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We introduce a continuum model describing data losses in a single node of a packet-switched
network (like the Internet) which preserves the discrete nature of the data loss process. By con-

struction, the model has critical behavior with a sharp transition from exponentially small to finite
losses with increasing data arrival rate. We show that such a model exhibits strong fluctuations in
the loss rate at the critical point and non-Markovian power-law correlations in time, in spite of the
Markovian character of the data arrival process. The continuum model allows for rather general
incoming data packet distributions and can be naturally generalized to consider the buffer server
idleness statistics.

PACS numbers: 64.60.Ht, 05.70.Jk, 89.20.Hh, 89.75.Hc

I. INTRODUCTION

Complex networks underpin many diverse areas of sci-
ence. They manifest themselves in relationships between
network topology and functional organization of complex
neuron structures [1, 2], interacting organic molecules de-
scribing metabolic activity in living cells [3], multi-species
food webs [4, 5], numerous aspects of social networks
[6, 7, 8, 9], and the connectivity and operation of the In-
ternet [10, 11, 12]. New models of network topology such
as scale-free [13] or small-world [14] have been found to
be surprisingly good at describing real-world structures.
A consequence of the realisation that complex networks
describe universal properties of many such problems has
resulted in extensive research activity by the physics com-
munity in the past decade (see Refs. [15, 16] for reviews).

A problem of particular significance in many applica-
tion domains is the resiliency of complex networks to
the random or selective removal of nodes or links. For
example, the loss of connectivity in scale-free networks
[10, 17, 18, 19, 20] has implications on the tolerance of
the Internet to protocol or equipment failures. Typically,
the site or bond disorder acts as an input which makes
them very general and applicable to a wide variety of
networks.

More recently there has been an increasing realization
that network breakdowns can not only result from the
physical loss of connectivity, but can arise due to the loss
of data traffic in the network (i.e. congestion) [21, 22].
However, only a few dynamical models of traffic in net-
works have been considered to date [11, 24, 25, 26]. In
the case of communication networks the excessive loading
of even a single node can give rise to cascades of failures
arising from traffic congestion and consequently isolate
large parts of the network [27]. To describe the oper-
ational failure arising due to congestion at a particular
network node, one needs to account for distinct features
of the dynamically ‘random’ data traffic which is the rea-
son for such a breakdown.

In this paper we model data losses in a single node of a
packet-switched network like the Internet. There are two

distinct features which must be preserved in this case: the
discrete character of data propagation and the possibility
of data overflow in a single node. In the packet-switched
network data is divided into packets which are routed
from source to destination via a set of interconnected
nodes (routers). At each node packets are queued in a
memory buffer before being serviced, i.e. forwarded to the
next node (there are separate buffers for incoming and
outgoing packets but we neglect this for the sake of sim-
plicity). Due to the finite capacity of memory buffers and
the stochastic nature of data traffic, any buffer can be-
come overflown which results in packets being discarded.

We focus on a continuum description of the discrete
process of data packet loss. Such a continuum model
represents a simplification that preserves the salient fea-
tures of the data loss mechanism, while at the same time
it can be more easily embedded in a larger model describ-
ing data packet losses in a large network. The continuum
description allows us to overcome inevitable difficulties
in incorporating realistic distributions of incoming traffic
into a discrete-time class of models, like one we intro-
duced earlier [23]. On the contrary, the continuum model
can easily incorporate a completely general distribution
of packet lengths and inter-arrival times, both essential
in modeling data loss in finite-sized buffers.

We introduce a model where noticeable data losses in a
single memory buffer start when the average rate of ran-
dom packet arrivals approaches the service rate. Under
this condition the model has a built-in sharp transition
from free flow to lossy behavior with a sizeable fraction
of arriving packets being dropped. A sharp onset of net-
work congestion is familiar to everyone using the Internet
and was numerically confirmed in different models [28].
Here we stress that such a congestion originating from a
single node is characterized by strong critical fluctuations
of the data loss in the vicinity of the built-in transition.

In particular, we will show that a Markovian input pro-
cess can give rise to long-range temporal correlations of
data losses that are strongly non-Markovian in the crit-
ical regime. In the context of the Internet, this means
that when excessive data losses start it is more probable
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that they persist for a while, thus impacting on network
operation. As we will discuss later in this paper, this non-
Markovian behavior has a profound effect on the opera-
tion of current Internet protocols, such as the Transport
Control Protocol (TCP), that dictate how users experi-
ence the network operation.

