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SUMMARY 

Namibia and South Africa as part of Southern Africa are focussing on new technologies which 

on the one hand have the capacity to address energy shortages, particularly to increase power 

generation capacity; and on the other hand fulfil socio-economic development goals with minimal 

negative environmental impact. Bio-oil as a product from fast pyrolysis lends itself towards 

bioenergy production; to serve as a liquid fuel both for heat production and/or to fuel stationary 

engines or power generating equipment. Fast pyrolysis is a relatively new technology globally; 

and not yet introduced to Southern Africa. This research therefore describes bioenergy production 

via fast pyrolysis systems. The potential of the bioenergy so produced is investigated in terms of 

its potential to fill energy gaps, particularly power, as well as to fulfil socio-economic and 

environmental conservation targets in Namibia and South Africa. 

Namibia and South Africa possess vast wood-based biomass resources which can be converted 

to bioenergy via fast pyrolysis. This research models the wood-based biomass resources available 

for bioenergy production in Namibia and South Africa respectively; describes their physical and 

chemical properties and provides information on where they are located within, and how they can 

be harvested in a sustainable manner in Namibia and South Africa.  

The analysis to introduce fast pyrolysis into the Namibia and South Africa is based on an in-depth 

review of past experiences with pyrolysis technologies and the types of products successfully sold 

from various pyrolysis operations. The results of biomass modelling and description are used to 

model a bioenergy production system via fast pyrolysis.  

In Namibia fast pyrolysis operations are focusing on power generation in the Otjiwarongo and 

Okakarara farmland area, with a capacity of up to 20MW over a 20-year period. The power so 

generated is based on wood from bush encroachment only. In South Africa, the wood-based 

resource, i.e. alien plant species and bush encroachment, could provide communities in three 

provinces with at least 1MW but not more than 5MW power respectively over a period of at least 

20 years. However, the introduction of new technologies and their products, such as fast pyrolysis 

and bio-oil for bioenergy production to Namibian and South African markets would be 

cumbersome. Technical and non-technical as well regulatory barriers have been identified; these 

need to be overcome before fast pyrolysis is accepted in the market. 

Key words: fast pyrolysis, slow pyrolysis, bio-oil, bush encroachment, alien plant species	 	
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1 INTRODUCTION 

This research aims to explain how fast pyrolysis technology could be introduced and the benefits 

of using fast pyrolysis to produce bioenergy (section 1.4 and chapters 7, 8, 9) in Namibia and 

South Africa. Opportunities for downstream processing of wood-based biomass in Namibia and 

South Africa exist; and fast pyrolysis offers the suitable technology to pursue this potential, also 

based on the industrialisation policies promoted. The Southern African region has vast wood-

based biomass resources available (Chapter 6) which can be converted by fast pyrolysis to derive 

bioenergy to generate electricity in the Southern African region. Pyrolysis of biomass at moderate 

temperatures (400-600ºC) produces three products; pyrolysis liquids, char and gas. Depending 

on the retention time and size of the biomass to be converted, the yields of the respective products 

can be influenced, and either more char or more pyrolysis liquid is produced. When char is the 

primary product, the process is referred to as slow pyrolysis. When the primary product is 

produced in high yield of usually above 60wt.% of the dry biomass feed and is a homogenous 

single phase liquid (bio-oil), this process is referred to as fast pyrolysis. Bio-oil derived from the 

fast pyrolysis process can be combusted as an alternative to fuel oil, to be used e.g. for electricity 

or heat generation. Alternatives are to use fast pyrolysis to make energy carriers for export, and/or 

biofuels, and/or chemicals. This research focusses on bioenergy possibilities via fast pyrolysis to 

make energy carriers for export and biofuels to be combusted mainly for electricity generation 

within Namibia and South Africa. In this context, ‘bioenergy’ is used as the generic term. 

Combustion or gasification of biomass, which are more proven technologies, is arguably better 

for power generation. However, conversion of wood-based biomass resources in Namibia and 

South Africa by fast pyrolysis is chosen for this research because of familiarity of pyrolysis 

processes in general in Southern Africa; versatility in choice of products; ease of transportation 

of the liquid (bio-oil) and solid products (char) for export; and an existing infrastructure of 

maintenance and repair. Pyrolysis type technologies are familiar in the Southern African region 

due to the experience in charcoal manufacturing. 

This research had two main objectives. Firstly, to determine the parameters which could result 

in a sustainable fast pyrolysis industry in Namibia and South Africa to derive bioenergy. 

Secondly, to develop a guide or roadmap which could result in a selective increase in the use of 

the wood based biomass potential to yield energy (hereafter referred to as bioenergy or biofuels) 

in Namibia and South Africa. Extraction of useful chemicals from wood-based biomass and 

markets for them is discussed, but not to the same level of detail as for bioenergy potential. 
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1.1 BACKGROUND 

This research was concentrated on the bioenergy potential in Southern Africa; Namibia and South 

Africa were selected to establish such bioenergy potential. These countries have a large wood 

biomass resource base and a strong technological and socio-economic development base which 

can be used to advance the bioenergy industry via fast pyrolysis in the Southern African region. 

It is acknowledged that many renewable resources exist in Southern Africa, and that the 

bioenergy potential of a country can also be tapped via hydro-liquefaction, fermentation 

technologies, aqueous phase reforming, trans-esterification of vegetable oils and other processes. 

However, technology advancement is limited and technological and socio-economic 

opportunities from using such technologies are not utilised [35]. In contrast, pyrolysis processes 

have been practiced in Southern Africa over at least four decades (Table 4-6). Namibia and South 

Africa (and where South Africa imports charcoal from neighbouring countries) extensively use 

slow pyrolysis, i.e. kiln technology to primarily produce charcoal for the local and export 

markets. The technological concept of fast pyrolysis for national bioenergy production is 

acknowledged by industry players in principle but is not used [1, 102, 116, 158].  

The biomass resources in Namibia and South Africa which are considered in this research are 

available in abundance due to bush encroachment and invasion of alien wood species. Utilising 

wood from bush encroachment enables higher productivity in the agricultural sector in Namibia, 

and of particular interest is the livestock production sector. In the South African case, invasion 

by alien plant species should be eradicated to reinstate biodiversity (Chapter 3 and section 4.1.5). 

In both Namibia and South Africa, a vast amount of biomass would become available for 

bioenergy production without creating unwanted deforestation. 

Internationally, the growth of the bioenergy industry has been driven by a number of factors 

which includes: support for cleaner and environmentally friendly energy sources in a bid to limit 

climate change; promotion of the agricultural sector through utilisation of surplus agricultural 

land to produce products in excess of food needs; promotion of sustainable development; and the 

need to improve energy security. 

In developing countries like Namibia and in emerging economies like South Africa, there is a 

need for a new approach towards fast-tracked economic development. The bioenergy sector, and 

in particular production of energy via fast pyrolysis, offers a number of opportunities for 

economic development, especially in Namibia where the bulk of electricity energy needs are 
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imported [2, 3]. Equally, Namibia has no fossil fuel exploration or refinery; bulk storage capacity 

for liquid fuels, in to particular sustain manufacturing activities over the long term [4], is limited. 

Energy needs for manufacturing in Namibia are covered through the import of fossil based liquid 

fuels (e.g. crude oil or Diesel), mainly from South Africa. Nonetheless, no state incentives 

towards fast pyrolysis for bioenergy production systems exist to promote the opportunities that 

energy production from biomass offer for economic development. This research aims to highlight 

what needs to be considered to introduce fast pyrolysis to Namibia and South Africa for multiple 

reasons: 

• Fast pyrolysis is not only a new technology to Namibia and South Africa, it is also largely 

unknown; however, fast pyrolysis technologies, compared to the better known slow pyrolysis 

technologies, can more efficiently and effectively convert abundantly available wood-based 

biomass to energy [5]. 

• Where commercialised fast pyrolysis technologies may be available, their high costs do not 

make them financially viable as they are more expensive than existing systems based on fossil 

energy sources (Chapter 8, 9 and 9.9). Provision of state incentives would enable 

decentralised pyrolysis technology deployment close to the wood-based biomass resources 

and in proximity of bioenergy markets, like power generation plants. 

• Biomass from invader and/or alien invasive wood species is available in abundance; however, 

harvesting and logistical costs are high and therefore reduce the viability of the production 

of energy via fast pyrolysis. 

Namibia [6] and South Africa [30] have recently promulgated their industrial development 

policies. From these policies, various types of renewable energy sources are acknowledged to 

enable development of new industries based on the use of renewable energy. In particular, energy 

generation from biomass for production of electricity was cited as a major objective. However, 

the governments of Namibia and South Africa recognise that clear government policies, 

regulations and incentives are a pre-requisite for development of a successful bioenergy industry. 

The regulations need to incentivise new industrial developments, including research and 

promotion for the use of these ‘new’ forms of energy in line with the industrialisation policies 

[6, 30, 7]. In the Namibian case, bioenergy generation from bush encroachment and other forms 

of utilising the wood based biomass resources was cited [102] to be very important.  

In contrast to fossil fuels, the use of biomass for energy provides significant environmental 

advantages, such as cleaner production methods and sustainability of the feedstock. Renewable 
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biomass sources can be converted to fuels, for generating heat and electricity, and as transport 

fuels. Efforts have been made in Europe and North America to develop new processes for 

converting renewable biomass to energy [8, 62, 64, 65, 67, 29] via fast pyrolysis. A limited 

number of biomass slow pyrolysis conversion processes are practiced in Namibia and South 

Africa [7] (Chapter 4). These conversion processes are kept simple in technological terms, i.e. 

they involve a great deal of manual labour and mechanisation is limited. The manufacturing 

capability to utilise biomass resources to produce energy via slow pyrolysis processes on a large 

scale is too limited to contribute to national energy supply in a meaningful manner. Industrial 

policy directives should enable the upgrading of manufacturing capacity and technological 

adaptation. 

Selected processes that convert wood-based biomass to liquid fuel begin with fast pyrolysis, 

followed by, for example, catalytic upgrading of bio-oil or bio-oil gasification in conjunction 

with Fischer-Tropsch synthesis. There are various opportunities to convert biomass to fuels or 

chemicals with environmental benefits via the fast pyrolysis conversion route.  

The biomass resource potential of the wooded lands of Namibia and South Africa together is 

estimated in excess of one billion tonnes per year (Chapter 5). However, audited statistics on 

energy production from, and consumption of wood-based biomass are limited in both Namibia 

and South Africa [9, 10]. Limited or absence of energy statistics make it very difficult to evaluate 

the contribution and potential of bioenergy in Namibia and South Africa. 

