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Summary

Textured regions in images can be defined as those
regions containing a signal which has some measure of
randomness. This thesis is concerned with the descrip-
tion of homogeneous texture in terms of a signal model
and to develop a means of spatially separating regions
of differing texture.

A signal model is presented which is based on the
assumption that a large c¢class of textures can ade-
quately be represented by their TFourier amplitude spec-
tra only, with the phase spectra modelled by a random
process. It is shown that, under mild restrictions, the
above model leads to a stationary random process.
Results indicate that this assumption is wvalid for
those textures lacking sigunificant local structure.

A texture segmentation scheme is described which
separates textured regions based on the assumption that
each texture has a different distribution of signal
energy within its amplitude spectrum. A set of bandpass
quadrature filters are applied to the original signal
and the envelope of the output of cach filter taken.
The filters are designed to have maximum mutual energy
concentration in both the spatial and spatial frequency
domains thus providing high spatial and «c¢lass resolu-
tions.

The outputs of these filters are processed using a
multi-resolution <classifier which applies a clustering
algorithm on the data at a low spatial resolution and
then performs a boundary estimation operation in which
processing is carried out over a vange of spatial reso-
lutions.

Results demonstrate a high performance, in terms

of the classification error, for a range of synthetic
and natural textures.
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Chapter 1

Introduction

1.1 Introductory Remarks

Texture is a ubiquitous property of most natur-
ally occurring images. One only has to look at a pic-
ture of a landscape to note the leaves of a tree, the
surface of a lake or the clouds in the sky all of

which, in some sense, constitute texture.

Hawkins [1] characterised a textural field as
being a repetition of some elemental unit over the
entire image plane, this unit being small compared to
the region size. Such a definition appears to cover a
large class of textures, for example, a brick wall or
a wallpaper pattern. In order to expand the defini-
tion, some measure of incoherence or randomness must
be introduced. In this case any sub-region of the tex-
tural field can be perceived to have the properties
characterising the texture irrespective of the posi-
tion of the sub-region, given that its size is large
compared to that of the texture’s elemental unit. Such
an assumption of position invariance is crucial to the

work described in this thesis.

Having an understanding of texture is important

in many image processing applications. Image analysis



and understanding systems require knowledge of regions
of constant texture to make semantic judgements about
the image. This 1s the case, for example, in systems
that analyse satellite 1magery in determining the
location of particular «crops. Certain systems that

develop 3-D 1image descriptions from 2-D data employ

texture cues to infer surface orientation [2]. Appli-
cations in image coding [3] are also envisaged.
Specifically, most conventional coding schemes are

unable to deal adequately with texture on a pixel by
pixel basis due to the fact that many textures are
only <correlated over short distances and hence there
is a lack of redundancy in such signals. This problem
could be solved by coding textured regions in a
parametric fashion which reproduces the statistical
characteristics of the field but does not attempt to

reproduce a pixel by pixel representation.

Also, an important area of study concerns the
perception of texture and in particular the perfor-
mance of the human visual system in discriminating a
pair of texture fields.If a necessary and sufficient
set of conditions could be established whereby
discrimination could be predicted this would be an
invaluable aid in the understanding of human visual

perception. More will be said about this below.



1.2 Texture Perception and Discrimination

An important insight into the workings of the
human visual system is provided by experiments on tex-
ture perception and discrimination. How human beings
perceive texture and in particular the factors that
influence the discriminability of two texture fields

is crucial to this question.

Julesz carried out detailed experiments on
"effortless" texture discrimination wusing a pair of
texture fields each consisting of a set of sub-
patterns having just two grey levels-black and white.
He defined "effortless discrimination'" as a '"percep-
tual task that can be performed without scrutiny or
deliberation on an individual sub-pattern of the tex-

ture."

In an early paper [4] Julesz described a set of
experiments on random dot arrays placed side by side.
He established that textures having the same second
order statistics (and hence first order statistics )
but differing in third and higher order statistics are
indiscriminable. In particular, differences in first
order statistics only are perceived as differences in
the mean grey level of each texture. Differences in
second order statistics only are perceived as differ-

ences in granularity of the textures.



Such a conjecture is generally true for all tex-
ture pairs comprising random dot arrays due to the
absence of any structure at a local level. However, in
a subsequent paper [5], Julesz acknowledged that local
processes are also important in texture perception. He

coined the term texton to describe features of indivi-

dual sub-patterng that render texture pairs with
identical second order statistics discriminable.
Indeed, he suggested that it is the first order den-

sity of these textons that enable discrimination even
in cases of identical second order statistics. He also
suggested that the positional information or phase of
the textons has no perceptual significance. The phase
becomes important when focal attention is paid to

local texture elements,

A related approach to that of Julesz is that of
Beck [6] who investigated the relationship between the
perceptual differences of the local texture elements
and the effortless discrimination of the texture
pairs. He postulated that texture discrimination 1is
the result of differences in the first order density
of stimulus features of the 1local texture elements,
particular features giving stronger discrimination
than others. For example, differences in local element
orientation and slope stimulate stronger discrimina-
tion than differences in curvature of a local line

segment. He used perceptual experimentation to assess



different types of local element features to grade
them in terms of their contribution to discriminabil-
ity. As in the work of Julesz, he restricted himself
to textures consisting of arrays of sub-patterns, an
approach which is clearly related to the structural

models described in the next section.

Gagalowicz [7] suggested the use of second order
spatial averages as sufficient for visual discrimina-
tion between textures and in particular those based on
the co-occurrence matrix defined in the next section.
He commented that many of the examples proposed by
Julesz are not ergodic, that is to say the second
order statistics as computed from the generating pro-
cess are not the same as the second order spatial
averages. Hence discrimination is not surprising in
this —case. However, he concluded that textures with
identical second order spatial averages could only be
discriminated on the basis of local inhomogeneity, a

result in accordance with the texton theory of Julesz.

Without these local inhomogeneities which appear
to trigger selective feature detection mechanisms in
the visual system, discrimination 1is based on the
second order statistics. Such a conclusion has led
workers to consider Fourier methods in the analysis
of discrimination experiments since the autocorrela-

tion function, the 1inverse transform of the power



spectrum, is an expectation over the second order pro-

bability density.

Caelli [8] hypothesised that the wvisual system
operates on the Fourier components of the texture
using a ‘“clam shell’ filter whose response varies with
the Fre%uwny and orientation in the spatial frequency
dowain, A set of filters centred on different parts of
the Fourier domain and of different orientation selec-—
tivity was assumed. Using a set of natural textures he
concluded that there is a good degree of correlation
in the spectral similarities and discriminability of

the texture fields.

Harvey et al [9] investigated the relationship
between the Fourier spectra of the texture and its
perceptual appearance. In this work textures were
grouped according to their perceptual similarity. They
found a relationship between the spatial frequency
content of the texture, as represented by the activity
evoked in the four independent spatial frequency chan-
nels of the visual system, and the perceptual similar-

ity of the textures.

Note that in experiments of this type only the
amplitude spectrum is considered. Eklundh [10] con-
sidered the use of the phase features in discrimina-

tion experiments and reported that they contributed

virtually nothing to discrimination.



1.3 Textural Models

Many workers have attempted to model texture,
that 1is, to specify a set of textures in terms of a
small set of model parameters.A review of recent
research into this problem was given by Haralick in
[11]. He identified two distinct approaches~structural
and statistical.The former describes the structural
primitives of the texture and their placement rules.
The latter models the texture in terms of the statis-

tics of the chosen feature set.

Figures l.la and l1.1b illustrates a pair of tex-
tures generated using a structural and statistical
model respectively. Figure l.la was generated by
defining a local structural primitive as an "L’ shape
and a translational rule which specifies the horizon-
tal and vertical periodicities. In the case of figure
1.1b no definite local structural primitive is
apparent. In general structural approaches to the
modelling of texture lead to generative ©processes
only. However, the parameters of a statistical model
can often be estimated from the data, these parameters

being used to characterise the original texture.

Various approaches to structural and statistical

modelling will now be described.






A related approach is that of Modestino et al.
[14] in which the image plane is tessellated using a
Poisson line process, the rate of which controls the
edge density in the image. A parameter is also defined
which specifies the contrast between adjacent regions.
This method uses a combination of structural modelling
and statistical inferential techniques. la particular
a statistical element is introduced into an essen-
tially structural generative mocel, the statistical
parameters being subsequentiy inferred from the data

using parameter estimation techniques.

Zucker [15] defined an ideal texture as a per-
fectly ordered pre-defined primitive. This tessellates
the image plane into a set of periodically arranged
regions. He then defined a set of transformations
which map from the ideal to observable textures,
reflecting physical processes such as distortions to
the the imaging process, projective transformations

and so on.

1.3.2 Statistical Models

These methods characterise a texture by the
statistics of pixel populations and their spatial
relationships and in some sense can be considered as

structural models with the structural element being

condensed down to a single pixel.




A widely wused technique 1is that of the co-
occurrence matrix. The grey level co-occurrence matrix
set P(d) is defined as a function of a vector d and
whose (i,j)th element is the relative frequency of two
pixels of spatial separation d having grey levels i
and . Haralick et al performed a number of image
identification experiments using features of this

matrix with some success [16].

It should be noted that the above technique is an
estimate of the joint probability distribution of
pixel pairs conditioned on a particular spatial
separation. A related technique 1is the grey level
difference method [17] which characterises a texture
with an estimate of the first order probability dis-
tribution of the difference in a pair of pixel grey

levels, again conditioned on spatial separation.

Statistics based on the grey level run length
have also proved useful as a model parameter [18]. A
grey level run is just a set of linearly adjacent pix-
els having the same grey level value. A matrix set
R(a) is defined whose (i,j)th element specifies the
relative frequency of a run of length j for grey level
i in the direction a relative to some set of axis. In
this case features from R(a) over a finite set of

values of a are used to characterise the texture.

Measures based on the autocorrelation of a
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textural field have also been adopted. This 1is
equivalent to using a Fourier spectrum analysis
approach as the discrete Fourier transform of the
biased autocorrelation estimate of a signal 1is just
the periodogram of that signal . Various workers have
used spectral features in texture classification
experiments. Weszka et al [17] integrated an estimate
of the power spectrum over sectors of the Fourier
domain between four radial spatial frequency values
and four orientations thus obtaining sixteen features.
They found that classification of LANDSAT images based
on these spectral features in general performed worse
than c¢classification based on co-occurrence and grey
level differences. However, this degradation in per-
formance can be explained by noting that they used the
periodogram of the signal as an estimate of the spec-—
trum . Such an approach introduces spurious side lobes
into the true spectrum which will obviously influence
the <classification. In order to solve this problem,
Chen [19] used a maximum entropy method to estimate
the spectrum. He reports classification results com-

parable to those using co-occurrence matrix features.

Pratt et al [20] employed a ‘time series’
analysis approach to model texture. They considered a
textural field to be the output of a linear spatial
operator acting on an independent identically distri-

buted random noise field. By adjusting the form of the




impulse response of the operator and the statistics of
the noise field, they noted that they could predict
the outcome of texture discrimination experiments

based on the statistics of the texture field.

Related to ‘time series’ analysis is the tech-
nique developed by Deguchi et al [21] in which a non-
causal autoregressive model 1is fitted to a texture
field. The parameters of the model are computed in
such a way as to minimise the mean squared error
between the predicted and measured pixel values and
are a function of the autoccrrelation function of the
texture. An extension of this technique is to use mov-
ing average terms in the pixel grey level estimate 1in
addition to autoregressive termg thus increasing the
flexibility of the method for constant model order

[16].

Kashyap et al [22] extended simple autoregressive
and moving average models to models with significant
correlation between distant locaticns - well beyond
the span of the AR or MA coefficients. This technique
provides a means of parameterising natural textures

using linear models.

1.4 Approaches to Image Segmentation

The problem of texture segmentation can be

defined as the splitting up of an image into maximally




disjoint regions, each region having uniform texture.
It differs from texture discrimination in that a spa-
tial element is present. In other words, not only have
the texture fields to be discriminated, they have also
to be localised. Its uses includes scene analysis [23]
in which texture can give a vital clue to the nature
and orientation of physical surfaces. Also it is use-
ful in object-background separation, in which perhaps

the background is of uniform texture.

It should be noted that grey level segmentation
can be viewed as a special case of texture segmenta-
tion and many approaches to this problem have been
suggested [24]. Note that the region classification
problem remains the same in both cases, but in the
case of simple grey level segmentation the problem of
feature extraction does not arise. More will be said
about the detailed question of classification problems

with spatial constraints in chapter 3.

Modestino et al [25] described a texture segmen-
tation algorithm which assumes a stochastic tessella-
tion model for a textural field [14). Their segmenta-
tion algorithm is based on a maximum likelihood
discrimination of a grey level co-occurrence matrix
computed over a finite window. They reported encourag-
ing results for a range of natural texture segmenta-

tions. However, it should be mentioned that their




method requires the algorithm to be presented with a
sequence of training samples in order to compute
necessary model parameters for the particular class of

textures being used.

A simpler approach, adopted by Rosenfeld et al
[26], is to compute a measure of texture coarseness at
each image point and then to detect changes in this
coarseness measure. In general the window size over
which this measure is te be computed in order to
obtain reliable results limits the spatial resolution

in locating texture boundaries,

A more sophisticated gradient approach is due to
Wermser et al f[27]. They proposed a set of textural
features based on the outputs of a set of non-
isotropic filters of different bandwidths and orienta-
tions. A texture gradient measure is then computed in
vertical and horizontal directions from the filter
outputs. The attractive feature of this work 1s that
it is based on local properties of the texture field
over a range of region sizes and hence can accommodate
textures of varying granularities. Also it is an unsu-
pervised approach requiring no a-priori
information.The authors reported moderately successful

results for a variety of natural texture segmenta-

tions.

Coleman et al [28] report on a purely statistical




approach to this problem. A twelve element feature
vector 1s defined at each image point and a clustering
technique used to «classify these vectors based on a
K-means clustering algorithm [29]. Feature rejection
is achieved using a Bhattacharya based measure and an
eigenvector transformation applied to the remaining
features to produce an uncorrelated feature sct [29].
The results indicated that the sub jective accepta-
bility of a particular segmentation varies with the
subset of features being used. Further, by dignoring
the spatial position of each vector, spurious classif~
ications occur which could be corrected by dinvoking

some spatial constraints.

A segmentation algorithm based on a pyramid data
structure [30] was developed by Burt et al [31]. Such
a data structure consists of a set of images compris-
ing‘ different spatial resolution versions of the ori-
ginal image. In this segmentation scheme class member-
ship is passed from lower to higher spatial resolu-
tions whilst smoothing within classes takes place in
the opposite direction. Hence processing occurs in
both a top down and bottom up fashion. As will be seen
a related approach is described in this thesis to per-
form segmentation but only top down processing 1is
allowed. Note also that in that in Burt’s method no

spatial constraints are placed on the segmentation,




1.5 Thesis Summary

A statistical approach to texture analysis 1is
adopted in the work described in this thesis. In par-
ticular it will be demonstrated in chapter 2 how a
model based on the amplitude of the Fourier spectrum,
hence ignoring phase information, is appropriate for a
Jimited range of natural and synthetic textures. This
is a special case of the Julesz conjecture relating to
second order statistics. It will also be shown how a
phase independent model will lead to second order sta-
tionarity for a particular class of phase distribu-
tions. The limitations of the spectral model will be

demonstrated with a number of counterexamples,

Chapter 3 introduces a novel image segmentation
algorithm based on a combination of global statistical
methods and local spatial operations. This algorithm
uses a multi-resolution data structure known as a
quadtree to perform a downward directed boundary esti-

mation procedure following a non-parametric classifi-

cation.

In chapter 4 a series of experiments are
described which compare the performance of this algo-
rithm with that of a classical statistical technique
based on Bayesian hypothesis testing for a set of syn-
thetic Gaussian images. It will be seen that the algo-

rithm compares favourably in performance with the




classical technique even though the latter 1is optim-
ised for minimum probability of error and requires a

priori information.

Chapter 5 describes an extension of this algo-
rithm to the segmentation of vector fields resulting
in its applicability to texture segmentation. A set of
textural features are used which bave maximum muitual
energy concentration in the spatial and spatial fre-
quency domains. It is argued that this apprcach is
compatible with the phase independent model described

in chapter 2.