While data loss is natural and inevitable due to data
overflow, we show that loss rate statistics turn out to be
highly nontrivial in the realistic case of a finite buffer,
where at the critical point the magnitude of fluctuations
can exceed the average value. The fluctuations still obey
the central limit theorem but only in the unrealistically
long time limit. The importance of fluctuations in some
intermediate regime is a definitive feature of mesoscopic

physics, albeit the reasons for this are absolutely different
(note that even in the case of electrons, the origin of the
mesoscopic phenomena can be either quantum or purely
classical, see, e.g., [29]).

The average loss rate and/or transport delays were
previously studied, e.g., in the theories of bulk queues
[30, 31] or a jamming transition in traffic flow [32].
What makes present considerations intrinsically differ-
ent from these theories is the very nature of the quan-
tity we consider: the losses (not existing in flow models)
make the description of the traffic process essentially non-
Hermitian. Although fluctuations in network dynamics
were previously studied (see, e.g. [11, 33]), this was done
through measurements or numerical simulations of data
traffic.

Due to the symmetry of the continuum description of
a buffer with respect to its full (lossy) and empty (idle)
states, we also derive corresponding expressions for the
statistics of idleness of the buffer server (i.e. output links
from routers). This quantity is essential in determining
the way the statistics of data traffic going into a subse-
quent buffer along a data path are shaped. This is self-
evidently important when we are attempting to describe
the operation of an entire network.

II. THE MODEL

We consider a single finite-size memory buffer fed with
a random data-packet stream. It stores the packets and
then is serviced by the data-link that sends this pack-
ets further along the network on a first-in-first-out basis.
This adequately models the output buffer attached to the
switching device in the router. The speed of the input
line of the buffer is much bigger than the speed of the
output line. The reason is that the input comes from the
switching fabric of a router which is designed to operate
very fast indeed in order to feed a large number of such
buffers, but sequentially. The capacity of the output line
is normally smaller.

Hence, we can model the packet arrival as an instanta-
neous renewal process. The storage capacity of the buffer
is L, measured in bits. The lengths of arriving packets are
treated as random, all being much smaller than L. The

service rate (i.e. the rate at which packets depart from
the buffer) is considered to be deterministic, as random-
ness in it is negligible as compared to that of the input
traffic. We normalize the lengths of packets p, the speed
of the output link rout and the queue length ℓ by the size
of the buffer L (which is henceforth set to 1).

The procedure for the renewal cycle is described as
follows: at the moment of arrival of a packet of size p,
the state of the queue is ℓ, this is followed by the gap
η (random inter-arrival time) until the next arrival. We
introduce the time scale required to empty a full buffer
provided there are no new arrivals, η0 ≡ 1/rout. If ℓ+p ≤
1 then the packet joins the queue and the queue length
prior the next arrival is ℓ′ = ℓ + p − η/η0 if ℓ′ > 0 and
ℓ′ = 0 otherwise. If ℓ+p > 1 then the packet is discarded
and the queue length prior the next arrival is ℓ′ = ℓ−η/η0

if ℓ′ > 0 and ℓ′ = 0 otherwise.
Since the maximum packet size is much less than 1

(the buffer size) and assuming that the average incoming
traffic rate rin (also normalized to the buffer size) is close
to the service rate:

|rinη0 − 1| ≪ 1 (1)

we can treat p, η and ℓ as continuous variables.
Our aim is to calculate the statistics of the amount of

the dropped traffic and the service lost due to idleness
of the output link during time t ≫ η̄ (η̄ is the average
inter-arrival time) in the regime (1). In this regime and
for observation times t ≫ η̄, the system can be described
by the Fokker-Planck equation as follows (in terms of the
transitional probability density function w(ℓ′, t; ℓ))

∂tw(ℓ′, t; ℓ) = −a∂ℓ′w(ℓ′, t; ℓ) +
1

2
σ2∂2

ℓ′w(ℓ′, t; ℓ) , (2)

where a and σ2 are average moments of the change of the
queue size per unit time

a ≡ 1

∆t
〈∆ℓ〉 , σ2 ≡ 1

∆t
〈∆ℓ2〉 , ∆t → 0 (3)

and the following boundary and initial conditions are im-
posed

J(ℓ′, t; ℓ)|ℓ′=0,1 = 0 , (4)

w(ℓ′, t; ℓ)|t=0 = δ(ℓ′ − ℓ) , (5)

where

J(ℓ′, t; ℓ) ≡ aw(ℓ′, t; ℓ) − 1

2
σ2∂ℓ′w(ℓ′, t; ℓ) (6)

is the probability current. By ∆t → 0 in eq. (3) we mean
that ∆t is much smaller than the observation time, but
large enough so that the underlying stochastic processes
can be considered as continuous:

η̄ ≪ ∆t ≪ t (7)
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The solution of (2,4,5) can be expressed as follows

w(ℓ′, t; ℓ) =2ev(ℓ′−ℓ)
∞
∑

k=1

exp
[

−(4π2k2 + v2)τ
]

4π2k2 + v2

× [2πk cos(2πkℓ′) + v sin(2πkℓ′)]

× [2πk cos(2πkℓ) + v sin(2πkℓ)]

(8)

where

v ≡ a

σ2
, τ ≡ σ2t

2
(9)

Note that the solution (8) can be expressed in terms of
θ-functions.

