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SUMMARY

1 . 1" . . . . .
The mechanism of "Helical Interference'" iz milled slots is examined

and a coherent theory for the geometry of such surfaces is presented.

An examination of the relevant literature shows a fragmented approach

to the problem owing to its normally destructive nature, so a complete
analysis is developed for slots of constant lead, thus giving a united
and exact theory for many different setting parameters and a range of
cutter shapes. For the first time, a theory is developed to explain

the "Interference Surface'" generated in variable lead slots for
cylindrical work and attention is drawn to other practical surfaces,
such as cones, where variable leads are encountered. Although generally
outside the scope of this work, an introductory analysis of these cases

is considered in order to develop the cylindrical theory.

Special emphasis is laid upon practical areas where the interference
mechanism can be used constructively and its application as the rake
face of a cutting tool is discussed. A theory of rake angle for such
cutting tools is given for commonly used planes, and relative
variations in calculated rake angle between planes is examined.
Practical tests are conducted to validate both constant lead and var-
iable lead theories and some design improvements to the conventional
dividing head are suggested in order to manufacture variable lead work-
pieces,by use of a "superposed" rotation. A prototype machine is
manufactured and its kinematic principle given for both linear and
non-linearly varying superposed rotatioms. Practical workpieces of

the former type are manufactured and compared with analytical predictions,



while theoretical curves are generated for non-linear workpieces and

then compared with those of linear geometry.

Finally suggestions are made for the application of these principles

to the manufacture of spiral bevel gears, using the "Interference

Surface" along a cone as the tooth form.
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NOMENCLATURE

Toin =  Mininum number of teeth on a pinion
Kw = Fraction of a module

R =  Gear ratio or cutter radius

k/n = Lead of milling machine screw

Do = Base cylinder diameter

g = Helix angle or torsion of helix

Principal radius of curvature of helix

~
i

L = Lead s

a =  Base cylinder radius vector

b = Linear displacement constant

8 =  Angular displacement of radius vector

¢ =  Angular displacement in cutter framework

s = Length of curvature

T,E,E' =  Unit tangent vectors

E,E,EY =  Unit Bi - normal vectors

ﬁ,ﬂ,ﬁv =  Unit normal vectors

d =  Cutter's depth of projection below base cylinder radius

w =  Half cutter width

X,V ,2 =  (Cartesian axes

xlylz! = Rotated axes

B = Angle subtended by a cutter due to offset from centre

$ = Parameter of cutter shape or angular displacement in
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T = Position vector

o =  Angular displacement of rotated axes
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CHAPTER I

INTRODUCTION

The use of standardisation procedures within engineering design practice
quite often leads to difficulties in service or manufacture owing to the
fact that under certain circumstances the component or machine tool is

required to operate outside the standardised parameters.

Interference mechanisms arise in manufacture as a consequence of this
requirement and in most instances the physical manifestation of the
problem is a departure from the component’s required design geometry.

In certain machining operations it may well be that the interference

is a physical phenomena owing to rubbing between a cutting tool and the
workpiece because a small change has been made to the workpiece design
parameters or the machine settings. A very good example of this is

the case of tool flank interference with the work when cutting multi-
start threads or worms, in this instance it is necessary to increase

the tool flank clearance to avoid serious damage to the thread flank.

It is true to say that in most circumstances "Interference Mechanisms"
are totally destructive and for this reason are usually avoided if at all

possible by designing engineering components strictly within the appropriate

boundary conditions.

It is equally true to say that the same reasons have precluded any wide
examinat ion of either the problem, its geometry or kinematics and it is
only in the field of gears and gearing that any comprehensive examination

of an "Interference Mechanism'" has been carried out.

This particular mechanism is usually called undercutting or root thinning

of gear teeth and is produced as a direct result of designing gear'tegth



which require to work outside the boundary conditions defined by the
standardisation parameters. The difficulty encountered by the designer
here, is that standard pressure angles and diametral pitches are defined
for involute gears Primarily for reasons of interchangability but this
placés a stricture upon the size of gear which can maintain a correct
involute form over the entire tooth length for a given pressure angle.

If for reasons of space, the designer is forced to use a gear having

a number of teeth less than the defined minimum,then root thinning occurs
owing to the generating principle involved in gear manufacture and the
tooth shape degenerates into a Trochoidal undercut rather than the

required Involute in the root area.

Owing to its marked effect upon gear tooth strength and consequently

transmission design this particular mechanism is well documeted(3’4’5’

6,7,8 . .
»7,8) and although a thorough analysis exists, by far and away the most

attention has been devoted to avoiding its manifestation. As a consequence

design standards and a set of ground rules have been developed to minimise

the problem, of which the first rule is usually - "redesign to avoid

interference".

There are a number of other examples of interference in manufacturing
industry mostly associated with cutting tool.design or manufacture, of
which the most important is that produced by a disc type fluting cutter
moving around a helical path. Thig mechanism is always evident to some
extent in the manufacture of small tools such as drills, reamers, slab
mills and end mills. It also has some implications in gear manufacture
because a hob producing a helical gear is susceptable to this mechanism

as also is the disc cutter when used for producing one off helical gears

or milled worms.



In this particular area of work no comprehensive analysis of the mechanism
is available and this thesis is concerned with producing a coherent theory

of "Helical Interference" for both constant lead and variable lead work-

Pleces.

The limitations relating to this problem, of existing machine tool
systems are analysed and some practical design improvements to the
convéntional dividing head are demonstrated whereby the '"Helical
Interférence" mechanism can be used constructively and with some

advantage in cutting tool manufacture.



CHAPTER II

THE GENERAL PROBLEM OF INTERFERENCE

Owing to its generallydestructive nature the mechanism of interference
has received scant attention in the literature, in spite of the many

examples arising in engineering practice.

The best documented example of such a mechanism is that associated
with gear design and gear manufacture. In this case the physical
limitations imposed by standardisation of the design parameters,
produce an "Interference Mechanism" which leads not only to root
thinning in conventional gearing but also to tip rubbing in internal
géars. Such problems are welllreported and the solutions posed were

3) (4)

derived by the pioneer workers Buckingham

(5)

in America and Tuplin

and Meritt in England.

Their theoretical treatments show that there are minimum numbers of
‘teeth permissible id'pinions of a given pressure angle to avoid
interference and further that the minimum requirement varies with
the meshing conditipn, namely

2k
W

in , 2
m sin"¢

1
1

Rack and pinion

2k R
w

. 3 tiptt T =
Gears 1n ratio 'R min

/{~+ R(R+2) sin2¢ -1
2k
W

Equal pinions in mesh 'Tmin = 5
Y1 + 3 sin"g -1

where k is some defined fraction of addendum and ¢ is the pressure
W

angle.



Normally interference will be avoided by the designer but if this

proves impossible then the implications within manufacture are obvious,
bécause they lead automatically to modification of machine tool settings
in order to avoid the mechanism. The following are the most commonly

recommended methods to minimise interference in small pinions,

a) Radius the tip of the largest gear (or annulus in internal gears)
b) Reduce the outside diameter of mating gear (stub tooth system)
c) Maké pinion oversize and reduce gear diameter

d) Increase the pressure angle

e) Increase pinion diameter and centre distance

f) Redesign.

Bevan(8) gives a geometric analysis of the tooth space when under-
cutting takes place and further shows that it is Trochoidal in
nature as distinct to the required Involute surface. A particularly
graphic example of the mechanisms destructivevnature is shown in

Figure (1)

Other examples of destructive interference occur in machining systems
where form tools are used and although the mechanism is not totally
destructive the workpiece shape departs significantly from that

. . .  rabl (9)
required and so a method of form tool correction is desirable. Dent
describes the difficulties encountered with circular form tools and
gives a corrective proceedure based on simple geometric considerations
to ensure that the correct workpiece form is produced. The same author

describes the necessary corrections to form cutters used in the form

relief of milling cutters and hobs.

Trochoidal interference is also encountered in the design of hob tooth

forms which are required to produce non-gear shapes, eg knuckles,



castellations and splines. Semi-graphical techniques such as the
branch angle method are used whereby the hob tooth form is derived
from the required profile by simulating the hob-workpiece contact
path on a drawing board. Clearly the base generating circle for

the system must be carefully chosen to avoid root thinning of the
machined form, because the final machining process is identical with
gear manufacture. Such methods for the definition of hob tooth form

necessary to avoid interference are standard tool design techniques.

Helical interference although mentioned in the literature is very
fragmented and largely qualitative in nature since the phenomena is
usually considered undesirable. Gear cutting texts refer to the
problem of helical interference both in the case of formed helical
gears made on the milling machine using disc cutters and of worms
milled from the solid.  In the former case although helical

(6)

interference is described its effect is usually neglected owing to
the other inaccuracies inherent in the process, i.e. the errors due

to the approximate form on the cutter used.

Where milled helicoids are used in the manufacture of worms the
prime requisite is to achieve tangential contact between the cutter
and the worm such that conjugate action is maintained between the
pair. Probably the best account of helicoids used for worms is to be

(3)

while special applications of conjugate theory

(10) (11)

found in Buckingham

to such workpieces are given by Dudley and Poritsky and Young

Fundamental analysis of the slot geometry produced in the milled
helicoid is very limited and in most instances is restricted to
approximate solutions. There are a number of qualitative discussions

12
about the mechanism, of which probably the best are Chapman( _) and



(6)

Parkinson and Dawney . Of the quantative discussions probably the

earliest is that due to Buckingham(3)(1949) who gives a formulae,

but no derivation, for the flank profile of a milled worm, whilst
(13)

Hugo (1962) described a simple geometric approach to calculating

the width of a helical slot from point to point.

Several approximate theories have been proposed for calculating the
plane geometry of the slot produced by a disc cutter moving around a
hélical path, and of these the simplest is the semi-graphical technique
proposéd by Etheridge(la). This method assumes a first approximation
of a circular involute whereby the fluting cutters profile is moved
around an involute path in the normal plane of the workpiece. The
envelope of the fluting cutter profile as it moves is assumed to be

a good approximation to the slot profile. Figure(2)shows the method.
Kudinov(lS) on the other hand develops a plane geometric approach

using the mathematical theory of envelopes but restricts the discussion

to simple straight line profiles, while Etheridge's method permits

examination of more complex fluting cutter shapes.

An exact solution using computer methods has been proposed by Friedman,

(16)

Boleslavski, and Meister where an infinitely thin cutter is rolled
along a helical path in the workpiece and its coordinates computed.
The cutter is then stepped out from the centre-line by successive
small amounts and its path recomputed, until the width of the real
cutter is reached. This technique permits investigation of profiled

cutters since the computer is capable of accommodating diameter changes

in the infinitely thin cutter.

All these methods, however, have distinct disadvantages owing to either,
their inherent innaccuracy or laborious nature and in mostcasesthey do

not represent a coherent theory which is capable of application to



the wide ranging problems involved.

The work developed here recognises this fact and a general theory
applicable to all types of helically fluted workpieces using disc
type cutters is developed. Vector Differential Geometry is used

throughout because it is a very powerful tool in this type of analysis.



CHAPTER III

DEFINITION OF HELICAL INTERFERENCE PROBLEM

INTRODUCTION

Before examining the difficulties arising from the milling of helical
surfaces it is worthwhile examining the kinematics of machine tool

systems, for their somewhat restrictive nature contributes to the

interference mechanism,

THE GENERATING PRINCIPLE

From kinematics any body in space has six independent degrees of freedom -
three rotational and three translational - unless acted upon by an external

force system which restricts some or all of these freedoms,

The principle of generation used in machine tools utilises this fact and
a machine tool system is defined to be a group of elements partially
kinematically restrained such that their combined motions when applied to

a cutting tool and workpiece achieve a desired geometry upon the work,

To illustrate the complexity of motion possible when using a large number
of elements within a machine tool system it is best to examine the
engraving engines of the Eighteenth and early Nineteenth centuries,

These machines were used to produce complex engraved patterns on watch

cases and similar articles. Plate lf shows a typical engine and

workpieces.

The rapid growth of industrialisation during the Nineteenth century,

however, required engineering components of ever increasing accuracy

+ Courtesy of ''The Model Engineer".
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and more restrictive geometry. It is for these reasons that our

modern machine tools evolved with small groups of accurate elements
arranged to produce a restricted workpiece geometry, eg. surfaces of

revolution and ruled surfaces. Typical kinematic chains are shown

in Figure (3)

The reliability of such an approach is highlighted by the fact that it

1s only in the wake of the computer that the pioneering ideas of

ey 2 . '
Maudsley (2) are finally being questionned. Even so,

and Whitworth
the idea of small groups of elements is retained whilst at the same
time improved facility is achieved by using more sophisticated controls,

with' multi-axial arrangements and independent programmable tool

storage.

-However, it is true to say that wherever the generating principle is
used there are circumstances whereby the motion of the tool relative
to the workpiece occasionally produces a departure from the desired
workpiece geometry, thus precipitating discussions such as the

following.

THE PRODUCTION OF HELICAL SURFACES

Helical surfaces may be produced in a variety of ways depending upon the
final requirement in terms of accuracy or component utility, but the
most common methods are as follows:

1. Screw helicoid using the lathe

2. Milled helicoid using the milling machine or thread milling

machine.

3 Hobbed helicoid with or without using differential mechanisms.

4. Complex helicoids using bevel gear generators.

Dual helicoids using a reliéving lathe with differential

attachment.
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Figures(4}(5}(6)}(7) and(8) show the kinematic diagrams for each one.

Interference can be Present in all these methods in some form or another
whether it be the simple case of flank rubbing in case 1, Trochoidal

undercutting in cases 3 and 4, or incorrect rake face geometry in

case 5,

In all these circumstances, the interference mechanism can be either
eliminated by choice of design parameters or cutting tool modification
using existing analysis, whereas in the case of the milled helicoid this
is not so. It is for such a reason that this kinematic chain is
analysed in detail prior to proposing a mathematical model for the

interference produced.

GENERATION OF THE MILLED HELICOID

Figure( 5) shows the functional relationship between the disc milling
cutter and the workpiece for helical milling while Figure( 5b) shows an

end mill used for the same purpose.

The required motion between the tool-workpiece pair is that the work
shall rotate at constant velocity while the table translates at constant
velocity with the cutter consequently moving through the work at

some predetermined depth. The cutter has a rotation at Sugh speed

that it will remove metal from the workpiece in the form of a helical

groove.

The table receives its motion via a leadscrew and nut while the work
rotation is produced by a dividing head of fixed gear ration 40/1,
input rotation to this head being provided by a gear train of ratio

"R" between the leadscrew and dividing head. It is readily determined

that the required ratio is
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AOk/
R = n - lead of machine
L lead to be cut

where R is the gear ratio to increase or decrease the lead produced

on the workpiece

is the required lead on the workpiece

Sl

is the lead of the machine screw.

Alignment between the cutter axis and the helical path is necessary to
minimise interference and is achieved by swinging the milling machine
table through some appropriate angle. Even so, some pattern of
interference is still evident because the helical path in the work-
piece is a warped surface and the disc cutter is a rigid body of
finite path contact. The deviation by the cutter flank from the true
helical path in the slot is the interference pattern. End mills

can be used to further minimise the problem since they have a line
contact with the slot sides as distinct to the chordal contact of the

disc cutter,

Conical workpieces can be produced by inclining the dividing head to
the angle of some base cone around which a helical groove is to be
machined. This complicates the pattern of interference produced
betwéen the workpiece and cutter since the machine table is set to

a fixed angle based upon a cylinder of known diameter passing through

the cone,

Further changes in the interference mechanism can be produced by off-
setting the fluting cutter from the workpiece axis or by changing the
shape of the fluting cutter. Some cutter shapes are less susceptible

to helical interference than others and the following analysis identifies

and quantifies this.



PART 1 THEORETICAL STUDY
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CHAPTER IV

THEORY OF HELICAL INTERFERENCE IN A SLOT OF CONSTANT LEAD

INTRODUCT ION

When using disc type cutters for producing milled helicoids of constant
lead some pattern of "interference" is almost always present. The

only exceptions being the particular cases where a required slot profile
is defined and ultimately maintained by designing the mating cutter for
conjugate action with the profiled surface(lo). Such action is
expensive and, therefore, usually precluded except for certain instances
such as in gear manufacture where a gear's design performance dictates

what geometric errors will be tolerated. (e.g. worms milled from solid),

For most other cases where milled helicoids are encountered, e.g. barrel
mills, end mills, reamers, drills, etc., some compromise is accepted,
such that "interference' is minimised. This is usually achieved by
careful choice of an available "standard" cutter and an equally careful
choice of machine setting procedure; unfortunatély such choices are
inevitably based on "custom and practice" for the particular workshop
and the experience of the tool setter concerned. The tool designer

rarely has any control over the final outcome.

In any analysis of the "interference mechanism' using disc cutters for
milled helicoids, deference should, therefore, be made to the techniques

currently in use. This initial analysis will consequently be examined

under the following headings:
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Case (a)  Straight Sided Disc Cutter Set Over the Axial Centre-
line of the Workpiece,

Case (b) Form Type Disc Cutter Set Over the Axial Centreline
of the Workpiece.

Case (c¢) Straight Sided Disc Cutter Offset from the Axial

Centreline of the Workpiece.

Case (d) TForm Type Disc Cutter Offset from the Axial Centre-

line of the Workpiece.

These are shown diagrammatically in Figures 9(a), (b), (c) and (d).

(a) STRAIGHT SIDED DISC CUTTER SET OVER THE AXIAL CENTRELINE OF
THE WORKPIECE

A careful physical examination of the process indicates that one flank
of the helicoidal slot is generated by the cuttegé 1eading edge and the
other by the cutters trailing edge and further that there is a
cylindrical surface within the workpiece upon which a base generating
helix may be considered to be drawn. Points on the cutter which lie
below this base cylinder generate a form of-helical undercutting,
whilst points on the cutter lying above the base cylinder generate a

form of helical epicycloid.

The terms "HELITROCHOID'" and "EPIHELICYCLOID" will be used to define

these curves for given base cylinders.

If the workpiece is considered stationary and all motions are ascribed
to the cutter, then the contact path of the cutter with respect to the
surface generated must be the locus of a point on the cutter's

periphery as it rolls around the base generating helix, The resulting
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surface must, therefore, be formed by a non-orthogonal network of

these curves and a family of helices.

Figure (10)shows the interdependence of helix angle (o) and base cylinder
(Do) for maintaining a given constant lead (L). So clearly any change in
helix angle set on the machine will produce a related change in base
circle diameter, thus giving rise to changes in the geometry of the work-
flank profile. Figure(11)shows three particular geometries related to

a base generating cylinder,located with respect to the work, in the

outer surface, bisecting the slot depth and tangential with the base of

the slot respectively.

Normally, the lead and helix angle are defined by the designer, ob-
viously giving a determinable slot profile which invariably has to be
modified at shop floor level to give a practicable rake face if the

helicoidal gash is to be one tooth space in a cutting tool,

The following theoretical treatment assumes that a base generating

cylinder is defined for a given constant lead.

Theoretical Treatment

(1) Geometry of Base Helix

From vector differential geometry and considering Figure(12}

For a right handed system

;'acose'{*'asi)ne}*'bei; ou-'-ti(l)
dr . 4 sing T + a cosg j + b k ceneeee(2)
de
,.d_szlaz-sz v0~11|1(3)
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From (2) and (3) the unit tangent vector to the base helix is

.'fv=g_§=~a Sine -{-}-acose 3‘4——-——@—-—-——1—{ ...acoc([‘)‘
/2 2 2 2 2 2
a~ +b a~ +b a +b

gi _ —a cosf T a sinf - (5)

d - J s 0 0 8 0 s 0

3 a2 . b2 a2 + b2

e |
ds a2 + b2

Hence the principal normal radius of curvature of the base helix is
given by

a2 + b2

=Ll_a*b
p K a- clooccc(6)

From (5) and (6) the normal unit vector to the base helix is

N =op %% = =(cosf 1 + sin6 ) ceseed(7)

From (5) and (7) the binormal unit vector to the base helix is

B=TXN = L [b sind 1 - b cos® 3 + aiz] P €).
2

/az + b

Consequently the principal binormal radius of curvature is

dB|_ . ___b
ds a2 + b2
a2 + b2
Therefore ¢ = T ceanses(9)

(i1) Locus of Point on Cutter Flank
Figure(13) shows the orthogonal arrangement of the unit vectors relative
to the base helix while Figure( 14) demonstrates that each orthogonal

axis in the cutter is colinear with one of these base unit vectors as

" the cutter rolls through the given slot.,
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It is seen from Figure (15)
/ 2 /
q, =S = fg a + b2 do = ¢ a2 + b2

For the rolling condition

(R=d)¢ = 0 vaZ + b2
/2 2
a + b 3

'_'W vc!!cqc(lo)

0
0
@

Il

Therefore ¢

The locus of a point on the cutters periphery will be defined by the

instantaneous position vector OP

Hence OP = T, = T * qo; + 0;py + pyp veranaea (11)

;q - (R-d)N + R cos¢ N - R sing T + w B

rq + [R(l - cos ch) - d]N -.[,R Sin ce] T + [wI B
From which the parametric equations can be written

X = A, cos® + A_ sin®

1 2
y=A1 Sine"Az cosbd !'11110(12)
z = bo + A3
where A1 = (a - d) + R(L = cos c#h)
bw + Ra sin c8
A2 =
a2 + b2
A3 _aw - Rb sin c
a2 ¥ b2 | -
therefore

0P = (Al cosé + A, sind) T.+ (A sing = A, cos@) j

+(be+A3)E verenss(13)
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This may be more succinctly written in the matrix form;

F | b sin6 - inb 17 ] i |
X : -cosb a sin R cos c6 (a+R-d) cos®
ng + b2 ng + b2
. ~b
y{ = | -sind cos8 a cosb W + (a+R-d)sinb | .. (14)
Véz + b2 /22 + b2
z 0 a b -R sin ¢6 bo
N I ¢22 . b2 ¢£2 . sz i ]

which is the affine transformation of the cutter system into that of
the workpiece and represents either a Helitrochoid or Epihelicycloid
of a helix with base cylinder radius "a" and constant lead 2mb,
depending upon the value taken by the parameter ''d".

