H(s) = 0, 

for all its roots, involves a lot of complications, However, 

Routh-Hurwitz and Nyquist criteria have been designed to d etermine 

stability without actually finding the roots. We shall describe 

them briefly. 

(i) Routh-Hurwitz criterion:-
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This is based on the characteristic equation of the 

type = 

n n=1 n=2 
s +A s + ecco + S+. =O AUS + Re a > Aa s+Ao 

and it considers the determinant 

A A 0 0 0 0 0 0 o | 
n=1. n 

Anes A. Aa A 0 0 0 0 0 

Ans Am Pacg Ang Aa A, 0 0 0 

A A A A A A A A 
n=—7 n=—6 nNn=5 n—4 n=—3 n=2 n= n 

ane - =~ - o~ =e ann a Ao 

formed by the coefficients of the characteristic equation. 

The Routh-Hurwitz criterion states that there will be 

no positive real parts to the roots, if this determinant 

is greater than zero and all the determinants formed by 

successive elimination of the right hand column and the 

bottom row are also greater than zero. 

The chief merit of this criterion is its simplicity, but 

it conveys information only on stability. It does not 

describe the transient behaviour of the system and hence 

is of little use for system synthesis. 

Nyquist Criterion: 

The Nyquist stability criterion is more difficult
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to apply than the Routh-Hurwitz critérion but its 

following features make it preferable for the stability 

analysis of a feedback control system: 

(a) 

(A) 

(8) 

(Cc) 

It provides the same amount of information as does 

the Routh Hurwitz criterion and in addition gives 

the indication of the degree of stability of a stable 

system. 

It suggdsts ways for improving the system stability, 

if necessary. 

The Nyquist locus gives information concerning the 

frequency response of the system. 

The assumptions underlying the Nyquist's theory are: 

that the system must be govdrned by a system of linear 

differential equations with constant coefficiénts, 

that the limit of G(s)H(s) must approach a constant 

or zero as 8 >, i.e. G(s)H(s) must be a proper fraction 

which means that the power of s in the denominator of 

G(s)H(s) must be equal to or greater than the power of 

s in the numerator. (This is always true in practical 

cases), 

that there are no poles of G(s)H(s) in the positive 

real half of the complex plane.
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We have seen that, for a stable system, no roots 

of the characteristic equation should have positive real 

parts, i.e. there should not be any zeros of 1 + G(s)H(s) 

in the positive real half of the complex plane. 

Now the poles of 1+G(s)H(s) are the same as those 

of G(s)H(s) and the zeros of 14+G(s)H(s) ard the roots of the 

characteristic equation, whose location is our main concern 

in the stability study. Considering assumptions (B) and (C), 

it can be shown that, as w is varied from - to +, the 

number of times that the vector 1+G(iw)H(iw) goes round the 

origin in the clockwise direction is equal to the number of 

zeros of 1+G(s)H(s) in the positive real half of the complex 

plane. Also vector of 1+G(iw)H(iw) going round the origin is 

the same as vector G(iw)H(iw) going round the point (-1,40). 

The Nyquist Criterion states that: A feedback system 

is stable only if the frdquency response locus of the system 

transfer function does not enclose the point (=1+i0). As the 

locus is traversed in the direction of increasing w, i.e. 

from 0 to o, =o to 0 and along the contour connecting the +0 and 

-O extremities, the -1+i0 point must always be on the left for 

a stable system. 

The GH=-plot and the Nyquist diagram supply information 

on more than the state of stability of a system. The Nyquist 

diagram in the complex plane is a good indication of the
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transient response of a system, and suggests how system 

design may be improved. 

In case of instability, the system will have to 

be changed in such a way that the modified GH-plot does 

not encircle the point (-1,i0) as @ changes from +0 to 

zero. In other words, the point (-1,i0) must lie to the 

right of the curve traced as w varies 
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Fig. 6-2 Nyquist diagram. 

from +o to zero. This can be achieved by reducing the steady 

state gain of the systen, which has the effect of reducing 

the magnitude of vector G(iw)H(iw), while keeping it at the 

same phase angle. The effect of this on the Nyquist diagram 

is as shown in the fig.(6-2). 

6.4 RANDOM FUNCTIONS IN AUTOMATIC CONTROL: 

Wiener's theory of optimum filters and Prediction
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theory, along with Shannon's information theory, have de~ 

monstrated the use of random functions in system calculations. 

The practical use of the theory of random functions is in- 

creasing and will increase much faster as more and more engineers 

and scientists become familiar with random functions and the 

calculation of probabilities. One could relate the main reason 

for the increase of activity in this field to the immense 

development in the field of automatic computers, which has 

made it possible to calculate correlations and spectra or to 

solve numerically the resulting integral equations, 

Some of the properties and uses of random functions 

have been demonstrated in the earlier chapters. 