For the Laplace transform of w(ℓ′, t; ℓ) we have

W (ℓ′, ǫ; ℓ) ≡ Lτw(ℓ′, t; ℓ) =
1

2

ev(ℓ′−ℓ)

κ sinh(κ)

×
{

2v2

ǫ
cosh[κ(ℓ′ + ℓ − 1)] +

2κv

ǫ
sinh[κ(ℓ′ + ℓ − 1)]

+ cosh[κ(|ℓ′ − ℓ| − 1)] + cosh[κ(ℓ′ + ℓ − 1)]

}

(10)

where

κ ≡
√

ǫ + v2 (11)

From (10) we have for the probabilities of returning to
the boundaries

W (0, ǫ; 0) =
1

ǫ
[κ cotanh(κ) − v]

W (1, ǫ; 1) =
1

ǫ
[κ cotanh(κ) + v]

(12)

These will be used in the next section.

III. STATISTICS OF LOSSES

In this section we concentrate on the statistics of the
losses due to the buffer overflowing. The corresponding
formulae for the statistics of the server idleness can be
obtained using transformation ℓ → 1 − ℓ, v → −v.

First, we estimate the size of fluctuations of the losses
on a time scale t ≪ 2/σ2. In order to do that we con-
sider the dynamics of the system near the boundary ℓ = 1
which is governed by the following transitional probabil-
ity:

w0(ℓ
′, t; ℓ) =

1√
2πσ2t

exp

[

−a(ℓ′ − ℓ)

σ2
− a2t

2σ2

]

×
{

exp

[

− (ℓ′ − ℓ)2

2σ2t

]

+ exp

[

− (2 − ℓ′ − ℓ)2

2σ2t

]}

− a

σ2
exp

[

2a(1 − ℓ′)

σ2

]

erfc

[

2 − ℓ′ − ℓ + at√
2σ2t

]

(13)

which is the solution of (2) when the boundary ℓ = 0
is sent to −∞. The change in the state of the system
during time t can then be represented as follows:

∆ℓ(t) ≡ ℓ′ − ℓ = ∆ℓ0(t) + ∆ℓloss(ℓ
′, t; ℓ) (14)

where ∆ℓ0(t) is the change in the state of the system if
there was no boundary, its statistics is determined by

〈∆ℓ0(t)〉 = at , 〈[∆ℓ0(t)]
2〉 = σ2t + o(t) , (15)

and ∆ℓloss(ℓ
′, t; ℓ) is the amount of traffic lost due to

buffer overflowing. The moments of (15) can be defined
as follows

〈[∆ℓ(t)]n〉 =

∫

dℓ′dℓ (ℓ′ − ℓ)nw0(ℓ
′, t; ℓ)p(ℓ) (16)

where p(ℓ) is the stationary distribution of buffer occu-
pancy.

For the first two moments (16) in the limit t → 0 we
have

〈∆ℓ(t)〉 = at +
σ2t

2
p(1) , 〈[∆ℓ(t)]2〉 = σ2t (17)

From (14,15,17) we can conclude that

〈∆ℓloss(t)〉 =
σ2t

2
p(1)

〈[∆ℓloss(t)]
2〉 + 2〈∆ℓ0(t)∆ℓloss(t)〉 = o(t)

(18)

The first of the relations (18) means that ∆ℓloss(ℓ
′, t; ℓ) is

non-zero only if ℓ′, ℓ ∼ 1 in the limit t → 0. The second
relation means either

〈[∆ℓloss(t)]
2〉, 〈∆ℓ0(t)∆ℓloss(t)〉 = o(t) (19)

or

∆ℓloss(t) = −2∆ℓ0(t) + o(
√

t) (20)

The relation (20) does not make sense physically, so in
what follows we accept option (19) and show that it is
consistent with the later calculations.