(b) FORM TYPE DISC CUTTER SET OVER THE AXTAL CENTRELINE OF
THE WORKPIECE

In the case of a profiled cutter the contact path between the geperated
flank profile and the cutter is clearly some function of the cutter

section, This is shown by considering Figure (16)and Figure(17).

If the profile of the cutter is considered as being formed by a series
of infinitely thin discs of varying radius then each disc will generate
its own peripheral locus as it rolls along the slot. The envelope of
this group of curves must, therefore, determine the shape of the final
groove, The red line @b in Figure(16)is the line along which the
envelope would be constructed and may be considered as the line along
which a point in the cutter surface moves as the disc rolls along the
base helix. This is clearly the contact path made between the profiled

flank of the disc and the resulting slot,



_19-.

Referring to Figure (15)it is apparent that the instantaneous vector

OP will be dependent upon the profile shape for the given disc cutter

and is defined by the vector equation

» = rq * qo, + o,p; + (Shape function) B ceeseea(15)

r

OP =

The "shape function" necessarily varies with the profile of the disc
cutter used, but is usually independent of the angle ¢ turned through
as the disc rolls along the base helix. Considering the case of the

semi-circular profile shown in Figure(18)the instantaneous width of the

cutter (w') at the path of contact isg

w'=r sin § : cveeenee(16)
where r = profile radius
R = cutter radius
6 = is a parameter of cutter shape

This means that the previous equations (12) and (13) only differ from
equation (15) by the "shape function" and consequently the matrix

statement would be modified as follows

- ) IR I I - .
FXT -cosf b_sinf a_sinf X (a+R-~d) cos6
5 5 V/Z 5 (cutter)
Vg + b a +b
y| =] -sin® -b cos6 a cosH (Shape + (a+R-d)Sin6| .. (17)
5 5 5 5 Factor)
Vg + b Vg + b
z 0 a b (f;r) b6
cutte
2 2 2 2
+ b
L1 L a +b Ya L - _ _
The 3 by 1 matrix defined by the vector
r =X (cut) N - Z’(cut) T + (Shape factor) B ceveeso(18)

C

is clearly the contact path co-ordinates defined in the framework of the

cutter itself and will vary with the shape of the cutter profile as

equation (16) shows.
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For the particular case of the semi-circular form (Figure(19))

;c = (x cutter) N+ (z cutter) T + {r siné) B eeeeess(19)

and for the other commonly occurring shape, namely, the vee section
cutter of semi~angle § the vector statement in the cutter framework is
;c = (x cutter) N+ (z cutter) T + (h tan 6) B N ¢4}

where h is an arbitrary constant.

(c¢) STRAIGHT SIDED DISC CUTTER OFFSET FROM THE AXIAL CENTRELINE
OF THE WORKPIECE

For an offset cutter the geometric relationship between the base helix
and the cutter axes is as shown in Figure(20) and an equivalent system is

described by the rotated axis arrangement of Figure(21)

From the vector algebra, transformation from the cutter system into

that of the work is

b' = (b'+B) B+ (b'+N) N+ (B'-T) T
n" = (@'+B) B+ (@'eN) N+ (a'+T) T ceeense(21)
t' = (£'*B) B+ (£'eN) N+ (£'T) T

Hence for the system of Figure(2l)the required relationships are

b' = cosB B ~ sinB N
n' = sinB B + cos8 N vereess(22)

£ =T

Substituting the values of N B and T into equation (22)

o'l
L]

(p1 sinb + q cosf) 1 + (-p1 cos® + 4 sin6) j + (sl)E
a! = (p2 sind = q, cos®) 1 - (Pz cosf + q, sind) J + (SZ)E .+ (23)

= (—p3 sind) 1 + (p3 cosd) 3 + (83) k

T
-
|

where the values of P; Py 97 9y etc., are
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b cosg
Py
a2+b2
b sinB
Py
a2 + b2
. = a
3 =
a2 + b2
From
given by

Hence 65 = ;
P

The required transformation matrix representing this equation is

- 21 -

= Sing 8

Nal
=
|

cosf 8

Na]
N
]

= rq + qo1 + olp1 + plp

X —(p231n6—q2cose) (p151n6+q1cose)
yl| = —(p2c056+qzsine) (-p1cose+qzsin6)
L°1 L K 1

the locus of the instantaneous vector 55

;q + [R (1 - cos#8) —d] a' -'[R sine] t' +wb'

(a+R~d) cosb
(a+R-d) simn®

bé

—(p3sine; [ Reos cb
(p3cose) w
s -Rsin ¢
3 1L _

e —ad

N 113

Figure(22)the locus of a point on the cutter periphefy will be

<. (25)

N.B, Upon examination, if angle B is zero then this matrix statement

reduces to the same form as that of the transformation (14)

(d)

FORM TYPE DISC CUTTER :QFFSET FROM THE AXTAL CENTRELINE OF.,

THE WORKPIECE _

The most general case will be that of an offset form cutter and it is

readily deduced that the required transformation will be
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roA - - . -
\
X 111 112 113 r X ( al
y = 121 122 123 (Shape. * | a, veeea(26)
Function)
z 1 1 1 2! a
[ L 3132733 || i [ 3]

where x y z = Workpiece system

lij = Direction cosines made by b' n' t°
x' y' 2' = Contact path co-ordinates in cutter system
a; a, a; = Co-ordinates of cutter centre in workpiece system
A

Obviously the three previous results can be derived from the above

generalised case,



- 23 -

CHAPTER V

GEOMETRY OF THE INTERFERENCE SURFACE

THE INTERFERENCE SURFACE FOR DISC CUTTER SET OVER AXIAL CENTRELINE

A knowledge of the surface geometry is important because most engineering
components utilising the milled helicoid are either required to transmit
motion or to act as a cutting tool. 1In both cases it is usually neces-—
sary to construct normal and tangent planes to the generated surface

for the purposes of either motion analysis or rake angle determination.

In general a surface is described by a network of two individual
families of curves which do not intersect within the family but inter-
sect with the other family orthogonally, or non-orthogonally depending
upon the individual characteristics, The respective families are
designated "u" curves and "v'" curves having a common base point .
(uo, Vo) and intersection co-ordinates (u, v). At any such point (u,v)
a tangent plane may be constructed containing the two directional

derivatives Ez-with u = c and Ez-with v = ¢, Clearly a normal to the

oV _du
plane at this point will be:%E x %5 and is shown in Figure(23), together

with the tangent plane.

The surface generated by the disc cutter in a helical slot will be a

non-orthogonal network of "u"

curves defining circular helices and "v"
curves defining helitrochoids or epihelicycloids of a base helix,

Figure{24)shows the network while Figure(25)is a projection of the
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surface into the xy plane because, provided a starting point "up" for a
given helix is chosen on the "vo" curve, then the helix constructed
around a cylinder of radius "a" will contain all the other points "up"

on the respective Uy +++v v curves, and will project into xy as shown,

If the point ”up" is specified in the cartesian framework of the
surface by XY, 2, and a general point along the helix upon this
cylindrical surface by x y z, then it is possible to develop the
parametric equations of the surface in terms of a radius vector in the
Xy plane, the angle "$" swept out in this plane and the lead constant
"b", Figure (26)is a rotated axes system equivalent to the surfaces
projection into the xy plane where "p" is a general point on the helix
wound on a cylinder of radius |§|; this point is invariant under the
rotation., The point X, 9, is a projection of a point lying on the
epihelicycloid "vo" and the rotated axes contain the point (xo yo) and

("'yo XO) .

Vector a makes an angle "o" with the x' y' axes and these in turn

make an angle "$" with the cartesian frame of the surface XYy

Since "p" is invariant under the rotation the required transformation is

q-n x + Grei y'

=
n

X cosd ~y_ siné
o o 'Q!!'Q|(27)

A x' + Gy

y Y, cos$§ + X, sing

These equations are clearly of the A sin (§~a) form and can be written as
x =-A sin (&-q) SRS
!-II‘Q‘I(ZS)
y = A cos (§-a)

where A = IZI @ = tan = -
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Obviously the remaining parametric equations will have the form

z = A3 + b(8 + ) .......(29)

From the previous geometry the magnitude of the vector a will be given
by reference to equation (12).

i.e.

|al

VQAI cosf + A2 sine)2 + (A1 sind - A cose)2

2

/SN el (30)

1 2

The vector equation for the surface becomes, therefore
T =..[[5| sin (G-a)] I‘+[|3| cos (c—a)] j+ [A3 + b(«s—a)] ko..031)

where a A1 and A2 are all functions of the parameter 6.

THE TANGENT PLANE TO THE SURFACE

The tangent plane at any point on the surface will congain the direc-
tional derivatives along the two network curves that intersect at the
point chosen and for the surface under consideration the two variable
parameters concerned are 6 for the "v'" curves and 6§ for the "u" curves.
Obviously the directional derivative along the helix will be

From equations (27) and (29)

(x cos§ - y sing) i + (x 5iné + y cosd) 3 + (Z + b)) k «.(32)

o}
]

-(x sin§ + y cos§) i+ (x cos$ - y siné) 5 + (b) k

]

-[r cos (G—C!)J-i- —E‘ sin (G—q)]_-i- +[b]lz N & X))

The directional derivative along the helitrochoid will be

r N R d = oz -
or [_8_}5 coss - 31n6] i +E—;e£ sind + -5% 0085] j +[§-§] k

90 90
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= [p - . T - . n
[1 cos§ B2 smcs:[ i+ [Bl sind + B2 cosd] j o+ [B3] k

= —[rl sin (5-3)]{ +[r1 cos (S—Bil 5
tan_l[y/x] | r

-1
t
an [BZ/BI] , r,

where - o,

]

B

THE UNIT NORMAL TO THE SURFACE

] e

/2 2

= X +y
[ 2 2
1 Y B

... (34)

As previously stated a normal to the surface will be given by the

3T _ ar
t — —_—
yec or statement 73 X 56
i,e.
N "33 1 ] .
-r cos (6~a) -r sin (8-a) b
—rl sin (6-B) r, cos (8-R) B3
Therefore
N. =|- C, sin (6-a) + C, cos (8-B)] i + |C, cos (6-a) - C
1 1 2 1
(6-8)] i- [03 cos (B—a)] k
where _ - .
C1 = B3r C2 br1 C3 rr1
and a unit normal inwards from the surface will be

N,
L

INil Vﬁ%z + Ny2 + NZ2

_ Nx 1+ Ny 3 + Nz k

where Nx, Ny and Nz have meanings derived from equation (35).

THE EQUATION OF THE TANGENT PLANE

From Figure{27)

;=x‘i_+y3+21-(.

sin
2

.. (35)
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OA=r~rO=(x-xo)I+(y-yo)§+(z-zo)E,

and by vector algebra the equation of the plane will be
(r - ro)-N = 0 ceseees(36)
from which the required scalar equation is derived

i.e.

(x-xo) Nx+(y-yo) Ny+(z-z°) N =0 ceveess(37)

THE NORMAL PLANE

The equation of a normal plane will be given by
Pq, * (N x pq)) =0
where EEZ and 5&1 take particular values depending upon whether the
normal plane is perpendicular to the YZ plane or it contains the pormal and

binormal vector to the surface. The former is called the BASE NORMAL

plane and the latter the TRUE NORMAL plane.

THE TRUE NORMAL PLANE

When it is required to calculate a true normal rake angle at a point,
it is necessary to construct the plane which contains the unit normal,

the unit binormal, and a radial to the point considered.

From Figure(28)the necessary condition for this plane is

;;az. (ﬁxﬁ):o ‘ noto-:o(38)

where

pi, = x-x) I+ G-y T+ @-z)k
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i+ )3
y J

N = (Nx)
B =
(8,)
From
Pq, (N x

and the requi

(x—xo)(Nsz—N

RAKE ANGLE DE

el

+ (By) j

which the vector equation of the plane may be stated as

B) = (x=x ) (y-y,.) (z=z ) | = 0
N Ny N, ceveees(39)
B B B
X y VA

red scalar is

sz) - (y-yo)(Nsz—Nsz) + (z—zo)(NxBy~NyBx) = 0 .. (40)

TERMINATION

In order to d
determine vec

From Figure(2

and the point

From which th

etermine the rake angle at a point it is necessary to
tor sqz which is the required radial.

9} the line of the intersection will be given by

=X
o

N
X

B
X

-X
o

N
X

B
X

(y-yo)

N
y

B
y

N
y

B
y

(z-zo)

N
z

B
z

of intersection with the z axi

(z—zo)

N
z

B
z

= 0 0|00.!!(41)
s is
= 0 veeenes(42)

e required scalar intercept is derived.

NB - NGB
X 2 Z X
-y ————| 2
o (o]
: NB - NB
Xy Ly X

[NB - NB
z z -oucoi'(43)

- NB
N B, - NB,

]
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It is evident from Figur2(30) that the true radial rak: angle is the

angle made by Pq, with the tangent plane, namely the angle VY,

where ¥ =90 - n ceeees (44)

21

*Pq
and cos n = Z

— Ceenee (45)
|N°pq2'

THE INTERSECTION CURVE OF THE SURFACE IN XY

A further curve of interest which can be derived from the surface is
the intersection curve made with a transverse plane of which the simplest
is that xy plane which contains all the points z = 0

From equation 31 the required parametric equations of the surface are

-/ 2 2
X = A1 + A2 sin (8-a)
_ /2 2 -
y = YA T+ A,“ cos (8-a) vereaes(46)
z = A3 + b(6+0L)

For the condition z = O the required intersection will be given by
translation of a point on a line of constant "o" along a given helix,

i.e,

Clearly this is a negative rotation into the xy plane and it is easily
deduced that the required intersection equations are

= 1 &=
X .A Sln( a’) ..nq!tl(47)

1

y = A cos (8-a)

where

v Tana"-‘%_ﬂ § = (A, +a)
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The transverse intersection curve is probably the most widely used
Plane section in practical cases since it is normally the plane of
rotation irrespective of whether the helical groove is part of a
transmission system, or the tooth space in a milling cutter, For the

latter use it is important to be able to derive the rake angle at any

such point in this plane.

From Figure(3l) therefore, the rake angle "Y" is given by
dr = =
— re
ds
dr = -~
— « re
ds

r
COS‘JJ !\!111!(48)

where re_ is the position vector in a radial co~ordinate system

and dr is the tangent vector to the intersection curve,
ds

From equation 47 the position vector for the intersection curve is
given by
T =7[A sin. (—A4—2a):] i+ [A cos (‘AA‘ZC!)] 3

and the unit tangent to the curve is

-_dr_dr “d_e.' "Qeﬂ'!(l‘g)
ds dé ds

which has similar meaning in the transverse plane to the directional

derivativé\%%; in the normal plane,

while
- 2 2 -
(r)er = A1 -O-A2 er
=-[/A12 + 4,7 sin (—A4—2a)] I+ [/Alz + 4,7 cos (—A4-2a)] 7

creees o (50)

while the co-efficients A1 and A2 have the previously described meanings,
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CHAPTER VI

THEORY OF HELIC

AL INTERFERENCE IN SLOTS OF VARYING LEAD

INTRCDUCTION

There are a group of problems primarily concerned with tool engineer-
ing where the interference mechanism becomes complex owing to the fact
that the lead of the helicoid changes from point to point. This

obviously gives rise to an interference surface whose geometry is some

function of a variable lead.

One such case was examined by Etheridge and Waynham(l7) where the inter-
ference mechanism was shown "qualitatively" for the case of helically
fluted conical cutters of constant lead. This particular example more
than adequately demonstrated the totally destructive nature of the
interference mechanism when variations in lead or geometry are encountered,
In this instance the effect of changing radius coupled with constant lead
produced a varying interference pattern as the section diameter changed.

Plate II and Figure (32)show typical workpieces.

(18) (19)

Thornley described Mabbon and Sabberwal's work with helically
fluted cylindrical slab mills of varying lead and a test piece reproduc-
ing the effect is shown in Plate IIl. Here once again the use of a disc
cutter yields a totally inadequate rake face on a cutting tool when a
shortening helix is encountered, whereas a positive radial rake angle is

achieved if a disc cutter is used in a slot where the helix is lengthening,

The rake angle will vary from point to point in such a cutting tool as
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Sabberwal demonstre d(20) i is i i i is i 1
a rate during his investigations. This is readily
appreciated by comparing the two workpieces in Plate TII where the

effect of lengthening helix is seen in the right hand frame, and
shortening helix in the left hand frame. Mabbon and Sabberwal, however,

used end mills to minimise interference and consequently produced a

surface which was 2 non-orthogonal network of straight lines and helices,

while the workpiece shown in Plate III for the lengthening helix is a
* . . . ‘ .
network of helitrochoids and helices of variable lead as a direct con-

sequence of using the disc cutter.

Etheridge and Waynham in their study demonstrated a correcting mechanism
which effectively increased the rate of rotation of the conical specimen
for a given constant lead, so that the helix angle was maintained
constant at any diameﬁér of the cone. This corrective measure gave rise
to a pattern of interference similar to that for constant lead cylindrical

work.

The superposed rotation was achieved by using an attachment to the con-
ventional dividing head which consisted of a bevel gear differential
whose cage was rotated by a cam follower, the work being attached to the

output side of the mechanism. This device made by Waynham is shown in

Plate IV,

Mabbon and Sabberwal''s device(lg) similarly was an attachment tb the
dividing head and consisted essentially of a connecting rod driving the
work on a parallel axis through a variable rise cam mounted on the work
table and driven by the dividing head chuck. Although independently

proposed both mechanisms are essentially variable lead attachments whose

cam profiles are determined by empirical or semi-graphical techniques.
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It is possible, however, to define analytical procedures for
determining the magnitude of the superposed rotation for particular
variations in lead and these are developed as part of this work.
Since there are many different lead forms which can be produced, the
theoretical treatment will be restricted to an analysis of that super-

posed rotation required to maintain the helix angle constant along a

conical workpiece surface.

Whilst a complete analysis of conical cases lies outside the scope of
this text, the lead form derived for this situation will be used to
develop a theory of interference for cylindrical workpieces of variable

lead.

ANALYSIS FOR THE SUPERPOSED ROTATION

(a) THE CONICAL WORKPIECE

The limitations imposed by the design of the conventional milling

machine and dividing head are such that only helices of uniform lead

can be produced and further the table must be set to a predetermined helix
angle of constant magnitude. This setting angle defines the base

generating cylinder referred to in Chapter III,

Clearly, if a helical flute is to be machined in a conical workpiece,

the physical cutter is aligned relative to some path on the cone, while
the framework containing the cutter is moving along a cylindrical helix
defined by the setting parameters. Figures(33)and (34)show the system

and it is readily deduced that the framework containing the cutter system
is colinear with the BINORMAL, NORMAL and TANGENTIAL unit vector direc-

tions of the CIRCULAR HELIX. The contact path of the cutter, however, is
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BINORMAL, NORMAL and TANGENTIAL unit vector directions to the CONICAL

HELIX. It will be shown that this curve is an Archimedian Helix of

uniform lead,

Theoretical Treatment

(1) Archimedian Helix
Consider the element shown in Figure( 35)

dr - P
I, - tan Y =m

where m is the slope of the semi~cone
therefore
dr = m dz
where dz = b d0 since the workpiece has a constant lead
therefore
dr = m b d6
integrating

r=mb 6 = aoe «\\1«\&(51)

This is the equation of the plane Archimedian Spiral and the vector

equation of the base cone helix is seen to be

T

re + boe
T z

= 4a 65 + beg -|-;||-(52)
(e} r VA

The axes passing through the cutter centre are colinear with the

. . . - —“ ’-' ‘
following unit vector directions i.e., b', n', t',
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-8l e - B2 &
- e. = B2 eg + B3 e,

b' =

S : 7
i_aO (1 +6%) +p ]/ao(z : 052, 224 + 65

where
2 -
Bl = —-Zaob[ao (1 + 62) + bZ] 2
2 2 -
baoe[ao 1+ 8% 4 bz] .

