Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches
copyright, (either yours or that of a third party) or any other law, including but not limited to
those relating to patent, trademark, confidentiality, data protection, obscenity, defamation,
libel, then please read our Takedown policy and contact the service immediately

(openaccess@aston.ac.uk)

A SIMULATION STUDY OF A LOCALISED

COMPUTER NETWORK

Thesis submitted to the
UNIVERSITY OF ASTON IN BIRMINGHAM.

for the degree of

DOCTOR OF PHILOSOPHY

Zbigniew Ziemski

OCTOBER 1977

ZBIGNIEW ZIEMSKI PH.D. 1977

A STMULATION STUDY OF A LCCALISED COMPUTER NETWORK

SYNCPSIS

An investigation is carried out into the design of a small
local computer network for eventual implementation on the
University of Aston campus. Microprocessors are investigated
as a possible choice for use as a node controller for recasons
of cost and reliability. Since the network will be local,
high speed lines of mezabit order are proposed.

After an introduction to several well known networks, various
aspects of networks are discussed including packet switching,
functions of a node and host-ncde protocol., Chapter three
develovs the network philosophy with an introduction to
microprocessors. Various organisations of microprocessors

into multicomputer and multiprocessor sysiems are discussed,
together with methods of achieving reliabls computing. Chanter
four presents the simulation model and its implementation as a
computer progranm.

The major modelling effort is to study the vehaviour of mess-
ages queueing for access to the network and the messane delay
experienced on the network. Use is made of spectral analysis
to determine the sampling frequency while ZExponentially
Weighted Moving Averages are used for data smoothing

S .

Keywords: simulation, packet-switching, netfworx,

microprocessor, fail-scft comvuting

ACKNOWLEDGEMENTS

I would like to express my gratitude to Dr. M. Walker for his
guidance and supervision throughout the period of this research.
I am indebted to Mr. K. Bowcock for making available the facili-
ties required to carry out this research. I would like to thank
Mr. J. Hollingworth for the discussions with him and for his

useful suggestions.

Finally, but not least, thanks are due to Miss S. Gaufroid for
her very patient understanding and encouragement throughout the
period of research and for typing the thesis under very difficult

conditions.

CONTENTS

Synopsis

Acknowledgements

Chapter One: Introduction to Computer Networks
1.1 Types of Networks
1.2 Existing Networks
1e21 ARPA
1.202 Cybernet
1e2.3 DCS
ek MERIT
1.2.5 Octopus
1.2.6 TSS
1e2e7 TUCC

1e3 Modelling Methods

1.4 Objectives of Investigation

Chapter Two: Functional Aspect of Netwecrks
2o Introduction
2e2 Packet-Switching
2.2.1 Packet Format

2e¢3 Functions of a Node

2e3a1 Message handling and buffering

2.3e2 Error Control
2e3e3 Flow Control
2.3.4 Routing

2.4 Host-lode Protocol

Page

10
11
12
14
16
17
19
22

26
26
27
30
31
32
35
41
45

Chapter Three: Network Philosophy

361
3.2
3.3
b
3¢5

Introduction
Microprocessors
System Reliability
Network Design

Node Functions

Chapter Four: Network Model and Simulation Program

L.
b2
b3
b
4.5
L,6
L,7
4.8
Lk,9
4,10
4,11

L,12

Introduction

Level of Simulation

Time Mechanism

The Arrival Process
Hyper-Exponentially Distributed Message Lengths
Simulation Model

Processor Busy Time

Model Routines

Simulation Program

Generating starting conditions
Generation of Pseudo-Random Numbers

Simulation Program Printouts

Chapter Five: Effects of Parameter Changes in the Node

51
5.2
S5e3
Selt
5e5

Introduction

Data Smoothing

Selection of Sampling Frequency
Obtaining the Sampling Frequency

Standard Network

48
k9
56
61
65

72
72
74
76

80
82
83
105
105
107

111

113
113
118
122

124

5.6 Effects of the number of processors/memory modules 144

>

57 Memory module size

5.8 Conclusions

Chapter Six: High Level Network Parameters
6.1 Introduction
6.2 Buffer Lockups

663 Line utilisaticn

6.4 Conclusions

Chapter Seven: Low Level Network Parameters
7e’l Introduction
7.2 . Packet Length
7¢3 Message Delay

R Conclusions

Chaptef Eight: General Conclusions and Suggestions
for further work

References

Appendix I
Appendix II

Appendix III

153

161

162
162
165

182

205

213

221

229

232

238

242

285

LIST OF FIGURES

Centralised or star network
Distributed Network
Ring Network

Functional Units of ARPA Network

ARPA network - logical map of hosts and nodes

DCS network
Merit Computer Network
OCTOPUS network

Features of Existing Networks

Type and Distribution of Computers at Aston University

Packet Format

Packet Switching between host computers
Reassembly Lockup

Comparison of different Routing Strategies
Multicomputer System

Multiprocessor System

Master-Master Multiprocessor Organisation
Master/slave Multiprocessor Organsiation
Ring Multiprocessor System

Radial bus

Time shared/common tus system - single bus

Multiple time-shared/common bus system
Simple Network Layout

Basic Node Architecture

s
Y
[¢:

(VoI BN N Y,

23

Lo
L,2
L,3
L4
L,5
L6
Lo7
L,8
k.9
Lk,10
L1
4,12
k13
L 1L
ko15

51

S5e2

53
Selt
5e5
5.6

5.7

5.8

Node queue handling

Functional units of Simulation Model

Functional Units of the Simulation Model
Generation of Messages

Update host output burffer - node(i), host {(j)
Input packet from host (j) to node-(i)

Update node output buffers

Service node output buffer - node (i), host (j)
Node-node input buffer service - node (i), Host (j)
Update host input buffer - node (i), host (j)

Host input buffer service - node (i), host (j)
Distribution of integers in sampling vector

Part of E(t) distribution

Part of Cumulative frequency Distribution of E(t)

Distribution of integers in Cumulative
Frequency Table

Raw message queue for input into netvwork
Exponentially Weighted Moving Average of message
queue for input into network, with&® = 0.01, 0.05,
0.1, 0.2

System Autocorrelation Function

Sample Frequency Selection Using the Power Spectrum
Standard Network

Standard Network: Node Architecture

Standard Network

Effect of varying message mean interarrival rate
on message queue for input into network

Number of packets processed by network per
millisecond sample interval

81
84
86
88
90
92
95
97

99
101

103
108
110

110

111

115

117
121
123
12k

126

128

129

5«9
5.10

511
5.12

5.13

Selk

5615
5.16
517
5.18

519
520

5e21

5.22
5423
5.24
525

5.26

Percentage of network processor fime used per
millisecond sample interval

Percentage of Network Memory time used
per millisccond sample interval

Distribution of message lengths sent through network
Effect of message length on message throughput time

Effect of varying message mean interarrival rate
on network traffic

Number of packets in network

Standard Network - 1 processor, 2 memory units

per node

Effect of varying message mean interarrival rate on
message queue for input into network

Number of packets processed by network per
millisecond sample interval

Percentage of network processor time used per
millisecond sample interval :

Percentage of network memory time used per
millisecond sample interval

Distribution of message lengths sent through network
Effect ¢f message lengths on message throughput time

Effect of varying message mean interarrival rate on
network traffic

Standard Network - 1,ﬁsecond memory/processor

Effect of varying message mean interarrival rate
on message queue for input into network

Number of packets processed by network per
millisecond sample interval

Percentage of network processor time used per
millisecond sample interval

Percentage af network memory time used pner
millisecond sample interval

Distribution of message lengths sent tkrough network

130

131
132

133

13k
135

137

138

139

140
141

142

143

146

147

148

149

150

5427
5628

529

530

5631

532

533

5.3k
5435

6e1
6e2

6e3

6.4

6e7

6.8
6.9

6,10

Effect of message length on message .throughput time

Effect of varying message mean interarrival rate on
network traific

Standard Network =~ 128 word memory module

Effect of varying message mean interarrival rate
on message queue for input into network

Number of packets processed by network per
millisecond sample interval

Percentage of network processor time used per
millisecond sample interval

Percentage of network memory time used per
millisecond sample interval

Distribution of message lengths sent through network
Effect of message length on message throughput time

Effect of varying message mean interarrival rate
on network traffic

Simple buffer lockup
Double buffering

Circular shift register capable of storing message
and control packet

Standard Network -~ 3 hosts/node

Effect of varying message mean interarrival rate
on messzge queue for input into network

Number of packets processed by network per
millisecond sample interval

Percentage of network processor time used
per millisecond sample interval

Percentage of network memory time used
per millisecond sample interval

Distribution of message lengths sent through network
Effect of message length on message throughput time

Effect of varying message mean interarrival rate on
network traffic

151

152

154

155

157
158
159

160
162

163

164

166

167

168

169
170

171

172

6.11

6.12
6.13
61kt
6.15

6.16
6.17
6.18

619
6.20
6421
6.22

623
624

6.25

6.26

6.27

Number of paths transversed during a typical
host/host transaction

Standard Network -~ 2 nodes

Effect of varying message mean interarrival rate
on message queue for input into network

Number of packets processed by network per
millisecond sample interval

Percentage of network processor time used per
millisecond sample interval

Percentage of network memory time used pér
millisecond sample interval

Distribution of message lengths sent through network
Effect of message length on message throughput time

Effect of varying message mean interarrival rate
on network traffic

Standard Network - 1 megabit lines

Effect of varying message mean interarrival rate
on message queue for input into network

Number of packets processed by network per
millisecond sample interval

Percentage of network processor time used per
millisecond sample interval

Percentage of network memory time used per
millisecond sample interval

Distribution of message lengths sent through network
Effect of message length on message throughput time

Effect of varying message mean interarrival rate
on network traffic

Standard Network - 100k bit lines

Effect of varying message mean interarrival rate
on message queue for input into network

Number of packets processed by network per
miilisecond sample interval

174

175

176

177

178
179

180

181

183

184

185

186
187
188

189

190

191

6.28

6+29

6.30
6.31
6632

71

7.2

7e3

Tl

745
7.6

77

748

7.9

710

711

712

7413

Percentage of network processor time used per
millisecond sample interval

Percentage of network memory time used per
millisecond sample interval

Distribution of message length sent through network
Effect of message lengtnh on message throughput time

Effect of varying message mean interarrival rate
on network traffic

Standard Natwork - 256 word packet

Effect ¢f varying message mean interarrival rate
on message queue for input into network

Number of packets processed by network per
millisecond sample interval

Percentage of network processor time used per
millisecond sample interval

Percentage of network memory time used per
millisecond sample interval '

Distribution of message length sent through network
Effect of message length on message throughput time

Effect of varying message mean interarrival rate
or network traffic

Standard Network - mean short message = 2 packets
- mean lcng message = 20 packets

Effect of varying message mean interarrival rate
on message queue for input into netwerk

Number of packets processed by network per
millisecond interval

Percentage of network processor time used per
millisecond sample interval

Percentage of network memory time used per
millisecond sample interval

Distribution of message lengths sent through network

Effect of message length on message throughput time

192

193
194

195

196

198

199

200

201
202

203

204

206

207

208

209
210

211

7.1k

7.15

716

7417

7.18

719
720

9.21

7.22
723
7.2k
7.25

7.26
727
7¢28

Effect of varying message mean interarrival rate
on network traffic) 212

Standard Network - short/long message in ratio 9:1

Effect of varying message mean interarrival rate
on message queue for input into network 214

Number of packets processed by network per
millisecond sample interval 215

Percentage of network processor time used per
millisecond sample interval 216

Percentage of network memory time used pér
millisecond sample interval 217

Distribution of message lengths sent through network 218
Effect of message length on message throughput time 219

Effect of varying message mean interarrival rate
on network traffic 220

Standard Network - Mean number of generating hosts = 2

Effect of varying message mean interarrival rate
on message queue for input into retwork 222

Number of packets processed by network per
millisecond sample interval 223

Percentage of network processor time used per
millisecond sample interval 224

Percentage of network memory time used per
millisecond sample interval 225

Distribution of message lengths sent through network 226
Effect of message length on message .throughput time 227

Effect of varying message mean interarrival rate

on network traffic 228
Unique sets of digits in sequence 238
Chaincode produced by four stage shift register 238

Generation of pseudo-random numbers using
A oant

anAd Arhasncndas 23
engen chaxnegles s

O

CHAPTER ONE

INTRODUCTION TG CCMPUTER NETWORKS

Computer networks are the product cf the seventies and will
undoubtedly take over from the time-sharing industry of the
previous decade. Their effect on society and the economy will

‘be more profound than any other network developed to date.

A computer network can be defined as "an interconnection of
dependent or independent computer systems which communicate
with each other in order to share certain resources such as

programs and/or data; load sharing; and reliability reasons,”

Functioning computer networks have been in existence for several
years since the early sixties. They include CYBERNET, MERIT and
OCTOPUS but perhaps the most sdphisticated and ambitious computer

network in existence is the ARPA networke.

A network can be divided into two parts: one part consisting of
the computers which provide the computational services of the
network - the "EOSTS!"; and the other part counsisting of those
computers which service the communication needs of the network -

the ""NODES.™

Computer networks are set up as a message service to enable any

computer on the nectwork to submit a message destined for another

computer in such a way that the message will be delivered

quickly and correctly. As the two computers are communicating
there will be messages going back and forth similar to the types
of messages between a user console and a computer on a time-shared
systems It is in effect an ultra high speed postal system with

little storage or buffering capability.

A typical usage of a network might be the preparation of a program
on one computer, transmitting it to another computer for process-
ing and finally transmitting the results back to the first computer

for output on a line printer.

Within a network two types of message-switching may occur: circuit-
switching and packet=switching. Circuit-sﬁitching is the classic
approach where a complete path is established between the two
parties for as long as they wish to communicate and is ccmparable

to the telephcne system.

Packet-switching is a method of working similar to the store-and-
forward technique used for telegraph message-switching in which
the communication called a message is broken up into smaller units
called '"packets." Packet-switching is particularly suitable for
data transfers involving intermittent short bursis of data with
relatively long pauses between bursts. Packet=-switching will be

discussed in greater detail in Chapter 2,

1.1 Types of Networks

" Centralised Networks are often called 'star' networks because the

varous computers are interconnected through & central unit as

shown in Figure 1.1.

NODE HOST

HOST

Figure 1.1 Centralised or star network

Figure 1.1 shows a centralised network as a set of point-to-
peint connections. An alternative structure is a multipoint
or multidrop line where several terminals or computers may use

one dedicated line,

This type of network requires that.the capabilities of the
central controlling unit far surpass those of the peripheral
units or it requires that the central computer does little more
than switch the various messages between the other computers
connected to it. As may be seen, the major disadvantage of a
centralised network is the vulnerability of the network to the
failure of the central computer i.e. should the central computer

incur a fault the entire network ceases to function,

A distributed (or decentralised) network overcomes the disadvantage

of the centralised network by having no central computer. The

responsibility for communication is shared among all the nodes in

the system as shown in Figure 1.2. -

HOST

NODE

Figure 1.2 Distributed Network

A message may have to pass through several nodes before reaching

its final destination. The network is made more reliable by

ensuring that each node is connected to at least two others. In

the event of a connecting link failing communication may always
continue along an alternative path. Even if a ncde fails, unaffected
nodes can continue to function as long as the link remains operable.
ARPA is a distributed network but is not fully connected as the

cost would be prohibitive, whereas MERIT is an example of a fully

" connetted distributed network.

In a ring network, a ring or loop-type network 1s formed by a set
of nodes. Any terminal or host computer wishing access is connected

to one of the nodes as shown in Figure 1.3.

NODE . HOSTS

direction

of traffic

Figure 1.3 Ring Network

The nodes bridge their input and output lines with a shift register.
The channel capacity of the ring is multiplexed into a series of

time slots e.ge. a 20 kilobits/second channel is divided into 20 slots
each of 1000 bits. The time slots all flow in the same directiocn
from node to node. All incoming messages are then put into a free
slot as it comes around. A ring-switched network may consist of
several rings. Neighbouring rings would be interconnected by a
switching processor. Although ring networks are easy to design

and cheap to build they have low reliability. Hayes and Sherman

1] discuss ring networks in greater depthe.

1.2 Existing Networks

1.2.1 ARPA

The Advanced Research Project Agency (ARPA) funded network is
probably the most sophisticated network in existence [2-15].
Its primary goal is to make available the resources of the network

to all users. Other design aims of ARPA are:

1) A communications cost of less than 30 cents per 1000 packets
(% 1 megabits).

2) Average packet delays under 0.2 seconds through the network,

3) Capacity for expansion to 64 IMP's wi&hout major hardware or
softwvare redesigne.

4) Average total throughput capability of 10-15 kilobits/second
for all hosts at an IMP.

5) Peak throughput capability of 85 kilobits/second per pair of
IMP's in an otherwise unloaded network.

6) Transparent communications with maximum message size of
epproximately 8000 bits and error rates of one bit in 1012 or
lesse.

7) Total network traffic 700-800 kilobits/second for a 20 IMP

. netwerk,.

" ARPA is a distributed network of heterogensous computers and

operating systems. Local computers (HOSTS) are linked to the

network via Interface Message Processors which are generally called

IMP's, IMP's are modified Honeywell DDP-516's with 12 k memory -

6 X memory is required by software support, the remaining memory

is used for message and queue storage. ELach node can store appro-

ximately 77 packets. Terminals can use. the network directly via

Perminal Interface Processors (TIP's) {7,11]. Figure 1.4 shows

the general layout of a2 section of ARPA. The network provides

store-and-forward communications. Internodel communications are
provided via 50 kilecbit full duplex leased lines., Reliability

)
hoe haan srhiatvo
A8 nRechh _TilaiTyYe

9

through efficient error-checking of each

packet and the provision of two separate links from each node to

JI0M19N VJHy JO S3Tu[] (euotrjoung +H°L 9IndTd
STYNIWIHL JAINIEG JTINTEd STYNIHIEL
¥asn HNIT ANIT gasn
STIIS TVOOT,
A
< p]
BTIVNI NI STYNIWIAL] — BIVNINEGT STYNTHYET
qasn | gasn | ¥asn gisn
\/ A\~ NS A/
JTI0dNOD HAILNAN0D HALAJIHOD MELAdWOD
ILSOH ISOH LSOH LSOH
S/4VHD
00L=-0L
SANTT ~
SNONOYOHONASY (s/93 0oL)
MNIT
hfolce: g Kl
arl dRI dWI arl

SAUTT UWOTIBOTUNWWOD SNOUOIYOULS 9/Q30G

- aw asm

=

protect against total link failure.

Each Host computer has a Network Control Program (NCP) whose
function is to establish links, terminate links and control the

flow of traffic.

When an IMP receives a message from a Host it breaks it up into
"packets." Packets have a maximum size of 1008 bits, and each
message consists of up to a maximum size of 8095 bits. Packets
are then independently routed to the destination IMP where
space has been reserved for reassembly before transmission to

the receiving hoste.

As each packet is passed from IMP to IMP to reach its destination,
the sending IMP retains a copy until an error check is carried
out at the receiving IMP and a positive acknowledgement is seni
back. On receipt of a packet an IMP must determine whether a

packet has reached its destination or whether it needs to be

transmitted further by checking the destination address.

Each IMP has the facilities for detecting communication failures,
transmitting idling packets during the absence of normal traffic,

and gathering performance statisticse.

ARPA currently has over 4O nodes and over 80 hoSts spfead acroés
America to Hawaii (via satellite link) and a few locations in
Europe as shown in Figure 1¢5. The hosts range from PDP=11's to

the ILLIAC 4 which are incompatible both in software and hardwaree.

. eanJdty
2780 TTnr *e9pod pue 93904 3O Jo@ [907P0T - IFondeu Vo ST

(Gni7ee0)

oLg s
OQUDTIH

00594) /- @050

an
orﬂ
| /v (25765 ,
vagv g @ aHT f~(
) ISI=DSn 500
(709% .Vogmo@m&: oL-aad g (53)
N'TOONIT QUOANYLS ORNI

\\mE.E ,
(ST) {1 _dad) ~Trvave
@D Gt

STA
XOuIX
STHY
a1 18s
STONITTI HVIq T :

10

1e2e2 Cybernet

CDC's CYBERNET [2,16], although not as sophisticated as ARPA
needs to be mentioned since it was one of the first commercial
networks offering its facilities to the public. It was built
to connect CDC's existing computer centres to provide the
following advantages:

1) Better reliability, users have access to an alternative
computer in the.event of a breakdowne.

2) Greater throughput by allowing local work to be transferred
to a less busy site. It also allows better load balancing
with machines in different time-zones.

3) Better manpower utilization; allowing users to access one
anothers programs and data bases. .

L) Enhanced computer utilization through users choosing the

best resources rather than local ones for the task in hand.

Cybernet is a distributed store-and~forward netwerk composed of
heterogeneous computers, mainly CDC 6600's and CDC 3300 linked

by wideband lines across the U.S.A. The CDC 6600's, which consti-
tute the primary computing element, are referred to as ‘'centroids';
while the CDC 3300's serve as front end loaders arnd qoncentrators

to the 6600's and are referred to as '"nodes." Interactive and
remote job submissions are supported by terminals and satellite
computers. Cybernet communications employ switched,leased and

satellite communicationse.

However, Cybernet cannot reconfigure itself and relies essentially

11

on hand-established terminal to computer, and computer to
computer connections. Although alternative paths do exist,

line failure in general necessitates human intervention.

126 DCS

The Distributed Computer System (DCS) shown in Figure 1.6 is

an experimental comﬁuter network being developed and constructed
at the University of California at Irvine (2,17,18]. Its aims are:
low cost, reliability, expansion capability and modest software
development. However, the primary aim is to investigate the
nature of distributed architecture ir general. It is iﬁtended

primarily to service mini to midi computers.

PROCESSOR

PROCESSOR
gossEo0ud

PDP-10 AN

Figure 1.6 DCS network

The communications architecture is based on the Bell System TI

technology (Pulse Coded Modulation onrn wideband of order 1.5-6.2

megabits) and fixed-length messages. The coaxical cable will
initially give 2 megabits per second digital transmission but
could be increased to the 6 megabit limit. Host computers are
connected to the network via '"ring interfaces'" not computer
nodes. DCS supports three classes of ring interfaces:

1) Computer support which could be a front end machine.

2) Terminal supporte

3) Network of ring support.

Messages are sent to a process name and not to a real processor
address. The process is identified by a general classification
such as language file etc. Within each class are subclasses

such as Basic, Fortran, PL/1 etc.

1.2.4 MERIT

The Michigan Education Research Information Triad (MERIT) is a
tripartite effort between the three largest universities in
Michigan: Michigan State University, University of Michigan,
and Wayne State University [2,19,21,221. Its objective is

similar to ARPA: namely resource-sharing.

Merit is a distributed nétwork consisting of three nodes having
three heterogeneous hosts which are connected to the network
via Communications Computers (CC). The CC is a modified DEC
PDP-11/20 with 16k 16 bit words of memory. The CC acts as a
store-and-forward system enabling an alternative path to be

chosen should a line fail. The Communications Computer Cperating

12

System (CCOS) requires 8k of memory, the remaining memory

being used for message storing. Figure 1.7 shows the MERIT

network layout.

MSU
CDC 6500

H
K/J‘F_ SCOPE

13

WSU
IBM 360/67
MTS

?

MTS -~ MICHIGAN TERMINAL
SYSTEM

IBM 360/67
MTS

L
]

Figure 1.7 Merit Computer Network

Inter CC communications is pivvided initizlly by a group of
2000bps voice-grade lines for reasons of economy, low load

and by the fact that they exist. As with ARPA after travers-
ing each path the message is error-checked and an acknowledge-

ment is sent for an error-free receipt.

The host/cc interface is capable of independently transmitting

a variable-length data record to (from) the CC memory from (to)

the host computer, performing any memory alignment cperation
required by the different word configurations of the two
processors. The host software in addition is simplified by
the interface providing a multi-address facility permitting
the host to treat the CC as several peripheral devices. Thus
each user/task requesting use of the communications resource

is allocated a dedicated pseudo-device.

1e245 Octopus

Octopus is a heterogeneous network developed at the Berkeley
Laboratory of the University of California which became opera-
tional in 1964 [2,25]. The primary computer power is provided
by two CDC 6600's, two CDC 7600's and a CDC STAR. All these
"workers'" operate as time~shared facilities. The network
supports a centralised data base and a large variety of I/0
devices which give the user a single access point to all

computers.

The workers are interconnected via 12‘megabit hard-wired lines
and the communication system utilizes a store-and-forward
protocol. The topology of OCTOPUS is shown in Figure 1.8

The system is best viewed as two independent, superimposed
networks:

1) File Transport Subnet which comsists of a centralised

network of the worker computers connected to the Transport

memory syctem (disc, data cell, and photo store).

14

Monitor
Display
System

Television

Data
cell

Dual processor
PDP-10

Transport Control
Computer

Photod
store

CcDC
6600

7600

/,
|

Q
Hx O
Q

— — Data
' collection
l ' PDP-6
e e
Experiments
r = TTY
p— PDP=-8
= TTY
= PDP-3
Tele- ¢ = DP
type
writer
— TTY
L = PDP-8
Dual
processor
! r—* PDP-11 ;
. Remote (1/0) |
Readers &
Printers

7600
S

Figure 1.8 OCTOPUS network

6600

15

Worker
computers

2) Teletype subnet which is a distributed network consist-
ing of the worker computers, 3 PDP8's (each of which can

service up to 128 T/T's and the Transport Control Computer.

A graphic display capability with distributed monitors is
provided by the Television Monitor Display System (TMDS) «
A third subnet exists to support remote I/0 via a duplexed

PDP=-11.

1e266 TSE

The Time Sharing System (TSS) network is a distributed network

of homogeneous computers developed in 1967 between IBM and soune
of its 360/67 customers [2,23]. The 360/67's use the IBM T85/360
operating system. Some of the 360/67's operate as nodes for a
local network consisting of 360's which appear as devices to the

network not hosts.

The nodes are interconnected by 2000bps voice=-grade lines and
40,800 bps leased lines. The voice-grade lines are interfaced

to the IBM 360/67 by IBM 2701's and 2703's.

The communication software operates as an ordinary user progran
resident in the host computers which has to provide all prograus
such as store-and-forward, error-checking etc. This approaci
has the advantage of minimising extensive changes to the TSS,/360
operating System. However, the penalty paid is that the

communication software has to contend for resources on the

16

17

same basis as any other program. This results in the commun-

ications equipment not being used to maximum advantage.

Users access the network via CAM (Computer'Access Method)

which is a specially developed set of procedure calls. A CAM
request will check on whether a connection exists to the desti-
nation computer; if not, one is established. llessages, which
may be up to 1k bytes long, are error-checked and acknowledged

on receipt or a retransmission request is made.

It is primarily a reseafch network to investigate the advantages
and disadvantages of general purpose networks. Load-sharing,
remote service and dynamic file access are some of the features
provided. Using homogeneous computers eases implementation
‘problems since problems of different command languages, data

structures, operating systems and machines are avoided.

1.2.7 TUCC

The Triangle Universities Computation Centre (TUCC) has been
operative since 19€6. t is another joint venture between
three major North Carolina Universities: Duke University,
Noth Carolina State University and the University of North
Carolina although many schools and colleges also enjoy the
benefits of TUCC [2,2#]. It ie a simple central network sup-

porting homogeneous IBH %260/40's and 360/75. The 360's are

5

T R R e T s Ammald FTan 1]
MWW Vi L Vs NAMILI . - -—

.ral hatch work and to support the tele-

(

communication requirements of the networke. The network central

control is carried out by an IBM 360/75 which was replaced

by an IBM 370/165 in 1972 to cope with the work load.

The three primary goals that the network haé to satisfy were:

1) To provide economically adequate computing facilities to
each institution.

2) To minimise system programming personnel.

3) . To encourage greater cooperation between the three universi-

ties in the exchange of systems, programs and ideas.

The TUCC computer connects with the local sites via single
leased wide band lines of 40,800 bps half duplex operationa:
The network has resulted in substantially greater computer

facilities through economies of scale.

The networks that have been discussed show a wide range of
architecture and approach that have employed in petwork

design. There are many other networks including ACCNET {;S},
DATRAN [26], ﬁPL [27} and the British Post Cffice's Experimen=-
tal Packet-Switching Service [ZSJ . Figure 1.9 shows a summary

of existing nctwork features.

Computer Networks may be justified for any reason or combina-

tion of reasons as given below:

18

19

1) Load balancing

2) Avoidance of data duplication

3) Avoidance of software duplication
4) Flexibility

5) Simplification of file backup

6) Ability to combine facilities

7) Conversion simplification

8) Enhancement of file security

9) Decreased system costs

©) Improved computer efficiency.

1.3 lodelling Methods

There are two main techniques that may be used to analyse and
evaluate the effects of proposed changes on network performance.
However, all methods including simulation have their limitation.
The first method involves using Stochastic queuing theory [43,44]
requiring the derivation of a series of equations describing

the network being examined. The systém being studied consists
of a continuous flow of information or items which are counted
in aggregate rather than as individuzl items. Even for simple
netwvorks the resultant models tend to become exiremely complex
and rather stringent simplifying assumptions must be made in
order to find solutions. A number of queueing models have

been devised to analyse the characteristics of networks[29,5é].

The alternative to queueing theory which is also widely

ARPA CYBERNET{ DCS MERIT | ocToPUS 7SS TUCC
DIST— D1ST- DIST- DIST- FIX=D DIST- | CENTRAL
\J T
ORGANISATION || S1pureD | RIBUTED RIBUTED [RIBUTED RIBUTED
COMPOSTTION HETERO- | HETERO-| HETERO- [HETERO- | HETERO- | HOMO- HOMO-
GENEOUS | GENEOUS| GENEOUS |GENEOUS | GENEOUS | GENEOUS| GENEOUS
NUMBER OF N
NODES > 46 36 9 3 - 10 9 4
GEOGRAPHY OF i NORTH
NODES USA USA IRVINE MICHIGAN LBL USA | CAROLINA
MAg?;gE MIXED LARGE MINI LARGE LARGE 360/67 360
O AT L ONllnonEywzLL| cpc 3300| ®ING | PDP-11 | cpe IEM | 1BM
MACHINE DDP-516 PPU INTERFACED PPU 2701 2701
COMMUNICATION|| MESSAGE | MESSAGE MIXED MESSAGE| POINT POINT | POINT
. TO TO - TO
PROTOCOL SWITHCED SWITCHED SWITCHED| L - - POTNT | POINT
TRANSMISSION || LEASED | LEASED TWISTED | TELPAK |COAXIAL DDD | .TELPAK
MEDIUM LINES LINES PAIR
COAXIAL
DATA RATE 100~ 1.5-12 2000 |100-2400
5M
bps 20,000 4o, 800 2e5 2’900 M 40,800 | 40,800
TRA“§§§§SION ANALOG | ANALOG | DIGITAL | ANALOG |DIGITAL | ANALOG | ANALOG
MESSAGE VARIABLE | FIXED VARIABLE |VARIAELE|VARIABLE |VARIABLE|VARIABLE
FORMAT LENGTH | LENGTH LENGTH | LENGTH | LENGTH LENGTH | LENGTH
MESSAGE 8095 1024 ' 900 240 1208 or 8192 1000
SIZE BITS CHARS BITS CHARS |3,780,000| BITS BYTES
- BITS

Figure 1.9 Features of Existing Networks

20

21

used, is to simulate the network [30,31 ,32] « Simulation
allows modelling of steady state and time-dependent syétems
with relative ease and permits analysing %ransient conditions.
Since no explicit equations need to be derived, a simulation
may handle a large number of variables thereby enabtling complex
models tp be handled more easily. In fact, where the number of
variables is large, simulation may be the only course available.
In order to develop a simulation model it is necessary to know

the distribution of the various processes.

Simulation alsc permits discrete change models to be modelled
'easily which have been used widely to study communication
networks. Discrete change models conceptualise the changes in
the state of the system as. discrete rather than continuous.
Such network models have the following characteristics

a) the system is defined by modules which operate cn distinct
parts of the model.

b) packets flow through the network from one module to another,
at each stage a specific function is performed before being
passed onto the next.

¢) Each module has a limited capacity to process the packetis,
and therefore the packets may have to wait in a ”éueue” before

reaching a particular module.

The main objective in discrete models is to examine the chara-
cteristics of the network and to determine the cavacity of the

system i.e. how many packets will pass through the network in

22

a given time. The main computational task consists of keep-
ing track of where individual packets are at any given time,
moving them between routines, timing the moves anrnd process-

ing times at the modules.

Simulatior techniques are limited only by the capacity of the
computer but generally at a higher computational cost than
gueueing theory. TFurthermore the results of a simulation tend
to be in a form that is easier to interpret than those of
queueing theory. To be of value, however, a simulation model

must be accurate.

Bearing in mind that the network will be conceptualicsed as a
discrete change model where transient conditions need to be
studied, it was decided to carry out the investigation using

a software simulation approach.

1.4 Objectives of Investigation

Figure 1.10 shows the location of cormputers at the University

of Aston and the types available. The computers are drawn from
a variety of manufacturers and are mainly incompatible both in
hardware and software. Since many of these computers are under-
utilized and do not have the same facilities as cther computers
on site, it would be advantageous tec join these computers on

a network to enable other users to use the system during slack
periods and allow all users to access the unique features of

individual machinese.

NOVA 1200 (PROD ENG)
PRIME 300 (MATHS)
MICRO 16 (CHEM)

COLLEGE
HOUSE
(pSYCOLOGY)

4

PDP 11/08

IATHIS IIVAM SARYL

PRIME 300},COMPUTER
NOVA 1200) CENTRE

K 1cL 19048

HEWLETT PACKARD 2000
PDP 11/45

MOD 1

HONEYWELL

CDC 7600 (MANCHESTER)

j///,—\\\\ 'ICL 19064 (BIRMINGHAH)

a4

\

FIGURE 1.10 TYPE AND DISTRIBUTION OF COMPUTERS

AT ASTON UNIVERSITY

2k

There are a number of fundamental questions to be answered

in the process of designing computer networks. Major problems

are the layout and sizing of connections between nodes i.e. where
should a line go and what should its capacity be? What should
the packet length be? What traffic load can the network sustain?
These problems are difficult to answer because there are many
possible combinations to choose from. A simulation model has
therefore been developed to help in the investigation of the

problem.

Packet switching communicatibn systems have two fundamental

goals in processing data - low delay and high throughput. The
major modelling effort is concentrated on the study of the beha-
viour of messages queueing for access to the network. This seems

a reasonable approach since in a packet switching network, messages
experience delays as they are transmitted through the network and
thus the queue lengths andr§peed with which messages are through-

put are a reasonable performance measurement.

The areas of interest include the relative capabilities of the
network, identification of specific limitations of the network
and may be divided into three main areas:
1) liode paramecters:

a) efiect of number of processor/memcry modules

h) effect of memory/processor speed

¢) nemory mocdule size

25

2) High level Network parameters:

a)

b)

c)

Number of nodes in network

Number of hosts

effect of line speeds

3) Low level Network parameters:

a)

b)

c)

d)

effects of increasing mean packet length

effects of changing ratio between different message
lengths
effect of increasing mean number of generating hosts

effect of increasing packet length.

26

CHAPTER TWO

FUNCTIONAL ASPECT OF NETWORKS

261 Introduction

This chapter is concerned with developing some of the ideas
introduced in the previous chapter. The purpose of this is
to indicate some of the problems that will be encountered

in this investigation. After discussing packet-switching and
packet format, the functions of a node are presented with
particular emphasis on message-handling and ouffering, error
control, flow control and routing. Finally Host-Node proto-

col is discussed.

2.2 Packet-Switching

Rather than prbvide channéls on a user-pair basis, it would
be much more efficient to provide a single high-speed charnel
to a large number of users which share it in some fashion.
This brings into effect the 'large numbers law' which states
that with very high probability, the demand at any instant
will be approximately equal to the sum cf the average demand
of that population.” 1In this way the channel capacity required
to support the user traffic may be considerably iess than in
the unshared case of dedicated channels. The important
observation that can be made is that the full-time alloca-
tion of a fraction of the channel to each user is highiy

inefficient compared to the part-time use of the full capacity

of the channel (this is precisely the same idea as the notion

of time-sharing).

2.2.1 Packet Format [33,34)

Each packet is a group of control and data bits which is
independently transmitted to find its way to the destina=
tion, The control bits contain addressing and processing
information and have a fixed format while the data bits may
have any format providing the total data bits can be carried

as multiples of 8/16 bit bytes.