Next we lift the restriction t ≪ 2/σ2. It can be shown
that the conditional moments (with the condition that
the system was in the state ℓ at the beginning of the
observation interval) can be expressed as follows:

m
(k)
loss(t; ℓ) = k!rk

loss

k
∏

i=1

ti+1
∫

0

dti

k−1
∏

j=1

w(1, tj+1 − tj ; 1)

× w(1, t1; ℓ) , tk+1 ≡ t

(21)

where w(ℓ′, t; ℓ) is determined by (8) and

rloss ≡ lim
t→0

1

t

∫

dℓ′
∫

dℓ ∆ℓloss(ℓ
′, t; ℓ)

= lim
t→0

1

t

1
∫

−∞

dℓ′dℓ (ℓ′ − ℓ − at)w0(ℓ
′, t; ℓ) =

σ2

2

(22)
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For unconditional moments in the stationary regime we
have

m
(k)
loss(t) ≡

1
∫

0

dℓ m
(k)
loss(t; ℓ)p(ℓ)

= k!

k
∏

i=1

τi+1
∫

0

dτi

k−1
∏

j=1

w(1, tj+1 − tj ; 1) · p(1)

(23)

where τ is defined in (9) and p(ℓ) is the stationary solu-
tion of (2):

p(ℓ) =
2ve2vℓ

e2v − 1
(24)

To calculate m
(k)
loss(t) we consider its Laplace transform:

M
(k)
loss(ǫ) ≡ Lτm

(k)
loss(t) =

∞
∫

0

dτ e−ǫτm
(k)
loss(t)

= k!p(1) [Lτw(1, t; 1)]
k−1 Lττ

= k!p(1) [W (1, ǫ; 1)]
k−1 1

ǫ2

(25)

where W (1, ǫ; 1) is is defined by (10).
Taking now the inverse Laplace transform we have

m
(k)
loss(t) ≡ L−1

ǫ M
(k)
loss(ǫ) =

1

2πi

γ+i∞
∫

γ−i∞

dǫ eǫτM
(k)
loss(ǫ) (26)

From (25) we obtain

m
(1)
loss(t) = p(1)τ = p(1)

σ2t

2
(27)

For the moments (25) with k > 1 we can identify the
following regimes:

M
(k)
loss(ǫ) =

{

k!p(1)ǫ−(k+3)/2 ǫ ≫ 1

k!pk(1)ǫ−(k+1) ǫ ≪ 1
(28)

Correspondingly, for the moments in t-representation we
have

m
(k)
loss(t) =







k!p(1)
τ (k+1)/2

Γ[(k + 3)/2]
τ ≪ 1

pk(1)τk τ ≫ 1

(29)

Now we calculate the PDF ploss(x; t) of the amount of
the lost traffic, x, during time t. To calculate it we con-
sider its characteristic function in the ǫ-representation:

P̃loss(s; ǫ) ≡ LxPloss(x; ǫ) ,

Ploss(x; ǫ) ≡ Lτploss(x; t)
(30)

From (30) we obtain

P̃loss(s; ǫ) =
∞
∑

k=0

(−s)k

k!

∞
∫

0

dx xkLτploss(x; t)

= Ploss(ǫ) +

∞
∑

k=1

(−s)k

k!
M

(k)
loss(ǫ)

(31)

where

Ploss(ǫ) = Lτploss(t) , ploss(t) =

∞
∫

0

dx ploss(x, t) (32)

with 1− ploss(t) being the probability for the system not
to drop a single packet over the period of time t. Substi-
tuting (25) into (31) we have

P̃loss(s; ǫ) = Ploss(ǫ) +
p(1)

ǫ2

∞
∑

k=1

(−s)k[W (1, ǫ; 1)]k−1

= Ploss(ǫ) +
p(1)

ǫ2W (1, ǫ; 1)

[

−1 +
1

1 + sW (1, ǫ; 1)

]

In order that Ploss(s; ǫ) did not have an abnormal be-
haviour (in particular, it did not contain terms like δ(x)),
we must assume that

Ploss(ǫ) =
p(1)

ǫ2W (1, ǫ; 1)
(33)

Hence,

Ploss(x; ǫ) =
p(1)

ǫ2W 2(1, ǫ; 1)
exp

[

x

W (1, ǫ; 1)

]

(34)

Integrating this relation over x, we recover (33), which
shows that our assumption is indeed correct.