South Africa used bioethanol from sugar cane in petrol from the 1920s until the 1960s; this 

subsequently stopped due to low international crude oil prices [7, 41, 142, 226]. Since 2006 

persistently high oil prices and climate change considerations have led to renewed interest in 

bioenergy production. The interest in South Africa centres on biodiesel (by trans-esterification) 

and maize or sugar production residues’ conversion to ethanol, mainly as a conventional fuel 

substitute. In the Namibian case liquid fuel from biomass is not practiced, nor has national 

interest arisen. The potential that fast pyrolysis offer for either liquid fuels and/or electricity 

generation are not known. Only the pyrolytic breakdown or thermal degradation of wood-based 

biomass residues, specifically via slow pyrolysis for the production of charcoal are practiced. 

This is discussed in detail in Chapter 4. 
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1.2 OBJECTIVES 

The primary objectives of this research are to: 

• Collect, analyse and model biomass resource data in Namibia and South Africa; 

• Analyse, evaluate and provide recommendations on the current and predicted Namibian and 

South African fast pyrolysis industry; 

• Analyse and evaluate opportunities for the use of fast pyrolysis to convert the wood-based 

biomass into bioenergy in Namibia and South Africa. 

• Assess the environmental and techno-economic sustainability of fast pyrolysis systems to 

produce bioenergy (e.g., power, heat, fuel) from wood-based biomass resources in Namibia 

and South Africa. 

To fulfil the primary objectives, the scope of work in more detail relates to: 

• model wood-based biomass resources, identify opportunities, predict growth in potential 

wood-based biomass production in Namibia and South Africa; 

• assess how slow pyrolysis processes were used in wood-based biomass conversion to model 

the introduction of fast pyrolysis processes to Namibia and South Africa for future bioenergy 

opportunities and practices; 

• produce a techno-economic model of opportunities for improved use in relation to uptake, 

efficiency and effectiveness of wood-based biomass resources for biofuels (char, liquid or 

gas), heat and power, in Namibia and South Africa, including future prediction, opportunities 

and constraints; 

• assess the feasibility and viability of fast pyrolysis on technical and socio-economic grounds; 

including present and future scenarios; 

• provide a present and future ‘map’ of knowledge in relation to resources and skills of 

pyrolysis and its derived products in Namibia and South Africa; 

• produce a list of knowledge and technology transfer possibilities for fast pyrolysis technology 

adaptability in Namibia and South Africa and the necessity of support systems/mechanisms 

for the deployment of these; and 

• produce a “roadmap” for technology deployment and a timescale to achieve market penetration 

for products derived from fast pyrolysis. 
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1.3 RATIONALE TO BENCHMARK CERTAIN GEOGRAPHIC REGIONS AND 

COUNTRIES 

With 53 sovereign states in Africa, the continent is home to a population of about one billion people. 

In general, the greatest economic activity to date is limited to selected countries in North Africa 

(Tunisia, Egypt, Morocco); West Africa (Ghana, Nigeria); East Africa (Kenya, Uganda, Ruanda) 

and Southern Africa (South Africa, Namibia, Botswana, Angola, Mozambique, Mauritius, 

Seychelles, Zambia). Economic growth of each of the latter mentioned countries were on average 

in excess of 3% per annum for the past five years. The governments in Southern Africa are of the 

opinion, that by continued expansive budgetary allocation [4, 11] to specific sectors of the economy, 

private local and foreign direct investment into the economies would follow, and thus give impetus 

to faster economic growth. With the aim of industrialising a country, private sector players are key. 

Governments’ role is to sustain a conducive macro-economic environment and regulatory 

framework. The private sector is the engine of growth [12] and would seek out local and foreign 

direct investment options if market opportunities and technological readiness exist, skilled and 

trained labour is available and if the investments can be made at low risk (Chapter 9, section 9.8). 

Allowing that the latter aspects need improvement, sufficient opportunities specifically in Southern 

Africa exist. The rationale for choosing Southern Africa as a region to be investigated further in 

relation to bio-energy supply is that natural and financial resources are in abundance; basic skills 

and knowledge of labour is available; the market seems to be sufficiently diversified and large 

enough to offer opportunity for new and/or adapted technologies and the derived products [4, 6, 7, 

11, 16, 25, 26]. The knowledge of bioenergy use in the rest of Africa seems to be much more limited 

[249]. 

1.3.1 Southern Africa  

Southern Africa refers to the countries located in Africa, south of the equator (Figure 1-1). Political 

demarcation generally limits countries of Southern Africa to those belonging to the Southern 

African Development Community (SADC), a 15 Member State association pursuing similar 

economic development goals, in a time bound and agreed manner. The economic milestones to be 

achieved include a customs union by 2012 and a common monetary area by 2015. The SADC 

member states are: Republic of Angola, Republic of Botswana, Democratic Republic of Congo, 

Kingdom of Lesotho, Republic of Madagascar, Republic of Malawi, Republic of Mauritius, 

Republic of Mozambique, Republic of Namibia, Republic of Seychelles, Republic of South Africa, 
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Kingdom of Swaziland, Republic of Tanzania, Republic of Zambia and Republic of Zimbabwe. 

More than 300 million people live in the SADC region.  

 

Figure 1-1 Map of the Southern Africa region; Namibia lies to the south-west; South Africa to the 
most southern part of Africa [13] 

The focus of this research within the Southern African region is on Namibia and South Africa. South 

Africa, as the most developed economy in Southern Africa, is presented as the point of reference. 

Although a much smaller economy, Namibian economic development status compares with that of 

South Africa in terms of law and order; wealth of natural resources; population dynamics and social 

challenges; and international commitments towards trade, environmental sustainability and human 

rights. South Africa’s governance structures are more complex than those of Namibia. This research 

aimed to specifically highlight the differences and/or similarities in governance structures between 

Namibia and South Africa which relate to the utilisation of wood-based biomass resources to 

produce energy and to; propose how, for example, policies can be accommodated in the similar 

framework for modelling bioenergy production systems. 

This study presents itself to provide fundamental research on bioenergy potential in Southern Africa. 

Namibia forms the basis for all models and scenarios to be developed: biomass and other resources; 

possibilities for introduction of new biomass conversion technology and the derived products; the 
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‘roadmap’ for fast pyrolysis technology deployment and socio-economic considerations in certain 

aspects. Market uptake for products derived is mainly based on South African scenarios. Following 

World War I, in 1915, Namibia (then known as South-West Africa) was administered by South 

Africa, as mandated by the League of Nations. Political independence of Namibia from South Africa 

was gained in 1990. Economically, Namibia remains very dependent on the South African economy. 

1.3.2 Namibia 

Namibia means the Republic of Namibia. Independent from the Republic of South Africa since 21 

March 1990. Namibia’s size is 824 thousand km2, with a population of 2.2 million [14]. Namibia is 

classified as a high-Middle Income Country [15], based on the average per capita income of 

approximately USD 4,000 per annum, however the standards of living in Namibia vary widely. The 

income distribution is extremely skewed and the majority of the people living in rural areas make 

use of subsistence farming to sustain their livelihoods, adding further ecological pressure on land 

suitable for livestock production. Due to the large extent of subsistence farming, the agricultural 

sector, including forest based activities, is the biggest employer. Although in terms of contribution 

to economic output, mining and services are the most important sectors. The economic development 

stage is largely classified as resource based, with large economic dependence (measured by trade 

balance) on South Africa. A large degree of industrialisation should be achieved by 2017 [6]. By 

2030, Namibia aspires to be knowledge based and technology driven economy [16]. Namibia is a 

member of Southern African Development Community (SADC) and the Group of 77 (G77, is the 

group of developing and least developed countries outside the G20). 

Namibia’s energy supply, both power and liquid fuel, to date is mainly imported from South Africa 

[17]. Policies exist that aim to improve the investment in local power generation [18] to substitute 

imported power. A further political aim is to sustain medium term liquid fuel supply through 

increased storage capacity of imported fuels [4], but it is uncertain how such increased storage 

capacity would improve energy supply and security. However, policies to produce liquid fuel locally 

as a long term solution are not available or are not promoted to date. Fundamental research and 

development is lacking [19, 20] which could act as a catalyst for appropriate policy development 

on the manufacture of liquid fuel. It seems that policies are developed in the absence of essential 

research. 

Namibia’s natural resource base is vast, in terms of both land and wood-based biomass. Several 

trials have been run to sustainably utilise the biomass resources for various purposes; many of the 
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trials failed (Chapter 5 and section 6.1). The reasons are not always clearly spelled out; speculations 

mostly hint to lack of detailed planning prior to investment and lack of commitment between parties 

involved after projects were commissioned. 

1.3.3 South Africa 

South Africa means the Republic of South Africa. South Africa measures 1.21 million km2 in size 

and has a population of some 52 million [153, 154]. South Africa is classified as a high-Middle 

Income Country [15]. The governance structure of South Africa is at multiple levels; central 

government, provincial government and local/municipal level. The provinces and provincial 

governance cities are highlighted in Figure 1-2 [21]. 

 
Figure 1-2 South Africa political map, highlighting the location of provinces [21] 

 

South Africa was admitted to the group of most influential emerging markets, BRIC-S (Brazil, 

Russia, India, China and now South Africa) in 2011. South Africa is member of the Group of 20 

(G20), the world’s 20 most influential nations, in terms of economic output, level of advanced 

economic development and political influence. The G20 consists of the Group of 8 (G8) plus 12 

other member states. South Africa’s economic output measured as GDP accounts for more than 

70% of the combined SADC GDP. The economic development status is largely classified as 

industrialised. However, there are pockets in the country which are still underdeveloped where the 

population still largely lives off subsistence farming. Technological readiness and the level of 
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innovation in South Africa is the highest in Southern Africa [22]. South Africa aspires to become a 

knowledge based economy by 2025 as outlined in the Accelerated and Shared Growth Initiative of 

South Africa - the AsgiSA [30]. 

South Africa has vast natural and mineral resources, including fossil fuel resources to cover its 

energy needs. To cover its additional energy needs for improved and complete industrialisation it 

imports [23, 24, 25] various resources which render energy, such as natural gas from Mozambique 

and wood and charcoal from Namibia. These imported energy sources are then, for example, 

converted to other energy types as in the case of natural gas to liquid fuels. Wood and charcoal are 

used for domestic energy purposes and as reduction material in mineral processes respectively. 

Furthermore, South Africa has adopted the “biofuels industrial strategy” [7] with the aim to invoke 

technological advancement and abide by international commitments, notably the UN Framework 

Convention on Climate Change (UNFCCC).  