METHODS OF OPTIMISATION:— 

In recent years there has been a remarkable growth 

of interest in problems of systems optimisation and of optimal 

control, As a result of this interest, have sprung up 

various methods useful for different situations. We shall 

summerise some of then. 

Phillips method:— 

In servo-systems one requires that the input x(t) and 

the output y(t) of the system should remain as close as possible 

i.e. the error 

e(t) = x(t) - y(t)
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should be minimal, However, it becomes difficult when the 

minimization involves the difference between two random 

functions of time. Most often e(t), in this case, is 

described by its mean square value = 

Ty 
i ie Ps re ee : | e*(t) dt (6~5.1) 

-T, 

and the best servo system will be one for which & is minimum. 

This is the mean square criterion, 

Now if H(s) is the transfer function of error to 

input of a system whose probable input is a stationary 

random variable of frequency spectrum ¢(w), then 

F = | oe) [Hs]? aw (6-5.2) 
oD 

Also, if the linear servo is subject to two non-correlated 

inputs (a) the command s with frequency spectrum $. and (b) 

the disturbance d with spectrum bas then it can be shown that 

o =| teste? + b| |? law (6-5.3) 
i 

This calculation determines the servo which minimises 

os, with greatest weight to the most probable inputs or to those 

frequencies for which $(¥) is lerge.
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However, in actual practice, one finds the mean 

square error as a function of the parameters @,8, «se. 9 

which define the possible regulation of the servo systen 

es f(a,f, os. ») 

in which case, one has to solve the equations obtained by 

partial differentiation of @& 

sie
 

= QO, = QO, eow 9 etc. 

with the increase of degree at the equations, the job of 

solving these equations becomes tedius and the use of 

computers becomes essential. 

Wiener's method:— 

This has already been dealt to some extent earlier, 

Here the system is defined by its impulse response h(t) and 

the problem becomes that of seeking the form of h(t) which 

will minimise the quantity - 

Ty 

Fag gf | lk eR ae (654) 
ts 

where g(t) and f(t) are the ideal and effective outputs re- 

spectively. 

Minimisation of e* involves the calculus of variations 

which leads to the Wiener—Hopf equation =
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Cae ay h(r') Copo(r-r')dr* = 0 (6=5.5) 

for all the positive values of Te 

Linear Programming :— 

The Linear programming techniques and their use 

in optimisation is much publicised since the war. The theory 

depends upon the fact that in staat practice, variables 

do not take an unrestricted range of values, but are sub ject 

to a variety of practical constraints. In linear programming 

the focus is on optimisation under inequality constraints. 

Mainly, the Simplex and the Transportation techniques are used 

in solving the problems. The power of Linear Programming, is 

greatly increased by the duality relations discovered and 

published by Kuhn and Tucker which provide direct contact 

betwedn Linear programming and other important theories 

such as Games and Statistical decisions, 

Dynamic Programming :~ 

Dynamic Programming is a new method of optimisation 

and is due to R.Bellman of Rand Corporation. It is maily for 

the purpose of treating multistage decision processes and 

those other processes which could be interpreted in this 

fashion. 

(i) Multistage Processes:—



LO. 

6.5 contds 

(i) 

(ii) 

contd. 

Let p be a point in a set of space P and let 

the function T(p) denote a transformation with the 

property that the transformed point pa = T(p) belongs 

to P whenever p does. If a sequence of point is 

generated in the following fashion - 

pa = T(p), pa =T(pa), ooo » Py, = TPy)seee (6-546) 

the set of points so generated is called a multistage 

process and the point 'p' a statéd variable, 

Recurrence Relations. 

Let us now associate a scalar function 

H(p ,PayeeesPyreee)s with the above multistage process 

and consider h to have either of the following forms = 

e(p) + g(ps) + «0. + e(p,) + k(p,) 
N N 

g(psp1) + e(payp2)+ eee 

max s(p,) (6~5.7) 
fs 

To illustrate the method, let us begin with the function 

L(P sPa sPa seeesPy) = 6(p) + e(pr) + o. + e(py)+k(Dy) 

which is associated with a finite multistage process. Since 

the point p,; are determined by means of the recurrence 

relation
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D- = T(p,) ped SDgt A wien 

it follows that h is a function of p and N and hence we 

can write 

h(p,p4y see2Dy) = EP) 

where N = 0,1,2, ... and all p in P. A simple recurrence 

relation can now be derived for this sequence of functions, 

namely, 

fy(P) h(p) + [h(pa)+ hlpa)+ eo. + h(py)+ k(py)] 

h(p) + fy (pa) 

nip) + f.Uip)) , M21 (6-5.8) 

also fo(p) = h(p) + k(p). 