As shown in Figure 2.1 a typical packet would contain the
following control information:
4} Source Address
2) bestination Address
3) Type of packet
(a) Message
(b) Acknowledgement
(¢) Svnecial inter-nodal ccntrol messages giving status
information concerning buffers, lines, and node status
(d) "Send next packet!
L) Packet Sequence No
only for data packets.
5) No of packets in a message
In each packet after the data, a sequence of check bits are

added to enable the receiving node to check whether the

packet has been transmitted error-free.

27

28

38WJIO0J 39308 L°2 odndtg

NOILVWIOINI LIADVA

TOULINOD

dDVSSHNW NI
SIIADVd 0 YHILWAN

ON
(viokS]

AddAL

LoHd

24008

SLId
ADIHD

va&avda

JIAVIH

29

Packets therefore serve as the basic unit of information
interchange between nodes. Their smaller cize places a
reduced demand on intermediate nodal storage and increases

the likelihood of error-free transmission.

Consider as an example a data terminal in London wishing to
use the services of a computer centre in Manchester. Using
the switched DATEL services, a link would be established

via the telephone network. That link would then be held

for the duration of the complete transmission, even if there
were periods daring the call when no data was being trans-
mittéd. All conflict and allocation of resources must te
resolved before the link can be established thereby permitting

the traffic to flow with no conflict.

The alternative to this is packet-switching where the packet
would be sent to the local packet-switching exchange (NODE).
On arrival at the exchange it would be transmitted to the
destination node by the most readily available route. During
the transmission from source to destination there is no ded-
ication of resources - conflicts being resolved as they are
encountered. Internodal communication-lines are engaged

only during packet transmission. During idle time the lines
are available to other users. Should the most direct line be
congested en route, the packet would be rerouted automatically

through an alternative node. This ensures that:

1)

2)

3)
4)

5).

6)
7)

Users are occupying long distant lines for the minimum
of time. |

High probability of rapid packet transfer.

Multiaddress or "broadcast' messages ére facilitated.
Speed changing catered for - allows terminals of differ-
ent speed capabilities to communicate i.e. source trans-
mission rate = reception rate of destination.

No dedication of resources.

Increases likelihood of error-free transmission.

More effective use of data channei.

An optimum packet length exists which depends on the applicz-

tion and the environment. If the packet is too long, errors

will be so frequent that few data can be transferred; if the

packet is too short, there is an unnecessary overhead, and

too many control packets will be generated during the trans-

action.

2.3 Functions of a node

A node has four basic functions to perform:

1)

2)

3)
4)

Message handling and buffering.

Error control is required in four situations:

(a) Out of sequence delivery of messages at the destination
(b) Delivery of duplicate messages at the destination

(c) Message delivery with errors

(&) |Message unotl delivered.
Flow control.

Routing.

30

2¢3.1 Message handling and buffering [4,10]

The most important function of a node is to handle traffic

from the local hosts that it services and traffic from neigh-

bouring nodes.

Communications between hosts is via sequences of messages,
each of which is broken up into sub-messages called packets
by the local node. Each message in ARPA can have a length
of up to 8000 b:its which is broken up into packets of 1000
bits length. Each of these packets is then independently
transmitted by the network to the destination node which
reacsembles the packets into a single unit prior to handing
it over to the destination host. Along the route each node
retains a copy of a packet until a positive acknowledgenment
is received indicating error-free transmission and acceptance
(eege the node is not too busy)., Should an acknowledgement
not be receivgd within a reasonable time say 0.1 seconds it
is retransmitted, possibly along another line. The examina--
tion of the packet header by the node will determine whether
a packet is at the destination node or whether it needs further

transmission.

When the destination node has received all the packets in a
message, it must put them into the correct order, strip off
the header from each packet and put a leader on the message,
identifying the source host. Once the host has received the

message it will issue a "Ready for Next Message'’, which is

31

transmitted back to the source host where it also serves
as an indication that the message was correctly received.

Figure 2.2 illustrates packet-switching between host computers.

If buffer handling is made simple then fast processing will
be achieved and the program size will be kept to a minimum.
The number of buffers should be such that all incoming traffic

can be stored to enable the lines to be used to full capacity.

Fixed buffer sizes simplify the design and speed up the handl=
ing operation. Variable packet lengths lead to inefficient

utilization of network resources (buffers etce.)e.

The high level network avoids an extensive message-buffering
problem by prevernting any host sending a message to any other

host that is in no condition to receive messages.

If a host is to be effective on the network, it must be will-
ing to receive and acknowledge messages with extremely little
delay. Then the major burden of message buffering is on the

host computers themselves.

2e3.2 ILrror Control

The node has full responsibility for providing error contrcl.
Four situations can arise which the noda must handle,

Al)owing messages to be multipacket and sent along independent
routes will lead to the packets arriving at the destination

node out of sequence. At the destiration node the packets

33

reassembled

send next message
meesage

send next message

’

ACK Acknowledgement

SNM Send Next Message

sending
HOST

'"_ MESSAéE

Figure 2.2 Packet Switching between host computers

must be reassembled into the correct sequence before being
handed over to the destination host. Assigning packet
sequence numbers would enable this to be carried out. The
situation where a host pair could have se?eral messages Gn
the system could arise but is best avoided as this further
complicates the network.ie.e. with each host pair allowed

one message, sequencing would occur naturally.

Should an acknowledgement be missed somewhere along the

route it is possible that a duplicate packet would be retran-
smitted. The provision of sequence numbers for each packet
in the message would enable the message to be correctly

reassembled at the destination.

Noise is the primary cause of errors on communication channels.
Error handling is simply achieved by error detection (e.g. cyclic
redundancy code carried out on each packet) and retramnsmitting
the packet if necessary when an acknowledgement is not received

through an erroneous packet.

Each transmitted message will now be accurately celivered to
the intended destination through reliable network design.
Should a message fail to get through, simple end-~to-end
retransmission would protect against the occurence of this

situation.

34

2¢3e¢3 Flow Control

It is clear that any network has a limit to the amouﬁt of
traffic that it can support. Should traffic rise over a
certain level, it must be rejected or the network will grind
to a halt. When a network reaches a situation where it

must reject traffic then it is said to be "congested" or
"logically deadlocked' where traffic movement has stopped.

To prevent these situations occuring good flow control
techniques are required. The provision of mass storage in
the nodes could greatly increase the mean time to congestion.
However, more storage alone cannot in general prevent congest-
ion. The network must provide a certain amount of buffering
between the source and destination host, preferably equal to
the band-width of the chanrnel times the round trip time over
the channel. Flow control is necessary to prevent messages
from entering the network for which there is no buffering

available.

As with road traffic, congestion may be expected to start at
one point in the network and spread as the queues fill and
links betweennodes are blocked. The workload a network can
take will be increased through good routing. Eventually,

a limit will be reached where several lines or nodes block

simultaneously.

"end~to-end". Local control is applied in a subnet on

35

36

information passed between nodes. Neighbours inform each
other of traffic delays experienced, or may request reductions

or return to normal traffic over certain links.

A user who is contributing to the overload may be some distance
away from the point where congestion is occurring and local

control methods may have to spread some way before action is

taken.

Bud-to=-end control makes use of the notional links that exist
between subscribers. Under heavy loadirg data rates of certain

links may be reduced and new links may be refused.

Two types of deadlocks may occur known as '"reassembly lockup"
and "gtore~and-forward]ockup" which occur with multi-packet
messages. Reassembly lockup is the situation where the remain-
ing packets of a partially reassembled message are prevented
from reaching the destination node by other packets in the
network that are waiting for reassembly space at that destie
nation to become free. Thus the first message cannot te
completed and the reassembly space freed, In the second

case of store-and-forward lockup, packets interfere with each
other by tying up buffers in such a way that none of the
packets are able to reach the destination although the destina-

tion has room to accept arriving packets.

Figure 2.3 shows the problem schematically. Node 1 is sending

37

dasoo7 LTquesseay ¢°z aandtd

ATERESSYVHYE
V EDVSSUN

A

— 7

N
N
N
N
]‘_! nes
‘p;: bt
:
il
&

La — 10 ¢
)

mwwm | xﬂ. A\
gy =77 ,.m.\m 29\
K2 d 207 * ”WWV

2 TaoN

¢ FAON

V

ATIRISSVIY
d IDVSSINH

a multipacket message to node 3. Node 3 has devoted its
buffers to partially reassembled messages A and B. Since
all the buffers are tied up to messages A and B, the node
can only free space vhen the remaining packets have been
received from node 1. This is reassembly lockup. Packets
A1 and B2 cannot get through since node 2 is in a store~and=-
forward lockup contairing packets of which none are destined

for node 3. Node 3 will therefore never complete its message-

reassembly.

ARPA solves this problem by not permitting any multipacket

" message onto the network until the destination IMP has

reserved reassembly storage. On receipt of the first packet
from a host a control message is sent to the destination node
requesting reassembly storage. VWhen an acknowledgement has
been received the IMP takes the remaining packets of the multi-
packet message from the host. This strategy will ensure that

message D in node 2 could be reassembled.

An incomplete message at node 3 could be discarded at tnis point,
since eventually a copy of the message would be retransmitted

from the source host. The source host could be informed of this

move,

Another solution would be to use overflow buffers thus ensur-
ing that one packet at least would reach the destination, The

packet to be sent could be selected randomlye. The receiving node

39

would acknowledge the packet if it was useful. If no acknow-

ledgement is received another packet would be tried.

One node could take charge in this situation and try to
sort things out. However, this solution would further increase
the traffic and the controller itself would be vulnerable

to failure.

The problem could be further eased by only allowing one message
between host pairs at any time. The acceptance of the message
by the destination host would be followed by a '"Ready for next
message." This solution would prevent the overloading of 2
node of host. OFf course, it is assumed that some users

would be transmitting messages rather thén many users trans-

mitting single packets coincidentallye.

Davies [35) suggested that congestion could be prevented

by placing a limit on the total number of packets in the net-
work. Since data-carrying packets must be created and destroyed,
the balance is kept by using empty packets. Thus the arrival

of a normal data-carrying packet at its destination would

result in its replacement in the network by an "empty' packete
Similarly; when data is ready to enter the network, an enpty
packet must be found to be replaced by a new data-carrying

packet.

This constant group of packets can, by analogy, be compared

to a gas composed of molecules in perpctual motion. Packets

Lo

will arrive and leave each node in the network at a roughly
constant rate, regardless of the data traffic. All packets

will eventually visit each node due to the randomness of the

motione.

In order to keep the empty packets moving around the network
some rule is needed. The rule should have a random element.
Therefore, in its simplest form, a destination node could be
chosen at random, When the empty packet arrives at the
specified destination address it will be used by any data
awaiting transmission. Should no data be waiting, a new
destination address would be chosen and the packet would

try elsewhere. When a data-carrying packet arrives at its
destination, it would clearly be sensible to give data
waiting et that node priority to use the empty packet rather
than sending it randomly back into the network. Further
efficiency could be gained by retaining a small store of

empty packets at each nodee.

Should any traffic be offered beyond its capacity, the net-
work would reject it until empties were crealed to resume

normal operation.

Although the Isarithmic Network is quite attractive it does
suffer from three serious problems:
1) Even though a rule exists for moving empty packets

around the network, local congestion could still occur

kA

due to the random element of distribution i.e. packets
could collect at one node.

2) Some of the empty packets are required for control
information thus reducing the effective number cf
usable packets.

3) It is as vulnerable as a central processor in a star
network. If a node failure occurred the network could

steadily gain or lose packets.

2.3.4 Routing [4,10,361

Good routing strategies will ensure that message delay in

the network is minimised. Message delay is the time taken

to send a message from source to destination., A good routing
strategy will also be adaptive to changing traffic levels

and changing network topology in the event of a failure.

Fach node applies some routing technique to decide the next
1ink that the packet must travel over. In a distributed
network the node will have to make a decision based on inform=-
ation it currently holds about the state of its neighbours,
together with local information regarding the state of buffers

and lines.

Perhaps the simplest strategy is fixed routing where packets
from host i to host j always take the same route. The poor
adaptability of fixed routing may be overcome by increasing

the route reliability.

L2

Random routing, which takes no account of the destination

tends to give long average delays although they are very

adaptive.

A simple strategy would be for each node handling a packet
to send it along the current estimate of the shortest rcute
to the deétination. It is not enough to base z strategy
solely on the local information such as internal queue
lengths. However, it is a simple matter for each node to
inform its neighbours of its state and from this all nodes

can compute the current shortest path.

Since routing information itself suffers from a time delay,
raw data such as current queue lengths are not enough to
accu;ately characterize traffic flow. Some sort cf averag-
ing procedure must be employed in order to effectively select
the shortest route and help to predict in advance whers a

possible traffic build-up could take place.

One scheme used on ARPA is to send packets along that line
with the mininmum estimated time delay to the destination.

The time delay information is updated every 0.5 seconds using
information freom the nodes' neighbours regarding minimum time
delays together with internal estimates of the delay to each
neighbour. Should the traffic flow increase heavily this
strategy may become inefiicient due to the fact that informa-

tion of gueuve lengths may change faster than the information

b3
can be distributed.

ARPA used a more intricate scheme to overcome the inefficiency
of the last algorithm during heavy traffic. The packets are
now routed down the path with the fewest nodes and which have
excess capacity. If that path becomes full then the one with

the next fewest nodes and excess capacity is chosen.

EPSS [36] used an Alternative-Routing strategy. A table is
accessed which gives the next path that must be taken. Should
this path be congested the second choice is tried and so on
until all choices are exhausted. Should there be no path,
failure routines are invoked. To determine routing the node
is restricted to the following informatioﬁ:

a) Packet destination derived from packet header.

b) The node from which the packet has just been received.
c) The current queue length for each route.

d) Which of the routes are the faster intercomputer routesg.
e) The packet source derived from the vacket header,

(b), (c) and (d) are used to determine whether the current

choice is satisfactorye.

This type of strategy is deterministic in that action is taken

on traffic information only when route quoues exceed a preset

threchold.

Figure 2.4t shows the relative merits of each of the strategies.

/\ ‘ BEST POSSIBLEo

RANDOM
ROUTING
(o]

INCREASING
ADAPTABILITY
0 QUEUE-LENGTH ROUTING

FIXED ROUTING o

ul

—~—
/

DECREASING AVERAGE PACKET DELAY

Figure 2.4 Comparison of different Routing Strategies

Two of the strategies have not been discusced. Queue-length
routing transmits packets on the route with the shortest queue,

regardless of packet destination. This gives very long delays

compared with fixed routinge.

Queue-Length-Plus~Bias is a compromise between the short average
delay of fixed routing and the adaptability of the last strategy.
The route selection is based on the evaluation of a function of
queue lengths and bias for each available route. The bias

terms are preset constants whose values import a gross traffice

flow pattern. An example of such a function,f, is

f[(vias term for route) - k(queue length for route)],

where k is a constant. The route selected is the one whose
function value has the largest numerical value. Under low
traffic conditions, the system reverts to a fixed route strategy,
but as traffic builds up, so the system adapts to equalise the

imbalance of route usage.
Eventually, as traffic levels increass, the re-routing of
packets can no longer prevent congestion, and the network

must reject traffic offered to it.

2.4 Host-Node Protocol

A number of questions need to be asked regarding the relation=-

suip of the host to it5 nodc. What tasks shall be performed

by each? What constraints will one place on the other? VWhat

45

L6
dependence shall the node have on its host?

The following tasks must be carried outs

1) Breaking up a long transaction into message blocks so
that the length of the message is within the networks cons-
traints (8000 bits on ARPA).

2) Formatting and code-converting the message blocks into
a standard format acceptable to the network.

3) Attaching a header to each message block giving address
and control information.

L) Attaching a trailer with error-checking information to
each message block.

5) Storing the unacknowledged messages and/or message blocks
for possible retransmission.

6) Reassenmbling receivéd message blocks into messages.

7) Breaking the message blocks into packets.

8) Preceding each packet with a header.

9) Adding a frailer to each packet.
10) Storing the unacknowledged packets for possible retransmiscsione.
11) Reassembling received packets into message blocks.

12) Controlling the input rate to avoid congestion.

On ARPA tasks 1-6 are carried out by the host while the remain-
ing functiouns are the responsibility of the ncde. ARPALL]

was guided by the following principles:

1) The node should functicn as a communication system

whose primary task is the reliable transfer of bits from

47

a source to a destination, Bit transmission should be suffice-
iently reliable and error-free to remove the need for special

precautions (such as stcrage for retransmission) on the part

of the host.

2) The node operation should be completely autonomous. Since
the node must function as a store-and-forward system, it must
not be dependent on its loecal host. The node must continue to
function irrespective of the correct functioning of the host.
So ‘the node must not depend on the host for buffer storage or
program reload. Also the host must not be able to change the

logical characteristics of the node.

The general philosophy of host programming adopted by maay
networks is that network features are extensions and additions
to the operating system and not changes to develop compatible
software [21], This is the principle of host autonomy. The
connection between a paié of processes appears as an I/0
device in each host. This respect for individuality ensures
that the unigque resources of the host are not only preserved
for local use but also for global use on the network. The
imposition of unnecessary commonality may simplify network

structure but would probably stifle irterest,

438

CHAPTER THREE

NETWORK PHILOSOPHY

3,1 Introduction

This chapter is concerned with the philosophy of the proposed
network which will be later simulated. After an introduction

to microprocessors, methods of organising microprocessors into

multicomputer and multiprocessor systems are discussede An
outline is given into ways of organising microprocessors to i

achieve better computer reliabilitye.

|

{

|

1
The architectureof the node centreson a multi-microprocessor i
system operating under amaster processor. The organisation

of the node together with the functions of the command and

slave processes are described.

The essence of a network is ite design philosophy, its perfor-
mance characteristics, and its cost of implementation and

operation. Unfortunately, there is no generally accepted

&finition of an 'bptimal" network or even of a "good" network,

although work has been done in this areal37,38). A network

designed to transmit large quantities of data during the

night might call for characteristics in structure and perfor-

mance far different from one servicing large numbere of users

who are exchanging messages only during business hours.

k9

The main functions of the node in a disfributed store-and-
forward packet~switching network are to establish a connec-
tion between hosts wishing to communicate, accept messages
or packets from hosts or other nodes, and to route these
successfully to other hosts or nodes. Since a general pur-

pose machine may not be cost effective in such a situation

a multi-microprocesser system is being investigated for use

as a network node.

The advantages of using suéh a system include the low rela=
tive cost of components, improved reliability achieved as |
a result of multi-processing and faster operational speed

due to para11e1 processing. Greater flexibility in constru-
ction is also gained by individually tailoring node-hardware

whilst little program change is required. This in turn

eases the problems of network expansion and upgrading of nodes.
The instruction set of a general purpose machine will not
allow the packet handling routines to be programmed as effic-
jently as they could be directly in microcode. The non=-
volatile nature of the storage used to store microcode will

ease system recovery after breakdown.

3.2 Microprocessors

Since 1971 when they first appeared on the market, microproces-

sors have evolved into fundamental system-building blocks.

3 W f3a13 Af Taow
vances madce in the field cf lar

semiconductor process technology have also resulted in signi-

ficantly improved circuit packing densities. RAM's contain-
ing 4k bits on a single chip are readil& available and 16k bits
chips are becoming available, The emergence of single-chip
peripheral interfaces will enable system designers to construct
complete computer systems with a handful of components at costs

which would have been considered impossible a decade agoe.

The replacement of hard wired systems by microprocessors will
bring the inherent advantages of store-program control which

include improved flexibility,reliability, ease of maintenance,
and lower cost. Multi-microprocessors, which provide distri-
buted processing, are a natural evolution of microprocessor-

based architecture. A distributed workload will improve

system throughput, increase reliability and add a further dimen-

sion of flexibility.

Microprocessors may be organised into multicomputer and multi-
processor systems. Figure 3.1 shows a multicomputer system
where it can be seen that several input streams are being
operated on and no integrated operating system exists. Each
processor 1is performing a dedicated task. . Interprocessor
communication is primarily at the data level. Ir more sophis-
ticated systems the data may take the form of commands to
initiate specific actions or responses from the other process-

ors. FEach processor can be regarded as having two I/0 ports:

one being associated wit

j.e.interprocessor communications. Multicomputer systems are

nh external activitys; the other internal

50

51

commonly used in larger systems where tasks are mostly
independent: main CPU performs number crunching while I/C

processors rapidly respond to I/0 requests.
1/0

proc A |

1/0 <;—} proc D < < == proc B [€—=>1/0

N

proc C %

i

. I/0
Figure 3.1 Multicomputer System

Figure 3.2 shows a multiprocessor system where several process-

ors share tusks from a single input stream or work load. A

single integrated operating system allocates hardware resources
as and when required. Multiprocessors would be used in situa-
tions where high reliability is required. This would be achie-

ved through a fully redundant system or through system recon-

figuration when a fault occurs in one of the processorse Other

features of a multiprocessor system would be shared main menory;

I/0 channels and controllers would be accessible by each proces-

sor as required. In addition each processor may have its own

ccess to certain resources.

RAM and may have privileged a

1/0 1/0 1/0 1/0 »2

&I

MASTER
PROCESSOR
ALLOCATING TASKS

AP A AP B fup C

Figure 3.2 Multiprocessor System
b

There are many possible multiprocessor architectures from a
master/slave to a ring structure. Figure 3.3 shows a master/
master configuration where every processor is of equal status.

'"his organisation is generally restricted to large computer

networks such as ARPA and does not readily lend itself to

microprocessor application,

proc A
)

proc D = proc B !

Figure 3.3 Master-Master Multiprocessor Organisation

However, the more common master/slave organisation shown in

Figure 3.4 lends jtself very well to microprocessor applica-

tions. All interprocessor communication goes through the

master processOre This organisation enables resource conflicts

53

to be resolved by only allowing a particular processor certain

resources at any tine.

master :

proc §

\

slave slave slave ;
roc proc proc f

Figure 3.4 Master/slave Multiprocessor Organisation

Finally, there is a ring structure available as shown in
Figure 3.5. This has many disadvantages ranging from a fault-
sensitive information bus tc the problem of congestion on the

bus if it is also used by the processors for their own processing.

Information bus

proc proc

Figure 3.5 Ring Multiprocessor System

The master/slave system describted is an hierarchy in which slave

processors communicate with one master. Polled or interrupt

driven systems tend to use radial buses shown in Figure 3.6., g

54

Master k\

Slave Slave Slave i
Figure 3.6 Radial bus ;
I/0 Memory Memory

Channel Module Module

I/0 Proc Proc
Channel

Figure 3.7 Time shared/common bus system = single bus

I/0 M M M

e/

1/0 P)3

Figure 3.8 Multiple time-shared/common bus system

55

otherwise a common bus is used. The common bus may either be

a unibus shown in Figure 3.7 or a multiple bus as shown in

Figure 3.8. Such systems emphasise high information transfer.

The weakness of the radial bus lies in all processor and resources

being connected to the master, which becomes the weak point of

the system.

The time-shared or common bus system is one of the simpler and
cheaper organisations to implement. Unlike the radial system
there are no continuous connections between functional unitse
Time-sharing or multiplexing techniques are used to enable

data to flow between different units. Since there is only

one path for all transferss delays will be greater than in the
multibus system. Again a single bus also weakens the reliabi=
1lity of the system. However, this organisation is flexible

and easy to add to or remove modules. The modules are connected
to the bus in parallel. The bus may be a bit, byte or word

jn width but the latter simplifies the control functions

required.

With multibus architecture,which 1is essentially a crossbar
system, each unit of information must be accompanied by the
address of the unit for which it 1is destined. This organi-

sation is much faster since more transfers can take place per

time unite.

Distributed processing raises the question of memory designe

It is usually advantageous that each processor has some loceal

56

memory but it is debatable how much éhared memory should
exist in highly reliable systems. As the number of proces-
sing modules increases so too must the contention problems.
Thus if a shared memory is to be used,access to it by indivi-

dual processors must be restricted to a minimum. This would

make local RAM'S necessarye.

Shared memory is primarily required for interprocessor commu-
nication i.e. to act as a message centre where each processor

can leave messages for other processors and can pick up messages

left for it.

3,3 System Reliability [39,40,41,42]

There are two general methods of reliable computing: parallel
processing systems and load sharing systems. The former are
fault tolerant using redundancy and maintain the active
structure of the system. The latter empisy non-redundant
fajil-soft methods which '"gracefully degrade" the performance

of the system.

Avi;ienis L40) defined an operational fault as:
Ny deviation of one or more logic variables in the computer

hardware from their design-specified values.”

Hardware faults may be of one of three types:
(1) '"solid'" component failure.
(2) ‘“intermittent! component malfunction.

(3) externally caused interference with the operation of

the computer.

One of the mentioned faults will cause the program to be
incorrectly executed or it may result in the program waiting

for say a memory transfer that cannot take place.

Faults may be classified into three categories:

(1) Duration: transient (intermittent) or permanent.

(2) Extent: local (independent) or distributed (related
j.e. the whole system will go down. The fault may be clock
failure, power supply, data bus etc)e.

(3) Value: determinate ("stuck'") or indeterminate (variable).

There are two types of fault-tolerant systems available: static
or dynamic recovery. Static techniques rely on redundancy to
enaﬁle single faults to be masked out by logic associated with
the same function (this method is also called masking redun-
dancy and massive redundancy). The redundancy may be provi=-
ded in three forms:

(1) additional hardware (hardware redundancy)

(2) additional programs (software redundancy)

(3) repetition of operations (time redpndancy).

An example of additional hardware redundancy is called triple
modular redundancy whereby each module is triplicated and a

vote taken at the output of the module. Hopkins and Smith

describe such a systen 2l.

57

Static redundancy systems are simple to design, permit
instantaneous fault isolation, and are.simple to operate
i.e. the operating system does not need to know about the
fault masking. Against these advantages, stétic systems are
very expensive, do not report internal failures and are very

limited in the degree to which overall system reliability is

increased.

The second technique of fault tolerant computing is dynamic
redundancy (also called selective redundancy or stand-by
sparing), where standby unit or even systems are provided to

replace faulty unitse.

Failures must be detected with this technique and explicit
actioﬁ is required to remove the faulty unit from the system
and replace it with a working unit. This replacement is auto-
matic in more sophisticated systems. Reliable computing will

thus continue in spite of the fact that faults may existe.

The advantages of dynamic redundancy over static redundancy

are that they are less expensive and more effective in increas-
ing systen reliability. Against these advantages are the facts
that dynamic systems are more difficult to design and that they

are slower since time is required to detect and replace the

faulty unite.

With the fail safe approach it is assumed that performance

58

59

degradation would be acceptable. A highly modular structure
is used with a multiplicity of all critical units so that the
loss of one or more of these units can be tolerated. Large

cost savings may be achieved with this tecﬁnique given that

some degradation is acceptable.

Borgerson [41) stated that the folléwing characteristics
were necessary for graceful degradation:

(1) & modular architecture with a multiplicity of each
functional unit,

(2) The ability to rapidly detect failures and to identify
the faulty unit.

(3) The ability to isolate the faulty unit.

(4) The ability of a system to reconfigure itself so that it !

can run without the faulty unit.

The fail soft approach was predominantly used in the 1950's and
1960's in both hardware and software. In recent years however
the fault tolerant approach is being more widely used in hard-
ware design. The change has come about with the decreasing
costs of hardware and the sophistication of current technologye.

Combinations of these techniques are also used. [42),

If no redundancy is to be used then a multi-microprocessor
system would be needed to provide the desired characteristics.

The essential advantage of this system would be load-sharing

i.e. 811 the processors would be participating in the total

60

work load. On the detection of a fault; the faulty prccessor
would be removed from service and the work load would be redis-
tributed among the remaining processors. Memory, if present,
must also be distributed amongst several units. System expan-
sion is also easier and cheaper should the work load increasee.
Fail soft systems can be expanded using just one processor
whereas the static redundancy system using triple voting

would require the additicn of three processors.

3,4 Network Design

Figure 3.9 show schematically the basic layout of the
envisaged network. Since the network will be local to the
ASTON University campus the number of nodes required will
be small and hence it would be justifiable and economical
to interconnect all the nodes. The fully connected network
ensures reliability since an alternative line always exists
in the event of a link failure and reduces the amount of
buffering required. For simplicity, it is assumed that
transmission lirnes are unidirectional so that any two nodes
must be connected by at least one pair of lines, and that
they are capable of transmitting at rates up to 10 megabits
per second. It can be seen from Figure 3.9 that no terminél
is directly connected to a node. It is assumed that a micro-
processbr host will be designed to interconnect the terminal
to the network. The microprocessor host would provide basic

editing facilities to enable more economic use of the network.

Figure 3.10 shows the basic node architecture. Fach node will
comprise of at least 2 processors (for "fail-soft' capability),
a number of memory modules each capable of storing one packet
of information, line buffers of one packet capacity for node/
node and node/host communication, and a limited amount of
memory for control purposes which is commonly available to all

the processors but distinct from the packet storage memory.

A multibus, essentially a cross-bar bus system, is used to

connect buffers, packet memory and processors. The multibus

61

N
\O

STYNIHYIL
4

ISOH
av

AVG
()
=
JAON
A
Ll
w3
gxeyynq.
q,7]\a/C

IN0Ae] XAOMION O14WIS 6°% eanITY

ISoH 1S0H
< .
Lw &,
A X%
SaoN
mm
) AP
2 10
A >) g
i vd 7
g = IAON =
4 o]fa/L
i
Y/

LSOH

STYNIWYEL -

N

LSOH
a7

is organised in such a way that each processor can have a
source and a destination for its data independently of any
other processor. 1In such a way proceséors are able to trans-
fer data from an input buffer to memory or from memory to an
output buffer. The data path defining source and destination

would be set up by the command processor which would make the

appropriate settings in the multibus control registerse.

Although all processors will be controlled by identical micro-
code, at any given time one processor will be in command and
respcnsible for assigning packet handling tasks to the slave
processors, maintaining status and control information, and con=-
trolling use of the multibus by exclusive access to the multibus
control registers. To ensure that packet wait time and slave
processor idle time are minimised the command processor (CP)
will ge primarily concerned with the control process. However
the command processor should also be able to perform packet

handling routines.

The processor in command is determined by the contents of a
status register which is initially set at startup with the
identification of the first logical processor. The status
register controls access to the multibus control registers

and routes interrupts from slave processors to the command

Processore

Interprocessor communication is limited to a command/slave

63

6L

SHYYDO¥Yd SSADOY¥d
QEAODOYDIN
J80LS

2aN3093TYoAy opoN otSed OL°¢ 2ans T,

Wo¥

F\-

YA LSTDEY
TONINOD
SNgIITNd

A)

\Y

XEOHIRH
TOYINOD

D...l....mmommmoomm...I0.0..

Ro¥

syaLIng o/1
NOILVOTINAWWOD
qON
DNIYNOIHDIAN

SAGILTAN

~ s¥EJgang o/r
NOIIVOINQKHOD
ISOH TYDQT

P K N I

l....r...wmozmz

65

dialogue, which is initiated by an interrupt from the slave
processor. Upon completion of a rou£ine the slave will inter-
rupt the command processor which then has to allocate appro-
priate tasks. The provision of a set of ﬁnique‘locations in
the control memory for each processor will enable the command
processor to specify the entry poipt of the new routing to

the slave processor. No other information needs to be passed
to the slave since the memory module and buffers to be used
are determined by the multibus control registers and the slave

requires no knowledge of these.

To indicate completion of a routing the slave inserts a unique
bit pattern in its control memory location and interrupts the
command processor, which determinesthe source of the interrupt
by ;xamining the control memory. The slave would periodically
check its control memory location.for the start address of a

new task. If the command processor makes no attempt to service
the slave and change the deposited bit pattern the slave assumes
that a malfunction has occurred possibly of the cornmand proc-

essor and will attempt to carry out a diagnostic check.

The slave attempts to gain . control of the command process by
resetting the status register. Since more than one processor

may be in contention for access to the status register, the

V]ogically nearest' processor is given control.

3,5 Node functions

In order to satisfy the basic design aim of simplicity and

66

low cost the node functions must be kept to the bare minimum,
This is further necessitated by the limited amount of ROM that
will be available due to cost.

The node's operational soft-

ware will have to be micro-coded into approximately 256-512

words.

It was decided to restrict the number of packets in the network
by permitting each host to have one packet oﬁ the network at any
time. Kleinrock [12] observed that the vast majority of messages
on ARPA were single-packet messages and questioned the wisdon

of providing the sophisticated mechanisms for handling multi-

packet messagese.

The hosts are given the responsibility for breaking up messages
into packets, formatting the packets, sequencing and reconstruct- ;
ing messages = although the last two functions are automatic-

ally taken care of by only permitting one packet per host on.

the system at any time. This approach avoids reassembly lockup,

avoids reserving memory for message reconstruction and simplifies

routing. Routing simplification arises by virtue of the fact

that the network is fully connected. However, should a node,

line or buffer develop a fault and a direct link is not

available, a simple random routing algorithm would suffice to

transmit the packet to its destination via an alternative

route, This approach removes & lot of traffic from thé network

that would have to be generated in the case of providing a

sophisticated routing algorithm needing frequent queue/status

information from other nodes.

’The Uﬁéi‘,"foS!TYOFASTON7

67

The node operation can be split into several distinct processes

which provide the basic unit of work for the slave processors.

The four processes are:

1) Scanning the input buffers from local hosts.

2) Scanning the input buffers from neighbouring nodes.

3) Servicing the node/host output buffers.

L) Servicing the node/node output buffers.

Processes (1) and (2) are basically similar as are processes (3)
and (4). Carrying out the first task requires checking the dest-
ination address of the packet to ensure that th; specified host
is in fact connected to the network. Once a packet has entered
the network the malfunction of the destination host will be
detected either by a control packet broadcasting the fact or by
the failure of the source £o receive a 'send next packet' after

a pre-set time.

Incoming packets.will be one of three types: information packets
needing an acknowledgement, acknowledgements which are not re-
transmitted, and control packets which require acknowledgcacnt

and some additional action on the part of the command processs -

After being error checked the incoming packet header is examined
to determine the packet type. The packet is then placed into

the memory module reserved for the input process and tagged to

indicate 'for the attention of the command process' in the case

of a control packet, 'message packet', or 'memory free'in the

case of an acknowledgement.

68

The last type of packet requires the output buffer holding the
acknowledged packet to be released. To avoid storing the ack-
nowledgement for examination by another process, the input buffer
scan must carry out this action itself. This may be achieved
explicitly by specifying in the packet header the buffer through
which the packet was transmitted. Alternatively, at system
start—upvthe command process can derive a table of buffer pair-

ings by sending appropriate control packets, thus allowing the

input buffer scan to determiné the buffer to be freed.

Prior to a command processor assigning a task it must establish
a data path for the slave e.g. input buffer to memory, or memory
to output buffer. .The input scan could be programmed to deter-
mine that the packet being currently nandled was not destined
for its node and that it néeds to be output. Being the input
scan the data path that would be established is the input buffer
to memory. In order to carry out the task efficiently, the
packet needs to Be placed in an output buffer. This requires

a data path from the input buffer to the relevant output buffer.
This necessitates the slave interrupting the command processor
requesting the desired data path. This would greatly increase
the microcode although it would be more efficient than transf-
erring the packet to memory for another process to handle,
However, since there is no guarantee that the desired data

path will be available it seems more logical to bring the packet

into memory.

Servicing output buffers requires packets to be transferred

from memory to the appropriate output buffer and transmission to be

initiated. Since the buffer freeing scheme mentioned earlier
requires the buffer number to be included in the header, it is

necessary for the output process to generate the packet check

bitse

After transferring a packet to the output buffer, the memory
module is set free by amending appropriate control structures.
An attempt to transmit a packet over a particular line

several times without receiving an acknowledgement would result
in the packet being brought back into memory or it could be
transferred directly to another output buffer and another

‘route tried.

Acknowledgement generation may be regarded ae a separate task
for the reasons mentioned previously regarding the need for

an interrupt requesting the required data pathe.

The function of the command process is to manage the operation
of the other processes. Only the command process may allocate
resources, although other processes may release resourcCes
allocated to them. There are two methods in which the command
process may assign tasks: searching and queueing. By cearching
for tasks the control process is simplified bearing in mind
that the search would be very simple to carry out. It may seem
more efficient to provide a gqueue for tasks but problems may

n determinig the maximum number of tasks which the queue

arise i

may accommodates

69

Although the primary function of the command processor is to init-
iate packet handling routines, it must also be able to carry out
checks on memory, buffers and lines. Given the restriction
imposed on one way command-slave dialogue, a corrupt processor
cannot be stopped until it interrupts the command processor. How-
ever, the corrupt processor may be isolated by use of the multiuus
registers. Should an assigned memory module or buffer cease to
function correctly, the slave would be unable to carry out its
task and may enter a loop awaiting completion of a memory or
buffer transfer. After a corrupt processor has interrupted

the command processor, diagnostic tests would be initiated on the
processor and all the hardware assigned to it. Alternatively

the slave could keep a table of the task hardware resources acc-

essed and pass the information back to the conriand Processor.