The economic partnership between Namibia and South Africa seems to come naturally. While South 

Africa imports key resources from Namibia, Namibia imports key processed goods, commodities 

and various types of services from South Africa. South Africa has a positive trade balance with 

Namibia, that is, South Africa exports more goods than it imports from Namibia. Opportunities exist 

to exchange knowledge and engage in technology transfer between the two countries. Broad scale 

political commitments have been made and are re-iterated [26, 27] which await implementation. 

This research concentrates on development possibilities that relate to the exchange of knowledge 

and technology transfer between Namibia and South Africa, specifically in the area of energy 

production from biomass resources via fast pyrolysis. 

1.4 RATIONALE FOR BIOMASS FAST PYROLYSIS CONSIDERATIONS 

Thermal degradation processes include liquefaction, gasification and pyrolysis. Pyrolysis 

converts organics to solid, liquid and gas by heating in the absence of oxygen. The amounts of 

solid, liquid and gaseous fractions formed is dependent on the process variables, mainly process 

temperature and speed, the type of biomass material used, and the distribution of products with 

each solid, liquid and gas phase produced. 

This research concentrated on the bioenergy potential via fast pyrolysis in Namibia and South 

Africa other than by combustion, gasification or conventional biodiesel and bioethanol 

production. The latter processes are available as commercialised technologies used in South 

Africa especially, but fast pyrolysis is also of interest to Namibia. Pyrolysis, specifically slow 
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pyrolysis, has been used in Namibia and South Africa to produce charcoal. The use of fast 

pyrolysis allows for the production of a liquid-state energy (bio-oil) which is of more consistent 

quality compared to solid biomass, and easier to handle. Thus the introduction of fast pyrolysis 

processes in these countries is of interest. Technological readiness and existing policies to 

increase liquid biofuels production in Namibia and South Africa for upgraded or other pyrolysis 

processes forms the basis for concentrating on fast pyrolysis. A further reason to concentrate on 

fast pyrolysis in this research is the readily available wood-based feedstock materials suitable for 

biofuels production via a fast pyrolysis process. Even though there is a fast pyrolysis technology 

manufacturer in South Africa [28], commercialised fast pyrolysis is not known to be used in 

South Africa nor in Namibia. 

Since the 1970s, fundamental research on fast pyrolysis has shown that high yields of primary, 

non-equilibrium liquids and gases, including valuable chemicals, chemical intermediates, 

petrochemicals, and fuels could be obtained from carbonaceous feedstocks [29]. Fast pyrolysis 

can augment thermo-chemical conversion process output, i.e. the lower value solid char produced 

traditional slow pyrolysis compared to higher value fuel gas, fuel oil, or chemicals from fast 

pyrolysis. These can then be made available to render bioenergy sources. 

Characteristics of wood fast pyrolysis products are dependent on whether a hardwood or 

softwood species is pyrolysed but the differences are largely insignificant for most applications. 

Both types of species are available in Namibia and South Africa. In addition, residues from 

processing deciduous fruit or agricultural production residues are available. The biomass 

resources, with the focus on wood-based biomass resources, showing potential for use in fast 

pyrolysis in Namibia and South Africa are discussed and described in Sections 3.1 and Chapter 

5. 

1.5 ORGANISATION OF THE THESIS 

The thesis contains 11 chapters including this chapter.  

Chapter 1 introduces the basis for the research; and the reasons why the research focuses on fast 

pyrolysis for Namibia and South Africa. 

Chapter 2 explains the conceptual framework and the detailed approach to be used for this 

research. The conceptual framework is necessary to contextualise the primary objectives and 

scope of this research within the setting of the socio-economic status and the possibilities of 

wood-based biomass fast pyrolysis in Namibia and South Africa, as the benchmark for Southern 
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Africa. 

Chapter 3 provides the definitions of terms and explanation of abbreviations or concepts used in 

this research.  

Chapter 4 reviews the literature on biomass resources, techno-economic modelling of bioenergy 

systems by fast pyrolysis; costs for biomass energy, and markets for pyrolysis products. These 

aspects are reviewed in the Namibian and South African context of past performance, existing 

use and future options.  

Chapter 5 provides the relevant data to be used in the models presented by the research. This 

chapter has become necessary as data is limited and not available publicly. However, a number 

of persons and institutions actually do keep data which they avail on a request basis. Much 

information therefore had to be retrieved and validated through personal discussions. By means 

of this research, information is made publicly available. 

Chapter 6 models the wood-based biomass resources available for bioenergy production in 

Namibia and South Africa and presents estimates on how much wood-based biomass can be 

sustainably used as feedstock for fast pyrolysis in these countries.  

Chapter 7 experimentally investigates some of the available wood-based biomass in Namibia 

and South Africa. Also included in this chapter is the calculation of mass and energy balances, 

as well as chemical analyses of the biomass as feedstock, char, non-condensable gases and bio-

oil which provide the basis for assessment of significance and implementation of fast pyrolysis 

technology. 

Chapter 8 describes techno-economic modelling for bioenergy production, based on results from 

experiments with some of the available wood-based biomass in Namibia and South Africa. The 

emphasis is on fast pyrolysis options modelling. This chapter further presents all assumptions 

and formulae underlying the bioenergy models for Namibia and South Africa respectively. 

In Chapter 9 the modelling results of wood-based biomass and technology options are reported 

and discussed. The results of the models are combined and assessed for their socio-economic 

feasibility in the Namibian and South African context.  
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Finally, the overall conclusions for the present work and the recommendations for future work 

are provided in Chapter 10. The recommendations are presented as a “roadmap” for possible 

fast pyrolysis technology deployment and timescale to achieve market penetration. 

Chapter 11 provides an index of all references used for this research. 

 

 

  



35 
 

2 CONCEPTUAL FRAMEWORK OF STUDY 

This chapter explains why alternative sources of energy are so important for Southern Africa, 

and in particular Namibia and South Africa. It provides a framework for the research carried out 

in terms of wood-based resources available and how they may be exploited to create a sustainable 

and viable alternative energy future for the region. The models to be created will be 

conceptualised in this chapter. The Namibian case forms the basis of the models. Where data or 

information is lacking in the Namibian case, South African experiences will be investigated and 

used where appropriate. The models to be derived should open up possibilities for future 

bioenergy alternatives based on fast pyrolysis technology. In line with the development of the 

respective models, these are evaluated and tested in later chapters.  

The contextual framework is discussed against the backdrop of the socio-economic development 

goals in Namibia and South Africa respectively; international drivers to reduce greenhouse gas 

emissions globally; security of wood-based biomass supply; technological adaptability; and 

adaption of national policies or legislations to honour international commitments. 

2.1 THE SOCIO-ECONOMIC SETTING 

The South African Government and relevant stakeholders have embarked on an initiative to 

sustainably use natural resources like forests and woodlands, as a tool for general economic 

development [307, 30]. The objectives include: increased ownership of natural resources 

amongst poor and non-traditional land owners; as well as new effective market-based links 

created between the industry and the rural poor; improved industry standards and practices for 

contractors in the natural resources productive sector; and providing business support services to 

the rural poor, rural and micro, small, and medium size enterprises (MSME’s) to facilitate 

participation in productive enterprises. Thereby achieving its development strategy presented in 

the AsgiSA – the Accelerated and Shared Growth Initiative of South Africa [30]. 

In Namibia, the socio-economic setting is mixed. On the one hand, economic growth is high at 

an average of 4% per annum [31]. In addition, foreign direct investment and foreign reserves are 

high, also by international standards [32]. On the other hand, unemployment is very high at 

51.2% in 2010 [33] and decreased to some 40% in 2013 [34]; 80% of the unemployed have very 

limited skills or none at all, e.g. persons who have not completed school or never engaged in 

higher education and/or training development after leaving school. To address the skills 

shortages [35, 36, 37, 38] in Namibia requires additional research [39] which is beyond the scope 



36 
 

of this study. But, for Namibia to be able to generate economic growth which is commensurate 

with employment created, skills development must be part of technology development and 

knowledge transfer. Since 1990, central Namibian government spending has focused on primary 

and secondary education at roughly 60% of total budget allocation to the education sector since 

1990. Tertiary education and vocational training, including academic and applied research has 

attracted limited financial and human resources. 

Namibia’s agricultural sector, i.e. primary production, employing more than 40% of national 

workforce, suffers from declining output in terms of overall contribution to gross domestic 

product. Adverse climatic conditions, mainly due to long periods of drought in some parts of the 

country and recurrence of floods in other parts of the country, are one reason. Other reasons 

include bush encroachment which is said to negatively affect livestock production system 

(sections 3.4.1, 3.4.6, 5.1.2). The reasons for bush encroachment seem to be insufficiently 

researched; and the quantification of the spread is not well documented (section 5.1). 

The Namibian government  acknowledges that bush encroachment needs to be curbed to increase 

primary agricultural production [81, 90]. Especially extensive livestock production systems 

(section 3.4.7) are the mainstay of the agricultural sector in Namibia. The Namibian government 

acknowledges that bush encroachment is a resource for socio-economic development [16, 282, 

86, 244, 247, 265, 89, 93]. However, beyond the latter acknowledgement no concrete policy 

interventions have followed to address bush encroachment to increase primary agricultural 

production output to date. 

2.2 INTERNATIONAL DRIVERS AND NATIONAL POLICY 

The AsgiSA and other initiatives are taking place in South Africa in tandem with the South 

African Government’s commitments and international obligations to protect the environment. 

Conservation and sustainable use of natural resources is promoted to achieve multiple benefits 

and equitable distribution of wealth and resources. The South African government believes that 

it is important to adopt an integrated approach in managing natural resources [30, 125]. 

South Africa relies heavily on its vast coal resources to meet its energy demand [40]. In 

particular, South Africa has developed a large-scale, coal-based power generation system that 

provides low-cost electricity, supplied through the grid system that is being extended to rural 

areas, and to residential, commercial and institutional consumers. As a result, coal is and will 

likely remain an attractive source of energy for South Africa from an economic view point [40]. 
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However, at the same time South Africa recognises that the emissions of greenhouse gases 

(GHG), notably carbon dioxide from the use of fossil fuels such as coal and petroleum products 

has led to increasing concerns worldwide [41, 42]. Furthermore, severe power shortages hamper 

economic development in the country as supply is not managed commensurate with growing 

demand. While the power grid has been extended heavily to cater for rural electrification since 

1994, power generation capacity was not built [43, 44]. 

The combination of continuously increasing power demand and requirement by international 

commitments made to lower GHG, is a significant driver to find alternative solutions for clean, 

energy supply [42, 47, 45, 46]. Since 2008, demand for electricity outstripped supply and the 

national electricity provider ESKOM had to resort to load shedding [47]. To alleviate the 

electricity shortfall ESKOM has embarked on a power generation capacity expansion programme 

which includes about 10 GW of capacity from coal, through the construction of two new coal 

fired plants, and 1.2 GW from hydro power [47].  