Similarly, for 

h = g(p,pa) + g(paypa) + oe. + 6(Py_, Py ; (6-549) 

writing fy(p) = e(psps) + e(paspa) + oe + elpy, Py) 
we get 

fy(p) = e(pspa) + Lelpaspa)+ 0+. + (Py, sPy)] 

= e(pspa) + fy, (pa) (6-5.10) 

=elp,t(p)] +f, [t@)] 
and finally, 

f(p) = — g(p,) 

tt max [g(p), g(pa), elpe), oe] (6-5.11) 

max [g(p), max e(p,)] 
izl 

max [g(p), f(T(p))]
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(iii) Multistage Decision Processes:- 

Suppose that at each stage we have a choice 

of transformations to employ. Then 

Paes = Tp sIny) (6-5.12) 

where q, is an elanent of a set Q, and T(p,q) is a 

transfomation with the property that T(p,q) belong to P 

whenever p belongs to P and q to Q. 

Now starting in stage p, select q1 such that the 

selection of qa is equivalent to the choice of a trans- 

formation T(p,qi) ise. decision is equated to trans= 

formation. Beginning in the new state p1, select de and 

so on, so that the value of q that is selected at each 

stage depends upon the current state of the system. 

To determine the choice of dis criterion 

function 

Q = Q( Pa yeee sPypreeer Hr yeves dryers) (6-5,13) 

is constructed which is to be maximised. A set of decisions 

Wy, (Py) is called a policy and a set which maximises Q, 

an optimum policy. Suppose, Q is of the fom 

h(p,qt) + h(payqe) + ... + (py ody) + B(Py) (6-54.14) 

we can then write 

fy(P) = Tei [h(p,qi)+h(paqe)+ oe. *2(Pyy say) +8(Dy)] locas 
for N21 and p in P, the recurrence relation for
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ify(e)} can be obtained as under 

tl fy) Max MAX eee maxl n(p,a4 )+h(os.pae)+0++h(py, , 29y)+8(2y)1] 
Gi Gp hy 

maxX h(p,qa)+ max max eee max [h(pa sm )+--.+8(py)] | 
qa. q ds Oy 

Ul max [h(p, at ) + fy, (P21) 
Qi 

max [hip a )+f (T,u))] (65.16) oa, 

for NM > 2, with fa(p) = max h(p,a). 
On 

This reduces the multidimensional maximisation 

problem to a sequence of lower—dimensional problem. 

Principle.of Optimality:- 

An optimal policy has a property that whatever 

the initial decision and the initial state are, the remain-— 

ing ddcisions must constitute an optimal policy with r egard 

to the state resulting from the first decision, 

To illustrate the above ideas, consider the 

folla ing problem in control theory. To improve the per- 

formance of a physical system which is not behaving in a 

desirable fashion, we exert some additional forces - control 

forces. The basic problem of control is to strike a balance
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between the cost of capa and the cost of deviation 

of the system from its ideal performance. } 

Suppose that the physical system is described 

at time t, t = 0,1,2,..., by the scalar quantity Xi9 

and the equation governing this quantity is 

where Vy is the control variable and tat the initial 

state of the system. Here, we want to choose the value 

of Yy, 50 as to keep the system as closely as possible 

to the constant state c. Let k(x,-c) represent the cost 

of the deviation at the t th stage and g(y4) be the 

cost of control. The aim is to minimise the expression 

N 

>, Oxbere) + aly] (6-5.18) 
t=o 

If f(a) denotes the minimum value, for N = 0,1,2 

—-o€ 2<co Then 

fo(a) = min [k(ac) + g(y)] (6-5.19) 
y 

and fy (a) = min [k(a-c) + g(y) + fy (h(a,y))] (65.20) 
y 

For a case where there is no free choice of the 

control variable at each stage, but there is a constraint 

geeey
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of the type ly, < k, the recurrence relation (6-5.20) 

will become 

fy(a) =) min Celene) + ely) + By (aCeny))] (65.22) 

Games Theory:= 

The Games Theory first came to the general notice 

after the publication of "The theory of Games and Economic 

behaviour" by Von Neuman and Morgenstern in 1944. In an 

extensive form, a game is described by a set of players and 

a set of rules which specify (1) the choices of action that 

are men to each player under all possible circumstances and 

(2) Each player's payoff at the end of any "play". Games are 

classified in terms of (a) the number of players (b) the number 

of moves (c) the nature of the payoff and (d) other 

characteristics of the rules. A game is mid to be finite 

or infinite according as the total number of alternatives 

are finite or infinite, 

In the beginning, the attention was focussed on 

the two-person zero sum games, finite or infinite; but now the 

emphasis has shifted to general games where there are still 

many important unsolved problems. More recently, the theory 

of games is being used with success in the problems of automatic
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control. Random disturbances play a major ae in many 

control problems and in problems such as designing an 

automatic pilot, the game will be between the random 

disturbances on one side and the designer on the other. 

