
Results

• Data broadly similar for all 4 subjects & both phases; averages shown here.

• Error bars calculated from the standard deviation in binomial sampling:

where p is the probability of response and

n is the number of trials (480 here).
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1. Introduction to edge detection

One important class of models
supposes that edges correspond to the
steepest parts of the luminance profile,
implying that they can be found as
peaks and troughs in the response of a
gradient (first derivative) filter [2], or as
zero-crossings (ZCs) in the second
derivative [3].
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Edges are key points of information in visual scenes. But, how are they extracted from the eye’s neural output?

It is widely accepted that the retinal image is filtered by even- and odd-symmetric spatial operators of various
scales, early in the visual pathway [1].

One view of these operators is that their role is  to compute the spatial gradients and higher derivatives of the
image. For the odd-symmetric operator shown here, this process can be illustrated as follows….

However, our previous feature-marking experiments found that peaks in the (inverted) 3rd derivative can signify edges
where there are no 1st derivative peaks nor 2nd derivative zero-crossings [4]. These results on 'Mach edges' (the
edges of Mach bands) were nicely predicted by a new non-linear model based on 3rd derivative filtering (Georgeson et
al, 2007, in press). The model uses 2 stages of rectification to remove spurious edges (the troughs shown here).
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Odd-symmetric
operator profile A horizontal section through the odd-symmetric profile shown above produces the profile

shown here (left). This can be simplified to two adjacent regions of positive and negative
response. If the output of these two regions is summed, this is equivalent to obtaining the
difference in luminance between these two regions.

If this operator is ‘swept along’ (convolved with) a 1-D image so that it makes this
comparison between every point and its neighbour then the output at every point is
proportional to the rate of change of luminance, i.e. its 1st derivative.
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A similar argument
applies to obtain
operators that compute
the 2nd, 3rd or any higher
derivative, but with
different weights applied
to different regions.
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As a critical test of the model, we add a linear luminance ramp to the blurred triangle waves used previously. This ramp has no effect on the second or
higher derivatives, but the nonlinear 3rd derivative model predicts: (1) For ramp gradients of less than ±1 (below, 2 left plots ) the gradient (1st
derivative) profile has both positive and negative parts - 2 edges are predicted. (2) For steeper added ramp gradients (below, 3 right plots) the gradient
(1st derivative) does not change sign. This causes one 3rd derivative peak to be blocked by a rectifier in the model - one edge predicted.

2. Rationale and stimuli

Gradient of added ramp:            0     0.5              1         1.5        2
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----------------------  Stimulus luminance profiles and their derivatives  (only positive added gradients shown here)  ----------------------

Procedure
• Images were presented once for 0.3s.
• Task: indicate whether 1 or 2 edges were seen at the centre of the image.
• Interval between presentations was at least 1s.
• 1 session had 10 repetitions of the 18 conditions at one blur width, in random
order, and took about 5 minutes.
• 4 subjects each performed 6 sessions for blur width 8 pixels followed by 6
sessions for blur width 2 pixels.

3. Experiment 1: Yes-No paradigm

Stimulus generation
• Basic stimulus was one period of a  triangle-wave (green, below, left) blurred by a rectangular function 2 or 8
pixels wide. The gradients of its rise and fall are defined as +1,-1.
• Linear luminance ramp was added to form the stimulus luminance profile.  Its gradient was -2, -1, -1.5, -1, -0.5,
0, 0.5, 1, 1.5, or 2.
• Image size was 256 by 256 pixels (4.27 degrees), surrounded by a full screen of mid-grey.
• Waveforms were also inverted to obtain opposite phase images.
• 2 blur widths x 9 ramp gradients x 2 phases = 36 conditions.

Number of edges predicted:      2      2              1           1        1
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Conclusion
Two Mach edges were reliably seen in a triangle-
wave, but one disappeared when a steep linear ramp
was added. This pattern of results was nicely
predicted by the nonlinear 3rd derivative model. But
the transition from 2 to 1 edge was less rapid than the
model predicted (Box 3).  We suggest that mild,
bandpass filtering (e.g. by the retina) can explain this.

Question?     WILL SUBJECTS SEE 1 OR 2 MACH EDGES?

4. Experiment 2: Feature-marking paradigm
Procedure
• Images were flashed repeatedly (0.3s on, 0.6s off).
• Task: mark the position and polarity of all edges and bars seen
• The marker comprised two black dots, each 1 x 3 pixels, vertically arranged,
each 32 pixels (0.6 deg) from image midline
• Subjects were instructed to fixate midway between the dots
• 1 blur width (8 pixels) x 9 ramp gradients x 2 phases = 18 conditions.
• 1 session consisted of 6 repetitions of each of the 18 conditions, in
randomised order, and took about 30 minutes.
• 4 subjects each performed 4 sessions.

Main Results
• Data were broadly similar for all 4 subjects; averages are shown here.
• The task was reliable - Error bars are ±1se and are plotted behind symbols.
• All subjects marked a central bar flanked by 2 edges for gradients up to ±0.5
• For gradients beyond ±0.5, bars and one edge were marked less frequently -
smaller symbols here.
• Position and polarity of marked edges was well predicted by the 3rd
derivative model. Absolute position was better for phase 180 than phase 0.

Secondary Result

• The light bars appeared wider than the dark bars.

This may be an example of the Helmholtz irradiation effect [5].

5.Conclusions and model refinement 
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Model refinement - Add a retina

An additional pre-filter was added to the model. It has a Difference-of-Gaussians
receptive field profile, based on P cells in central vision [6]. RF shape and spatial
frequency response are shown above.

Data (Box 3, blur 8) with
refined predictions

Data (symbols) and model predictions (lines)

Its effect is to accentuate edges as shown here (left). The
filter modifies this waveform so that it now has a small
central negative gradient, which allows both 3rd derivative
edges to pass through the rectifiers in the model.

The revised predictions, which also assume a noisy
decision process, match the data well (right).

Filtered waveform

Filter shape and frequency response

• Results were almost identical for the two blur widths.

• Two edges were seen reliably with added gradients up to  ±0.5. This matched model predictions closely (solid line).

• With steeper added ramps, reports of two edges fell away as the model predicts, but more gradually than predicted.
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