South African policy on industrial and economic planning seeks to ensure the integration of a 

diversity of resource materials into broader development issues, land use, natural resource 

management, and agricultural and energy planning. Interventions are sought to be built on best 

practices and to be aligned to regional and global techno-economic developments [40, 41]. 

At the Johannesburg World Summit on Sustainable Development in 2002, a commitment to 

promote renewable energy in all the participating nations was made, the Johannesburg 

Declaration [48]. In 2009, the South African Government re-affirmed its commitment to 

sustainable development by acceding to the Copenhagen Accord [115]. Correspondingly, it is 

the intention of the South African Government to make its due contribution to the global effort 

to mitigate greenhouse gas emissions and engage in sustainable development. 

In the Namibian case, sustainable development and the protection of the environment is 

enshrined in its Constitution [49] and the Namibian government remains committed to 

sustainable development as per the Copenhagen Accord [115] and Kyoto Protocol [240]. 

However, commensurate detailed policies to promote the production of renewable energy and in 

particular bioenergy at national scale do not exist. 
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2.3 SECURITY OF SUPPLY, COSTING, MARKETS AND POLICY IN SOUTH AFRICA 

Security of supply is understood in the context of both resource and feedstock supply to produce 

bioenergy, and the resultant supply of energy to the productive sectors and the population of 

Namibia and South Africa. Namibia and South Africa have an abundance of renewable energy 

sources that can be sustainable alternatives to fossil fuels (for various uses); these have remained 

largely untapped. The most common renewable energy sources currently utilised in South Africa 

and Namibia include solar, wind-energy and hydro for heat and power generation. There is 

limited industrial use of biomass for heat, power, fuel and / or chemicals [41, 50, 51]. No in-

depth analysis of the wood-based biomass potential for the production of energy was found, 

providing an unique opportunity to investigate the feasibility of such resources as feedstock for 

energy production. This is described and discussed in Section 6.1 and 7.1.1 (Namibian wood 

biomass resources), Section 6.2 and 7.1.2 (South African wood biomass resources); modelled in 

Chapter 8 and discussed in Chapter 9. 

The overall objective of the Government of South Africa’s overarching policy on energy as set 

in its ‘White Paper on the Energy Policy of the Republic of South Africa’ [41] and ‘White Paper 

on Renewable Energy’ [40] pledges support for the development, demonstration and 

implementation of renewable energy sources for both small and large-scale applications.  The 

latter policy guidelines reflect a renewable energy target of 10.000 GWH (0,8 Mtoe), of which 

13 MW should be generated from biomass and another 13 MW should be generated from biogas 

by 2013. Subsequent to the policy directive to generate electricity from renewable resources [40, 

41], the renewable energy feed-in tariff (REFIT) was developed by the National Electricity 

Regulator of South Africa (NERSA) [47] to support the introduction and development of 

renewable energy options in 2009. Phase I (until 2013) of the programme focused on wind, 

concentrated solar, land-fill gas and small hydro plants. Phase II (2013-2018) includes electricity 

from large-scale grid connected photovoltaic systems (>1 MW), biomass solids, biogas and 

concentrated solar power (CSP) with 6 hours per day storage. Data on feed-in tariffs are presented 

in Chapter 5. 

Renewable energy, in general, has been recognised in the South African Integrated Energy Plan 

(IEP) [40, 41, 53]. The IEP provides a framework with which specific energy development 

decisions can be made. However, challenges remain for South Africa to fully engage in the use 

of renewable energy in general and bioenergy specifically. South Africa’s heavy reliance on coal 

to meet its energy needs at low cost, i.e. for generation of most of the country's electricity and a 
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significant proportion of its liquid fuels, pose challenges for the introduction of bioenergy. 

South Africa has a vast commercially exploitable natural, agricultural and forestry resource [52, 

50, 132, 133, 134, 135]. A detailed analysis of the types of biomass available in South Africa is 

provided in Chapter 4. Coal is a non-renewable energy source. Furthermore, South Africa's 

industry has not generally used the latest in energy-efficient technologies, mainly as a result of 

relatively low energy costs [53]. For that reason, South Africa has adopted, in its White Paper 

on Energy Policy [41], a strong position with respect to renewable energy based on the integrated 

resource planning criterion of: 

“Ensuring that an equitable level of national resources is invested in renewable 

technologies, given their potential and compared to investments in other energy supply 

options.” 

The driving force for energy security through diversification of supply in South Africa has 

remained one of the White Paper on Energy Policy’s key goals, since a major portion of the 

nation’s expenditure is via dollar-denominated imported fuels, mainly fossil fuels, that impose a 

heavy burden on the economy. Furthermore, the South African economy, which is highly 

dependent on income generated from the production, processing, export and consumption of 

coal, is vulnerable to the possible climate change response measures being implemented or to be 

implemented by developed countries [41, 50, 115].  At the same time there are now increased 

opportunities for energy trade, which is built on: 

“Given increased opportunities for energy trade, particularly within the Southern 

African region, Government will pursue energy security by encouraging diversity of 

both supply sources and primary energy carriers [41].” 

and 

“Diversify energy supply by developing advanced, cleaner, more efficient, affordable 

and cost-effective energy technologies, including fossil fuel technologies and 

renewable energy technologies ….  With a sense of urgency, substantially increase 

the global share of renewable energy sources with the objective of increasing its 

contribution to total energy supply, recognising the role of national and voluntary 

targets.“[40] 

Bioenergy resource development in South Africa is in a nascent stage, while competing fossil 
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fuels are established and have relatively low costs, and are able to generate high returns [54, 40, 

55]. South Africa developed a framework, the “Biofuels Industrial Strategy of the Republic of 

South Africa of 2005”, adopted in 2007, within which the bioenergy industry can operate, grow 

and contribute positively to the South African economy and the global environment [40, 41, 50]. 

The biofuels strategy emphasises the need for entrepreneurship and innovativeness of South 

Africa’s industrial and financial sectors; as well as the need for the South African Government 

to develop appropriate policies and frameworks that would encourage and guide the private 

sector, i.e. subsidies [53] to produce bioenergy. 

Not all renewable energy targets for 2013 under the ‘White Paper on the Energy Policy of the 

Republic of South Africa’ [41] and ‘White Paper on Renewable Energy’ [40] were attained by 

2013; especially the biofuels targets lag behind [56]. Authorities have subsequently adjusted the 

timelines and options specifically relating to bioenergy targets. To meet primary energy supply 

targets, new biomass options only feature when presented as relevant. Biomass energy options 

are gradually introduced into the energy mix until 2030, with a first timeline set for 2018 now 

[56]. The report published by the South African Government Gazette [56] states: 

“While the actual realisation of this target has lagged behind, government remains 

committed to increasing the share of renewable energy with the total energy mix of the 

country.” 

According to a macro-economic study on utilising renewable energy resources in South Africa, 

electricity production from commercially based biomass is among the most effective for 

renewable energy applications [142]. Assuming a least-cost approach for implementation of 

renewable energy applications, a major contribution to the Renewable Energy Targets can be 

derived from commercially available biomass resources. 

2.4 SECURITY OF SUPPLY, COSTING, MARKETS AND POLICY IN NAMIBIA 

Namibian bulk energy suppliers do not use wood-based biomass as feedstock [18]. Nor is a policy 

or the legislation in place that would enable the use of biomass as a source of bulk energy supply 

to the Namibian economy. This is relevant for both power generation and solid or liquid fuel. 

Numerous studies have been conducted to establish whether biomass, especially wood-based 

biomass, could serve as a source of bulk energy supply [282, 265, 88, 102,]. The strategic plan 

[109, 116] to build an industry with the main focus on bioenergy production, was not considered 

by Government of the Republic of Namibia as yet. 
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2.5 MODELLING APPROACH 

By analysing the South African national targets and policy decisions to deliver energy derived from 

biomass, new opportunities for bioenergy production were identified by this research, both in the 

Namibian and South African context. Figure 2-1 illustrates how the bioenergy production system 

could be drawn up, i.e. conceptualising policy guidelines on renewable energy targets by the 

production of bioenergy. The conceptual framework followed in this research proposes a 

downstream process flow (a value chain) from sourcing wood-based biomass materials to the 

marketable bioenergy product. The implementation of the conceptual framework should be kept 

dynamic; meaning that it is responsive to internal management measures and external factors; 

especially the external factors relate to: 

• macroeconomic and fiscal development targets (Chapter 1 ); 

• national policy directives on renewable energy targets (section 2.3); 

• national social development challenges (Chapter 1); 

• national and global environmental concerns (Chapter 1); 

• availability of know-how and technological adaptability (Chapter 4, section 9.9); 

• availability of national and international standards, and accompanying markets (Chapter 8, 9); 

and 

• security of feedstock supply (Chapter 6). 

The internal management measures relate to the core thermo-chemical conversion and business 

process flows itself, i.e. the effectiveness and efficiency to convert wood-based biomass via fast 

pyrolysis into economical viable bioenergy products. In particular the matters arising for internal 

process management include: 

• feedstock types and supply systems (Chapter 4, 5, 6); 

• fast pyrolysis process parameters (Chapter 7, 8); 

• handling, storage, logistics of feedstock and products (Chapter 5, 8); 

• types of products to be produced, including market sizing (Chapter 7, 8); and 

• core process flow administration (Chapter 9, 9.9). 

Figure 2-1 visualises the conceptual framework: the core process flow from supply of wood-based 

biomass to marketing of a bioenergy product; and how/where external factors can influence the 

internal management process. Chapter 4, 7, 8 and 9, describe the internal process based on the 

feedstock type that will be used and what properties these have; the fast pyrolysis conversion 
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process and which products would be delivered in more detail. Section 2.3 and Chapter 9 discuss 

the economic viability of the overall process in the context of external factors.  

For each of the steps indicated in Figure 2-1, literature was reviewed to build the necessary scenarios 

for a “bioenergy model” for Namibia and South Africa. By providing an overview the conceptual 

framework ‘from biomass to product’ it shows the steps that need to be followed to integrate 

bioenergy systems into a Southern African economy, and the external factors that may influence the 

process. That means, value can be added to the biomass (regardless whether virgin wood or 

waste/residual wood based materials) by putting the biomass through a thermo-chemical conversion 

process, thereby deriving new products which could be sold to various markets to gain benefits such 

as income or environmental sustainability. The feasibility and economic viability of the thermo-

chemical conversion process, i.e. fast pyrolysis in this case, will be tested (Chapter 7, 8, 9). 