ADAPTIVE CONTROL SYSTEMS:— 

An adpative system is designed to modify itself in 

the face of @ new environment, so as to optimise its per— 

formance. In actual practice, one does not have the knowledge 

of the plant or the environmental changes, and under such 

circumstances, one has to call on the controller to compute 

or identify the characteristics of the plant while the system 

is in normal operation. The controller must then make a 

decision concerning the way in which the system should be 

adjusted so as to improve the operation with respect to 

a defined performancé index and then certain signals or parameters 

must undergo modification to accomplish this result. Thus, 

adaptivity involves the functions of (i) identification (ii) 

decision and (iii) modification. 

The general, adaptive control system, as represented 

by blocks is shown in figure below:



Lil. 

6.6 contd. 

  

  

  

  

  

          
  

    

      

  
  

            
  

  

  

Dee eel 

INPUT SIGNAL CONTROLLE SYSTEM OUTPUT >+ CONTROLLER CONTROL D ‘ 
SIGNAL PROCESS 

a 

MODIFICATION 

m~N 

SIGNAL ‘DECISION 
IDENTIFICATION H< IDENTIFIER COMPUTER 

            

  

PERFORMANCE ENVIRONMENTAL 
MEASURE MEASUREMENT 

Fig. 6-3 Basic adaptive system. 

(i) Identification of the characteristics of a system ;=- 

This is closely related to the evaluation of system 

parameters. The usual approach to the problem is to in- 

troduce a chose signal into the input of a system and then 

to observe and measure the output. This can be done in two 

ways — either an off-line test or an on-line test, — the 

latter being more prominent in the process industries 

where the characteristics of large and expensive systems 

are required, In this casdé the problem of parameter 

evaluation is more complex. More often, the system is 

in operation for all the 2 hours and it would be pro- 

hibitively expensive to take it off-line in order to
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carry out experiments. Furthermore, if the experiment 

needs a disturbance signal at the input, this disturbance 

has to be applied together with the normal operating input 

and its amplitude must be small, so that the system is 

not disturbed too far from its optimum operating 

condition. Another reason for the amplitude of the 

disturbance signal to be small is to ensure that the 

characteristics so obtained, describe a systen which could 

be considered to be linear about its operating condition. 

(This is important, because most of the theories of feed= 

back control, stability of systems etc., are only valid 

for linear systems). 

The usual well established methods used for the 

evaluation are 

(a) Sinusoidal testing 

(b) A step response testing 

(c) Impulse response testing 

A more recent approach is concerned with the use of 

a particular type of disturbance signal or "forcing 

function" for the system evaluation —- the random signal, 

We shall describe this briefly. 

A random signal x(t), from a noise generator, is 

applied as excitation to the input of the system and the
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Cross-correlation between the signal and the resulting 

output y(t) is obtained by analogue computing methods. 

With a white noise input, the Cross-correlation function 

so computed is an amplitude/Time curve which, it can be 

shown, is the impulse response of the system multiplied 

by a constant. This curve, therefore, characterises the 

system. 

For understanding the theoretical basis, it is 

important to remember the following relationships: 

(a) the convolution integral which relates the output 

signal y(t) with the input signal x(t) 

oo 

wos | Md stb) ae (6-6.1) 

where h(t) is the systen impulse response and T the 

time delay between the application of an instantaneous 

input signal and the measurement of the output. 

(b) The Auto-correlation function of x(t) is 

(c) The Cross-correlation function of y(t)
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Ty 2 

ete) = ee | x(t) y(ter)at (646.3) 

5 

when x(t) = y(t) the cross-correlation function reduces 

to the autocorrelation function. 

Since the impulse response must be zero before the 

input is applied, h(t) = Q for t < 0 and the lower limit 

of the convolution integral canbe extended to infinity 

so that 

y(t) = [ 6) x(t-s) ds (6-6 44) 

and then = 

6, (7) b ee = [x t [ms x(ter-x) as | dt 

“TY, a 

= iE s) fen = [e x(ter-s) at | ds 

sien -Y, 

i [ m2) 6_(r-s)as (66.5) 
00 

Comparing (6-6.5) with the convolution integral, it 

can be seen that if a signal whose autocorrelation function 

is C,(T) is applied to a system with impulse response h(t),
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the cross-corrleation function of the input and output 

Signal is equal to the time response of the system when 

subjected to an input signal C(t) 

In particular, if the input signal is white noise, 

its power density spectrum is flat i.e. 