Chapter 6 presents the results of this texture
segmentation algorithm for a range of synthetic and

natural textures.

Finally chapter 7 presents the suggestions for

future work and conclusions.




Chapter 2

Phase in Image Texture

2.)] Introduction

In the previous chapter the work of several
researchers suggesting texture descriptions and
discriminations based on the sccond order statistics
was introduced. It follows that resort must be made
to second order spatial averages a4s cestimates of the
second order statistics, different estimates
corresponding to different techniqgues. The two most

widely used estimates are the co-occurrence matrix and

the autocorrelation estimate. This chapter devclops a

cT

model based on the autocorrelation and shows how i

relates to intuitive notions of texture based on shift

invariance.

As was mentioned in the context of the work of
Gagalowicz [7], texture pairs with identical second
order spatial averages can only be discriminated on
the basis of local non-homogeneities. Hence it would
appear that purely homogeneous texture, that 1s to say
those devoid of any local structure, should be com-
pletely characterised by an adequate estimate of the

autocorrelation function. Results confirming this con-

jecture for a set of natural and synthetic textures




will be presented. Howecver, textures

local structure will be shown to be

described by this model.

2.2 Mathematical Preliminaries

with

significant

inadequately

2.2.1 Ceneral Stochastic Processcs

A discrete stochastic process x{(n) is & scquence
of random variables. In general the vegion of support
of the process, defining the range c¢f the index n is
infinite.

The process x(n) defines a family ov ensemble of
functions. In order to characterise the process sta-
tistically tor finite N, 1t is necessary Lo specify

the joint probability density p(..x(=1),x(0),x(l)..)
which is a function of all the random variables ~(n).
Further, one can defince expectations over the probha-
bility density. With E as the expectation operator,
the mean n(n), autocorrelation r(m,n) and autocovari-
ance c(m,n) of x(n) are by definition :
oo
n(n) = E(x(n)) =/ x(n)p(x(n)) dx(n) 2.1
* rw *
r(m,n) = E(x(m)x (n)) =j x(m)x (n)p(x(m),x(n))dx(m)dx(n)
*
c(m,n) = r(m,n) = n(m)n (n) 2.3
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In equations 2.1 and 2.2, p(x(n)) and p(x(m),x(n)) are
the first and second order marginal probability dis-
tributions of the process at point n and at points m
and n respectively. Note also that the average power

of the process at point n is defined as

E(|x(n) %) = r(n,n) 2.4

For most applications a complete specification of the
statistics in the form of the joint probability dis-
tribution is unavailable. Also in some <cases only a
single realisation of the process 1is available, in
which case it is common practice to substitute sample
means for expectations. This is acceptable if the pro-
cess 1s ergodic in the particular statistic in ques-

tion [32].

One can consider transformations of the random
process x(n) into a process y(n) by the application of

an arbitrary operator O

y(n) = 0 {x(n)} 2.5

In principle the statistics of y(n) are a function of
the operator O and the statistics of x(n). For exam-

ple, the Fourier transform of the process x(n) is the

process X(u) given by




X(u) = ) x(n) exp(-jun) 2.6

where unit sampling rate Thas been assumed. For an

infinite region of support the existence of X(u) is
somewhat problematical, but for image processing
applications therce is no difficultv, as only finite

supports are generallyv involved.

As a final point an NxN image can be considered
to be a single realisation of a process x(m,n) defined
for 0<= m,n <N. The extension of the theory outlined

below to 2-dimensional cases is trivial.

2.2.2 Stationary Processes

A process x(n) 1is strict sense stationary if its
statistical properties are invariant to a shift in
origin. Hence the processes x(n) and x(n+c) have the
same statistics for any value of the constant c. In

other words any kth order marginal distribution of the

process 1s such that

p(x(nl) eeo x(nk)) = p(x(nl+c) oo x(nk+c)) 2.7

Thus the first order marginal distribution p(x(n)) is
independent of n. Further, the joint second order dis-
tribution p(x(m),x(n)) must, from equation 2.7 be such

that



p(x(m),x(n)) = p(x(mt+c),x(n+c)) 2.8
and therefore must bhe a function of the difference
m-n. This leads to a definition of a wide sense sta-
tionary process as one with a constant wmean and  an
autocorrelation function that depends onlv on the

difference between its arguments

E(x(n)) =n(n) =nq 2.9

E(x{m)x (n)) = r(m,n) = r(m-n) 2.10
Note that the definition of wide sense stationarity is
less restrictive than that of strict sense stationar-
ity as it does not apply to third and higher order
distributions. Furthermore an ergodic ©process is wide
sense stationary if the ergodicity applies to the mean

and autocorrelation of the process [32].

An important property of a stationary process
concerns the response of a shift invariant system to a
stationary input. A shift invariant operator O 1is

defined such that

y(ntc) = 0{x(n+c)} 2.11

Generally speaking, if the input to such a system 1s a



strict sense stationary process then its output 1is
also strict sense stationary [32]. Note further that
a linear shift invariant operator can be implemented

as a convolution sum :

y(n) = h(n)*x(n) = )  h(m)x(n-m) 2.12

which is a linear filtering operation.

In the context of the previous discussion on tex-
ture discrimination it was noted that homogeneous tex-
tures are those lacking any local structure. In this
case the statistical properties characterising the
texture are invariant of position and in this sense a
texture can be regarded as a realisation of a station-

ary process.

2.2.3 Autocorrelation and Spectra

Rewriting equation 2.10 in terms of the differ-

ence d=m-n gives

*

E(x(m)x (m—d)) = r(d) 2.13

The Fourier transform of r(d) is the power spectrum

density S(u)

S(u) = ) r(d)exp(-jud) 2.14

N
o



A more intuitive notion of the power spectrum density
can be gained by considering a process [X(n)]N which
is zero outside some region of support of size N.
Defining [X(u)]N as the Fourier transform of this

process, the power spectrum density is defined as

S(u) = lim = [X(u)] 2.15
N + o

the bar indicating an ensemble average over all rcali-
sations of [x(n)]N. It can be shown [33] that this
definition is consistent with 2.14 if [x(n)]N con-—
verges to x(n) in a mean square sense. From equation
2.15, the power spectrum is independent of the phase
of the transform and hence any estimate of S(u) shculd
be independent of the phase of the components
[X(u)]N . Also, S(u) is a non-negative function of
spatial frequeﬁcy and consequently its inverse

transform, the autocorrelation function 1is termed

non-negative definite.

From equation 2.14 and the properties of the

Fourier transform [34]

m
r(d) =%— [ S(u) exp(jud) du 2.16
oo
Hence
2 R
E(lx(m)] %) = r(0) == [ S(u) au 2.17
-n



Equation 2.17 states that integrating the power spec-—
trum density across 1its entire range in the spatial

frequency domain gives the mean square energy of the

process.

As a final point, a process w(n) is termed white

noise if its autocorrelation function is given by

r(m,n) = I(n) §(m-n) 2,18

where & (m—n) is the Kronecker delta which 1is zero
if 1its argument 1is non-zero and unity otherwise and
I(n) is the mean square energy of the process at posi-

tion n. If w(n) is stationary then

r(n) = I &§(n) 2.19

and hence
S(u) =1 2.20

Thus stationary white noise is sometimes known as flat
noise as its power spectrum density is constant over

all spatial frequencies.

2.2.4 Autocorrelation and Spectrum Estimates

In general, only a finite number N of samples,
x(0)..x(N-1), of a single realisation of the process
x(n) are available. Hence the autocorrelation function

can only be estimated. Defining r(m) as the autocorre-



lation of the stationary process x(n) at lag m

r(m) = E(x(n) x*(n+m)) 2.21

its estimate £(m) can be defined as

N—|m|—l
) z(n) z(n+m) 0 <m«< N 2.22
n=0

f(m) =

Z| =

where z(n) is a single realisation of x(n). From

equation 2.22 tr(m) is biased since

. 1 N—)mf—l
B(fEm)) =5 ] r(m)
n=0
N - -
= ————%QL——l r(m) 2.23
However as N approaches infinity E(f(m)) approaches
r(m) and hence the estimate is asymptotically

unbiased. Further, for finite N, as m approaches N the
estimate Tr(m) becomes increasingly unreliable as the
sum in equation 2.22 is computed over a small number
of samples. This effect manifests itself as an
increase in variance of ?(m) as m approaches N. A so-

called data window is often used to reduce this effect

[34].

In order to introduce spectrum estimation for a
process with finite region of support it is necessary

to extend equation 2.22



where any index outside the range 0..N-1 is taken
modulo N, Hence x(n) and therefore r(n) are assumed to
be periodic with period N characterising a cyclo-
stationary process [35]. Equation 2.24 is thus a cir-

cular convolution

t(m) = %—z(n) * 7" (=n) 2.25

Taking the N-point DFT of each side of equation 2.24

and using the convolution theorem

N-1
S(u) = ) f(m) exp(-2rjum / N)
m=0
_ 1 2
=5 | Z(u) | 2.26
where
N-1
Z(u) = ) z(n) exp(-2njun / N) 2.27
n=0

The spectrum estimate S(u) 1is known as the periodo-—
gram. Equation 2.26 should be compared with 2.15 for a
process with infinite support. It should be mentioned
that g(u) is an extremely unreliable estimate of the
true spectrum of the process. The subject of spectrum
estimation is specifically devoted to obtaining better

spectrum estimates from a single realisation of the



process [36].

In view of equation 2.26 the spatial average
given by 2.24 is ©phase independent. That is to say

that if y(n) is an N-point signal with DFT given by

Y(u) = A(u) exp(jé(u)) 2.28

where A(u) and ¢(u) are real functions, then its
inverse transform y(n) has an autocorrelation estimate

which is independent of ¢(u).

In the context of texture analysis, one could
define a class of textures as those NxN point signals
with identical Fourier amplitudes. The extent to which
the textures in a single «class are perceptually

equivalent will be considered in a later section.

It should be pointed out that such a phase
invariance idea is reasonable for texture as the phase
of the transform contains the positional information
of a signal and homogeneous textures are devoid of
local structure. As a simple example, the impulse
function §&n-r) at position r has a Fourier transform
exp(=27mjur/N) and hence the phase contains the posi-
tion of the impulse. These ideas are explored further
in [37] where it is observed that intelligibility in
an image 1is preserved if the Fourier amplitude is

replaced with some suitable modelling function but the



phase left wunchanged. Further it can be shown that,
under certain conditions, the phase of a discrete sig-

nal uniquely specifies that signal [38].

2.3 A Random Phase Stochastic Process

The previous section suggested that textures
within a single class, as defined above, can be con-
sidered as realisations of a stochastic process with
an arbitrary phase. Specifically, given a real process

x(n) defined for 0<= n <N, its DFT X(u) is such that

1 N-1
x(n) =% ) X(u) exp(2njun / N)
u=0
1 N-1 2mun
= N‘[A(O) + Z A(u) oos( N + ¢(u))l 2.29
u=1
where
X(u) = XR(u) + 3 XI(u)
= A(u) exp(jo(u)) 2.30

In equation 2.29 A(u) is the amplitude spectrum and
#(u) is the phase spectrum. Also note that, since x(n)
is a real process, ®0) is zero and A(0) is just the

spatial summation of the process

A(0) = ) x(n) 2.31

Further, it is a simple matter to prove the following
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symmetry relations

A(u) = A(N-u) 1 <u<N 2.32

o(u) = =p(N-u) 1< u< N 2.33

which follow as x(n) is defined as a real process.

The amplitude sequence A(u) in ecquation 2.29 can
be assumed to be a given deterministic sequence and
the phase ¢(u) a random process. This will then define
a process in which each realisation will have identi-
cal autocorrelation estimates as defined in equation

2.25 in view of equation 2.26 with

a(u) = lz(u)l 2.34

In principle the process x(n) is specified by the N-
point joint probability density p(¢$(0) .. HN-1)). A
simplification is obtained by assuming that ¢(u) and
#(v) are independent random variables for distinct u

and v. Hence in this case

N-1
P(¢(0) ooe ¢(N-1)) = 1T pP($(u)) 2.35
u=0

Note, however, since x(n) is real

p(e(u)) = p(—¢(N-u)) 0 <u < N/2 2.36

p(¢(0)) = §(0) 2.37

The following section considers the expectation values



of the process and define the conditions for which

x(n) becomes a stationary random process.

2.3.1 Computation of Averages

The expectation of x(n) follows from equation

E(x(n)) = [ % I A E(cos(Sg= + ¢(u)))] + 2.38

By definition of the expectation operator and from

equation 2.35 this becomes

1 Nl m 2mun
Nt E L AW [ oSt ew) pleu)) dp(w)

-m

where it is assumed without loss of generality that

the phase lies between -7 and +7T.

This integral is considerably simplified if it is
assumed that the marginal probability distribution of
the phase at each spatial frequency point u 1is

periodic with period T

p(e(u)) =p (¢(u) + ) 2.40

Figure 2.1 illustrates a pair of possible distribu-

tions with this property, namely a uniform distribu-

tion and a delta distribution.

2.39



Ll a-r

Figure 2.la p(¢) = Qi Figure 2.1b p(¢) = %(S(¢-a)
! + & (¢p-a+m))
Since
s A = - s (A+r) 2.41

and in view of equation 2.40, the integral of equation
2.39 over the first half of its range exactly cancels
the integral over the second half of its range and
hence reduces to zero. In this case the expectation

becomes

E(x(n)) =§A(0) 2.42

From equation 2.31 this is just the sample average

E(x(n)) =Nl- ) x(n) 2.43

Thus such a process is stationary in its mean with an

ensemble expectation value which is the sample average




of any realisation of the process within the class,

depending only on A(0).

Turning to the autocorrelation of the ©process,

this is given by

N-1 n
E(x(m) x(n)) = ¥ A(u)zf [cos (2gu“ +o(u)) cos (2RI o(u))
u=1 - N
p(¢(u)) d¢(u)]
N-1 m 5
+ ] AW AW [ feos (TR g(u) cos (SRR 4+ 4(v))
u,v=1 -7 N
u+v
P(o(u)) p(o(v)) do(u) do(v)]
+ A(0)%
N-1 T orun
+ A0) ) A(w) [ s (Fg— + ¢(u)) ple(w) dp(u)
u=1 -
N-1 n 2mum
#A0) ] AW [ @s( + ¢ (1) pl6(u) do(u) 2.44
u=1 -n

Using the periodicity in the phase assumption of equa-
tion 2.40, terms 2, 4 and 5 of the above sum reduce to
zero using similar reasoning as above. Further, using
the well known trigonometrical identity

cos A cos B :% (cos (A-B) + cos(A+B)) 2.45



equation 2.44 reduces to

N-1 ™
B(x(m) x(n) = A0)% + [ aw? [ [(eos (2RI 45 4y))
u=1 -m
2ru(n-m)
+ oos (U ) pio(u)yde(u)] 2.46
which further simplifies to
N1 2 2mu(n--
E(x(m) x(n)) = | a@w?* cos (2, 2.47
u=0

It can be seen that the autocorrelation is a function
of m-n only and hence the process is wide sense sta-
tionary. Also the value of the autocorrelation is just
the DFT of the real sequence X(u) and is simply the

sample autocorrelation estimate as defined in equation
) z(n) z(n+m) 2.48

In summary, the random process as defined by equation
2.29 is wide sense stationary if the phase consists of
a sequence of independent random variables with a
periodic probability density of period m. The mean and
autocorrelation of the process are just the sample

mean and biased sample autocorrelation of any realisa-

tion of the process.



2.3.2 Generation of a Class of Random Phase Textures

The previous section defined a class of discrete
signals on a finite region of support as having ident-
ical Fourier amplitude spectra but differing in phase
spectra. Such an idea can be applied to 2-dimensional
textural fields with the key question being to what
extent the textures within a given class are perceptu-
ally equivalent. In other words, can the textures be

characterised by their amplitude spectra?

In order to generate one texture from another
within the same class, it is simply a matter of com~
puting the amplitude and phase spectra of the original
texture using the DFT, replacing the phase spectrum
with a suitable random sequence and transforming Dback
to the spatial domain. Such a procedure will be termed

phase randomisation.