Buffers and lines are automatically checked every time a packet

is successfully transfered over -a particular link. However, a
table of last transmission needs to be kept and if necessary
dummy packets sent every second, say, as idle traffic to ensure
thai the line/buffers are in fact still working correctly. After,
say, three attempts at sending out a packet, the line/buffers are
ossumed down. Periodically, the line would be retested and

after, say, 25 successful consecutive transmissions the line/

buffers would be assumed to be clear of the fault.

Memory, if not used for a certain period, cculd be tested with

a random pattern. Failure of the test would involve the memory

70

module being only temporarily discarded, since the fault could

be intermittent/transient. Further checks would be carried out

periodically and if the check is satisfied the memory module

would be reinstated.

Both initial setup and recovery are similar operations requiring
the creation of a table/list of resources available - processors,
memory, buffers and the state of neighbouring nodes and hosts on
the retwork. The latter can be achieved by polling hosts and
nodes to check their state., Polling of the nodes and hosts

will also determine buffer pairings.

71

CHAPTER 4

NETWORK MODEL AND SIMULATION PROGRAM

L,1 Introduction

This chapter describes the overall structure of the network
model and its implementation as a computer program. The major
modelling effort is concentrated on the study of the behaviour

of messages queueing for access to the networke

The model accommodates an arbitrary number of nodes and hests

for a symmetric traffic pattern i.e, the traffic destinations

are equally distributed. ¥or simplicity, the message arrival
rates at all hosts are stationary and uniformly distributed.

The overall arrival rate is assumed to be Poisson with a fraction
/ﬁb of short messages and the remaining (1 -};) messages being

longer multi-packet messages.

The latter part of the chapter is concerned with the implementa-
tion of the model as a computer programe A description is given
of the 'Top Hat' method of generating exponential random numbers

which is used in the simulation. The chapter finally discusses

the output of the simulation progranme.

L.,2 Level of Simulation

A decision has to be made regarding the level of simulation

required. It is clear that the mcre compiicated the nodsl

longer it will take to execute the run. Therefore, a compromise

has to be made between the complexity of the model and the time

that the model will take to run., This involves .developing the

least complicated model to obtain the required results.

There are a wide range of simulation levels which may be adop-
ted with computer networks ranging from logic elements to nodes.
The limiting factors of the network are at the level of line
speeds, memory/processor speeds, I/0 buffers etc. Several
simplifications were carried out regarding the network philos-

ophy discussed in the previous chapter.

it was stated that‘a control processor controlled all resources
and task allocation. In order to cut down the execution time

of the model it is assumed that there is no-master processor,
only slave processors. This can be justified con the basis that
the controlling processor task will be fairly small, However, in
order to simulate the control process of assigning resources,
tasks and data paths would place a great burden on the model.

A queue of free proceseors is maintained from which the first

processor is assigned whenever a task needs servicing.

Another simplification was carried out regarding the data paths.
In the assignment of tasks the slave processor also required a
data path, say, node input buffer -» memory module. In the model
when a processor takes on & task, it has access to all resources,

assuming that all these data paths exist. It is not assumed

v

73

74

that memory is free. In this way all input buffers are handled

by one routine and the simulation of interrupts to the control
processor is avoided. When a processor scans all input buffers

and none needs servicing then the processor remains in the free

list since no work has been done.

Acknowledgements are not handled as a separate pfocess. Suppose
as before that a message packet is transferred from an input buffer
to memory, an acknowledgement is generated and placed in the

control packet queue by the input buffer scan routine.

Line propogation time delays for ARPA,[4,10] are given as
approximately 10 /&secs per mile giving a figure of 20 msecs
for a 3000 mile channel at 50 kilobits/sec. On campus the
distances would be less than 7+ mile and line speeds would be

operating at speeds up to 10 megabits/sec. Line propogation

delays are therefore considered negligable and ignored.

4,3 Time mechanism

The method used in the computer model to move the system being
simulated through time is of great importance. There are two
general types of methods available to move the model through

time: fixed-time increment methods and variable-time increment

methods,.

Fixed time-increment methods need the computer to simulate a

"elock" which records the instant of real time that has been

reached in the system to maintain the correct time sequence

of events. The time indicated by the "clock" is referfed to

as "clock time." The clock is updated in uniform discrete

intervals of time, e.g. hours, minutes, seconds etc. The system
is then scanned or examined every unit of clock time to deter-

mine whether there are any events due to occur at that parti-

cular clock time,

With variable-time increment the event tables are scanned for
the next event and the clock time is then advanced by the
amount necessary to cause the next most imminent event to take
place. This embles events to occur whenever desired in clock
time because time is advanced by variable increments rather

than being divided into a sequence of uniform increments.

Lfter the execution of all events that occur at the current

time indicated by the clock, the next most significant event

is determined and the system moves forward again. The interven-
ing time period when no changes occur in the system are skipped

overe.

Systems where the events can be expected to occur in a regular
manner would be computationally more efficient with fixed time
jncrements. Fixed time increments are also useful in the study
of systems whose significant events are not well known e.g. large

control systems, or the initial phase of system study.

Variable time methods lend themselves more efficiently to systems

75

where events occur unevenly in time. The size of the unit

in which clock time is measured does not affect the computa-

tional speed of the simulation. Furthermore, variable time

increment methods save computer running time when the simula-

tion is static for periods of clock time.

The simulation of the network is likely to be a long one and

any saving that could be made would be worthwhile; ariable

time increments were therefore chosen.

L, 4% The Arrival Process

Since message arrivals cannot be deterministically predicted

it is necessary to define the random arrivals by means of some
probability distribution. In the network the arrival process

is characterised by the way hosts generate messages. Users are
independent of one another and so message arrivals are also
independently distributed. If the interarrival times are expon-
entially distributed, it can be shown that the number of arrivals
occurring in a fixed period of time can be described by the
Poisson distribution. The Poisson distribution has been used

by many researchers including Kleinrock [.30,31,32} to describe

network message arrivals.

To obtain a Poisson distribution with mean A , advantage is
taken of the relationship between the exponential and Poisson

distributions. If three conditions are satisfied[;44] + namely:

76

a) The number of arrivals in a given time period are indepen-
dent of one another,

b) The probability of an arrival in the time interval t to t + At
is approximately XAt for all values of te.

c¢) The probability that more than one event takes place in the

time interval t to t + At 0 as At -0

then it can be shown that the density function of the interarrival
times is

£(£) =ne” N

and the probability of n arrivals occurring in time t is given by

(At)le” ¢

P (t) =
n
n!
The number of arrivals cccurring in time t may be obtained by
generating expcnentially the time intervals t1,t2,t3,..... with
mean 1/A . These intervals are. summed until the sum exceeds ;X

(the Poisson Distribution mean). n, the number of arrivals is

then defined by

n n+1
St & NX = t, (= 0,1424cc00c)
iS5 i =0 1

with t _ generated from
i

ti = - log ri

r . being generated from a uniform random distribution.
i

However, since the model will be moved forward by variable time

77

78

increments this method is not really convenient. It would be

better to know when the next event occurs. Given the mean inter-

arrival time 1/A this may be obtained from

t

= 1
next 08 Ty

1
A
There was no raw data for projected host-host traffic, therefore

the network is designed under the assumption of equal traffic

between all hosts.

4,5 Hyper-Exponentially Distributed Message Lengths

It was assumed for this investigation that the message lengths
are Hyper~exponentially distributed since it allowed better
control of the message length and took better account of shorter
packets than a straight exponential in much the same manner as
Coffman discussed for interarrival times for TSS[45]. The
Hyper-exponential distibution is obtained by mixing together

two distributions given by:3

£(t) = 6:/113-%”t + (1-6):/&2.ef/*1t

where
£(t) is the probability density function of the hyper-exponential

distribution. & is the proportion of short packets with a mean

of/;1 and (1-6) is the proportion of long packets with mean/iz.

The mean value of the resultant distribution is given by

f‘” Cp.e(t).dt

79

=f t. {6/&,e"/a't+ (1-6) e M2t 1 | at

/ t.e./a,.e'/l*'t,a t,(q-é),/aze'/&z’c . dt

0 :

L, [;e"u't }oo + ® L at
../LL|t R . Jey

/uz. "

"

]

Sl }Lz

i}
0\
e
+
T
o
Lﬁ

Therefore, the mean of the hyper-exponential distribution is
a linear combination of the two respective means/A,l,/‘LZ in the

ratios 6 ,(1-6) respectively.

80

L,6 Simulation Model

Packet switching communications systems have two fundamental
goals in processing data - low delay and high throughput. The
major modelling effort is concentrated on the study of the
behaviour of messages queueirg for access to the network. This
seems a reasonable approach since in a packet switching network,
messages experience delays as they are transmitted through the
network and thus the queue lengths and speed with which messages

are throughput are a reasonable performance measurement,

Basically, a set of fixed nodes is assumed located at dispersed
locations on campus. Certain nodes are interconnected by transe
mission lines. Together the nodes and lines constitute a parti-
cular network. Connected to each node are ﬁosts which require

the use of the network.

Each node and host is assigned a unique identification number,
lines being identified by the nodes and hosts that they link
together. This arbitrary configuraticn of an N~node network is

represented by several lists.

NET indicates the nodes each node connects tog NETB indicates
the input buffer connected at the other end of the line. NPLRij
holds the time required to transmit a message packet from nodei
to node.. Similarly NCLR heolds the time required to transmit

a control packet. HPLR and HCLR are the equivelent times required

to transmit packets between nodes and local hosts.

81

Each node has a set of p processors and p+1 memory units
for packet storage. Processor speed and memory access time
are matched, ZEach memory unit is capable of holding as many

packets as specified by the initial conditioﬁs.

The principle of store-and-forward should make the host-host
link over several nodes invisible to the user. GQueues may
however build up in the network. This condition is accommodated
by two queues, NBUFF and CBUFF for message packets and control

packets respectively., Figure 4.1 shows their use.

0/P queue to 0/P queue to
local hosts neighbouring
nodeg
HOSTS NBUFF NODES

Figure 4,7 Node queue handling

Together with the packet information it is necessary to know
which memory the packets are stored in. This is achieved by
vector NMEM which has a 1-1 correspondence io NBUFF. Control

packets are kept in a queue and not in a memory unite

Once a packet has been generated the information about it is
held in array FPKI. The time a message was generated and

placed ready for eatry to the network is held in vector TFIN.

82

The information required for each packet is as follows:

1) Source Address
2) Destination Address
2) Type of Packet

a) O - nessage

b) 1 - local control packet, Node~Node Acknowledgement

¢) 2 =~ 1local control packet, Node~Host Acknowledgement
ad) - 'send next packet!
e) 4 <+ 1local control packet, Host-Node Acknowledgement

L) Packet Sequence Number

5) Number of Packets in a messagee.
Thus, when packetsare moved from buffer to buffer, the only
information that needs to be moved is the packet subscript

pointing to the packet location in PKT.

From the information in TPIN it is possible to calculate

packet and message delays experienced on the network.

L,7 Processor Busy Time

The node computer used in ARPA has a 16-bit word length anda
0.96 l[gsecond memory cycle time[#] o Kleinrock [10_] ¢ in his

analytical studies of the ARPA network assumed node process-
ing time for all packets to be constant and quoted an opera-

tional figure of 0435 mseconds per packet. INcQuillan et al

f 9] guoted a figure of 550-700 cycle times per packet. It

seems reasonable to tie the processor busy time to the memory
access time since this will be the limiting factor in transfer-

ring a packet to/from memory and from/to a-buffer. Given a message

83

packet length of 1024 bits and a 1‘Asec memory cycle time, this gives

a figure of 128Asecs to transfer the 128 x 8bit bytes of a packet.
This figure is doubled to take into account other housekeeping
operationé such as updating tables etc. In normal operation a
message packet is transferred from I/P buffer to memory, then

from memory to O/P buffer. This would give a figure of 512/Asecs
for a node to handle a packet, given that a processor was available
to supervise the operation when required. This brings the process-
ing time close to the figures quoted by ARPA. The effects of the
multi~processor node being investigated are hidden since the ARPA's
IMP is 16 bits therefore a packet may be retrieved from memory

twice ag fast.

4,8 Model Routines

It can be seen ffom Figure 4.2 that the routines are handled
serially and that four routines have been marked with an '*',
These four routines can only be carried out under processus
control. If no processor is available in the node's free list
then the task for that node is not carried out. These four
tasks are:

1) Servicing Host Output Buffers

2) Servicing Node Output Buffers

3) Updating buffers for transmitting packets to local hostse.

4) Updating buffers for transmitting packets to neighbouring

nodese.

84

.,
|
!

Initialise network parameters
~

=M,

Get next evengl

1
|

\A
Release memories/processors finished with
< Any memory/processor failure \

v
No |

3
-ﬂdenerate,messages

Yes
Remove memory/

processor from
node

Toss

HIB

initial path

.
HOB carried out once

v

-~ |IBS
.
% | UHI

o st o e o | e o o e e =

| UNO

. e ——— ——— — — ot Sy b Sttt By b, it Aot

po———

~ — - - o~ ~---~

L

Yes

Outpﬁt current system state data

A

LEL—‘_<:End of simulation)(

Yes

Print out cumulative
statistics/tables

)

End

Figure 4.2 Functional units of Simulation Model

Figure k4.3 illustrates the function of each of these four

tasks together with three other tasks that are carried out
automatically e.g. once a buffer has been filled by a proces-
sor it will empty its data onto the link without further super-
vision. The three automatic tasks are:

1) Transferring packets from a node output buffer to a node
input buffer.

2) Transferring packets from a node host input buffer to the
ﬁost.

3) Updating the host output buffers to bring packets into the

networke.

The initialisation of the network is carried out by DINFUT

which reads in the network architecture parameters together with
the parameters describing the message arrival process. The
dotted path shows how the model starts itself. Messages are
generated and routine Update Host Output buffers is called to
place packets in the host outpuf buffer ready to enter the

network.

The simulation is table driven and a set of tables haeg to be scanned

to determine when the next event will occure. Each of the seven
tasks is carried out for each node in turn. Prior to a decision
being made as to whether an event has tzken place, SMALL is
subtracted from non-zero event times. Buffers, memory etc. will
be moved forward to the next event and at the appropriate time

will be freed. Consider ihe routine that services the node input

85

86

I3F1FInq
andano

9PON

TOPON UOTIETNUTS 943 JO S3FU]] [EUOTFoUng ¢ % oansid

91307
ndut

apoy

i

I933I0q
jndut

SpoN

A

S9I

ONQl

opON

sd0

I81Inq
andano
9poN

I9330q
jndut

3soy

IHn

gOH

I913I0nq
sndjno

3}soy

gIH

\' 2

9PON

OHn

87

buffers; after servicing a buffer, the routine remains in node,
i

and services the remaining input buffers before moving to the

next task.

For each message packet or 'send next packet' the task must first
determine whether sufficient buffer space exists in the node.

If there is a shortage the packet remains in the buffer until
space becomes available. Control packets always take priority
ovef message packets for output. In this way freeing of buffers
is achieved with the minimum time delay. The destination of 5
packet is always inspected to determine whether the packet is

at the destination node in which case it goes into the qucue

for output to the local host; or whether it goes into the queue
for fufther output to another node. Control packets are handled
in a gimilar manner but at the destination node action is taken

immediately on receipte.

Most of the routines are functionally described in the text to
a sufficient degree to allow fairly easy reading of the flow-
charts. Figure L.4t shows the vrocess’ of generating messages.
When MESS becomes zero a message arrival is assumed to have
taken place. At this moment in time however, more than one
host may be generating a message. This is taken into account
by sampling from aﬁ exponential distribution to give IlIN hosts
(the mean having been specified in the initialisation of the
run). The time of the next message is also exponentially
generated. All the unique host identification numbers are

placed in a vector which is then sampled using a uniform

Generate NN hosts
exponentially which
have a message to
transmit

~

Generate exponentially
time next message(s)
will arrive

Service Nodes

Set up a vector
containing all hosts
nunbers 1y..eyNH

M

L

Pick randomly
one of hosts 1=NH

i)

Record message
by incrementing
host message queue by 1

_l

.Remove host from
queue

[NN=NN=1
NH=NH=-1

Service Nodes

Figure 4.4 Generation of Messages

88

distributions A message is added to the specified host's
queue and that host removed from the generation queue. The

remaining hosts are sampled again in the same fashion until

NN messages are generated.

The hostcoutput buffer update rcutine scans all the hosts to
bring packets into the host buffers to enter the network. As
before retransmission packets are handled first, followed by
control packets then message packets. When dealing with message
packets, if there are none in the queue ready for output, the
ﬁessage queue is checked. Should there be any new messages then
packet statistics are generated after which the first packet in
the sequence is placed on the queue and the event table set for
the time required to transmit the packet. Figure 4.5 shows the

flowchart of the routine.

The host output buffer routine is concerned with transferring
packets from the hecst output buffer to node memory in the case
of message packets or processing control packets. However, this
routine may only be carried out if there is a free processor in
nodei, the current node. For an acknowledgement to a previous
node = host transfer the acknowledgement details are recorded,
the output buffer cleared, the node host input retransmission
buffer cleared of the message packet being acknowledged and the
retransmission clock reset. The processor is set busy and the
next buffer handled. A tcend next packet' has to be decoded to
determine whether it is destined for another node or a local

host On this basis it is placed either in the CBUFF queue for

89

move host

output vbuffer and
retransmission event
tables for host (ij)

to next event

W,
ol

has last event

from this buffer

been completed

Yes W

any control
packets for
transmission

Yes

1

Place control
pkt in output
buffer

A

remove packet
from output
queue

T

>

Set output
buffer event
table to time
required to
transmit pkt
to Nodei

{

next host

Figure 4.5

No
next host

Has ack been

received for last
mess packet along

this line

No
4

transfer packet
from retrans-
mission buffer
to host output.
buffer

L

set retransmis-
sion event:
table (ij)

Yes,

has last mess
been completely
transmitted

No

Any more

No fnext
mess for

host

A
Generate new
message with
random message
destination

L

generate randomn
number RAND

—
generate
]
long

packet

generate
short packet

i sle

PR

set output buifer
event table to
time required to
transmit packet
to nodei

L

next host

Update host output buffer - node(j), host (i}

PAL

output to another node or placed in the queue for output to

a local host. The processor is set busy for a further period

and the next buffer handled. As before the output buffer is

cleared. If a message packet is received, a free memory unit

has to be found in which to store it If no memory unit is
free the buffer retains the packet until a memory unit becomes
free. Should a memory unit be free, the node decides from the
header information whether the packet is at the destination
node or not. The packet is placed in the NBUFF queue either
to be sent to another node or for transmission to a local hoste.
The memorv unit is set busy and the processor set for a further

period. The néxt buffer is serviced after an acknowvledgement

has been generated. Figure 4.6 shows this process.

Updating the node output buffers involves bringing packets into

the node output buffers>for transmission to other nodes and

requires proceésor contr&l. For each retransmission buffer
containing a message packet, the retransmission clock is checked.

If retransmission is required the ocutput buffer event table and
clock are set. Should any buffers not be in the process of tran-
smission the output queues are searched for control packets which
require a particular buffer for output. Finally, should any buffers
be empty and there be no control packets to transmit, message
packets are searched for in the node output queue (NBUFF). When

a packet is found a check is carried out on the memory module
storjing it. If the memory is free, the packet is transferred to
the buffer ; then the memory is set busy as is the processor.

Should there be no packels requiring transmission directly to

92

Any free processors No flove node (1) host :
<:in Node (i)? output buffer event next node

Yes

tables forward to
next event and try
again when a proces-

Move buffer (j) to
next event

sor free

4

Has last event frdﬁ_; No

this buffer been
completed

/

Yes

PR

Any vpackets in | Next host output buffer
Host O/P buffer (J)

Yes

W7

<Zés packet a node Is control packet Yes |Try again when
» host ac queue full empty

Yes

Add packet details
to monitor

No
Is pkt a se“d No handle full
next packet' length pkt
Yos &) (message)

’

Clear retransmissi
buffer for this ho

- No
<:I§ pkt at destina- Put packet into
tion node

node output
buffer queue for

on

st
Yes

4 transmission to
Put pkt into node adjoining node

input buffer queue

for transmission to
host

IV

Figure 4.6(i)

» Clear host O/P buffer (j) F&—n————
v

Set procéssor busy for timel
to handle packet
¥
[Next host output buffer]

Input packet from host {(j) to node (i)

<<Esmessage packet queue ful?>w£g§i—aiwy again when queue

not full
No\L

Is-there a free memory\ No |Try again next host
unit to store message when a memory 0/P buffer
packet in unit is free

Yes
Is packet at No Place packet in 0/P
destination t queue for transmission
node to next node

Yes

4 . N

Place packet in Set host O/P retrans-
I1/P queue for y Mission clock and transfer
transmission to pkt from output buffer to
relevant host retransmission buffer

e
Clear host O/P buffer (ij) I

)

Set up a host -~ node ack
and place in control I/P
queue for transmission to
host (ij)

e

Set processor busy for time
to service the packet

g
Next host output buffer L

Fipure 4.6(ii) Input packet from host {j) to node (i)

neighbouring nodes and there be free buffers remaining then

remaining packets are transmitted. The packets are placed

in random buffers to be sent to a random destination. Figure 4.7

shows the routine' in more detail.

The node output buffer routine is concerned with *he actual
tansmission of packets from one node to another over a transmise

sion link. When the node output event element for bufferi.

becomes zero the packet has been transmitted over the line.

A copy of the packet subscript is taken from the output buffer
and placed into the input buffer of the receiving node. In
order for the input buffer to be serviced a delay of 1 llsecs

is put into the node input buffer event table. The sending

node sets its retransmission clock to 0.1 seconds and places

a copy of the packet into the retransmission buffer. Figure 4.8

shows this routine.

Servicing the node input buffers requires processor control

and the allocation of a memory unit for message packets. Node-
Node acknowledgements initiate clearing of the input buffer
together with the output buffer being acknowledged. The retran-
smission clock and buffer are reset, and the acknowledgemernt
statistics are recorded. A 'sernd next packet' is stored in
CBUFF in the queue for further retransmission or transmission

to a local host. The input buffer is cleared. Processing

memory packets requires a free memory unit to be found. If one

is not found the packet remains in the buffer until a memory unit

becomes free. The packet is put into NBUFF for either

Any free processors
in node (i)

Yes

No

Advance node O/ buffer
event table and retrans-
mission tables to next
event in node (i)

4

Any message packets
that require retrans-

mission

No

<z§ny node O/P buffers free) No_,

Yes

Advance node O/P buffer
event table to next event

and try again when a
processor is free

95

Next node

q
Yes

free.

Take copy of packet from
retransmission buffer and put
into required O/P buffer if
Set transmission time

and retransmission time

required to service node
output buffers

Set processor busy for time ____

not been tried

packet O/P queune that have/[

Any more packets in control No

3

Yés

L

(Pick next packet from queue|

e

node

Does this vacket require
transmission to an adjein

No direct route
in needed

/

No Yes

‘*(gs that buffer fre€>

‘Pick one of free
buffers randomly
(except source

node)

Yes

AN

Place vkt in chosen buffer

L

[Semove buffer from free lis§J

¥

o
e

t node O/P buffer busy for time required
required to transmit packet

RA

Shift control packet queue up

Figure L4.7(i)

Update node output buffers

ol

Any node o/p No
buffers free

IJ

u/

96

. o . <t n
for time servicing| TloX ode

node 0/F buffers

Any pkts in message
pkt O/P queue that No

have not been tried
for output

Yes

[;}ck next pkt from queag]

‘ Is the memory unit hold-
ing the pkt busy?

]

to get to an adjoining

<Léoes the packet reauire
node

No direct Pick one of free

N buffers randomly
// node needed (except source node

-—-—<<:‘§ that buffer free 4?)

Yes

Place pkt in chosen buffer \

¥

IRemove buffer from free

listj

Y

Set node O/P buffer busy for
time required to transmit pkt

¥

'Shift message pkt queue

up |

3s

Set memory unit holding

to output buffer

busy for time to transfer pkt

pkt

Figure L,7(ii) Update node output buffers

Move node cutput
buffer (ij) to
next event

)

Has last event from this » No Next node
buffer been completed P output buffer
Yes

Get node and input buffer
which this buffer will output to

|

Transfer the packet from output
buffer to the receiving node
input buffer

L

Place copy of packet in
retransmission buffer

L

Set retransmission clock to
0.1 secs

v
Set receiving node input
buffer for next event in
1 Msecs

{fNext node output buffer

Figure 4.8 gervice node outout vuffer - nodef{i), host (j)

97

transmitting to another node or for output to a local host.
An acknowledgement is generated and queusd in CBUFF. The

processor and memory are set busy for the time used. Figure 4.9

shows the flowchart of the routine.

Host input buffer update is another routine which requires
processor control and is concerned with transferring packets
into the host input buffers. For each free buffer a packet is
searched for initially from the control packet queue (CBUFF) -
since control packets have a higher priority. Should there be
no control packets for this buffer, the retransmission clock is
checked. If the message packet in the retransmission buffer has
not been acknowledged for C.1 seconds then the clock is set and
transqission attempted again. After a copy of the packet is
transferred to the output buffer. If no control packet has been
allocated to the buffer &and there is no message packet awaiting
acknowledgement then NBUFF is scanned for a message packet dest-

ined for the local host. However, if a packet is found it can

only be serviced if the memory module in which it is stored is
free. Should that be the case the packet is transferred from
memory to the buffer. The memory and processor are set busy.

Figure 4.10 shows the flowchart of the routine.

The host input buffer scan routine is similar to the node cutput

buffer routine, but this time packets are moved from nodes to

their local hosts. When the host receives the packet it handles

it according to its type. For an acknowledgement to a previous

98

Update all
Node, input
buffér event
tables

29

next node

move buffer

event (ij) forward
to next event

1

{ buffer event (ij):0
— .
Any
packet in No

buffer (ij)

input buffer

next node-node

Yes
Node~-node ack Send nextlvacket Message packe3<::>
I A
Add packet Clear input)
details to buffer (ij)
nonitor R
statistics record processor
RA time used
remove pkt NA
acknowledged Is Place in
from the o/p packet at control packet
buffer destination input queue
)
ctlear retransmission No l;*
table
J place in

clear input
buffer

upaate processor
time used

L -

next node-node
input buffer

Figure 4.9(i)

control packet

output queue

next node-node
input buffer

Node-node input buffer service - node(i) . host (4)

*

Is node“packe Tes
buffer full

Try again when i =
buffer not full]

No

next nocde-node
input buffer

Any free memory\ No
unit in nodei

Yes

i . 4
iry again when
there is a free
memory unit

Store pkt and set
memory unit busy
for time required
to store pkt

g
Set up an
acknowledgement
packet

Place pkt in control
pkt output queue

&

clear node
finput buffer

e

/'is the message
packet received at
the destination

o |

Place the message

Place the message pkt in
inode input queue for
transfer to host

Yes

Set processor busy for
3ttime required to carry

pkt in node o/p
queue for further
transmission

out above operation

next node-node input buffer

100

Node~node input buffer service - rnode{i), host (3

Figure 4. Xii)

Any free
processors
in node,
in i

Yes

Move host

input event i

to next event
y

when a processor is free

[Update retransmission table]

Has last event in I/P
bufferij been completed

Yes o
Any control packets
for host.
' J
Yes
Place pkt in buffe:ri‘_j

for transmission to
host. and remove pkt
from* queue

No . |Next host

Update host input event
tables and try again Hext node

101

No

input buffer

transmission to

— " —
Does last message /mnf pkts awaiting
No

No packet transmitted
to hostj need

retransmitting

Yes

hosti where memory
unit-holding pkt
\i? free

Yes ;

Transfer pkt from
retransmission
buffer.. to output
buffer ™ for host. .
1)

M

Set retransmission

)

Set event table. .
1]

for time to tran-
smit packet

A
Update processor
time used

¥

table. . <
13

Next host input buffer

Set memory unit
busy for time to
extract packet

Place message

 packet in O/P

tuffer.. and
1]

remove pkt from
queue

Figure 4 40 Update host input buffer - node(i), host (j)
3

102

host 2 node message packet transfer, the control packet stat-
istics are recorded and the packet deleted. The host input
buffer in the node is cleared and the next buffer serviced.

For a 'send next packet', the nodes host input buffer is

cleared and the host output buffer amd retransmission clock
corresponding to the sent packet cleared. The control packet

is recorded. The host then has to decide from the header whether
gll the packets of the message have been trahsmitted. If not
the next packet in the sequence is placed in the queue for out-

put. If the entire message has been output and there are nomdre

messages the next buffer is handled. Otherwise a new message

is generated and the first packet in the sequence placed in

the host output queue. Finally, & message packet may be received.
This requires an acknowledgement packet and a tsend next packet!
to be generated and be placed in the host output queue. The next
buffer is then handled. Figure 4,11 shows the flowchart of this

routine.

103

Move host,. input
1J

event table to
next event

¥
Has last event in
this buffer been No

completed
Yes : v
Any packets in No Next host input
buffer. . buffer
1]
Yes |
?
<i?s the pkt a No Is the packet a Send next
host -~ node ack full message pkt packet'
Yes | Yes
4
Record pkt Clear host input
statistics bufferij

y I

Clear host input Is host control pkt Yes Try again
bufferi'j and output queue full when not full
E retransmission buffer No

Set up ack pkt and
place in host control
pkt O/P queue

Y

Set up a 'send next pkt'
and put into host control
pkt O/P .queue

&-
>+ Next host I/P buffer

Figure 4.1 (i) Host input buffer service - node(i), host(3i)

Record pkt
details

Clear host
input buffer..
iJ

Y
Clear retrans-
mission buffer

\

<(Is host message pkt\

> Yes

output queue full

No 1

Have all pkts of
last message been
transmitted

No

\

Increment pkt

sequence no
Y

Place pkt in

host message

0/P queue

Y

Next host I/P
buffer

1\

Yes

Try again when

104

buffer not full

y

Any more messages

transmit

to\ Neo |HNext host
input

Yes

\

buffer

N

Generate new message
with random destination

Y

Generate RAND

message
mix
rate

X

RAND:

Generate short

message

>

Generate
long messagse

ost input buffer service - node(i), host(j)

Figure 4.41(ii) _H

105

L,9 Simulation Program

The simulation program is written in Fortran. There was no

alternative to Fortran since the original simulation was

written for the departmental Prime 300 which only offered
Fortran as a compilable high level language. The progran

was transferred to an ICL 1904g when the reliability of the
Prime proved unsatisfactory. At tﬁe time of transfer the
simulation program had been tested out and time was short

to complete production runs. A simulation language was there-

fore not considered.
The complete version of the simulation program appears in
Appendix II. The rest of the chapter will be concerned with

a discussion of the simulation prograi.

4L A0 Generating starting conditions

Some comments have to be made regarding the starting condi-
tions of the simulation run. The values chosen must reflect
the typical state of the network if it were inspected at
random. If the network closed down at frequent intervals
then the starting conditions would be easy to determinee.

With a network that ran for a long time the initial conditions

would be difficult to estimate.

A technique that is commonly used is to invent starting
conditions and run the simulation for some time. The final

state of the system is then taken as the starting conditions

of the genuine run. This in turn raises the question of

how long the preliminary run should be. Generally, the

longest cycle in the network should be executed 3 or 4 times
to enable abnormal behavior of the network induced by non-

sensible starting conditions to die awaye.

The system could also be started from an empty network by
introducing a very high traffic intensity (>1) at the start
in order to allow queues to build up very rapidly at the
start. Reducing the traffic intensity and allowing a few
cycles to be executed should bring the network to a normal

state.

A decision also has to be made regarding whether successive
runs are to be independent (as described above) or that the
final calculations of one run be used as the starting condi-

tions of the next run.

In practice, the labour of making valid fresh starts on each
run weighs heavily in favour of continued runs. It is very

difficult to predict any instabilities that may arise from

continued running of the same network and comparisons between

runs with different parameters become difficult to comparee.

From several trial runs it was found that the network reached

e mr Ll o Aameadd b ae s ow Cf
Srauvlie COnGaviviio 4

this fact it was decided to start each run afresh with an

106

107

empty network. Using the same chaincode generators for

each run will also help to make comparisons between different

network parameters easier to make,

4,11 Generation of Pseudo-Random Numbers

During the initial development of the simulation program
the Prime 300 was a new machine and the available software
did not include a random number generator. The congruence
method was considered because of its simplicity but the
cycle length of the generator was limited. The congruence
method is based on an equation of the form shown in equation 4.2
= m e®0eceoevooceeeo Ll’o

51 (ry +A) (mod M) (4ho2)

where andIK are defined constants and M is determined by

the number of bits in the computer word. On the Prime the

MOD function was limited to 512 due to a software fault.

Chaincodes, which are fully described in Appendix 1, are
machine independent and permit very long sequences beiore
repetition. Chaincodes were therefore chosen although the

cost of computation was much higher.

The generation of exponentially distributed randem numbers is

btased on an exponential .cumulative density function of the

form:

E(t) = 1 - et/m

108
where m is the mean of the distribution and t is time.

A vector is filled using this function with integers beginning
with '1' in such a way that the number of integers in each
group decreases exponentially as the value of the integer
increases. The distribution of integers so generated is

shown in Figure 4.12.

frequency
of integer

in vector

Integer valuc

Figure k.12 Distribution of integers in sampling vector

Exponentially distributed random numbers may now be cbtained
by sampling from the vector using a uniformly distributed fandom
generator giving variates in the range '1' to 'size of the vector's

The larger the size of the vector, the more accurately the istri-

bution will be representede. Exponentially distributed variates
are required for three purposes:

1) Message Interarrival times (real value)

2) No of generating nosts (integer value)

2) Length of a message (integer valuc)

109

To obtain a reasonable level of accuracy would require a
moderately large vector of around 32k. For the above this would
cause an unjustifiable overhead in that 128k words of memory

would be required to store three vectors (2 integer vectors and

one real.)

However, use of the fact that variates generated from an
exponential distribution of mean 1 may be scaled by the desired
exponential mean and the variate will show the characteristics

of having been generated from the required exponential distribu-

t ion.

The vector was filled by eyvaluating for each t the expression

INT {.(1-e-tﬁ/m) - (1-e-tn'1/m) } ; array size.
t was chosen to be 0.0% to give a reasonable spread of integers.
Scaling t by 100 gave the integer stored in the vector. Vhen
the vector was sampled the integer obtained was first scaled
down by 100. The vector size was taken to be 32k and cut off
at 32383 since the above expression was yielding very small
values which resulted in zeros after the INT operation. Using
the 32%83 cut off point ensured that when the vector was sampled
a non-zero value was always yielded. Since 99% of the distri-
buticn is represented this seemed reasonable. For each value

of t, the expression yielded the number of vector elements to

be labelled with that value of t * 100.

A pseudo-random generator employing four chaincode generators

110

was used to generate uniformly distributed numbers in the
15 '

range 1 - 2 7, values greater than 32383 resulted in a new

number being generated. Sevarate sets of chaincodes were

kept for each of three exponential distributions required

to help make comparisons between runs more easye.

On transferring the program to the ICL 19045, 32k words of
memory being devoted to random number generation proved a
heavy overhead resulting in runs being given a very low
execution priority. This was overcome by compressing the
22k vector into a cumulative frequency table of 600 elements
(1imiting the vector size to 32383 produced 600 variates

distributed between 0,01 and 6.0 with a mean of e

Figure 4.13 shows part of the distribution of E(t) and

Figure 4.14 shows part of the cumulative distribution of E(t).

t 0.01{0.02 [0.03 | 0,04 | 0.05 0,06 | 0.07{0,08 | 0.09{0.10

freqll 326 322 | 319 216 | 313 |310 | 307 | 303 | 300 297

Figure 4.13 Part of ©(t) distribution

t 0.0110.,02}! 0,03 0.04 | 0.05/0.06 | 007 0,081 0.09{0610

cun

freq |26 |648 | 967 |1283 1596 1906 | 2213|2516 | 281613113

Figure L.1% Part of Cum freg Dist of E(t)

111

Figure 4.15 shows the distribution of integers in the cumula=-

tive distribution frequency table.

Cumulative ’”’Tﬂ—‘

frequency ///1”/1'

el

Integer value

Figure 4.15 Distribution of integers in Cumulative Freguency Table

When a. uniformly distributed random number is generated,

say 1600, a binary search is carried out on the 600 locations
holdi#g the cumulative frequencies. Using Figure 4,14, 1600
lies between t = 0,05 and t = 0.06 and hence the required
expconential variate is 0,05 Although a binary search requires
log2 600 comparisons as compared to the direct extraction,

it will not cause as great an overhead as running the job with
an extra %2k of memorye. Tocher [h6] describes this process

in more detail and calls it the 'Top Hat'.method.