$,,(0) = 2nK (6-6 .6) 

The relationship between the autocorrelation function 

and the power density spectrum is the Fourier transform — 

al: wT cr) = & | (0) &!™ ay (646.7) 
=o 

which becomes 

RiAr) =k = ont ay 
00 

al 

K 8(r) (6-6.8) 

8(r) being the Dirac-delta function. Thus (6-6.5) becomes 

x fas 8(T=s)ds 

00 

CAT) 

Ul K h(r) (6-6.9) 

i.e. for a white noise input, the Cross-correlation 

function of the input and the output is a constant times



116. 

6.6 contd. 

(c) contd. 

the impulse response. (Note that any noise whose power 

density spectrum is flat over a frequency range much 

greater than the bandwidth of the system may be considered 

as being white noise). 

The main advantage of this technique over the usual 

ones is that the experiment can be performed while the 

system is operating in its normal mode, thus making it 

necessary to disconnect the system from its associated 

components. This is possible since the noise excitation 

energy is spread over a wide frequency range, with a 

resulting low noise intensity that will not affect the 

normal operation of the plant and its controls. 

The main disadvantage of the method is the long time 

required to obtain an accurate cross-correlation function, 

(infinite in the ideal case). This is overcome by generating 

what is called a periodic white noise. This type of noise 

would have to have the same type of autocorrelation function 

as white noise (i.e. an impulse) which would be repeated 

with a period T/2. i.e. 

Ty 
2 / 2 

C,(T) = = i x(t) x(t+r)dt (6-6.10) 

°
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because of its periodicity, or for argument (r=s), 

¢_,(r-s) = 2 [ ThcRY at (66.11) 

and then 

- Tye 

C(t = | h(s) is | x(t) x(ter-s)at} kgs 

Ss = [xe ; ie h(s) x(t+r=s) es} dt 

Ty 3 7 
=& | x(t) y(ter)at (66512) 

Therefore, by the use of such periodic white noise, the 

cross-correlation function may be computed to its full 

accuracy by integration over one period of noise only. 

Because of the periodicity of this noise, the - 

cross-correlation function may now be written as 

Ctr) ts xf h(r) + h(T/2 +7) + n(ter) +00. 3 (66.13) 

but if it is so arranged that the impulse response decays 

to zero in a time less than T, (6-6.13) becomes 

Cyy(T) = Kh(r) (6~6.14,) 

as before.
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(ii) The decision problem:- 

This deals with the development and specification 

of analytical methods, which help in evaluating system per- 

formance and from which a strategy for achieving optimsation 

can be evolked. The most common method for system evaluation 

is the use of performance index which is a functional re- 

lationship involving system characteristics in such a 

manner that optimum performance may be determined from it. “55 

Performance index, thus, canbe considered to be any criteria 

for measuring systen quality. 

A Note on performance index:— 

Consider the general control systen, 

DISTURBANCES nyt) 

rid | 
  

    
SYSTEM = SYSTEM OUTPUTS 
INPuTs ee ag te See CONTROL pee Yi (t) 

ALC) /-—___—» 

° Cee S| SYSTEM th >RPERFORMANCE 

INDEx FP 
  

eS 
foe 
pst 
El 

ADTUSTABLE PARAMETERS 

where the variables x, (+t) and y; ( t) are the normal input 

and output of the systen. The signals n, (t) ard unknown 

disturbances. P is a measure of performance of the system,
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which may be the accuracy of control, efficiency or profit. 

There may be practical limitations on the maximum control, 

power available or restrictions on the quality of the product. 

The different and possibly conflicting requirements (.e.g. 

maximum profit with a minimum guaranteed product quality), 

can normally be combined into a single figure—of-merit 

or performance index, 

In general, P will be a function of the system 

variables, that is the systen inputs, the disturbances 

and the settings of the parameters x5 of the system, some 

of which are adjustable. The performance has to be 

controlled by adjusting these parameters and the maximum 

value of P can usually be found for a particular setting 

of the parameters. 

The Modification problem:- 

This is concerned with the actual adjustment of 

the system so as to optimize its performance, The general 

process is called the control signal modification, since 

the object is to modify error or control signal to achieve 

optimum performance. This is achieved through either of the 

two methods = (a) Parameter adjustment and (b) Control sys tem 

synthesis. In parameter adjustment fig.(a), the basic
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configuration of the conventional control system is 

maintained intact, and the means of automaticaly 

adjusting the parameters toward the optimum is super 

imposed. In control signal modification fig.(b), the 

conventional configuration is entirely abandoned, and 

the whole control function is assumed by the adaptive 

computer, 
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Fig. 6-5 Control-signal modification. (a) Parameter 

adjustment. (b) Control signal synthesis. 