The general concept proposed in this research further allows that the core process flow is 

influenced by external factors which make a process sustainable or render it unsustainable over 

the short or long term. The factors that influence sustainability consist of national policies and 

legislation, production parameters, product and market norms and standards. The structure of the 

conceptual framework incorporates both a long-run equilibrium based on theory and historical 

economic relationships, and short-run dynamics (e.g. shocks) that allow the production system to 

gravitate towards its long-run techno-economic equilibrium. 

In proposing a conceptual framework, the development of a plausible model is required; a balance 

is needed between the desire to incorporate a large number of variables and equations in the model 

and to keep the overall structure relatively simple. The number of equations must be sufficient to 

generate estimates of key technical and economic variables and analyse production system 

developments; but at the same time the model needs to remain transparent and ensure simplicity 

of operation.  

The modus operandi followed by this research is ‘concept precedes model’. This chapter thus 

largely informs analyses (Chapter 4, 5, 7); modelling (Chapter 6, 8); and results (Chapter 9). 

These specifically draw down from the conceptual framework proposed as illustrated by Figure 

2-1. The terms in the process flow, like biomass, gasification, reforming, pyrolysis, bio-oil, 

syngas, fuels and commodity chemicals are defined in Chapter 3. Related terms like the type of 

pyrolysis processes and pyroligneous liquids are also described in Chapter 3. The descriptive 

terms used in Figure 2-1, like benefits, costs, markets, shock and macroeconomic framework 

and/or policy interventions are described below. 
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Figure 2-1 Relationship driven model for a fast pyrolysis (‘wood to products’) conversion process in Namibia and South Africa 
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2.5.1 Shock  

Shocks are those dynamics that are externally induced but which may have grave influence 

on the core process flow. The nature and origin of shocks are diverse and span from climatic 

conditions, which may influence feedstock supply, to economic, which may influence overall 

sustainability of the production system. It is implicit that shocks are random and unpredictable 

and therefore impossible to model without some expression for risk or uncertainty. The 

possible effect that shocks can have on the suggested production system are modelled as part 

of sensitivity analysis (Chapter 8). 

2.5.2 Costs and benefits 

Costs are all direct and indirect costs related to the capacity of the production system. Direct 

costs include capital expenditure to set a production system up, and operational expenditure 

that maintains a production system. Direct costs are quantifiable and recurring. Indirect costs 

may relate to opportunity costs incurred due to insufficient production capacity, inferior 

quality of products and insufficient productivity or staffing, and potentially their insufficient 

skill. Indirect costs may also be induced by shocks and cannot always be quantified as they 

are generally occasional in nature. In a production system, costs cannot be avoided, but it is 

desirable to keep costs as low as possible and eliminate indirect costs. For this research, each 

phase of the core production system was costed. 

Benefits are all gains derived from operating the proposed production system on a continuous 

basis and on cost sustainability, both environmentally and economically. Benefits related to 

the gains directly from the production system itself, and the benefits that the production 

system brings for the community in which it is built. Examples of benefits relate to the 

utilisation of wood-based biomass resources not used elsewhere, revenue generated, jobs 

created in a certain community and contribution to reaching national economic goals as, for 

example, discussed in sections 2.1 and 2.2. 

2.5.3 Market 

Market relates to the possibility to sell the products of the production system (in this research 

bioenergy), nationally, regionally (in the African context) and internationally. Products are 

produced to the norms, practice and standards (acceptance) of the markets and its consumers. 

Production systems and products are usually accredited to comply with the required norms 

and standards. Accreditation can be done nationally and internationally. Typical norms and 

standards relate to minimum requirements for quality of products, metrology and labelling 
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aspects for packaging and environmentally considerate production systems. 

2.5.4 Macroeconomic framework, international drivers and national policies 

The macroeconomic framework of a country is informed by its socio-economic setting and 

international drivers. Generally, governments aim to develop national policies which address 

specific socio-economic issues to preserve a stable macroeconomic system, yet provide a 

government with revenue from taxes paid by profitable companies. In the case of Namibia and 

South Africa, security of energy supply and enhanced economic growth are key to maintain a 

stable macroeconomic system. Security of energy supply is a medium term macroeconomic 

goal. Sustained and high economic growth is a long term macroeconomic goal. 

2.5.4.1 The Namibian macroeconomic framework, international drivers and national policies 

Namibia’s macro-economy is declared as stable and conducive towards private investments 

which assist the government to increase sustainable socio-economic growth [4, 15, 16, 22]. 

Policies or legislations governing the generation and transmission of energy from renewable 

sources do not exist [18]. However, the opportunity that lies in generating energy from 

renewable resources has been recognised by the Namibian government [57]. The Namibian 

government has appointed consultants from VTT Technical Research Centre Finland [58] to 

assist with the compilation of appropriate policies and legislation with specific guidelines on 

how renewable energy sources can be incorporated into the economic mainstream. Technical 

advisory work and a draft policy/legislative framework were advised in 2013, also based on 

the current power supply systems’ regulations. The rationale for the report was to present a 

review of the now 15 year old energy policy, and includes: 

• literature review on national documentation supporting energy systems, integration of 

renewable energy into the national energy mix, and energy efficiency 

• current status of energy statistics 

• energy systems modelling with current and future uses of energy, and possibilities to 

sustain supply for future uses, and 

• recommendations on how to update the energy policy of Namibia. 

In the current legislation, independent power production systems are acknowledged and 

allowable, both in urban and rural areas. Namibia is a member of the Southern Africa Power 

Pool (SAPP) which seeks to provide a harmonised system of public and independent power 

producers (IPPs) across the Southern African region; enabling Namibia to develop policies 
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which are also in line with regional and international standards. A regulated and unified feed-

in tariff system is the remaining challenge encountered by independent power producers [18]. 

Decentralised power production systems which use their generated power themselves are not 

affected by the lack of this regulatory framework. 

2.5.4.2 The South African macroeconomic framework, international drivers and national 
policies 

In South Africa a macroeconomic framework conducive to renewable energy generation is 

expressed by the objectives of the “Biofuels Industrial Strategy” (described in sections 1.3.3 

and 2.3) [7]; policies to deploy renewable energy for electricity generation [40, 47] and the 

country’s commitments towards sustainable development [240]. The biofuels strategy initially 

aims to develop the biofuels industry to achieve a market penetration of 2% of road transport 

liquid fuels by 2013. The biofuels strategy seems to target known/proven technologies like the 

production of bioethanol and biodiesel via biomass fermentation and digestion or trans-

esterification routes respectively. The strategy proposes the use of agricultural produce or by-

products, thus mostly first generation biofuels are promoted. Biofuels produced on the basis 

of maize are explicitly excluded: the prerequisite of the strategy is that a bio-based energy 

level of 2% penetration must be achieved without jeopardising food security [7, 53, 51, 148]. 

Crops like soya or sunflower are to be used instead, even if there is need to import these. The 

2% penetration level of biofuels in the national liquid fuel supply chain represents 400Ml per 

annum. The policy to integrate renewable energies into the power generation cycle by also 

providing guaranteed feed-in tariffs (phase I, until 2013) in South Africa since 2009 has 

accumulated more than 1.1MW power capacity [47], built through independent power 

producers (IPP). 

The potential of using wood-based biomass to contribute to the attainment of this goal is not 

explicitly mentioned but also not explicitly excluded from the strategy. Neither does the 

strategy prescribe the kind of technologies to be used for the attainment of these targets. This 

research thus implicitly accepts that other, alternative technologies which render equivalent 

results (bio-based liquid fuels or power) can be used. In the South African context, the 

conceptual framework draws upon the biofuels strategy to fulfil national macroeconomic 

targets (lower bar in Figure 2-1). Using wood-based biomass resources as proposed in this 

research to produce energy does not jeopardise food security. Equally important: this research 

does not propose that food producing land is to be transferred to biomass producing land for 

energy. Harvesting of wood-based material should also not cause deforestation. In terms of the 
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“first and second economy trajectory”, the South African Government intends to support the 

development of underutilised land to a level at which those affected communities will be able 

to compete commercially (subsistence farms should be converted to higher productivity 

farms). Farmers located in underdeveloped land areas will be encouraged through cooperatives 

(where feasible and possible) to participate in the supplying feedstock to biofuel “refineries” 

[7, 30]. In terms of supply of wood-based biomass as feedstock to the core production system, 

this research considers the possibility of sourcing wood-based biomass from underutilised 

land, and thereby participating in biofuel supply. 

The biofuels strategy foresees that producer (or investors’) incentives should only be allocated 

to projects that involve expansion that assist in achieving the 2% target. This is seen to ensure 

job creation, expanded agricultural production, and increased food supply; also contributing 

to technological feasibility and economic viability through direct and indirect benefits of using 

bioenergy. 

Macroeconomic policy furthermore requires interactions and active engagement with 

stakeholders and joint decision making between the private and public sectors. Thereby, socio-

economy (empirical macro- & micro- economics, research, bioenergy modelling, institutional 

& experimental economics, indigenous knowledge) and environmental aspects are linked. The 

conceptual framework takes account of these events, as summarised in the ‘assessment’ and 

‘interventions’ part of the macro-economic framework bar of Figure 2-1. 

2.6 THE CONCEPTUAL MODEL DERIVED FROM THE CONCEPTUAL 
FRAMEWORK 

The conceptual model, i.e. modelling bioenergy production both in Namibia and South Africa 

is based on the conceptual framework as visualised by Figure 2-1. The overall conceptual 

model is built by modelling each stage of wood-based biomass transformation up to delivery 

of the bioenergy product. The specific models derived and used in this work are listed in Table 

2-1. Details of the models developed and the relevant literature are also provided in sections 

4.1, 4.2 and 4.5. 
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Table 2-1 Summary of model structure 

Model Structure Core Model 
Biomass resources 
(supply side) 

Wood-based biomass production function model used to determine 
potential growth over the forecast horizon of 20 years. This period is 
chosen to coincide with the technical lifespan of equipment, typical 
loan repayment periods, and taxation policy applied in Namibia and 
South Africa.  This limited planning horizon did not intend to limit 
biomass supply sustainability, but ease modelling of technical 
feasibility and economic viability. It is acknowledged that this 
planning horizon may be too short to consider all effects of biomass 
growth and re-growth, but is realistic for technical and financial 
planning purposes. The wood-based biomass resources which 
received specific attention are Namibian bush encroachment, and in 
South Africa - commercial plantation forests (pine, eucalyptus and 
wattle) and bamboo. Details are provided in Chapter 4, 5, 6. 

Fast pyrolysis 
(technical assessment) 

Modelled according to the experimental work which was carried out 
with selected wood-based biomass resources. The yields and 
production parameters derived from experimental work are used as a 
proxy to model commercial scale fast pyrolysis production systems, 
where the feedstock is used as determined by the ‘biomass resources 
model’. Replication is done for fast pyrolysis. As the Namibian and 
South African economies are inter-twined it is considered sufficient 
that replication of pyrolysis production system modelling is done 
based on biomass resources available, and not on a country specific 
basis. Details are provided in Chapter 5, 7 and 8. 