2 2 : _
B3 = % (10 )[302(2 + 92) + b%] e

r

B2

0

z

-Nle +N2e -0N3a
q' r 6 2

Véoz(l + 62) + b2 Vgg(z + 62)2 + b2(4 +62)

— 2 2 21 -
N1 = -aoe[ao(z +07) +b ] e

2| - I
N2 = ao[%OZ(Z + 62) + 2b ] ee
2 -
N3 = -jba 61 e
o z
ae + a fe, + 5
E' . _or o © Z

2 2
Vé 2(1 +87) + b
0 -
It will now be shown that the necessary correction will be logarithmic
in nature in order to maintain a constant helix angle on the surface of

the cone; at the same time ensuring colinearity of the moving cutter
b

framework and the cutter axes. (Figure 36).

(ii) Logarithmic Helix
The superposed rotation when used to correct conical cutters must be

such that the helix angle on the base cone is constant. Consider the

element shown in Figure 37
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dz'
ocC 0001000(53)

CoOsSC =

where ¢ is the defined constant helix angle.

dZ'=\(n_2+ldz

....... (54)

where m is the slope of the semi~cone,
now oc2 = ob2 + bc2
therefore

oc2 = dr2 + dz 4 r2d62 ceeeeea (55)
Substituting (54) and (55) into (53)

CosSc = m2 f 1dz

Vérz + dz2 + rzde2

which becomes upon squaring

C2 _ . A22dz —

dr” + dz” + r“ds
where ¢ and A have obvious meanings.
Therefore
2 2|dz 2 2 ldz 2 22 2 |dz 2

cm [é@] + c {éa] +cr =A [aa]
Collecting terms and taking the square root yi2lds

B%—g-=c(ro+m2> cevves. (56)
where

B = /(m2 + 1) sin20
therefore

6 =2 1og {r +m2]+K1 veveens (57)

cm e ] o

But at z =0 6 =0

therefore

B
Kl T 1Oge o
cm
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The required superposed rotation is, therefore

- mz
6 =D loge [1 + ;~} ceeeeaa(58)
o
where
D =2
cm
and B, ¢ and m have their previously ascribed meanings.

Equation (58) may be rewritten in its exponential form as follows:

e =1+;— ) nccoc-c(sg)

But ro + mz is the instantaneous radius (r) of the cone at any point,

Therefore

k6 A (10))

This is easily recognised as the polar equation of the plane logarith-

mic spiral.

(b) THE CYLINDRICAL WORKPIECE

When the logarithmic rotation is superposed for a cylindrical workpiece
the cutter is aligned relative to a constant lead circular helix. 1i.e.
the cutters principal axes are colinear with the RINORMAL (B), NORMAL (N)
and TANGENTIAL(T) unit vectors to this helix. The workpiece, However,
owing to the superposed rotation is moving in such a way that a

logarithmic helix is traced out on a base generating cylinder of radius

!
r and there is clearly a moving unit vector triad of BINORMAL &
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NORM q T T . . . .
NORMAL (n ) and TANGENT (t ) vectors to this logarithmic helix. As
this triad moves along the base logarithmic helix the cutter axes
make particular direction cosines with the moving frame and a point

b . — e
on the cutters periphery has to be transformed from BNT directions
t 1]

S D
through b n t and into the cartesian reference frame xyz, The inter-—

relationship between these is shown in Figure (38).

Whilst these basic relationships remain the same irrespective of
whether an end mill or a disc cutter is used the surface geometry will
inevitably be different owing to the distinctly individual patterns

of motion of each cutter within its own reference frame. This is

/
shown in Figures (39) and (40).

Theoretical Treatment

(1) Geometry of Base Logarithmic Helix.
From equation (59) the vector equations for the required helix in a

radial co-ordinate system are

- - [ -
r =Y ¢e +‘—9‘Leke—'1]e v~110!1(61)
o r m Z
and
ar _ _ - k8 - 62)
'd—e- —roee+Ae eZ n--'-~(
therefore
.CE. = Vr 2 + A2e2ke : vl!mu\u(63)
de o
and _ k6 -
_t 4y Tt the ey . eevne e (64)
t ='a'g"" i
/4*2 + A2e2ke
o
cm
where A = kro and k =
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From equations (62) and (63) the normal unit vector will be
~ 1!
1! _‘;’i 1
n = ds EdtE
gdsl
therefore
[ 2 2o2xkel- [ - -
-1 _l_ro + Ae ]e -LkAzezkee + rkAekee i
n = — - S Lo 2 . (65)
2
Vgo + ATe k6 Véoz + (k2 + 1) A2e2ke
and
-1 T 1
b =t xn
[ ko
I_kAe }e —[Aeke]g +[r]g
= r 0 0 4 (66)

¢§02 b (K2 + 1) a2.2K6

Equations (61) to (66) describe the situation for a lengthening
logarithmic lead, but it is also possible to determine a group of

equations for when a shortening lead is required.

From equation (59)

e*k6=l__ﬂﬁ
T
o
therefore

r
z=_o_[l_ek6]
m

and the required vector equations will be

T
— -— lo) _ke N
- —_— - e
r roer + [l e ] z

and

(sl

-2k6
%=£2+Azek
(o]
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where A and k have Previously defined meanings.

The unit vector triad for this system is

N r e + po <8 e
t = _0 6 z
1 5 5 cieeaaa (67)
b2, 42, 2KkD
(e}
2 2-2ke|l -~ . 2 -oke] - ko] -
_ _L + 2% ] +L 0 - kg
n, _ _Lo e kA"e ey rOkAe e, - (68)
2 2 -2 =
Véo + a7 KO V402 + (e 1) a%e 2O

...k - - — -
- —[kAe e] e —[Ae ke] e +I:r ] e
. - r 6 o z

Vgoz PN OCIN 1) a2 2K8

O
i

ceeanaa(69)

(11) Locus of a Point on Cutter Flank.
The geometry produced by the cutters flank will be examined for both

end mills of constant section and disc cutters of uniform thickness.

(i1)a: The End Mill.
From Figure (39) the co-ordinates of a point on the cutter’s periphery

in its own axial frame, will be given by the vector equation

i

r - A) N+ B
The (d =) (r.)
where
d = Depth below base cylinder radius

A = Scale factor along cutters length

r = Radius of the end mill

In order to examine the motion of such a point as the cutter moves
around the workpiece, it is necessary to transform this point into
1 vt

the b , n , t framework to determine its po?ition in the moving

system. The required transformation is



B . 7
X" Nen 5.n 7.5
8] ,,_ = = = =" = =
y = Neb Beb T+b
—_— ¥
“ | Nt Bt Tt
L L .
and for the case of the end mill this becomes
" =~ =! = =! = =
X Nen Ben T-n
0 _ = =! = =! =
y = N<b B+b T+b
" - -1 - 1 - 1
Z N+t Bet Tet

In order to locate a point on the cutter in the x, vy,

frame it is required to further transform equation (69).

the added rotation

7 i~ qr 7
v _ -t -1
X n i b i t e1i x"
-t [ B -1
y{ = |n-j b +j t *] y'to o+
-1 - _r
z n *k b *k t <k z"
L L 4L A
1
where B altn

0

' ! '

- -
x'
y'
Z'
- -
(d-x)
r, .. (70)
0
z cartesian
i.e. For
r -
r cosf
o
r031n8 (71
b6
»d

-

log |1 + EE] and r , m and k have the values previously
e r J o

ascribed, whilst n , b and t have the meanings given in equations (64),

(65) and (66).

For the case of a subtracted rotation the transformation will be

— -q; — =
noog -t - 1 f .t
¥ -t I | ‘—I‘— Et
y1 = N'bl B-b1 1
1" . | — T E!
zl Notl B'tl 1
§ | -

-

(d=-2) .

-

.. (72)
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N

(ii)b:

The Disc Cutter.

o'l

T cos
o B
r sin
o B

b6

.. (73)

From Figure (40) the co-ordinates of a point on the periphery of the

disc cutter in its own frame are given by the vector equation

;pc = [d - R(1 - cos¢)] N + [w] B e[:R sin¢] T

where

o =W o
i I it

=
il

Transformation of this point into b , n , t

Cutter radius

—

b

=z
B

=]
o'l

2z
i

Depth below base cylinder radius

Half width of the cutter

ved]
=l |

loch)
o't

leeh]
1

Angle turned through in cutters frame

-1

is given by

=k =i
. L]
o't B

[ar]|
)
1

-

-

and for the added rotation this transforms into xyz by

-1 -
n -1
1t
n *jJ
-1
n *k

o] (op)]

o'l

.
(SN

~1

- -

[d—R(l—cos¢ﬂ

——

W . (74)
- R sing
r cosfB
o
r singB + o (75)
o)
b6
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-

3 ~
- L i1, Mz
where 8 " 1oge Ll + - [
ol
For the subtracted rotation,equation (75) would be modified in a

similar way to equation (73) by using the appropriate subtractive

unit vectors and the required statement for B.

i.e.
1 i mz
8 K loge l-l -r——-}
o
(ii)c: The Plane Intersection Curve.

Owing to its geometry the disc cutter will generate a different inter-
section curve in each transverse plane it passes through while moving
along the z direction, The geometry of the curve is determined by

projecting back along the variable lead helix using equation (22).

i.e,
X =xcos § -~y sin §
P
yp = x sin § + y cos §
z =z+;:__o_ [ekG—l]
P m
where
=1 L -z) +1 cereea (76)
$ = ” loge [r (zp z) }
)
If the z_ = O plane intersection curve is required}equation (76)

reduces to

_1, _mz
¢ =1 log, r

For the subtracted rotation the required equations will be

X:xcosﬁ-ySin6



Yy =X sin §
]P
Z=Z+ro
P m
where
_ 1
§ = k loge

and for the z = 0

1
§ = E—loge

..44..
Ty cos §

[1 - e‘keJ

1- %~ (zp - z)]

plane intersection curve

1+£ﬂ£
r
o]

b



PART 2 PRACTICAL STUDY
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CHAPTER VIT
M

EXAMINATION OF INTERFERENCE IN SLOTS OF CONSTANT LEAD

INTRODUCTION

The practical studies will be discussed under three distinct headings
(a) The Production and Physical Examination of Practical
Workpigce Profiles
(b) Comparison Between Predicted Geometry and Practical Result

(c)  Application of Theory to Rake Angle Determination for a

Practical Cutter.

(a) TEE PRODUCTION AND PHYSICAL EXAMINATION OF PRACTICAL WORKPIECE
PROFILES

For the purpose of examining the helical interference mechanism a
number of workpieces were produced with a small range of fluting
cutters commonly used in manufacturing practice by tHe small tool
industry. Figure (41) shows some of these fluting cutter types and
their setting arrangements, together with information about the type of

small cutting tool which would be produced by the particular method.

The general arrangement between the cutter and test workpiece for
producing the specimens is shown in Plate V and the workpiece fixture

in Figure (42). A thin disc was chosen as a workpiece because this made
physical examination on the "Nikon" projector easier and at the same
time eliminated the problems of shadows formed when using thicker work=-

plieces owing to the receding helical surface. The workpiece dimensions

are shown in Figure (42),
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For the purpose of

eXamining setting parameter effects upon the

e - )
helical interference Mechanism, three basic cutter shapes were used

for both axial and offset arrangements in conjunction with a range of

base cylinder settings.,

Table 1 shows the range of testsg devised, and Plate VI shows the various

cutters.

Table 1

Cutter Settings

Cutter Cutter

Type

Dimensions

{

Over work
Axial Centre

Offset from
Work Centre

Side and Face

5" x i x v Yes Yes
Equal ”Vge” 4" x M ox 1" Yes Yes
Notch (90 inc)
Convex Radius 23" x 3" ox 1V Yes Yes

Test

Procedure

A constant lead of 20 inches was chosen and the milling machine was set

for this purpose.

The disc workpiece was mounted on the fixture and

this in turn was set between the dividing head centres and properly

secured.

For the case of flutes milled with the cutter set over the axial centre

line

central

of the work, the machine table was not rotated initially until the

plane of the cutter had been located over the work axis.

When

this had been done, the work table was set to a helix angle calculated

with respect to the appropriate base generating cylinder and the fluting

cutter set to the required cutting depth.

A suitable cutting speed and
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table feed were chosen and the cutter was then passed through the

1 1 .
workpiece and the machine clutch disengaged prior to resetting.

In order to demonstrate the effect of helix angle choice, the machine

table was reset successively to previously calculated angular settings

and the workpiece indexed to a neyw position prior to cutting a siot.
For those grooves produced with a Side and Face cutter, nine different
settings were used because it was possible to physically observe the
position of the base cylinder in the slot geometry, whereas for the
other types of cutter this was not the case. For the other examples,

only three settings were made since these profiles would be used simply

for comparison with those predicted by the theory.

A similar series of tests were conducted where the fluting cutter was
offset from the work axis in order to compare the practical result

with those predicted by the theory. The cutter offsets were made by
firstly aligning the cutter mid-plane with the work axis at a work

table angular setting of zero degrees, then winding the cross-slide over
to the required displacement from centre. The table was then rotated to

the required helix angle and the cut taken.

Each specimen was removed, cleaned and then defrazed prior to being
labelled for identification purposes. Physical examination of the A

and H specimens was carried out on the Societe Genevoise MU 214B where
the generating cylinder radii were measured using a crosswire microscope.

Workpiece profiles were traced off from the 10x projected image on the

Nikon screen.

The following tables summarise the test series,
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Test 1 Cutter Over Axial Centre-line of Work
Wérk i fan 3] t
5;————;“&\4 5" x 1" x 1" S & F Cutter
Theoretical .
" ; Cuttin Measured
Slot Base C + . g
o Diae (zi;ndeL Table Setting Depth Base

V . Angle (deg) (in) Cylinder

i Dia. (in)

i

LAl

4.0 32.14 0.75 3.940
A2 4.2 33.41 " 4.309
A3 A 34.65 " 4,477
Ab 4.6 35.85 " 4,682
A5 4.8 37.02 " 4.877
Ab 5.0 38.15 " 5.067
A7 5.2 39.24 " 5.340
A8 5.4 40.31 " -
A9 5.5 40,83 " -
I
Test 2 Cutter With Simple Offset 0.5 in
Workpiece "H" 5" x 3" x 1" S & F Cutter

:; f |

:

’ Theoretical Cutting Measured
Slot Base Cylinder Table Setting Depth Base
Code | Dia. (in) Angle (deg) (i) Cylinder

Dia. (in)
H1 4,482 35.15 0.5 4.562
H2 4.992 38.1 " 5.076
N 1
03 5.5 40.82 -




- 49 -~

Test 3 Cutter Over Axial Centre-line of Work
workplece ”B” 4” x %H x 1” ”Vee”
Cutter (90  inc)
-
Slot Code Tthretica? Base Table Setting Cutting
| Cylinder Dia. (in) Angle (deg) Depth (in)
B1 5.5 40,82 0.4
B2 5.1 38.70 "
B3 4,7 36.43 "
Test &4 Cutter with Simple Offset 0.5 in
Workpiece "'C" " x M x 1" "Vee"
Cutter (90O inc)
!
Slot Code Theoretical Base Table Setting Cutting
Cylinder Dia. (in) Angle (deg) Depth (in)
Cl 5.123 38.82 0.375
C2 5.311 39.83 "
c3 5.50 40,82 "




Test 5 Cut

ter Over Axial Centre-line of Work
Do MELTIC

Workpiece "g" 231 By qn
Convex Radius
» Cutter
Slot Code g The?retica? Base Table Setting Cutting
i Cylinder Dia. (in) Angle (deg) Depth (in)
I
) I
KL 4.5 35.26 0.5
X2 5.0 38.15 "
K3 5.5 40.83 "
Test 6 Cutter With Simple Offset 0.5 in
Workpiece "L" 23" x 3" ox 1"
Convex Radius
Cutter
Slot Code | Theoretical Base Table Setting Cutting
Cylinder Dia. (in) Angle (deg) Depth (in)
L1 4,514 35.34 0.5
L2 5.007 38.19 "
L3 5.5 40,83 : "
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(b) COMPARISON

BETWEEN PREDICTED GECMETRY AND PRACTICAL RESULT

In order to validate the theory it was considered most practical to
generate sets of curves which represented intersection with the trans-
verse xy plane at z = 0, Thig Was an obvious choice because it is the
intersection curve €xposed at the surface of any given workpiece. It
also lent itself to examination by optical projection. 1In order to
generate this curve theoretically it was necessary to determine the
surface geometry and then Project into the desired plane. The surface
geometry quite clearly is dependent upon the cutter geometry and its
appropriate contact path $0,each case, therefore, will be examined

separately,

(i) Straight Sided Disc Cutter
As was shown in Chapter IV this cutter type produces two distinctly
different surfaces depending upon the setting parameters, i.e,
undercutting if the cutter tip lies below the generating cylinder and
Backcutting if the cutter tip lies above the generating cylinder.
If the base cylinder lies within the workpiece and the cutter is set
to a depth which places its tip below this cylinder, then the surface
becomes discontinuous along its intersection with this base cylinder
surface. See Figure (43). It was shown experimentally that the

trailing edge of the cutter produces undercutting in this circumstance

and the leading edge backcutting.

To account for this phenomena in the theoretical treatment, it was
necessary to use the parameter "+0' for undercutting and "-8" for back-

cutting in the equations for the helitrochoid and the epihelicycloid

respectively.
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The int ecti : .
the intersection curve ip ¥y was obtained by using the computer to

solve the equatio : . .
duations for the given cutters peripheral locus at particular

values of 6, and then Projecting back along the required helical path

into the z = 0 plane. Ip the case of an offset cutter the required

equations for peripheral locus are

X = A cos§H + A2 sind

1
y = A2 sinf - A2 cosh
z = A3 + b

where

a-d+ R(l - cosB cosd) + y singB

[bw cosB + R(a sing + b sing cos¢ )1/4a2 + b2
= [aw cosB + R(a sinf cos¢ - b sin¢)@/¢a2 + b2

and theta with its incremental steps satisfies the condition 0<6

e

S

for the trailing edge, while theta satisfies the condition 0>8 for the

leading edge.

In the event of the cutter being set over the axial centreline of the
work, the parameter B will be zero and the coefficients AI’ AQ and A3
reduce to the form given on Page 17. The projection into the Zo plane
from the calculated point x, y, z is obtained by applying equation (27)

derived from Figure (26)

X cosd - y siné

P_;>’<‘
i

y cosd + x siné

Y
I

0.0

z + bo

R
I



§ = -2/b

The flowchart and computer pro

Appendix 1 under the name RE

sectl

range of cutter workpiece characteristics.

since £l = ¢
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gramme for this cutter are given in
FORMO and can be used to calculate inter—

on profiles for both offset ang axially aligned cutters for any

Table II gives the setting parameters and geometry for tests Al, A5

and A9,

Table II

I'Lt -
ngZice Test a b R w d Theta® Thetaf
B Piece (in) (in/rad) (in) (in) (in) (rad) (rad)
Type
! -
| Dack- Al 2.0 3.1835 | 2.5 | 0.25 | 0.0 0.0 ~0.7
| cutting
I}
Back.— AS 2.4 1t 11 " 0.4 " _0'7
cutting
Unde‘f‘— A5 . 2’4 " " 1" 0.4 " +0.7
cutting
Under= |49 1 2,75 " " "] 0,75 " +0.7
cutting |
i

Graphical results for this series of tests are shown in Figures (44),

(45) and (46), with the theoretical prediction in open circles and the

actual workpiece geometry in bold outline.

The nature of the discon-

tinuity in test A5 is clearly seen in Figure (45) and observation of

the bold outline shows that the portion of the backcutting curve below




...5[,'_.

the base cylinde: ius has -y
I y er radius has been removed by the trailing edge of the

cutter hi 3 X . .
ter, whilst the reverse is true above the base cylinder radius.

It can be seen from the tabular results of test 1 on Page 48 that the
theoretical base cylinder diameter and the measured diameters compare
relatively favourably although some error is present. This can be
attributed to an interaction of two factors, namely, the setting

errors for table inclination, because the machine had no vernier scale
and rounding of.the workpiece at the base cylinder radius. An angular
setting error of 0.1 degrees produces 0.010 in error in the base circle

radius. The effects of rounding at the intersection are easily seen

from Figure (45) and the difficulties in estimating the true intersection

point under a measuring microscope are obvious, and must be, therefore,

the major contributing factor to error in the measured radius.