Imposing the stationarity condition on the phase
randomised texture implies that perceptual equivalence
will not be maintained if the original can not be
regarded as a realisation of a stationary random pro-
cess. For example, local features in the original,
such as 1line or wedge segments, are removed by the
phase randomisation procedure as such structures
require positional information which is contained in
the phase spectrum. That this should be the <case is

not surprising since, as will be demonstrated later,
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phase randomisation is equivalent to replacing the
original signal with a sum of randomly shifted ver-

sions of the original. Hence spatially local informa-

tion is destroyed.

2.3.3 Interpretation of Phase Randomisation

To obtain a more quantitative statement about the
effects of the phase randomisation procedure, consider
a discrete signal x(n) defined for 0<= n <N. Also con-
sider a set of circular shift operators

S(0),S(1)..S(N-1) defined such that

implies

z(n) = x(n+i) mod(N) 0<n< N, 0<i<N 2.49
Clearly

S(0) =1

S(i) S(N-i) =1

where 1 is the identity operator. Consider the pro-

cess y(n)

N-1
y(n) = } a(i) S(i) x(n) 2.50
i=0
where a(i) is itself a process defined on 0<= 1 <N.

Taking the N-point DFT of each side of equation 2.50

Els



N-1

Y(u) = 'ZO a(i) exp (2mjui/N) A(u) exp(j¢(u)) 2.51
1=

where
X(u) = A(u) exp(j¢(u))

is the DFT of x(n) and 2.51 follows from the fact that
the DFT of a circularly shifted sequence simply intro-
duces a multiplicative ©phase factor. Re—-arranging
equation 2.51

N-1

Y(u) = A(u) exp(j¢(u)) ) a(i) exp(2mjui/N) 2.52
i=0

If a(i) is restricted to an all-pass process

N-1
Y a(i) exp(2mnjui/N) = exp(j¢a(u)) 2.53
i=0
where ¢ahﬂ is a random phase sequence, then in view

of equations 2.52 and 2.53, the amplitude spectrum of
the process y(n) is unchanged and hence is a phase

randomised version of x(n)

Y(u) = A(u) exp j(¢(u) + ¢a(u)) 2.54

Note also that for a real process a(i)

a(i) =4 L+ § s G4y ()] 2.55

The summation in equation 2.55 involves independent

identically distributed random variables if the pro-



cess ¢ahn consists of independent uniformly distri-
buted random variables for each value of u. In this
.,case the first order probability distribution of a(i)

is independent of i. Thus all shifts are equally

likely.

In view of the above discussion the phase random-
isation procedure produces a class of signals that
involve global shifts of the original. This implies
that any 1local non-stationary information such as a
line or an edge will be lost. Also a class of signals
are produced that are spatially extended across the
whole DFT block and hence textures consisting of spa-
tially localised structures, such as figure 2.3a, will
not be perceptually similar to their phase randomised

versions.

2.4 Experimental Results

This section describes a set of experiments
designed to test the validity of the ideas discussed
above. In order to process as wide a range of textures
as possible, a set of synthetic textures were gen-
erated. As these textures are used elsewhere in this

report, the synthesis procedure will be outlined

below.

2.4.1 A Set of Low Pass Synthetic Textures
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Consider the following stationary randonm process

producing impulse noise at a rate R [32]

w(m,n) =1 U(0,1) < R

]

0 U(0,l) >R 2.56

for 0{(= R <=1. This process generates a set of
impulses of constant intensity I, the impulses being
randomly generated across the image plane. The func-
tion U(0,1) 1is a random number uniformly distributed
between 0 and 1. Such a process, as defined by equa-
tion 2.56, can be considered to be a digital Poisson

point process [13].

In order to generate a textural field, the
impulse noise field is —convolved with a spatial
impulse kernel h(m,n). This takes the form of a (gen-
erally) elliptical low pass filter with a specified
width eccentricity and direction w,e and d respec-

tively. An LxL operator is thus given by

)) 2.57

3
N N

h(m,n) = exp (A (mi +
e

%2Q



where mp, ny and A are given by

my m oos(d) - n sin(d)

ny m sin(d) + n oos(d)

A= -4 1n(10) / (uL)? 2.58
for e>=1 and 0<= d <2m. If e is  unity then equation

2.57 defines a Gaussian low pass impulse kernel.

Such a synthesis procedure allows control over
intuitively important features of a texture, namely
the granularity, the extent of non-isotropy and the
directionality. Figures 2.2a-d show examples of 4 tex-
tures produced by this method for different values of
w, e, d and R. In this and subsequent examples in this

section all images are 128x128x8 bits.

The incoherence inherent in textures comes about
through interaction of neighbouring convolution ker-
nels. For example, if the mean inter-sample distance
between impulses (which is a function of impulse rate)
is less than the spatial extent of the convolution
kernel in any direction then interaction occurs.
Alternatively if the mean inter-sample distance 1is
much greater than the extent of the convolution

kernel then pseudo-periodic patterns consisting of the



individual elliptical kernels result. Thus by varying
the impulse rate of the noise field the degree of tex-
tural incoherence can by controlled. This effect is
demonstrated in figures 2.3a-d for 4 values of the
impulse rate and for fixed convolution kernel parame-

ters.,

2.4.2 Phase Randomisation Experiments

The phase randomisation procedure as described in
section 2.3.2 was carried out on the 4 synthetic tex-
tures of figures 2.2a-d. Also the procedure was car-
ried out on the 3 natural textures grass, water and
seafan which are taken from the Brodatz book of tex-

tures [39] and are shown in figures 2.4a-c.

The results are shown in figures 2.5a-d and
2.6a-c for the synthetic and natural textures respec-
tively. Note that in this case a wuniform probability
density for the phase, as shown in figure 2.la, was
used. Using the impulse response type distribution, as
shown in figure 2.1b, makes no difference to the
result. This is demonstrated by phase randomising the
textures of figures 2.2a and 2.2d using this distribu-

tion. The results are shown in figures 2.7a and 2.7b

respectively.

In the case of the synthetic textures, although

on a pixel by pixel basis, a texture and its phase



randomised counterpart are completely different, this
procedure produces a perceptually similar texture.
Further, phase randomising grass and water produce
similar textures. However, in the case of the seafan
texture, where significant local structure is
involved, no such claim can be made. Hence a model
based on the autocorrelation function for this texture

is no longer appropriate.

Although it is difficult to make quantitative
assessments of perceptual similarities, by comparing
figures 2.5b and 2.5d with their originals, the latter
fine grained texture is closer to its original follow-
ing phase randomisation than the coarser texture due
to the presence of extended ‘blob-like’ local struc-

ture in the former texture.

2.5 Discussion

The signals produced by adding a random ©phase
function to a pre-defined amplitude function have been
shown to be realisations of a stationary random pro-
cess if the phase has a periodic probability distribu-
tion in the sense of equation 2.40. It was also demon-
strated that the phase randomisation procedure is
equivalent to adding a set of globally shifted ver-
sions of the original. This globality is an essential

feature of ‘perceived stationarity’ which <can be



defined as those signals lacking any kind of local

sSstructure,

Although stationarity is a necessary condition
for perceptual similarity following phase randomisa-
tion, it is not a sufficient condition. The random
impulse field defined by equation 2.56 is a realisa-
tion of a stationary process [32]. However, due to the
spatial localisation of the signal energy in any sin-
gle realisation of the process, a phase randomised
version will not resemble its original. In this case
the stationarity is a result of spatially localised
events being generated by a shift invariant process,
that is to say the probability distribution of the
random number U(0,1) in equation 2.56 is independent
of position. For these kinds of signals statistical
models are generally inappropriate since they require
a finite region size over which to ascertain class
membership as characterised by the model parameters.
This is a consequence of the uncertainty principle
[40] which places a limitation on simultaneous cer-
tainty both spatially and in class space due to the
shift invariant mnature of class defining operations.
Phase randomising the seafan texture of figure 2.4c,
for example, is an attempt to impose a global statist-
characterised by the autocorrelation, on

ical model,

to a signal which is well defined spatially.





















Chapter 3

A Novel Image Segmentation Algorithm

3.1 Introduction

The previous chapter described a statistical
model of texture based on the Fourier amplitude spec-
trum. A key question is whether this model can be used
to segment out regions of uniform texture. The rest of

this thesis is devoted to this problem.

Texture segmentation is an example of a general
classification problem in pattern recognition [29] as

shown schematically in figure 3.1.

X, __37__%
: Feature 1 Classifier L5 cw
: Selection i
X
n

Figure 3.1 General pattern recognition system

The purpose of the system of figure 3.1 is to take an

T . . .
; = nd classif it into
observation vector X_(Xlﬂ% ...Xn) a y

one of a number of <classes based on some pre-

determined criteria. In many applications the raw

observation data are mot Very effective features for

1 i fication purposes. Feature selection involves
classi
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mapping the original observation vectors into a set of

feature vectors which are more suitable for classifi-

cation. Chapter 5 considers this problem in detail.

In general the classifier has to deal with noisy
signals, that 1is to say signals in which the noise
within a class is significant compared to the differ-
ence in mean signal level between classes. This
chapter describes a general classifier, independent of
the feature selection process, which is able to deal
with noisy signals of any dimensionality. For the pur-—
poses of clarity only l-dimensional signals will be
discussed here- extensions to a multi-dimensional sig-
nal space, where appropriate, will be described in
chapter 5. In this case the input to the <classifier
can be simply the 1image grey level and, as will be
seen from the results to be presented in chapter 4,

the <classifier can perform satisfactory grey level

segmentation.

3.2 Statistical Approaches to Image Segmentation

Classical pattern recognition techniques usually
classify data on the basis of its statistics. The most
common of these is Bayesian classification. In this
case, if p(}]wi) is the joint probability distribution
of the random data vector X conditioned on it belong-

ing to class wi, then Bayesian classification, assum-

N




ing equal costs, amounts to [29]

P(x[wy) p(w))z2 P(x[w,) p(w 3.1

In equation 3.1 p(wi) is the a priori probability of

the vector belonging to class w; Note that this equa-

5 .
tion implicitly assumes that only 2 classes are

present and also assumes knowledge of the relevant

probability distributions.

In the case of grey level segmentation, the pro-
bability distributions of equation 3.1 can be replaced
by grey level histograms as estimates of these distri-
butions. Figure 3.2 illustrates that the Bayesian
approach 1is roughly equivalent to identifying classes
with modes in the local histograms
A
" h(x|w,)

h(x|w2)

\'4
X

t
Figure 3.2 Interpretation of Bayesian classification
Hence in figure 3.2, assuming equal a priori probabil-
ities, if the grey level x is greater than some thres-
hold t then it is assigned to class 2 and vice versa.

Thresholding techniques based on this principle have

5




been applied to segmentation problems [41], [42]. Note
that the shaded region of figure 3.2 represents the
classification error that would result in choosing
threshold t. Indeed 1in many cases of interest, the
global histogram of the data is unimodal yet the

classes are clearly visible.

Segmentation by partitioning into homogeneous
regions 1is generally more powerful than the simple
pixel classification techniques mentioned above. An
example is the split and merge algorithm of Pavlidis
[43] in which statistical decision theory is used to
split regions if they are not sufficiently homogeneous
and merge pairs of adjacent regions if their union 1is
still homogeneous. In this case the local nature of
the segmentation problem is recognised, but the suc-
cess of the approach is dependent on the accuracy of

the statistical assumptions.

The scheme proposed in this chapter combines
region based <classification with a local pixel based
thresholding procedure in an attempt to overcome
several ©problems inherent in segmentation which will

be outlined in the next section.

3.3 Problems Inherent in Segmentation

3.3.1 A Priori Knowledge




A  segmentation scheme requiring a priori
knowledge implies that it can only deal with the
corresponding classes of input signal. Hence it is
not the most general scheme possible. 0Of course, the

importance of such a limitation is problem dependent.

Typical of an a priori requirement is that the
number of <classes to be segmented out be known. This
is always the case in Bayesian based methods as a com-
parison of the —costs of choosing Dbetween a fixed
number of alternatives is computed in order to make
the <classification. Also it is a frequent limitation
in clustering algorithms, for example in the K-means

and related algorithms [44].

Another possible a priori requirement is that the
statistics of the classes be known. However, only glo-
bal statistical measures are available to an algorithm
before any segmentation. This problem is related to
the uncertainty principle [40] in the sense that
increased <certainty of class membership is at the
expense of reduced certainty as to the position of the
classes. Such a dilemma also warrants that an algo-
rithm rely on the minimum amount of statistical

parameterisation possible.

3.3.2 Spatial Considerations

As was mentioned in the previous section, apart




from their other weaknesses, there i1s a considerable
error inherent in purely statistical techniques based
on Bayesian decision theory. However, it is a matter
of common observation that the visual system viewing

an object in background noise say, only makes classif-

ication errors around the object boundary. (Sece, for
example, figures 4.13 and 4.14. ) This is because it
is making assumptions about spatial properties of the

object, such as convexity and compactness. This in
turn implies that the «c¢lasgification relies on the
spatial position as well as its position in class
space. For example, if a single point is surrounded by
a set of points that have been statistically classi-
fied differently, then the chances are that it has
been misclassified. Such d1deas must be incorporated
into scgmentation algorithms in as natural a way as

possible.

3.3.3 Spatial Resclution/Class Resolution Trade-offs

and Uncertainty

Image segmentation involves making decisions both
spatially and also 1in class space simultaneously.
Specifically the classification of regions has to be
ascertained as well as the location of the region
boundaries. These two requirements are mutually con-
tradictory in that an increase in resolution in class

space 1s at the expense of a loss of resolution

U
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spatially. For example, if one uses simple averaging
to reduce the effects of noise, a larger averaging
blocksize will increase the certainty of class member-
ship since the variance of the smoothed signal is
reduced, but also implies that any region boundaries

are smeared out over a larger area.

The above dichotomy is another example of the
uncertainty principle in image processing [40], {45].
Uncertainty, moreover, 1is a restriction that the
human visual system is well able to incorporate into
its information processing tasks [46]. Indeed, as will
be seen in the next chapter, for simple grey level
segmentation of noise fields, the algorithm described
below detects region boundaries to accuracies of 2 or
less pixels even 1in the presence of considerable
intraclass noise. Such a performance was observed to
be roughly comparable to that of the human visual sys-

tem in this case.

In order to solve this problem, processing is
performed at multiple 1levels of resolution, the
results at a given level being used to influence the
results at a lower level (higher spatial resolution).
Such an approach would appear to have a precedent in
the human visual system, for example in edge detection
[47] and stereo matching [48]. A data structure known

as a quadtree 1s used to represent the image data over




a range of scales in class space and hence over a

range of spatial resolutions.

3.4 Properties of Quadtrees

Consider an NxN image d(i, j) defined for
0<=(i,j)<N and N=2"_, The quadtree [49] of this image
is defined as

q(iljlk) = ( Q(Zi,zj,k*l) + q(2i+lr2jrk_l) +

] =

q(2i,23+1,k=1) + q(2i+1,23+1,k-1) ] 3.2

where

0 <k<m 0< (i,j) <2k
and

q(iljlo) = d(ilj)

Hence a quadtree is based on 2x2 block averaging. The
level just above the base consists of nodes represent-
ing non-overlapping 2x2 blocks of pixels in the origi-
nal 1image so that the size of this level 1is fﬁdx fhk
This process can be repeated until the root node 1is
reached, whose value is the average grey level of the
entire image. Figure 3.3 represents the averaging pro-

cedure where a father node 1s linked to its four sons.
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lewel k

level k-1

Figure 3.3 A father node and its four sons

Note that any property, not just the image grey level

can be associated with a node of the quadtree.

It should be mentioned that other pyramid struc-
tures «can be used. For example, Hong et al [50]
described a segmentation scheme which operates on a
pyramid data structure produced by a 4x4 block averag-
ing procedure with a 50% overlap of the averaging
blocks. In this case each son can have 4 possible

fathers and each father has 16 sons.