Cost and Benefits 
(socio-economic and 
techno-economic 
assessment) 

Modelled to reflect costs and benefits of the fast pyrolysis production 
systems. This model draws upon the results of the fast pyrolysis 
model, and takes the economic indicators of Namibia and South 
Africa into account respectively, like factors of production (biomass 
resources and feedstock preparation, labour, land, cost of credit) and 
inflation. Costs incurred by establishing a fast pyrolysis production 
system are offset against the benefits derived (e.g. jobs created, 
agricultural land recovered, additional energy supplied). Exogenous 
and endogenous economic factors are considered. The difference 
between costs and benefits determines the net sustainability of a fast 
pyrolysis production system in the Namibian or South African 
context. The assessment horizon spans over a 20 year horizon to ease 
modelling. Results are provided in Chapter 9. 

Market and Market 
opportunities (demand 
side) 

Modelled according to national accounts of Namibia and South Africa 
respectively, and key data / indicators from markets like Europe: 
indicators for each product type include spot consumption and trends 
of consumption, imports and exports. 
Other factors of importance, which are considered but not modelled, 
are norms and standards for products to be delivered; production 
standard requirements to fulfil international commitments and 
acceptance norms; competitiveness of the products nationally and 
internationally. 
This model ‘ties’ the latter three core models together, as is the 
ultimate opportunity that determines whether a production system is 
viable and/or sustainable. Results are provided in Chapter 9. 
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Model Structure Core Model 
Data validation and 
sensitivity analysis 

A large battery of diagnostic tests were  performed on data and 
equations. These diagnostic tests included tests to evaluate the 
distribution of the residual values, validate coefficient restrictions, 
assess parameter stability and to identify structural breaks. 
Stationarity and co-integration tests were also performed. A definition 
of stationarity is given in section 3.5.1. 

 

Following each modelling step, conclusions and recommendations are provided to establish the 

rationale for the next modelling step.  



 
50 

3 DEFINITIONS AND DESCRIPTION OF TERMS; APPLICATION OF 
THERMO-CHEMICAL TECHNOLOGY IN SOUTHERN AFRICA 

This chapter provides definitions of the terms used in this research. The definitions are 

presented in line with the process flow as explained in the conceptual framework described in 

Chapter 2. 

Additional definitions are provided to further enhance the understanding of Namibia’s and 

South Africa’s socio-economic development context. All of the research is carried out in the 

context of Namibia and South Africa unless otherwise specified. 

3.1 BIOMASS 

Biomass refers to plant matter, which is renewable in the short term. Biomass feedstock to 

produce biofuels include the following – waste materials (agricultural, wood, and urban 

wastes, crop residues); forest products (wood, logging residues, trees, shrubs, mechanical 

conversion by-products), energy crops (starch crops such as corn, wheat, barley, sugar crops, 

grasses, vegetable oils, hydrocarbon plants), or aquatic biomass (algae, water weed, water 

hyacinth). Biomass can be used to produce heat, make liquid fuels, gas or chemicals, and/or 

to generate electricity.  

For this research, only wood-based biomass was considered and specifically wood-based 

biomass material which is derived from trees, bush and shrubs in Namibia and South Africa, 

i.e. draws away from resources that could otherwise ensure and/or sustain food security. Under 

Namibian conditions, the focus is on invader or encroachment bush. Under South African 

conditions, the focus was on wood-based biomass from commercial forestry production 

systems, invader or bush encroachment in savannah areas and invasive alien tree, bush and 

shrub species. Only certain wood-based biomass resources were analysed as data on these are 

available in Namibia and South Africa. In addition, it was found that other biomass resources 

are available, but not in the abundance necessary to consider further analysis from a 

technological and economic perspective. Selected wood-based biomass was experimentally 

evaluated for its potential use in fast pyrolysis processes.  

This research acknowledges that when dealing with wood-based biomass it is likely that the 

feedstock material may not be chemically consistent, mainly because of the differences in 

softwood and hardwood species. But also because of the geographic location and soil 

conditions where these grew, and the moisture content in the biomass material at the time it 
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would be converted. Care should therefore be taken in selecting a biomass feedstock since its 

characteristics vary not only from species to species, but also from tree to tree (or shrub or 

bush), the parts of the tree, shrub or bush to be utilised in the conversion process and also 

regions within the tree, shrub or bush. In conversion processes, the most significant 

differences are the parts of the tree, shrub or bush to be utilised, i.e. only wooded parts, 

whether it is a hardwood or softwood species to be used, and the moisture content of the 

biomass at the point of conversion. The latter aspects significantly influence fast pyrolysis 

product quality and yield. The practical implications on the fast pyrolysis conversion process 

of other biomass characteristics are technologically negligible. The wood types used in this 

research are discussed in Chapter 5, 6 and 7. 

Wood is made up of cells, which are laid down successively on the outside of the stem as the 

tree/bush/shrub grows. On the outside of the tree is a layer of bark. The proportion of the bark 

relative to the inner wood parts differs substantially if comparing trees, shrubs and bush. The 

highest proportion of bark is found in shrubs due to the proportionately high amount of 

branches and twigs. Bark can be further subdivided into an outside layer of dead cells and an 

inner layer, which contains living cells. In between the bark and the wood is a layer of cambial 

cells, which subdivide during growth to form both wood and bark cells. The activity of the 

cambial zone is greater at certain times of the year (spring). During this time springwood 

(early wood) is laid down and as the season progresses summerwood (latewood) is laid down. 

Spring and summerwood have different chemical compositions and colourings and so are 

easily distinguishable, which accounts for formation of growth rings [59]. Although the 

formation of growth rings is different from year to year, this aspect will not be considered for 

the purposes of this research as it is beyond its scope; and technologically does not influence 

fast pyrolysis product yield and quality. It is also recognised that wood and bark have different 

physical and chemical properties. Biomass from trees, shrubs and bush used in this research 

are considered as a unit and are not thermo-chemically converted separately. This is because 

this research sought to establish the usefulness of the wood-based resource under the whole-

tree-utilisation method to generate bioenergy. Debarking wood is an interesting pretreatment 

option to improve fast pyrolysis products yields, especially bio-oil and quality. For wood-

based biomass considered in this research, debarking was not necessary. Bark on Acacia-bush, 

wattle and Eucalyptus loosens shortly after felling and falls off readily. 

Trees, bush and shrubs are classified into two groups, angiosperma (hardwoods) and 

gymnosperma (softwoods). Hardwood species usually have broad leaves and are deciduous 
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in the temperate zone. Softwood species usually have needles, produce seed cones and are 

often coniferous or evergreen.  

It is not the aim of this research to explain the wood-based biomass’ physical and chemical 

properties in detail. Rather, detail is presented on  

• the occurrence of hardwood and softwood in the Namibian and South African context, and  

• the chemical properties of the wood species for their usefulness to bioenergy generation 

via fast pyrolysis. 

The latter is presented in Chapter 7. 

3.1.1 Specific wood-based biomass resources investigated 

‘Bush-encroachers’ or ‘bush encroachment’ or ‘invader bush’ refers to indigenous tree and 

shrub species that grow where they are not wanted. Many indigenous dominant woody species 

in Namibia and South Africa are termed encroachers as they invade specific areas or locations 

such as overgrazed land and wastelands. Bush encroachers as a biomass resource is described 

in sections 6.1 and 6.2.3. 

‘Invasive alien plant species’ refers to plants which are not indigenous to Namibia or South 

Africa. South Africa aims to eradicate or at least substantially contain alien plant species to 

specific areas and for specific industrial use. For example, all tree species in plantation forests 

are declared alien plant species, including species like Pinus spp. (commonly referred to as 

pine), Eucalyptus spp. and Acacia mearnsii (commonly referred to as black wattle or wattle). 

South Africa’s aim is to contain the growth of these plants to commercial forestry. Planting of 

pine, eucalyptus and black wattle outside demarcated commercial forest plantations is 

prohibited by law [60]. One type of softwood (bamboo) and three hardwood species 

(Eucalyptus spp., Wattle, Encroachment Bush, mainly Acacia spp.) were experimentally 

analysed for the purposes of this work. The quality and yield from fast pyrolysis conversion 

are presented in Chapter 7. 

3.2 THERMO-CHEMICAL CONVERSION TECHNOLOGY 

This section also provides a chronology on how pyrolysis technology was developed and used 

in Namibia and South Africa. The aim of presenting a pyrolysis chronology is to provide a 

better overview on why this research considered introducing fast pyrolysis to Namibia and 

South Africa as may be feasible and viable as a technological option in the socio-economic 
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development context. The discussions are presented in Chapters 7, 8 and 9. 

3.2.1 Fast and slow pyrolysis 

Pyrolysis is the thermal decomposition of materials in the absence of oxygen or when 

significantly less oxygen is present than required for complete combustion [8, 61, 62, 70, 68, 

74]. Pyrolysis processes have been improved and are now widely used for carbonised coal or 

for deposits left on catalysts, and charcoal production. Pyrolysis dates back to at least ancient 

Egyptian times, when tar for caulking boats and certain embalming agents were made by 

pyrolysis [63, 182]. In literature older than 30 years, pyrolysis generally refers to 

carbonisation, in which the main product is a solid char [64, 65, 70]. Carbonisation covers 

slow pyrolysis. Today, the term fast pyrolysis usually describes processes in which pyrolytic 

oils, commonly referred to as bio-oil with well-defined characteristics (Table 3-1), is the 

dominant product [63, 66]. Particle size, process time and temperature are used to mainly 

determine whether a thermo-chemical process is slow, intermediate or fast pyrolysis. The 

pyrolysis of a solid biomass particle can be divided into six primary physical processes [61, 

67]: 

a) heat transfer from a heat source to the particle, to increase temperature inside the particle; 

b) secondary solid/liquid phase reactions - the initiation of primary pyrolysis reactions at 

temperatures higher than 100ºC  releases volatiles and forms char; 

c) gas phase reactions (flow of hot volatiles) both internal and external to the particle; 

d) gas and liquid phase diffusion and/or convection within the particle – condensation of some 

volatiles that can produce tar; 

e) mass transfer with the surroundings - autocatalytic secondary pyrolysis reactions proceed 

while primary reactions (item b. above) simultaneously occur in competition; and 

f) heat transfer with the surrounding - further thermal decomposition, reforming, water gas 

shift reactions, radicals’ combination, and dehydrations can also occur, which are a 

function of the process’ residence time/ temperature/ pressure profile. 