Table III gives the data for an offset cutter and it relates to the
designated variables and constants in computer programmes for
predicting the shape of such test pieces. The theoretical and actual

workpiece geometries are given in Figures (47), (48) and (49).

Table III

. _ g .
ﬁ éntfr Test a b R y é B Thetas Thetaf
| polSRCe lpiece | (in) [(infrad) | (im) | (in) | (im) | (rad) | (rad) | (rad)
b Type ;
{
o Back- 0 o241 3.1835 | 2.5 ]0.25]0.0 |0.1828] 0.0 | ~0.7
i cutting
:r Back = 2 2.496 ] " 1" 0.25 " 3] -0.7
% cutting
? Under -~ H? 2.496 n " 11 0'25 1" " +Ov"7
| cutting -
Undey - 13 2.75 " o n 0.5 " " I +0,7
cutting !




(i1) Vee Form Cutter

M o~ . X X
ne contact path for form cutfers 1s quite different from that for a

e . . . . .
straight sided disc cutter and 11 most circumstances the path is
. yel

independent of the angle turned through by the cutter. Tor a Vee

torm cutter 1ts contact path is always a straight line which lies in
the work surface and at the same time is in a plane which contains

the binormal and normal vectors to the base helix, i.e. the NORMAL

PLANE. Figure (50) demonstrates this fact.

The equations of the contact path for an offset Vee form cutter are

= + T
X Al cosb A2 sind
y = Al sing - A2 cosb
z = A3 + b
where
A1 =a-d+ R(1L - cosB) + h(cosB ~ sinB tany)

b -
A= 5 [%(COSB tany - sinB) + R sinB
/a© + b .

-

a ! -

A, = h(cosB tany - sinf) + R sinB

3 2 2 |
a~ + b 1

and h is a parameter.

For the condition © = O the equations for x, y and z reduce to the con-

i ini traigcht line 1n space which is
stants Al’ A2 and A3, thus defining a s g P
the v curve for the surface. ALl other v curves are straight lines but
o

i 1 lue chosen for theta,
displaced along the base helix depending upon the valu

. : { 7 lane is obtained in the same manner as
The intersection curve in the Z_ P

previously.



i.e
Xl = X cosg -y sing
Yl =y cos$§ + x sing
%1 =2+ b§=20,0
where § = -z/b since Z1 = ¢

The flowchart and computer programme for this cutter are given in
Appendix 1 under the name of VEEFORMQ. This programme is applicable
to all types of Vee form cutter. Setting values for the axially

aligned tests are given in Table IV while offset cutter characteristics

are given in Table V, I

Table IV

: i
g Test a . b GA R d B hS hF
g Piece (in) (in/rad) (rad) {(in) (in) (rad) (in) (in)
¢ 31 2.75 | 3.1835 0.7854 | 2.0 | 0.4 0.0 0.0 | C.4
B 2.55 "o " t 0.2 " " "
i‘; B3 235 T " 1t O'O 11 T "
ﬂ
Table V
Test a b GA R d B hS bF
Plece (in) (in/rad) (rad) (in) (in) (rad) (in) (in)
C3 2,750 3.1835 0.7854 2.0 0.375 10.1828 | 0.0 0.4
C2 2 655 i3] 1n it 0-1875 11 n "
Cl 2. 562 1" 1 n 0.0 n n it
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The results for thj i
4 1S t".rl £ 4 . . .
S€ries of tests are summarised in Figures (51)

to where ¢ i fo s
(56) re the experimental curve 1s in bold outline. A curved

rofile in & i
D in the & Plane would be expected from the geometry of the

system.

(1ii1) Convex Form Cutter.
The contact path for this cutter is a circular arc with a radius

and centre of curvature equivalent to that of the cutter. This profile

lies in the normal plane.

The equations for this system are

X = A1 cosf + A2 sind

y = Al sing - A2 cosb

z = A3 + bb

where

A =a - d+ R(1 - cosB) + r[cosB(l - cosé6) + sinB sind]

l Sue
b - 7
A = sinB(R = r(l = cosd)) + r cosB siné

2 2 2

a + b ) B
a - .
A sinB(R = r(l - cos8)) + r cosB siné
3 a2 , b2 |

and § is a parameter.

For the condition 6 = O once again the equations for x, y and z reduce

to the constants Al’ A2 and A3, thus defining a circular arc in space

which is the v curve for the surface. Increasing the value of theta
o

simply displaces the v curve along the base helix. The intersection

curve is derived as before by using the same group of equations.



i.e.
Xy = x cos§’ -y sing!
Y1 =y cosd' + x sing!
Zl =z + bs8' = 0.0

where ¢' is the angle turned through to find the 2z plane.

¢t = - z/b since %1 = 0

The flowchart and computer programme appear under the name of CIRFORMO
and it is applicable to all circuiar convex form cutters. Table VT
anc Table VII give the cutter characteristics for axially aligned and

offset cutters respectively,

Table VI
Test i a b r R d B DeltaS$S DeltaF
Piece 5 (in) (in/rad) (in) (in) (in) (rad) (rad) rad)
© Kl 2.25 3.1835 0.3125 1.375 0.0 0.0 0.0 0.5
: I{Z 2 50 1t 1t it 0.25 " i 1hi
K3 0] 75 n 1" 13 0'5 mn K] 1A

Table VII

N ?
Test h a b r R d 8 DeltaS| DeltaF |
i ; ; |
Piece | (in) (in/rad) | (in) (in) (in) (rad) (rad) (rad) §
B
| L1 ; 2.257 3.1835 0.3125 1.375 | 0.0 0.1828} 0.0 0.5 ‘
{ L2 . 2.504 " i " 10,25 L " i
’ |
| i | ) i} -
L3} 2.750 " " 0.5
i
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I

Figure 5 2 : . .
Figures (57) to (62) summarise this test series and once again the

experimental curves are ip bold outline

t 1s clear i + IR
It arly evident that the nature of the work surface geometry

K=l - o : k]
Lor a given cutter is dependent upon the characteristics of the coef-

ficients Al’ A2 and A3 which necessarily change from cutter to cutter,

owing to the format of matrix (26),

Of the three cases examined here, only the cutter path for the straight
sided disc 1s dependent upon the angle turned through by the cutter,

so therefore, care must be taken to determine the specific characteris-
tics of any individual cutters contact path in order to assign correct
values to the coefficients. Once this path is determined the procedures
for establishing the intersection curves are identical because all the
work surfaces comprise "u'" curves which are circular helices and "'y
curves representing the appropriate contact path.

(c) APPLICATION OF THE THEORY TO RAKE ANGLE DETERMINATION FOR
A PRACTICAL CUTTER

When a helical surface is used as the rake face of a cutting tool it is
normally a tedious exercise to determine the true normal rake angle.
Owing to such difficulties, therefore, it is usual practice to calculate
the normal rake angle in a given base plane; an expedient used by
theridge and‘Scott21 when they experienced such problems when examining
the uneven flank wear on a large, helically gashed form cutter. This
cutter was used to form mill the steam face of turbine blades fitted

to the low pressure side of power generating plant, made at the

English Electric Company Limited, Rugby, England.
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Whilst it 1 e L
wollst 1t 1s perfectly possibie o apply the theory to rake angles for

experime 1 pi i i
an perimental workpiece it seemed of more practical advantage to

extend the theo to i . . . . o
e Ly to the more complex cutter used in the machinability

. 22
tests conducted by Scott The cutter dimensions and geometry are

1 o 3 s m .
shown 1n Figure {63). The rake angles of this cutter, measured in a
base normal plane are presented solely for the purpose of comparison

and validation of the theory now developed.

(1) The Surface Geometry of the English Electric Cutter
The fluting cutter used to manufacture this heavy duty form cutter was
an unequal "Vee" of 20°/10° flanks, with an outside diameter of 7.5 in
and a tip radius of 0.130 in. The 20° flank was used to generate the
rake face,prior to final grinding with a "saucer" wheel of similar
geometry., TFor the purpose of theoretical treatment the tip radius will
be ignored since it is only specified to produce the root fillet radius

of the tooth space,

From Figure (23) and the equations on page 25 the position vector of a

general point x , y , zp on this surface is
P >

r = (A1 cosd + A

sinf) i+ (A, sinb® - A_ cosbh) 3
P 1 2

2

+<A3+be)12 ceren..(78)

. . . o1 .
and the directional derivative along the ''u" curve is

or
B = (A

sind + A2 cosf) i + (A1 cosd + 4, sin6) j + () K .,..(79)
d

1

D

which may be rewritten in the form

5T - ~oyl T 6-9]7 b| & ceenen. (80)
3;2 = [rz sin (¢ G)l i+ [rz cos ( 3o+ [ J
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}
2 lz and T :.2A2.}‘A2
-

The coefficients Al’ A

cutter described on page 55

5 and A3 have the same form as those for the vee

The directional derivative along the "v" curve is

ot
= (B, cosb + B, gin6) T + (B i - T k
. 1 p $1m8) 1+ (B sind - B, cosd) j (B k ....(81)
where
» 8[&1
Bl = = cosB - sinB tany
oA ~ -
BZ= = Y ;
s ccsB tany - sin8
vi Jéé + b2 B
0A r -
3 a ' .
B3 = = cosB tany - sinB
oh 2 2
a.+b }

which may be rewritten in the form

_35% = [%1 cos (a —6)] i- [rl sin (o —6)] i+ [B3] k ceeee.. (82)

where

-1 | ) '
= = B +B
o = tan ’BZ/Bl] and t,
[

An inward normal to this surface is

9T
N=_px_p

n 56

o}

= d

Q>

il

_[Cl cos (6 -8) + 02 sin (a —G{Ji + l?l sin (8 - B)

- ol
1
i
i

- C2 cos (o -G{J i+ LC3 cos (O —a)] K veeven.(83)

where C1 = A3r2 C, = brl C3 T T2t



A unlt normal to this surface is

kS
.\(

- Nx 1 =+

Ny j + ¥
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— Nz k
— _MM_

where Nx, Ny and Nz

—————n

/2
YNx© o+ Ny~ + sz

are readily derived from equation (83) above,

7 -

S7 )
T

(11)

3

he true normal rake ang

2 <
B

1

gin (§ - @) + C32 cosz(é - o)

True Normal Rake Angle

(44) and (45) of Chapter V by means of

VESCO.

included in Appendix 1.

The practical cutter varied in radius around

necessary to specify both the radius and the

on the profile, at which the rake angle was required,

the form and it was

and

*& was calculated using equation (40), (41), (43),
the computer programme named

The flowchart and programme designed for this purpose are

plane containing the point

These were

specified as ABAR and Z1 in the computer programme and Figure (64) shows

the cutter sections used in the calculations.

Table VIII gives the detailed dimensions used in the calculations for

this cutter and the theoreticalvalues for true normal rake angle are

given in Table IX.

Table VIII

é a b GA R d 8 Step Offset
i (in) |(in/rad) | (rad) | (n) | (in) | (rad) § (rad) | (in) !
| : 3
3.75 | 12.732 | 0.1745| 3.75 | 1.8591|0.1845| 0.1 | 0.6875 |
Abar 5 375 | 3.050 | 3.520 |3.550 | 3.300 |2.990 | 2.700 | 2.578
(in) H
21 ﬂo 0000 0.3125] 0.8125/1.3125] 1.8125 | 2.3125| 2.8125] 3.1250
(in) i




Table IX
S0 o

5]
3

—

H
— i

Theoret;
-ical ﬁ
Reke 41079 | 1119 19,02 [8.90 |9.96 | 17151 13.24

: . i
. i g !
21(in) 10-0000 | 0.3125] 0.8125 1.3125;1.8125{ 2.3125 | 2.8125 13.1250
:

14.0¢%

|
Angle #
i

Measur
—ed ) _
Rake ﬂ - 12.75 12 14 18.2 18.75 -
|
H

Angle

(ii1) Rake Angle In A Base Normal Plzane
The base normal plane contains the x axis and the binormal vector to
the surface at the base cylinder radius. For the particular surface
considered, the binormal vector is also one of the network curves and

all points where the rake angle is required, lie along it. The rake

angle at any point is obtained by the dot product of the two unit vectors

b and r which lie in this plane. i.e. the unit binormal and the unit

vector in the direction of the radial to the point,

where
- _ (Bl cosd + B2 sind) 1 +- (Bl sinb -~ B2 cosh) 5 + (B3) k
J%lz + B22 + B32
and
- x i+ YP i+ (zp - Zi) k

D
2 2

Vé + + (z_ - z.,)

p 7p p i

Here B., B. and B, have their previous meaning; Xp» ¥p @nd z, are the

1’ 72 3
{ i 1 ! is the intercept which the
co~ordinates of the required point and z, 1s t p

radial makes at the z axis. The most convenilent point will clearly be



z =0, with 0 set to zero for this to be valid

ThHa T -0 FaleTon s 2 Bl
The computer programme ang flowchart for this purpose is called

TN ~ T - . .
VENSCO and the results are Sumarlsed in Table X. The setting param-

ctrers w a 2 a - 7 7
eters were the same as those glven 1n Tabie VIII.

: !

0.3125 ,0,8125 { 1.3125 ! 1.8125 12,3125 | 2.8125 | 3.1250

Z1(in) § 0.0000

§ 17.31 13.41 |11.60 {11.50 | 12.38 13.68 | 15.18 | 15.90 3

- - 12,75 12 14 18.2 18.75 -

(iv) Rake Angle In A Transverse Plane
In order to determine the reke angle in a transverse plane it is nec-
essary to project each point on the surface into the required plane.
An obviously convenient plane is that where Z = O. The slope of the
intersection curve is then determined at each point under consideration
and the unit tangent to a point in the plene will be given by

dr ~(x sind + y cos) i + (x cos§ -y sind) § + (b) k
p =
S X2 + y2 + 22

and from equation (27) the radial is

0.

T = (x coss - y sing) 1+ (x siné + y cos§) ] + (z + bs) k

The rake angle once agaln is calculated by the dot p?OdUCt of the unit

tangent with a unit vector in the direction of the radial. VETSCO is



the computer propramie .
PULer programme developed for thig purpose and the setting

o

parameters have ti revi ;
P ¢ the previously stated values. Table XI gives the

results for this plane tooe: ; £ ; ;
P ? togetner with those previously discussed, so

that variations can easily be seen

| 0.0000! 0.3125{ 0.8125 1.3125 1.8125| 2.3125 [2.8125| 3.1250

N
}—l
~
= [N
=]
~

Rake | 12070 1 11,19 19,02 [8.90 |9.96 | 11.51 |13.24 | 14.09
( .

i

N - A
Ralke 17.31 13.41 1 11.60 }11.50 | 12.38 13.68 15.18 15.90

Thgqifz tical

r
Rake 26.05 30.7 32,77 32,88 | 31.88 | 30.38 28.62 27.75
d

Rake - - 12,75 12 14 18.2 18.75 -

t 1s readily recognised that significant variations occur by using

i

[eN

ifferent reference planes and, therefore, care should be exercised in
practical application when discussing the effects of rake angle in

machining operations.



CHAPTER VIIT

EXAMINATION OF INTERFERENCE IN SLOTS OF VARIABLE LEAD

INTRODUCTION

In order to examine the interference mechanism in slots of variable
lead it was necessary to develop a reliable mechanism for superposing
the additional rotation Previously described in Chapter VI. The
device made by Waynham was too Ccumbersome for practical applicatioﬁ
owing to its inherent setting problems, so a new approach was made by
considering a redesign of the conventional dividing head to incorporate

the principle demonstrated by Etheridge and Waynham.

The practical studies involved in this area of work will be examined

under the following three headings.

(a) Some Design Improvements to the Conventional Dividing Head.
(b) Superposition of a Uniform Rotation.
(c) Superposition of a Variable Rotation.

(a) SOME DESIGN IMPROVEMENTS TO THE CONVENTIONAL DIVIDING HEAD

Before discussing modifications to the conventional dividing head, it's

design principle will be examined.

(i)‘ The Universal Dividing Head
The dividing head used on the universal milling machine has a wide

ranging facility, but, nevertheless has changed little in design

principle since the late 19th Century.



tgure (63) shows o typical design and it is readily seen from

I

Figure (5) there 1s a fixed relationship between the workspindle and

indexine ans . )
the indexing spindle OWing to the worm and wheel geared arrangement.

The ratio of this gear pair is always 40/1 by convention.

Accurate division of a workpiece is achieved by applying an appropriate

step input to the worm, thus giving a fixed rotation to the workspindle
via the worm wheel. An indexing plate which may either rotate freely

on the worm shaft or remain fixed relative to the dividing head body

is used for providing circular division of a workpiece where directly
factorisable ratios of 40 are not possible. This facility is provided

by holes arranged around concentric pitch circles on the plate. If

prime number division is required the workspindle is geared independently

to the index plate so that motion of the worm spindle causes a

differential motion of the plate.

The dividing head may also be used for the production of helices of
constant lead or cam surfaces of constant lead by fixing the index
plate and worm relative to one another and driving them from the table
screw via a gear train (Figure 5). Clearly the lead produced is

dependent upon the lead of the machine screw and the gear ratio chosen.

The range of work capable of being produced using this standard piece
of equipment is indeed large but even so, non-uniform rise cams, non-

i i lcoil 1 i i 1 ecluded owing to
cylindrical helicoids and variable lead helices are prec . g

the fixed ratios in the machine system. Development of the dividing

head is, therefore, feasible if the principle of the superposed rotation
>

can be incorporated without loss of benefit in other ways.



(i1) The Design Modificatiop

the input worm to the differential &M so that the output rotation

was eilther increased Or decreased for g given travel of the work

The advantages to be gained by thig design modification are as

follows:

(a) Short leads may be produced directly within the head,

(b) Prime number division is automatically incorporated,

(c) lelical surfaces of constant lead coupled with prime number
division is accommodated,

(d) Variable leads and non~uniform rise cams may be produced.

The particular differential mechanism chosen was a simple three
element epicyclic which is shown diagrammatically in Figure (66) and

a detailed sectional elevation with leading dimensions of the complete
head is given in Figure (67). Three views of the partially assembled

Prototype are shown in Plates VII, VIII and IX, from which the mode of

operation is readily deduced.

This design was chosen because of its compact nature and greater

rigidity when compared with the bevel gear differential, tapes and plate
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cams used in the origina]l attachment produced by Waynham. Clearly

the use of a geared System for Superposing the rotation has the

distinct bemefit of greater accuracy. Plate X shows the gear train

for superposing a uniform “otation.

The complete design specification and a Kinemaric analysis of the

mechanism is given in Appendix 2,

(b) SUPERPOSITION OF A UNIFORM ROTATION

The superposition of a uniform rotation was achieved by means of a
gear train interconnecting the primary and secondary'wqrms in the
differential. This is shown clearly in Plate X and it is readily
deduced that the device is effectively a short lead mechanism auto-

matically incorporated within the head.

However, it is possible with suitable setting techniques, to produce
variable lead helices by aligning the machine table to a helix angle

for one set lead and superposing a uniform rotation so that the workpiece
moves relative to a shorter or longer helix. This means, effectively,
that the cutter is rolling along the real helix but its axes are aligned
relative to that helix dictated by the machine table setting. Figure
(68) shows the relative angular displacements. The variable lead is
produced as a consequence of the fixed angular displacement of the cutter

. = a1
within the triad of unit vectors,b', n', t' as they move along the real

helix generated by the head.

(1) Geometry of The Uniform Superposed Lead

From Appendix 2 and Figure (68) the displacement z along the work is

z =b0 =b'd



—70_

where

b = lead per radian of the machine

b' = lead per radian of the system

6 = angle turned through in machine reference frame

¢ = angle turned through in real helix reference frame

But from the Kinematics of the system

-
o = Ll + Zk] 6
therefore
b
' = =
T TTE <A

A position vector on the real helix will be

r =7t e + Abbe
P or z
and |
dr _ _
P - r e + Abe
46 o 6 zZ
while
dr
._..P_.-_-EE... r02+A2b2
de de
therefore
- re +Ab e
dr o & z
—t-l_______B'_d_e.= s ,-,2
do ds vr + AD
o
and
- de! ¢ . _ 2
n"—'ds dEY er .
ds '
while
- ~Abe + T e
SroTroy mr = AP z ’
2
r2+A2b

ceeeaaa (84)

ceeee.(85)

ceee..(86)

ceee s (87)
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i1 plicati
(11) Application of Theory To An End Mill

D I 1 . .
Plate XI shows an end m1ll being used in conjunction with the

modified dividing head and the test parameters are given in Table XII

Table XII

Test g ro * d b
A I € ) . k { Slambda | Flambda Step
Piece|| (in) (in) (in) (in/x)
VL1E E 1.125| 0.5 0.1563 | 1.5916| +0.41485 0.0 1.0 0.1
VLZE || " " " " -0.41485 " " "
x

The theory developed for the logarithmic superposed rotation given in
Chapter VI is directly applicable in this case except that equations
(85), (86) and (87) must be used for the various dot products instead of

equations (64), (65) and (66).