3.4.1 Smoothing Gain

Quadtrees are useful in image segmentation
because after each averaging process, producing the
next quadtree level, the variance of the signal within
a single homogeneous region 1is reduced. Hence if
x(i,1) is the random variable corresponding to the ith
node at the 1th quadtree level and assuming that the

signal at the 1lth level inside a homogeneous region is

St




wide sense stationary then

X(i,1) =+

2 X(J3, 1-1) 3.3

I ~3s

=1
Assuming, without loss of generality that the random

variables x(i,1) have zero mean, then the variance of

the ith node at level 1 is given by

o2(1) = E(x(i,1)?) 3.4

which is independent of i because of the stationarity
assumption. Substituting equation 3.3 into equation

3.4, this becomes

16

I .
“(1) =1 [ (-1, 3K) 3.5
Jrk=
where r(1-1,j-k) is the autocorrelation between nodes

j and k at level 1-t. The summation of equation 3.5

can be split up to give

4
o*(1) = 3 o> (1-) + 1 )
3 k=1

€ r(l-\, j-k) 3.6
j#k

Finally note that

b0




*

r(l,j-k) = E(x(1,3)x (1,k))
1 8 Lk
=1z 1 E(x(1-1,3")x (1-1,k"))
J',k'=1
l 4
=I5 1 r(l-t,j'-k") 3.7
j',k'=1

In view of equation 3.7, if the nodes inside a homo-
geneous region of the original image are uncorrclated
random variables, then the corresponding nodes at any
higher level are also uncorrelated. Thus in this case

equation 3.6 becomes

2

ou)=%oﬂﬂ) 3.8

In the more general case of the variables being corre-

lated, it can easily be shown that [32]

2

Ir(1-1,3-k)| < o“(1-1) 3.9
and hence
o2(1) < o2(1-1) 3,10

Clearly the degree of reduction in the variance of the
nodes at higher quadtrece levels depends on the corre-

lation between nodes at the bottom of the tree.

If a pair of adjacent homogeneous regions have




2) then

signal means and variances of (ml,oi) and (m2,02

an inter-region signal to noise ratio plz(l) at quad-

tree level 1 can be defined as

plz(l) =2 3.11

Clearly the mean of a homogeneous region remains
approximately constant for each quadtree level. Hence

in view of equation 3.10

plz(l) 2 912(]"") 3.12

Thus quadtree smoothing can be seen as a means of
increasing the separation of «class ©pairs in class

space.

Figures 3.4a-d show 3 regions of white Gaussian
noise, each with a different mean grey level, together
with the next 2 quadtree levels. Also shown are the
grey level histograms of the first and third quadtree
levels indicating an increase in class resolution. In
this <case the signal to noise ratio between any pair
of regions is approximately 1.5 and the global histo-
gram is unimodal as can be seen from figure 3.4c. Sub-
sequent quadtree smoothing operations increase the
signal to noise by a factor of 2 in each case as only
white noise is involved. Figure 3.4d demonstrates that

at the third quadtree level, the 3 classes are







clearly visible.

3.4.2 Aliasing

The quadtree smoothing operation as defined in
equation 3.2 can be viewed as a special case of a gen-
eral low pass filtering / sub-sampling operation of

the form

q'(i,j,k) = m&i:j)* a(i,J,k)

q(i/2,3/2,k+1) = qg'(i,3,k) 3.13

where as before

q(i,j,O) = d(ilj)

d(i,j) being the original NxN image for N=2". In equa-
tion 3.13 hk(i’j) is a low pass filter. In the case of
the quadtree, the low pass filter is just a 2x2 equal

weight impulse response

0< 1i,7< 2

|

h (1,3) =

0 otherwise

The DFT of this response for k=0 is then



1 2mu 21V 2 (u+v)
Ho(u,v)—z[l+oosN+oosN+ S —xw—
. . 2mu . 2mv . 2m(utv)
J (sin 7~ t sin N + sin —N )] 3.14

Taking the modulus of equation 3.15 it can easily be

shown that the amplitude spectrum is given by

1
g o)l = 1 + 21y + 2nv 27u 2nv 2
|Hy (u, ) | 5 [ 1+ oos s = + 00S = cos S ] 3.15
The section ’HOULO)[ of this function is sketched

in figure 3.5 where a centred coordinate system -N/2

<= u < N/2 has been used.

iHR(u,O) |
——
: '
|
\ f
i l
i
! '
1 [
\ |
i l > u
- N - N @) N N 1
2 4 4 2
Figure 3.5 The arplitude spectrum IHO(u,OH
From figure 3.5 there i1s a non-zero value of the

frequency response for |[ul >N/4. In view of the sub-
sampling operation of equation 3.13, those frequencies
above N/4 are aliased, that is to say wrapped around

-

and added to the low frequency parc of the spectrum

[51].



3.5 Quadtree Image Segmentation [52] [53]

3.5.1 Overview

In order to solve the problem of simultaneous
high spatial resolution and high resolution in class
space a multi-resolution approach is adopted, informa-
tion gleaned at each resolution being used to control

processing at the level below.

Specifically, using a quadtree data structure, a
non parametric clustering algorithm is applied to the
highest quadtree level (lowest spatial resolution,
maximum smoothing gain., ) The algorithm chosen
requires no a priori <class information and Thence

increases the generality of the segmentation scheme.

Using the class information obtained from the
clustering, a downward directed boundary estimation
procedure is performed. At each quadtree level a firm
segmentation takes ©place where boundary information
obtained from the previous level controls the segmen-

tation at the current level.

Also note that the scheme is adaptive at each
level, in that the segmentation relies on the estimated

signal to noise ratio between pairs of regions.
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The reasoning behind such a multi-resolution
approach 1is that a boundary between a pair of homo-
geneous regions must appear at each quadtree level
given that each region is significantly larger than
the largest averaging operator wused to create the
quadtree. Hence if a boundary can be located at the
highest level then this 1limits the search for the

boundary at the level below.

Figure 3.6 outlines the structure of the algo-
rithm and the following sections describe each stage

in detail.

‘tuadtree
smoothing

Local
centroid
clustering

Boundary ;
estimation

Figure 3.6 Algorithm structure
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3.5.2 Quadtree Smoothing

Section 3.4.1 described the smoothing gain pro-
perty of the quadtree which 1is crucial to the success
of the statistical classifier at the highest quadtree
level. Note, however, that the smoothing procedure

also introduces a bias due to the merging of data from

different regions.

Consider the case in which the data consists of 2
regions with means Ul and uz each with white additive
noise of variance 02 [52]. Let the probability that a
node at level k has children with mean,ﬁ_ be P - The

mean and variance at level k are then given by

me = E(Q(i,J/k)) = pow) + (I-pp) wy k>0 3.16

ol = 72k 2 3.17

2
k
Defining

- M
o =X Y2 5
%k

and using equations 3.16 and 3.17, this becomes

o, = 2 B oy 3.19

where in equation 3.18 mO is replaced by Ul

From equation 3.19, B can be seen to be a

< i
54
iz
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correction factor which depends on the geometry of the
situation. For example, consider the case where the
region with mean My is a convex object of radius
r=2" with k << n. At level k the radius of the object
is approximately r/fq of which a fraction 2/r are per-
imeter nodes (for simple convex objects eg. squares,
circles etc). Of these nodes, on average 50% have des-

cendants at level 0 of the quadtree which are outside

the object. Hence in this case P is given by
k
_ 2
Pe=1-%
-1 - 2k—-n 3.20

Clearly the computation of By is in general a diffi-
cult task. However, if estimates can be made then this
leads to an expression for the optimum level of

smoothing - that is to say the value of k such that

pk is maximum.

3.5.3 Local Centroid Clustering [54]

3.5.3.]1 Local Centroids

Consider the probability distribution p(x) where

of course

ee




] p(x) dx =1 3.21

The local centroid defined at each point x in class

space 1s then given by

X
[ x' p(x+x') dx!

nx) = x + % 3,22
[ p(x+x") dx'
-X

Equation 3.22 states that the local centroid at point
x 1s just the centre of mass of the probability dis-
tribution calculated over a window of size 2X and cen-
tred on x as illustrated 1in figure 3.7. Note that
equation 3.22 can trivially be extended to discrete
class space by replacing the integrals by summations.
Further, in practical situations, only an estimate of
the probability distribution in the form of the global
histogram h(x) of the data, is available. Of course
equations 3.21 still apply in this case. As a final
point equation 3.22 can be seen as a generalised
filtering type operation on the probability distribu-
tion, the filter 1impulse response w(x) being the

sawtooth function

w(xX) = X lxl < X 3.23

0 otherwise

1l

Hence equation 3.22 can be implemented using the DFT

¢S




algorithm which represents a considerable computa-
tional saving for large values of X. However, for
multi-dimensional class space, the local centroid can
be even more efficiently computed by considering only
the non-zero values of the probability distribution.

AN

-
=
ke
N/

Figure 3.7 Computation of the local centroid

3.5.3.2 Non-Overlapping Class Distributions

In the case of a global probability distribution
consisting of the sum of a set of non-overlapping
local distributions, it can be shown that the defini-
tion of local centroid preserves local class means. To

this end consider the distribution

N
p(x) = J p.(x) 3.24

i
b o= — 3.25
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In this case the distributions ;ﬁ}x) are defined such
that
_ W W
(x) =0 .- = A
pl “l 2<X<ui+2
and
!ui - uj l >M all (i,3) 3.26
An example of a distribution p(x) satisfying these

constraints is given in figure 3.8 for N=2.

PA<<)

Py (%) P, (%)
\ |
\ |
| Hy— W
ey R
| / \\4 ‘
1 - l > o
U < > 1
1 W 2

Figure 3. 8 Non-overlapping local probability distributions

From equation 3.22, the local centroid at point Xy for

a window of size 2W is given by

W
4% x' p(x +x") dx'
n(xy) = X5 +—7 3.27

/ p(xgtx') dx'
-W
< W some 1 3.28
i

Defining a new variable x= as

x" =x' - (u;, - xo) 3.29




equation 3.25 becomes

W—ui+xo
(X" + TR Xo) p(X" + U') dx"
*W—ui+xo L 1

0
“W—p i+)(

Wixg) =%, + T

p(X" + Ui) dx"
0

W—p.+Xx
170

xllp(xll + ul) qu

—W—ui+xo
1 W—p . +X
0

I P(x" + ) dx"
-W—ui+xo

= u. 3.30

where the last step follows because the integral is
zero by definition of the local means M; . Hence the
local centroid at any point under one of the local
probability distributions is just the local mean of
that distribution. Thus by moving each probability
mass of p(x) to its local centroid position a new dis-
tribution p'(x) 1is produced which is just

N
p'(x) = 121 ny § (x=u;) 3.31

where n. 1is the area under each local distribution
i

p. (x) . Thus a classification of p(x) results in which

i

each point x is assigned to a class defined by the

class mean of the local distribution which it is

under.

In general, of course, the global probabilicty

distribution <can not be written as a summation of a

e




set of non-overlapping local distributions. However,

using the ideas expressed above an itcerative scheme

can be developed which results in a classification of

the type given by equation 3.31. This scheme 1is

described in the next section.

3.5.3.3 General Class Distributions - An Iterative

Scheme

Let h(x) be the histogram valuc ftor position x in
class space. The algorithm works by continually updat-
ing the histogram by moving probability masses to the
positions of their local centroids until no change in
the histogram is observed. Hence 1if }{Wx) is the
updated histogram on the nth iteration, the algorithm

proceeds as follows

n =1
K0 (x) = h(x)
— nx) = § Ty
yeB(x)

where yeB(x) iff pn(Y) = X

m -
Iyt B ()
{ I
where pn(Y) =y + Y - L
I (v
y'=-m

———-n=n+l.294__hn(x) = hn—l(x) all x Xgig_ update window size

In this case the local centroids are computed within a



window of width 2m+1. As in equation 3.31 a final his-

togram of the form
Nc

h = . -
(x) Zl nj 8 (x xj) 3.32

J

with

min Ixi-—le > 2m+l 3.33
1,7

will obviously be unchanged by passage through any
further iteration loops. Such a distribution will thus

terminate the algorithm. In equation 3.32 N is the
C

number of classes and the values x. are approximately
J
X ~ 3.34

where x € ¢. iff x is classified into the jth class.
Hence, as shown rigorously in the previous section
for a specific probability distribution, in general
the iterative procedure approximately preserves local

class means.

While the convergence properties of the algorithm
are hard to determine, except in simple cases, it has
been observed in practice [54] that it always con-
verges in a small number of iterations (typically 10-
20). The number of classes on final <convergence
depends both on the window size and the ‘peakiness’ of

the original histogram h(x). The dependence on the
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window size was removed in the following way : the
algorithm is run for a set of window sizes dncreasing
by 5 points on each run and the result is accepted
when successive runs produce consisten:t results. Using
this method it has been found that successful classif-
ications can be achieved for a pair of Caussian dis-
tributions of differing means when the inter-region

signal to noise ratio (equation 3.11) is 3 or more.

In order to classify the data on successful ter-
mination of the clustering algorithm, a lookup table
is maintained which keeps a track on the movement of
data throughout each iteration. Specifically, if x is
a point in the original histogram h(x) then the final

classification is given by

X > ln(x)
where
lo(x) = X
and

lj(X) = lj_l(y) for all y such that x = pI(y) 3j=1,n

lpbd is the lookup table at the start of the pth
iteration representing the new position of the proba-
bility masses originally at position x in class space.
Hence final classification amounts to indexing into a

lookup table using each quadtree value q(i,j,k) at the

highest quadtree level as an index.



Finally, any isolated nodes (those nodes all of
whose 8 mneighbours belong to a different class ) are
assigned to the class containing the majority of its 8

neighbours as such isolated «classifications are

unreliable.

3.5.4 Spatial Compactness as a Consistency Check

Following the clustering procedure a test is
applied to the resulting classified data to check that
the spatial properties of the classes are consistent
with a priori assumptions of compactness. This assump-
tion is implicit in the design of the segmentation
scheme in which statistical classification follows
quadtree smoothing - any classes which appear follow-
ing smoothing with large averaging blocksizes must
have a significant number of spatially contiguous

points.

The test took the form of computing a coefficient

d for each classified region where d is defined as

_ Number of points in the region 3.35

d

~o

(Squared deviation in the region)

Clearly the larger the value of d, the more spatially
compact the region. Only regions which have values of
d above some suitably chosen threshold are accepted.

All other classes have their points re-classified to

-
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the nearest ahbove threshold class and the test re-

applied until a consistent result is obtained.

In order to determine a suitable value for the
threshold, consider an ellipse with major and minor
axes 2a and 2b respectively. Assuming unit inter-pixel
separation and that a and b are sufficiently large

compared to unity in which case the effects of the

ellipse boundary can be ignored. The number of points
inside this region is then Tfab. An  infinitesimal
2

point (x,y) of area dxdy contributes an amount (xzx° 4
2 . . .
y“)dxdy to the squared deviation. Henece the squared

deviation for the whole ellipse is given by
2 2 :
sd =[ [ x“dxdy + [ [ y~ dxdy 3.36
S S

where the integral is taken over the surface of the

ellipse. The first integral can be written explicitly

as
by 1-x°
a 2
I =] x° dx / a2 dy
o -/1-x"
2
a
a
- 26 [ xH1=x" dx  3.37
-a a2

Using the substitution x= a sin 8 this integral can be

readily evaluated to give

3
=2abm 333
X 4

Yal4



By symmetry

3
_ban
Iy = 3.39
Substituting these results and the result for the

number of points contained within the ellipse, the

value of d in eéquation 3.35 {is then

d = —r 3.40

For a circle with a=b=r, d= /25 =2.51, independent of
r. For the more general case where a=kb equation 3,40

becomes

d=2vav K _ - 5, LK 3.41

l-+k2 1 +(lﬂ02

which is independent of the absolute values of a and
b. This expression has a maximum for k=] of 2.51. For
values of k of 2, 3, 4 and 5, d has values of 2.24,
1.96, 1.72 and 1.55 respectively. A threshold for d of
1.5 was chosen which therefore means that elongated
regions are rejected. Such a restriction does not tend
to degrade the algorithm’s practical performance and

the threshold deals successfully with spatially non-

compact classified regions.

3.5.5 Boundary Estimation



It was mentioned in section 3.5.2 that quadtree
smoothing is a means of trading off resolution in
class space with spatial resolution. Hence following
the clustering procedure at the highest quadtree
level, each boundary node at this level defines an LxL
block of pixels at the lowest quadtree level with
L=£( , k being the height of the quadtree. The problem

now becomes how can full spatial resolution be

restored?