The field of adaptive control is not yet developed 

and is still concerned with the control of relatively 

simple processes. With the increasing use of adaptivity 

in future, one can foresee digital computer forming a 

basis for the design of the controller functions of 

identification, decision and modification,



LT 

6.6 contd. 

(iii) contd. 

To summarise, an adaptive control is useful 

under either of the two conditions: (1) when the process 

characteristics are unknown and the designer does not know 

the environmental factors which affect the process dynamics, 

and (2) when process dynamics changed markedly and un 

predictably with time or environmental conditions. Adative 

control is a logical broadening of the familiar concept of 

feedback control. 

SECTION II. 

6<'7 AUTOMATIC CONTROL IN ELECTRICITY SUPPLY: 

In an electricity supply industry, the generated 

power, the power demand, and the power flow, continually change 

randomly. There are about 200 power stations and over 600 grid 

substations in England and Wales, which are interconnected by 

some ,8,500 miles of lines and cables. There are also some tens of 

thousands of circuit breakers and switches. ‘This complex system 

has to be manipulated to meet all the demands at the Area Boards, 

in the most economical way. The manipulation techniques are based 

on past experience and although the modern equipment and techniques 

have brought about new facilities, up to now it has not been done 

automatically. The use of analogue and digital computers is being 

developed to provide the control engineer with the inf ormation
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he needs to operate the system. The final decision, however, 

is still the engineer's, and some degree of personal judge- 

nent on the part of a control engineer is required for this. 

So, in this situation, the true closed-loop systen should 

mean the replacement of the engineer by means of an equipment, 

which should be flexible enough to cope with the problems and 

this cannot be achieved without the combination of an automatic 

equipment of high organising ability. 

To reflect on the literature on the present state 

of automatic control in electricity supply, which is obtainable 

from the various conference publications, one can conceive a 

closed-loop general system which may in future become capable 

of controlling the power-—flow automatically. This general system 

for power-~flow control can be best described by means of a block 

diagram. In the block diagram appearing on the next page, we have 

indicated by 

1) The channels which control the power flow, ise. they control 

each switchgear, trip relay etc., in the flow system. 

2) The line-state indicator - which indicates the state of the 

power flow and the state of each interconnection or trip 

(i.e. whether on or off). 

3) The prediction models — these models should represent each 

area of concern and should give us predictions on the 

expected electricity demand in each area. There should also
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be a feedback from a monitor which should observe the 

consumption of power in each area; this is used to 

modify the prediction. There are also other variable 

parameters in the models which can be set to compensate 

for local conlitions viz. weather changes etc. 

Available power state indicator — this should provide 

information about the power generated in each station 

and monitor the output of each substation, 

Central computer - Actually, at present, there is a central 

computer in London where they collect some basic data, 

but what we need is a computer or a set of computers working 

in conjunction, which should receive information about the 

state of the power flow, line and expected demand and evaluate 

existing conditions. There will be a continuous data Logging 

and updating of information and two separate stores may be 

used for this — store *A' for logging of existing conditions 

and store *B' for expected conditions which should include 

not only the load forecasts, but also the information about 

maintenance, diversions and other expected and planned changes. 

Now, as one can see, up to here the system would 

provide a very efficient backing and information source for the 

control engineer. So part of the function of the central 

computer and the store 'C'! should be to close the loop and
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assume the functions of the engineer. The store should act 

in part as the experience of the engineer and special pro- 

grammes should be provided to act after evaluation of the 

existing conditions received from the rest of the equipment 

and planning the policy and then giving command to the con- 

trolling channels. This, as one will realise, is the most 

difficult part of the system and a lot of experience on the 

use of Games and Decision theory will have to be utilised 

before a really workable model can be mde to cope with all 

the complexities and emergencies that might occur. The 

physical realisation of such a system should need a great 

amount of effort on the part of mathematicians working in 

coordination with the control engineers,



CaAP TAR 

GENERAL DISCUSSION



12h 

In the previous chapters, a survey of the present 

day important methods of prediction has been carried out and 

also their usefulness in case of a particular problem of 

Electricity demand prediction has been discussed. The models 

of exponentially weighted prediction have been tested against 

the data obtained for a particular area. One feels that many 

more tests will have to be carried out before one could decide 

on a predictor giving an optimim prediction. These models form 

an important part of the proposed general system for power flow 

control as discussed in Section II of Chapter 6. The physical 

realization of such a system will involve a great amount of re- 

search by mathematicians and control engineers. From a mathe- 

matician's point of view, the main area for research will be in 

determination of the optimality of such a system and for this 

reason we shall confine the following discussion to the concept 

of an optimum system. 