The required direction cosines are, therefore

1 ar '+ Ab2 - 1
TeL = ) {*t = 0.0
%gz + b2 Véoz + Azb2
. - aAb + br —
Teb = 2 N'b = 0.0
/22 + b2 ¢4;2 + A2b2
. - 1
f-; = 0.0 Nen = 1.0
Y - br + aAb U S
5.7 = 0 n *i = - cos 8
2 2
/aT+ b2 w/ro2 + A'b
Abz + ar -t s .
E-E' _ o n+*J=-sin 6




EY.I Ab sin § o - r sin 6
t -1 =
L‘OZ r 442 roz s 22
BY'E - Ab cos 8 E'-E _ r  cos 8
5lke—_ o AN Ab
ro2 + Azbz ,rOZ + A2b2

The computer programme developed for this surface is called
VALRETORMOE and it is given in Appendix I in a form suitable for the
solution of a logarithmic superposed rotation. This programme only o
reeds modification for the direction cosines in order to be directly

applicable to this case, because in every other way both solutions

are identical.

Figures (69) and (70) show the surface produced by projecting a series
of straight lines representing the cutter flank into the xy plane.

These represent shortening and lengthening helices respectively.

(111) Application of The Theory To a Disc Cutter

In the case of a disc cutter distinctly different intersection curves
are produced depending upon which transverse plane is encountered.
This is readily seen from Plate IIL. The reason for this is, that as
the cutter rolls along the real helix, its leading or trailing edge
(depending upon the setting parameters) is interfering at some point

ahead or behind its axial reference frame. Since the relative position

. ; i Cnr . ine
of the cutter framework is changilng from point to polnt owilng to the

differential variation in lead, the "Interference Surface", and hence the

plane intersection curve will also vary from point to point.



Table XIIT gives the pa

Tam Ale e ad £ A~ . - . . .
taneters for the tests carried out with disc

cutters and they relat t mput
y late to the computer programme VALREFORMOD given in

Appendix 1. ain +he ) . .
PP Once again this prograrme 1s defined in terms of the

directi i ari i
tion cosines for a logarithmic lead and so for the uniform super-—

posed rotation so i heref 3 :
I lution, therefore, dot products given on page 71 should

be used for this case.

Table XIII

Test
Piece ro b w R d k B1S | B1F Step

(in) |(in/rad} (in) [(in)| (in) (rad)|(rad) {rad)

VL1D 1.125 11.5916| 0.1875| 2.5| 0.1563| 0.41485 0.0 {~1.0 |0.05

vL2Dp |[1.125 L " " | 6,1563|-0.41485 ] " | 1.0 "
VL3D || 0.643 X X v |-0.3258] 0.41485] " [-1.0 ] "
VL4D || 0.643 L z " .0.3258(-0.41485| " | 1.0 ] "

Figures (71) to (75) summarise the results for this test series and
demonstrate the geometries of the plane intersection curves in several
planes common for all four specimens. These curves were originally
plotted on a 10x magnification for comparison with the practical results

on the optical projector, but are now scaled down 1n presentation owing

to their large size,

(c) SUPERPOSITION OF A VARIABLE ROTATICN

The time available in the development programme for the prototype head
precluded a practical examination of a varieble superposed rotation,

but the necessary design modifications and principles are glven 1n

Appendix 2. However, it was thought desirable to apply the analysis



co

ju}

theoretical workpiece simil

ar in characteristics to those

given 1n section (b) of thig chapter and to compare the theoretical

predictions with the results for a uniformly applied superposed

rotation.

The computer programmes VALREFORMOE and VALREFORMOD in Appendix 1
were devised for this purpose using the equations derived in Chapter
VI and the setting parameters of Tables XII and XIII. The results

are shown by Figures (76) to (79).
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CHAPTER IX

DISCUSSION

INTRODUCTION

It has been clearly demonstrated that an exact and unified theory to
explain the phenomena of helical interference is possible and further,
as a consequence of the knowledge gained, that practical advantage
can'accrue from a mechanism which is generally regarded as destructive.

It is to this end that the practical results will be discussed.

(a) INTERFERENCE IN SLOTS OF CONSTANT LEAD

An examination of Figures (44),(45) and (46) shows that the leading

edge of a straight sided disc cutter produces a back-cutting effect,
while the trailing edge produces under-cutting and further that either
or both these effects may be present depending upon the base generating
cylinder chosen. To be of practical use as the rake face of a cutting
tool, therefore, the most effective surface must be that where the base
generating cylinder lies at the outside diameter of the workpiece,

thus always ensuring a positive radial rake angle. Further modification
to the rake face can be achieved by offsetting the fluting cutter, by
setting the base generating cylinder diameter to be larger than the work,
or by a combination of both. The current practices to some extent
recognise this, but the problem has really been resolved by the design
of special fluting cutters and setting techniques (Figure (41)) to

minimise interference, largely from lack of knowledge about the mechanics

of the process.

i
)



Obviously, for thi
J S ATy - ~le & 1 - L.
’ current work to be of practical value at shop

floor level i i - , .. .
t will be necessary to draw up data charts gilving setting

conditions for produci ticular - :
Producing particular reke face geometries, together

with the required tool characteristics,

(b)  CALCULATION OF RAKE ANGLE

Sl

From the work described in their joint paper, Etheridge and Scott(2l)

showed that current cutting tool manufacturing methods leave a great

deal to be desired owing to the rather uncertain geometry of the rake X
face produced. The particular cutter examined (Figure (63)) was

designed to have a constant radial rake angle of + 10° over the entire i
face and yet, at the same time, be helically gashed. The theoretical

treatment developed here, in fact, shows that these two basic require-
ments are incompatible and further that the rake face in the transverse
plane defined, will never be flat. The radial rake angle will always

increase with changing radius in such a plane, as Table XI more than

adequately demonstrates,

Apart from providing, for the first time, a method of accurate rake
angle determination for such tools, the equations given in Chapter VII
permit the designer to choose in which plane it is most important to
specify the radial rake angle for cutter performance; then to design a
rake face accordingly. Once again the practical importance of the work

lies in providing the tool designer with the data charts and computer

programmes for such design work.

The most important criticism arising from current practice 1s that
. N 1 . . " .
cutting tools appear to be designed by "Custom and Practice’ without

recourse to any theoretical considerations, so that tool performance

. L (22) .
is never predictable. For the cutter used in the Scott experiments
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this was disastero i ex : . ‘
US and expensive, because examination of Table XI

J I = : RIRd .
shows that only at the tip radius in the true normal plane does the

theoretical 1 ; Lo . .
al raxke angle approach the design recommendation. In the

transverse plane specified, the minimum radial rake angle predicted
for the design parameters is 26.05°, Clearly the 20°/19° fluting
cutter should never have been specified for this form cutter design.
This cutter was examined theoretically because it graphically
illustrated a particularly difficult practicel problem arising from

emperical tool design methods.

(e) INTERFERENCE IN SLOTS OF VARYING LEAD

. " . . . . .
Although "qualitative" assessments of this mechanism have been carried

out by Mabbon and Sabberwal(lg) and Etheridge and Waynham(17)

s 1n both
instances the basic requirement was to produce a variable lead and yet
minimise interference. The former workers achieved this by the use of

End Mills, while the latter used setting technique to give a suitable

rake face on their conical cutters.

The most important aspect of the analysis developed here is that it
demonstrates a method by which variable leads can be produced simply
by setting techniques. Although exhaustive tests of the method were
precluded owing to time, those which were carried out proved the

principle and also the marked change in interference pattern from one

plane section to another. The plane intersection curves of Figure (71)

for specimens VLID and VL3D were produced with the saume cutter and
settings, except that the base cylinder for VL1ID was 1.125 in,giving

a table setting angle of 35.250, while the base cylinder for VL2D was
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0.643 1n, giving a table sere: A
» S S “@iE Setling angle of 22°. Obvious differences

exlst between the intersection cerves and th
i L

®
<

ariable leads produced

as a conse £ ti |
a quence of these Ssetting procedures.

It 1s o1 agai i . :
S once again possible to use the interference surface produced

by disc cutters the rake £ oy .

y S as the rake face of a cutting tool provided that the
- . . 3 . . .

variable lead 1s achieved by a subtractive rotation, because this

ensures positive radiel rake. The reason for this type of interference

being produced is that subtracting a rotation means that the effective

base cylinder lies outside the work diameter.

The theoretical curves generated for the logarithmic incremental
superposed rotation are similar to those for the above cases, but
exhibit more curvature in the initial stages for reasons which can
be deduced from the table of logarithmic increments in Appendix 2..
While some advantage can be gained by using a logarithmic superposed
rotation for cylindrical work, its main benefit will be found in
applications such as that proposed by Etheridge and Waynhem in their
conical investigations, Certainly the most important application of
this principle must be in the development of a new spiral bevel gear
system based on CONICAL EPIHELICYCLOIDS,which are capable of being
hobbed by a machine based upon the principle of the redesigned dividing
head. The development work necessary in this area is large since it
will require a whole new mathematicél bzze for the system and in

r. the mating pairs geometry end manufacturing method.

particula 5

The principles introduced by this section of the work also have an

1 1 . - 1" . 1
application in the manufacture of such mechanisms as the "Screw Extruders
o ~ L

3 { industries
and ”Plasticﬁrs” used in the Polymer industr .
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CONCLUSION

1 ) ally =1d { LN et . . .
The usually held viewpoint that interference is destructive has been

shown to be eroneous by demonstrating that the mechanism can be used

beneficially in a number of ways.

These areas have been highlighted and a complete theory given which
will be of assistance in cutting tool design, as well as clarifying
the nature of some current problems with standard tool manufacturing

practice.

New ground has been broken in the field of variable lead helices, by
not only developing an analytical method, but by showing new ways of
producing such surfaces. This part of the work provides the basis

for several new i1deas in machine tool Kinematics.
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FUTURE WORK

e . . .
~ne I1rst obvious area of future work will be the production of a
design data bank for cutting tools of
These must necessarily be of use to cutting tool designers and lead

to more efficient metal removal as a consequence.

Probably the most important new work, however, will be that associated
with the development of new manufacturing techniques for spiral bevel
gears and non-linear screws which currently provide many design and
manufacturing problems, It will also be necessary to establish the
mathematical base and standardisation procedures for such proposed

systems,

both constant and variable lead.



COMPUTER PROGRAMMES

(A) Constant Lead
(B) Rake Angle Calculation

(C) Variable Lead




(A1) REFORMC - CONSTANT LEAD
— =2 aNL LEAD

(Rectangular Form Cutter - On Centre or Set Over)
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k i i
; Calculate i
f DELTA !
| X1,Y1,71 :
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i

Write
DELTA
X1,Y1,21
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FORTRAN PROGRAMME FOR PLANE

..84_.

INTERSECTION CURVE REFORMO

J0B :EP32054,REFORMQ,JD(3T 100,MZ 20K)
UAFORTRAN LINES 2000

C

C

ap]

[

oo

]

MASTER REFORMO

WRITE RESULTS HEADING

WRITE(2,100)

READ(1,101) THETAS,THETAF,STEP
WRITE(2,102)THETAS, THETAF, STEP

READ CONSTANTS FOR RUN

READ{1,101) SA,SB,W,R,SD
WRITE(2,103)SA,SB,W,R,SD

THETA = THETAS

sC

1

SQRT(SA*SA + SB*SBJ/(R-SD)

B1 SC*THETA

PUT BETA EQUAL TO 0.0 IF CUTTER ON CENTRE

BETA = 0.,1818
YYY = SQRT(SA*SA + SB*SB)

A1 = SA-SD+R*(1.0-COS(BETAJ*COS(B1))+W*SIN(BETA)
A2 = SB*W*COS(BETA}+R*(SA*SIN(B1)+SB*SIN(BETA)*CCS(B11)

*/YYY :
A3 = W*SA*COS(BETA)+R* (SA*SIN(BETA)*COS(B1)-SB*SIN(B1))

* O /YYY

CALCULATE VALUES OF X,Y,Z

A1*COS(THETA) + A2*SIN(THETA]
A1*SIN(THETA) - A2*COS(THETAI
A3 + SB*THETA

N < >
Bon

WRITE(2,104) X,Y,Z
BETAP = -7/SB

SBETAP = SIN(BETAP]



OO0

()

[

(48]

C

WRITE(2,1000) BETAP,SBETAP

X1 = X*COS(BETAP) - Y*SIN(BETAP)
Y1 = X*SIN(BETAP) -+ Y*COS(BETAP)
Z1 = 7 + SB*BETAP

WRITE(2,106) X1,Y1, 71
CHANGE THETA STATEMENT FOR LEADING OR TRAILING EDGE
IF(THETAF LT, 0,0) GO TO 2
THETA = THETA + STEP
IF(THETA .LT. THETAF) GO TO 1
2 THETA = THETA - STEP
IF(THETA .GT. THETAF) GO TGO 1
STOP
FREEEEEE FORMAT STATEMENTS ***xxxx%x
100 FORMAT(1HT,///28H**#*** RESULTS **xx*xx///)
1017 FORMAT(5F0.0]

102 FORMAT(///

*SX, S2HTHETAS JF16.8/7
*9X, 52HTHETAF JF16.8//
*SX, 52HTHE STEP SIZE JF16.6//)
103 FORMAT(///
*eX, 52HSA F18.877
*9X, 52HS8 | JF16.8//
*SX, 52HMW JF16.8//
*8X, 52HR JE18.8//
*C‘X’52HSD ,F18.8//)

104 FORMAT(1H ///,3(2X,F16.81///)

106 FORMAT(1H ,//3(2X,F16.8])

1000 FORMAT(4H ,///4H***,2(2X,F16.8))

END
FINISH

INSERT DATA CARDS FOR THETAS,THETAF,STEP,CONSTANTS

LR
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(Vee Form Cutter - On Centre or Set Over)
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!
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E
Calculare !
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v ]
{
= b
1
Set Theta ]
§
i
: i
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: X,Y,Z §
; i
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Write
DELTA
X1,Y1,z1
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FORTRAN Pr AoV o D, ;
TORTRAN FROGRAMME FoR CLANE inT

JOB :EPS2054,VEEFORMY JDAIT 1 '
5 ~Md, | 00
UAFORTRAN LINES 2000 ) e 2ok

~
()

MASTER VEEFGORMO

C
C WRITE RESULTS HEADING
C
WRITE(2,100)
C
READ(1,101) HS,HF,STEP
WRITE(2,102)HS,HF,STEP
C
C READ CONSTANTS FOR RUN
C
READ(1,101) SA,SB,GA,R,SD
WRITE(2,103)SA,SB,GA,R,SD
C
H = HS
C
C PUT BETA EQUAL TD 0.0 IF CUTTER ON CENTRE
C .
1 BETA = 00,1818
C
YYY = SQRT(SA*SA + SB*SB)
C
Q1 = SIN(BETA)
Q2 = COS(BETA)
C
P1 = SB*COS(BETA)/YYY
P2 = SB*SIN(BETA)/YYY
P3 = SA/YYY
C
S1 = SA*COS(BETA)/YYY
S2 = SA*SIN(BETA)/YYY
S3 = ‘SB/YYY
C
A1 = SA+R-SD-Q2* (R-H)-Q1*H*TAN(GA)
A2 = P2*(R-H)+P1*H*TAN(GA)
A3 = S2*(R-H)+S1*H*TAN(GA)
C
C CALCULATE VALUES OF X,Y,Z
C
C SET VALUE OF THETA
C
THETA = 0.0
C

A1*COS (THETA) + A2*SIN(THETA)
A1*SIN(THETA] - A2*COS (THETA)J
A3 + SB*THETA

< X
I

1l

N
i




- 89 -

C
WRITE(2,104) X,v,7
C
BETAP = -7/58
C
SBETAP = SIN(BETAP)
- |
WRITE[Z,TODO] BETAP, SBETAP
c
X1 = X*COS(BETAP) - Y*SIN(BETAS)
Y1 = X*SIN(BETAP) + Y*COS(BETAP)
Z1 = 7 + SB¥BETAP
C
WRITE(2,108) X1,Y1,71
c
H = H + STEP
c
IF(H .LT. HF) GO TO 1
c
STOP
C
O ***x%%% FORMAT STATENENTS *x%%s*ss
C | : :
100 FORMAT (1H1,///28H****** RESULTS ***%%%,//)
C
101 FORMAT(5F0,0)
C
102 FORMAT (///
*9X, 52HHS
*9X, 52HHF
*SX, 52HTHE STEP SIZE
C
103 FORMAT (///
*9X, 52HSA
“gX,52HSB
*9X, 52HGA
*oX, 52HR ,
*gX, 52HSD ’
C
104 FORMAT (1H ///,3(2X,F18.8)/777)
c

106 FORMAT(1H ,//3(2X,F18.8))
c
1000 FORMAT(1H ,///4H***,2(2X,F18.8))
C
END
FINISH

C INSERT DATA CARDS FOR HS,HF,STEP,CONSTANTS

* % ok x

,F16,8/
,F16.8/
,F16,8//)

,F18.8/
,F186.,8/
,F16.8/
,F16,8/
,F18.8//)
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= il -
FOR CIRFORMD

e
! Read and Wrice
\ Deltas,Deltaf,Stes
¥
% The Constanc:s
\_SA.SB,R,ST.3D
”, Al
4 ;
Set Beta 1)
: Calculate
b,
L ALA2,83
]
_ i
' E i
: Set Theta

Calculzate

X,¥,2

Calculate
DELTA

X1,Y1,21

g

ooz o stmistaia e ez

i

<

Write
DELTA
X1,Y1,2z1

i -

| 1
8 ZDeltaf
Test
~ //////r B
7 >Delitaf

|

{ STOP \

)

0

£
3
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FORTRAN PROGRAMM

..92_
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I T ATY AN BE =
INTERSECTION Curve CrrForRMO

JOB :EPS2054,CIRFCRMO,ID(JT 100,M7 20K)
UAFORTRAN LINES 2000

~
U

MASTER CIRFORMO

C
C WRITE RESULTS HEADING
C
WRITE(2,100)
C
READ(1,101) DELTAS,DELTAF,STEP
WRITE(2,102)DELTAS,DELTAF,STEP
C
C READ CONSTANTS FOR RUN
C
READ(1,101) SA,SB,ST,R,SD
WRITE(2,103)SA,S8,ST,R,SD
C
DELTA = DELTAS
C
C PUT BETA EQUAL TO 0.0 IF CUTTER ON CENTRE
C
, 1 BETA = (0.1818
C
YYY = SQRT(SA*SA + SB*SB)
C
Q1 = SIN(BETA)
02 = COE(BETA)
C
P1 = SB*COS(BETA)/YYY
P2 = SB*SIN(BETA)}/YYY
C
S1 = SA*COS(BETA)/YYY
S2 = SA*SIN(BETA)/YYY
o
A1 = ~Q12(R-ST*(1.0-CCS(DELTA))) + Q2*ST*SIN(DELTA)
* +SA+R-SD
C
% (Do - + P1*ST*SIN(DELTA)
A2 = P2*(R-ST*(1.0 COS(DELTA]]%
C
A3 = S2%(R-ST*(1.,0-COS(DELTA))) + ST1*ST*SIN(DELTA)
- .
C CALCULATE VALUES OF X,Y,Z
C
C SET VALUE OF THETA
C
THETA = 0.0
C

<

>

No<

1

]

A1*COS(THETA) + A2*SIN(THETA
A1*SIN(THETA) - AZ*COS (THETA)
A3 + SB*THETA



C
WRITE(2,104) X,Y,7
C
BETAP = ~7/58
C . .
SBETAP = SIN(BETAP)
C
WRITE(2,1000) BETAP,SBETAP
C
AT = X*COS(BETAP) - Y*SIN(BETAPR)
Y1 = X*SIN(BETAP) + Y*COS(BETAP)
Z1 = Z + SB*BETAP
C
WRITE(2,108) X1,Y1,21
C
DELTA = DELTA + STEP
C
IF (DELTA LT, THETAF) GO TO 1
C
STOP j
C
C ****xxx+x FORMAT STATEMENTS ****#xxx

100 FORMAT (1H1T, ///28H**%**% REQULTS ****x%x%x///)

C
101 FORMAT (5FG.0)
C
102 FORMAT(///

*GX,52HDELTAS JF15.8//
*9X, 52HDELTAF ,F168.8/7
*GX,52HTHE STEP SIZE ,F16.8//)

c .