A solution can only be found by making an addi-
tional assumption. This is that the classification
introduced at the highest level of the quadtree is
valid at lower levels. Thus a boundary region 1is
defined; nodes not in the boundary region are given
the same class as their father; nodes in the boundary
region are classified in such a way that the boundary
region width is reduced by a factor of 2 on each step
down the quadtree. The result is a ©boundary between
pixels at the 1lowest level of the tree and thus at
full spatial resolution. As stated above, the key
assumption made in obtaining the boundary 1is that
positional information of each classified region is
invariant to the scale over which it is viewed [45].
Hence constraints resulting from the previous level of
processing can be introduced which control processing

at the current level.

0}



A more precise description of the boundary esti-
mation procedure is as follows. Since it can be
assumed that a successful classification has been made
at the highest quadtree level, an inductive argument
can be used. Hence assume that a classification is to
be made at level k where a classification at level k+1
has already taken place. Define q(i,j,k) as the
(i,j)th node at level k and c(q(i,j,k)) as the class
of this node. Initially each node is given the same

class as its father

c(q(i,j,k)) = c(q(i/2,3/2,k+1) 3.42

From this classification the boundary region B(k) is

defined as

g{i,j,k) € B(k) iff c(q(i,j,k)) # c(q(i',j',k)) 3,43
(i',j') € Ng(i,j)
where N8Hﬁj) is the 8-neighbour set of (i,j). Once

B(k) is determined for all (i,j) it is augmented by

the set Blﬂd of nodes which have an 8-neighbour in

B(k)

q(i,j,k) e Bl(k) iff g(i',3',k) € B(k) (i'rj')ENS(in)

B (k) = B(k) U Bl(k) 3.44
Hence a strip of nodes 1is defined which, for a

straight line boundary at level k+l, is 4 nodes wide.



Re o i . .
egion BC(K) ls then smoothed with a linear filter
whose spatial width depends on the estimated signal to

noise ratio between regions r and s at level k,

o(r,s,k)

By (k) =B_(k) * h(i,j,p) 3.45

where * denotes convolution and where p 1s given by

(s, k)|
e 4 3.46

In this case p (p,k) and o(p,k) are the estimated
signal mean and standard deviation in region p at
level k. p(p,k) is found from the local centroid

clustering algorithm and o (p,k) is given by

o2 (pk) =—2 3 (ali,ik) - up,k)2  3.47

N(B_(p,k)) (i,3)eB_(p/k)
where ﬁc(pﬂd is the set of non-boundary nodes at
level k that have father nodes assigned to region p

and N(A) is the number of points inside region A.

The filter h(i,j,p) is formed by iterated convo-

lJution using a 3x3 filter

hl(igbp) =x(p) (1,3) =0

- (A=) ¢ei,i)<l (i,3) # (0,0) 3.48



The function A(p) which governs the relative width of
the resulting filter was selected after some experi-
mentation to beva piecewise linear function of 0 and
is shown in figure 3.9. Values of P which result in

maximum smoothing and no smoothing were chosen to be 2

and 8 respectively.

After smoothing, a firm classification is made on
all nodes in the boundary region using a ‘nearest
class mean’ criterion. After removal of all resulting
isolated nodes, the process is repeated for level k-1

until full spatial resolution is restored.

A(p)

N

O

N
7

[
|
I
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I
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N

Figure 3.9 Piecewise linear function A(p)

3.6 Discussion

The algorithm described above is an attempt to
solve the segmentation problem in a non-parametric way
which both avoids the problem of a priori knowledge

and overcomes the weaknesses of purely statistical

methods.



Specifically, information in class space i

w

obtained by using a Don-parametric clustering algo-

rithm which requires no a priori information as to the
number of classes present. It does so, however, at the
expense of spatial resoclution in accordance with the
uncertainty principle [40]. Spatial resolution is
restored by making the assumption that the spatial
properties of the regions are invariant over the
scales of resolution defianed by the quadtree [45]
[55]. Further, because of this assumption, simple
smoothing and thresholding can be used to make firm
classifications at each level. The noise adaptive
nature of the filters are designed to remove the bias
in classification error at zero noise and to prevent
spurious features being introduced into the Dboundary
estimate at high noise. As will be seen in the next

chapter, such an approach is consistent with perceived

results.



Chapter 4

Image Segmentation Results

4.1 Introduction

This chapter describes a set of experiments
designed to test the performance of the quadtree seg-
mentation scheme. The experiments were of both a quan-
titative and qualitative mnature. The probability of
misclassification for a range of inter-region signal
to noise ratios was measured and the performance of
the scheme was observed for a wvariety of region
geometries. In all of the experiments described in
this chapter, the images are 256x256x8 bits and the

segmentations are based on the grey level only.

4.2 Comparison with Bayesian Classification

In order tc compare the performance of the new
method with a simple statistical segmentation based on
a Bayes critericn for minimum error [29], 8 test images
were synthesised, each consisting of a pair of white
Gaussian noise fields separated by an irregularly
shaped boundary. (The boundary was generated using a
lst order Markov process. ) In each case, the boundary

separating the noise fields was identical and its

position noted. The noise fields had 1identical means

b



of 135 and 145 and variances of 6.25, 11.11, 25, 100

277.8, 400, 625 and 1111.1. These values correspond to

inter-region signal to noise ratios o of 4, 3, 2, 1,

.6, <5, .4 and .3 respectively.

Both the Bayes test for minimum error and quad-
tree segmentation were run on each of the test images.

The probability of misclassification is given by

p(e) = P(1) e(l) + P(2) e(2) 4,1

where e(l) and e(2) are the probabilities of misclas-
sifying class 1 as <class 2 and class 2 as class 1
respectively. P(1) and P(2) are the a priori class
membership probabilities which depend on the boundary
shape. If there are a total of N pixels in the test
image of which Nl belong to class 1 and N2 belong to
class 2 and nl class 1 pixels and o, class 2 pixels

are misclassified then

®
[ e
Il

ny /N
e(2) = r12/N2
P(l) = Nl/ N
P(2)==Pb / N 4,2
Hence the probability of error can be found by measur-

ing n n_, N and N2 and substituting the calcu-
b
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lated values of e(1), e(2), P(l) and P(2) 1into equa-

tion 4.1.

4.2.1 Bayesian Classification of Gaussian Test Images

A simple Bayesian classification was performed on
each test image. As mentioned in section 3.2, this
amounts to thresholding each point in the image where
pixels with grey levels above the threshold are
assigned to one class and those with grey levels below

the threshold are assigned to the other class.

If p(x]i) is the probability density of the image
grey levels conditioned on it belonging to class i for
i=1 or 2 then the Bayes <criterion for minimum error
states that the class chosen is the one with the max-
imum value of p(x|1i)P(i). The expression for p(x|i) 1is

given by

. L2 2
P(x[1) = orppyzey P (- (x = m(i)®/ (D)7 4.3

(1

where m(i) and o(i) are the mean and standard devia-
tion of class 1i. Figure 4.1 shows the density
P(i)p(x|i) for 2 classes with means m(l) and m(2)
shaded area indicates the misclassification

where the

error which occurs when XO is used as the threshold.



P(2)p(x|2)

o)

Figure 4.1 P(i)p(x|i) for 2 classes

The probability of error in assigning a particular

class to the random variable x is just

p(e) = P(1) e(l) + P(2) e(2) 4,4

where e(1l) and e(2) are the areas of the shaded region

to the right and left of the threshold
X respectively. Indeed equation 4.4 corresponds
exactly to equation 4.1. The values of e(l) and e(2)

can be calculated using the expression for the condi-
tional probability distribution given in equation 4.3.
In order to do this an expression for x(), the inter-

section of the two distributions must be found.

Clearly ﬁ) is a solution to

o
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(x

b . . .
which is a quadratic in %D whose two solutions,
X 51 and X oy can easily be found. Expressing e(l) and
e(2) in equation 4.4 in terms of the distributions

p(x{l) and p(x]Z) gives

p(e) = P(1) [ p(x[1) dx +P(2) [ p(x|2) dx 4.6
R(2) R(1)

where R(i) is defined as the region of integration
along the x axis such that P(i)p(x[i) is maximum.

Defining

X
erf(x) =7—é—; | exp (—y2/2) dy 4,7
0
and
erfc(x) = 1 - erf(x) 4.8

and substituting the expressions for the conditional
probability distribution into equation 4.6, it can be

shown that this equation reduces to

2
p(e) = P(1) } erfc [(x,; = m(1)) / o(l)]
i=1
2
+ P(2) | erfc [(xg; —m(2)) / o(2)] 4.9
i=1

Values of erfc(x) are tabulated and so the probability

of error can be evaluated. Also an actual classifica-

8&
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tion was carried out using the Bayesian criteria which

requires a priori knowledge of P(1), P(2), m(1l), m(2),
o(1) and 0(2) in order to compute the thresholds %51
and X The theoretical and actual values of p(e) are
plotted in figures 4.2 and 4.3 for a range of signal
to noise ratios where it can be seen that they are in
close agreement. Figures 4.4 and 4.5 show Bayesian
classifications for values of P of 0.4 and 1.0 respec-

tively in which considerable classification error 1is

apparent.

In practice the values of P(i), m(i) and 0(i) for
the two class distributions would be unknown and hence
the conventional Bayesian approach would not be possi-
ble. However, a modified procedure was developed in
which the noise fields are classified after 4 quadtree
smoothing operations as described in section 3.5.3.
This amounts to classifying each quadtree node outside
a boundary region consisting of a 94 X fL block of
pixels at the lowest level for every node at the
highest level, L being the height of the quadtree. In
this case the values of P(i), m(i) and O(i) can be
estimated from the classified nodes and a Bayesian
classification carried out on just the boundary region

pixels. Theoretical and actual classification error

probabilities are plotted in figures 4.2 and 4.3 where

the theoretical probability of error is just a factor

B/N times the probability of error given in equation



4.4, B being the number of boundary nodes. From fig-

ures 4.2 and 4.3 it can be seen that there 1is close

agreement between theoretical and actual probabilities
of error. Figures 4.6 and 4.7 show classifications

using this method for p=0.6 and p=3.0 respectively.

4.2.2 Quadtree Segmentation Performance on Gaussian

Test Images

The quadtree segmentation scheme was run on the
set of test images. In this <case clustering was
applied after 4 quadtree smoothing operations, that is
to say on a 16x16 block of nodes (the effects of

averaging blocksize are studied in the next section. )

Figures 4.8 and 4.9 show a pair of segmentations
corresponding to values of p of 0.5 and 2.0. In these
figures the original image and the original image with
the superimposed region boundary are shown. The boun-
dary obtained from the segmentation corresponds very

closely to the perceived region boundary of the origi~

nal.

In figure 4.2 the probability of error is plotted
as calculated from the measured number of misclassifi-

cations. Comparing the plots of figure 4.2, the quad-

tree segmentation scheme is superior to conventional

Bayesian classification even though, in the case of

the wunmodified Bayesian approach, a priori knowledge

a0



of class means and variances s required.

4.3 Effects of Averaging Blocksize

As mentioned above, a quadtree consisting of 5
levels was wused to perform the segmentation. This
represents an averaging blocksize of 16x16, that is to

say each mnode at the highest quadtree level is the

average of a 16x16 block of nodes at the lowest level.

In order to gain insight into the effect of using
different averaging blocksizes, a segmentation of each
test image was carried out using blocksizes of 8x8,
4x4 and 2x%x2 corresponding to quadtree heights of 4, 3
and 2 respectively. As before the probability of error
was measured, a graph of which is shown in figure 4.10
for each blocksize. Plotted on the same graph is the

probability of error when the original 16x16 blocksize

is used.

From figure 4.10 it appears that there is a
minimum signal to noise ratio at which the classifica-
tion can proceed, the value of which is determined by
the size of averaging blocksize used. This is a result
of the inability of the clustering algorithm to
resolve the two <classes there being insufficient
The results indicate a close agreement

smoothing gain.

with theoretical expectations in that the signal to

91



noise ratio at which clustering becomes no longer pos-

sible approximately halves on doubling the blocksize
and hence doubling the smoothing gain. However, once
the clustering successfully classifies the data, there

is close agreement between the error probabilities for

each of the averaging operator sizes.

The choice of quadtree height should be such that
it provides sufficient smoothing gain to resolve all
of the classes in the image. Clustering at a quadtree
level greater than that necessary to resolve the
classes does not introduce any significant error into
the boundary estimation procedure. However, the
greater the height of the quadtree, the larger the
region size must be in order to successfully classify
it. This is a result of the bias introduced due to
averaging across region boundaries which has a larger
proportionate effect the smaller the region size. The
16x16 blocksize chosen for the experiments described
in this chapter provides an acceptable compromise,
both producing sufficient smoothing gain for most

cases and being able to resolve small regions.

4.4 Effects of Segmentation Level.

Instead of terminating the boundary propagation

at the lowest gquadtree level, segmentation was ter-

minated at each of the 4 levels above the base. The



children at the lowest level of each classified node

at the termination level were assigned to the same

class as their father and the classification error

measured in the wusual way. Figure 4.11 plots error
probability against the segmentation termination level
for values of the inter-region signal to noise ratio
of 2 and 4. From the graph it can be seen that, for
the lower signal to noise value, there is only a mar-
ginal advantage to be gained from terminating the seg-

mentation at the lowest level as opposed to the level

above.,

4.5 A Simple Model Predicting Algorithm Performance

In general, analysing the performance of the seg-
mentation scheme, that 1is to say developing a model
that predicts the probability of classification error
as a function of signal to noise ratio, is a very dif-
ficult task. The —reason 1is that the performance
depends upon the boundary shape and the downward pro-
pagation of errors. However, using certain simplifying

assumptions, an approximate analysis can be undertaken

[52].

Consider a straight line separating a pair of

regions of white Gaussian noise of means m(l) and m(2)

2

cach with a variance of o° . Assume that the classifi-

cation error at each quadtree level is due entirely to



nodes on or adjacent to the boundary since, for such

nodes, the support of the smoothing filter centred on

those nodes includes on average 50% of nodes belonging

to a different class. Also an error in boundary place-

ment at the bottom level of the quadtree certainly
causes a classification error although this does not
apply to errors at higher levels due to the width of
the boundary region. Hence an ‘error propagation’ pro-
bability must be introduced as a free parameter which
specifies the probability of an error occurring at a
level k>0 propagating down to level zero and thus pro-
ducing a classification error. The value of the free
parameter was chosen to give the best fit to the

experimental results.

Let the probability of error at level k be P(k),
the error propagation parameter be p and the cumula-
tive error at level k be e(k). The wvalue of e(k)
represents the error at level O that has accrued from
classification errors up to and including the current
level k. A node at level k has 2 sons ( in the case
of a 1-d boundary) and is either misclassified with
probability P(k), in which case the error propagates
down to level zero with probability p, or classified

correctly, in which case it adds nothing to the cumu-

lative error. Hence e(k) can be written as

ok



k
p 27 P(k) + (1 - P(k)) e(k = 1) k>0

P(0) 4.10

e(k)
e(0)

]

]

The probability of error P(k) depends on the inter-
region signal to noise ratio at level k and the
smoothing gain due to the filter h(i,j,p) (cf equation
3.49). From the specification of the filter given in
equation 3.52, for a node on the boundary, the smooth-
ing gain is 1 for p >8, 0 for p<=2 and linearly vary-
ing in between where the smoothing gain s is

1
k

P
s = — 4.11
P

P

pﬁrbeing the value of the inter-region signal to noise
ratio of the boundary nodes following application of
the smoothing filter h(i,j,p). From equation 4.9 with

o(1) = o0(2) = 0O, xol=(m(1)+m(2))/2 and }%E =0 and

assuming equally probable classes, P(k) becomes

P(k) = erfc (pk s / 2) 4,12
where
spy = 0 Pk < 2
Py P > 8
- (py ; 2) oy 2<p <8 4.13
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The results of this model are plotted 1in figure 4.2

for each of the original test images with a value of p

of 0.6. It can be seen from a comparison with figure

4.3 that the theoretical results show a satisfactory

fit to the experimental results bearing in mind the

crudeness of the approximations.