The term "Control System" generally brings to mind a 

servomechanism or a simple temperature regulator. Such a device 

is characterised by the fact that it detects when the output differs 

from the desired value and feeds back to the input a signal 

proportional to this difference, which in turn causes the output 

to change in the direction tending to decrease this difference, 

Eventually then, the output is made to approximate the desired
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value to an arbitrary tolerance. Such elementary application 

of the feedback principle is an adequate guide to the design 

of the simple control systems, but in more complex control 

problems a much deeper theory is needed. 

In the more general control situations the problem 

iS sia one of adjusting the inputs (adjustment based on the 

measurement of system outputs and the knowledge of the environment 

interacting with the system) so as to optimize a performance 

criterion. In this case, it is no Longer obvious when the 

optimum has been reached and what changes in the several inputs 

will result in an improvenent, 

In practical situations, the significance of methods 

of optimization reviewed in the last chapter is of a distinctly 

different order. One must realise that it is not possible to 

introduce into optimization calculations all the variables 

significant in a real problem, and that optimizing the equations 

is not necessarily equivalent to finding the best solution to a 

technical problem (the influence of those parameters not taken 

into account by the mathematical optimization could be significant 

in the neighbourhood of optimum). Thus the greatest actual 

difficulties lie in the definition of the parameters which control 

the system and, to a lesser extent, the precise definition 

of the system itself or, alternatively, making its realization 

conform to a calculated expression, The difficulty is practical
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because it is sometimes hard to predict precisely enough 

the probable behaviour of the parameters before the system 

is in existence, On the theoretical plane, however, the 

methods of optimization are of considerable interest. Starting 

from the data of a control system they allow, in fact, an 

estimate to be made of the best performance that one could in 

theory hope to obtain from it and also could give an indication 

in what directions efforts at improvement have the best chance 

of paying off. 

Thus the optimization of a systen whatever the system 

may be, involves several steps of analysis, the principal ones 

being - 

(i) Identifcation of systen parameters:- 

This has been discussed to some extent in Section 6-6, 

It is an extremely important operation and varies in diffic ulty 

according to the system. Ideally, one must identify a system 

to the a degree for the modern optimizing techniques to be 

rigorously applied. However, as systems are often complex 

(involve nonlinearities etc.) an absolute identification 

becomes impossible. Thus a good approximation to a system 

has to be made and verified by the use of different models 

and computer techniques. 

(ii) The Performance Index:- 

This is a function of the control parameters, which, when



(ii) 

(iii) 

129, 

contd. 

brought to an extremum minimizes the undesirable elements 

in the system, such as error, cost, speed etc. In case 

of a complex index, it is difficult to attain an idealised 

extremum assumed, since the importance of the individual 

parameters has to be weighted accordingly. 

Defining the Optimum policy:- 

The optimum policy is one which produces an 

extremum of the index. 

In an industry, one sets up a system mainly by 

using his judgement based on the past experience gained 

by trial and error plus intuition. The modem approach 

has to surmount the difficulty in identifying the systen 

parameters and in attaching appropriate weights to each 

relevant parameter of the performance index. As one will 

appreciate, a lot of ingenuity and intuition is involved 

in devising models which behave in a similar fashion to 

a system so that its study can guide in the optimization 

of the systen itself.
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APPENDIX B 

ADAPTIVE PREDICTION' 