4,12 Sirmulation Progran Printouts

Output from the simulation program takes two forms. Firstly,
there is a periodic output the frequency of which is specified
by the user, then at the completion of the run cumulative

statistics are givene. The outputs begin by giving full

112

information concerning the network topology which has been

input by the user together with gdetails concerning message

arrivalse

Periodic output takes the following form:

1)
2)
3)
k)
5)
6)
?7)
8)

Absolute simulation time

No of packets in the network

No of packets handled by the network since the last printout
Total number of packets handled to current printout

Each host's queue length of messages awaiting input to network
Total number of messages awaiting input to network

% of network processor time used since last printout

% of network memory time used since last printout

During these periodic printouts any absence of memory when

required was also noted. At the completion of the simulation

run the following statistics are given:

1)
2)
3)
L)
5)

Number of each type of packet handled
Frequency of each message length handled
Average time to handle each message length

Mean message length

Total % processor time used by each processor.

113

CHAPTER FIVE

EFFECTS OF PARAMETER CHANGES IN THE NODE

51 Introducticn

This chapter begins with methods of smoothing raw data,
after which the Autocorrelation method is described and
then used to determine the sampling frequency of data

obtained from the simulation,

A sitandard network is then presented to give a base against
which parameter changes may be compared. The parameter
changes in this section are concerned with the node itself
and include reducing the number of processors in the node,
using slowver processors/memory and reducing each memory module

to contain only cne packet.

5,2 Data Smoothing (473

Some method is required to enable the desired features to be
obtained from the sampled data system i.e. the removal of
wild fluctuationse One simple way to do %*his is to use sone
form of cumulative average as given in (541)

T
E xi 00-000...(5.1)

e =
T i=0

= |-

where N is the number of samples up to time T. As each new
sample is considered it is added to the running sum of all

previous samples and divided by the pumber of samples considered

114
up to and including the present one,

It can be seen that as T and therefore N‘become iarge 2 < a
(the mean). In other words all peaks and troughs are smoothed

out and transient conditions are not revealed.

Moving averages enable the drawbacks of cumulative averaging
to be overcome. Only the previous n samples are taken to
estimate 3, other samples than the nth being discarded. Thus
dividing the sum of the previous n samples by n will give the
new estimate as shown in (5.2).

Pl

1
a‘l‘ = -1.1- i:O xT-i o..o..oo-(soz)

The choice of n will determine the degree of smoothing i.e. for
n=1 the raw data is repeated and as n increases so it will tend
to the estimate given by cumulative averaging. The computational
price has also increased. To the running total, the new sample

is added and the nth previous sample must be subtracted.

Cox [48) suggested a techanique which retains the flexibility

of the moving averages and the computational simplicity of the
cumulative average. A more elaborate weighting scheme is intro-~
duced which decreases the contribution of the sample with respect
to time. This type of smoothing is called Exponentially Weighted

Moving Average (EWMA) and can be implemented by an equation of

. . E-S
the form given 1n D>/

115

CSCNOD3E) 34IL
50 Sh°0 eh°o

s8°9

26°0

s2°0

ejxom3au ojut jndut I0F onenb o3egsou MBY

€23°9

S8

L°G eandti

o9 So°e 32°¢

y

116

A A
aT = OC.XT + (1"x). B-T_1 000000000(503)

Where of 1is the smoothing constant 0$X<1, The estimate may
be recursively formed from a weighted version of the present

sample and the previous estimate. Expanding equation (5.3)

gives

P>

of oXp + (1-«)[M.XT_1 + (1-49). QT-Z]

oL oXq + o (1=0), Xp_q * (1-06)2.[0c.x,1,_2 + (1-80). xT—3]

o oxg + K o(1=0) e X7 4 + oo (1-0Q° oXp_o *

K
ecoce + %0(1"0‘) . XT”K ‘t eeee (1"0()To xo

The weight given to a previous sample decreases with age as a

geometric series in general given by (5.4)

-~ T=1
aT =OC. Kz-o (1~wK. XT-K + (1-&)T. 20 boo(So“’)

It can be seen that the degree of smoothing is entirely depend=-
ent upon &, Figure 5.1 shows messages arriving with a traffic
intensity of 0.8, and queueing for entry to the networke.

Figure 5.2 shows the effects. of smoothing the raw data with

0(- 0.01’ 0005, 0.1’ 002.

With & = 0.01 troughs and peaks have disappeared as would have

happened with cumulative averaging.

o/ was chosen as O.71 since it masked fluctuations yet retained

most peaks and troughs of importancee.

117

g°g oandijg

°2°0 *1°0 *60°0 *L0°0 = oyjTAM

t3aomzou ojutr sundur I0F sunaub ofessouw
Jo 38FeasAy Sutaoy poajudroym Lyferiusuodxy
CEB0D35) MIL
os°0 Sh°0 oL $8°9 95°D s2°6 $3°0
I~
%
F)
e’ :
2: 0.
ps . =
\.n 1°0 \G
7 -
|
f-

L i

118

De3 Selection of Sampling Frequency

In any simulation, an important decision has to be made regard-

ing the rate at which the system will be sampled. Blackman and
Tukey E+93 developed a powerful method of analysing processes
for their frequency component distribution or power spectrum,.
The method will now be discussed but will be limited to equi-
spaced samples which form a stationary time series i.e. fluctua-

tions about a constant mean.

The correlation coefficient r represents the goodness of fit of
an equation of the form y=bx+a to the sets of variables x and Yo
The correlation coefficient can be derived from normal equations
[50) and is of the form given in (5.5).

Nin. yg - (Sxi) (Eyi)

r i=1,c-oo' N

~ zx/vau:i)Z - <§xi>2}, {NE(yi)Z - (Zyi>2}

0.0.0.000.0..0..0.0(505)

This result may be applied to a set of time series data to
calculate the autocorrelation coefificient between xs and xi+p'
where p is a constant interval of time or lag of time. Zquation

(5,5) can be modified to give the autocorrelation coefficient

for a particular lag p as given by equation (5.6).

r (N:p)ino xi+p - (Exi) (in+£
p =

/{EN«-p) 2 (xi)‘2 -2 xi)2 K.{(N-p)zx2i+p - (in+p?2}

0-00.00000000-.....(5.6)

If the data is first normalised by

(=X
x:yn
n

o.oo.aooooo-a..-coo(So?)

S

119

where x is the mean, and s is the standard deviation, then r

becomes
r = :E X.e X. R
p ———l—_—&iz 1= 1,..0.’N-p
> %
i
...Q..O.l.........(s.g)

as a function of p.

rp will shcw those lags over which the data seems to be

correlated.

If a time series is considered with a zero mean, autocc~

variance (or autocorrelation) function @ (p) may be defined as

N-p
¢(P) = _1_ :E. xi. xi+p 000-00000000000000(509)
N-p i=1

from which it follows that

= ¢(p)
rp ¢2p Ooooooooo'oooooo--o(501o)

S
X

For a continuous stationary time function x(t) the autocorrel-
ation function is given by
¢(p) = lim 1fT/2 x(t).x(t+p)odt ooooaouaoo(5.11)
Ty TV -T/2
The power spectral density function P(f) of the same process

is defined as

T/2 _ionft
P(f) = lim x(t)e e I Lat
-T/2
T oo

.oooooooooooo.oo-.-oc(5.12)

which represents the contribution to the variance of x(t) with

120

frequencies between f and f+df,

Blackman and Tukey [A9J showed that these two functions could

be written as a fourier transform pair

m -
g(p) = \/ P(f). Cos 2Tffp.df 000000000000(5013)
© =00 ‘ -
P(f) = [z ' ¢(p). cos anp.dp 000000000000(501"*')
which\gould be simplified to
Q
¢(P) = 2 f ’ P(f). cos Zﬂfptdf 000000000000(5015)
. N o
. &
P(f) = 2 f - Q(p). cCOSs Zﬁfp.dp 0.0.9.0....0(5.16)
: 0

When considering a discrete time series x(t) it is necessary
to introduce a finite fourier series transformation instead of

the infinite continuous summation.

Equation (59) shows the summation for the autocorrelation

function at time lag pe.

Given that the significant power contributions are below
n rad/lag time, L(p), which gives the raw estimates of the

power spectral density function can be obtained using (5.10) by

Mat |
L(p) = #0) + 2 > @(q) cos gpn + F(%) cos pm
q=1 M

ooooo.von.oo..oo(5-17)

121

d DV1I

0oL

06

08

0l

UOT3oun, UOT3e[odd0003ny Wajz8kg ¢°*¢ 2InstTy

09

0s

Oh

0%

1074

oL

10
~2°0
e o0
-4"0
"0

i@.-o

.lNuvo
b w.o
= 6°0

o*L

(d) #

122

where M is the maximum lag value of p,[51).

These raw estimates may be smoothed in various ways. Southworth[51]

recommends

U(p) = 0423 L{p-1) + 0.54 L(p) + 0.23 L(p+1) eeesse(5,18)
wnere L(-1)= L(1) and L{M+1) = L(M).

U(p) represents the corrected estimates of the smoothed power
density which gives the power contribution in the frequency

interval nmp - ®, WD + T .
M 24 M M

"S5.4 Obtaining the Sampling Frequency

A simulation run was made with a three node network and three
hosts per node. This configuration was chésen together with

fast line speed and fast memory/processor since it would give

the heaviest traffic load that the network would have tao sustain,
In order to get a power spectrum the system had to be in a steady
state i.e. wheré the service time was less than the arrival rate.
A traffic intensity of 80% was chosen with a mean interarrival
time of 350/ﬁseconds. (Several runs were made for the particu-
lar network and the level of saturation determined) . SouthworthEEil
recommends that the ratio of M(maximum lag) to N(no of samples)
does not exceed 10%. 1In order to get M=100, 5000 samples of the

message queue for service are taken at a rate of 100 A seconds

interval. The ratio is therefore as low as 2%. The simulation

was given 0,05 seconds simulation time to settle down.

Kousnbeay Sutrpduweg

unJIjoodg J9MOd 9Y3 JUTS(aOHvovﬁom Xousnbed] oTAWBg

& J 5 ! ¢ 2
—))

°G eandtd

ausuodwo) JIANOJ aATARTOY

These 5000 samples were than used to compute the system
Autocorrelation function shown in Figure 5.3- The smoothed

Power Spectrum is shown in Figure 5.h4.

The significant bandwidth is centained within O -» 500Hz. A
frequency greater than two times this upper frequency is chosen.

F the sampling frequency, was chosen conveniently to be 1KHz,

s

i.e. at a sampling interval cf 1 msec,

5.5 Standard Network

In order to be able to evaluate parameter changes in the network, -
a standard network was chosen against which comparisons could
be made. Figure 5.5 shows the basic network. The network consists

of three fully qonnected nodes to each of which are

Figure 5.5 Standard Network

124

125

connected 2 hostse. All lines, nodes and local hosts are

interconnected by 10 megabit lines.

Figure 5.6 is a block diagram of the structure of the node.

Each node is architecturally identical containing 2 processors

and 3 memory units. Memory cycle time and processor speed

are matched at 100 nseconds. Packet sizes are set at 1024 bits.
Each memory module of 1024 words (8 bit word) is thus able to

hold & packets each. The node is connected to the other nodes <
via 2 sets of I/0 buffers (1 packet length) and similarly |
connected to the two local hosts. Control packets are 8 words

" long. The mean number of generating hosts at each message event
time is one host. It is assumed that the mean length of short

messages is 1 packet and of long messages 10 packets, there iy

being a ratio of 3:1 between short and long messages. Using
the equation derived in the last chapter for the mean of a hyper-

exponential distribution:

__6_4- J_:_6_ 0000-0090(5019)
Y S ;
for 1 =1 and 1 = 10
At Ji2

this gives a mean message length of

0.75 x 1 + (1= 0.75) x 10 = 3.2 packets.

The simulations is run for 0.5 seconds simulated time and

sampled every 1 millisecond as discussed in section S.h.

-

126

S9dn3003TY0dy OPON :3IOM3}8N PIepPUBIS 9°G QInITI

2 Jossaosoag

| J09S8001d

N N\
Je330q 4/0
a933nq d/0 7
- I93Inq dJ/1
Jo330q d/T B
SnqQr3ITun
" < xaying &/0
A xa33nq &/I
ao33nq d/1 |
sxayjing
gaeiing y 4 3S0H=9PON
2pON=9PON ¢ 393d8qg . 8 393deg 8 3983ded
L 303oeg L 383oeg L 38306
¢ Kxouoy 2 ALaouwsy | Lxowsy

127

The effects of all parameter changes are presented in the

game way as for the standard network (SN) as shown in

Figures 5.7 - 5.13. Figures 5.8 - $.12 give the data at
saturation level. When the average demand for service is less
than the capacity of the system, the system is said to be in a
steady state. The information which these graphs give is

shown below,

1) Effect of varying message mean interarrival rate on message
queue for input into network, (Figure 5.7).

2) Number of packets processed by network per millisecond
sample interval, (Figure 5.8).

3) Percentage of network processor time used per milli-
second sample interval, (Eigure 5¢9)e

L4) Percentage of network memory time used per millisecond
sample interval, (Figure 5.10).

5) Distribution of message lengths sent through network,
(Figure 5.11)..

6) Effect of message length on nessage throughput time,
(Figure 5.12).

7) Effect of varying message mean interarrival rate on

network traffic, (Figure 5¢13) e

128

CSQNOD3S) MIL

*jyI0M32u o3ut 3ndutr JoF snsunb seesgsuwl U0 ajed

TeATJIIRI®JUT uUesW o3esgsall JurlieA FO 399II%

*NIOM3BN PIRPURIS VWML 4°G eJndtd

95°0 Sh*0 Oh*® S5°0 #3°0 $2°6 22°0 | <

(®) 2
A.@V (XY -.o.. i

—a - - ..an M
() T LE) m
. i
PR uﬂ
(a)#”
MM
w2 &
E
w0
G

®)

goas ¥/ 0¢y ()
soeg W oLy (P)
mommdQ\omm (°) "60S
s098 W 09¢ (Q)

s
¥
WHALIN 0L

8098 v Oxe (®)
838X TRATJIIRISIUT UBOU 8JIeSSS

129

eTeAgojur oTdues puodsestiTIW od

Jomaaux £ egsaooad giaxoed Jo Jequn
VA h g p (} s

*}I0oM3aN PIEPURIS §°G 9INBTJ

C5QN053GY 3W1L

$5°0 5h*0 oh'e $8°0 0s'0 s2°9 ez'e s1°e 00 $9°0 0o
- z
2
oh o
I T .
\ | :
1 m*” i ! , A 9 =
i . : ’K&(, é m‘ h , f(w
| i __) ! % 8
it “

130

C¢SON0D3S) 3KIL

S °0

Sh°®

(2

eTeaxsjur opdwes PUOISSTTITH xed

pesn euwt} Jo9s0003d- IOM3AU JO 93vIUSDIdJG

¢ jI0M38N PpJIepUER}S

S8°0 08°0 52°0 92°0 s1°0

6°G eandtd

0

S6°9

e A

[Oh

00

assn Wil ¥OSSID0Nd WAOHLIN I0 JSYLHIADYIL

131

*Teaxazur o7dwes PuUoORITTITIW IXad

pesn ewT3 AJOWI NIOMISN Jo 23e3UI0I9J

*JJIOM3ON PJIBRPURIS (OL°G 2INITJ

(SON0D3S) 3MIL

0s°0® Sh°@ 0h°0 SE‘® 0c€°0 se°e ez°9 m«“o , oy ..s S0°0 oo.oo
’ N
éigégégém N
[02
13
[Oh
ﬁ

s

G3SN 3WIL- ANOW3W YYOML3N 40 32¥EINIDOY¥Ad

NO OF MESSAGES THROUSHPUT

11020

$se

420]

850

800,

2359

239,

159

169

sei

Mean message length = 3.5 packets

%ﬂﬂ“hﬂﬂhﬂdhuuxdamqa-__~a. v . v v .
88 189

- 80 48 60
NO OF PACKETS IN KESSAGE

Standard Network.

Distribution of message. lengthsa

Figure 5.11

sent through networke.

132

MESSAGE DELAY C(HILLISECONDS)

49,

85,

83

1S

10,

. ..nl!hmi |

v v v ——

® ge

Figure 5.12

4s) 6o - 108
N0 OF PACHETS [N FESSAEE
Standard Network.

Effect of message length on message

throughput timee.

133

134

CSO3SITIIND JHIL WAINUWRIBLINI NH

*3TIIBI] J{IOM3ISU U0 d3BI [BATIIBISIUT

ueow 83egsow JuTrlIeA JO 309FTY

*3{I0M38) PIBPUBYS ¢L°G 8INITH

08h°e S9h°0 G Ssh°e 02h°e Soh°0 965°0 SL5°9 ©35°0 ShS°0 055°0 S15°0 o050
gjexord
s3vggoy) * -
LA
[
ggexqoed
T0I3U0D)
L
L)

CS990) LNGHINOYHL SL3¥OVd 40 ¥ISHAN WLOL

135

CEQNODISY MIL

S °9

ejaom3ou UT 939%oed JOo Jequmny - MJIOMISN. pIBPUBYS HL G oAnsLd

0y |
_ _ _ - _ _w»., t_ J .”,p.E A wr.m
ﬁ

[

WUONLIN NI SL3¥OVJ JO ON

136

For the standard network saturation occurred at a mean message
interarrival time of 380Asecs shown in [igure 5.7
resulted in 7 X ‘103 message packets being throughput which
required 27 X ‘103 control packets being generated. This
represents a throughput rate of approximately 14 megabits/sec.
The throughput time far a single packet was 300 lisecs while for
a 54 packet message the time was 21 msecs. It can be seen
from figure 5.12 that the throughput times are linear. This
is explained by the fact that the standard network is fully

connected and so the throughput procedure for each packet is

identical.

Figure 5.9 shows the total processor time used on the network
to be approximately 31% while figure 5.10. shows memory'to be
used at 7% cf the total available. So there is a lot of spare
capacity. Although the figure of 31% processor time used 1is
spread over all the processors in the system, the figures -
given below indicate that the workload is fairly evenly

distributed amongst all three nodes.

node 1 node 2 node 3

proc 1 31% 35% 20%

proc 2 29% 22% 28%

137

C5GN0D35) FMIL
05°0 Sh*6

*jIoM3dU O3UT qndur Jo0F enoub e3egsau
"o 938X TRATJIIeJd3UT uesd afesgow Jutdres O 309IIH
*opou Iad

gatun LIowaw ¢ tyosgeooxd | = MIOm3aN pJIepueis VHMI

¢ oanvid

Ov(\"\\l.\
B JEETEIN

Ov -

Qv S ——

N el

moomd\ oz (9)
soasy/ 064 (P)
soosy ogn (2)
soesty Oz (%)
g09sTy 08¢ (®)

938 TeATJIJIeId3UT uwdw 9dBISOY

| 606

[60h

u&»umwouu'uuuxaa39Mﬂmw>szﬁssxejocm

138

CSON0D28) MIL

93°0 Shed

sTeAX23UT oTdw=s PUOIISTTTTUW
xed yaomzeu Kq pasgseooxd sgiyedoed JO Iaquny

*apou xad

gpTun AJowew g*Iossssoad | = HIOM3BN PIBPUEIS 9L°G 2aNIT I

Bh°0 $8°0 30 53°0 020 S1°0 0o

9°9

009

83

F&h

Vuo1IN AT GIKRSA SLDOVD JO ON

139

CSONOD3S) 1L
05°0 Sh°®

*Teaxo3ut oTdwes PUODISTTTIW
Xod posn emwt3 J08F®00xd IOM3OU IO 9JB@3ULDIdG

*apou Jad

gaTun Lxowsw g ‘Joggedoad | = IOM3dN pJIepurig LL°G sandtyg

0h°0 S8°0 066 s2°0 K0 S1°0 03°0

50°9

%%

—s

&,,“

' 62

FOh

L 1)

A

d3sSn 3UIL ¥ISSIDO¥d NUOHLIN 30 ISVININIJ

140

eTeAJo3uT oTdwes PUOOSSTITTU

Jod pegn ewty AJowSwW J}IOM3OU JO 9JejuUddId4
*apou aad

gaTun Lrowem 2 ‘Jogssooad | - JJIOM3ON PIBPUES QL®G 9aNISTI

(SQNOD3S) 3HIL

6s-9 Sh°@ Ph°0 Se°d Qc‘e 52°0 020 sv°o e1°0 se°e 020

- A Py

A i At g i P

fo2

i

' 08

[Oh

a3SN IWIL ANOW3W MMOML3N JO 39YLINTIOYIL

141

4504

4o

959,

8094 ' Mean message length = 3.6 packets

2se

pL-1 p

150 | -

180/

S0

v [ﬂ“hﬂh{ghnnmthB—::L . . v v - v

€9 89 109
NO OF PACHETS IN KESSASE

Figure 5.19 Standard Network - 1 processor, 2 memory units
' per node.

Distribution of message lengths sent through network.

142

189

NO OF PACRETS [N NESSAGL

Y9,

85

1
o

18,

-
o

CSONOIISITIIND AVT2d 228083

50 Stendard Network - 1 processor, 2 memory units

Figure 5.

per node.

Effect of message length on message

throughput timee.

143

*OTJIeI3 HIOM3dU UO @3BJ
IBATIIRIS3UT ueow oJegsoul JUTAIBA JO 3IV3IFH

*gpou Jod

gatTun Kxowsw z ‘Jossedoxd | = {IOMIAN PIBPUBRIS 12°C eanstg

CSO3SITIIHD 3MIL WAIRWYILNI NV3H

g9s°o Shs°@ 08s5°0 S15°0 s S8h°e OLh"0 SSh'® Ohh°6 S2h°0 oth°0 SEE°0 esc°e
. . . . R . . °
g393)08g
e3rvggoy
(81
gje3oed 02
T0I3u0)
9€
[Oh

€S,000) LNAHONO¥HL SLIHDY JO ¥3SHNN TWLO0L

140

From figure 5.17 it can be shown that the mean message length

is 3.5 packets compared to the theoretical mean of 3.25 packets
derived in equation 5.20. ©Not a single occasion arose where
memory was not available when required. The queue of messages
in node 1 was also monitored. For the greater part the queue
was empty, when it wes not there was only one packet in the

queue.

Figure 5.13 shows the effects of decreasing message arrivals
from a mean of one every 300 /.lsecs to 430 /Lsecs. This 43%
decrease in traffic resulted in 7.6 X 103 packets throughgrut
dropping to 6.8 X 10° packets which is an 11% drop in traffic.
In other words queues were cleared mofe quickly and the system
was working near full capacity. This suggests that although
the system is saturated at an interarrival time of 380l&secs
there is still capacity. This will be explained in the next

chapter.

Figure 5.14 shows the number of packets in the system at the
time of being sampled awaiting processing by the network.
This indicates that there is no need for the facility of

queueing within the networke.

5.6 Effects of the number of processors/memory modules

Processing time is made up of several factors: waiting for
processor/mermory; direct memory usage under processor control

- this quantity being proportional to the packet length;

145

executing I/0 - this quantity includes the time needed for

both waiting on an I/0 queue and for actuzl execution of I/0;

waiting on the ready queue.

Figures 5.15 to 5.21 show the effect of reducing the number
of processors in the standard network from two to one, and
the memory modules frecm three to two. This resulted in a
th=~ughput drop from 7 X 103 packets to 5.6 X 103 packets,
This 22% drop was not greater since the processors on the
standard network were under-utilised. In the case of the
node with one processor the processor usage figures were as

follows:

node 1 node 2 node 3

proc 1 46% 59% L3%

When the standard network processor/memory speeds were dropped
from 100 nsecs to 1 Psec the effects were more noticeable as
shown in figures 5.22 to 5.28. Packet throughput dropped from

3

7 X 10° packets to 1.6 X 107 packets. Individual processcr

usage was as follows:

node 1 node 2 node 3
proc 1| 74% 83% 63%
proc 2| 72% 81% 61%

146

*jaomjeu ojut 3ndut J07 enenb sFegsem uwo

93ed TeATIIRIBIUT uedw doJegssaw Burlaea JO 3901179

*x0939%0ad /LI0mAOW PUODSSY | - NIOMION PILPUBIS WHMT 2o°C eandTq

CSONODISY ML

ec’o Sh0 oh°9 s8°9 es‘e

—
—
- = —
-

. P
- - *

o«
- .
AOV -
P I IR
.
.
DRI I o0t
oo.-cp,-..
o0

(@y e

()

goasm G9°L (P)
soesm ##*L (9)
soesuw Gz°L (Q)
soesw GO°L (®)

938X TBATJIIBI}UT Uedll 2IBSSO)

WYOMLIN OLN] LNdW) ¥0d oyaIrand $39WSSIN 43 ON

147

eTeAJojur oTdmes PuodISTITIW Jad

yaomgzeu Kq possevoxd s3oxord JO Jaquuy

*J09s9%0xd/LIomau vnoommd\r - YJIom3®) pIepuels ¢2°G aandtd

CSONCO38) 3WIL

0s‘0 Sh°® Oh°0 $8°9 08°0 $3°0 63°0 S1°9 e $8°0 co°e
]
__ i L ?:_ h d

atdy ﬁ\g ,; é “ Py ez._ \ i, | 4,5 |)
i #] LY | hiy LA

m S. \ “._.*w ik ,,f:_wé .\, L ez

[Oh

£1)

)

WHONLIN AS IICNE SIHDVE 20 o

148

(SQANOD38) 3HIL

——

eTeAx93ut oTdwes PUOOSSTITIW Jad

posn emr3 J0SS9o0xd HIOMIIU FO aSevquacIed

*J0gs9%0ad /Aaowaul cnooomo\r ~ 3Jomaey paepueis 4#2°§ eaNsTo

0s°9 Sh'® #h°0 69 08°9 s2°0 2°0 s1°9 910 s9°0 8..c
-
>
A
| <
LT 1
_ 5
“.__ LI 09 w
e | I) 9
W el i\ LAY 'z
¥ m i) q w» 3
§ “ _&“ 7_ ¢ m

|

149

eteazejur oTdwes PUOISSTTITH xed

pesn euwt} AIouwdwW NIOM3OW JO 83ejuddIsd

* 1099900 1d /Axoudu cqaoom«\r - }JIOMj3eN pIepuelg Ce*G fandtd

{SUN0D3S) 3WIL

9s°® Sh'@ oh'0 Se’e 0L 0 se°0 ez°d SV°9 o1°@ Se°e

bk _ _;____ Iy 2/ _
i Wl rin ,_@____Q___ }2 (et ég%%ﬁé

g3sn 3WIL A¥OWIH WHOML3N 30 39V LNIONIL

NO OF MESSAGES THROUGHPUT

450

409

859,

890,

259

209

159/

160

-2

Figure 5.26

20

Standard Netw

150

Mean message length = 3.7 packets

v

)) 89) 160
NO OF PACKETS IN MESSASE

ork - 1Axsecond menory/processor

Distribution of message lengths

sent through networke

NESSACE DELAY QIILLISECONDS)

70

48

20,

18]

Fipure 5.27

v .

. 26 4)) e’ 100

NO OF PAGHETS [N MESSAGE

Standard Network = 1 Asecond memory/processor,
Effect of message length on message

throughout timees

151

152

*0TJJVI] IOM3OU UOC ©3el TRATJIIRIOUT
ueow o3esgemw FurhaeA Jo 30057
*qo8gadoxd /Laowsw puosesvy | = NIOMIBN paepuels Qg eandty

CSO3SIMIWD 3WIL WAINNUYNILIN] NU3UW

oom.F_ oom”— ooh..a oom“— oom..« @0h*Y 206°1 002y (-] 2) ('l 006 ‘0 o08°0 odL e
. A . A

g390:{0ed adegsay T -

g39:{ded TOIj3uU0y
LA
' 02
[0
[Oh

"@S

€S,000) LNJHONOYHL SLIOYd JO Y¥3GUNN Wil

153

5,7 Memory module size

Figures 5.29 to 5.35 show the effect of reducing the memory
module size from 1K words to 128 words i.e. from storing

eight packets to storing one packet. Comparing figure 5.7

and figure 5.28 it can be seen that saturation takes place

at about the same infer-message arrival rate. VWhen 1K words
memory modules were used memory was always available when
needed. Not a single occasion arose when it was not available.
However, when 128 words memory modules were used memory was

not available on one or two occasions. Given that over ? X 103

packets were handled in 0.5 secs and two memory accesses were
required at both the source and the destination nodes, this

figure is negligible.

The simulation did not take into account the extra accesses
that would have been required to extract a packet from a |
particular memory location in the 1K words memory module. So
it can be seen that the 128 words memory module would not only
be easier to implement, but would also be faster since acéess
is easier and the probability of memory contention non-existant

i.e. where two processors wanted to access different packets in

the same memory module.

154

*AI0m3du ojut Indut J0y ensnb aFwvgsem uo 8%ea

TeATIIBISUT uesw aFessaw Jurfaiea Jo 209379

*oTupow LIowsw pIom QZ| = HIOMIO PIBPUBYS VHMA G2°C eIndTg

C8ANOD38) MIL

s°0 Sh°0 oh°o se‘e 6s°o S2°0 02’0 Si°e 01’0 S0°8 0o
() P o tpny o
SISy geu™ o emeac e ———
(p) .z:: e
: [1]
goesr/ oz4 (P) | .
g0es7/ Q0% (9)
w09/ 0gc ()
89881y Q9¢ (e)

®3®vd TBATIIRIDUT Ueoll 03885y

202

WYOMA3N OLINI LNJNI ¥OJ SNIIEN® §39VSS3H JO ON

155

CBANOD3S) 1L

Sh*d

eTeaxsjur ordwes puoddSTITTW Jod

jIomqeu £Lq pegsaooad gaaxorvd Jo Jaequny

eoTnpom AIxowsaw pIOM Q2| = NIOMJAN PJIBPUBIG 0¢°G eansty

oh°0 $8°0 (0 $3°0 02‘e S1°0 01’0

W

Ay

50°0

62

HE L]

\UOHLTN AS G2 SOV S0 ON

156

C5aN0D38) 3WIL

Sh'0

*Teaxdjutr oTdwes puodoesITTIW Jad

pesn 8wty JOoggedoad IOM3aUu IO 8FejUdOIaJ

*oTnpow AJOowWswW pJIOM QZL = HIOMIdN pIepuels rmow 8INIT I

oh°0 S8°0 08°0 s2°0 020 S1°0

01’0 S0°0 00°0

a3sn WL ¥0S53503d MYONLIN 40 JOVLNID¥I

157

*TeAxojur d9Tdwes PUOOISTITTH xod

pesn ewty KAIowawm }IOMm3eU 30 e8ejuesaad

e3Tnpouw Axowsw pIOM @2l = MIOM38)N PJIEpUB}S 2%£°6 oINJITJI

C(SANOD3S) 3uIL

es°e Sh°® oh°0 s&°e 0c 9 $2°0 02°0 S1°0 . 010 S0°0 oe.ﬂ
. H. [0V

£

[08

[Oh

" 0S

g3sn 3HIL AHOW3N WHOML3N 40 39WLN3DYId

NO OF RESSAGES THROUGHPUT

158

4S9 |

400 i
00 Mean Message length = 3.6 packets

950,

250,

200,

1so |

169,

S9,

v al

t) 20 4o) ce Y 100
NO OF PACKETS [N MESSAGE

Figure 5.33 Standard Network - 128 word memory module.

Distribution'of message lengths

sent through networke

MESSAGE DELAY (MILLISECONDS)

49,

8S.

20,

1S,

10,

Ter e 4Pt R Y ————TYY

1 . i .]] .

il
C u”i““[

Figure 5.34

20 49 ee 89 109

NO OF PAQICTS I[N MESSAGE

Standard Network - 128 word memory module,
Effect of message length on message

throughput timee.

159

160

CSD3SITUID MIL WAIRMWIINI NN
03h°e 05h"e Ohh°0 oEH 0

*5TIFeI} MJIOM38U UO 83BJI TRATIIEIS3UT

ueam oSvggow JurdIer Jo 3JO0OIFT

*oTnpow LJowew pIOM @2l = MJIOM}SN PJIepPUBRS G¢ *G 2andty

02h’0 0th°o oeoh’e 056°0 08E°0 { 2 096°0 €SE°0 orm.oo
g3o30ed B
o3essa| * - .
[)
[92
g393oed
Tox3uwoy *
[08
[Oh
L

s

CS1000) LNHONOBHL SLOVd J0 ¥IBWNN WLOL

161

5,8 Conclusiong

The effects of node hardwarebhave been considered in this chaptere.
It is apparent that the addition of more processors and memory
modules will improve the response time on message throughput to

a certain degree. Similarly using slower memory/processors

will result in a much poorer throughput. It should be noted that
> or 3 processors produce better throughput after which the

line speeds are the limiting factor. The failure of a processor
in a three processor node would not have a catastropic effect

and the throughput should remain fairly constant. Since there

is no throughput difference due to memory size, it would seem
sensible to have memory units capable of holding one packet

and there should be at least as many memory modules as there

are processorse. Also since the network will not be working
under such heavy counstant workload as have been imposed, surgesi

in traffic intensity should be dealt with quite adequately.

162

CHAPTER 6
2

HIGE LEVEL NETWORK PARAMETERS

6.1 Introduction

This chapter is devoted to a consideration of the effects

of the highlevel network. The chapter begins by discussing

a problem that was encountered early on regarding a simple
buffer lockupe Several solutions te this problem are suggested.
The remaining part of the chapter is concerned with how many
packets the system should be able to support and reasons are
given to explain why the network is not supporting the maximum
packet throughput. There are four seté_of results contained in
this chaptere.

1) 3 hosts/node (Figures 6.4 - 6.10)

2) 2 node network (Figures 6.12 - 6418)

3) 1 megabit lines (Figures 6619 - 6.25)

4) 100 kilobit lines (Figures 6.26 - 6.31)

6.2 Buffer Lockups

During early simulation runs a simple buffer lockup was

encountered as shown in Figure 6ele

message

message

Figure 6.1 Simple buffer lockup

163

This arose in the situation when two nodes began to send a
message packet to each other. When the packets reached the
destination nodes acknowledgements could not be sent since
the output buffers would retain a copy of the message packet
until a positive acknowledgement was received. This resulted
in a rapid buildup in queue lengths on the two nodes that
issued these message'packets. Four solutions were considered
to solve this problem:

1) Double buffering

2) Retaining copy of packet in memory

3) Increasing buffer size to accommodate a message packet

and a control packet

4) TUsing a message buffer and a control packet buffer.

Under the current arrangement, whenever 2a packet needs.to be
retransmitted it would have to be brought back into memory to
have a bit set to indicate that it was a duplicate packet

which in turn would necessitate the checksum being recalculated.
With the first solution to the lockup i.,e. double buffering,

the secondary copy would need g;bif set and another checksum

carried out. Although an error gituation would be

Seconqa?y buffer | output
containing copy e butfer
with a bit set >
indicating duplicate
copy and newv checksum

NODE

Figure 6.2 Double buffering

rare this would result in twice as much work being done
every time a packet 1is sent out. Figure 5.2 showc double

puffering.

mhe second solution would have a high cost. For each O/P
buffer (therecould be up to 10 0/P buffers for hosts and
node communication) there would have to be a backup memory
unit. The multibus would also be unnecessarily ccmplicated

to handle the extra memory modules.

The third solution involves extending the buffer size as
shown in Figure 6.3 to accommodate a message packet and a
control packet i.e. extending the buffer size from 128 words

(for a 128 word packet) to 128 + 8 words. By rotating the

input output

tnift register

Figure 6.3 Ccircular shift register capable of storing message

and control packet

shift register the correct number of bits a control packet

could be slotted ine

164

A modification of solution one is also possible where there are
separate buffers for message and control packets. A switch
determines which buffer will be used for output. For the
purposes of the simulation a copy of the message packet is

placed into a secondary buffer and the control packet trans-

mitted via the primary buffer.