If the segmentation is terminated at a level
k'and the boundary propagated down to the bottom level
by assigning all nodes at lower levels to the class of

their father node, the cumulative error becomes

e(k,k")

ok,(x) k < k'

p X P(k) + (1 - P(k)) e(k=1,k')  ksk' 4.14

The second equality of equation 4.14 follows from the
arguments given above leading to equation 4.10.
ok,(x) is the error resulting from simply assigning
all nodes at 1level 0O to the classes of their father
nodes at level k'in which case the boundary position
k-1 k'-1
o

is wuniformly distributed over a span from -2 to 2

nodes. Therefore

k-1
2 k -1 .2
o, (x) = (27 +1) Y oy ]
K stk
k=1, k=1
_ 2 (23 + 1) 4.15



Using equations 4.10 and 4.15 and the expression for

P(k) in equation 4.12, the theoretical values of the

cumulative error is plotted in figure 4.11 for inter-
region signal to noise ratios of 2 and 4. Again the

theoretical results provide a satisfactory fit to the

experimental results.

4.6 General Grey Level Segmentation Results

A series of grey level segmentations were carried
out on a variety of region structures both for white
Gaussian noise fields, for natural and synthetic tex-
tures and for natural images. Unless otherwise stated
5 quadtree levels were used corresponding to a maximum

averaging blocksize of 16x16.

Figures 4.12a-d, figure 4.13 and figure 4.14 show
a series of object/background segmentations. Figure
4.12a shows 3 irregularly shaped objects, each with a
uniform grey level and a background of uniform grey
level. Zero mean white Gaussian noise was then added
to these images leading to figure 4,12b where the
inter-region signal to noise for each of the 3 objects
is 3, 1.5 and .75 starting at the top left and moving

clockwise. Figure 4.12c is the result of running the

segmentation on 4.12D and figure 4.12d is the result

of superimposing the boundary of figure 4.12c onto

figure 4.12b. This example illustrates the effect of
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the noise adaptive smoothing filters that are used 1in

the boundary estimation procedure. The object boun-

daries obtained bear a close resemblance to the per-

ceived boundaries where in the case of the region

closest in grey level to the background, a consider-
able degree of local smoothing has taken place. Figure
4.13 and 4.14 show pairs of segmentations where the
objects are circles placed close together in back-
ground noise. In these two cases the boundaries of the
segmented regions are shown superimposed on the origi-
nals. Again there 1is close agreement between the
actual region Dboundaries and the boundaries obtained
by the segmentation scheme although there is consider-
able noise, the object/background signal to noise
ratio being 1 in both figures 4.13 and 4.14 for each

object.

Figures 4.15 and 4.16 show grey level texture
segmentation results and demonstrate the non-
parametric nature of the scheme. Figure 4.15 consists
of a pair of synthetic textures both generated by
low-pass filtering a random impulse noise field as
described in chapter 2. Figure 4.16 consists of the 3
natural Brodatz textures cork, grass and paper where
a different mean grey level. Again the

each one has

segmentation result is shown by superimposing the

i i igi indicating close
region boundaries on the original indic g

agreement between the boundary obtained and the

O
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perceived boundary,

Finally figures 4.17 and 4.18 show the result of
running the segmentation on natural images, in the
first case a girl’s face and in the second a landscape
scene. In these two cases the clustering algorithm was
run on the image resulting from the application of 3
quadtree smoothing steps corresponding to an averaging
blocksize of 8x8 in order to resolve smaller regions.
The segmented regions are shown as constant grey level
regions, the grey level corresponding approximately to
the local mean of the class as determined by the clus-
tering algorithm. Although results of this nature are
difficult to interpret, in both cases there is good

agreement with regions obtained from the segmentation

and actual regions of uniform grey level in the image.
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Chapter 5

Texture Segmentation

5.1 Introduction

The previous chapters have considered a c¢lascif-
ier which dis able to deal with gencerally noisy sig-
nals, that is to say signale in which there is consid-
erable statistical fluctuation about the means with:irn
each class. As will be seen, this will be useful 1%
the segmentation of texture because of the inherent
randomness which characterises texturce. This chapter
describes appropriate modifications which need to be
made to the quadtree segmentation scheme i1 order Ffor

it to be able to deal with multi-dimensional signals.

Before this can be done however, the problem of
feature extraction must be considered. Feature extrac-
tion can be defined as operations that are performecs
on the original signal which result in a more effcc-
tive set of features for discrimination purposes. In
the context of feature extractiocn for texturc segmen-
tation this entails going from a signal space which is
one dimensional, simply the grey level values at ecach
image point, to a multi-dimensional signal spac~ in
which a vector quantity is defined at each image

point.



Choosing a sufficient set of features which
enable the partioning of an image into regions of uni-
form texture is related to the ideas discussed in
chapter 1 concerning texture perception and discrimi-
nation. The early ideas of Julesz [4] were mentioned
which explain differences 1in perceived texture in
terms of differences in second order statistics. Using
this kind of method, in which a statistical model is
fitted to the data, to solve texture segmentation
problems is generally inappropriate since such models
are not of a sufficiently local anature. Specifically,
the problem is not only to identify the different tex-
ture classes in the image, but also to find the boun-

dary regions between them as accurately as possible.

The restrictions implied by the uncertainty principle
[40] have a bearing on this matter because increcased
certainty of class membership is at the expense of

spatial resolution.

Traditionally techniques have concentrated on
obtaining the maximum certainty either spatially or in
class space. For example, Therrien [50] treated the
texture segmentation problem as a statistical estima-
tion problem for a set of connected regions using
large filters to reduce the classification error with
a consequent loss of resolution at the region boun-
daries. Alternatively, Mitiche et al [57] described an

edge detection approach to the problem in which class




resolution is sacrificed for an accurate representa-

tion of the boundary between disjoint regions.

The feature cxtraction procedure adopted consists
of using a set of orthogonal filters (ic. those with
spatial frequency responses occupying disjoint regions
of the Fourier domain) with optimal simultaneous con-
centration of signal energy in space and spat ial fre-
quency. Implicitly assumed 1&g that the textures can be
discriminated on the basis of theiv spectra. In  this
context, class resolution iz determined by the
bandwidth of the filters, a smaller bandwidth and
hence a larger impulse response giving higher class
resolution and lower spatial resolution. Thus using u
filter design procedure which maximiscs the mutual
energy concentration in space and spatial frequency of
the filter responses leads to optimum class and spa-

tial resolution in this case.

5.2 Orthogonal Feature Sets

As mentioned above, textural features are used 1in
the classification process which are bascd on the out-
puts of orthogonal filters. Hence 1f h,(n) is  the

impulse response of the ith filter with frequency

response Hi(u) then :

o




* *

P H(u) H. (u) =Y h (n) h. (n) =6.. 5.1

u * J n ! ] 13
where 6ij is the Kronecker delra. The first equality
in equation 5.1 follows because the DFT preserves
scalar product and the second because of the defini-
tion of orthogonality. Also it isg assumed that the
filters are normalised to unit energy.

Orthogonality of stationary signals implies that

the signals are uncorrelated. To prove this, let
§={XO .. XN—l} and X:{YO .. YN—l} be signal vectors

corresponding to zero mean N-point

nals. The circular cross correlation vector r
x and Yy 1is such that
T

Ly =x S(i) y 5.2

with S(i) the ith circular shift operator.
*

and F as the forward and inverse DFT operator

F S(1) =W(1) F 5.3
where W(i) is a diagonal matrix such that

W(i = 211'

(W( )y q = exp ( N 1K) 6 5.4
Substituting equation 5.3 into 5.2

L

stationary sig-

between

Defining F




r; =X FW (i) Fy=X W{i)yY 5.5
with

X=Fx

Y=Fy 5.6

Expanding the right hand side of cguation 5.5

1 *
r. = exp(&2 ik)x Y 5.7
K N k "k

Since the signals are orthogonal, equation 5.7

o0

identically =zero as the range of non-zero values of
Xk and Yk are disjoint. This result implies that, tor
an input signal that 1s a stationary Gaussian process,
the outputs cof the orthogonal filters are wutually
uncorrelated and hence are independent processes. Thus
any pointwise function =t the output signals are also

independent and hence uncorrelated.

5.2.1 Quadrature Filters

The filters used in the feature extraction pro-
cess are analytic. For signals defined on a l-d region
of support, analytidbrimplies zero frequency response
at negative frequencies [34]. Let z(n) be an analytic‘

signal with transform Z(u) where
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Z(u) =0 u<x<o 5.8

The signal z(n) is complex with real and imaginary
parts x(n) and x(n) respectively
z(n) = x(n) + 3 x(n) 5.9

[f ¥(u) and X(u) are the OFT s of x(n) and x(n)

respectively, then the following relations hold

3<(U) = -] X(u) u>20

5.10

1l
u
]
c
-
n
(e)

Taking the DFT of each side of equation 5.9 and sub-
stituting the expression for ¥(u) in terms of X(u)

gives

Z(u) = 2 X(u) u> 0

=0 u<ao 5.11

Note that for signals defined on 2-d supports, an ana=

lytic filter has a zero frequency response in at least

one half of the Fourier plane [58].

.

Let h(n) be an analytic filter with frequency



response H(u) and y(n) the result of filtering an
input signal x(n). In general y(n) would be complex
and have a bandpass frequency response. The envelope
of y(n) is taken which effectively demodulates this

bandpass response. Hence

y(n) = h(n) * x(n) 5.12
e(n) = | y(n) |
= (Ihr(n) * X(n)l2 + [hi(n) * x(n)l %) : 5.13
where
h(n) = h_(n) + 3 h;(n)

and e(n) is the envelope of v(n). The lowpass naturc
of the envelope of the signal can be seen by squaring
both sides of equation 5.13 and interpreting the

result in the frequency domain. Thus

*
e2(n) | y(n) i2 = y(n) y (n) 5.14

Taking the DFT of each side of equation 5.14 and using

the convolution theorem

El(u) = Y(u) * Y*(—u) 5.15

E. (u) being the transform of e (n) . The right hand

side of equation 5.15 1is the autocorrelation of Y(u)




which produces the lowpass  symmetric signal EH(UL

Figures 5.1a and 5.1% illustrate the signals Y(u) and

its autocorrelation respectively

Y (u) Y(u * Y*(—u)

Figure 5.la Y(u) Figure 5.1b  Y(u) * Y*(—u)

If x(n) is a lowpass signal superimposed on a carrier
signal of frequency ¢ then the envelope of the
response of an analytic filter is independent of ¢ as

is shown in equation 5.17.

x(n) = a(n) exp jn¢ 5.16
* *
El(u) = Al(u—¢) * Al(¢—u) = Al(u) * Al(—u) 5.17
where
A;(u) = H(u) a(u) 5.18

ACu) being the transform of a(n) and H(u) the fre-

quency response of the analytic filter.

The lowpass nature of the envelope of the output
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of analytic filters and the fact that the envelope is

always positive are exploited in [58] and [59] to per-
form line and edge detection. Further the envelope
detection property of the filters was used to obtain

phase independent local orientation estimation in

[58].

In the context of feature extraction for texture
segmentation, the envelope of the outputs of the
filters at each point are dependent on the energy of
the input signal in the region of the Fourier domain
defined by the bandpass region of the filter. This
energy is computed from a local neighbourhood of the
input signal whose size depends on the spatial extent

of the iImpulse response of the filters.

5.2.2 Optimum Filter Design

As mentioned above the aim of the filters is to
obtain high resolution both spatially and in feature
space. This implies a maximisation of the mutual
energy concentration both spatially and in spatial
frequency. Specifically, assume that the filters have
a frequency response limited to some ©pass band as
defined by a truncation operator Tf. Hence for a sig-

nal defined on a 1-d support Tf is such that




k(i) =1 iff H(i) # 0 5.19

where H(i) is the frequency response of the filcer.

Extension to signals defined on 2-d supports is

straightforward. Let ¢ be the signal vector
corresponding to the frequency response which 1is
bandlimited to the region specified by the truncation
operator TE and has maximum signal energy in the spa-
tial domain within a region specified by the trunca-
tion operator Té. In this case ¢ is a solution to the

eigenvalue problem [60]

*
TeFT F g =X ¢ 5.20

£ .
i i

*
where F and F are forward and inverse DFT operators

respectively and Qi and Ai are the ith eigenvector and
eigenvalue of equation 5.20. ¢ <corresponds to that

eigenvector with maximum eigenvalue.

To show that this is the case consider an arbi-

trary signal Y bandlimited to the same region of the

Fourier domain as ¢i. The eigenvectors @i form a
complete set of orthogonal basis vectors over the

space of such bandlimited signals due to the Hermiti-

*
clty of the operator TéﬂgF Tf . Hence




Y =) a; ¢ 5.21
i i

where, 1f Y is normalised to unit energy

I a2 =1 5.22

Defining (g,g) as the scalar product between vectors

(o8

and b

(a, b) =) a.b, 5.23
i

and letting el be the energy of the signal within the

region defined by Tg

]
il

* *
FT F FTOF y)
( S Y/ S Y)

T . *
=y Tf F ﬂg Fy 5.24

Substituting equation 5,21 into equation 5.24

* T * *
ey = Z_ a;a; ¢ T F T Fg
1] 1 J
T *
=) a; a. Aieoe
17 1]
2
= Z Iall xi 5.25

Assume that the eigenvalueces Ai are ordered in increas-
ing values of i. Then the expression on the right hand

side of equation 5.25 is maximum when

121




i
= 0 otherwise 5.26
and hence Y is the ecigenvector of
*
T}FTSF corresponding to the

maximum value of X .
i

Nete also that by substituting this eigenvector into
equation 5.24 the expression for the encrgy e s
1 .
just
e, =X = )0 27
1 1 (YrY) kl 5.27

and therefore M. represents the fraction ot the total
signal energy constrained within a rtegion specified by

the truncation operator Tf

Thus the filter design procedure amounts to
specifying the truncation operators and solving the
resulting eigenvalue problem. Note that in equation

*
5.20 the term ETSF is circulant and hence the matrix
product is specified by a single c¢ovlumn obtained by

performing a DFT on the signal produced by taking the

diagonal elements of Té [6C].
S.2.3 A Cartesian Separable Set of Filters for Texture
Feature Extraction

Let ¢ be an N-point signal satisfying equation

5.20 with truncation operators Tf andf% given by




(T ) =34 1< E
£ i 1) 4
= 0 otherwise 5.28
1]
=0 otherwise 5.29

Hence an analytic frequency response 1is specified
where negative frequencies are those with index

greater than N/2.

A is the fraction of the energy (g¢,¢) of ¢ con-
strained in a region of size N/4 in the Fourier domain
and of size 2M+1 in the spatial domain, ¢ being the
eigenvector corresponding to the largest eigenvalue of
equation 5.20. In practice a transform size N=128 was
taken and the value of M corresponding to the smallest

value of A greater than 0.5 chosen.

A set of filters are defined on a 2~d support

with frequency responses occupying the 6 equally sized

analytic regions of the Fourier plane labelled 1-6 in

figure 5.2 where in this case negative frequencies are

defined for v>N/2.
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Figure 5.2 A set of cartesian separable frequency responses

The frequemncy response in any one regiocn is obtained
by shifting a pair of 1-d responscs ¢ defined above
by appropriate amounts and forming the cartesian pro-
duct of the shifted wversions. Thus let S(i) be the
shift operator corresponding to a right circular shift

of 1 wmultiples of N/4 for i=0 to i=3. Define

$(i) = S(i) ¢ 5.30

Hence the frequency response of the filter correspond-

ing to region 6 for example is given by

T

H(6) = ¢(3) ¢(1) 5.31

where H(6) is an NxN matrix, [H(6)]uv being the

. : : - inate v). The
response at spatial frequency coordinate (u, )
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frequency response H(ji) for j=1,6 are solutions to the
equivalent 2-4 eigenvalue problem specified by the
*
operator TgﬂgF - In this case operators I, and
Tf define 2-4 regions in space and spatial frequency
and F is the 2-d NxN point DFT operator. Fach of the
individual matrices of the above matrix product can be
specified as a Kronecker product of equivalent 1-g

operators [60]. Hence

M 5.33

i
=
—
>
=
N

where M1 andD& are the matrices of the 1-d operators
and X defines a Kronecker product. The eigenvector

Y  of M is such that

v=9 Xy 5.34

where Ql and y2 are solutions tc¢ the 1-d problems
defined by M1 and N& respectively. In this case ¥ is
an N2 element vector equivalent to the matrix

? £P with ¢ defined above and where

(¢ ¢7] w = @) u,v =0 .. N-1 5.35
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5.2.4 Combining Features at Different Frequency Scales

If the frequency tesponse of the textures to be
segmented are restricted to the shaded regions of fig-
ure 5.2, then there will bpe Zero output i: the set of
filters described above are used. Thus a second set of
6 filters were specified occupying the corresponding 6
analytic regions of the low pass region cach response
being 1/2 the size in each spatial frequency dimen-
sion. This was done by Fe-specifying the truncalion
operator Tf in  equation 5.28 aud solving the necw
eigenvalue problem. Also the I dimensional filter
responses have to be gshifted 1in frequency by  an
appropriate amount before taking the cartesian pro-
duct. More sects of 6 filters could be produced with
logarithmically decreasing size. However, becaus. of

computational restrictions, only 2 scts of 6 filters

were used in this work.