BEGIN REAL DBAR,AAt 
INTEGER SERIES,T,M.L,N'* 
READ DBAR,AA,SERIES,T,M.L,N* 

BEGIN ARRAY DEMAND(1 :N+T-1),S(-L+1 :N) »FORS ,ERROR(M+T :N+T-1) * 
REAL ESTS1,ESTS2,ACCABS,ACCSQ,ACCERR, SIGMA, 

INWE,STWE,FIWE,INWA,STWA, 
FIWA, INWS,STWS,FIWS ,WE,WA,WS,SD,A* 

INTEGER I,J .K,PARL* 
FOR I :=(M+T) STEP 1 UNTIL (N+T~1) Do 

FORS(I) :=ERROR(I) :=0! 
FOR I :=-L+1 STEP 1 UNTIL N DO 

S(I) :=0? 
FOR I :=1 STEP 1 UNTIL N+T-1 DO 

READ DEMAND(I) * 
FOR I :=-L+1 STEP 1 UNTIL 0 DO 

READ S(I)* 
WAIT' COMMENT LOAD DATA TAPE 2 
READ PARL,INWE,STWE ,FIWE, INWA,STWA,FIWA, INWS, SSwS,FIWS* 
FOR WE:=INWE STEP STWE UNTIL FIWE DO 
FOR WA:=INWA STEP STWA UNTIL FIWA DO 
FOR WS:=INWS STEP STWS UNTIL FIWS DO 
BEGIN 
ACCABS:=ACCSQ:=SD:=ACCERR:=SIGMA:=0! 
ESTS1L:=DBAR' A:=AA* 
FOR I:=1,I+l1 WHITE I LESS N DO 
BEGIN 
ESTS23=WE* DEMAND (I)/S(I-L)+(1-WE)*(ESTS1+A) * 
S(I) :=WS* DEMAND(I)/ESTS2+(1-WS)*S(I-L) * 
A:=WA* (ESTS2-ESTS1)+(1-WA)*A? 
ESTS1:=ESTS2! 
IF I CHEQ M THEN 
BEGIN 
FORS (I+T) :=(ESTS2+T*A)*S(I-L+T) * 
ERROR (I+T) :=FORS(I+T)—DEMAND(I+T) t 
ACCABS :=ACCABS+ABS (ERROR (I+T) )¢ 
ACCERR :=ACCERR+ERROR(I+T) 
ACCSQ3=ACCSQ+ERROR(I+T) *# 2! 
END 
END* 
SD:=SQRT(ACCSQ/(N-M-1) )* 
SIGMA s=SQRT( ( (N-M)*ACCSQ-ACCERR**2) /(N-M)**2) * 
IF PAR1=0 THEN a ye 
PRINT ££L72 ,SERINS , SAMELTNE,ALIGNED(1,3) ,WE,WA,WS, 

SCALED(5) ;PREFIX(££8122) , 
ACCABS,SD,ACCERR, SIGMA 

CONTD.



END‘ 
END* 

APPENDIX B (contd) 

ELSE IF PAR1=1 THEN 
BEGIN 
BEGIN 
FOR I :=N, I+1 WHILE I LESS N+l DO 
BEGIN 
ESTS2;=WE* DEMAND (I) /S(I-L) +(1-WE)*(ESTS1+A) * 
S(I) :=WS* DEMAND(I)/ESTS2+(1-ws)*S(I-L) * 
As=WA* (ESTS2-ESTS1)+(1-WA)*at 
ESTS1:=ESTS2* ; 
END! 
END 
PRIN? ££L70PTIMUM FORECAST SERIES?,££S??,SAMELINE, SERIES, 

££L27ESTS2=?7ALIGNED( 9,0) , SAMELINE,ESTS2,£2S8?A=?,A, 
#£L270E=? ,ALIGNED(1, Z  SAMELCNE WE ,££S4 WA? ,WA SES). PWS? WS, 
SELLS 721? ,LESBPFORS (L) ?, SESSPERROR(I)?* 

FOR I :=M+T STEP 1 UNTIL N+T-1 Do : 
PRINT ££L7?,1,SCALED(5) , SAMELINE,££S4.?? ,FORS (I) 9££85?? sERROR (I) ¢ 
FOR I :=N-L STEP 1 UNTIL N DO 
PRINT ££L77,1,SAMELINE ,ALIGNED(2,5),S(I)* 
END ELSE STOP 

END PROGRAM*
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TIME SERIES PREDICTION USING OPTIMUM 
“MPPENDIX DT ($.b.= 1.4042) 

ESTS2= 266 A= 0 

WE= 0.850 WA= 0.000 WS= 0.950 

I PRE(I) ERROR (I) 

121 kaa 14.56 
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12). 111.92 4.62 
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127 159.259 o 24.51 

128 252.493 ~ 32.97 
129 Bhp 76 ~ 14.8) 
130 360.04. - 8.76 

131 355 15 1.53 

132 554.083 5 0335 

L355 33361 ~~ Jlf 

134 535022 - 2,88 

135 332.86 - 6.2) 

136 329 49 - 2.01 

137 55d 05 58.75 
138 310.92 - 26.18 

139 331.26 ~ Sol 
140 308.61 =~ 599 

14d 301.64. - 6.96 

142 302.93 - 9.87 
14.3 279-57 1.07 
Ly). 221.21 14.91 
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; PRE(I) ERROR (I) 
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I PRE(I) ERROR (I) 
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x, = 0.900 We = 0.000 W, = 0.900 

TIME SERIES PREDICTION USING 
NEAR OPTIMUM SMooTHING .(s.D.=14149). 

Period Predicted Values Error 
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Period. Predicted Values Error 
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Period Predicted Values Error 
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DETERMINATION Ot SEASONAL ADJUSTMENT. 

  

VSE IN APPENDIX @). 
Actual Cumulative Cumulative 2k x M.A. M.A. Difference 
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130 222 369 14. 293 75 364. 
131 364. 55k -10 28), 71 357 
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