103 FORMAT (///

*CX, 52HSA ,F16.8//
*SX, 52HSH ,F16.8//
¥gX,52HST ,F16.8//
¥gX, 52HR ,F18,8//
*gX, 52HSD ,F16,8//)

C

104 FORMAT(1H ///,3(2X.F16.8)///)
C
106 FORMAT (1H ///3(2X,F16.8))
C
1060 FORMAT (1H ///,4H***,2(2X,F16.8])

C
END
FINISH

C INSERT DATA CARDS FOR DELTAS,DELTAF,STEP,CONSTANTS

Rk ik



VESCO -~ CONSTANT IF

(Vee Form Cutter -~ set Over)

TRUE NORMAL RAKE ANGLE FOR ENGLISH ELECTRIC

FORM CUTTER: RE -— ETHERIDGE & SCOTT
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(\--ﬂ
| Read and Wrice /
| ABAR, 71N <
\ )
M:w
ﬁ Solve Quadratic §
I in'h'. Calculate |
LY,z |
Lf'
b
\ ‘Write //
\ X,Y,?,h /
7 : ;
i Calculate ;
% THETA g
g X1,Y1,71 ﬁ
& ﬁ
\ Wrirte / Calculate
\ THETA i
X ] N
\ x1,1,2 / DO?“
z 5
¥ Caloulac : K Write /
| alculate :
{  XN,YN,ZN i DOTM j/
{ ALPHA ! ‘ /
i i ;

. ! "
£ V“'; ! Calculate ]
\ hLte ) | CANU,ANU |

XN, YN, ZX {1, & S |
\  ALPHA j § ’ ;
| “‘- . *
. ' ]
| Calculate § % Write
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v , i
Write 99.0
ZINT and DOT Test
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i Z1
_ 5 99.0
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J03 :EPS2054,VES
UAFORTRAN LINE
c

MASTER VESCO

C
C WRITE RESULTS HEADING
C
WRITE(2,100)
C
READ(1,101) SA,SB,GA,R,SD
WRITE(2,103)SA,S8,05A,R,SD
C
C READ VALUES OF ZED AND RADIUS FOR RAKE ANGLE DETERMINATICN
C
READ(1,101) ABAR, 71
WRITE(2,121)ABAR, Z1
-
IF(ABAR .GE, 99,0) STOP
C
YYY = SQRT(SA*SA + SB*SE) |
C
BETA = 0.1845
C
Q1 = SIN(BETA)
Q2 = COS(BETA)
C
P1 = SB*COS(SETA)/YYY
P2 = SB*SIN(BETA)/YYY
P3 = SA/YYY
C
S1 = SA*COS(BETA)/YYY
S2 = SA*SIN(BETA)/YYY
S3 = SB/YYY
C
C CALCULATE VALUE FOR H
C
A = SA - SD + R*({1.0 - §2)
B = Q2 - Q1*TAN(GA)
D = P2*R
E = P2 - P1*TAN(GA]
C
B531 = A*A + D*D ,
SE2 = 2.0*A*B -~ 2.0*D%E
B3 = B*B + EE
C

P = BB2/BB3 )
Q = (B8B1 - ABAR*ABAR]/B53



OO0

OO

OO0

SRR - 4.0%0))/2.0
WRITE(2,250) H

CALCULATE VALUES 0OF X,Y,Z FOR 72RO ThETA

THETA = 0.0

AT = SA - SD + R*(1.0 - g2) + H*(Q2 - Q1*TAN(GA))
AZ = H*(P1*TAN(GA) - P2) + p2+R

A3 = H¥(ST*TAN(GA) - S2) + S2%g

X = AT"COS(THETA) + A2*SIN(THETA)

Y = AT¥SINITHETA) - A2*COS(THETA)

7 =

A3 + SB*THETA !
WRITE(2,104) X,Y,7 '%
CALCULATE THETA IN ORDER TO FIND X1,Y1,Z1 |
THETA = (Z41 - Z)/sB
WRITE(2,1000) THETA

CALCULATE X1,Y1,121

X1 = X*COS(THETA) - Y*SIN(THETA)
= X*SIN(THETA) + Y*COS(THETA)
Z1 = Z + SB*THETA

WRITE(2,108) X1,Y1,2Z1

CALCULATE XN,YN,ZN,BX,B8Y,BZ

B1 = COS(BETA) - SIN(BETA)*TAN(GA)

B2 = SB5*(COS(BETA)I*TAN(GA) - SIN(BETA)I/YYY
83 = SA*(COS(BETA)*TAN(GA) - SIN(BETA)]/YYY
R1 = SQRT(B1*B1 + B2*B2)

R2 = SQRT(A1*AT + A2*AZ)

DELTA = ATAN(A2/A1)

ALPHA = ATAN(B2/B1)

WRITE(2,130) DELTA

C1 = A3*RZ
C2 = SB*R1
C3 = R1*RZ
SIDA = SIN(DELTA - ALP&A)
CODA = COS(DELTA - ALPHA]
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WRITE(2,108) ALPHA, XN, YN, ZN

EX = RT*COS(ALPHA-THETA)
BY “RA1FSIN(ALPHA-THETA)
57 83

1)

CALCULATE INTERCEPT WITH Z AXIS

SL1
SL2

(YN*BZ =~ ZN*BY)/(XN*3Y - YN*BX])
(XN*BZ - ZN*EX)/(XN*BY - YN*BX)

ZINT = X1*SL1 - Y1*SL2 + 71

WRITE(2,108) ZINT

CALCULATE NBAR DBGT PE2 (CALL IT 5OT)

BOT = X1*XN + Y1*YN + (Z1-ZINT)*ZN

WRITE(2,110) DOT

CALCULATE MAGNITUDE OF NBAR DOT P@2 (CALL IT DOTM)

DCTM = SQRT(X1*X% + Y1*Y1 + (ZINT-Z1)*(ZINT-21))

WRITE(Z2,115) BOTM

CALCULATE COS(NU]J (CALL IT CANU]

CANU = DOT/DOTM
ANU = ACOS(CANU]J
WRITE(2,117) ANU

SI = 3.14158/2.0 - ANU

CONVERTFROM RADIANS TO DEGREES

SID = 57.28578%51

WRITE(2,120) SI,SID

GO TO 1



O

oo

C

C

C

(@)

C

A A ] FGRMAT S-I—AT

m

MENTS WOR B ok ok

100 FORMAT (MH1, /// 5w xxxs RESULTS x*xxxsx1// /9

101 FORMAT (9F0Q.0)

'S3 =',FB8.4,2X,'GA =",

103 FORMAT(1H ,2X,'SA = Fg.:
Fa JFB.4,2X, JFE8.4/7)

“ LFE.4,2X
* F8.4,2X,'R =" 4,2%.730 -

-

104 FORMAT(1H ,2X,'X =1

-

8.4,2X,'Y =',F8.4,2X,'Z =',F8.4//)

>

TOO0 FORMATUIH L 8X, t*#*%** THE VALUE OF THETA IS...',F8.4//)

106 FORMAT (1H , 2X, ' X1 'SFB8.4,2X, Y1 =1 ,F8.4,2X, 'Z1 =',F8.4/)

108 FORMAT (1H ,//9X, v »sxxsTyE VALUE OF ALPHA IS...',FB8.4//
¥ O5X,'XN =',F8,4,5%, YN =',F8.4,5X,"ZN =',F8.4//)
108 FORMAT (1H ,//8X, "#**#%x THE VALUE OF ZINT...'",FE.4//)

110 FORMAT (1H ,//8X.'**%***THE VALUE OF DOT IS...",F8.4//)

115 FORMAT(1H ,//8X, "******THE VALUE OF DOTM veaa ', FB8,4/7)

117 FORMAT (1H ,//89X, " ******THE VALUE OF ANU IS...',F8.4//)

120 FORMAT (1H ,//SX, "******THE VALUE OF SI IS....',F8.4///
*gX, ! REERsAkxE STD AS CALCULATED IS....',F8.4///)

121 FORMAT(1H1,12X, "ABAR =',F8.4,12X,'21 =',F8.4//)
130 FORMAT (1H ,8X, '******THE VALUE OF DELTA IS....',F8.4//)

250 FORMAT(1H ,5X, "*=***** CALCULATED VALUE OF H Is,..",F6,4/)

END
FINISH

INSERT DATA CARDS FOR CONSTANTS,ABAR AND Z1

* % %k ok
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' Solve Quadratic :
;in 'h'. Calculate |
§ = ,
\ Write /
§ X’YDZ9h //
\ i
: Calculate g
! B1,B2,B3 g
i a
g * ,
! . | |
% Write / i
N ; ‘
i
i ]
! Calculate :
i 43
§ DOT %
? t
Write
DOT
;
| Calculate é
g CaSI !
! ACAST & ACASID |
: i

Test

ABAR



JOB :EPS2054,VENSCO,JO(JT -
N s JT 100, ;
UAFORTRAN LINES 2004 | "z 20Ky

C
MASTER VENSCO
C
C WRITE RESULTS HEADING
(W
WRITE(2,100)
c
C READ CONSTANTS FOR RUN
C
READ(1,101) SA,SB,GA,R, S0
WRITE(2,103)SA,S5,G6A,R,SD
C
C READ VALUES OF ZED AND RADIUS FOR RAKE ANGLE DETERMINATICN
C
1 READ(1,101) ABAR,Z1
WRITE(2,121)ABAR,Z1
C
IF (ABAR .GE. 88.0) STOP
C
YYY = SQRT(SA*SA + SB*SB)
c .
BETA = 0.1845
C
31 = SIN(BETA)
Q2 = COS(BETA)
C
P1 = S3*COS(BETA)/YYY
P2 = SB*SIN(BETA)/YYY
P3 = SA/YYY
C
S1 = SA*COS(BETA)/YYY
S2 = SA*SIN(BETA)/YYY
S3 = SB/YYY
C
C CALCULATE VALUE OF H
C
A = SA - SO + R*(1.0 - 02)
B = Q2 - Q1*TAN(GA]
D = P2*R
£ = P2 - P1*TAN(GA)
C
BB1 = A*A + D%D
BB2 = 2.0%A*B - 2.0%D7E
BB3 = B*B + EE
C

= B

/BEB3 i
1 - ABAR*ABAR)/BES3
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SA - SD = R*
H*{P1*TAN(G

. 1.0 - Q2) = H*LQZ - Q1T*TAN(GA))
A3 = n*(ST1*TAN(GA

(
J - P2} + P2*R
J - 82) + S2%R

e
N
|

X = AT*COS(THETA) + A2*SIN(THETA)
Y = AV*SINITHETA} - A2¥COS(THETA)
Z = A3 + SB*THETA

WRITE(2,255) X,Y,Z

1 = CCS(BETA) - SIN(BETA)}*TAN(GA)
B2 = SB*(COS(BETA)*TAN(GA) - SIN(SBETA))/YYY
53 = SA*{COS(BETAJ*TAN(GA) =~ SIN(BETA)I/YYY

WRITE(2,2000) B1,B2,B3

00T = X*B1 + Z*B3 - Y*B2

=y
(@]
O
N
i

SQRT(B1*B1 + B2*B2 + B3*B3)
SYRTIX*X + Y*Y + Z2*Z)

s
(@]
O
N
i

EEE = RO01*RO0Z

CASI = DOT/EEE

ACASI = ACOS(CASI)
ACASID = 57.28578*ACASI

WRITE(2,124) CASI,ACASI,ACASID

GG T3 1

%k x k%% FORMAT STATEMENTS

FORMAT (1H1 J ) EEERERE RESULTS ******xtv///)

i1,

100
)

o

101 FORMATI(SFO.

=

AT
8.4

(,'83 =',F8.4,2X,'GA =",
103 FO ‘éx - )

m 0
=

(@]

(1H ,2X,'SA =',F
22X,

191 FORMAT (1H1,//12X, 'ABAR =',F8.4,12X, 21 =',F8.4//)

250 FORMAT (1H 5X v ewxxxxx CALCULATED VALUE OF H IS . .'F8.4//1
o} i | > 2



- 104 -~

C
255 FORMAT(1H '
C
2000 FORMAT(1H ,8X,'8587 =',F8.4,9X,
C
124 FORMAT(TH ,//8X, "*%* THE VALUE
* X, "™** THE VALUE CF ACASI
*OBX,'*** THE VALUE OF ACASID
C
END
FINISH

C INSERT DATA CARDS FOR CONSTANTS,

'"22 =',FB.4,8X,'E3 ='",F0.4/)
F CASI .. ',F8.4//
SLEBL 8777

IN DEGREES ...',F8.4//)

ABAR AND Z1
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'3'—\,} N {/C\".l { OGRAFI\”: :GR \,\,AKE AN
J3a3 EPS2054,VETSCO. SJB03T 400
UAFORTRAN LINES 2000
MASTER VETSCO
C
C WRITE RESULTS HEADZ
[
WRITE(2,100)
C
C READ NSTANTS FOR RUN
C -
READ{1,101) SA,S3,GA . R,
WRITE(2,103)SA,SB,GA . R,
C
C READ 'VALUES OF ZED AND
C
READ(1,101) ABAR,Z1
WRITE(2,121}ABAR,Z1
IF{ABAR .GE. 88.0) sTOP
C
YYY = SQRT(SA*SA + SB*S
I
BETA = 0.1845
C
@1 = SIN(BETA)
Q2 = COS(BETA)
C
P1 = *COS{BETAI/YYY
P2 = SJ SIN(BETAI/YYY
P3 = SA/YYY
C
S1 = SA*COS(BETAI/YYY
S2 = SA* bIN[B” AI/YYY
S3 = SB/YYY
C
C CALCULATE VALUE OF H
C
A = SA - SD + R*(1.0 -
B = Q2 - Q1*TA ‘\fGAJ
D = P2*R
E = P2 - P1*TAN(GAI
C
381 = A*A + D”D
a52 = 2.0%A*B - 2,0*0D*E
B3 = B*B +E*E
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WRITE(2,250) H

AT = SA - SD + R*(1.0 -G2) + H*(Q2 - QI1*TAN(GA))

B (PT*TAN(GA) - P2) + p2*R
H*(ST*TAN(GA) - S2) + S2%R

T >
w N
non

>
i

AT*COS(THETA) + A2*SIN(THE
AT*SIN(THETA} - A2*COS(THET
A3 + SB*THETA

N <
nou

WRITE(Z2,255) X,Y,Z

CELTA = -2/8B

X1 = X*COS(DELTA] - Y*SIN(DELTA)
Y1 = X*SIN(DELTA) + Y*CGOS(DELTA)
Z1 = Z + SB¥DELTA

WRITE(2,105) DBELTA,X1,Y1,21

ALPHA = ATAN(Y/X]

WRITE(2,108) ALPHA

PPP = COS(DELTA - ALPHAI*COS(DELTA - ALPHA]

TX = -1.0/PPP
TY = 1.0

WRITE(2,2000) TX,TY

RO01 = SQRTIX1*X1 + Y1%Y1)
ROO2 = SGRT(TX*TX =+ 1,0]
CEE = ROC1*RO02

DOT = TX*X1 + TY*Y1

m

CASI = DOT/EE

ACASI = ACOS(CASI]



C
ACASID = 57,20578%ACAST
-
WRITE(2,1224) CASL:ALHSZ,ACP\SIS
C
GO TO 1
C FWwssx s FEORMAT STATEMENTS % #wwsx
C
100 FORMAT(MHT, /// ¥ xxxsssx gegyLTs SRR RIS
C
101 FORMAT(9F3.0)
C .
103 FORMAT(1H ,2X,'SA =',F8.4,2X, 'S5 =',F8,4,2X,'CA ="',
T OF8.4,2X,'R =1,F8.4,2X,'SD =',F8.4,2X,'STEP =',F8.4//;
C
1068 FORMAT(IH ,8X, t¥*#%%% THE VALUE OF ALPHA IS,..'",F8.4//)
c
127 FORMAT(1H1,8X, "ABAR =',F8.4,9X,'Z1 =',F8.4//)
C
105 FORMAT(MIH ,9X, "**** THE VALUE GF DELTA IS...',F8.4//
FOSX, X1 = ,F8.4,5X,'YT =" ,F8.4,5%X,'Z1 ="' ,F8.4///)
C
255 FORMAT(IH ,//8X,'X =',F8.4,9X,'Y =',F8.4,9X,'Z =',F6.4//)
C
2000 FORMAT(TH ,9X,'TX =',F8.4,9X,'TY =',F8.4///)
C
124 FORMAT(1H ,//SX,"**** THE VALUE OF CASI IS ...',F16.8,
* O GX, "**** THE VALUE OF ACASI IS ....',F16.8/////
¥ GX,!'**** THE VALUE OF ACASID IN DEGREES IS ,,.',F16.8//)
C
END
FINISH

C INSERT DATA CARDS FOR CONSTANTS, ABAR AND Z1

N ok R
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IR A VAL TuUnN U D
J03 EPS2054,VALREFCRMOE,JIJD(IT 4100 i
= 4 =i ( ’ CC,MZ 20K
UAFORTRAN LINES 2000 | )
C
MASTER VALREFORMOE
c ,
C WRITE RESULTS HEADING
C
ARITE(2,100)
C
C READ RANGE AND INCREMENTS OF THETA
C
READ(1,101) THETAS,THETAF,STEP
WRITE(2,102)THETAS, THETAF,STEP
-
C READ CONSTANTS FOR RUN
C
READ{(7.10 RO,RC,B5L,SL,3SD,S3
WRITE(2,704)R0,RC,cL,SL,30,58
C READ RANGE AND INCREMENTS OF LAMBDA
C
READ(71,41C1) SLAMBDA,FLAMEBEDA
WRITE{2,103)SLAMEDA, FLAMEDA
-
Z CHANGE TO NEGATIVE ROTATION
C
READ(1,108) KSIGN
WRITE(2,108)KSIGN
C
C
CL = 3.1415927*2,0%RC/10.0
C
SIGMA = ATAN(CL)
C
PPR = SQRT(SL*SL + 1.0)
C
CONK = SL*CcOT(sI IGMA)/PPR
C
A = RO*CONK/SL
C ,
VMOD = SGRT(RO*RO + SB¥SBJ
C
SCALE = SLAMEBDA
C

IF(KSIGN .EQ. -10) GO T0 3

P
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WRITE(
THETA
X = SD
Y = RC
WRITE!(
£ER2 =
EP1T =
SSS =
SST =
AARA =
TTT =
BEB =
CCC =
PPR =
PSS =
DOTNN
COTNS
DOTNT
COTBN

O a
oo
— =
oot
—

XMOD
YMOD.
ZMGD

1l

VNIDOT
VNJIDOT
VNKDCT

s}

Ca

O oo
O oo

e

3 ol
o<

ICCT
TJDOT
TKDOT

2,107) SCALE
= THETAS

- SCALE
2,105) X,Y
EXP (2. 0¥CONK*THETA)
EXP (CONK*THETA)
CONK*A*A*EP2

-A*RC*RO*CONK*EP1

SGRT (RC*RO +
AAASAAA
SQRT (RO*RO +
AAA*EBB

A*A*EP2)

(CONK*CONK +

= TT7T/CCC
= -CONK*A™
= 0.0

EP1/8BBB

+3STI/PPP
RO*ROJ/PPS

= (SB5*SSS
= (SB*A*EP1 +

= (-SB*RO + RO*A*EP11/PSS
X*DOTNN + Y*DOTBN
X*DOTNS + Y*DOTES
X*DOTNT + Y*DOTBT
= (-TTT*COS(THETA
= (-TTT*SIN(THETA
- RO*CONK*A*EP1/CCC

= (CD\K*A*”D”*COD(TM_(n] +
= (ChNV*AMFP14SLVrlHETAJ -

= R0O/DBBB

~RO*SIN(THETAJ/AAA
RO“COS[THETAJ/AAA
EP1/AAA

1.0)*A*A*EP2)

] +SSS*SIN(THETA)J/CCC
) - SSS*COS(THETAJJ/CCC
C

A*EP1*SIN(THETA)]
A*¥EP1*COS(THETAD)

\\
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X1 =

v/
!