For the classification of pyrolysis technology, this research differentiated between traditional 

batch charcoal making (small scale kiln technology where the product is less than 1t per 

charring process; and one charring process takes between 36 to 48 hours) and the industrial 

processes for slow pyrolysis processes which use large scale kiln and retort systems. Fast 

pyrolysis processes use systems of continuous raw material (feedstock) and product flow. 

There are at least six variations of pyrolysis summarised in Table 3-1. Three products are 

always produced; the proportions can be controlled by the process. 
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Table 3-1 Pyrolysis modes [8] 

Mode Conditions Liquid Char Gas 

  wt% products 
Fast  ~500ºC; short HVRT ~1s; 

short solids RT 
75% 12% 13% 

Intermediate  ~500ºC; short HVRT ~10-
30s; moderate solids RT 

25% oil 
25% water 

25% 25% 

Slow ~400ºC; long HVRT; very 
long solids RT 

35% 35% 30% 

Torrefaction ~300ºC; long HVRT; long 
solids RT 

Vapours 85% solid 15% vapours 

Gasification ~800-900ºC; short HVRT; 
short solids RT 

1-5% <1% 95-99% 

Hydropyrolysis ~400ºC; pressure; hydrogen; 
possible catalysts 

20-30% 40% 30-40% 

 HVRT = hot vapour 
retention/residence time 
RT = retention/residence time 

   

The products from slow pyrolysis can be used in a variety of ways. The char can be upgraded to 

activated carbon, used in metallurgical industry as a reduction agent, as a domestic cooking fuel 

or for barbecuing. Fast pyrolysis produces mainly bio-oil as product, and the char is, for example, 

completely consumed in Ensyn and BTG type of fast pyrolysis processes (section 3.2.1.1). 

Pyrolysis gas can be used for power generation or heat, or after cleaning, can be synthesised to 

e.g. methanol or ammonia. The liquid, pyrolysis oil (a phase-separated liquid from a slow 

pyrolysis process) or bio-oil (usually a single phase liquid from a fast pyrolysis process) can be 

upgraded to hydrocarbon liquid fuels for e.g. combustion engines, for extraction of valuable 

chemicals or chemical compounds (e.g. aldehyde, phenols, alcohols, furans, etc.), or used 

directly as fuel for power generation or heat (by combustion). Bio-oil for fuel purposes were 

considered only. 

Fast pyrolysis is studied to analyse and evaluate the bioenergy opportunities and possible 

environmental impact in the Namibian and South African context. Also the various products 

derived from wood-based biomass conversion via fast pyrolysis were assessed techno- and socio-

economically to establish their feasibility and viability in the local markets or for export 

elsewhere, notably Europe.  

3.2.1.1 Fast pyrolysis  

Fast pyrolysis of biomass feedstock gives high yields of liquids (bio-oil). It is characterised by 

rapid heating of the biomass particles and a short hot vapour residence time (HVRT) of product 

vapours (0.5 to 2 s). Rapid heating means that the biomass must be ground into fine particles (up 

to max. 5 mm in diameter) to guarantee rapid transfer of heat to the biomass particle and that the 
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insulating char layer that forms at the surface of the reacting particles must be continuously 

removed in certain fast pyrolysis processes, except in fluid bed fast pyrolysis. Fast pyrolysis has 

a lower capital cost than liquefaction, and several fast pyrolysis technologies are currently being 

used commercially, including Dynamotive in Canada [29, 68], BTG in the Netherlands [29, 68], 

Ensyn in the USA [29, 68], METSO Corporation and Fortum in Finland [29, 68], and others in 

South America [29, 68]. Enecon in Australia [29, 68] are considering commercially-sized 

technologies. The main product from these commercial fast pyrolysis applications is bio-oil for 

energy production. 

Existing examples of fast pyrolysis in Namibia and South Africa are not known. In South Africa 

one manufacturer of fast pyrolysis equipment exists, i.e. Prestige Thermal Equipment [69], 

however the technology is said not to be engaged in that country. 

3.2.1.2 Slow pyrolysis or carbonisation  

As explained before, literature generally equates slow pyrolysis to carbonisation or charcoal 

making, in which the principal product is a solid char [318]. Slow pyrolysis of biomass feedstock 

takes place when the organic matter is raised to a high temperature, i.e. above at least 180°C 

under exclusion of oxygen (retort processes) or under controlled air intake (kiln processes). Once 

the carbonisation process has entered the exothermic phase, no more outside heating is required 

and the temperature in a retort will climb slowly to its maximum of between 400° and 450°C. In 

a kiln process, the carbonisation process is halted after extinguishing the process, by stopping 

oxygen ingress; only heat is transferred for a predetermined time thereafter. Feedstock sizes vary 

from wood chips (25 mm in diameter) to logs (up to 250 mm in diameter and up to 2400 mm 

length). Processing time varies from several hours (continuous retort processes) up to seven days 

(kiln processes). The main product of a slow pyrolysis process is charcoal, and depending on the 

retort-type process used, tarry liquids and gases can be recovered for other uses including feeder 

gas for power production [62, 70]. In Namibia, health and safety problems with kiln type 

application were reported, i.e. imposing a major health hazard for persons operating the kilns due 

to heavy smoke emissions; and veld fires due to incomplete processes where the half-charred 

wood self-ignites as soon as the kilns are opened thereby setting the surrounding grass and 

brushes alight [71]. 

Several manufacturers of slow pyrolysis equipment exist in Namibia and South Africa, mainly 

manufacturing kiln equipment. Manufacturers and users of slow pyrolysis equipment, based on 

retort processes, exist in South Africa only. Although being technologically more advanced than 
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kilns for charcoal making, the use of retort processes in Namibia stopped in the mid-1990. The 

reasons for the latter could not be established. 

3.2.1.2.1 Kiln technology 

Kiln technology means all equipment producing charcoal as the main product without the 

possibility to recover producer or converter gas. Gases and smoke are emitted to the 

atmosphere during the process. Reference to kiln technology is specifically made in this 

research to evaluate the development of the charcoal making industry; and as part of ‘mapping’ 

the road ahead for a bioenergy industry based on fast pyrolysis. 

In Namibia, the ‘Namibian Bush Drum’ kiln is used to make charcoal. This Namibian 

‘invention’ is the preferred technology since mid-1990s used by charcoal makers since it is 

unsophisticated, labour intensive, cheap, requires limited skills and can be transported on a 

wheel-barrow from one production site to another. Further details are provided in Table 4-6. 

Photographs of charcoal making with the ‘Namibian Bush Drum’ kiln are provided after Table 

4-6. 

In South Africa, the Brazilian Beehive Brick kiln and the Armco-Robson kiln are commonly 

used, with the Armco-Robson kiln being the preferred option for manufacturing charcoal. 

Further details on operations of Armco-Robson kilns are provided in Table 4-6. Photographs 

of charcoal manufacturing operations in South Africa are provided after Table 4-6. 

The charcoal from kilns is of acceptable European standard, and is exported to Europe for 

barbecuing; various companies are certified under the “Forest Stewardship Council’s (FSC)” 

label. The FSC label is advantageous to have if the barbecue charcoal is envisaged to be sold 

in retail outlets across Europe, notably the UK. The drawback of employing kiln technology 

lies in its low wood-to-charcoal conversion efficiency. To produce one tonne of charcoal 

requires between seven to eleven tonnes of wood, depending on the moisture content of the 

wood. Further comparisons to slow and fast pyrolysis technologies are provided in Table 4-6. 

3.2.1.2.2 Slow pyrolysis retort technology 

Slow pyrolysis retorts or converters are essential elements of the industrial plant, capable of 

recovering and refining charcoal co- and by-products in commercial grades and quantities. The 

products obtained from a retort system are present in an approximate ratio of 35% charcoal, 

35% condensed liquids and 30% incondensable gases. Carbonisation in a retort allows for an 

integrated utilisation of the energy contained in the raw materials at an optimum level by 
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utilising the incondensable gases as source of energy to sustain the carbonisation process. The 

quality of the charcoal of a retort process is usually superior to the charcoal obtained from a 

kiln process in terms of; charcoal sizes, ash content, volatile content and chemical structure of 

the charcoal [62, 64, 70]. The condensed liquids in retort systems are the main product and the 

charcoal is the co-product in terms of its value [70, 200]. Further details are provided in 

sections 3.3.3 and 4.5.1.2 which discusses the markets for wood tar and pyroligneous acid 

produced during slow pyrolysis. In South Africa only one type of slow pyrolysis retort process 

manufacturer is still operational; the CG2000 slow pyrolysis retort (Photographs after Table 

4-6). The slow pyrolysis retort technology ‘AGODA’ ceased to be built and operated in 

Namibia and South Africa in the early 2000s. 

3.3 PRIMARY PRODUCTS 

The pyrolysis of wood produces a large number of products and chemical substances. Some 

of the products and chemicals can be used as supplements and/or substitutes for conventional 

fuels currently utilised in Namibia and South Africa, or even exported. Below a number of the 

primary products from pyrolysis are described in more detail. 

3.3.1 Process gas from fast and slow pyrolysis processes  

This is the gas that leaves the thermo-chemical converter (fast pyrolysis converter, retort or kiln), 

frequently also called ‘off-gas’. In the fast pyrolysis process and, for example, in the AGODA 

retort process this gas would be used on-plant to sustain the thermo-chemical conversion process 

and not used commercially. A distinction is made between two types of off-gas which have 

different potential commercial values: 

• Off-gas that is not passed through a scrubber, chiller or condenser system. It contains the 

pyrolysis oil vapours which cannot be chilled sufficiently quickly in the conversion process 

and is thus often referred to as the high calorific value gas. This gas is mostly re-used in 

the process for heating in slow pyrolysis.  

• The residual gas which has passed through a scrubber, chiller or condenser system and has 

been stripped of the pyrolysis vapours. It is often referred to as “low calorific value or lean” 

gas, meaning that it is a heating gas of poor calorific value. It is composed of mostly CO, 

CO2, hydrocarbons, nitrogen and water vapour. The residual gas is from both fast and slow 

pyrolysis. 
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3.3.2 Charcoal  

Charcoal is the solid residue with high fixed carbon content from a fast and slow pyrolysis 

process. The majority of the charcoal remains in the slow pyrolysis converter. In slow pyrolysis 

processes charcoal is the main product and is used commercially. However, depending on 

viability, pyrolytic liquids from slow pyrolysis may be of equal or higher value than the charcoal 

made in the same process (e.g. Reichert slow pyrolysis retort system used in Germany; section 

4.5.1.2). In fast pyrolysis processes charcoal is a by-product with little commercial value, mainly 

due to its very small size and relative quantity. Usually charcoal from fast pyrolysis processes is 

used on-plant as fuel; the char is consumed in the process by complete combustion, e.g. the 

ENSYN and BTG technology. 