6.% Line utilisation

In a fully connected network where each packet can be trans-
mitted directly from source to destination node, except in
the case of a failure, the number of packets.that the network

can support is given approximately by:

line speed X no of nodes

message packet length + control packet length

where the packet lengths are given in bits. The control
packet length must be taken into account since no other
message packet may be transmitted until the current message
packet has been acknowledged. For the topology considered
the best throughput rafe,v wheré the acknowledgemeht may

be placed into the output buffer immediately, is given by:

000 X
10000 ‘E_ = 27.6 X 10° packats/second.

b=

(128 + 8) X 8

. + transmission has
The worst case is where & message packet a

165

166

*jaomjzeu ojur jndur I03y enanb oFessew uo Ijes

TRATJIIBISIUT Wesw 3JesgslW JutiIsA JO 300319

*opou/g3s0Y ¢ ~ JICMION PIEPURIS VHME H°Q oandig

5’0 Sh‘® oh°0 sSg°e €80 s3°0 20 si°e 10 se‘e 2] ..10
\I}\ l.ll“.llll\\\ =
A.@V - - o \\.\.I’I.\O
"‘\.‘ - e - ll'-ll ‘l““\\l“”'-""I'Il“"‘i- —~ Cd
\\\ ~= .Sd
AOV ~ \\\
Aa.vs\\/\.\ g0
||\\I\l o
(®)
oesY 00¢ (p) [08h
o951 0gz (o)
0087 092 (Q)
oes
W onz (e) ' 085
©3BI TBATJIJIBISOJUT ueoW EEEEEET

mmnumtuxxmexzwssmyuw!nymsm.wtm

167

CSONOD38) MIL

seAJoqutr oTdwes puodSsTTITW Iad

jxomgeu £q pessgecoxd g3zexoed JOo Ioquny

s*epou/s390Y ¢ = HIOMJON PJIRPUBLS w.w oANI L

' YM ' 68
M,
‘. | ,d ; .__ ,____’,,
(T P TR A “,__,_2 A
—CH Y n , | * LY AN _ | w
‘_ ! | __%._:_ w “

Oh3

KUOHLIN AS G310NKI SLBOVd 0 ON

168

er>hw»qﬁ oTdwes puodesTTTIW Jad .

Pegn awty Joggeosoad IOM3eU Jo 83ejuUsdIdd

*3pou/93soy ¢ - IOMION PIePUBIS 9°9 eandty

CSAN0D38) 3MIL

’s°e Sh'® (LX) s8°0 080 s2°e 020 si°e o010

S0°0

[82

[09

a3asn MIL ¥0SSID0Yd NYONLIN 30 J9VINDY3L

169

*Teaxsjur eTduey pPuUOOSSTTTIW Iod

posn emty LIowaw IcM3eU JO oFvjueoJad

*9pou/g390Yy ¢ = 3IOM33N pPJIepurlg

Z°9 eandta
(SANODIS) IMIL
s e Shee on-e SE°0 050 s2°0 020 st'e 010 s0°0 %e
)L4\45?<<>»xdk)\g/>/i<zﬁ)¢<?e$§><)tLC4§/ﬁss4}$J<<<£¢ﬁ?$fiﬁs)>eﬂ)>>s\({);\fe)>fx%?()>12{>L/>\é}s/fﬁg%/2&ﬁ(/%%§L; o1
o2
0s
r oh

@3SN IWIL ANOWIM WJOMLIN 30 JOYIN3IDY3J

ND OF MESSAGES THROUGHPUT

4S¢ .

420

850

€9

259

209,

-3

S6

Mean message length = 3.6.packets

v

Figure o8

49) €) Y " Too
NO OF PACKETS IN MESSAGE

20

Standard Network - 3 hosts/nodes
Distribution of message lengths

sent through networke

170

171

0 ullm

%.W

esl

CSANODISI I

20.
1§

AVY3d 20VSEM

10

130

NO OF PACKETS IN MESSASE

Network = 3 hosts/node.

6.9 Standard

Figure

Effect of mess2ge length on message

throughput time.

172

*OTFJed) NIOM3OU WO 93vI TRATIIRISJUT

uesl a93eggew JuTfIavA JO 2108339

*epou/931s0y ¢ = NJIOMION PJIBPURIS QL°Q oJNITJ]

CSOISIMIK) 3HIL VAIMRWEIINI NV

098°0 0S50 ehs°0 0E5°0 028°0 [23-9 ess°0 062°8 082°0 oL2°o 032 9s2°0 ohe .o.
g3o3o8ed
adegsal 01
[02
[08
gjexoed
ToI3u0)
f Oh

"0S

(51908 LNAHINOVHL S1HOVY 30 ¥ISHMW W™i0L

173

been started just as the acknowledgement needs to be sent

which is given by:

10000000 X 3

= 14.2 X 10° packets/second.
(128 + 128 + 8) x 8

giving a mean throughput of 20.9 X ‘IO3 packets/second.

With the standard network (2 hosts/node) saturation occurred

3

when the network was throughputting 14 X 10 packets/second

as shown in figure 5.13. When the standard network topology
was modified to support 3 hosts per node saturation occurred
when the network was throughputting 20 X 103 packets/second

as shown in figure 6.18.

However, with both network topologies the system is not
supporting as many packets as it should be, although the
minimum number of packets are being throughput in the first
case and the mean number of packets in the second casee

Consider the foilbging case of the standard network with only

cne host per node. Once the host has sent the first packet

of the message it does not send any further packets until it

. ' tination host as
receives a ‘'send next packet from the destin

shown in figure 6£.11. It has been assumed that there is only

one message being transmitted from the host at any time.

174

message message

message

gource
host

destination
host

SNP SNP SNP

Figure 6.11 Number of paths transversed during a

typical host/host transaction

Assuming 10 Megabit lines, it takes the message packet:

2 X128 X 8

= 310 Psecs

10000000

to reach the destination host and a further 19 #secs to receive
the 'send next packet', assuming no other delays. In other words

it takes BBO}Asecs before the host transmits its next packet.

Looking at the source host # node transaction, the host buffer may
be freed after the node has sent an acknowledgement to the message
packet. This transaction takes 11C>Lﬁecs, or a third of the time
for which the simulation has tied up the buffer. This»implies

that the host has only'one user at any time, whereas the host

may be supporting many terminals. It can be seen from the trend

of the throughput figures that the addition of another host per

node would maximise line usage. Alternatively, each node

could support 2 hosts each of 2 terminals.

Figures 6.12to 6.18 show that this would be the case. Whereas

175

ejaomgau o3ut jndutr I03 anonb o3vggow WO 83l

TeATIIRI93UT Ueeuw ofessou ButLfxeA JO 308FF%

*Sopou g - NJIOM3ON PJIEPUBLS VHME 2L°Q OINITd

CBANOD38> 3MIL

s Aoo..oo
[T}
[;]
tll\\\\\\\\\ 606
()
moowd\ 009 (3) oot
soegry 096 (°)
goagry o8 (p)
ey 025 (o) ...

goo9Y 0g% (4)
goesrY Ot (®)

938BI TeATJIIBJISJUT UBOW oIBIIIY

WYOMJ.IN OLN] LaN] ¥od 9N I13MND SIFVSSIM JO ON

176

eTeaxo3ul oTdwes PuUOOSTTTIUW Jod

jaomgeu £q pesseocoxd gaoxoed Jo Jaquny

egapou g =~ JMIOM3AN bIepueis ¢L°9 oIn3 T

CSCNOD33) ML

_ | o | | O m.cm
,", | | LIV L _m A
5"” J a,. :b % ! wmwm_._.vu w&@ .
<3 \5 | N_m I) A P AT

| | i A ..3

g AS OG3IGRAH GLICUd SO 0N

177

CSANGD3IS) MIL

pesn emwt3 Jossaooxd Iomjeu 3o e8equeorad

sTeAT93UT oTdWBE PUCOISTITTU xad

*gapou ¢

-~ ¥wIoMm3oN pJaepue3s #L°9 sInsT g

59 Sh°® oh°e SE°0 330 s2°0 02°0 St°e oV’ 590 .2°0

. e
ﬁ_ | o2

. i ‘
._ J

oh
s
98

g3sn It ¥0SSII0Ud WHONLIN J0 3IBVLINIDYI

178

(SANOD3S) 3WIL

8s°0 Sh°® oh°o SE°®

ereaxejut oydwes puovesTTTIW Jod

Pesn emytj AJOWOW NIOM3RU JO 83riuddIadg

*g0pou Z =~ J{IOMON pIepuelS GL°9 8JnitLg

es°o s2°9 e2'o sv‘e ev’s 50°0

e

@2

[RE

LL

es

a3sn 3L AHOW3W MHOHLIN 40 IDVLNIDY3d

NO OF MESSAGES THROUGHPUT

459
ey Mean message length = 3.7 packets
,&“
899,
2s9d
296
159
100

S04 H

[] Umnw——‘ - v
. v A fol v s

2§ 49 68 80 180
NO OF PACKETS [N HESSAGE

Figure 6.16 Standard Network = 2 nodese

Distribution of message lengths

sent through networke

179

180

103

NO OF PACKETS IN MES3AGE

83

46

'4|lW

3§,

& E+ .

CEANODISITID AVII ISVSSIA

10,

Standard Network = 2 rodese.

Ficure 6217

Effect of message length on message

throughput timee.

181

*O9TJJed} IOM}OU U0 e3el TBATJIILISIUT

ueow afesgeu SUTAIBA JO 208I1%

*Sepou g = {IOM}ON DPIBPUR}S QL°9 OJNITJ

CEO3SITIIO 3HIL WAIRMIILINI NI

098°9 e:8°0 esL e [LYA) eoL‘e 8339°s €23°9 085°0 | B 803 e3h°® ech’e 085°0
¢ * * * - ~ A “ * * [
g393oed
afesgay :
ol
gje)oed _ .
To0I3U0)

[853

[08

o4

(5860 LNSHONDIHL SIBOVL 50 YIS WI0L

tne standard network had three nodes each supporting two hosts,
the case now is of two nodes each supporting two hosts, result-
ing in four hosts per line as suggested before. The maximum

number of packets that the line could support is 9.2 X:’IO3

whereas 9.4 X 103 packets were transmitted on the network.

This is accounted for by "incest" where a host may communicate
with any other host. This results in communication with local
hosts and so use of internodal lines is not made by these packets.
In the two node network the line speed was the limiting factor.

-

6.4 Conclusions

The experiments carried out in this chapter have shown that if
the user is to have a good quality of service, then the line
speeds should operate at as high a speed as possible. User
traffic that might be generated on the operational network is
very difficult to predict, but it would seem that 100 kilobit
lines would be unsatisfactory during periods where large files
were being transmitted over the network. It has been shown that

the throughput time of a message is directly proportional to the

line speed.

183

*JIomjeur oj3utT andur J0F enanb s3wvgsemW UO 93BI

TeATIIRIOJUT uesW oFesgsw IJATAIBA JO 308IF%

"89UTT 3Tqedaw | - MIOMISN pIepUelS YUMI 6L%9 9INJTJ

. . . . * °.¢°
. . oh’e s sse =9 gLe L v2 .:m#WiW“ld
I\.\Ml.l\..‘...“..
cerr o g0t
("]
[698
goasm Q°¢ (9) ' 60h
s003u w.m (v)
goesw g%z (9)
goesu 2°2 (4) L sos

gosesuw Q®2 (@®)

93ed TeATJIIRISJUT uedu EREEEY

aewe

MHOMLZN OINI LNdNI 8&33NBEHN'SBN%%@J‘£)ON

184

(SCNOD38) MIL
(1] Sh°0

*TeAJejuUT oTdwesS PUOOITTITTU Jad
yxomjzeu Kq pesgesoad sjzedoed jyo Jequny

°gauUTT 3Tqedow | -

NI0M3ON PIBPURIS 0O2°9 OandTg

Oh’e S8°9 ¢6°9 52°0 €30 Sye e1°0 300 oo.eo
i ' "
| B A A A Wbl Al ﬁié:ﬁsw@?ﬁ% M
[03
[Oh
L
L2

WUOULIN A O3ICRM gLV S ON

185

*Teagejutr oTdwes PuUOOISTTTIUW Jod
pesn auT3 Josgaooxd IoM3OU JO 83v3ULDIDJ

*8oUTT 3Tqedow | = {IOMION PJIBPUBIS [2°G ©INISTJ]
(SONOD3S) 3WIL

05°0 Sh°® 0h°9 s8°e 08°9 se°0 92°0 si°o LA S6°9 23°0
%%3%%%?3&?%&?%1 °

[02

h

9

es

09

a3sn Wil $OSSO0Yd WIOHLZH 30 39YLNADY3d

186

eTeaxejur oTdwes PuodISTTTTIW xad

pesn suwty LJIowaw NIOM3OU JO 93v3U0I9d

*gouTT 3TqeSew | - YIOM33aN PIepuels 22°9 2INSTJ
CSONOD3S) 3MIL

s°0 Sh°® oh°0 SS°0 #s°0 s2°0 92°0 s1°¢ 3 °0 $0°0 00°9
l{é \ b — «é —NAA is(— A Eggéc
o1
02
98
[ok

"0S

g35n ML ANOWIH WYOHLIN 0 39WLNIDYI

KO OF MESSAGES THROUGHPUT

187

Yse,

409 Mean message length = 3.5 packets

850,

259,

209

159,

109.1

59

o L, Nenanae,.0 v v v v v v - .
1 29 4 6¢ 88 163

NO Of PACKETS IN MESSAGE

Firgure 6.23 gtandard Network = 1 megabit lines.

Distribution of message lengths

sent through networke

MESSACE DELAY CQUILLISECHRIS)

-
"
o
"
il

. o a8 T & 89) 19
NO OF FACKETS [N MESCASE

4 ¥

Figure 6. 24 Standard Network = 1 megabit lines.

rffect of message length on message

throughput timee.

188

189

*5TFJed] NIOM}OU WO ©3BI TPATIIBISRUT

usew o3wogem IUTAIBA JO 309334

-geuTy 3Tqedew | = HIOM3SN pIeduels mw.m 2INITJ

CSO3SITIHD 3WI1L WAIRMIZIND NV3H

eoL’S osh 'S $02°8

0s6°2 ooL°3 9Sh°d 602°2 8s6°Y eeL"? 0Sh°} 802°%

gjoxoed _
o3egsay

056°¢

eeL ¢

gqeyoud

T0X3T0) T

—

a

(5000 LNSHONOUHL §1MOYd IO yIeNnN Wiol

190

CSONOD3S) M1L

*jaomzeu ozur 3ndur Joy onenb oFesssw uO e3vX

TeATIIRISUT Ueow oJegsem JurlaeAa IO 3083F7Ii

*g9UTT 3TQq JOOL = {JIoM3dY PIBPURLS VWAL

wm.w °andT g

N - = = el 2 e2°® I8) 010 ce°0 ao.ﬂ
on \oooo.»........o...,.
(®) — |
()"
\\
-‘\\"
(q) .&
05
goesm G¢ (o) N
gdsgsu MN AOV
g%9s8uW Q¢ AQV "

309sW G| Amv

298I TEATIJIIRISIUT UR2UW 8JBISIY

#3np §3YVESIU JO oN

WHOMLIN OLN1 LNdNI ¥od SN

191

*TeAagajutr oTdues puooosTTTIW Iad

jyaomjau Lq pesgeocsoad szeyoed jo Joquny

CSONOD38) M1}

30 Sh°e ohe coe

T §< IR A g..ﬁjég..{ 7 T m e L T

AR

o

(&1

'Sy

L

WHOMLIN AS QOGN giHoVd 30 ON

192

C8GM0D38) MIL
.u.o Sh‘@

0h°H

ereazajut atdwes PUoOOSSTTTTY Iad

pesn 8w} 10gg900xd MIomzeu jo aJejusdred

eoouUTT 2TQ YOOL - IOM3ON PILPUEIS 8279 oangTd

8o 82°9 ec‘e St°e LA

A

%jjjj%idé 4_3‘

\

8dH&m£}53039Mﬂ1»BJ

~

aasn MIL

193

CSONOD3S) M/IL

es°3 Sh°0

ereAJojuT oTdwes puooeSTTITW Jod

pesn eswry LIowauw HIOM3dU JO 23v3US8OISJ

esauTT 3Tq NOOL = MIOmjeN pIepuels $z-g oIndrg

S8°0

Rk ﬁ i ,ﬁﬁ _f T

o1

@3sn 3WIL KUOWM WEOMLIN 30 ISVINIOYL

NO OF MESSAGES THROUGHPUT

4S,

4o,

1S,

10,

o0 N

60) Py Y 160
NO OF PACKETS I[N NESSAGE

Figure 6.30 Standard Network - 100k bit lines.

Distribution of message length

sent through networke.

194

MESSAGE DELAT MILLISECONDS)

195

4s9,

yoe,

- 858

250,

200,

150,

180,

50.

(] - ‘ . v y e) &0) 199
NO OF PACKETS IN KESSASE

Figure 6.31 standard Network - 100k bit lines.

Effect of message length on message

throughput timee.

196

CSO3SITMID IWIL WAIWMMRIILINI NI

808 "ch 069 °5H 000" th $20°L6 009 €8

e

*5T3Jeds NIOMJBU TG 93Bd TBATIIRASIUT

uesu oF9esgew FuTAaea JO 309IFd

*SoUTT 3TqQ 30OL - HIom3aN pxepueis gg*Q InISTJ

gjoxoed

a3eggey

ggaoxdoed
ﬁthﬁoo

090 °}

[052

| (1]

[O0h

ANHONOYHL s1HOVI 30 IO WIO0L

197

CHAPTER 7

LovW LEVEL NETWORK PARAMETERS

7.1 Introduction

The purpose of this chapter is tc evaluate the effects of the low
level network on the pérformance of the network. Four sets of

results are considered:

1) Average message length (figures 7.1 to 7.7)
2) Message mix ratio (figures 7.8 to 7.14)
%) Mean number of generating hosts (figures 7.15 to 7.21)

4) Packet length (figures 7.22 to 7.28)

Several formulae are derived including an approximation to the

mean message delay.

198

*jyIom3zou o3utr 3ndut J03 osnonb oFesgow uwo ajex
TRATIIRISIUT Uesw oFessowt FuTAIeA JO 309317FF
*3o3oed pIom ggg - IOMION PIepuels VWAL L°4 eanITg
CSON0D38Y MIL

ose Sh°® oh°e) (30 S3°@

AT B L B I
.

« g ® e

@y
A0vlll\|l\ -=°-"

-
.Il‘l.l‘

— e e Sy,
-

‘.‘“D‘\
Py

(2)==~

(®) ——

goosy/ 028 (P)
00817 Onl (9)
soesty 099 (q)
soes 0gs (®)

93el TeATJIIBIOJUT UBSUW o0IBISIY

601

[602

' 608

' 68 h

JprenNe 3PS J0 ON

MMOHLIN OLNI LNdND ¥0d B

e

199

CSANOD38) AMIL

50 Sh'e oh°e

sTeAg9jur eTdwes puodasTTTTW Iod

Nromzou Lq pesseooxd sieoed jo xsquny

*3o3oed paom gGz ~ I[IOM}AN pIepuels 2%, eanstj

gg%

W, ,?}%

€2°0

3

[3h

(2]

\CHLTY AS GIICWH SOV S0 ON

200

*TvAx93ut aTdwes puooosSTITTIW Jad

pesn swTj J0sgao0xd MIOM3OU JO o5ejUedIAd

*3o3oed PIOM QG2 - NIOM3ON PIepUR]S G°/ eansdtd

CBANOD38) MIL

aisn 1L ¥0SSID0Yd MUK LN J0 33WINIOYI

201

*Teaxejutr o7dwes puooagTTTIW xad

pesn ewt3 LIowaW YIOM]IU JO &Ivjusdaed

°3e30ed pIOM gG2 = NIOMZAN pIepUR}S

¢4 ®andtyg
¢SANGDIS) M),

es°0 Sh® oh'o S6°9 CYAL) 529 920 510 010 s0°9 ¢e'o
. - - ~ -)

| i

. 4 P

01
02
s
ok

" @S

J3SN NI L AHOHIW SOMLIN JO 39U

NO OF MESSAGES THROUGHPUT

459

400 Hean messagze length = 3.5 packets

859,

899

259

298,

159,

189,

S04

v

t 2

0 -Lﬂﬂﬂhﬂﬁ%;ughq

4) Y) 6) 106
NO OF PAGHETS N HESSAGE
Figure 7.5 Standard Network - 256 word packet.
- Distfibution of message length

sent through networke

202

203

130

MO OF PACHETS [N NMESSAGE

43

H.T

85,

W
™ @

CSAONOD3SITIIHD AV

e

vackete

-

6 Standard Network - 256 word

Figure 7.

length on message

nffect of message

throughput timee

204

*5TIIBI3 NIOM3AU UO 238X [RATIIBISIUT

neow oFevegaw Sutrfaea JO 309IFU

eqe3ord pIOA 9GZ =~ NIOMISN PIepPUBIT 7% eanstd

CSD3SITUH) 3MNIL WAIRMYILNI NV3U

ohE ‘0 [A3 e838°0 ‘ ¢
A R 058°0 o28’e O6L‘d esL e 06L°9 eoL0 oLs ‘9 oh3 ‘e @rs’ °
e~ ‘ s‘e ess oo
a3wvssoN
gqao)oed
1ox3uo0n "
[62
f @8
[dh

"0S

(51000) LNJHONO¥HL S1OVd JO ¥IEWNN WL0L

205

7,2 Packet length

packet switching communication systems have two fundemental
goals in processing data: low delay and high throughput. For
low delay a short packet is needed while for maximum through-
put it is necessary to have a large packet size to minimise

system overhead. With a short packet there is a highet prob-

ability of error free transmission.
Figures 7.22 to 7.28 show the effects of doubling the standard
network packet length from 128 words to 256 words. Using the

formula for system full capacity:

line speed X nc of nodes

(message packet length + control packet length).

where the packet lengths are given in bits, for the standard
network under the minimum time delay condition of an output
buffer being available when required, the number of packets

handled by the standard network is given by:

10000000 X 3 3
= 27.6 X 10 packets/second.

(428 + 8) X 8
For the standard network with a 256 words packet, the number of

packets handled by the network is given Dby:

10000000 X 3

14,2 X 103 packets/second.

(256 + 8) X 8

206

scg03oed Q2

ejIomgeu ozur 3ndul I0J eneub oJFwsseu U0 83el

TeATIJI8I03UT Uesw oIegsaul Sutfaea 70 309111

o3essaw JUOT uUBeOW =

gjoxoud 2 = o91Ssow 3J0Ys uesw ~ YJIOMISN PIBPUERIS VAMI MdNithMﬂh
(SONDD35) ML
059 Sh'0 (130 58°8 ¥8°0 s2°0 02°e st 03 °0 S0°8
(3)
(3) == ===
A.vv [T ¢ oy 4t

moowd\ omu (¥)
goesy 00, (°)
goesy/ 059 (P)
soesy 009 (2)
80881y 085 (9)
soosyy 064 (B)

®1ed TBAIJJIBJIOJUT Ueall 2J8ISSY

202

20h

HBAD SIFVSSIM JO ON

WYONLAN OIN] LNdNI ¥oJ

207

CoONOOIT) ML

Sh*0

¢h°0

eTeaxajut oTduss nuodOSTITTW Jod

yaomzau £q paggasoad sasxord Jo xaquny

egjedoed Qg = odesgau BuoT uesw -

gqoxord 2 =

56°0 %) 532°9

aSposew 3JI0US UYOU = NIOMION PIEPUES

€3°9

51°0

n

sanITd

0

§2°0

-
.

L2

°®

L

' 2h

wyoHLSH A8 GIIOWH SLIIOWS 0 o4

208

*TeAgajuT 9Tdwes PUCDIOSTTLTW JI8d

pesn ewt} J0Ss900dd {IOM}OU IO €3BIUIOIJ
egjeyoed Oz = oFegsew SUOT UL =

g3e3oed g = adeggou 3JI0US UBSW = MIOMION PpIepuels Gre/ ST
CSAN0D3S) 3WIL
50 Sh*® #h°o s8°0 €E°9 se°o gz°9 st°e { A0 S9°6 60°2
: A A -]
_ b W e
. /? _
Oh
@9
€8

A

a3sn 1L ¥0SS3D0¥4 MEONLIN 10 JSWLNIOU2d

209

sTrazejut eTdwes PUOOSSTITTH Jod

pesn suwtTy Axowsu MJIomjeuw IO edequseddaad
*gge)oed Q2 = oJevssou Fuol uUBAU -~

giosoed 2 = eSesseuwl 3J0YS WeIW = SIOMJAN PIBPUBIS e/ 8an3dTJ
CSQNOD3S) 3WIL

8sS ..c mru- oruo mmue sm.»o muuﬁ [] m«“e eﬂws SH°0 oa.oo
| {!
f}i{ﬁégﬁi}{ 55%23375 "
Q2
€
' Oh
L

es

g3sn 3Mit YOI YJORL3N 40 39VIN3OY¥3d

NO OF MESSAGES THROUGHPUT

4yse

4o

859

880

259,

2689,

189,

§9]

210

) Mean packet length = 6.9 packets
1
i
!
! e . - v -
") 8,° 40 Y 8¢ 100

[0 OF PACKETS [N KESSAGE

Firure 7.12 Standard Network - mean short message = 2 packets
O .

- mean long message = 20 packetse.

Distribution of message Lengtihs

sent through networke

211

1868

66

40,

85

8]

(4 ® "

CSONOIISITIID AVTI 39UESM

10,

ND CF PACKETS [N MESSASE

Ficure 7.13

= 2 packets

mesesage

tandard Network - mean short

5

sage = 20 packets,

- mean long mes

ssage length on message

ffect of me

B

1mee

hroughput t

>
[

212

*9TJJed] NIOM3OU TGO 93ed TEATIIEILIUT

ueow #Jesgow Jurhrea JO 399IFH.
egjexoz2d (2 = a3wgssouw JUOT UBAUW -

gjeozd g = 93wSSoW 3JI0US UBSW = NIOM3aN pIepUBRIS HL°L NS TI
CSO3SITIHD 3WIL WADRMYILNI NWIH
ocL e oLL®

esL°0 ceLo 61L°8 853" e eL9°® €s9°9 0590 019°0 ess‘e eLs‘e
ggexoed
e8wvagay -
F ol
F &2
gjexoed
10X3u0D
[68
[Oh

(S:000) LNHONOBHL SLOYd 30 YSSINN W10L

213

This gives a 3% increase in throughput without taking nodal
processing time into account. In order to obtain this 3%
jncrease, processing time is doubled and memory modules and
buffer sizes are doubled. It should also be borne in mind that
acknowledgement time may also be higher for the longer packet
size. The worst case as before,is for a newly generated ack-
nowledgement where the first bit of a message packet has just
been transmitted, thereby causing the buffer to take twice as

long to empty.

7.3 Message delay

The time taken to transmit a packet from source to destination

is a sum of three factors:

1) Propogation delays for the packet and its acknowledgement
2) Transmission delays for the packet and its acknowledgement

3) Node processing delay pefore ar acknowledgement is sent.

A general approximation may be obtained for the time taken to

throughput a message as given by:

€T, * (1-().Tl

e e ——
e

2 fe

.

where & is the ratio of short messages to long

T is the time to throughput the mean short message

T. is the time to throughput the mean long message
is the mean short message

l‘zl is the mean long messafee

214

*jIomzau ozur 3ndutr Joy onanb aFesseut uUo ejed
TeATJIIRIS3UT Uesw oFesgow JutrdasA JO 309IFF
*iL:6 oT3ex uUT ofegsow JUOT/FIOUS - HIOMIdN pJaepuUels YHMIE

VATV

CSAN0D35) M1l

0s°0 Sh"0 eho S8°0 68°0

-
\I'nl‘
(PY°~~ -

8ae

. €38
(®) .

momm«\ 00¢ (@) oo
soes1y 0gz (P) A

mooma.\ 092 (9)
sossy 06z (Q)

v "095
g0esYy 042 (®)
©3ed TBATJIIEI93UT Uedll 558SIa)

[S—

W 20 ON

WHOMIIN OINI LNddl ¥04d SNNBND §3IVE

215

CSONOD36) MIL

’s°0 sh'o

*L:6

oh°e

sed

ereagejut oTdwes puwodoSTTTTW Iad

yIomzou Kq pesseooxd gjedoed jo Jequny

013ea ur o8wsseu JuOT/3I0US = HIOM}SN PIepUeRig

)

ez9

gL°/l oansTd

S1°9 1K)

50°0

[N,

03

09

"601

WICHLIN AT T3I0H SLBCYS 30 0N

216

*TeAIa3uT oTdwes PUODISTTIIW I8d
pesn amT3 Joggaocoad IOM3dU JO 3JelusdIed

®L:6 OoT3ea utr e3wgsgow IJUOT/JIOYS = MNIOMRDIN PIBPURLS

LL%L eansTy
CS@I0236) MIL

es°e Sh'® ° e e8°® 52°0 A LA 59°0 ¢0°0

99

08

G3Sn 3ulL H0SSID0NJ oL 30 FoYLNIY¥2d

217

eTeAZojuT oTdwes pUCIISTITTH xad
peon autjy AJowau jIom3zau 3o 85e3usoIad
®L:6 OT3el UT oJegsew Juor/3I0Yys - HIoM3aN DPJIBDPUBLY

wr.m 2aINITJI
(SAN0D3IS) 3IUIL

es’e Sh'® oh°® see

N i

-

ez°9 ma.a

ov°o SP°0

Wy o A

S
t
—— %
e @

21

(-2

[¢E

o h

¢S

399 IN3DY3d

a3sn 3ulL AHOHIH WHONLIN o

KO OF HERSATES THROUEHPUT

218

\n

4594

429,

Mean packet length = 2.3 packets

859

802

€59

808,

159,

162,

50

¢ r\fm}ﬂﬂnm,fnmm, it
€0 4

? & 8 T 189
NO OF PACKETS IN MEISAGE

Fipure 7019 Standard Network = short/long message in ratio 9:1.

. o nerths
Distribution of message lengths

sent turough networke

MCSSAGE DELAY CMILLISECONDS)

49

20.

15

t°<

54

219

Figure 7.20

)) 4o €9 ' 80 ' 159

KD OF PARCXETS IN HESSASL
Standard Network =~ short/long message in ratio 9:1.
Effect of message length on message

throughput timee

o
*OTIFEJI]} MIOMGEU U0 932X TPATITIRISIUT
ugell 93evggew SuTldeA JO 309IIF
*L:6 OT3ex ur oJessaw JUOT/3I0US =~ IOMION PpJIRPUBRYS 12°7 odnstd
CEI3SITUN) MIL WAIRRRIIINI W3
ess°e ShS“® 865°0 sis‘e 285°0 sez°e eL2°e ss2°0 en2’e s22°0 912°0 SG1°e esi .no
gjedoed
o8eggoy “
§2
83
g3e3oed
Tox3uo0) ———
————
¢8
| &h

€5:009) LNJHSNOYHL sLVd J0 ¥3ICHNN WLO0L

221

7.4t Conclusions

This chapter presented the results of experiments on the low
level network under a variety of conditions, The relationship
between delay and throughput has been given as a linear equation.
The equation will remain linear until a node or a line fails
necessitating routing through an intermediate node. It has

been shown that incréasing a packet's size does not bring any
great benefit, at a great increase in cost, and under certain

conditions may in fact be detrimental by increasing packet time

spent on the network.

222

ejjaomzeu ojzut jndut Jo 8nenb eJegsaw U0 I3eI

TBATIIRIDQUT Geow o3essouw JuTLAIeA JO 309IIF
*2 = g490y FuUr3vILUSSZ JO JoquUnu uUwdy = JIOM3ON PIBRPURIS VWAL

S2L oandtid
CEANOD3SY Mi1L

es°?
°
Gl
632
eos
soeg¥ 065 (®) | -
goasry’ 026 (P)
mommﬁx 005 (9)
soesyy ogh (%)

"90S
soa91y 09% (e)

B3ed LeArdded2jut ueed CEEEER

fng S39VESIH JO o

WYOKLIN OLN] LNdN] yoJ N

223

*TeAI9qutT aTduwes puooesITTTW Jod
Jaomaeu Lq poasgseocoxd giaoed Jo Jaquny

*2 = gj3goy Jurjzeseusad Jo JoqUnNU UBD| =~ JIOM3®Y pPIepUElS

Tz eandtd’)
CSONOD2EY ML

es°d Sh°@ &h°0 s8°0 e5°8 se°0 23°0

. : $1°0 010 50°0

ot
T
-l

JyOHIT A8 G3TRNH GLBO¥ JO ON

224

*TeAIO3UT oTduwes DPUOOESTITIM xad

posr awIj Jossaooxd }IOMZ8U JO 2LeIUIIIdF

«2 = ggsoy SuTjeacusd JO JoquNU Uedy - NIOMION DPIEPURIS HZ*) SangTL
CSONCIIS) MIL

95°0 Sh°0 oh 9 SE°0 0G0 $2°0 ez s1°0 e1°0 s0°¢ 00" ..o

_Q
¥ 1 82

wf | : . /&q) w

| | N\ %
T AL A I g N
| £s,

f. ! £
es
03

ML3N S0 J5ULNIINId

aasn WL ¥055300ud W30

225

*eTeada3ut oTdwes PuUOOSSTTLIW xad

posn owTj AJIOWSW NIOM3IU JO 8Je3UdDI8]

*2 = g380Yy Jurjexeued JO JaqUNU UBIY = NJIOMISN vawvsde mmrm\ohﬁmﬁm :
(SAN0D3S) 3ulL
os°® Sh'2 oh'o S0 06°0 S0 62°9 siv'e AR se°o 39°0
R . . R - - . . 0
WA, %i«};\{}% . i
(01
22
£33
f €h

"@s

syonL3N 40 3HYINIDYId

a3sn 3dlL AMOUZH

NO OF KESSREES THREURPUT

11054

4S9,

$2d

Mean message length = 3.4 packets

859,

809

259

282

189

$9.

Hinasl o i - ‘ ' '
&ngﬂrnmwm: A v = - =

MO OF PACKETS (N HESSASH

» K3 - I n . . - -
Figure 7.26 Standard HNetwork Mean number of generating hosts = 2.

Distribution of message lengths

sent through networke

MESSASE DELAY MILLISECOXDI)

40,

8S.

9..

£9.

15,

19

2

Figure 7.27

129

fod

NO OF PACKZTZ IN MEBTASE

€

Stapndard Network - Mean numbex of gmenerating hosts
Stan
Effect of meseags length on message

throughput timee

-
=

2,

223

)
*O3TJJeld]} ¥IOMJOU U0 238l TRATJIIBIDQUT

. ueowl aZessomw SuThIea IO 300117
2 = 893807 JUuT32a9Ua3 JO JOoqUNU UBIH =~ JIOM3e)N pPIepurls

g2 L odatstd
¢SDISITIIWD 3WIL WAIYNUNILNI _NU3W

029°2 S89°9 @6s ° ‘
) A s°e SLS°0 @55°@ ShS @ 8E5°0 S¥5°0 Q0s°e 38k°0 @Lk"0 SsSh'e Ghh°0
. R A
g39)ovd
adesgap
o1
e2
83903084
T0a3u0) -
f @€
' eh

" @S

4L SLDYd 30 ¥3EHAN WL0L

(51000 L1ndHSNOY

229

R 8
CHAPTE

General Conclusions and Suggestions for further work

This chapter makes some general conclusions about the investiga-
tion and makes some suggestions for future work. Tne use of a
simulation study to aid this investigation has proved satisfactory
for the results given. However, it must be noted that the compu-~
tational cost was high. It was assumed at the beginning of the
investigation that for a simple network of the kind considerad

the cost would be quite low. The detail simulated at the level

of a procesSor/memory module handling individual packets through
input/output buffers resulted in a small step size which increased
the length and complexity of the simulation runse. This resulted
in having a limited number of runs which did not enable the full
scope of the model to be utilised. Had & simpler model been

chosen, more runs could have been obtained. For exanple, given

a Symmetric traffic pattern it may have been wiser to simulate

a node. It is felt that although the results were very useful

in pinpointing deadlocks and quantifying the traffic that the

network could sustain, the prouess of developing the simulation

model was an important one in obtaining a deeper understanding of

the overall systeme.

. L. . . - .
The experiments carried out 11 this jnvestigation nave tried

to quantify the effects of parameters on throughput and message

delay. On the basis of these results some general conclusions

may be made regarding certain features of the network. AsS is to

230

pe expected the node itself is the limiting factor together with
the line speeds. To ensure that these bottlenccks are reduced
ag far as possible the use of balanced processors and memory
nodules operating at say 100 nsecs per machine cycle are des-
ijrable. The use of two processors together with at least the
same number of memory modules should ensure that in the event

of a breakdown, the network will continue to funciion adeg-
uatelv and throughput should not diminish significantly. As
has been shown, the higher the line speed the better the ser-
vice. Line speeds should be as fast as possible, preferably

in the 10 megabit region.