71

i

il

- 115 -~

SB*THETA

= ALGG(1.,0 =+ SL*ZL/RO)/CONK

AMODTVNIDOT + YMOD*BIDOT + ZMOD*TIDOT + RO*COS (BETA
AMUD®VNIDOT + YMOD*BJDOT + ZMOD*TJDOT + RO*SIN(BETA

"AMOD*VNKDGT + YMOD*BKOOT + ZMOD*TKDOT + SB*THETA

WRITE(Z2,108) X1,Y1,21

SCAL

E

THETA + STEPR

THETA .LT. THETAF) GO TO 2

SCALE + STEP1

IF (SCALE .LE., FLAMBDA) GO TO 1

STOP

WRITE(2,107) SCALE

THET

>
1

—<
1

ARA
TTT
BEBB
cccC

PPP
PPS
PSS

A

it

nonwon

i

non

il

= THETAS

EXP(-2.0%CONK*THETA]
EXP (-CONK*THETAJ

CONK*A*A*EP2
A*RO*RO*CONK*EP1

SGRT(RC*RO + A*A*EP2)

AARATAAA o
SQRT(RO*RO * (CONK*CONK + 1.0)*A*A*EPZ]
AAA*BBB

ccc*vmoD

BBB*VMGCD
AAA*VMOD
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OO0

DOTNN = TTT/CCC

DOTNB = CONK*A*EP1/BES

DOTNT = 0.0

DOTBN = -(SB*SSS +SST)/pop

DOTBB = (SB*A*EP1 +RO*RO)/PPS

DOTBT = (-SB*RO + RO*A*EP1)/PSS

XMOD = X*DOTNN + Y*DOTEN

YMOD = X*DOTNB + Y*DOTES

ZMOD = X*DBOTNT + Y*DOTBT

VNIDOT = -(TTT*COS(THETA) + SSS*SIN(THETA))/CCC

VNJDOT = (-TTT*SIN(THETA) + SSS*COS(THETA))/CCC

VNKDBOT = -RO*CONK*A*EP1/CCC

BIDOT = (-CONK*A*EP1*COS(THETA) + A*EP1*SIN(THETA))/BBB
BJDOT = - (CONK*A*EP1*SIN(THETA) + A*EP1*COS(THETA))/BBB
BKDOT = RO/BBB

TIDOT = -RO*SIN(THETA)/AAA

TJDOT = RO*COS(THETA)/AAA

TKDOT = A*EP1/AAA

ZL = SB*THETA

BETA = -ALOG(1.0 - SL*ZL/RO)/CONK

X1 = XMOD*VYNIDOT + YMOD*BIDOT + ZMOD*TIDOT ~+ RO*COS(BETA)
XMOD*VNJDOT + YMOD*BJDOT + ZMOD*TJDOT + RO*SIN(BETA)
XMOD*VNKDOT + YMOD*BKDOT + ZMODXTKDOT =+ SB*THETA

I

N <
PUNL N N
o

WRITE(2,106) X1,Y1,21

THETA = THETA + STEP
IF(THETA .LT. THETAF) GO 70 4

2.0*STEP

STEP1

SCALE = SCALE + STEP] _
IF(SCALE .LE-« FLAMBDA) GO 70 3

STOP

ok K Ok R K K

wxkkxkxx FOQRMAT STATEMENTS

100 FDRMAT[qu R EEE R RESULTS ******#*g///]




C
101 FORMAT (7F0.0)
C
102 FORMAT(TH ,5X,'THETAS =',F8,4,5X, ' THETAF =',F8.4,
* 5X,'STEP =',F8.4///)
C
103 FORMAT(1H ,9X, 'SLAMBDA =',F8.4,9X, 'FLAMBDA =',F8.4///)
C
104 FORMAT(1H ,2X,'RO =',FB8.4,2X,'RC =1,F8,4,2X, 'BL =1,
* FB8.4,2X,'SL =1',FB8,4,2X,'SD =',F8.4,2X,'SB = ',F8.4//)
I
105 FORMAT(1H ,//3(2X,F16.8)///)
C
106 FORMAT(IH ,//3(2X,F18.83///)
C
107 FORMAT(1H1,//t**** THE VALUE OF SCALE IS ....',F8.4///)
C
108 FORMAT (1H ,5X,'KSIGN =!,I3///)
C
’ 109 FORMAT (I3)
c
C
END
FINISH

C  INSERT DATA CARDS FOR THETAS,THETAF,STEP,CONSTANTS,SLAMBDA,

FLAMBDA,.AND*KSIGN
R ] -

we
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FLOWCHAR

and Write
Y KSTGN

\ 6
§

Calculate

Base Helix An
and Constant

|

Read and Write

\ ABAR a.nd zw®/

/
g

le

g
c
S

|

Set TH
-10 (Subtracted Rotation)
o
i
+10 (Added Rotation) %
!
= w3 —————d ) ey
"1 Calculate X Y(:) Calculate X,Y (:)
<L Al g
Write Write
\ X,Y X,Y ;/
| |
]
Calculate Calculate
g g:h; N Cosines Direction Cosines i
& Sty X1,Y1,21
X1,Y1,Z1 ‘
} z
Write
\ X1,Y1,21

/ \

\ Write '
\ x1,¥1,21 ]
A ¥
H
&
Y
CONTINUED

L
Y
CONTINUED
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FORTRAN PROGRAMME FOR PLANE INTERSECTION CURVE VALREFORMOD

Jj08 :EPS2054,VALREFORMGD,JD(JT 4100,MZ 20K)
UAFORTRAN LINES 2000
C
MASTER VALREFORMCD
C
C WRITE RESULTS HEADING
C )
WRITE(2,100) .
C
C READ RANGE AND INCREMENTS OF B1
C il
READ(1,101) B1S,B1F,STEP
WRITE(2,102)B1S,B1F,STEP
C A
C READ CONSTANTS FOR. RUN o
C
READ(1,1041) RO,BL,SL,SD,W,R,SB
WRITE(2,103)R0O,BL,SL,S0, M R,SB
C
C CHANGE TO NEGATIVE ROTATION /
I
READ(41,108) KSIC‘
WRITE(2,108)KSI
c .
CL = 6,2831854%R0/10.0
C
SIGMA = ATAN(CL)
C
ppR = SQRT(SL*SL + 1.0J
CONK = SL*COT(SIGMA}/PPR
C
A = RO*CONK/SL
C ‘ ]
VMOD = SQRT(RO*RO + SB¥SBI
C
C READ VALUES OF PLANES
C
1 READ(1,101) %2
TE(2,1084)722
C
TF(7z2 .GE. 88.0) STOP
C
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B1 = B1S

IF(KSICGN .EQ. -10) GO TO 5

EP2 = EXP(2.0*CONK*THETA)
1 = EXP(CONK*THETA)

- X
o
=W

Z = -R*SIN(B1)

WRITE(2,105) X,Y,Z

SSS = CONK*A*A*EP?2
SST = A*RO*RO*CONK*EP1

AAA = SQRT(RO*RO + A*A*EP2)

BEBB = SQRT(RO*RO + (CONK*CONK + 1.0)*A*A*EP2)
CCC = AAA*BEB

TTT = AAA*AAA

PPP = CCC*VMCD
PPS = BBBTVMGD
PSS = AAA*VMOD
ZL = SB*THETA

BETA = ALOG(1.0 + SL*ZL/ROJ/CONK

DOTNN = TTT/CCC
NOTNB = -CONK*A*EP1/BB3
DOTNT = 0.0

DOTEBN = (SB*8SS '+ SST)/PPP
DoTBB = (SB*A*EPT * RO*ROJ/PPS
DoTBT = (-SB*RO + RO*A*EP1]) /PSS

_RO*SSS + SB*RO*A*CONK*EP1)/PPP

DoTTN = '
0O0TT8 = (-RO*A¥EPT * SB*RO)/PPS
DOTTT = (RO*RO * SB*A*EP1) /PSS
XMOD = X*DOTNN + y#p0TBN + Z*COTTN
YMOD = X*DOTNB * y*pOTBB + Z*DCTTB

+

y*pOTBT + Z*DOTTT

H

ZM0D X*DOTNT
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I

c
C
INTDOT = T % THET A o
Dner IS L s meTa e
UNKDOT - RO® CDNK*A*”D"/CéC COS(THETA))/CCC
c
c )
BIDOT = (CONK*AYEP1*COS(THETA) + A*EP1*SIN(THETA}/BBB
BJ00T = (CONK*A*EP1*SIN(THETA) - A*EP1*COS(THETA)/B8B
BKDOT = RO/BB
c
C
TIDOT = ~RO*SIN(THETA)/AAA
TIDOT = RO*COS(THETA)/AAA
TKDOT = A*EP1/AAA
c
c
%1 = XMOD*VNIDOT + YMOD*BIDOT + ZMOD*TIDOT + RO*COS(BETA] L
V1 = XMOD*VNJDOT + YMOD*BJBOT + ZMOD*TJDOT + RO*SIN(BETA) il
74 = XMOD*VUNKDOT + YMOD*BKDOT + ZMOD*TKDOT + SB*THETA 1
c
WRITE(2,108) X1,Y1,Z%
c
c
JMAG = ((Z2 - Z4)*SL/RO + 1.0)
78AR = ZMAG + ABS(ZMAG)
C
TF(ZBAR .EQ. 0.0) GO 10 1
-
DELTA = ALOG(ZMAG)/CONK
C
c
w2 = X1*COS(DELTA) - Y1*SIN(DELTA)
V5 = X1*SIN(DELTA) + Y1*COS{DELTA)
75 = 74 + RO*(EXP(CONK*DELTA) - 1.0)/5L
C
WRITE(2,107) DELTA,X1,Y1,Z1
c
TE(B4F .LT. 0.0) CO TO 8
C
51 = B1 + STEP
TF(B1 .LT.B1F) GO TO 2
C
50 TO 1
C
C
C
§ 81 = B1 - STEP
TE(B1 .GT. B1F) GO 10 2
C

OO0 00
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(qw]

e

ool

(qw]

(aw]

«)

(qp]

ul

EP2 =
EP1T =

w

ARA
BBEB
CCC
TTT

il

i

il

ZL = &

BETA =

DOTNN
DOTNB
DOTNT

COTTN
DOTTB
DOTTT

XMCC =
YMOD =
MO0 =

VNIDOT
VNJDOT
VNKDOT

EXP(-2.0*CONK*THETA)
EXP (-CONK*THETA)

v

~ R*(1.0 - COS(B1)

KoY, 12

CONK*A*A*ER2
A*RO*RO*CONK*EP1

SQRT (RO*RO +
SORT(RO*RO =
AAA*BBEB
AAATAAA

CCC*VvMBD
BBE*VMGO
AAA*VMOD

B*THETA

-ALOG (1.0 -

= TTT/CCC
- CONK*A*EP1/BEB
= 0.0

= -{(SB*SSS
= [SB*A+EP1

- (-SB*RO + RO*A®EPI

RO*SSS -
~RO*A*EP1
R

X*00TNN + Y *DOTBN
w*0QTNB + Y*DOTBE ¥
¥*DOTNT + Y*D0TBT +

_[TTT*COS(THETA]
[~TTT*SIN[THETA]

fi

i

+ §ST)/PP
+ RO*R0O)/PPS

A*A*EP2)
(CONK*CONK +1.0) *A*A*EP2)

SL*ZL/RO)/CAONK

=

1/PSS

SB*RD*CDNK*A*Epj}/PPP
+ RO*SB1/PPS
0*RO + SB*A*EPq]/PSS

7*D0TTN
Z*D0TTB
7%00TTT

+ SSS*SIN(THETA)J)/CCC
+ S58*C0OS(THETA))/CCC

_RO*CONK*A*EP1/CCC




C
C
BIDOT = (~CONK*A*EP4 e A*E
RIDOT = - (CONK*A* 5;4i22§%T:ETAJ + A*EP1*SIN(THETA))/3ES
) () = h C 1 ‘.'..i ’\r'ls TA \ : R o
SXDOT = RG/BEB ! } + A*EP1*COS(THETA))/EBB
C
C
TIDOT = -RO*SIN(THETA)/AA
TJDOT = RO*COS(THETA)/AAA
TKDOT = A*EP1/AAA
C
X1 = XMOD*VNIDOT + YMOD*BIDBOT + ZMOD*TIDOT + RO*COS(BETA}
Y1 = ¥XMOD*VYNJIDOT + YMOD*BJDOT + ZMOD*TJDOT + RO*SIN(BETA)
74 = YXMOD*VNKDOT + YMOD*BKDOT + ZMOD*TKDOT + SB*THETA
C
WRITE(2,108) X1,Y1,21
r
C ;
7MAG = (1.0 - (22 - Z1)*SL/RO}
7BAR = ZMAG +ABS(ZMAG)
C
IF(ZBAR .EQ. 0.0) GO TO 1 K
C
CELTA = -ALOG(ZMAG)/CONK
C
X2 = X1*COS(DELTA) - Y1*SIN(DELTA)
v2 = X1*¥SIN(DELTAR) + Y1*COS(DELTA]
72 = 71 + RO*(1.C - EXP(—CONK*DELTA}]/SL
C _
WRITE(2,107) DELTA,X2,Y2,72
C
F{B1F .LT. 0,0) GO TG 8
C
B1 = B1 + STEP
IF(B1 .LT. B1F) GO TO 5
C
GO TO 1
C
c
£
84 = B1 -STEP
TF(B1 .GT. B1F) GO TO 5
C
GO 70 1
C
C o ow o
C wxwkxx ek FORMAT STATEMENTS ok kR A RS
¢ Cwswwir RESULTS ****¥*4,///)

100 FORMAT(1HT,

101 FORMAT(7F0.0)
) 102 FORMAT (1H ,5X, 'B1S _ Fg.4,5%,'B1F =1,FB.4,5X, 'STEP =71,
+  F8.4///)




- 126 -

C
103 FORMAT(MH ,2X, 'R0 =',F8,4,2X,'BL =',F8.4,2%, 'SL
©OF8.4,2X,'8D =1 ,F8.4,2X,'W =',F8,4,2X,'R =',F8,4,
¥ 2X,'SB =',F8.4///) |
C
104 FORMAT (1HT,8X, t**%** TUE PLANE IS ***%%t Fg.4/////)
C
105 FORMAT(1H ,//3(2X,F16.8)///)
106 FORMAT(1H ,//3(2X,F15.8)////)
- . _
107 FORMAT(1H ,//4(2X,F18.8)///7)
C
108 FORMAT(1H ,5X,'KSIGN =t,I3///)
C
109 FORMATI(I3)
END
FINISH
C  INSERT DATA CARDS FOR B1S,B1F,STEP,CONSTANTS,KSIGN,PLANES
% 3k sk %k
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ot

b

o
!

Centre height above work table: 6

w
}.J .
]

Spindle Nose: v
pindle No. & Morxse Taper

Index Plates: Brown & Sharpe type

3 Plates:

No.l - 15, 16, 17, 18, 19 & 20 holes
No.2 - 21, 23, 27, 29, 31 & 33 holes

No.3 - 37, 39, 41, 43, 47 & 49 holes

e
]
Q.
[0}
¥
i

Direct ng provided by plate and indent.

Superposed rotation provided by externally coupled differential of rati
- . , . .. . .
k" provided by standard hobbing differential gear set. Internal ratio

provided by Sun and Planet differential mechanism.

External Gear Set (40 geers 1.25 mm module)

11

27
Z 4

, 22, 23, 24, 25, 27, 29, 30, 31, 34,

35, 36, 37, 38, 39, 40, 41, 43, 45, 47,
[
49, 50, 53, 58, 59, 60, 61, 62, 64, 66,

67, 69, 70, 71, 72, 74, 75, 76, 78, 80.

{fferential Gear Mechanism

o

16 D.P. Spur Gear Set

it

3.7500 in

w/
I

Annulus -~ 60 tooth 3.9063 in DO

i

2.0000 in

(w7}
!

Sun - 30 tooth 1.8750 in DO




B
13

Planets (3) - 15 tooth D =0.9375in D = 1.0625
o .
Worm Ratio Gears
Direct Input Ratio 40/1 Worm Wheel
Single Start 40 tooth
D= 1.250 1in D= 3.339 1in

Centre distance for pair =

2.2945 in
Indirect Input Ratio 30/1 = Worm Wheel
Single Start 30 toocth

D =1.250 in D = 2.5047 in

D = 1.4166 i D = 2.6713 in
o o

Centre distance for pair =

1.886 in
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(1)

movement

ceveee (AD)

ceeees  (A2)

is defined to be clockwise

Ty +he thepr £~ . .
From the theory for a simple sun and planet epicyclic
1 4 s . . . . .
Motion of Sun Dug to Annulus Rotation with Arm Fixed
6 4
0 :":--,._.._8
SAA r .’,"A
S
where ¢SA = Angular displacement of sun due to annulus
BA = Angular displacement of annulus
r, = Pitch radius of annulus
r, = Pitch radius of sun
w
and for the differential used in this mechanism
o)
be s - -804 =~ 2
SA 30 ot A
Motion of Sun Due to Arm Rotation with Annulus Fixed
T
a
6 =B =+ B
sa T
g
where ¢ = Angular displacement of sun due to arms movement
sa :
B = Angular displacement of arm
T = Radius of arm
a
For the particular differential
r r“
: &0
¢ = Bl + ==+ 3B
sa L 304
(i1) Motion of the System
R tion
In a right handed cystem positive rotation

. . e
so for ome positive rotation of the

input worm the annulus rotates 1/40



turns negatively. If the cear rati i
gat: Y gear ratio to be superposed is k, then the

arm will rotate = k for this same input.

[ -y
4 - i A1 - . .
Gop = 2; 1/40] = 1/20 revolutions
Rad -

¢ = = 3k/30 = % k/10 revolutions

The total movement of the sun for this input will be, therefore,

T
jsn
)

algebraic sum of these two motions.

N G-%)|

+~

£ the lead set on the machine is L, then from equation (Al) the
natural lead of the device will be L/2 because only 20 revolutions of
the annulus are required to give one revolution of the work spindle;
whereas in the conventional head 40 revolutlons of the input worm would
Equation (A3) for this

be required for one revolution of the work.

condition becomes

o0 T . {
q’>T=-~:o§1i2k—E=li2k ceveena (A8)
4 S -
(L1 tpplication of Superposed Rotation
(a) Differential Indexing:

Example: 107 divisions required.

] . . + +he index ate for the approximate division
To obtain this ratio set tne index plat DPT

of 105.



i
(—t
(5]
[

i

From the theory for this head the reaus

he required indexing for this division
will be
- 20 4
1 = e fo- R —
105 21

|3 ]
e
i

iriver &4 _ 1 4 _ 24 40
driven 21 3 ° 7 72 ° 70
N.B. An idler must be used if a rotation 1s to be additive,

w

(b) Variable Lead Helicoids:
Variable lead helicoids can be produced by either use of a cam and
follower driving the cage of the differential or, alternatively, by a

constant gear ratio driving the cage in conjunction with a fixed

angular offset for the worktable.

ot

If a cam is employed, then it will be necessary to use a stepping

\afts with the cam system externally

s

gear box mounted over the two worm S

mounted on this reduction boX. The gear box system will alter the ratios

Setween the cage and the cam follower to 1/1 and reduce the ratio between
I ge ar

the cam and the primary input WOIm ty 1/20.




. P . . . .
i.e. Ratio between primary input worm and camshaft = 1/20
L i colial - 4
since the internal ratio of the system is ERT,
17 4 20
and Rati etween f rer s i 1
atio between follower and secondary imput worm = 10/1
since the internal rarti £ o i E L
nternal ratio of the system is 3 . —ox = ==
-7 30 10

w - ~ o ';‘._" 1 e ’ - - PR .
For a logarithmic lead the cam profile will be designed according

R

i
w
™

where T and k have the meaning described in Chapter VI and

6 = =x L lo ?l : EE?
=+ — 1 z
k ge { T
1 o)

N.B. {k in this expression is not the gear ratio of the superposed

1f this superposed rotation were added or subtracted by means of a

rrain then the increments would be arithmetic and not

wn
e
5
bt
()
aQ
]
[45]
[}
[m)

r = 1.125 6 = 35.25° m = tan 30° = 0.57735
o
Machine Lead = 20 in Natural Lead = 10 in

. 1/k & (Superposed) Increment
(in) Radian (rad)
e ee—s o ——— ...:WM
0.0 1.4138 0.0
#ﬂ_ﬂ_#__ﬁ___ﬂ___,__#__ﬂﬂ,_________,_ 0.99857
T I 99857
2.0 : 0.7 i
_#__*__’“___—_T_______,_,ﬁ_________ﬁ 0.57940
4O " 1.57797
) 0.40979
i | 1,98776
6.0 ‘ PR
° 0.31731
S | —
2.30507
8 . o H »/4 . J\/ ~
{ , 0.,25899
: 2.56406
10.0 ‘ e
|
A




netically a gear train would be

driver _ 2.58406 )
; = = LOKRGEAR
driven 2% 0.408083

O is obtalned using continuved fractions and inter-

i.e.
lriver 55 40 63 L
- B oo = o = = (414815
driven 135 75 81

(0.414815 - 0,408083)
0

L 0
0758 x 100 “/o

3 .
.) i

= 1.65 O/o

added for a 2 in increment in lead would be

3
o
®
o
=]
e
Fh
O
4
H
O
[ny
o
@]
t-o
O
o]

0.512812 radiens and comparison with the above table highlights the

ferences over one revoiution of the work.

[an
=N
Hy

(c) Short Leads:

2 short lead is required then the superposed ratio will be obtained

—
h

as follows

s (1 + 2k) RN 0%}

£ lution wil Lve ibstituting
The lead of the work for one revoiution will be given by subst g

therefore
L 27h
s (1 + 2k)
therefore
-
1w g Ceeene (46)
k=3 1 |
.