Note that the above logarithmic arrangement of
filters is equivalent to taking the original set,
sub-sampling in the spatial frequency domain and
applying the new set to an ideal low pass filtered and
sub-sampled version of the original signal. In this
case filtering with two correspounding filters over
different frequency scales 1is equivalent to running

the same convolution kernel over twe versions of the

image at different spatial resolutions. Hence the dif-

12 7S




ferent sets of filters respond to features in the tex-

tures at different spatjia] resolutions.

As a final point, included in the filter get were
a pair of low pass filters one with a pass band indi-
cated by the shaded region of figure 5.2 and the
corresponding filter at the next frequency scale.
These filters were designed by specifying a  symmectric
truncation operator in the frequency domain thus pro-
ducing a real impulse response and the outputs of the
filters wused without any further processing. Hence a
14 element vector is produced at each image point.
Note that this produces an over complete representa-

tion of the signal as the filters are¢ not orthogonal.

A problem with combining difterent types of
filtering operations is normalisation, in other words,
how to scale the outputs of cach filter. This was
resolved by insisting that the variance of the outputs
of each filter, for a white Gaussian noisec input, are
the same. This amounts to a simple linear scaling of

the filter outputs.

The envelopes of the outputs of the sel of
filters thus define a random vector field Z(m,n) at

cach image point. Thus for an input signal x(m,n)

y; (m,n) = | x(m,n) * hi(m,n)l 5.36

127




‘here h, is i
whe lUmn) 1s the impulse response of the ith ana-

lytic filter and yiﬁmn) is the ith component of

Z(m,n).

5.3 Extension of Quadtree Segmentation

This section describes the extension to the quad-
tree segmentation scheme which allows it Lo operate on
multi-dimensional vectors. Modifications tec the three
stages - quadtree smoothing, local centroid clustering

and boundary estimation will be described in turn.

5.3.]1 Quadtree Smoothing

A multi~dimensional quadtree is a trivial exten-
sion of the 1-d case defined in equation 3.2. The lth

component of the quadtree at level k, q(i,j,k) is

just
[G(i,g,00) ] =7 {19(21,23,k-1)1) + [g(2i+1,2§,k-1)] )
+ [g(2i,23+1,k-1)]; + [g(21+l,2j+l,k—l)]l} 5.37
Thus, for example, a 6 dimensional quadtree can be

defined, each dimension corresponding to 1 of the
filters whose frequency response bandpass regions are

shown in figure 5.2.

5.3.2 Multi-dimensional Local Centroid Clustering
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he c .
The multi-dimensional clustering procedure 1is

identical 1n  principle to the 1 dimensional case

described in section 3.5.3. Hence 1if h(x) is the N

dimensional joint histogram of the data at the highest

quadtree level then the local centroid p{x) is given
by
) x'h(x + x")
X'eW -
X) = X +
(%) 2 ) h(i+_§|) 5.38
x'eW
where in this case W is an N dimensicunal hypersphere

and the local centroid is itself an N dimensional vec-
tor. The algorithm proceeds as in the 1 dimensional
case where the histograwm 1is updated by moviang points
in feature space to their local centroid positiomn. Vs
a practical mnote, the histogram h(x) can initially
have at most H? non-zero points where m is the spa-
tial dimension at the highest quadtree level. This
leads to a fast implementation of the algorithm which
only considers points in feature space with non-zero

histogram values.

Final classification 1is again a lookup table

operation. In this case the lookup table at point x in

. . . . . T 3 o
feature space 1{x) is an N dimensional wvector which

indicates the current position of the feature vector

originally at point x.




Note that because clustering is used to classify

el
the feature vectors, a feature rejection procedure

based on the eigenvector transform [29] is generally
inappropriate. Such techniques reject those fcatures
containing least energy. In figure 5.3, a 2 dimen-
sional joint histogram of the vector X= bﬁ}z) is
shown, the ellipses representing contours of cqual
histogram value. Although subspace Xl has all of the
information necessary to discriminate the 2 classes it
contains less energy, as spccified by the variance of

the histogram along the Xy axis, than does X, and

hence will be rejected in favour of Xy

This problem relates to the lack of a priorvi
knowledge of class conditional statistics as discusscd
in chapter 3. Thus the use of withip class and between
class scatter matrices to optimise class separability

is precluded [61].
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Figure 5.3 2 class 2-d joint histogram

5.3.2.1 Class Resolution and Signal Dimensionality

In general, if the signal dimensionality
increases, the average FEuclidean separation between
data vectors increases. This then 1increases the

minimum window size necessary to resolve classes with
a consequent loss in resolution 1in class space. To
quantify these effects in general is not possible.
However, to give some indication, consider an N dimen-
sional signal consisting of a zero mean white Gaussian
noise process in each dimension of variance 0 . Also
assume that each N element vector is independent of
probability distribution

any other vector. The joint

of the signal is given by




p(x) = N(0,I) 5.39

where the notation N(0,%) means a multi-variate

Gaus-
sian distribution with zero mean and covariance matrix
£ . In this casel 1s just the diagonal matrix

2
).. =0 4., .
( )lj i5 5.40
Defining
R=[lx-y |l 5.4
as the Euclidean norm between vectors x and vy, the

probability distribution of R is given by [32]

) -1 exp (—R2/2012)
pP(R) = U(R) 5.41
(01/2)N I (N/2)
where
o, = ov'?2 5.43
and
I'(a) = [ ya_l exp (-y) &y 5.44
0
and where
U(R) =1 R>0
= 0 otherwise 5.45

The key quantity in this discussion is the probability
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p defined as

P =Pr (R >w) 5.46

where W 1s the radius of an N dimensional hypersphere

centred on a randomly chosen vector. P is then given

by

jav)

1]
—
24
z
&

_ 2 N-1
= /] R T oexp (—R2/2oi) dRr 5.47

(olfz)N TN/2) W

Re-arranging the integral in equation 5.47, it can be

reduced to the form

-1 - 1 2,,2
P=1 = N2) Y(N/2, w /201) 5.48
where the quantity y(a,z) is an incomplete gamma
function defined as [62]
Z
Y(a,z) = | talexp (-t) dt
0
_ -1 _a a _ 5.49
=a 20 F) (3177 "
with lFl(a | z) a hypergeometric series defined by
C
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a
PGP = LM e s
with
(@), = a(atl) ... (at+k-1) 5.51

Substituting equation 5.49 into equation 5.48

p =1 - 2 w N N/2 w2
NI (v Nezn 1fiGme -3
2 01 20l

) 5.52

The hypergeometric series in equation 5.52 is given

by
N/2 2 ©
lFl(liN/2! -t = ] (1$;§;kk' wika (-1
20l k=0 ‘ k™ 2 o)
= OZO () CI 5.53
N+2k k! k 2k .

k=0 20
1

Defining s=w/0 and substituting equation 5.53 into

equation 5.52 the expression for P in terms of s and

the signal dimensionality N becomes

1-N o 2k k
2 N S (-1)
P = = l — S 5-54

In figure 5.4 the values of p(s,N) are sketched for

N=1 to 14 and for s=0.5, 1.0, 1.5 and 2.0.
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When P 1s suffiéiently close to unity, there is a high
probability that a vector chosen at random will have
none of its mneighbours within a distance W. Hence it
will be classed by itself on convergence of the clus-
tering algorithm.AWhen the average number of such sin-
gle <classifications is significant then the algorithm

will not produce meaningful results.

5.3.3 Boundary Estimation

The local centroid clustering algorithm <classi-
fies the data vectors at the highest quadtree level by
assigning a class identifier to each one, this 1iden-
tifier ©being an arbitrary scalar value. Thus boundary
estimation proceeds in a manner ijdentical to the 1
dimensional case where an uncertainty region BCGG is
defined at each level k of the quadtree. The set of
data vectors that have class identifiers belonging to

this set is then smoothed with a linear filter whose




impulse response depends on the estimated signal to

noise ratio in each dimension
'

[HA(irjlk)]l = [q(iljrk)]l * h(irjrpl) 5.5 %

where

c(q(i,J,k)) € BC(k)

c(q(i,j,k)) being the classification of q(i,j,k). 1In
equation 5.55 (q'(i,j,k))1 is the 1lth component of the
smoothed data, The signal to¢ noise ratic of the 1lth
dimension Dbetween regions r and s at ievel k is given

by

1 Ul(rlk) - Ul(sik) 1
pl(rlslk) =2 Ol(f,k) " Cl(Srk) 5.56

where as before ulqhk) and OlQLk) are the
estimated signal mean and standard deviation in region
p at level k of the 1th component of the quadtree. The
filter h(i,j,pl) is formed in a manner identical to
that in the 1 dimensional case using iterated convolu-
tion of a 3x3 mask (equation 3.48) where the cut of £
parameters of the piecewise linear function defining

the weights of the masks are the same.

Final <classification of the data following
. ’
smoothing is again according to a ‘nearest class mean

criterion where the distance between a pair of vectors

in <class space 1s taken to be the Euclidean norm



between the vectors. Also each element of the wvectors

used to compute the norm are weighted according to the
estimated signal to noise ratio in that dimension.

Thus final classification of a vector q(i,j,k) at

level k is given by

q(lljlk) * C(_u_(f,k))

iff

1 lw(p(rlslk) ) [g(irjrk)"}_l(rrk)]l [ < ‘w(p(rrsrk))[g(irj/k)"ﬁ(slk)” |

where e(u(x,k)) is the «class associated with a

region r with local mean Uu(r,k) at level k and the

nearest neighbours of the father node of q(i,]j,k)
have been assigned to regions r and s.W( p(r,s,k)) is

an NXN diagonal weighting matrix, N being the dimen-
sionality of the data vectors, where the diagonal ele-
ments depend on the local signal to noise ratio at

level k

where Tr(A) is the trace of matrix A. The linea:r
weighting of each dimension according to the signal to

noise was choscn experimentally and found to produce

good results.

As a final point, because of the finite spatial

extent of the filters, there is little point in
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continuing the boundary estimation procedure down to

full spatial resolution. In particular, for each
dimension, the boundary is propagated down to that
quadtree level appropriate for the filter size used toO
produce the signal in that dimension. Thus for the
filters of size N/4xN/4 in the Fourier domain, boun-
dary propagation is terminated at the first quadtree
level above the base, this level effectively being the
result of a low pass filtering operation with a filter
of approximately the same spatial width. Further for
the filters of 1/2 this size in each spatial frequency

dimension, the boundary propagation is terminated at

level 2 of the quadtree.

In order to produce a segmentation result at full
spatial resolution, a simple interpolation scheme was
adopted. This involved replacing the signal in the low
pass filtering operation of equation 5.55 with the
mean of the signal in the appropriate region and doing

the final classification in the usual way.



Chapter 6

Texture Segmentation Results

6.1 Introduction

The previous chapter described a texture segmen-
tation scheme based on a sct of cartesian separable
orthogonal filters and the quadtrec classilier
described 1in chapter 3, This chapter 1is concerned
with the results of the segmentation scheme for a
range of synthetic and natural textures. The results
are of a qualitative nature only as it is not pessi-
ble, in general, to give theoretical estimates of the
probability of classification error due to the lack of

a statistical model of the input texture fields.

6.2 A Simple Mean/Variance Segmentation

Figure 6.la shows an image containing 3 regions,
each region consisting of white GCaussian noise, where
all the images in this section are 256x256x8 bits. The
means and standard deviations of the signal in each
region are (100,20), (100,45) and (130,20) the first
figure inside the parentheses being the mean signal
level. Hence in figure 6.la there is one BIE€Y level
boundary, one boundary across which there is a differ-

ence in signal variance and across the third boundary



there 1is a difference in both mean grey level and
variance. Thus running the segmentation on either the
grey level image or on an image representing the
difference in variance would only pull out two
classes. These two operations could of course be run
sequentially and the result combined but this would

lead to ambiguities across the third becundary.

In order to resolve this problem a 2 element vec-
tor E=(f,g) is defined at each point in the image. The
first element f is just the image grey level at that
point. The second element g is an estimate of the sig-
nal energy in the high-pass region oi the Fourier
domain as defined by a low pass filter h(x,y). Thus if

h(x,y) is a Gaussian impulse kernel of variance ¢

h(x,y) = A exp (- x+y /o 6.1

where A is chosen to normalise h(x,y) to unit dc

) hix,y) =1 6.2
X, yeW

W defining the region of support of h, then g 1is given

by

g(x,y) = If(XIY) - h(x,y) *f(X,y)l 6.3

Figure 6.1b shows the result of this operation for

o =2.0.
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The actual value of ¢ determines the mean and

variance of g(x,y) in such a way that the inter-region

signal to noise is independent of ¢ . To see this let

the variance of the zero mean signal f(x,y) within a

single region be Of. By squaring each side of equat-

ion 6.3 and taking expectations it can be shown that

2 2 .
E(g(x,y)7) = o (1 + Y| h(X,y)] 2 _ 2h(0,0)
Xy YEW
= SZOE 6.4
where
2 2 1
s=(1+ ] |h(Gy)“ - 2n(0,00)° 6.5
X’ yEW
Letting
t(x,y) = £(x,y) - h(x,y) *£(x,y) 6.6
then t(x,y) is zero mean and hence
2 _ 2 2
o, =09¢ S 6.7
02 being the variance of t(x,y). From equations 6.6
and 6.3
g(x,y) = | t(x,y)] 6.8
Define and as the robability densities
efine p (x) an pt(X) p

of g(x,y) and t(x,y) respectively. Also note from



equation 6.6 that E%(X) 1s a zero mean Gaussian dis-
tribution because f(x,y) and h(x,y)*f(x,y) are both
Gaussian, the convolution being the sum of independent
Gaussian random variables. Further it can easily be

shown that [32]

P, (%) = 2p, (x) U(x) 6.9

9

where

0 otherwise 6.10

Hence

The variance of g(x,y), 62 is then given by

2
02 = B(a(x,3)%) - @)
_ 2 _2
= oL (1 - ) 6.12
For a pair of noise fields flbgy) and fzbgy) with
variances 02 and O respectively and with output
£ )

envelopes glbgy) and gzbgy) , the inter-region

1



signal to noise is, as before

| E(9)) - B(g,) |
o} + 0
1 9%

p(3; 9y) = 2 6.13

Substituting equations 6.11, 6.12 and 6.13 and using

equation 6.7, this expression becomes

p(gy 9,) =k 6.14
where k is a constant independent of ¢ and hence

independent of the size of the low pass filter h(x,y).

The clustering algorithm was run opn the 2 dimen-
sional joint  histogram of z following 4 quadtrece
smoothing operations. The boundary was propagatced down
to the zeroth quadtree level in the manner described
in the previous chapter. Figure 6.lc shows the segmen-
tation and figure 6.1d the result of superimposing the
region boundaries onto the original image. It can be
seen from figure 6.1d that there is good agreement

between the perceived boundaries and those obtained by

the segmentation scheme.