The last chapter discussed how doubling the standard packet
1engin of 128 Lytes (8 vits) gave throughput gains of only
single percentage figures at a considerable increase in cost

for larger memory modules and input/output buffers. There were
also no visible advantages in having memory modules capable of
storing more than one packet each - in fact it could slow the
node down due to memory contention problems. Since 102k bit
memory modules are a standard product, it would seenm logical to
restrict packets to this length. In order to 1limit kottleneckse
ssible it would also be desirable to use

at the node as far as po

microprogrammable microprocessors as opposed to MOS microprocessors

since they are both faster and more flexible. The investigation

has shown that a multiprocessor node is viable and gives distinct

advantages by the provision of parallel processing and fail-soft

capability.

During the period of this investigation new networks have come

jnto existence and there is every reason to suppose that the

state of the art is in the infant stage. Significant develop-

ments are continually emerging in microprocessor and memory tech-

nologies.

As was stated before, the full scope of the model has not been
taken advantage of. It is suggested that further work could be
carried out with this model to observe the effects of transient
conditions e.g. the effects of processor/memory breakdown; the
network response time to changes in traffic in£ensity; the effect
of non-symmetric host traffic and the effect of passing large
files over the network. The amount of traffic that the hosts

might generate also needs to be investigatead.

At this present time, a prototype node is in the process of being
constructed and it is hoped that the results of this investigation

will be of use in defining the ncde and network architecture.

231

232

RUFERENCES

1.

2.

L.

5e

Sterman D, N,

"Traffic and Delay in a Circular
28 2nd ACM IEEE Symposium cn Problems in the
optimization of Data Communication Systems, Palo Altn,

california, 1971, pp 102-107.

peterson J. J., Veit S. A. "Survey of Computer Networks."
MITRE Corporation Report MTP-357, September 1971.

Roberts L. G., Wessler B. D. "Computer Network development

to achieve resource sharing." AFIPS, Vol 36, pp 543-549,

Heart Fe Eoy Kahn Re Ee., Ornstein S. M., Crowther W, Ro gy

walden Do C. 'The interface message processor for the ARPA

computer network." AFIPS, Vol 36, May 1970, PP 551567

Frank He., Frisch I. T., Chou W. "popological considerations

in the design of ARPA computer network." AFIPS, Vol 36,
May 1970, PP 581-587.

Carr Ce Se, Crocker S, D,, Cerf Vo, Ge "Host-Host communication

protocol in the ARPA network." AFIPS, Vol 36, May 1970,
pp 589=597.

Ornstein S. M., Heart v, E., Crowther Y. R,, Rising H. Koy

Russell Se Bey Michel A, "The terminal IMP for the ARPA

computer network." AFIPS, Vol 40, May 1972, pp 243=25h.

crocker S. D., Heafner J. F., Metcolfe R. M., Posbel Je Bo

"Function—oriented protocol for the ARPA computer network."

AFIPS, 1972, Vol 4o, pp 271=27%

Cosell B. P., Walden De Co,

McOuillan Je M., crowther W. Res
n the design and performance of the

vol 41 II, PP 24 1=754.

Heart Fo Be nImprovements i

ARPA network." AFIPS 1972,

10.

1.

12.

13

b,

15.

16.

17 ¢

18.

233

Frank H., Kahn R. E., Kleinrock L. "Computer communication

petwork design - Experience with theory and practice."
(a) AFIPS 1972, Vol 40, pp 255-270.

(b) Networks = Vol 2. No 2. 1972, pp 135-166,

Kahn Re. "Terminal Access to the ARPA computer network."
Computer Networks. R. Rustin (Ed). Prentice Hall.
cliffs N. J., 1972, pp 147-166.

Englewood

Kleinrock L., Naylor W. E. "On measured behavicr of the ARPA

Network." AFIPS 1974, Vol 43, pp 767-780.

Thomas R. He YA resource sharing executive for the ARPANET."
AFIPS, Vol k2, 1973, pp 155=163.

Cole G. D. "Performance measurement on the ARPA computer
network.'" 2nd ACM IEEE Symposium on Problems in the optimiza-

tion of Data Communication Systems, Palo Alto, California, 1971,

pp 39-U45.

Reberts L. Ge ngxtensions of packet communications technclcgy

to a hand~held personal terminal." AFIPS 1972, Vol 40, pp
295=298.

Luther W. Jo "Conceptual Bases of Cybernet.” Computer Networkse

R. Rustin (Ed). Prentice Hzlle Englewcod Cliffs Ne. Jo 1972,
pp 111=-146.

Farber ﬁ. J;;JLarson K. C. '"The Systen Architecture of the

r System - An Informal Description.”

Distributed Compute
University of california,

September 1971,

Irvine,Technical Report, No. 11,

Farber D. '"Data Ring Orientated-Computer Ketworks"

Computer Networks. Re Rustin (Ed). Prentice Halle Englewood

Cliffs No J. 19724 PP 79-93.

19

20.

21.

22.

23,

2k,

25

26.

27

234

EEEZﬁﬁilii "Me;it Computer Network.'" Computer Networks

R. Rustin (Ed). Prentice Hall. Englewood Cliffs N. J. 1972
[} o \j

pp 45-48, '

pvoperle E. '"Merit Computer Network: Hardware Consideration.”

Computer Networks. R. Rustin (Ed).
cliffs N. J. 1972, pp L9-63,

Prentice Hall. Englewood

Cocanower A. 'Merit Computer Network: Scftware Considerations."
Comouter Networks. Re. Rustirn (Ed). Prentice Hall. Englewood
Cliffs N. Je 1972, pp 65=77.

Mendicino Se. F. ''Octopus: The Lawrence Radiation Laboratory

Network." Computer Networkse Re Rustin (Ed). Prentice Hall.
Englewood Cliffs N, J. 1972, pp 95-110.

Weis Ae. He "Distributed Network Activity at IBM." Computer
Fetworks. R. Rustin (Ed). Prentice Hall. Englewood Cliffs Ne Je

1972, pp 1=25.

williams L. He "A functioning computer network for higher

Education in North Carolina]' AFIPS Vol L1 1I, 1972, PP 899-90Clt,

Coleman Me L. MAccnet - A corporate computer network."

AFIPS, Vol 42, 1973, vP 133-140.

Fisher Ce Re, Sligh R L. "The Datran Network." 2nd ACM IEEE

. —t 2 - L3 . n P 3
Symposium on problems 1o the Optimization of Data Communications

Systems, Palo Alto, california, 1971, PP 65-72,

Scantlebury K. Ae, wilkinson Pe Te "Phe design of a switching

omputer services by other

system to allow remote accels to ¢
computers and terminal jevices. 2nd ACH IEEE Symposium on
prohlems in the Optimization of D
199 1601674

ata Communications Syatens,

Palo Alto, California, 1971,

29.

20

33

3k,

35

364

235

Belton R, C., Smith M, A, "Introduction to the British

Post Office Experimental Packet-Switching Service (E.P.S.

Post Ofifice Eiec. Enge Journal, Vol 60, January 1574 a4
o~ '

Kleinrock L,

"Survey of Analytical methods in queuing
t
networks." Computer Networks, R. Rustin (Ed). Prentice

Hall. Englewood Cliffs N. J. 1972, pp 185-205.

Kleinrock L. '"Analytic and simulation methods-in computer

design." AFIPS, Vol 36, 1970, pp 569-579

Slyke R. V., Chou W,, Frank H. "Avoiding simulation in

simulating computer communication networks." AFIPS, Vol k42,

1973, pp 165-169.

Bowden E. ¥.. Mamrak S. A., Salz F. R, "Simulation - A tool

for performance evaluation in network computerse’ AFIPS,
Vol 42, 1973, pp 121-131.

White G, We ."Message Format Principles." 2nd ACH IEXE

Symposiuin on problems in the Optimization of Data Commun=-

ications Systems, Palo Alto, California, 1971,pp 192-198.,

Karp D., Sercussi Se. np communication Interface for

computer networks.'" 2nd ACM IEEE Symposium on problems

in the Optimization of Data Communications Systens,

Palo Alto, Californmia, 1971, PP 117123

Davis b° W. "The Control of Congestion in packet switch-

ing Networks,' 2nd ACM IEEE Symposium on problems in the

Optinization of Data Communil

California, 1977, PP L6=49e

cations Systems, Palo Alto,

Gardher he Jo, Sandum Ke No "Experimental Packet=-Switched

Service: Routing of packets.' Post office Elec, Eng. Journal,

Vol. 68, 1975, PP 235-23%

236

Fszau Ce Ro. Williams K. C.
37

"A method for approximating

the optimal network." IBM System Journal, Vol 5, No 3
9

%84 Frank He '"Optimal design of Computer networks." Computer

Networks, Re. Rustin (Ed), Prentice Hall, Englewood Cliffs .
N. Jo, 1972, pp 167-183.

29, Hamer M. "Reliability Modelling considerations for a real-
time control system." IEEE, 197k, Fault Tolerant Computing

symposium, pp 2-2 .to 2=7.

Lo, pvizienis A. “Architecture of fault-tolerant Computing

Systems." Tnternational Symposium on Fault-Tolecrant Comput-

ing, FIC-5, 1975, Paris, France, PP 3164

44, Borgeson B. R. np fail-softly system for time-sharing use'.

IEEE, 1972, rault-Tolerant Computing Symposium, PP 89~93.

Hopkins Ae La, Smith T. Be "The architectural Eiements of a

-
N
°

symmetric Fault-Tolerant multiprocessor's Fault-Tolerant

Computing Symposium, FTC/3, pp 4=2 to L6,

43, Cox D, R., Smith W, L. nqueues'. Methuen, 1961

Ll.L*,. saatx T. T o "Elements of queueing theory"o I’fCGra\'!Hill, 1961.

o

k5, Coffman Z. G., ¥ood R. Ce "Interarrival Statistics for TSST.

Systen Devalopment Corporation, gp-2161, hugust 19654

46. Tocher K. Do 'The Art of gimulation™. Hodder and Stoughton,

1975.

Lk, Green D. H. npata Monitoring and Smoothirg'. Digital

Simulution Methods, IEE Menogra: gerics No. 15,(Ed) M.G. Hartley,
et W & -

1975, pp 184=201..

I+8.

49.

50

51

23

5l+i

55.

237

Cox D. R. "Prediction by Exponentially Weighted Moving
Averages and Related Methods". J. Royal Statistical Society,

serics By Vols 23-24, 1961,

Blackman R. B., Tukey J. V. "The measurenment of Power

spectra’e- Dover Ne Je, 1958.

Ratcliffe J. Fo "Zlements of Fathematical Statistics"e.

Oxford Mathematical Handbooks.

Southworth Re We "putocorrelation and spectral Analysis",

Mathematical lMethods for Digital Computers. (E4) A. Ralston
& H. S. Wilf, wiley. Vol 1, 1967.

" GreenD. H., Hartley M. G. "Simple Pseudo-random Generator'.

Digital Simulation ¥Methods, IEE Monogram Series No. 15,

(E4) M. G. Hartley, 1975, P 35-62,

Hartley M. G. 'Modelling technique for traffic studies".
Ph.D. Thesis, Manchester, 1968,

Heath F. G. '"Digital Codes and Converters'", Ph.D. Thesis,
Manchester, 1961.

e
g

Redshaw S ") repeatable randon pulse generator using c¢hain-

e S e ot b 2t e

codes". Ma.3c. Tech. Thesis, Manchester, 1961,

=
¥

pPENDIX 1
__._-—-'—_._-.

THE PSZUDC=RANDCM GENZRATCOR

The basis of the pseudo-random generator used are binary Chain-
. . . n L
codes which may be defined as a sequence of 27 or fewer binary

digits arranged so that any n adjacent digits locate the position

O
H,

those digits uniquely. Figure I.1 illustrates the uniqueness

of eacn set of four adjacent digits in the ssquance.

Tizure I.1 Unigque sets of digits in sequence

9]
(@)
o
-
]

As the number of digits in the patiern increases

. , . 1 i he part-
diffarent patterns obtainanle increases. Lie par

)
¢}
b

)
numsar o

¥

ated using a shift register. f

-

e sarticular chaincodz illust-
fronm -stase shil
rated above may be generatesd Irom 2 four-stase 8

as shown in figure I.Z2.

—_

Figure 1.2 Chaincods?

238

239

The nesw dlglt 1s produced by modulo-2 addition of the dicits in
18~ &4l 1Y

stages x, and X, . It can be s I is shi i ;
g ’ > seen that this shift regzister will

produce 15 unique four-digit patterns befors repeatins the
~ > “ ;‘3 I8N

s .
secuence. This 1s an example af a Linear chaincode

Yeath Eﬂ%categorised chaincodes into several classes; Prime
es; Prime,

. e e 4 st o .
Deficient Prime, Product and Skew Symmetric. Chaincode
sequences have the property that they contain apcroximately

Lo

- n-1 -
equal numbers of ones and zeros, 2 and 2% 1—1 ressectively

=8

which may be employed

ct

n gererating uniformly distributszd

numbers.

Redshaw [55] emvloyed Prime chaincodes for the generation of
zszudo-randon numbers using two independent chaincodes as
shown in figure I.3 to ovarcone the affects of corralation

.ﬁ

/

a(Mla@)iaGlal)] eeceees NG PO E o R YD) £15)

1
b(’l)]b(2)

.---l----o-ct---cooov

o(3) [p(&)

240

4 £f A1k aenft " “ \ v
Pairs oi p1lck offs, one from each chaincode are connectad to

. . L
modulo-2 adders which 1n turn are connecied to an 'AND' gate
(=] -

aiven chaincodes of m and n stages, then the total seguence
length is given by the oroduct (2 -1)(2 1). 4ith an 2lave

and fifteen staze gener

>

o)

tor sequences of length greater than

e

67 million were droduced.

The orobability of a stage corntaining a ons or zero at any

time 1is % as is the vrobability of the outout from a modulo-2

™

adder. TFor an 'AND' gate having k inputs from k modulo-2

3
=
F
w
L]

) . ~ . . 14K
adders the probability oi a one IS given oy (%)
of ones obtained from the TAND' gate in ons ssquence is ziven
. 1 K, T n i) .

oy ($)7(27-1)(2 -1). A coarse control of tne output rate

may be obtained by varying the value of k. The output rate

is doubled by reducing the value of k by one.

number Iron

\
D1

A finer control may be used bY forming a binary
the modulo-2 aader outouts ins ad of the TAND' zave
control of the numbder of inputs. m™his numds

e 4 St e i ommared to a
distributed random number. ~4lS integer 15 CO%: *

N . . < N ~ . d'
control word and only output 1I it exceeds the ccntrol wor

The fineness of control
97 the maximum value oFf th
word picked-off will nermit aniformly dis
the range 0 - 1023 to he obtained.

word by one 1is approxinmate-y <4

rate of DoV

241

This type of pseudo~-random generator is easily implemented

in software form. Reds‘nawﬂis} and Hartley[S}] have carried out
sxtensive tests upon the random properties of this tyve of
generator finding them acceptable means of vroducing the

required random numbers.

I

242

This section i
contains the complete simulatio
[n progran
D e

20490

243

SIMULATION OF ASTONET

INTEGER NET(555),NETB(5,5),REJ(5,5), PKT(500,5),NODE(S)
XLK(5)»H(5), NBUF1(5,3),NBUFF(5,50), CEUFI(S,3), CBUFF(5,50)
XHPBI (555,3),HCEI(5,5,3),HPB(5,5,50),HCB(5,5,50),CMEM(5,50),
XNODEI(5,5),NIB(5,5),N0B(5,5),PFL(5,10),MFL(5,10),AVAIL(5),
XHOSTS(555)»HOSTC (55 5), HAL(5,5) ,HMD(5,5), CHR(25),MG (5,5,
XHPSN(555) s HPM(5, 5), HIB(5,5), HOB(5,5) , NMEM(5,50),AC16),B(14),
XSNET(555),MEMS(5,10),PTY(5),ML(200),SNC(5),RBNC(5),BFL(S5),
XRNIB(S5,5),BRNDB(5,5), RHIB(5,5), RHOB(S5,5), PORD(S,5), UPRP(5),
XCUM(600), HCF (25, CFQ600),VEC(9),CHI(21),CH2(21),CH3(21),
XCH4C21),CA1(21),CA2(21),CA3(21),CA4(21)

INTEGER CP1¢21),CP2(21),CP3¢(21),CP4(21)

REAL NPLR(5,5),NCLR(5,5),HPLR(5,5),HCLR(5,5),

XNIE(S,5),NOECS,5),BRN(5),BRP(5,10),BRM(5,10),STI(10,2),

XRHIE(S, S), RHOE(S,5),RNIE(S5,5),RNOE(S5,5), TPROC(S, 10D,
XPUSE(S:10):HNIE(S:S)JHNDE(SJS):PNE(S:10):MNE(5:10):TPT(5):
XTINC(25,25), TMT(200),NSP(5S, 3), TPIN(S500,2),HNU(5,5)

INTEGER NH, HH, PN, PACK, P»M, BR» RUNNQ, PNO, HC» SR, MSM, MLM,
XMNGNJSUM:TDTAL:CLASSJTYPE:PACK)HHH:MINQL:MAXQL;TQL:AVQL)
XPACKD, PD» RP, DEST, AA, PACKS, SOUR

REAL SMALL:TIME:MESS)NCHECK:CHECK:LGSIM:HARD;PKLGH;
XHN;MMR:DCC;CNTP:R:BITS:NHARD)TI:FIA:FSM:FLM:RC:EXEC:
XQL:AAA:EBB;NUM:THRUJTNRECJXNREC:F:FX:AAS:E11E2:TT:
XPU1,PU2,MUSE,NOPR, NOMEM

CLEAR ARRAYS -

DO 2030 I=1,N
DO 2040 J=1,5
REJ(I1,J)=0
NIBCI,J)=0
NOB(I,J)=0
NIE(I)J)=000
NDE(I)J)”O»U
RNIB(I,J)=0
RNCB(I1,J)=0
RHIB(I,J)=0
RHOB(I,J)=0
HNIE(I,J)=0.0
HNOE(I,J)=0.0
RHIE(I,J)=0.0
RHOE(I,J>=0.0
RNIE(I,J)=0.0
RNOE(I,J)=0.0
HQLC(I,J)=0
HMD(I,J)=10
HPSN(I1,J)=0
HPM(I,J)=0
HIB(I,J)=0
HOB(I,J)=0
CONTINUE

DO 2080 J=1,10
PNE(I)J)=0'O

2080

2030

2051

2050

2060

2075
2085

2095

2096

2097

2098

2063

MNECI»J)=0.0
PFL(I,J)=0
MFLCI,J>=0
MEMS(I1,J)=0
TPROC(1,J)=0.0
PUSECI,J)=0.0
CONTINUE
PTYCI)>=0
SNCC(I>=0
RNC(1)>=0
TPTC(1)=0.0
BRNCI)=0.0
CONTINUE

DO 2050 I=1,500
DO 2051 J=1,5
PKTCI,J)=0
TPINCI»1)=0.90
TPINCI»2)=0.0
CONTINUE

DO 2060 I=1,5
DO 2060 J=1,50
NBUFF(I,J)=0
NMEM(1,J)=0
CBUFF(I,J)=0
CMEM(I,J)=0
CONTINUE

DO 2085 I=1,N
DO 2085 J=1,5
DO 2075 K=1,50
HPB(I1,JsK)=0
HCB(1,JsK)=0
CONTINUE

DO 2095 I=1,16
ACIN=0

DO 2096 I=1,14
B(1)=0

DO 2097 I=1,25
DO 2097 J=1,25
TINCI,J)=0.0
DO 2098 1=1,200
TMTCI)=0.0
MLCI)=0

DO 2063 I=1,21
CH1(I»=0
CH2(I1)=10
CH3C¢(I)=0
CH4¢I»=0
CA1CI)=0
CA2(¢I)=0
CA3(1>=0
CA4CI)=0
CP1(¢I>=0
CP2(I>=0
CP3¢I>=0
CP4aC4)=0

245

INPUT NETWORK PARAMETERS
K o ok oK K oK ok oK ok 3K K e 3k 3 3k K oK o K ok ok ok koK

aa

cALL DINPUT(N,LK,NET,NETB,NPLR,NCLR,NODE,NODEI, '
XNBUF1,CBUF1,H,HPLR,HCLR,HOSTS,HOSTC,HNU, NH,LGSIM, PKLGH.,

XCNTP» CHECK, HPBI, HCBI,MMR, SNET, NSP, BR, BRN, BRP, BRM» RU
BrM
XMSM’ML‘M’MNGN’HCF’BITS,HARD, TI,S’I‘I; E] > » BRM, RUNND»

INITIALISE RANDOM NUMBER ROUTINES
C e sk ok 3 o ke 3k K ok ok ok ok 3K o ok K Kk K oK K ROk ok ok K K R K

(]

DO 4507 I=2,14.2
ACIN=0
B(ily=1
ACI+1)=1
4507 B(l+1)>=1
AAS=32767.0
E1=0.0
DO 4504 I=1,600
4504 CFQCIN=0
TT=0.0
DO 4503 1=1,600
TT=TT+0.01
E2=1.0-EXP(-TT)
CFQ(I)=INT((E2-EI)*AAS)
El=E2
4503 CONTINUE
4505 1SUM=0
DO 450! I=1,600
ISUM=1ISUM+CFQ(CI)
4501 CUM(CI)=I5UM
WRITE (2,9010) _
DO 4506 1=1,600,10
4506 WRITE (2,8100) I,CUM(I);CUM(I+1),CUM(I+2);CUM(I+3):
XCUM(I+4),CUM(I+5):CUM(I+6),CUM(I+7),CUM(I+8):CUM(I+9)
DO 3075 I=2,16,2
CHiC¢I)=1
CH2(I))»=10
CH3C(I»=0
CH4(1>=40
CHicI+1)=1
CH2(¢(I+1)=1
CH3(¢(I+1)=1
CH4C(I+1)=1
CAl(CI>=1
ca2¢lnr=4g0
CAa3CIN=0
CA4CI)=0
CAal(I+1)=1
cag(i+1)=1
CA3(I+1)=1
CA4CI+1)=1
CPI(I)=1
cP2(Id=0
CP3(¢I)=10

246

CPa(ld)=0
CP1C¢I+1)=1
crP2(l+1)=1
CP3(I+1)=1
3075 CP4CI+1)=1
F1A=TI
WRITE (2,9020) RUNNQO,FIA
Fl1a=FIAa*x0.01
R=MSM
FSM=R* (.01
R=MLM
FLM=R*0.01
MAXH=HCF (NH)

pO 3071 I=1,N

: K=NODEI(I, 1)

c NO OF PROCESSORS IN NODE I
DO 3071 J=1,K

3071 PFL(I,J)=J
DO 3072 I=1,N
K=NODEI(I,2)

c NO OF MEMORY UNITS IN NODE I
DO 3072 J=1,K

3072 MFLCI,J)=1
DO 3073 I=1,N
PORDCI,1)=1
PORD(I,2)=2
PORD(1,3)=3

3073 PORD(I,4)=4
MESS=0.0
TIME=0.0
NREC=0
TNREC=0.0
NPKT=0
HN=NH
NO=0
NCHECK=CHECK
NHARD=HARD
EXEC=0.0
MUSE=0.0
PUl=0.0
PU2=0.0
I=NODEI(1, 1)+NODEI(2,
NOPR=1
I=NODEI(1,2)+NODEI(2s
NOMEM= 1
GOTO 3050

1)+NDDEI(3;1)+NDDEI(4;12+NDDEI(5;1)

2)+NDDEI(3,2)+NDDEI(4,2)+NDDEI(5:2)

247

FIND*ﬁﬁtiiztffDCH IN NIE,NOE,HNIE, HNOE, PNE, MNE,MESS, NCHECK, HARD
¢ A 20 0 R R K K K o oK K oK 3 oK K oK K oK oK 3K ok ok 2 3 o ok ok ok ok 3 K ok oK ok K

(]

5000 SMALL=32767 .0
EXEC=EXEC+1.0
DO 1400 I=1,N
DO 1410 J=1,5

IF C(CHNIECI,J).LToSMALL).AND. (HNIECI,J).NE+040)) SMALL=HNIECI,J)

IF (CHNOECI,J)eLT.SMALL).AND« (HNOE(CI,J)eNE.0.0)) SMALL=HENOE(I,J)

IF ((NIECI,J)+LTeSMALL)<AND«(NIEC(I,J)sNE«0+0)) SMALL=NIECI,J)

IF ((NOECI,J)«LT+SMALL)+AND.(NQECI,J)+NE.0.0)) SMALL=NOECI,J)

IF ((RHIE(CI,J>+LT+SMALL).AND.(RHIE(I,J)+NE«0.0)) SMALL=RHIE(I,J)

IF (CRHOE(I,J)«LT«SMALL)<AND.(RHOECI,J)+NE¢0.0)) SMALL=RHOECI,J)

IF C(CRNIECI»J)«LTeSMALL)«AND.(RNIECI,J)«NE«0+0)) SMALL=RNIECI,J)

I¥ <<§§CP3:E<I:J)oLT-SMALm.AND.(RNOE(1.J>.NE.0.0>) SMALL=RNDECI>J)
1410 CONTI ,

KK=NODEI(1,1)

DO 1420 J=1,KK

IF CC(PNECI,J)eLTsSMALL)«AND«(PNE(I,J)+NE«0+0)) SMALL=PNECI,J
1420 CONTINUE

DO 1440 J=1,KK

IF (CBRP(I,J)eLTeSMALL)+AND. (BRP(1,J)<NE«0+0)) SMALL=BRP(1,J)
1440 CONTINUE

KK=NODEI(1,2)

DO 1430 J=1,KK'

IF C(MNECI,J)eLTeSMALL)«ANDe(MNECI,J)«NE.0.0)) SMALL=MNE(1,J)
1430 CONTINUE -

DO 1450 J=1,KK

IF CCBRM(I,J)LTeSMALL)«AND.(BRM(I,J)«NE.0.0)) SMALL=BRM (1, J)
1450 CONTINUE
1400 CONTINUE

IF ((MESS.LT.SMALL)+ANDe(MESSeNE«0+03) SMALL=MESS

IF ¢ (NCHECK +L T+ SMALL) + AND+ (NCHECK :NE+ 003 SMALL=NCHECK

IF ¢ (NHARD.LTeSMALL)«AND. (NHARD.NE«0.02) SMALL=NHARD

IF (SMALL.EQ.32767.0) GOTO 8000

TIME=TIME+ SMALL

IF (NPKT.GE.490) GOTO 8005

3060

4030

40490
4020

4010

4050

t1212

4032
4033
4034
4035
4037
4031

2438

RELEASE PROCESSORS FINISHED WITH

pO 4020 I=1,N

L=NODEICI, 1)

DO 4020 J=1,L

IF (PNECI,J)+EQ.0.0) GOTO 4020
PNEC1,J)=PNE(I,J)-SMALL

IF (PNECIsJ)«NE«0+0) GOTO 4020
DO 4030 K=1,10

IF (PFLCI,K)«EQ.0)> GOTO 4040
CONTINUE

GOTO 4020

PFLCI,K)=J

CONTINUE

RELEASE MEMORY UNITS FINISHED WITH

DO 4010 I=1,N

L=NODEI(I,2)

DO 4010 J=1,L

IF (MNECI,J)«EQ.0.0) GOTO 4010
MNECI, J)=MNECI,J)=-SMALL
MUSE=MUSE+SMALL

IF (MNECI,J)sNE+0.0) GOTO 4010 .
MFLCI,J)=1

MEMORY UNIT FREE AND JOINS FREER LIST
CONTINUE

LL=0

DO 4050 I=1,N

IF (PFL(I,1).EQ.0) GOTO 4950
LL=1 '

CONTINUE

PROCESSOR FAILURE

KK=0

DO 4031 I=1,N

L=NODEICI, 1>

DO 4031 J=1,L

IF (BRP(I,J)+EQ.0.0) GOTU 4031
BRP(I,J)=BRP(I,J)-SMALL

IF (BRP(I,J)sNE.0.0) GOTO 4031
WRITE (2,1212) I,J

FORMATC(' NODE '»I3»° PROCESSOR '» 13
KK=1

IF (PNECI,J)NEe0.0) GOTO 4035
DO 4032 K=1,L

IF (PFL(I,K)+EQ.J) GOTO 4033
CONTINUE

DO 4034 K=K,9
PFL(I,K)=PFL(I,K+1)
PNECI,J)=100.0

NOPR=NOPR=1+0

CONTINUE

IF (KK.EQ.0) GOTO 4038

CALL R10¢10, TPROC)

* FAILED')

4038

1213

4106

4103
4104

4105

4107

4108
4109

4111

4102
4101

MEMORY MODULE FAILURE

DO 4101 I=1,N

L=NODEI(I,2)

DO 4101 J=1,L

IF (BREM(I,J)«EQ.0«0) GOTO 4101
BRM(1,J)=BRM(I,J)-SMALL

IF ¢(BRM(I,J).NE.0.0) GOTO 4101
WRITE (2,1213) I,J

FORMAT(' NODE ',13,' MEMORY MODULE ',13,' FAILED')
MFLCI>J)=0 A
MNE(CI,J)=100.0

LLL=MEMSCI,dJ)

MEMS(¢1, J)=NODEICI,3)

IF (LLL.EQ.0) GOTO 4102
KKK=NBUFICI,2)

DO 4103 KK=1,KKK

IF (NMEM(I,KK).EQ.J) GOTO 4104
CONTINUE

GOTO 4107

DO 4105 KK=KK,KKK-1
NMEMCI,KK)=NMEMCI,KK+1)
NBUFF(1,KK)=NBUFF(I,KK+1)
LLL=LLL=-1
NBUFICI,2)=NBUFI(I,2)=-1

GOTO 4106

KKK=NBUFI(I,3)

IF (LLL.EQ.0) GOTO 4102

DO 4108 KK=1,KKK

KJ=51-KK

IF (NMEM(CI,KJ)+EQ.J) GOTO 4109
CONTINUE

DO 4111 KK=KK,KKK-1

KJ=51-KK
NMEM(I,KJ)=NMEM(I,KJ=1)
NBUFF(1,KJ)=NBUFF(I,KJ=1)

LLL=LLL~1
NBUF1(I,3)=NBUFICI,3)-1
GOTO 4107
NOMEM=NOMEM-1

CONTINUE

MESS=MESS- SMALL
IF (MESS.GT.0.0) GOTO 4115

2k9

(]

3050

5250

5100

3920

39060

3910

3936

3945

3949
39390

3935

GENERATE MESSAGES
¢ st ke o o ok K ke K K K ok ok ok

GENERATE NO OF HOSTS WITH NEW MESSAGES
caLL GENCCHI1,CH2,CH3,CH4, TOTAL)
IF (TOTAL.GT.MAXH) GOTO 3050

DO 5250 NN=1,NH

IF ¢(TOTAL.LE.HCF(NN)) GOTO 5100
CONTINUE

FEW HOSTS GENERATING MESSAGES
CALL GEN(CAl,CA2,CA3,CA4, TOTAL)
IF ¢(TOTAL.GT.32383) GOTO 5109
CALL CHOP(CUM, TOTAL,CLASS)
RC=CLASS

MESS=RCx*FIA

MESS HOLDS TIME OF NEXT MESSAGE INPUT
IF (NN.EQ.0)> GOTO 3935 '
GENERATE NN HOST NOS WITH MESSAGES
DO 3620 I1=1,NH

CHQC(I)=1

KH=NH

RH=NH

DO 3900 I=1,5

DO 3900 J=1,5

MG(I,J)=0

JJJ=0

CALL RANDCA,B, SUM)

R=SUM

R=R*0.0009765625
HC=IDINT(R*(RH=1.0)+145)
NMG=CHQ(HC)

CALL SUBS(NMG,H,I1I,JJ)
KKK=KH=1

DO 3936 I=HC,KKK
CHQ(I)»=CHQCI+1)

KH=KH-1

RH=KH

JJdd=JJdJd+ L

CALL RANDC(A,B, SUM)

R=SUM

R=R*0.0009765625

IF (R.LT.HNU(CII,JJ)> GOTO 3945
MG(II,JJd)=1

IF (JJJ.LT.NN) GOTOD 39190

DO 3930 I=1,N

HH=H(I)

DO 3930 J=1,HH

IF (MG(I,J)eNE.1) GOTO 3930

IF (HQL (I, J)sLTe32767) GOTO 3940
REJCI,J)=REJ(I»JI)+1

GOTO 39390

HQL(I,J)=HQL(I,J>+1

ONE MORE MESSAGE IN QUEUE
CONTINUE

IF (TIME.EQ.0.0) GOTO 4065

IF NO PROC FREE HANDLE OBS»HI-

UKO - NO PROC REQUIRED

250

Q

4115

2073

c
C
2072
c

2071
2070

HANDLE NODE OUTPUT BUFFER
¢ 2 % 4 o o ok K K e Kok oK o oK o Kk ok

Do 2070 I=1,N

L=LK(I)

DO 2070 J=1,L

IF (NOECI,J)+EQ.0.0) GOTO 2070

ANY PACKETS TO TRANSMIT
NOECI,»J)=NOECI,J)=-SMALL

IF (NOECI,»J)eNE.G.0) GOTO 2078

THIS PACKET NOW READY FOR TRANSMISSION
II=NET(1,J)

JJ=NETB(I, J)

IF (NIECII,JJ).EQ.0.0) GOTO 2073
NOECI,J)=NIECII,»JJ) :

GOTO 20790

NIBCII,JJ)=NOBC(I,J)

PACK=NOB(I,dJ)

TYPE=PKT(PACK, 3)

ONLY RETRANSMIT MESSAGE PACKET

IF ¢(TYPE.NE.0) GOTO 2072
BRNOECI,J)=0.1

RNOB(I,J>=NOB(I,J

NOBCI,»J)=0

AUTOMATIC RETRANSMISSION OF MESSAGE 1F ACKNOWLEDGEMENT
NOT RECEIVED WITHIN 0.1 SECONDS

GOTO 2071

NOB(1,J>)=0

CLEAR BUFFER WHICH CONTAINS CONTROL MESSAGE
NIE(II;JJ)=SMALL+D-000001

CONTINUE

251

oy R ap

7030

T334

TONg

I
w

TAash

~2

>
w
b‘

HANDLE HOST

sk w ok Se

3

RS

INPUT BUFFERS

sheshosg b e iR PPV oot ko

po 7019 I=isN

LJ=3Cl)

Do 7610 J=1,LJ

IF (HMIE(T2d)eX

Ns 002 GATO 7910

HNIECL o JI=HNIECT > J)= SMALL

IF (HNYECI,J)aNEe0s0) GOTO 7010
PACK=HIBCI,)
TYPE=PKT(PACKs 3)

IF (TYPE

o 5

043 G0TO

7015

iF (TYPE.NEs3) GOTD 7030
PACK,VEC NRECs TIMEs

Catll, L.nhx IS{PKT,TRPIN

XPTY: TPTs LI"J’UL.»TI‘ T, SNCs BNC?