In the regimes of short and long times we have

ploss(x; t) =















p(1)erfc

[

x√
4τ

]

τ ≪ 1

δ
[

x − τp(1)
]

τ ≫ 1

(35)

and

ploss(t) =











p(1)

√

4τ

π
τ ≪ 1

1 τ ≫ 1

(36)

The conditional PDF (with the condition that the system
dropped at least one packet during the time t) can be
defined as follows

wloss(x; t) ≡ ploss(x; t)

ploss(t)
=















√

π

4τ
erfc

[

x√
4τ

]

τ ≪ 1

δ
[

x − τp(1)
]

τ ≫ 1
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The central moments can be calculated in the same
way as (23). Here we will consider only the variance of
the losses σ2

loss(t) in the limit τ ≫ 1:

σ2
loss(t) = m

(1)
loss(t)

[

1

|v|cotanh|v| − sinh−2 |v|
]

=















2

3
m

(1)
loss(t) |v| ≪ 1

1

|v|m
(1)
loss(t) |v| ≫ 1

(37)

This is essentially in agreement with the result of consid-
erations in Ref. 23 where a simple discrete-time model for
studying losses in a single buffer was introduced. In that
model packets of fixed size arrive with probability p at
the equidistant time epochs. The service was determinis-
tic, and half of packet was served between the successive
time epochs. In spite of such oversimplification, the dis-
crete model has delivered quantitatively the same results
which indicates the universality of the approach.

Finally, we calculate the correlator of the fluctuations
of losses measured during two time intervals of length t1
and t2 correspondingly and separated by the time T :

corr(t1, t2, T ) =

1
∫

0

dℓ ρ(t1, t2, T ) − m
(1)
loss(t1)m

(1)
loss(t2)

where

ρ(t1, t2, T )

= r2
loss

t1
∫

0

dt′1

t2
∫

0

dt′2 w(1, t′1 + t2 − t′2 + T ; 1)p(1)

with rloss defined in (22).
In the regime T ≫ t1, t2 and T ≫ 2/σ2 it can be shown

that

corr(t1, t2, T ) →
T→∞

0 , (38)

as we would expect. In fact, the correlator goes to zero
exponentially if v 6= 0. In the opposite regime 2/σ2 ≫
T ≫ t1, t2 we have

corr(t1, t2, T ) = m
(1)
loss(t1)m

(1)
loss(t2)

1

p(1)

√

2

πσ2T
, (39)

which is again in agreement with the results of the
discrete-time considerations [23].

IV. DISCUSSION AND CONCLUSION

As we would expect intuitively, loss events separated
widely in time are uncorrelated as shown by equa-
tion (38). By widely separated in time, we mean that
the time separation of the two observation intervals in

which losses occur is much longer than the time over
which fluctuations of queue length become comparable
or much bigger than the buffer size itself, i.e. 2/σ2.

However, in the case when the separation time is much
smaller than 2/σ2, the correlations of loss fluctuations
are decaying very, very slowly, as can be seen from equa-
tion (39). Such time intervals are likely to be comparable
or even smaller than the round trip times for typical TCP
connections. TCP is the protocol that controls the rate
at which data is sent across a network, between a par-
ticular source and destination. The exact details of the
congeestion control operation of TCP can be found in
[34]. For our purposes we shall only focus on its salient
congestion control features and the implications of the
result of equation (39) on it.

TCP limits its sending rate as a function of the per-
ceived network congestion. It operates on a virtual con-
trol loop of sending packets, receiving acknowledgements
and estimating the round trip time. Once a packet is
lost, the sender cuts its transmission rate by half. If no
other loss is detected it increases its sending rate linearly
by a small increment. But if a subsequent loss event is
detected it cuts its transmission rate in half again. If
successive loss events occur, which according to equa-
tion (39) is likely on the relevant time scale, the reduc-
tion in transmission rate can be dramatic and potentially
unnecessary. As there are multiple TCP connections ex-
periencing losses at the same buffer this will lead to a
cycle of rapid under-usage and slow convergence to con-
gestion, which is clearly undesirable and ineffective.

Studying of spatial correlations of loss fluctuations over
a network is work in progress. This will help us quantify
the second significant aspect of TCP operation which is
its reaction to time-out events, as this is connected to cor-
related losses and delays around the sequence of buffers
forming each control loop.

To conclude, we emphasize that the stability of a net-
work with respect to data loss was mostly analyzed in
the past from the viewpoint of the loss of physical con-
nectivity in the network topology where a failure of a
given node or link was treated as a (probabilistic) input
into a network model. Here we have studied dynamical

fluctuations in data loss in a single node (memory buffer)
of the network. We have shown that the strong fluctu-
ations and long-time memory in losses inevitably follow
from the discrete character of signal propagation in the
packet-switched networks. This single-node fluctuations
can potentially trigger a cascade of failures in neighbor-
ing nodes and thus result in a temporal failure of large
parts of the network. In the next stage, we intend to
utilize these features of the local data loss as dynamical
inputs into the network and thus study possible abrupt
increase of data loss in the network triggered by a local
overload.
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