This example demonstrates the benefit of combin-

ing individual features, in this case the grey level

and the envelope of the high pass filtering operation,

into a single vector and operating on the joint histo-

gram of the vector field. It is only by using this






technique that the 3 classes can be found quite natur-

ally by the clustering algorithm.
6.3 Multi-dimensional Texture Segmentation Results

6.3.1 Segmentation of Synthetic Bandpass Textures

Let E%}u,v) be the frequency response in the ith
analytic region of figure 5.2 for i=1 to 6. Further
let Gihbv) be the frequency response in the
corresponding ith region of the low pass area of fig-
ure 5.2. Using a zero centred set of spatial frequency
axes, that is to say for u and v defined in the range
(-N/2,N/2-1) the following symmetric filters can be

specified

]
Hi(u,v) = Hi(u,v) + Hi(—u,—v) 6.15
and corresponding filters G;ULV). From equation 6.15

the symmetry relation

1
Hi(u,v) = Hi(—u,—v) 6.16

holds and hence the impulse responses of the filters

are real.

These sets of filters were applied rto an 1mage

consisting of white Gaussian noise. In this case the

.. . e
textures obtained are similar 1in appearance to thos
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obtained in  [63] although here the real part of the

complex impulse responsc of the analytic filters are

taken. Such a method does not allow a cartesian separ-

able representation of the frequency response of the

filters.

Figures 6.2a and 6.3a show a pair of images each
consisting of 3 of these bandpass textures (the images

in this section are all 128x128x8 bit. ) Specifically

6.2a consists of the textures produced by HthV)
b
4 P
H4ULV) and GlﬁLV) and 6.3a the textures produced
' ' '
by H2(u,V), Gl(u,v) and GQ(U,VL Figures 6.2b and

6.3b show the results of the segmentation where only
the region boundaries are shown. It can he seen that
there is close agreement between the perceived boun-
daries and those obtained from the texture secgmenta-

tion scheme.

As in the first segmentation example of figure
6.1, the 3 texture classes present in each image are
not separable in any single 1 dimensional sub-space.
Only by combining the filter outputs into one large

feature vector can the 3 classes be separated in a

single operation. Note in particular that this

approach copes with the fact that each example con-

tains textures of different coarsenesses produced by

filters with bandpass regions covering different fre-

quency scales.

1 In (:






6.3.2 Texture Synthesis Using the Outputs of the Clus-

tering Algorithm

A question of some interest 1is whether the images
of figures 6.2a and 6.3a can be synthesised using the
local mean vectors of each texture class. One precon-
dition that must be met is thatAthe original texture
must have a phase randomised counterpart that is per-
ceptually similar to it. The reason is that the syn-
thetic textures are produced by filtering white noise
with an appropriate zero phase filter and hence have

the same phase as the noise.

The local centroid clustering algorithm assigns

to each region a 12 element vector k (the 2 lowpass

filter outputs have been excluded in these synthesis

experiments for simplicity) where

k; = E lhi(x,y) * t(x,y) | i=1,12 6.17

where hi(x&d is the impulse response of the ith ana-

! .
lytic filter. Let h, (x,y) be the corresponding impulse
1

response of the symmetric filter as defined in equa-

tion 6.15 and f(x,y) be a white Gaussian noise signal.

The synthesis procedure amounts to the computation of

the coefficients a. for i=1 to 12 as a function of the
i

expectations k, where the ai are defined by
1
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£ 0Gy) =) ay flxy) * h! (x,y) 6.18

3
t'(x,y) 'beilng the synthesised texture. Substituting

this expression for t'(x,y) into equation 6.17
—_ / *x U . .
ki = B Ih (%) % a; £(x,y) * bl(x,y)| 6.19
Since the frequency responses Hihhv) and Hjhhw

are disjoint for i# j

* -
hy (x,y) * hy(x,y) = A 8, 6.20

A being a constant depending on normalisation, equa-

tion 6.19 becomes

E |ai hi(x,y) * h{(x,y) *E(xey)| =K 6.21

Defining

gi(x,y) = hi(x,y) * hi(x,y) 6.22

with transform

Gi(u,v) = Hi(u,v)2 6.23

the expression for a; becomes
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_ i
ai = E |91(X1Y) * f(x’y)r 6.24
Let
qi(x,y) = Igi(XIY> * f(XrY)l

) * £00y) + 5 qi(“(xry) *EGGY) |

igi
where superscripts r and i stand for real and ima-
ginary respectively. Both the real and imaginary parts
of equation 6.25 are the sum of independent Gaussian
random variables and hence are themselves Gaussian
random variables. TFurthermore they are zero mean
because the filters are bandpass and hence have a zero
dc term, are of equal variance because the real and
imaginary components of the filters are of equal
energy and they are independent of each other. This
last point may be seen by calculating the covariance

between the outputs of the real and imaginary com-

ponents of the analytic filter gibgy)

where z is the 2 element vector (x,y), the signals are
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assumed to be real and f(x,y) is zero mean and of

variance Of . The last equality in equation 6.26 fol-
lows because the scalar product between the symmetric
and anti-symmetric parts of the analytic

frequency

response 1is zero and scalar product is preserved

under the DFT operation.

In view of the above mentioned properties of the
real and imaginary components of equation 6.25, the
probability density of qibmy) is a Rayleigh distribu-

tion [32] of the form

p(x) =%exp (-xz/ZOf) U(x) 6.27
°1
oi being the wvariance of the outputs of filters
gj(_r)(z) and glsl)(z) which is given by
o2
2 f 2
9T L |gl(z)|
2 z
o}
f 2
== 1 | hy(2) * hi(2)]
2 V4
a
f 4
=_2._ Z j Hi(u’v)l 6.28
u,v

the last equality being a consequence of Parseval’'s

theorem [34]. The expectation of p(x) can be readily

evaluated to give



i
- ‘ L
=0 /T I T 620
u,v
Substituting this expression {uto equation 6.24
2k.
a = L 6.30
i H N
o/ v (1 lH w%
‘ u,v

Thus using the mean vector k as calculated by the

clustering algorithm, the welghts ai of cach filter

can be evaluated.

Figures 6.4a-b and 6.5a-b show a pajir of recon-
structions wusing this method, the original texture
being on the left with its reconstruction on the
right. Note that the filtering operations 1ln this case
had to be performed spatially as the filter to be used
at each image point depends on the mean vector k at
that point. This necessitated truncating the impulse
response of the filter to a 15x15 mask to reduce the

computational burden.

6.3.3 General Texture Segmentation Results

A number of segmentations were carried out on &

range of synthetic and natural textures. In each case






only the region boundaries are shown which are super-
imposed on the originals. The full 14 dimensional
feature set, as described in section 5.2.4, was used

in each case.

Figures 6.6a-b and 6.7a-b show & pair of syn-
thetic texture segmentations, the textures being gen-
erated by low pass filtering a random dimpulse noisec
field as described in chapter 2. In particular, figure
6.7 consists of a set of 3 textures, the textures
being identical in every respect except for direc-
tionality. Although the filters are not wedge shaped
filters tuned to particular orientations, figure 6.7b
indicates that textures differing in directionality
only are still separable using the arrangement of

filters described in the previous chapter.

Figures 6.8a-b, 6.9a-b, 6.10a-b and 6.1la=-b show
pairs of natural textures and their segmentations. The
natural textures are taken from Brodatz and are (cork,
seafan), (grass, water), (paper, seafan) and (sand,
paperfibre). Again adequate segmentations are
observed. Figure 6.12a-b shows an object/background
segmentation, the object texture being bubble and the
background being cork. Finally figure 6.13a-b shows a
3 class natural texture segmentation, the textures in

this case being paperfibre, water and cork,

The classification error in each of these cases



was measured in terms of the number of misclassifica-

tions per boundary point. Figure 6.14 gives a table of

these results where it can be seen that the error

ranges from 1.8 to 2.9 errors/boundary point.
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Segmentation assificati
Classification error/boundary point

Synthetic texture

2.2
pair (figure 6.6)
3 synthetic directional 1.8
textures (Ligure 6.7)
Cork/Seafan (figure 6.8) 1.8
Grass/Water (figure 6.9) 2.3
Paper/Seafan (figure 6.10) 2.9
Sand/Paperfibre (figure 6.11) 2.5
Cork/Bubble object/background 2.5
(figure 6.12)

2.3

Paperfibre/Water/Cork

(figure 6.13)

Figure 6.14. Texture Classification Errors
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Chapter 7

Conclusions and Future Work
The work described in this thesis 1ig concerned

with the description and segmentation of texture.

Chapter 2 introduced a stochastic model of tex-

ture which is phase independent. It was noted how this
model corresponds tc more conventional views of tex -
ture based on second order spatial averages and in
particular the autocorrelation. However, such views
provide no insight into the nature of the signals
which cause the perceptual invariance when these aver-
ages remain constant., Adapting a phase independent
interpretation bridges the gap between the properties
of the signals constituting texture and its visual
perception. Specifically the phase independent
interpretation provides a distinction between the per-
ceptual stationarity of signals and actual stationar-

ity of the process, the observed signal being a reali-

sation of that process. Evidence was presented indi-

i > at 2 isations of a
cating that those textures that are realisatio

; i : strai n the
random phase process, given a simple constraint o t

marginal probability distributions of the phase,

R : cal
appear ‘stationary’ in the sense of lack of any lo

: 5 tationar-—
structurc. Further, it was pointed out that s

i impl
ity of a generating process does not necessarily ply
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perceptual stationarity of a realisation of th t
a pro-

cess if the stationarity is g4 result of spatially
con-

centrated events generateq at random locations. That
N a

this is the case 1s not surprising in view of the

interpretation of phase randomisation in terms of glo-

bal shifts of a given signal.

The above discussion seems to imply that their
are 2 distinct types of texture - those that can be
modelled with global statistical measures (such asg the
autocorrelation) and those that have a local structure
where statistical modelling approaches are inappropri-
ate, This poses the question : can a model be found
that unifies these 2 viewpoints?.lndeed, in what sense
does the human visual system relate differently to
statistical and structural texture? These questions

are certainly worthy of further study.

Chapter 3 described an image segmentation scheme
as a precursor to a full texture segmentation pro-

cedure. The segmentation combines assumptions about

the statistical nature of <classes as defined in

. < 3 i t
feature space with spatial assumptions concerning the

properties of regions, each point of which is assigned

to the same class. This has the advantage over tech-

. . i . ial
niques which operate exclusively 1n either the spat

2 e boundar
domain or in feature space, for exampl Y

detection and histogram thresholding respectively,

16!



because 1t exploits the constraineg implicit i tt
i . in he

definition of a region as def;
e > d i -
fined ip feature space and

spatially. It was shown how this leads to high resol
- > Lu-

tion in terms of class conditional overlap whilst

intaining hi atic 5 i
ma i g gh spatial resolution at  region bhoun-

daries. The constrai i nt g
nts inherent in the problem, as

described by the uncertainty priacipie [40], are over-

come by assuming consistency of reglion properties ovedr

o

a range of spatial resolutions [9s].

A necessary part of the process is a statistical
clustering algorithm at a low spatial resolution. The
clustering assumes that the classes are characterised
statistically as consisting of a high concentration of
feature vectors around the class mean, However, it
assumes no particular model and requires no a priori
information as to the number of classes. This gives it

a considerable advantage over existing techniques.

The clustering is performed after a fixed number

of quadtree smoothing operations, the number chosen to

3 1 a1 and
provide a compromise between good smoothing gain and

the ability to detect small regions. This aspect ol

i . e ' é e of
the procedure implies that there 1s 00 measur
spatial

local adaption in terms of the

; . e f f scificall a
resolution/class resolutlon trade-off. Specific y

. , . relatively large object-
very  small  region with & rela .

) Cati e lost in the
background signal to nolse ratio would b

,] {’\ -



smoothing process whilst visually it would be
apparent. Hence, whilst classes are defined in terms
of the statistical distribution of features, it
appears that purely global statistical processes
designed to pick out classes characterising each
region are inappropriate. (It should be noted that the
above problem could be resolved by combining resultsg
obtained from different quadtree heights. However,
this could Jead to ambiguous results when a paiv of
regions requiring different amounts of smoothing have

a common boundary. )

In view of the above discussion, a fruitful ave-
nue of future research would be an extension of the
segmentation scheme sc¢ that it can handle cases where
different smoothing gains are required at different
image locations. This would require a more sophisti-
cated data structure than the simple quadtree which
performs the same operation at each point. In particu-
lar the smoothing/sub-sampling operations would be
controlled by the results of local processing at each

level in the data structure [64].

Chapter 4 described a set of experiments designed
to test the performance of the quadtree segmentation.
In particular, the superiority of the technique over a

demonstrated even

99}

standard Bayesian <classifier i

though the latter classifier relies heavily on a
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priori knowledge as to the statistical specification
of the classes. This superiority dis not surprising
since Bayesian classification is a purely statistical

operation on the histogram of the data.

It was also noted how, by wusing noise adaptive
smoothing on the boundary estimation part of the pro-
cedure, the perceptual appearance of region boundaries
correspond to the boundaries obtained by the scheme.
Although quadtree segmentation itc not intended to be a
paradigm of human visual processing in this context,
local noise adaptive swoothing 1is likely to be

involved.

In chapter 5 a texture segmentationr procedure

consisting of 2 parts was described. The first part is
a feature extraction process and the second involves
classification of the generally noisy feature space.
This classification is an extension of the quadtree

segmentation to multi-dimensional signals.

In order that the classification is able to find
the texture boundaries with high accuracy, the feature
extraction has to produce high resolution in feature
space in terms of the overlap in the class conditional
distributions whilst maintaining the locality essen-

tial if accurate boundary estimation is to occur.

It is assumed that the textures can be discrim-
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inated on the basis of their Fourier spectra, this
assumption being related to the ideas of phase
independence discussed in chapter 2. A filter design
procedure was adopted which maximises the energy con-
strained within a given region spatially for filters
with truncated spatial frequency responses. By using
the envelope of the outputs of analytic filters, at
each image point a quantity is obtained which i s
related to the energy of the input signal in that part
of the spectrum spanned by the passband of the filter.
In this sense the procedure can be regarded as one of
local spectrum estimation, the locality being
gunaranteed by having minimally sized filter impulse

responses.

This method is different from those that compute
textural features by integrating the signal energy
over pre-defined regions of the Fourier domain. In
particular such techniques are based on a windowed
global Fourier transform. Spatial locality «can be
introduced by windowing the signal prior to the
integration of the energy of the transformed windowed
signal. However, this involves a loss in spatial fre-
quency resolution as the spectrum of the signal is now

convolved with that of the spatial window.

The tessellation of the spatial frequency domain

into squarec regions of constant relative baundwidth 1is
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consistent with the results of psycophysical experi-
mentation, for example [65]. Such a logarithmic
arrangement of the frequency responses implies that
resolution decreases with increasing spatial fre-
quency. This is not surprising in view of the nature
of most naturally occurring images whose power spectra
generally tail off at high frequency thus removing the
need for a high density of detectors at these frequen-

cies.

In order to extend the feature extraction procesc¢
to more frequency scales thus increasing the dimen-
sionality of the data, resort would have to be made to
feature rejection. It was demonstrated that when clus-—
tering is to be performed on the joint histogram of
the data, feature rejection based on the eigenvector
transformation is inappropriate in some circumstances.
A topic of future research could be to investigate
this problem and in particular to develop a procedure
that takes into account the spatial distribution of
data within classes as well as the statistical nature

of the classes themselves.

Chapter 6 illustrated the results of running the
overall texture segmentation scheme on a variety of
synthetic and natural textures and it was noted that
satisfactory results were obtained in each case. Also,

the benefit of combining data into a single feature
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vector defined at each image location instead of
operating on a set of vectors each of lower dimen-
sionality and combining the results was noted. How-
ever, in spite of this the human visual system 1s
unlikely to combine information in this way . An
interesting question and one worthy of further study
is how the visual system combines independent fcatures
within a single region in order to segment  that

region.
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Abstract

This paper describes a multi-resolution approach to image segmentation. A

clustering algorithm operating on a low spatial resolution representation of
the image is combined with a boundary estimation procedure at successively
higher spatial resolutions to yield a segmentation at full resolution. Results
are presented which demonstrate good performance on a set of Gaussién images

and synthetic textures for inter-region signal to noise ratics well below 1.
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