REC:’)RD PKT
NPKT=NPKT~1

HIBCIs)

=0

STATISTICS AND DELETE PKT ¥FROM

HNIECI»Jd=0a0
s Qs 3) GﬂlD 7040

IF (TYPE
corTo 7 0 1
IF (TYPX

0

malys

=.0) GOTO

7040

¥ 'r\.l"»}pﬁ'\]el_.l&b{)u) GOTO 7005
HNI}.ﬂ(:{)J):OoDUOOOOl

GOTO 701

18 (HCRICI,JdrE) LLT.HCBI(1,J,1)) GOTO

0

OuUTPUT BUFFER FULL
IR, JY=ENDOEC T:J)
TF SHAIECIsJ) s EQe

TN

0

RATELT5:03=001
)=l TIBCIs J)
HIBRCT, J¥=0

RHIBCLS D)

AUTOMATI

o0 790890 Il
(5 (PRTCLE
SOMTINUE

ACHNLILLE

~o {

~
L

DG

§) GOTC 7034

prinansMISSION 0F MESSAGE

w s]
}1‘9“0& i)

¥ MESSAGE

PETI{I s 1 y=PKT(PACK, 2

P Y : I

).,

1180

PHTCIE J)m&

TRINCT i, 1)=TIME
HEODTC (ads 2
K=HCRI(i,Jds82
HORCLe daid=id

(‘(,'\) . JT,{ "}
PO 090 JJe
168 PRI Jds

CONTIN LIL

y=HORIC(Isds

©“OR Jarab
S I S 4]

1y 0 1]

GoTO 7095

PACKET

)‘1[)””

T VECTOR

coTo 7091

7035

PACKET

o

7STEM

o)

n

g

253

c INFORM SOURCE TO SEND NEXT PACKET

7091 PKTCJJs 1)=PKT(PACK, 2)
PKT(JJs 2)=PKT(PACK, 1)
PKT(JJ»3)=3
TPIN(JdJs 1)=TIME
HCBIC(I,J»2)=HCBIC(I,Jds2)+1
K=HCBI(I,dJ»2)
HCB(1,JsKI)=ddJ
NPKT=NPKT+2

c TwO MORE PACKETS IN SYSTEM
TPINC(PACK,2)=TIME
c REAL THRUPUT TIME OF MESSAGE PACKET
- GOTO 70180
C SEND NEXT PACKET

7040 PACK=RHOB(I,dJ)

RHOB(1,J)=0

RHDE(1,J)=0.0

IF (HPBI(1,Js2)«GE«(HPBI(I>Js1)-1)) GOTO 7032
CALL TRANS(PKT;TPIN:PACK;VEC,NREC:TIME;
XPTY» TPT» TIN,ML, TMTs SNC»RNC)
NPKT=NPKT-1

CALL ISUBS(NMG,H,I1,J)
HPSN(CI,J)=HPSNC(I,J)+1 ’ '

IF (HPSN(I,J)eLE.HPM(I»J))D GOTO 7085
IF (HQL(I,J)+«EQ.0) GOTO 7010
HQL(1,JY=HQL(I,J)-1

c GENERATE NEW MESSAGE INFORMATION
HPSN(I,J)=1
c GENERATE MESSAGE DESTINATION
7096 CALL RANDCA,B,SUM)
R=SUM

R=R*0.0009765625
L=IDINTC(R*(HN=1¢02+1+5)
IF (L.EQ.NMG) GOTO 7096
HMD(1,J)=L
C GENERATE MESS OF MEAN LENGTH 1
7098 CALL GEN(CP1,CP2,CP3,CP4, TOTALD
IF (TOTAL.GT.32383) GOTO 7098
CALL CHOP(CUM, TOTAL,CLASS)
RC=CLASS
IF R <= MMR GENERATE SHORT MESSAGE
C FLSE GENERATE LONG MESSAGE
CALL RANDCA,B, SUM)
R=SUM
R=R*0.,0009765625 .
IF .GT.MMR) GOTO
C SCAﬁg ﬁési OF MEAN 1 TO SHORT MESS MEAN MS3M
L=IDINT(RC*FSM+0999)
GOTD 7089
C SCALE7&ESS oF MEAN. 1 TO LONG MES
7088 L=1DINT¢(RC*FLM+0.999)]

Q2

S MEAN MLM

7089
7085

7010

4215
4210

42825
4220

4055

HPM(I,J)=L

PKT(PACK, 1)=NMG
PKT(PACK,2)=HMD(I, J
PKT(PACK, 3)=0"
PKTC(PACK, 4)=HPSN(1,J)
PKT(PACK, 5)=HPM(1,)
TPIN(PACK, 1)=TIME
NPKT=NPKT+1
HPBI(I,J,2)=HPBI(l,Jds2)+1
K=HPBI(I,J,2)
HPB(1,JsK)=PACK
CONTINUE

IF (LL.EQ.1> GOTO 4055

UPDATE EVENT TABLES WHICH REQUIRE PROCESSORS

DO 4210 I=1,N

L=HCI)

DO 4210 J=1,L

IF (HNOECI,J)«ER.0.0) GOTO 4210

IF (HNOECI,J).GT.SMALL) GOTO 4215

TRY AGAIN WHEN NEXT PROCESSOR RELEASED
CALL NPR(¢I,NODEI(I,1),PNE,HNOEC(I,J))
GOTO 4210

HNOE(¢I, J)=HNOECI,dJ)=-SMALL

CONTINUE

DO 4220 I=1,N

L=LK(I)

DO 4220 J=1,L

IF (NIECI»J)+EQ.0.0) GOTO 4220

IF (NIECI,dJ).GT.SMALL) GOTO 4225

CALL NPR(I,NDDEI(I:l),PNE;NIE(I,J))
GOTO 4220 _
NIECI,J)=NIECI,J>=-SMALL

CONTINUE

GOTO 4065

DO 5999 I=1,N

UPRP(1)=PORD(I, 1)

UPRP(2)=PORD(I,2)

UPRP(3)=P0ORD(1,3?

UPRP(4)=PORD(1, 4)

NPROC=0

PNQO=0 _

NPROC 1S THE NEXT PROCESS NUMBER

CALL pRDC(x,pDaD,UPRP,NPRDC,PFL<I:1>:PND>
GOTO <1999,2999,3999,4999,5999) » NPROC

254

c INPUT PACKETS FROM HOSTS INTO NETWORK
c sk ko ok e ok 3 3k oK K kK K K K ok K oK ok sk i % ok K 3k ok ok ok ok kK oK ok ok K

1999 0CC=0.0
LJ=H(I)
IF (PFL(I,1).NE.0) GOTO 4135
DO 4136 J=1,LJ
IF (HNOECI»J)«EQ.0.0) GOTO 4136
IF (HNOECI,J)+GT.SMALL) GOTO 4138
CALL NPRCI,NGDEICI,1),PNE,HNOECI,J))
GOTD 4136
4138 HNOE(I,J)=HNOECI,J)=SMALL
4136 CONTINUE
GOTO 4131
4135 DO 7500 J=1,LJ
IF (HNOE(I,J)+EQ.0.0) GOTO 7500
HNOECI,»J)=HNOECI,J)=SMALL
IF (HNOE(CI,J).NE.0.0) GOTO 7500
K=HOB(1,J)
TYPE=PKT(K,3)
DEST=PKT(K,2)
IF (TYPE.NE.2) GOTO 7510
c NODE - HOST ACK
CALL TRANS(PKT, TPIN,K,VEC,NREC, TIME,
XPTY, TPT» TIN» ML, TMT, SNC» RNC)
NPKT=NPKT-1
0CC=0CC+2+ 0%NSP(1,3)
HOB(I,J)=0
RHIB(I,J)=0
RHIECI,J)=0.0

C RETRANSMISSION NOT REQUIRED

GOTO 75080
C CAN NOW TRANSFER PKT READY FOR NETWORK TRANSMISSION
7510 IF ((CBUFI(I:2)+CBUFI(I:3)).LT.CBUFI(I:1)) GOTO 7520
C SYSTEM FULL TRY AGAIN IN 0.0000001 SECS
7540 HNOE(I,J)=0.0000001

GOTO 7500
¢ HANDLE SNM PKT

7520 IF (TYPE.NE.3) GOTO 7530
CALL SUBS(DEST,Hs ILKs JLKD
IF (ILK.NE.I1) GOTO 7521

C PKT DESTINATION AT SAME NODE
CBUFI(I,2)=CBUFI(I,2)+1
K=CBUFI(I,2)
GOTD 7522

7521 CBUFICI,3)=CBUFICI,3)+1
K=51-CBUFI(I,3)

7522 CBUFF(I,K)=HOB(I1,J)
HOB(1,J)=0
0CC=0CC+2. 0%*NSP(I,3)
G

7530 IETE(;2831<1,2)+NBUF1<1,3>>.GE.NBUF1<1,1)) GOTO 7540
IF (NPKT.GE.499) GOTO 7540
KK=NODEI(I,2)

&/

7581

7582

aa

7570
7580

7500

4131

pO 7550 M=1,KK
1S MEMORY UNIT M FREE

IF (MFL¢I,M).EQ.0) GOTO 7550

1S THERE ROOM IN M TO STORE ONE MORE PACKET

IF (MEMSCI,M).LT.NODEI(I1,3)) GOTO 7560

CONTINUE

TRY AGAIN WHEN NEXT MEMORY UNIT FREE
CALL NPR(I,NODEICI,2),MNE,HENOECI, J))

WRITE (2,7551)

FORMAT(® INPUT PKTS INTO NETWORK - NO MEMORY AVA ‘

. GOTO 7500) HLABLED
'NO MEMORY UNIT CAN STORE PACKET

'SET MEMORY M BUSY

MFLCI,M)=0

NEXT MEMORY EVENT IN TIME TO STORE A PACKET

MNE(1,M)=NSP(1,2)

INCREMENT NO OF PKTS IN MEM UNIT M BY 1

MEMS(I,M)=MEMS(I,M)+]
CALL SUBS(DEST,H,ILK,JLK)
IF (ILK.NE.I)> GOTO 7581
PKT DEST AT SAME NODE
NBUFI(1,2)=NBUFI(I1,2)+1
L=NBUF1(1,2)

GOTO 7582
NBUF1(¢1,3)=NBUFI(I,3)+!

PUT PACKET INTO NODE DUTPUT BUFFER

L=51=-NBUFIC(I,3)
NBUFF(I,L)>=HOB(I,J}
NMEM(1,L)=M

MEMORY UNIT PACKET STORED
RHOE(I,J)=0.1
RHOB(1,J)=HOB(1,J)
HOB(I,J)=§

AUTOMATIC RETRANSMISSION WITHIN C.

IN

ACK HOST - NODE PACKET TRANSFER

DO 7570 1I=1,500

IF (PKT(11,1).EQ.0) GOTO 7580

CONTINUE
PKT(I1,1)=1+100
PKT(I11,2)=PKT(K,1)
PKT(11,3)=4
TPINCII,1)=TIME
NPKTaNPKT+!
CBUF1(1,2)=CBUFI(I,2)+l]
K=CBUFI1(I,82)
CBUFF(1,K)=11l

UCC!DCC*Q.O*NSP(I:2)+2-U*NSP(I:S)

CONTINUE

IF (DCC.EQ.0.0) GOTO 4131
CALL ALLOC(I,PFL,PNE,P»
CONTINUE

CALL PRDC(I,PDRD:UPRP;NPRDC:

GOTOD (1999,2999.3999,4999,

gcc, TPROC)

5999 »

5 SECS

pFL(I:l)sPND)

NPROC

256

aQ

2999

4148
4146

4145

6055
6045

60380
6130

6135

HANDLE NODE INPUT BUFFERS‘
ook R Kok e K K KKK K KA KR KKK

L=LKC(I)

IF (PFLCI,1).NE.0> GOTO 4145

DO 4146 J=1,L

IF (NIECI,J)«EQ.0.0) GOTO 4146

IF (NIECI»J)>+GT.SMALL) GOTO 4148
TRY AGAIN WHEN NEXT PROCESSOR RELEASED
CALL NPRCI,NODEICI,1),PNE,NIECI,J))
GOTD 4146 |

NIECI, J)=NIECI,J)=-SMALL

CONTINUE . ,

GOTO 4141

DO 6020 J=1,L

IF (NIECI,J)«EQ.0.0) GOTO 6020
ANY O/P - I/P
NIECI,J)=NIECI,J)-SMALL

IF (NIECI»J)+NE«0.0) GOTO 6020
PACK=NIB(I1,J) _
PKT NO BEING HANDLED
PD=PKT(¢PACK, 2)

PACKET DESTINATION
TYPE=PKT(PACK, 3)

TYPE OF PACKET

IB=PKT(PACK» 4)

PKT NO WHICH IS BEING ACK

IF (TYPE.NE.1) GOTO 6030

LOCAL CNT - NODE TO NODE TRANSFER

CALL TRANS(PKT;TPIN:PACK:UEC:NREC:TIME;

7

XPTY> TPT, TIN,ML, TMT, SNC» RNC)

RECORD PKT STATISTICS AND DELETE PKT FROM SYSTEM

DO 6055 JJd=1,5
IF C(RNOBCI,JJ).EQ.IB) GOTO 6045

CONTINUE

RNOB(I,JJ)=0
RNOE(I,JJ)=0.0
NIBCI,J)=0
NPKT=NPKT-1
RECORD TIME TO HANDLE PROCESS
0CC=0CC+2.0%NSP(I,2)

GOTO 6020

IF (NPKT.LT.500) GOTO 6133
NIECI,J)=0.0000001

GOTO 6020

IF (C(CBUFI(I,2)+CBUFICI.
IF (TYPE.NE.3) GOTO 6140
0CC=0CC+2.0%NSP(I1,3)
NIBCI,J)=0

CALL SUBS(PD,H,I11,JJ)

IF ¢(II.EQ.1) GDTD 6025

257

3))-GE-(CBUFI(I:1)-1)) GOTO 6130

aaQ

6040

6050

CNT PACKET NOT AT DESTINATION

CBUFI(1,3)=CBUFI(I,3)+1
K=51-CBUFI(I1,3)
CBUFF(1,K)=PACK
GOTO 6020 '

PACKET LEFT IS ONE AT DESTINATION

CBUFI(I,2)=CBUFI(I,2)+1

K=CBUFI(I,2)

CBUFF (I,K)=PACK

GOTD 6020 ' -

IF C((NBUFI(I,2)+NBUFI(I,3))«GE«(NBUFI(I,1)))
KK=NODEI(1,2)

DO 6145 M= 1,KK

IS MEMORY UNIT FREE

IF (MFLCI,M).EQ.0) GOTO 6145

1S THERE ROOM TO STORE ANOTHER PACKET

IF (MEMS(I,M).LT.NODEI(I,3)) GOTO 6165
CONTINUE »

TRY AGAIN WHEN NEXT MEMORY UNIT RELEASED
CALL NPR(I,NODEICI,2),MNE,NIECIsJ))

WRITE (2,6113)

FORMAT(' NODE INPUT - NO MEMORY AVAILABLE®)
GOTO 6020

NO MEMORY UNIT CAN STORE A PACKET

SET MEMORY UNIT M BUSY

MFLCI,M)=0

NEXT MEMORY EVENT IN TIME IT TAKES

TO STORE A MESSAGE PACKET
MNECI,M)=NSP(I,2)

MEMS(CI,M)=MEMSCI,M)+1

INCREMENT NO OF PKXTS HELD IN MEMORY UNIT M
FIND FREE SLOT FOR ANOTHER PKT

DO 6040 1I=1,500

IF (PKT(CII»1).EQe0) GOTO 6050

CONTINUE
ACK PKT RECEIVED

PKTCII,1)=1+100
KK=SNET(I,dJ)
PKT(11,2)=KK+100
PKT(I1,3)=1
PKT(II,4)=PACK

KNOW WHICH PACKET WE ARE ACK
TPINCII,1)=TIME
CBUFICI,3)=CBUFI(I,3)+!
K=51~-CBUFI(1,3)
CBUFF(I,K)=II
NPKT=NPKT+1

NIBCI,J)=0

CALL SUBS(PD,HsI11sJJ)
IF (I1.EQ.I) GOTO 6060

GOTO 6130

258

259

c PACKET NOT AT DESTINATION

NBUFI(1,3)aNBUFIC(I,3)+1
K=51-NBUF1(I1,3)

NBUFF (1,K)=PACK
NMEM(I,K)=M

GOTO 6020

¢ PACKET LEFT IS ONE AT DESTINATION

6060 NBUFI(I:2)'NBUFI(I,2)+1
K=NBUFI(I,2)
NBUFF(I,K)=PACK
NMEM(I,K)=M
C RECORD TIME TO HANDLE A PACKET AND CONTROL PACKET
OCC=0CC+2. 0%NSP(1,2)+2.0%NSP(I,3)
6020 CONTINUE
1F (OCC.EQ.0.0) GOTO 4141
CALL ALLOC(C1,PFL,PNE,P,0CC, TPROC)
4141 CONTINUE
CALL PROC ¢ I, PORD, UPRP, NPROC, PFL (I, 1), PN
GDTU (1999:2999;3999;4999:5999) » NPROC

3999

4168

4166

5610
5600

4165

7700

aQo

1740

7730

a0

7750

7710

7760

UPDATE HOST INPUT BUFFERS
s st o e K e o el el e e e ok ok ok o

pcc=0.0

LJ=HC(ID :

1F (PFL(I,1).NE.0) GOTO 4165

pO0 4166 J=1,LJ

IF (HNIECI>J)«EQeD+0) GOTD 4166

CALL NPR(I,L,NODEICI,1),PNE,HNIECI»J))

GOTO 4166

HNIECI,»J)=HNIECI,J)-SMALL

CONTINUE

DO 5600 J=1,LJ

IF (RHIEC(I,J)+EQe0.0) GOTD 5600

IF (RHIE(I»J)«GT.SMALL) GOTO 5610

CALL NPR(I,NODEI(I,1),PNE,RHIE(I,J))

GOTO 5600

RHIE(CI,J)=RHIE(I,J)=-SMALL

CONTINUE

GOTO 4161

DO 7780 J=1,LJ

UPDATE RETRANSMISSION TIME

RP=0

IF (RHIB(I,J).EQ.0) GOTD 7700
RHIECI,J)=RHIE(I,J)=SMALL

IF (RHIECI,J).GT.0.0) GOTO 7700

RP=1 :

IF (HNIECI,J).NE.0.0) GOTO 7710

PACKET STILL WAITING FOR TRANSMISSION

IF (HIBCI,J).NE.0) 60TO 7710

IF ZERO BUFFER FREE, ELSE WAI TING FOR ACKNOWLEDGEMENT
CALL ISUBS(NMG,H,I,J) '

CHECK IF ANY CNT MESSAGES FOR HOST(I»J)

IF (CBUFI(1,2)+EQ.D) GOTO 7720

NO CONTROL PACKETS TO TRANSMIT

SEARCH CBUFF 1/P FOR PKT WHOSE DEST 15 HOST(I,J)
LLL=CBUFIC(I,2)

DO 7740 L=1,LLL

PACK=CBUFF(I,L)

DEST=PKT(PACK,2)

IF (DEST.EQ.NMG) GOTO 7730

CONTINUE

GDTD 7720 :

HIB(1,J)=CBUFF(I,L)

HNIECI, J)=HCLR(I»J)

CBUFI(I:2)=CBUFI(I;2)°1

ONE LESS PACKET IN BUFFER

NOW SHIFT QUEUE UP

LLL=CBUFI(I1,2)

DO 7750 L=L,LLL

CBUFF(I;L)=CBUFF(I;L+1)

0CC=0CC+2. 0%xNSP(1,3)
IF (RP.EQ.0) GOTO 7780
IF (HNIECI,J)«EQe0.0)
RHIECI, J)=HNIE(I,J)
GOTO 7780
RHIECI,J)=0.0000001
GOTO 77880

GoTO 7760

260

7720

7770

7785

7790

[ep]

7795

7780

4161

NOW DEAL WITH FULL LENGTH PACKETS-

IF (RP<EQ.0) GOTO 7770
RETRANSMISSION OF PACKET REQUIRED
HIB(1,J)=RHIB(I,J)
HNIECIs»J)=HPLRCI,dJ)
RHIECI,JI)=0.1
gCcC=0CC+2.0%xNSP(1,2)

GOTO 7780

IF (NBUFICI,2).EQ.0) GOTO 7780

NO MORE PACKETS TO TRANSMIT :
SEARCH NBUFF 1/P FOR PACKET WHOSE DEST IS HOST(I,dJ)
LLL=NBUFI(I,2)

DO 778S L=1,LLL

PACK=NBUFF(I,L)>

DEST=PKT(PACK, 2)

IF (DEST.NE.NMG) GOTO 7785
MEM=NMEM(I,L)

CHECK NOW IF MEMORY UNIT FREE

IF (MFL(I,MEM).EQ.1) GOTO 7790
CONTINUE

GOTO 7780

HIB(I,J)=NBUFF(I,L)
HNIECI»J)=HPLRC(I,J)
NBUFI(1,2)=NBUFI(I,2)-1

ONE LESS PACKET IN BUFFER

NOW SHIFT BUFFER QUEUE UP

"LLL=NBUFI(I,2) :

DO 7795 L=L,LLL

NBUFF(1,L)=NBUFF(I,L+1)
NMEM(I,L)=NMEM(I,L+1)

MFL(I,MEM)=0

MEMORY UNIT SET BUSY
MNE(I:MEM)=NSP(I:2) l

MEMGRY UNIT OCCUPIED FOR TIME REQD T0 EXTRACT PKT
MEMS(I;MEM)=MEMS(I,MEM)-1

ONE LESS PKT IN MEMORY UNIT
OCC=0CC+2.0*NSP(I1,2)

CONTINUE

IF (OCC.EQ.0.0) GOTO 4161

CALL ALLDC(I,PFL:PNE;P,DCC;TPRDC)
CONTINUE

CALL PRDC(I,PDRD,UPRP:NPRDC;PFL(I,1);PND)
GOTO (1999,2999,3999;4999;5999) » NPROC

261

4999

4178
4176

5660
5650

4175
6051

6100

6000

UPDATE NODE OUTPUT BUFFERS

sk ok ok ok o e K ok ok ok ok kK ok K

GCC:D- 0

LJ=LK(I)D

1F (PFL(I,1)eNE.0)
DO 4176 J=1,LJ

IF (NOECI»,J)+EQ.0.

IF (NOECI,J).GT.SMALL) GOTO 4178

3 3 e ok koK

GOTO 4175

0) GOTO 4176

cAaLL NPRC(ILNODEI(I,1),PNE,NOE(I,J))

GOTO 4176
NUE(I:J)=NDE(I:J)‘
CONTINUE

DO 5650 J=1,LJ

IF C(BNOE(CI,J)+EQe0.0) GOTO 5650
IF (RNOE(I»J).GT.SMALL) GOTO 5660

SMALL -

CALL NPR(CI,NODEICI,1),PNE,RNOE(I,J))

GDOTO 5650

RNOECI»J)=RNOE(I,J)=~SMALL

CONTINUE

GOTO 4171

DO 6051 J=1,5
AVAIL(J)=0

AA=0

K=LK(I)

DO 6110 J=1,K

IF (NOECI,J)+NE.OQ.

PACKET STILL WAITING FOR

IF (NDBC(I,J)eNE«0)

IF ZERO BUFFER FREE, ELSE PACKET H

avalL(Jy)=1
Af=AA+1
CONTINUE

0) GOTO 6110

GOTO 6110

TRANSMISSION

ELD AWAITING ACK

AVAIL HOLDS BUFFERS AVAILABLE FOR USE
UPDATE TRANSMISSION TIME

DO 6000 J=1,K
IF (RNOB(I,J)«EQ.0

) GOTO 6000

RNDECI,J)=RNDE(I;J)-SMALL

IF (RNODE(I,J)+GTe0
IF (AVAIL(J).NE.D)
RNOECI,J)=NOEC(I»J)
GOTO 6000
AVAIL(J)=0

AA=AA-]
NDB(I:J)=RNDB(I)J)
NOEC1,J)=NPLR(I,J)
RNOE(CI,J)=0.1

.0) GOTO 60060
GOTO 6100

OCC=0CC+2.0%NSP(I,2)

CONTINUE

IF (CBUFI(I,3).EQ.
ANY CONTROL PACKET
BBB=AA
QL=CBUFI(I,3)
NOP=50

g) GOTO 6410
g TO0 OUTPUT

262

6326

60890

6700
6710

6720

6090
6093

6350

<«

62790

6300

6340

6342

NTON=0

IF ((51=-CBUFI1CI,3)).GT.NOP) GOTO 6400

IF (AA.EQ.0) GOTO 6400
NO BUFFER FREE

PACK=CBUFF (1,NOP)

PACKS=PKT(PACK, 1)

{F (PACKS.LT.100) GOTO 6080

SOUR=PACKS~-100

NTON=1 INDICATES THAT PACKET REQUIRES DIRECT ROUTE

NTON=1
DEST=PKT(PACK,2)-100
GOTO 6090

IF (PACKS.LT.108) GOTO
SOUR=PACKS-100

GOTO 6718

67680

CALL SUBS(PACKS,Hs SOUR, JJ)

PACKD=PKT(PACK,2)

IF (PACKD.LT.100) GOTO
DEST=PACKD-1010

GOTO 6090

6720

CALL SUBS(PACKD,H,DEST»JJ)

SOUR=PKT NODE SODURCE,DEST=PACKET DEST NODE

J=1

1IF (AVAILCJ)+EQ.0) GOTO 6300

KK=NET(I,J)

KK=DEST NODE

IF (DEST.NE.KK) GOTO 6
PKT FOUND FOR NODE KK
AA=AA-1

AVAIL(J)=0 ,
NOB(1, J)=PACK

NOECI, J)=NCLR(I,dJ)
CBUFI(I,3)=CBUFI(I,3)~

300

1

ONE LESS PACKET IN O/P BUFFER

NOW SHIFT QUEUE UP
KK=CBUFI(1,3)-¢50-NOP)
LLL=NOP

DO 6270 I1I1=1,KK.

CBUFF(I,LLL)=CBUFF(I,LLL" 1)

LLL=LLL~-1

GOTO 6326

J=J+1

IF (J.LE.K) GOTO 6093
NO DIRECT NODE FOUND

IF (NTON.EQ.1) GOTO 634 45

NODE TO NODE ACK REQUI
DO 6340 J=1,K
BFLCJ)=0

IN=0

DO 6342 J=1,K

RES DIREC

IF (AVAILC(J).EQ.0D) GOTO 6342 A2
IF (NETCI,dJ)eEQeSOUR) GOTO 634

PKT NOT REROUTED BACK
IN= IN+1

BFLCIN)=J

CONTINUE

THRU SOUR

T ROUTE

CE NODE

263

6343

6345

6400

6410

63290
6325

6081

6091
6092

6351

NO BUFFER AVAILABLE FOR CURRENT PKT
IF C(IN.EQ.0) GOTO 6345

IF (IN.GT.1) GOTO 6343
ONLY ONE BUFFER AVAILABLE
J=BFL(1)

GOTO 6350

SELECT RANDOM OUTPUT BUFFER
CALL RANDCA,B, SUM)

R= SUM

R=R*0.0009765625

IF (R.LE.0.0001) GOTO 6343
RIN=IN o
JJJ=INT(R*RIN+0.9999)
J=BFL(JJJ)

EXTRACT REQUIRED BUFFER NO

- GOTO 6350

NOP=NOP-1

GOTD 6326

AAA=AA

BEB=BBB-AAA

1F (BBB.EQ.0.0) GOTO 6410
0CC=0CC+QL*NSP(I1,1)+2.0*BBB*NSP(I,3)
IF (NBUFI(I1,3).EQ.0) GOTO 6210

THIS NODE HAS NO PACKETS TO TRANSMIT
QL=NBUFI(I,3)

BBB=AA

NOP=50

NTON=0

IF ((S51=-NBUFICI,3)).GT.NOP) GOTO 6200
IF ¢(AA.EQ.0) GOTO 6200

NO BUFFER FREE

"MEM=NMEM(I,NOP)

IF (MFL(I,MEM).NE.1) GOTO 6346
1S MEMORY FREE

PACK=NBUFF (1,NOP)

PACKS=PK T(PACK» 1)

IF (PACKS.LT.100) GOTO 6081
SOUR=PACKS~100

NTON=1 INDICATES THAT PACKE
NTON=1 :
DEST=PKT(PACK,2)~-100

GOTO 6091

CALL SUBS(PACKS»,Hs SOURs JJ)
PACKD=PKT(PACK»2)) ud
CALL SUBS(¢PACKD,H,DEST,
SDUR=PAC§ET NODE SOURCEs DEST=PACKET DEST NODE
J=1

IF CAVAIL(J).EQ.0) GOTO 6301

KK=NET(I,J)

KK=DEST NODE

IF (DEST.NE.KK) GOTO 6301

PACKET FOUND FOR NODE KK

AA=AA~- 1

AVAILCJ)=0

NOB(I, J)=PACK

NOECI,J)=NPLRC(I,J)

NBUFI(¢I,3)=NBUFI(I,3)-1

ONE LESS PKT IN OUTPUT BUFFER

T REQUIRES DIRECT ROUTE

264

6271

6341

6348

6349

6346

6200

6210

4171

5999

NOW SHIFT QUEUE UP

KK=NBUFI (I,3)=-(50-NOP)

LLL=NOP
pg 6271 1I=1,KK
NBUFF (I,LLL)=NBUFF(I,

LLL-1)

NMEM(1,LLL)=NMEMCI,LLL-1)

LLL=LLL-1

MFL ¢ I, MEM)=0

MEMORY UNIT SET BUSY
MNECI,MEM)>=NSP(1,2)

MEMORY UNIT OCCUPIED FOR TIME REQD TO EXTRACT PACKET

MEMSCI,MEM)=MEMS(I,MEM)~-1
ONE LESS PACKET IN MEMORY UNIT
" . GOTO 6325

J=d+1

IF (J.LE.K) GOTOD 6092

NO DIRECT NODE FOUND

IF (NTON.EQ.1> GOTO 6346
NODE TO NODE ACK REQUIRES DIRECT ROUTE

DO 6341 J=1,K
BFL(J)=0

IN=0

DO 6348 J=1,K

IF (AVAILCJ)«-EQ.0> GOTOD 6348

IF (NET(I,J)«EQ.SCUR)

GOTO 6348

PKT NOT REROUTED BACK THRU SOURCE NODE

IN=IN+1
BFLC(INI=J
CONTINUE

NO BUFFER AVAILABLE FOR CURRENT PKT
IF (IN.EQ.0) GOTO 6346

IF (IN.GT.1) GOTO 6349

ONLY ONE BUFFER AVAILABLE

J=BFL(1)

GOTO 6351

SELECT RANDDM QUTPUT
CALL RAND(A,B, SUM)
R=SUM
R=R*0.0009765625

RIN=1IN
JJJ=INTC(R*RIN+0.9999)
J=BFL(JJJ)

BUFFER

" IF (R.LE.0.0001) GOTO 6349

EXTRACT REQUIRED BUFFER NO

GOTO 6351

NOP=NOP-1

GOTO 6325

AAA=AA

BBB=BBB- AAA

IF (BBB.EQ.0.0) GOTO
DCC=0CC+QLANSP(I,1)+2
CONTINUE

IF (0CC.EQ.0.0) GOTO
CALL ALLOC(¢1,PFL,PNE,
CONTINUE

CALL PRDC(I,PDRD,UPRP
GOTO €1999,2999,3999
CONTINUE

6210
. 0xBBB*NSP(1,2)

4171
p, 0CCs TPROC)

)
0c PFL(1,1),PNO
» NPRUL? NPROC

4999, 5999)

265

4065

7250

72490
7300

7149

7200

7210

Ti10
7120

BRING PACKETS INTO HOST OUTPUT BUFFERS

pg 7000 I=1,N

K=H(I)

po 70600 J=1,K

UPDATE RETRANSMISSION TIME
RP=0

IF (RHOB(I,J)-EQ.0) GOTO 7250
RHOE(I,J)=RHOEC(I,J)-SMALL

IF C(RHOE(I»J)«GT.0.0) GOTO 7250
RP=1

IF (HNDE(I,J)eNE«0.0) GOTO 7300
PACKET STILL WAITING FOR TRANSMISSION
IF (HOB(I,J).NEe.0) GOTO 7300

IF ZERO BUFFER FREE, ELSE AWAITING ACK
IF (HCBI(I,J»2).EQ.0) GOTO 7260
ANY CONTROL MESSAGES TO OUTPUT
HOB(I1,J)=HCB(Il,J»1)
HNOECI,»J)=HCLR(I,J)
HCBI(I:J:2)=HCBI(I;J,2>-1

ONE PKT LESS IN BUFFER

SHIFT QUEUE UP

L=HCBI(I,J»2)

DO 7240 LJ=1,L
HCB(I,J,LJ)=HCB(I,J,LJ+1)

"IF (RP.EQ.0) GOTO 7000

IF (HNOECI,J)«EQ.0.0) GOTO 7140
RHOEC1,J)=HNOE(CI,J)

GOTO 7000

RHOECI,J)=0.0000001

GOTO 7008 '

NO CONTROL PACKETS TO QUTPUT
IF (RP.EQ.0) GDTO 7210

HOB(I, J)Y=RHOB(I,J?
HNOECI,J)=HPLR(I,dJ)
RHOECI,J)=0.1

RETRANSMISSION OF PACKET REQUIRED
GOTO 7000

IF (RHOE(CI,J).NE.0e0) GOTO 7000
IF (HPBI(IsdJs»2)NE.D) GOTO 7100
IF (HQL(I,J).EQ.0) GOTO 7060 .
NO MORE MESSAGES

IF (NPKT.EQ.500) GOTO 7000
HQL(IJJ)=HQ1.(IJJ)‘1

INPUT NEW MESSAGE INTO SYSTEM
DO 7110 11=1,500

IF (PKT(II,1).EQ.0) GOTO 7120
CONTINUE

CALL ISUBS(NMG,H»I,»J)
PKT(II,1)=NMG

266

7130

7600

7078
7079

7100

1041
7000

GENERATE MESSAGE DESTINATION
CALL RANDCA,B, SUM)

R=SUM

R=R*0. 0009765625
NNN=IDINTC(R*(HN=1e0)+1.5)
IF (NNN.EQ.NMG) GOTO 7130
HMD(¢ I, J)=NNN
PKTC(11,2)=NNN .
PKT(11,33=0

HPSN(I,dJ)=1

PKTC(II,4)=1

GENERATE MESS OF MEAN LENGTH 1
CALL GENCCP1,CP2,CP3,CP4, TOTAL)

IF (TOTAL.GT.32383) GOTO 7600
CALL CHOP(CUM, TOTAL, CLASS)
RC=CLASS

IF R <= MMR GENERATE SHORT MESSAGE

ELSE GENERATE LONG MESSAGE
CALL RANDCA, B, SUM)

R=SUM

R=R*0.0009765625

IF (R.GT.MMR) GOTO 7078

~ SCALE MESS OF MEAN | TO SHORT MESS MEAN MSM
NNN=IDINTCRC*FSM+0.599)

GOTO 7079

SCALE MESS OF MEAN 1 TO LONG MESS MEAN MLM

NNN=IDINTCRC*FLM+0.999)
PKTC(II,S5)=NNN
HPM(I,J)=NNN

TPINCII, 1)=TIME
NPKT=NPKT+1!

'ONE MORE PACKET IN SYSTEM

HPBIC(I, J,2)=1

HPB(1,J, 1)=11

HOB(1, J)=HPB(I,dJd> 1)
HNOEC1,J)=HPLRC(I,J)
HPBI(I:J:Z):HPBI(I,J,Q)-l
ONE LESS PACKET IN BUFFER
NOW SHIFT BUFFER QUEUE UP
L=HPBI(I, Js,2)

DO 7041 LJ=1,L

HPBCI,JsLJ)=HPB(I,JsLJ+ 1)
CONTINUE ‘
NCHECK=NCHECK~- SMALL
NHARD=NHARD- SMALL

IF (NCHECK.NE.0.0) GOTO 3305

267

3305

3306

3308

3307

3300

QUTPUT CURRENT SYSTEM STATE DATA

XNREC=NREC

TNREC=TNREC+XNREC
MNREC=NREC

NREC=10

NCHECK=CHECK :
IF (NHARD.NE.0.0) GOTO 330
TQL=0 :

MINQL=32767

MAXQL=0

AVQL=0

K=0

pO 3306 I=1,-N

L=HCD)

DO 3306 J=1,L

HHH=HQL (I, J)J

IF (HHH.EQ.0) GOTO 3306
TQL=TQL+HHH

IF (HHH.LT.MINQL) MINQL=HHH
IF (HHH.GT.MAXQL) MAXQL=HHH
K=K+ 1

CONTINUE o

IF (MINQL.EQ.32767) MINQL=0
IF (K.EQ.0) GOTO 3307
TTQL=TGQL

TK=K

AVQL=INTC(TTQL/ TK+0.5)

. PU2=000

DO 3308 I=1,N

II=NODEICI, 1)

DO 3308 J=1,11

IF (PNECI,J)«GTel1l.0) GOTO 3308 .
PU2=PU2+ TPROC(I,J)

CONTINUE
PU1=((PU2-PU1)/(NDPR*HARD))*!OOoD
ITI=INT(PU1+0.5)
MUSE=(MUSE/(NDMEM*HARD))*100-0
JJJ=INT(MUSE+0.5))

WRITE (2,9105) TIME:NPKT:MNREC,TNREC:
XHQL(1,2),HQL(1;3):HQL(2:l);
XHQL(3;2),HQL(3;3);TQL;MINQL;

NHARD=HARD

PUl=FU2

MUSE=0.0 .
IF (TIME.LT.LGSIM) GOTO 5000
WRITE (2,9700) TIME
WRITE (2,9702) EXEC
WRITE (2,9600) PTY(1)»
WRITE (2,9610) TPTClJ>
WRITE (2,9620) SNC(1)>
WRITE (2,9630) RNC(1)>
F=0.0

FX=0.0

HQL(2;2);HQL(2;
MAXQL,K,AUQL;III;JJJ

PTY(4)sPTY(5)
TPT(4) 5 TPT(S)
SNC(4) 5 SNC(S)
RNC(4) s RNC(S)

pTY(2),PTY(3)s
TPT(2)s TPT(3)s
GNC(2),SNC(3)s

268

NBUFI(1;2);HQL(1;1):
3),HQL (3,12

5025

5026

8000
8005

8010
8020
8030
80s0
8060
8070
8075
80840
8085
8050
g100
8200
8210

gaz2¢e

8300

pg 5025 1=1,200

IF (MLCI>.EQ.0) GOTO S0
NUM:ML(I)
THRU=TMT (1) /NUM

25

WRITE (2,8200) I,MLCI), TMTCI), THRU

TK=1

F=F+NUM

FX=FX+NUMx*TK
CONTINUE.
XMEAN=FX/F

WRITE (2,8300) F,FX,XMEAN

DO 5026 I=1,5

DO 5026 J=1,10
PUSE(I,J)=C¢(TPROCCI,J)/L
WRITE (2,8210)

cALL R10<¢10, TPROC)
WRITE (2,8220)

cALL R10(10,PUSE)
STOP

WRITE (2,99108)

STOP

WRITE (2,9800)

STOP

FORMAT(I)
FORMAT(216)
FORMAT(216,F20.9)
FORMAT(SI10)
FORMAT(42X,616,2F14.9)
FORMAT(5F20.9)
FORMAT(F8.2,13,13,13)
FORMATCIS,F20.9)
FORMAT(F14.8)
FORMAT(5X.3112)
FORMAT(1118)
FORMAT(21652F14+9)

FORMAT(C1HO0,S5X, ' TOTAL PROCESSOR
FORMAT(C LHO0, 5X, ' TOTAL PROCESSOR TI
X'0F TIME AVAILABLE")

FORMATC(1HO0, 5%, "' F ="

- X? MEAN PACKET LENGTH

90160
9020
9105
9110
9111
9112
9114
9115
9116
9117
9600
9610
9620
96390
9700
97092
9800
S91¢

FORMAT(1H1, 5X, ' CUMULATI
FORMAT(1H1,5X, "RUN NUMB
FORMATC(1H »F5.3,13,14,F

FORMAT(//, 5X, *NODES OPERATIV
FORMAT(//,SX,*DIST OF TYPES
FORMAT(//,5X, ' TIME T0 THRUP

FORMAT(//» 5X, *DIST OF M
FORMAT(5X, ' AND MEAN TIM
FORMAT(//,5X,*DIST OF S
FORMAT(//,5X,'DIST OF R

GSIM)*100.0

:Fgol)' FX ="'

= ',F8.1)

VE FREQUENCY

TIME USED")
ME USED AS %' »

2F8e 1y

CURVE MEAN 1'»/)

ER 3'316:5X)'IAR =')F10°6J//)
8-0;1014:16:414;216)

ESS PAS

E ='5515+/7)

OF PACKETS PASSED'»//)

UT TYPE OF PACKET'»//)

SED OF LENGTH | = 100')

E TO THRUPUT';//)
ENDING NODES's//)
ECEIVING NODES's//)

FORMAT(//,' PTY =',516)

FORMATC(//,' TPT =1,5F12+9)

FORMAT(//»' SNC ='»,516)

FORMAT(//»' RNC =1,516,// .