0]
I
o d
o =]
o o
J "
o ]
M =
~ (o N
oo o
o g
3 =
o o
[52]
™~ o
o~ [=f (@]
» (3] ~
— o]
jo]
1t @ Q
(V] M O
o ] Ko ord —
ord @ = —
£ 43 o e
mm Wﬂ [
¢ 1=
m [43] ~~
i (%} o~
Q ] o ™~
Ne] L Mo N
o K] L o] o
C o] @] 0
St o O o o 1 s |y
I o] [¢] U] v 13 ~ N
] [ON] S [ [Ta] ~~ @) (o] o
ot o T ~ 138 I} ~ 1 i e}
o] st js} o - o ] @) 0 ~
[¢¢] s} ot 4J Q O o U4 o M| O
] o ed ) I5¢] [os] ] [SaRENE
o o = 4 it il ’ 3 . ) ™~
o] - 5 O] ~7 (3] I
St 4 J o) O o] 0 ™~
3§} Q 0] ] [« il » (@]
~ -4 0] (93] ] o ~r N
[0} 7] — Q ord A B [@31es} ~ (@] .
Qu (s [an o] — o CO {M
S ] [wal (e} il it
o o} = 0] @ 1 @) (O] M
(5} s} o] o o 1 0 o]
@ Q o 3 o i « o0 {~r o
i i [O] 0 &} o] ™~ i M~ M +
- a o - o — a
(¢} ) 0] 4] 0] O -l o il ~
K e K e Q. L3 @ =
1) 43 43 1 o] [sh] Sb W
- i e ] 4 vl A5
R S e o
1l i It il o Q Q i J] i sl e
o « £ 4 [¢] o] [SREES] [}
QO - e 0] <t wn e} 24 o U oyrd o
Ne — U O
[} ~ ol a) O H
w & & @ e o
@ S 0] - 4 ~
el 2 e a M
3 J€a 13 ] =] [l




7y}

EFERENCES

_! w7 TRITR o 2 e 1 .

(1 WOODBURY R.S. Studies in the History of Machine
m T i T m
Tools", M.I.T. Press, Cambridge
Mass, U.S.A., 1972

/9 AT T moe i - 1

(2) RCLT L.T.C. Tools for the Job".  Ratsford
London, 1945.

(3) BUCKINGHAM E. "Analytical Mechanics of Gears'.
McGraw-Hill, WNew York, U.S.A., 1949,

(4) TUPLIN W.A. "Involute Gear CGeometry'. Chatto

& Windws, London, 1962,

(3 MERRITT H.E. "Gears". itman, London, 1962.
(6) ‘Gears, Gear Production and
Measurement''.  Pitman, London, 1948.
(7 HOUGHTON P.S. "Gears - Spur, Helical, Bevel
T 2 3 9
Internal, Epicyclic, Worm'
Technical Press, London, 1970.
(8) BEVAN T, “The Theory of Machines'.  Longmans,
Green & Co., London, 1958,
(9 DENT R. ' “"Production Engineering' Vol, 2.

(10) DUDLEY D.W. & "On Cutting & Hobbing Gears
PORITSKY W. A.SM.E. Journal of Applied Mechanics,
1943, 10, No.4A139
(11) YOUNG A.G. "The Compufa?%on”of Gear, Gear Cutting
and Cam Profiles’. M.T.L.R.A,
Report 1974,
(12) CHAPMAN W.A.J. ~ "YWorkshop Technology" Vol. 3. Arnold,

7 . it oo Widrh of Helical Siot
135 i The Exact Width of a Helical 5lo
(13) HUGO S.W. ' : deh of 2 Belicst 8
Milled by a Disc Cutter fech,
Worid, Vol. 142, 1962.
(14) ETHERIDGE R.A. “An Analysis of the Interferemce
Produced in a Helical Slot Produced
P A | o T+ Journal
with DiscjCutters, .~ ~0t. our
of M/C Tool Des i@? Yol. 10, 1970,




|
f““l
(OS]
o
!

15) KUDINOV A,V "Exrox £ Heli £
(15) I ALV, Exrors of Helical Surfaces Cut
with Disc Type Tools™. Machines
a7 T1in ! J
and Tooling, Vol. 44, No.10, 15673,
“ RIE Plem o) o L
(16) UT ) M. Y., The Profile of a Helical Slot
L > M : anhi 1 I :
L SLAVEKT M, & Machined by a Disc~type Cutter with
B S, .
EISTER 1. an Infirtesimal Width Cutter'.
' Proc. of 13th M.T.D.R. Conf.,
Maciillan, London, 1973.

it - ~ - .

(17) WAYNHAM J The Correction of Helically Fluted
Conical Cutters'. Undergraduate
Project Report, U.A.B., 1970,

(18) THORNLEY R.H. "Production of Varying Lead Helical
Silab Mills'. Private Communication,
1974,

(19) MABBON J.P. & "How to
A J

(20) SABRBERWAL A.J.P. & "An tizal g
KAVINA Y.B. Forces and Wear Characteristics of
fGelical Milling Cutters'.  Proc, of
3rd ¥.T.D.%. Conf., Pergamon
Publishing Co., London, 1963.
(21) ETHERIDGE R.A. & “An Investigation into The Uneven
SCOTT A.J.A. Flank Wear On A Helically Fluted
Form Cutter for Machining The Steam
Face of Turbine B8lades.  Proc. of
15th ¥.T.D,R. Conf., MacMillan,
London, 1975,
(22) SCOTT A.J.A. "An Tnvestigation of Uneven Tool Wear
Tn A Large Helically Fluted Milling
Cutter', M.Sc. Dissertation, U.A.B.,
1968.
(23) SPIEGEL M.R. "Jector Analysis™.  Shaum Publishing

Co., New York, U.S.A., 1959.

(24) REKTORY K. ngurvey of Applicable
T11iffe, London, 1969.
it T A it . .
(25) AYRES F, Matrices.  Shaum Publishing Co.,
New York, U.S.A., 1959,




e TSI T RIS

v e e S e S S 7 ey ST TSNS T I

FIGURE 1

- ~ — v O
PreEsSURE AneLE - 14,5

DiaMETRAL P1TcH - 1.0

RTITTTLITT)

T T T R T TR S RS T TR



INTERFERENCE

AREAS ﬁ?ﬁiﬁzziﬁ

FLuTiNGg CuTTER OFFSET

Work CENTRE

FIGURE 2




v

Aston University

Illustration has been removed for copyright
restrictions

Plate i




TURNING MILLING

1A
CYLINDRICAL GRINDING fiﬁV VERTICAL

f’éi'f\F MILLING

g

o

CENTRELESS
GRINDING

(

SURFACE GRINDING

DRILLING
FIGURE 3

NIRRT AL S

e

T SR AL T T %

e TR T T WS TR

bt oz




vﬁ,\v.s..v. RS TSI, - LRI TR

PRERODIN

H\.’V ~ A T

SR




£ T S A TR ST A SO R TRATS T R T sTiT W% R T

G 24n9l

avay |
ONTAIAI(]

¥3LLNY 2SI (Y)

)

Ty a

N

2L

13 (9)




A R R S ATE AT £, £ (T S LT T T TR T AT

B

DR b e s B e e T T L TR GA AR L A L ST A T T T TR et

g N1

. suv3g X173y
wiinaaadd1gGs

(&

SYvag XAAN]

ST N TR T TR T

e s Srtss TRERS LT

L —— S : R




e R

S —— S R A LTS A TR T )

/ 3un9l4

A MO}
avay| N¥oH \ //

ZAANNN syvIg 0y [ i ERlUA mWMw
40 0OI.LVY ~—

¥

1
! SYvYag 1710y
| ]

pe )

ISYIATY Q334§ ¥3LLny =

WSTNVHOZ | i
X3N] -

Ty Qe CmeTeTI®  COOTmidd  CULIToesy) GXIIINTR)  CRORSI)  EOSTINR GUTTED @R WM,QMG D..M_MH*

el |
01
O
—
<

PRIt e e e e




T T

TR T, RO TR TS LIS YRR ¢ e

i ey i |

74N914

M3YOS avaT

LAVHS
RECIEN

el

I.“Fl —

r\“..\

ONIATIITY

\Tznuurmlwiauwa _

L
=7

i

-
1

FTANTJS SOy
f]

ff\L ONIASZ hl_uvu /_«( iﬁ?( -

.

i
-
e =

L
— ‘j
‘,l_
l

| |

SIEL
011y
WEREH]

I 11 _&
I A -
< (fﬂ,N qf_llt!.llv I,Hmij
S AOREREERS I ﬁ»1m11||?LL
JATY(Q
Vi




PRI AR A ST T

i TR I L TS AT LT I T

QVfJ
§
|
i

_

(b)

F1Gure 9

E—

L
5, A i i
A

(a)

A TR e S S s s

Pl gt ananto s n e




}_1
[ L
L N
| |
b TN h
i N /
! ~
\ Y
| \\ N
; > \//‘\\
~ |
{ ] i / ~ .} / {; //j/
Fieure 10
‘n

////;7;2> l C;/77777”
/)77lf///




rae

Ficure 12




Fieure 14

s mrnmesaan e




RS

RTINS

FiGURE 15










pos




TR AL R T N LT SR TSI I

-

—
=
b~

FIGUR










£

b
L

EPtHELICYCLOT

=

B3ase CYLINDER

F1GURE 25

O
N

9N}
[as

(&)

ro—t







67 3¥N914










4ILIAVI(
YIANTTAY ISV

TS TS T EIIREBETLOT AL

S Y
















i

i

= 35

GUR!

F1




R
§

o T

R E=

rLmn TR

i~
[RQY

Lt
[t

(&}

—t




A



e H
[REEN v H

[guieame oo s :
i :
o i
;
x [
M
i
3
: f
? .
K ;
b
| :
|
i
: i
B
§ B
T ;‘
i
1 :
K




R—

RN

AR NN

SN

N
N

N

Il

L R BT 2%

e ERT

227







A RECUENE
.
N _ B B
PN
-
N
w1 G210




I ST IAL T T A e A

oz F

s RIS

eI AT

R







[ - I~
P = -
o Ny = |
x -
.
; < |
j - <
i =l Q o~
1R — -
! bt — . e
5 Ll —
- et
I (@]
\_ L
>< ol
£0.1 e
0 M
: O T —q =
(5] =
; Ly
— [
= )
—a (&3 3
A >t
§ =i VJ | 4
e e e —
W
.m
¢ N
j A‘.\WM —
]
H
Lrd
ol
L O
[ -
-5 e e s v 1
O



~N

—

i

(GR]

o

1.4

Y (In)




e s e e eI YL TIGII R S0t 4 IeRCETAIIT ATTONAD W LTS LTI AT T TN I ST SRR TR S AT T R AT T R A T

X (In)

i

Lo

i

C{GURE

Y (Iv)

1.4

1.5

i o e e A T A RN i £ BN T £ T S ST A TR § S T € T B T T S ST T TR ST A S SR S TN S T




AT

—

-

P et

- = 2 = = e g ETRTL RTINS M EATTI R T TNAAEA D S TS T AT TR AT T TR S FE e AL L T R ST LT T P TR G R T A TR T T
e DRI L £ s LT G A AR S ST S T S S T AT U b e oS TR A DA P AT S PSR T T -

e

2.3
2.2
2.1
2.0
1.8

2
2.4

ITAL
i

i
A
A

N~

\
A
O

XPERIM
G

|

1.8

1.9

Y (In)
:

—4

2,0

i

2.1

AT LTI R R TS ST VA VDT WA AR 2T T TR e e e STy T T

T T S T LT T T e SO T T T SR ISR A (TR LTI 1 TR A e R T T O I S T T T R T S R T R T AT R AT L T T T SR L S ARSI LTI



2.3

N
No

2.0

2.1 2,0 1,9 1,8 1.7 1.0

AT T

T S

PN

3TN

R AT




G

L

jul

-

I~

i

Y (In)
Ficu

- = N o~ —i o =) o
RIS N N N o ~i ~
~—r
- X
<C -
e
&) )
uy o .
= C
oo <
58 C
o 1
> O
QQ
i O o~
{ 0 _
LS e
¥
— O o O
o
e
l
AT
7w
-
=Y
ulr O
- U




e T T AT T I ST AR BT AT

e e ST T AT A T o

e A ST T T G R L T S R AT

T (T B S R T T T AT T S R TR ST A iR




USRI

T T AN ST

TSR

Y T A T R

et
H

T ST TR

0GCO0O

EXPERIMENTAL

THEORETICAL

2.8

2.7

2.0

2.5

0.5

0.4

0,3
Y (In)

F1euUrRe Bl

0,2

o SIS 2 AN YT 2 T




TesT B2
ScaLe - 10x

e F Y PERIMENTAL .
OO OO THEORETICAL

X (IN)

2.9

2,3

0.5

0.4

0.3
Y (IN)

F1GURE 52

0,2

0,1

0,0




TesT B3
ScaLe -~ 10x

= [ YPERIMENTAL
OOOO TheoreTICAL

X (IN)

2.9

0.5

0.4

0,3
Y (N

FiGure 53

0,2

0,1




Test (1
ScaLe - 10x

EXPERIMENTAL
OOOO THEORETICAL

X (In)

3.1

3.0

2.9

2,5

'0.9 0,8 0.7 0,6 0,5 0.4
Y (IN)

F1Gcure 54




Test C2
ScaLe - 10x

EXPERIMENTAL

OO OO THEORETICAL

X (In)

3.0

2.9

2.8

2.4
0.9 0.8 0.7 0,6 0,5 0.4
Y (IN)

F1Gure 55




TesT C3
ScaLe ~ 10x

EXPERIMENTAL
0000 TyeoreTicAL

X (IN)

2.9

2,8

2.7

2,3

0.9

0,8

0.7
Y (I

FIGURE 56

0,6

Q,5

0.4




Test K1 EXPERIMENTAL
ScALE - 10x O OOO THEORETICAL

R.H. FLANK

(In)

2.7

2.1

0,0 0,1 0,2 0,3 Qb4 0,5
Y (IN)

F16URE 57




EXPERIMENTAL

Test K2
ScaLE - 10x OO OO THEORETICAL
R.H, FLANK

|
(o \Q\\\\\
2.7

\

0,0 0.1

0.2 03
Y (IN)

F1GURE 58

0.4 0.5




TesT K3
ScaLe - 10x

R\H, FLANK

EXPERIMENTAL

OOOO THEORETICAL

X (IN)

2.7

2,6

2,5

2,1

0.0 0.1

0.2

0,3
Y (IN)

F1Gure 59

0.4

0.5




- EXPERIMENTAL

Test L1 o
ScaLE - 10x 000 THEORETICAL
R.H. Frank
X | (IN)
2.7
(
2,2
12.1
-0,3 ~0.2 -0,1 0.0 0.1 0.2

Y (In)

Ficure 60




TesT L2
SCALE_—

10x

R.H. FLANK

EXPERIMENTAL
00CQO THEORETICAL

x | (IN)

2.7

2.1

~0.1 0.0 0,1
YN

FIGORE 61

0,2




EXPERIMENTAL

TesT L3
ScaLE - 10x O O OO THEORETICAL
R.H., FLANK
X | (N
2.7
2,2
Rr.1
-0,3 0,2 -0,1 0,0 0,1 0,2
Y (IN)

F1GURE 62




Sz,

A
—,
3

Ftl ] /7

/
[Lh

o017

371404

'avd 053'0

SN

olS

W\\\\\\\x_\w
|

¥3LLNY) ONILNTY

:mmﬂ.ﬂHMWL"omm

I

371404 ¥ILLNY

e v mn e e me we e o

IEE TR e TR
ST 9T = TNV XT3
W0 s v

ST e T TR S T AT A I S T RS A A




AL CATIULLL AT U LLLIL LI T LIIONNS SR ALAT O I A AR L T G AT AR AT ZTE A T LR TR AR

(1100§ uILdy)

_/
]

g 34N914

AT T R

v/

1
n

0,0

S 0 T £ AT A TR 20 G AT ST TR

NO1LD3S Looy 3avig - 3

NOTL103S FYLNI) Javiyg - dd

NOIL123§ dl1] aavg - Yv

I
n
n
4

0,3125
0.8125
1,3125
1,8125
2,3125

s q

0

n

2,8125
3,125




727

N\

7N
e
7 N7 77 L2

\

<i§é§”//L_%/
D §§§%§§§§§§éé%

77 Ll

B N NN

SECTIONAL VIEW

£

v,

s

I

[

SERRESS,

|
1

~ INDEX MECHANISM

FIGURE 65




Qg 3¥n9l4

AINHIY 0L 1Ad1nG i

LAVHS WYO)
AYVANOI3S
LR N )y
N L LdVHS
= G | NN WHO) AYVWINg /
NOTLV.LOY Wy S - -
13504¥3dNg |
404 ONI7dN0Y) /*\\ O // TI9YL INIHOVA 40 MNVED
wvag s g\ A G H0Yd 1NdNT
SNTINNNY L3NV




S'9

\\\\\ 777777

-]

\//@w\/////////// \A

AZ%

\\\\\\\\\\\\‘l

//

N

=\ 77 \Q\XQ\NN\

-

\\\\\\NNNNNNQx&ﬂH

L

%//

\\\\

%

a4

////v\\

]

.

1

ST

/9 3unold

'MITA
YNO1123S - aVay

ONIQIAI( 3d4ALOLOY{













i

Plate



g9 3uN914

X173Y 3y

X173 ISV 4







]

63 3uN9I4

Qv37 ONINILYOHS

XQT - 379§
AT1A 1831

(ND A
€0 2'0 T'0 0'0 1'0- 2'0- ¢'0- h*0-
I'T
'
o)
¢'1
S'T
(ND) _w




Test VLZE
ScaLe - 10x
LENGTHENING LEAD
X (IN)
1.8
1.7
1.6
1,5
1.4
1,3
1,2
-0,5 -0,4 -0,3 -0,2" -0,1 0.0
Y (IN)
Fieure 70
N




l‘l\

1/ 34nord
0'0
9'0
8'0
0°'T
¢'1
aNVI4 0'0
Qv37 ONINILYOHS (N]) X
XG - 312§ €A 500
I¢IA 8 QTIA Sis3) TN o-<--




TesTs VLD & VL3D o--0=< VL1D
SCALE - 5X O—0—0O V3D

SHORTENING LEAD
1.3446 1N PLANE
X [ (In)
1.6

0.6 0.8 1.0 1,2 1,4 1,6
Y (In)

FIGURE 72




TesTs VL1D & VL3D o---0--o VL1]
SCALE - 5X o—O0—0 VL3D

SHORTENING LEAD
1.973 1N PLANE
X | (IN)
0.8

0.6

0.4

0.2

Y (IN)

FIGURE 73




R L —T

h/ 3¥N914

SINVY
NI ¢/6'T

NI Ohhe'T

0'0

av3] ONINIHLONIT

XQT - 37V9S
QZIA 1831

1) ¢°0 | ¢'0 Oc_ 0'0 1'0- ¢'0- ¢'0- f'0-
A0y - o/d,./||.b/¢;
~ dl IO//
/p/Xu/ /dv/ /O//
\T /, Q
Q . xu,/
// // \
\ o
]| n ‘.
N B 4
¢'1 ﬁz w/ //
\ \ Q/
\ \ v4
] s, |
e 7
A N
(ND I X ﬁ @




| (ND K C'0 1'0
G/ 3¥n9l4 _ |

SINVIY

NI ¢/6'T

NI ohhg'T

0'0

Qv3 ONINIHLONTT

XQT - 37998 | (ND | X
A 153l




@N EXURIE

av3] JIWHLIYVSOT

ONINILYOHS

XQT - 3798
v 113403H]

AT1A 1s3]

(ND A

¢'0

T'0

I'0-

0'T

't

h'T

(N])




// 3¥no14

INvid 0'0

av3
JIWHLIYVY90T]
ONINILYOHS

XQT - 37Y0S
YO 113¥03H|

AT 1831

¢'0-

¢'0-

h'0-

6'0-

0'T-

6'0

¢'l

(NI)




TesT YL1D -~ THEORETICAL
ScaLe - 10x

SHORTENING LOGARITHMIC LEAD

1.3446 1N PLANE

(IN) o'

0,7

0.6

0.5 o)

Olq O

0.3

0.2

0,1

0.0

0,5 0.6 0.7 0,8 0.9 1,0

Y (N
F1cURE 78 | |




6/ 3¥N914

S3NVY
NT ghhe'T
0'0

ava

JIWHLI¥Y90T
ONINIHLONTT

XQT - 39S
TYO113¥03H|

QA 4531

1'0~

¢'0-

6'0

0'T

T'1

(ND | X