FORMAT(//,SX, "END OF SIMULATION géf’lgl’

FORMAT(5X, 'NEXT LOCP EXESSTSgNY’PACKETS
- T

FORMAT(//, 5X, * DANGER 100 T TABLES GON

FORMAT(//» 5Xs " DANGER =
END

IN SYSTEM')
E HAYWIRE®)

269

1105

20449

20849

2099

2030

2035

2085

2079

270
SUBRDUTI NE DINPUT(N,LK,NET,NETB,NPLR
NCL
XNBUF 1,CBUF1,H,HPLR,HCLR, HOSTS,HOSTC, ;-INU: ?I;{?Egg’lguggéﬂ
4 »

CNTP» CHECK, HPBI, HCBI, MMR, SNET, NSP, BR
Kt MLM, MNGN, HCF, BITS, HARD, 11, ST17 oo RUNKD,
INITIALISE SYSTEM _

INTEGER NODE(S)>LK(5),H(S5),NET(5,5),NETB(S5,5)
XSNET(SJS)QNSSEI(S)5):NBUFI(5:3):CBUFI(5:3): ’
XHOSTC(S,» SY» STS(S,5),BU(S),HPB
CHCF(25) 105,5,3),HCBI(5,5,3),

REAL NPLR(S»5),NCLR(5,5),NSP(5,3),HPLR(5,5),
XHCLR(S» 5),HNU(S, S),LINEC(S55,5),HLR(5,5),BRN(5),
XBRP(S:IU)JBBM(SJIU):STI(“]:-Q)

INTEGER NH., RUNNQO ., BR,MSM,MLM,MNGN, FREQ

REAL LGSIM, PKLGH, CHECK, XLINEC,HHC,P,BITS,CNTP,
XHARD)MMR) TI,E1,E2,AAS, TT ’

READ (1,8040) RUNNO
READ (1,8010) N
IF (N.GT.5) GOTO 2100
pO 1105 I=1,N
BUCI)=1

CLEAR ARRAY

DO 2030 I=1,N
DO 2040 J=1,5
NETC(I1,J)=0
SNET(I,J)=0
NETB(1,J)=0
NPLR(I»J)=0.0
NCLR(I,J)=0.0
HPLR(1,J)=0.0
HCLR(I,J)=0.0
HOSTS(1,J)=0
HOSTC(I,J)=0
HNUC1,J)=040
NODEI(I,»J)=0
CONTINUE

DO 2680 J=1,10
BRP(1,J)=0.0
BRM(1,J)=0.0
CONTINUE

DO 2090 I1=1,10
DO 2090 J=1,2
STIC(1,J)=0.0
NODECI)=0
LK(I)=0

H(I)=0
BRN(I)=0.0
CONTINUE

DD 2035 1=1,25
HCF(1)=0

DO 2085 1=1,N
DO 2085 J=1,5
DO 2085 K=1,3
HPBI(I,JsK)=0
HCBI(I,JsK)=0
DO 2070 I=1,5
DO 2070 J=1,3
CBUFI(I, J)=0
NBUFI(I,J)=0

2110

1095

1115

1090

1080

1085

1082

1120

1150
1130

1154

271
pO0 2110 I=1,N

po 2110 J=1,3

NSP(1,J)=0.0

IF (NeGT«1) GOTO 1095

NODEC1)=1

GOTOD 1082

DO 1080 I=1,N

READ (1,80103 LKC(I)

LK(1)> HOLDS NO OF LINES FROM NDDE I

LKKK=LK(I)

DO 1090 J=1,LKKK

READ (1,8090) NETC(I,J),LINECCI,J)
K=NET(I,J)

NETB(C1, J)=BUWK)
BUCK)=BU(K)+1

CONTINUE

NODEC(ID=1

CONTINUE

DO 1085 I=1,N

L=LK(I)

DO 1085 J=1,L

II=NETC(I,J)

JJ=NETB(1, J)

SNETCII,JJd)=1

INITIALISE NODE ATTRIBUTES
DO 1120 1=1,N ‘

READ (¢1,8020) NODEICI,1)
READ (1,8020) NODEI(I,2)
READ (1,8850) NODEICI,»3)
READ (1,8100) NSP(I,1)

READ (1,8100) NSP(I,2)
CONTINUE

INITIALISE HOST ATTRIBUTES
NH=0

DO 1130 I=1,N

READ (1,8010) HCI)

IF (HCI).GT.5) GOTO 2200
NH=NH+HCI)

TOTAL NO OF HOSTS

IH=H(1)

DO 1150 J=1,1IH

READ (1,8096) HLR(I,J)

READ (1,8060) HOSTS(I»J)
READ (1,8050) HOSTC(I,J)
READ (1,8080) HNUCI,J)
CONTINUE

CONTINUE

READ (1,8230) LGSIM
READ (1,8260) BITS
READ (1,8270) PKLGH
READ (1,8260) CNTP
STORE TIME REQD TO ACCE
DO 1154 I=1,N
P=NODEI(I, 3)
NODEI(I, 3)=P/PKLGH
HHC=NSP(I,2)
NSP(I,2)=HHC*PKLGH
NSPC1,3)=HHC*CNTP

S PACKET IN NSP

1155

1165

1135

1145

4400

9720

9740

9750

pg 1155 I=1,N

K=LK(I)

pg 1155 J=1,K
NCLR(I:J)=(CNTP*BITS)/LINEC(I,J)
NPLR(I,J)“(PKLGH*BITS)/LINEC(I,J)
pg 1165 I=1,N

K:H(I))

DO 1165 J=15K
HPLR(¢I»J)=(PKLGH*BITS)/HLR(I,)
HCLR(I,J>=(CNTP*BITS)/HLR(I, J)
pO 1135 I=1,N

K=H(I)

DO 1135 J=1,K N
HHC=HOSTC(I,J) .
HPBIC1,dJs 1)=HHC/PKLGH
HCBI(1,Js 1)=HHC/PKLGH

DO 1145 I=1,N

P=NODEI(I1,2)

HHC=NODEI(I,» 3D

CBUFIC(CI, 1)=PxHHC
NBUFI(1I,1)=P*HHC

READ (1,8235) CHECK-

READ (1,8235) HAKRD

READ (1,8266) TI

READ (1,8030) MSM

READ (1,8030) MLM

READ (1,8266) MMR

READ (1,8030) MNGN

GENERATE CUM FREQ CURVE FOR GENERAtnm HDSTS
ISUM=0

E1=000

AAS=32767.0

DO 4400 I=1,NH

TT=1

E2=1.0-EXP(-TT/MNGN)
FREQ=INT((E2-E1)*AAS)
ISUM=1SUM+FREQ

HCF(1)=1SUM

El=E2

READ (1,8010) BR

IF (BR.EQ.0) GOTO 9700

READ (1,9001) ILT

IF (1.EQ.0) GOTO 9740

BRN(I)=T

GOTO 9720

READ (1,9002) I1,J,T

IF (1.EQ.0) GOTO 9750

BRP(I,J)=T

GOTD 9740

READ (1,9002) I1,J»T
IF (I1.EQ.0) GOTO 9700
BRM(I,J)=T

GOTO 9750

272

9700

9705

9760

2100

2200

8010
8020
8030
8040
8050
8060
8070
8089
8090
8095
8096
8100
8220
8239
8235
8240
8259
8260
8265
8266
8267
8279
9000
9001
9002
93190
93290
9340
9399

273

1=1

READ (1,8267) STICI, 1)

IF (STICI,1)-EQe0.0) GOTO 9765
READ (1,8266) STICI,2)

IF (1.EQ.10) GOTO 9760

[=1+1

GOTO 9705

QUTPUT NETWORK CONFIGURATION DATA

CALL PAT(N,LK,NET,NETB,NPLR,NCLR,NODE,NQDE],

XNBUF I, CBUF I, H, HPLR, HCLR, HOSTS, HOSTC, HNU, NH, LGS IM, PKLGH,
XCNTP, CHECK, HPBI,HCBI,MMR, SNET,NSP, BR, BRN, BRP, BRM, RUNNO, -
XM SMsMLM, MNGN, HCF,BI TS, HARD, TI, STI)

WRITE (2,9340) -

CALL RS5S(N,LINEC)

WRITE (€2,9390)

CALL RS(N,HLR)

RETURN

WRITE (2,9310)

RETURN

WRITE (2,9320)

RETURN ‘

FORMAT(I1)

FORMATC(I2)

FORMAT(I3)

FORMAT(I4)

FORMAT(IS)

FORMAT(16)

FORMAT(SIS)

FORMAT(F4.2)

FORMAT(I1,F9.0)

FORMAT(F6.0)

FORMAT(F9.0)

FORMAT(F10.9)

FORMAT(F7.1)

FORMAT(F7.3)

FORMAT(F9.5)

FORMAT(F6.1)

FORMAT(F4. 1)

FORMAT(F3.0)

FORMAT(F 4. 0)

FORMAT(F8.6)

FORMAT(F6.3)

FORMAT(FS.0)

FORMAT(S5F8.2)

FORMAT(I1,F4.2)

FURMAT(IIJIQJFQ?B) D',//)
FORMAT(//, 5X, ' ERROR - MAX © ngméégg PERMITTED's//)
FORMAT(//, 5X, ' ERROR - MAX S HDSTsz‘ or
FORMAT(//, 5X, *LINE CAPACITY EBAU? ’
FORMAT(//, 5X, 'HOST LINE RATE'-//
END

274

SUBROUTINE PAT(N,LK,NET;NETB, NPLR, NC

L
«NBUF 1, CBUF 1, Hs HPLR, HCLR, HOSTS, HQ s}c,aﬁﬁmgf’ NaoEL,
XCNTP» CHECK, HPBI, HCBI, MMR, SNET, NSP, BR, BRN B’LGSIM'M‘GH’
XMSM»MLM, MNGN» HCF» BITS, HARD, T1, STI) » BRF, BRM, RUNND,

INTEGER NODE(S5),LK(5),H(5),N ’
XNUDEI(S,5):NBUFI(5,3),CBUFI(gfgjgé’sl'qrg?i(?)&’SNET(S,S)’
CHOSTS(5»5) s BUCS), HPBICS, 5,3),HCBI(5, 5, 3) PHCF(ES),
"2EAL NPLR(5,5)»,NCLR(5,5),NSP(S,3),HPLR(S, 5)

KHOLR(5» 5 » HNUC5, 5) ,LINEC(5, 5, HLRC5, 5), BRN(5)
XBRP(S5, 1075 BRM(5, 100, STI(10,2) ’
INTEGER NH,RUNNO, BR,MSM,MLM, MNGN

REAL LGSIM»PKLGH, CHECK, XLINEC, HHC, P, BITS, CNTP,

" XHARD,MMR, T1

4042

1160

1170

QUTPUT NETWORK CONFIGURATION DATA

WRITE (2,9290) RUNNOU
WRITE (2,9300) N
WRITE (2,9310) LGSIM
WRITE (2,9315) BITS
WRITE (2,9320) PKLGH
WRITE (2,9321) CNTP
WRITE (€2,9325) CHECK
WRITE (2,9326) HARD
WRITE (2,9317) Tl
WRITE (2,9324) MMR
WRITE (2,9322) M3M
WRITE (2,9323) MLM
WRITE (2,9938) MNGN
WRITE (2,9232)

DO 4042 I=1,NH :
WRITE (2,9006) I,HCF(I)
WRITE (2,9330)

CALL OS(N,NET)

WRITE (2,9335)

CALL O5(N,NETB)
WRITE (2,9337)

CALL 0OS(N, SNET)
WRITE (2,9345)

CALL RS5(N,NPLR)
WRITE (2,9348).

CALL RS(N,NCLR)
WRITE (2,9350)

DO 1160 I=1L,N

WRITE (2,8050) NODE(D)
CONTINUE

WRITE (2,9360)

DO 1170 I=1,N

WRITE (2,8050) LK(D)
CONTINUE

WRITE (2,9370)

WRITE (2,9371)

WRITE (2,9372)

WRITE (2,9373)

WRITE (2,9374)

1191

1190

2010

e02s

9490

2400

8050
8065
8075
8210
9003
9004
9005
9006
929
9300
9310
9315
9329
9321
9317
9322
9323

275

cALL 05(N,NODEID)

WRITE (2,9375)

po 1191 I=1,N

WRITE (2,8210) I,NSPCI, 1) ,
YRITE (259380 sNSPCI,2),NSP(I;3)
5o 1190 I=1,N

YRITE (2,8050) HCI)

CONTINUE

WRITE (2,9395)

cALL RS(N,HPLR)

WRITE (2,9398)

CALL RS(N,HCLR)

WRITE (2,9400))
CALL OS5(N,HOSTS)

WRITE (2,9410)

CALL O0S(N,HOSTC)
WRITE (25,9430
CALL RS5(N,HNU)
WRITE (2,9440)

‘po 20168 I=1,5

WRITE (258065) NBUFIC(I,1)
WRITE (2,9450)

- DO 2020 I=1,LN

WRITE (2,8075) HPBI(I,1,1),HPBI(I,2,1),

XHPBI(I:B:1),HPBI(I;4;1):HPBI(I:5,1)

WRITE (2,9810) »
DO 9490 I=1,5 »
WRITE (2,9003) BRN(I)
WRITE (2,9828)

' CALL R10C10,BRP)

WRITE (2,9830)

CALL R10¢10,BRM)

WRITE (2,9835)

WRITE (2,9836)

DO 2400 I=1,10 -

WRITE (2,9005) STI¢(I,1),STI(I,2)
RETURN

FORMATCIS)

FORMAT(S5X, 16)

FORMAT(5X,515)
FORMAT(I110,3F15.9)

FORMAT(F18.9)

FORMAT(11110)
FORMAT(5X,2F10.3)
FORMAT(5X,2110)

FORMAT(C 1H1,5X, "RUN NO =',18)
FORMAT(//,5X, 'NO OF NODES = B
FORMAT(//» 5X, 'LENGTH OF SIMULATION = irsh)
FORMAT(//,5X, ' WORD LENGTH = 1
FORMAT(//» 5X, ' PACKET LENGTH
;DRMAT(//,SX,'CDNTRDL PA%%SSIT o .
ORMAT(//,5X, ' TRAFFIC IN - s = "'s1
FORMAT(//, SX, "MEAN NO OF PKTS e Sggngiii = '516)
FORMAT(//, S5X, *MEAN NO OF PKTS IN L

=

9938
9232
9324
9325
9326
9330
9335
9337
9345

9348

9350
9360
93710
9375

93840
9395

9398

9400
941490
94390
9440
9450
9371
9372
9373
9374
9460
98190
98210
98340
9835
9836

FORMATC(/ /55X,
FORMAT(//5 5%,
FORMAT(/ /s 5%,
FORMAT(/ /55X,
FORMAT(/ /55X,

" FORMAT(//»5X,

FORMAT(/ /55X,
FORMAT(//, 5%,

FORMAT(//,5%»
X'FOR ONE PKT(SECS)',//)

FORMAT(//, 5%,

FORMAT(/ /53X,

FORMAT(//,5X,"

FORMAT(/ /55X,
FORMATC(/ /55X,

FORMAT(//, 5%,
FORMAT(/ /55X,

FORMATC(//, 55X,

FORMAT(C/ /s 5%,
FORMAT(//55X,
FORMAT(/ /55X,
FORMAT(//55X,
FORMATC(//55Xs
FORMATC(/ /s 5%,
FORMAT(/ /55X,
FORMAT(/ /55X,
FORMATC(/ /5, 5%,
FORMAT(/ /55X,
FORMAT(C(/ /55X,
FORMATC(/ /5 5%,
FORMATC(/ /55X,
FORMAT(//,5X»

276

'MEAN NO OF GENERATING HOSTS =',16)
'GENERATING HOST CUM FREQ',//)

'MESSAGE MIX RATIO (SHORT/LONG) = ',FS5.3)
'EPOCH FREQUENCY OF CHECK = ',F9.5,*' SECS")
'EPOCH FREQUENCY OF HARD COPY = ',F9.5,' SECS*'>
*NET'»>//)

*NETB'»//)

'SNET*»/7/)

NODE LINE TRANSMISSION TIME °,

*NODE LINE TRANS TIME FDR ONE ',

X'CONTROL PACKET(SECS)',//)

‘NODE'»//)

LK's77)

'NODEI")

'NODE I PROC SPEED PKT SPEED 'y

X' CONTROL PACKET SPEED',//)

'NO OF HOSTS ON EACH NUDE*://)
*HOST LINE TRANSMISSION TIME °’,

X'FOE ONE PACKET(SECS)',»//)

'HOST LINE TRANS TIME °*,

X'FOR ONE CONTROL PACKET(SECS)',//)

*HOST M/C SPEED',//) ,
*HOST M/C CAPACITY FOR PKT STORAGE',//)

*HOST NETWORK UTILISATION',//)

*NODE PKT CAPACITY',>//)

'*HGOST PKT CAPACITY'»>//)

*NO OF PROCESSORS')

NO OF MEM UNITS®)

*MEM UNIT CAPACITY IN PKTS')

*TOTAL SIZE OF MEM IN PACKETS',//) ,
'IF BRKEAKDOWN REQUIRED INPUT 1 ELSE INPUT 0')
'*NODE BREAKDOWN TIMES',//)

' PROCESSUOR BREAKDOWN TIMES',//)

'MEMORY BREAKDOWN TIMES',//)

*STEP TRAFFIC INTENSITY ',//)

FORMAT(5X, ' TIME CHANGE NEW TRAFFIC INTENSITY',//)

END

3000

53090

54090

5200

5100

5050

277

SUBROUTINE TRANS(PKT, TPIN,K,VEC,NREC», TIME, PTY, TPT,
XTIN,ML, TMT» SNC,RNC)

RECORD PKT STATISTICS AND REMOVE PKT FROM SYSTEM

INTEGER PKT(500,5),VEC(9),PTY(5),ML(200),SNC(5),RNC(5)
REAL TPT(5),TIN(25,25), TMT(200), TPINCS500,2)

INTEGER S, D, TYPE

REAL TIME, TI,TO

DO 3600 I=1,5

VECCI)=PKT(K,1I)

PKT(K, I)=0 .

CONTINUE

TI=TPINCK, 1)

TO=TPIN(K,2)

TPINCK,1)=0.0

TPIN(K,2)=0.0

NREC=NREC+!

RECORD PACKET STATISTICS

TYPE=VEC(3)+1

PTY(TYPE)=PTY(TYPE)+1

TYPE OF PACKET PASSED

IF (VEC(3).NE.0) GOTO 5300
TPT(TYPE)=TPT(TYPE)+ TO-TI

GOTO 5400

TPTCTYPE)=TPT(TYPE)+ TIME~TI

TIME TO THRUPUT TYPE OF PACKET

IF (VEC(3).NE.1) GOTO 5200

I=VEC(1)-100

J=VEC(2>-100

SNC(I)>=SNC(I>+1

RNCCJ)=RNC(J)+1

RECORD SENDING NODE AND RECEIVING NODE
IF (VEC(3).NE.0) GOTO 5050

S=VEC(1) 7
D=VEC(2)

IF C(VEC(4).NE.l1> GOTO 5100

IF FIRST PACKET OF MESS RECORD TIME IN SYSTEM
TINCS,D)=TI :
IF (VEC(4).NE.VEC(S)) GOTO 5050

IF EQUAL WHOLE MESS THRUPUTTED

L=VEC(5)

MLCL)=ML(L)+1

RECORD LENGTH OF PACKET
TMTC(L)=TMTC(L)+TO-TIN(S>D)

TINCS,D)=0.0

RECORD LENGTH OF TIME TO THRUPUT MESSAGE
RETURN

END

278

SUBROUTINE OS(N, ANNA)
INTEGER ANNA(S,5)
DO 2000 I=1,N
WRITE (2,8000) I,ANNACI,1),ANNACI,2),ANNACI,3),
4 XANNAC(I»4),ANNACI, S)
2000 CONTINUE
RETURN
8000 FORMATC(1H ;5X:'NDDE':IE;SIIO)
END

SUBROUTINE 010(M, ANNA)
INTEGER ANNAC(S, 10)
WRITE (2,7000)
DO 2000 I=i,M
WRITE (2,8000) I,ANNAC1,I),ANNAC(2,1),ANNA(3,1),
XANNAC(4,1),ANNACS, 1)
2008 CONTINUE ’ .
RETURN ' \
7008 FDRMAT(1H0:12X:'NDDEI':SX;'NUDE2':SX:'NDDE3'
X5X, 'NODE4"* ,5X, 'NODES'»//)
800080 FORMAT(IH ,5X,12,5110)
END

SUBROUTINE 050(M, ANNA)
INTEGER ANNA(5,50)
WRITE (2,7000)
DO 2000 I=1,3
WRITE (2,8000) I,ANNA(1,I)>,ANNAC2,1),ANNAC3,1),
XANNAC(4, 1), ANNACS,I)
2000 CONTINUE
DO 3000 I=48,50
WRITE (2,8000) I,ANNAC1,I),ANNAC(2,1),ANNA(3,1),
XANNAC(4,1),ANNA(S, 1)
3000 CONTINUE
RETURN
7000 FORMAT(1H!,12X,*'NODE1l',5X, *NODE2"',5X, *"NODE3",
XS5X, *NODE4"', SX, *"NODES',//)
8000 FORMAT(IH ,5X,12,5I10)
END

2000

8000

2000

7000

8000

SUBROUTINE RS(N, ANNA)

REAL ANNA(S5,5)

DO 2000 I=1,N

WRITE (2,8000) I,ANNAC(I,1),ANNACI,2),ANNACI,3),
XANNACI» 4), ANNACIS S)

CONTINUE

RETURN

FORMAT(C1H ,5X, 'NODE',12,5F20.9)

END

SUBROUTINE R10(M, ANNA)

REAL ANNA(5, 10)

WRITE (2,7000)

DO 2000 I=1,M

WRITE (2,8000) I,ANNAC1,1),ANNAC2,I),ANNAC3,1),
XANNA(4, 1), ANNACS, 1) ' .
CONTINUE

RETURN

FORMAT(1HO, 16X, "NODE1"', 13X, 'NODE2', 13X, *NODE3",

X13X, *NODEA4', 13X, "NODES'»//)
FORMATC(IH ,5X,1I2,5F18.9)
END

279

280

SUBROUTINE SUBS(NMG,H,II1,JJ)
c GIVEN ADDRESS CODE RETURNS NODE AND HOST NO

INTEGER H(S)
JJ=NMG
DO 3000 II=1,5
IF (JJ.LE.H(II)>) GOTC 3010
JJd=JJ=-H(II1)
30008 CONTINUE
3010 RETURN
1000 FORMAT(//,5X,'ERROR - ADDRESS CODE > NO OF HOSTS',//)
END :

SUBROUTINE ISUBS(NMG,H,II,dJJ)
c GIVEN NODE AND HOST NO RETURNS ADDRESS CODE

INTEGER H(5)
IF (CII.NE«0)«ANDe(JJsNE.0)) GOTO 3010
WRITE €2,4000)
STOP .
3010 IF (JJ.LE.HCII)>) GOTO 3020
WRITE €2,34) II,JJ,HCII)
34 FORMATC*I1=',16,'JJ=",16,16)
WRITE ¢2,5000)
. STOP
3020 NMG=0
KK=11-1
I=1
3030 IF (I1.GT.KK) GOTO 3000
NMG=NMG+H(¢I)
I=1+1
GOTO 3030
3000 NMG=NMG+JJ
RETURN , :
4000 FORMAT(//,5X,'ERROR - ONE OF SUBSCRIPTS ZERO',//)
5000 FORMAT(//,5X,'ERROR - SUBSCRIPT OUT OF RANGE',//)
END

10

20

10

281

SUBROUTINE RANDCA,B, SUM)
INTEGER OP(10),AC16),B(14)
INTEGER C»D,E,F,SUM

REAL R

EVALUATES NEW BITS FOR CHAINCODES AND SHIFT
C=MOD2(CA(8),AC15))

DO 10 I=1,14

1I=16-1

JJ=15=-1

ACIId)=ACJd)

CONTINUE

AC1)=C

D=MOD2(B(13),B(4))
E=MOD2(B(3),D)
F=MOD2(B(1),E)

DO 20 1=1,12

1I=14-1

JJ=13-1

BCII)=B(JJ)

CONTINUE

B(1)=F

PICK-0OFF TEN BIT WORD FROM CHAINCODES USING
MODULO-2 ADDITION
OPC1)=MOD2CAC1),BC(7))
OP(2)=MOD2CAC3),BC(11))
OP(3)=MOD2(AC5),B(9))
OPC4)=MOD2CACT7)sBC13))
OP(5)=MOD2CAC9),B(12))
OP(6)=MOD2¢CAC11),BC10))
OP(7)=MOD2CAC13),B¢(8))
OP(8)=MOD2(A(15),B(6))
OP(9)=MOD2CAC10),B(5))
OP(108)=MOD2CA(6),B(3))

SUM THIS WORD INTO DECIMAL FORM
SUM= 0 : : '
DO 30 I=1,10
SUM=2%xSUM+0P(1)

- CONTINUE

SUM IS THE RETURNED RANDOM NO IN RANGE § - 1023
RETURN
END

FUNCTION MOD2C1,J)

PROVIDES MODUL(O-2 0OR HALF ARITHMETIC
REQUIRED BY RAND AND GEN

K=I+dJ

IF (K.NE.2) GOTO 1l¢8
K=0 ’

MOD2=K

RETURN

END

1000

2000

3000

4000

SUBROUTINE GENCA,B,C,D, SUM)
INTEGER 0OP(15),A¢21),B(21),C(21),D(21)
INTEGER SUM»15JsKsL,M,E,F5GsH

EVALUATE NEW BITS FOR CHAINCODES AND SHIFT
L=MOD2CAC8),AC15))
G=MOD2C¢CC(7),C(15))

DO 1000 I=1,14

I1I1=16-1

JJd=15-1

ACIIN=ACJd)

CCIIN=CCJJ)

ACl)=L

CCl1)=G
M=MOD2(B(13),B(4))
E=MOD2(B(3),M)
F=MOD2(B(1),E)
H=MOD2¢(D(¢11),DC10))

DO 2000 I=1,12

II=14-1

JJd=13~1

BCII)=BC(JJ)

DO 3000 I=1,10

II=12-1

Jd=11-1

DCIID)=DCJJ)

B(1l)=F

D(1)=H _
gP(C1)>=MOD2CAC1),D(3))
OP(¢2)=MOD2(B(13),C(9))
OP(3)=MOD2CAC14),B(3))
OPC4)=MOD2CB(11),DC11))
OP(S)»=MOD2CACS5),CC1))
OP(6)=MOD2C¢C(15),BC8))
QP(7)=MOD2(B(6),D(7))
OP(8)=MOD2CAC3),C(3))
OP(9)=MOD2CCC7)>DC1))
OPC10)=MOD2CACT)I,R(5))
OP(11)=MOD2¢CC13),D(5))
OP(12)=MOD2¢(D(9),AC12))
OPC13)=M0D2¢(B(1),C(5))
OP(14)=M0D2CAC9),C(11))
OP(C15)=MOD2¢(D(2),BC10))
CONVERT TO DECIMAL FORM
SUM= 0

DO 4000 K=1,15

SUM= 2% SUM+0P(K)

RETURN

END

282

QO

2000

1000

2000

283

SUBROUTINE ALLOCCI,FFL,PNE,P,0CC, TPROC)

ELSE RETURH NULL PRDCPSSDR

INTEGER PFL(S5,10)
REAL PNE(5,10), TPROC(S,10)

REAL 0OcCC -
INTEGER P ‘

P=PFL(1,1)

GET A PROCESSOR FROM NODE I FREE LIST
IF (P.NE.G) GOTC 1000

RETURN :

PNECI,PY=0CC

SET PROC BUSY FOR OCC SECS

~DD CUMULATIVE TIME OF PROCESSOR USAGE
TPROCCI,P)=TPROC(1.,P)+0CC

NOW SHIFT QUEUE UP

DO 20006 J=1,9

FFLCI,)= Prch,d+1>

PFLCI>10)=0

RETURN

- END

SUBROUTINE NPR{I,NI,HNE,TRY)
GIVES TIME NEXT PROCESS RELEASED

REAL HNE(55,10)

REAL TRY

TRY=1.0

DO 1000 K=1,N1 :

IF (HNECIsK)-EQe040) GOTO 1000
IF (BENE(I,X)-GE.TRY) GOTO 1000
TRY=HNEC(I.,K)

CONTINUE

IF (TRY.NE«.1.0) GOTO 2008
TRY=0.0000001

RETURN

END

2000

1000
4000

3000

5009

3000
2000

5000

6000
4000

ok Xk Xk

SUBROUTINE PROCC(I,PORD,UPRP,NPROC, PFL, PNO)
GIVES NEXT PROCESS TO BE EXECUTED

INTEGER PORD(5,5), UPRP(S)
INTEGER PNO,PFL

IF (PNO.EQ.4) GOTO 5000
ALL PROCESSES FOR NODE I COMPLETED GOTO NEXT NODE
NPROC=UPRP(1)

IF (PFL.EQ.0)> GOTO 10080
DO 2000 J=1,3
UPRP(J)=UPRP(J+1)

PORDCI, J)=UPRP(J)
UPRP(4)=NPROC
PORD(I,4)=NPROC

GOTO 3008

DO 4000 J=1,3
UPRP(J)=UPRP(J+1)
UPRP(4)=NPROC

PNO=PNO+1

RETURN

NPROC=5 _
GOTO NEXT NODE !
RETURN

END

SUBROUTINE CHOP(CUM, TOTAL, CLASS)
BINARY SEARCH OF CUMULATIVE FREQUENCY TABLE

INTEGER TOTAL,CLASS
INTEGER CUM(600)

IF (TOTAL.GE.32316) GOTO 5000
CLASS=256

11=256

DO 2000 K=1,8

I1=11/2 :

- IF (TOTAL.GT.CUMC(CLASS)> GOTO 3000

IF (TOTAL.GT.CUM(CLASS~1)) GOTO 4000
CLASS=CLASS-11

GOTO 20890

CLASS=CLASS+11

CONTINUE

GOTO 4000

DO 6000 CLASS=512,579

IF (TOTAL.LE.CUM(CLASS)) GOTD 4000
CONTINUE

RETURN

END

FINISH

284

285

APPENDIX III

This section contains the Autocorrelation and Spectral Analysis

program.

4000

4010

4015

8001

4020

40390

4050

I=1

286

AUTOCORRELATION AND SPECTRAL ANALYSIS
REAL TC101),SC101),FC101),G¢101),CC101),X¢10000)
REAL W(101),RC101),LC101),UC101)

REAL RR,CP,FP,GP, SP, TP, PI,PP, QQ,MM
INTEGER P,Z,Q

INTEGER COUNTR, CTQL

READ SAMPLE SIZE

READ (1,8050) N

READ TIME LAG M

READ (1,8050) M

M=M+1

MM=M

P=1

DO 4000 J=1.,M

T(JI)=0

SCJy=90

L(P)=0.0

C(Jid)=0

SUM:D.O

SS5=0.0

READ SAMPLES INTO X

DO 4010 J=1,N

READ (1,8010) COUNTR, TIME,CTQL
X(J)=CTQL

SUM=SUM+X(J)

SS=5S+X(J)*xX(J)

CONTINUE

CALCULATE MEAN AND STANDARD DEVIATION
XN=N

SUM=SUM/XN ,
SS=SQRT(SS/XN-SUM*SUM)
NORMALISE DATA

DO 4015 I=1,N
XK(JI)=(X(JI)-SUM>/SS

WRITE (2,8001) SUM,SS

FORMAT ¢ * SUM = ',F8.4,' SQUARE = ',F8.4)
DO 4020 I=1,N

T(PIY=T(PY+X(1)

S(PIY=S(PY+X(I)*X(I)

F(P)=T(P)

G(PY=S(P)

DO 4030 P=2,M

Z=N-P+2

T(P)=T(P=-1)=X(P=1)

F(P)=F(P-1)-X(Z)
S(P)=S(P=-1)=-X(P=-1)%X(P=1)
G(PIY=G(P-1)=-X(Z)*xX(Z)

DO 4040 P=1,M

J=N=-P+1

DO 4050 I=1,d

K=I+P-1
C(PY=C(PY+X(I)*xX(K)
CALCULATE AUTOCOVARIANCE
W(P)=C(P)

RR=N-P+1

W(P)=W(P)/RR

4040

40790
4060

40890

49090

8010
8950
8100

*kokk ok

287

CALCULATE AUTOCORRELATION COEFFICIENT
CP=C(P)

FP=F(P)

GP=G(P)

SP=S(P)

TP=T(P)
R(P)=(RR*CP-FP*TP)/(SQRT(RR*GP-FP*FP)* SQRT (RR* SP- TP*TP))
CONTINUE _

PI=3.1415926

DO 4060 P=1,M

PP=P=1.0

K=M=-2

DO 4070 Q=1,K

QQ=Q : :
L(P)=L(P)+2.0%W(Q+1)*COSC(PI*PP*QQ)/(MM=~14+0))
L(PY=L(PY+W(1)+W(M)*COSCPP*PI)
UC1)=0e23%LC1)+0e54%L(1)+0.23%L¢2)

K=M=-1

DO 4080 P=2,K
UCP)=0.23%L(P=~1)+0.54%L(P)+0.23%L(P+1)
UCMI=0e23%kL(M-1)+0454%L (M) +0+23%L (M)

DO 4090 II=1,M

P=I1-1

WRITE (2,8100) P,T(II),F(II);S(II) GCII)>CCIID,

XWCIIILRCIIILLCIID,UCIT)

STOP

FORMAT(I9,F12.6,110)
FORMAT(I4)
FORMAT(1X,16,5F13.2,4F12. 4)
END