3.3.3 Slow pyrolysis oils with high tar content – “wood tar” 

The pyroligneous liquids or pyrolysis oils from slow pyrolysis are constituted of water, heavier 

tar oils, lighter tar oils and light condensable organics, like acetic acid, methanol and other 

acids. These phase separate. 

This wood tar is the pyrolysis liquids component derived from condensation of vapours from 

a retort slow pyrolysis process which was described in section 3.2.1.2.2. The viscosity and 

chemical composition of the pyrolysis oils largely depends on the number or type of 

condensation facilities available to the process. In general, the most significant problems of 

pyrolysis oils as a fuel are poor volatility, high viscosity, coking, corrosiveness, and cold flow 

problems, which can be overcome by, for example, catalytic upgrading [72]. 

Pyroligneous acid is a product of slow pyrolysis (section 3.2.1.2.2.) formed from condensable 

vapours [73, 62, 64, 70] and is the aqueous fraction of slow pyrolysis liquids. It is made up of 

moisture, acetic acid, wood spirit and light oils. The quantity produced or yield of pyroligneous 

acids depends upon the composition of the biomass and the conditions under which pyrolysis 

occurs.  

3.3.4 Bio-oil  

This is derived from condensation of vapours from fast pyrolysis which was described in section 

3.2.1.1. Fast pyrolysis liquids are dark brown and fluid, resembling a medium fuel oil in 

viscosity. The liquid is often referred to as bio-oil or bio-crude although it will not mix with any 

hydrocarbon liquids. Bio-oil is also sensitive to high temperatures when it undergoes chemical 

change so it cannot be distilled. It has a higher heating value of about 17 MJ/kg, as compared to 
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conventional fuel oil [68, 74] of typically 40-45 MJ/kg.  

Bio-oil can be a substitute for fuel oil or diesel in many static applications including boilers, 

furnaces, internal combustion engines and turbines [68, 74, 75, 76]. There are a range of 

chemicals that can be extracted or derived including food flavourings, specialities, resins, agri-

chemicals, fertilisers, and emissions control agents [67, 29, 68]. 

The specific use of bio-oil as a fuel requires adaptations of engines or gas turbines to suite bio-

oil characteristics [8, 29, 68, 75]. And, after upgrading and modification of the physiochemical 

properties of the bio-oil it can be used as an alternative to diesel [29, 68]. Only the use of bio-oil 

as energy carrier is discussed in this research. 

3.4 TERMS USED TO DESCRIBE THE SPECIFIC SOCIO-ECONOMIC SETTING IN 
NAMIBIA AND SOUTH AFRICA 

This section explains the terms commonly used in the Namibian and South African techno-

economic, social and scientific environment. For example, terms in the agricultural and forestry 

sectors in Namibia and South Africa differ from those used in developed countries, and are often 

unique and therefore require explanation. 

3.4.1 Agricultural farmland 

In Namibia, demarcation of land for extensive agricultural production systems, crop and 

livestock farming in commercial and communal farming areas (sections 3.4.2 and 3.4.3) 

measures 68.74Mha, including smaller towns and villages, and are divided into over 100 

constituencies and combined to form some 20 districts. Here, analysis stop at the level of 

districts. The latter excludes protected by law land areas and national parks. The land available 

for agricultural production systems, excluding towns and villages measures 65.41Mha. Of the 

latter demarcated land, 51.72Mha is used predominantly for extensive livestock production 

systems, including domesticated (cattle, sheep, goats, horses, donkeys) and wild animals (game 

farming and hunting adventures).  

3.4.2 Commercial Farmland / Commercial Farming Areas 

These are defined as freehold, agriculturally productive land, dedicated to livestock rearing 

and/or game farming and/or cropping as per the Agricultural (Commercial) Land Reform Act 

[77]. Ownership, private or corporate, is registered with the Deeds Office, Ministry of Land 

Reform. The term ‘commercial farmland’ is used in the Namibian context only. 
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Access to bush or other wood-based biomass resources for fast pyrolysis has to be gained through 

owners of commercial farmland. Commercial farmers are key to security of supply of wood-

based biomass as feedstock for fast pyrolysis. 

3.4.3 Communal Land / Communal Farmland / Communal Farming Areas 

Is defined as non-freehold land, dedicated to a specific community for livestock rearing and/or 

cropping as per Communal Land Act [78]. No ownership, neither private nor corporate, is 

possible to be registered. Only a permission to occupy and utilise can be registered with the 

Ministry of Land Reform. The specific community’s approval, via a traditional authority, must 

precede a permission to occupy/utilise licence. Fencing off any specific area in communal land 

is considered illegal. Demarcated and proclaimed urban areas situated in communal land areas 

are excluded from this arrangement. The term ‘communal land’ is used in the Namibian context 

only. 

Access to bush or other wood-based biomass resources for fast pyrolysis has to be gained through 

the traditional authority that manages a certain area in the communal land. Traditional authorities 

are key to the security of supply of wood-based biomass. 

3.4.4 Bush Encroachment 

Bush encroachment refers to the phenomenon where a large number of invasive wooded plant 

species are spread over large geographic areas, usually more than several hectares (section 3.1.1). 

Bush encroachment is a priori defined as the total number of bushes (measured in TE-units/ha) 

that exceed 2,500 per hectare [79, 80, 88, 262, 93, 265]. 

Bush and trees from encroached areas were considered to be a renewable wood-based biomass 

resource to be used as feedstock for fast pyrolysis and therefore possible inventory levels, mean 

annual increments and environmentally and economically sustainable usage were modelled. Of 

the 51.72Mha of demarcated livestock farming area, it is estimated that 26Mha were bush 

encroached [262] in 2002, with an increasing tendency and said to have reached some 30Mha in 

2012 [81]. One of the aims of the national rangeland management policy and strategy [81] are to 

reduce bush encroachment to improve rangeland quality and grow livestock production output. 

In the Namibian context, encroacher bush is the only wood-based biomass resource that was 

considered for fast pyrolysis conversion.  

In the South African context, encroachers from indigenous bush or tree species are one of four 

possible wood-based biomass resources that could be used for fast pyrolysis conversion 
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processes. The total area said to be encroached by indigenous bush and tree species covers an 

area of 29Mha across South Africa as per FAO reports [121, 122]; of this area some 10-20Mha 

are said to be very densely bush encroached [160] and affecting agricultural productivity and 

biodiversity. Judging by these FAO reports, the area encroached by indigenous wood species in 

South Africa has remained more or less constant. 

3.4.5 Tree Equivalent Unit (TE-unit) 

Unlike commercial forestry where the standing density and potential yield of a forest can be 

determined by a set of formulae for a specific species, the standing density and potential yield of 

bush encroachment cannot be easily determined. The concept of ‘tree equivalent unit’ was 

developed to provide an estimation of the standing density and potential yield of bush in Namibia 

and South Africa. 

A tree equivalent unit measures the stem size of a shrub or bush which is 1.5m tall, and has a 

diameter of between 100 and 150mm at knee-height. Therefore, e.g. a bush with a stem of  3m 

height and a diameter of 150mm at knee height would count for 2 tree equivalent (TE) units [82, 

96]. Bushes are usually multi-stemmed and each stem’s TE-unit would have to be determined to 

calculate the total amount of TE-units per hectare (TE/ha). Typically, a bush consists of at least 

three stems; it should therefore be determined what is each stem’s diameter and height as per 

afore mentioned. 

Although no conclusive research was done [262], the size of a Namibian bush is defined as TE-

units and the weight of one TE-unit was established to be between 2-18kg, depending on the 

species (section 5.1.1). All units of measure, including TE-units, were converted to Mt equivalent 

to ease modelling. 

3.4.6 Carrying Capacity (CC) 

Carrying capacity is defined as the ability or capability of a hectare of demarcated agricultural 

land, both commercial and communal, designated for livestock rearing to bear a certain amount 

of live body mass of domesticated and/or wild animals from which income can be generated in 

some point in the future. Carrying capacity is made up of browse capacity (i.e. the amount of 

nutritionally valuable fodder, predominantly leaves and twigs delivered by trees and bushes) and 

grazing capacity (i.e. the amount of fodder delivered by grass). Carrying capacity is usually 

expressed as the ability to bear a certain amount of live body mass (kg livestock and/or game) 

per ha, thus (kg/ha). In this research, the term ‘carrying capacity’ is predominantly used where 
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bush encroachment inhibits livestock productivity (Namibia) or biodiversity (South Africa). 

Bush encroachment is said to negatively impact on carrying capacity of farmland due to 

imbalances of browse and grazing capacity. However, the dynamics between bush encroachment 

and carrying capacity are not sufficiently documented to provide an indication if bush 

encroachment adversely impacts on farmland carrying capacity. This research assumed that 

benefits towards enhanced livestock productivity and biodiversity are gained if bush 

encroachment decreased. Data on the current status of carrying capacity in Namibia is provided 

in Chapter 5. Modelling biomass resources (Chapter 6) could provide an indication on how 

carrying capacity changes with lessening bush encroachment. 

3.4.7 Livestock 

Here livestock refers to animals which are valuable for extensive production systems, i.e. animals 

are free-roaming/free-ranging, not kept in pens and not fed, in the Namibian context. The 

livestock considered include domesticated animals like cattle, small livestock (sheep, goats), 

horses, donkeys; and non-domesticated animals with commercial value such as browsers and 

zebras. Browsers are various types of game, predominantly antelope, which share agricultural 

farmland with domesticated livestock. For calculation purposes units used to express the total 

amount of livestock on demarcated agricultural land are million tons (Mt) live weight or “cattle 

equivalent” or “large stock unit - LSU”. The following conversion factors were used to express 

“cattle equivalent” body mass: 

3.4.7.1 Large Stock Unit (LSU) 

LSU refers to cattle in a commercial and/or communal farming set-up. The basis to measure 

the live body mass of livestock is cattle, and expressed as “large livestock unit (LSU), whereby 

1 LSU = 338 kg live mass. This mass was calculated from the weighted average livestock 

production figures for the years 1970 to 2013, including adults and calves or foals. For periods 

prior to 1970, figures of livestock production were provided in an infrequent manner. 

Ownership of large livestock is clearly identifiable via branding marks and ear tags registered 

at the Meat Board of Namibia. LSU size, as mentioned herewith, pertains to Namibian 

conditions only. LSU is converted to Mt equivalent in all calculations. Other livestock 

considered include horses and donkeys, browsers (i.e. antelope) and zebra; whereby 

1 LSU = Cattle = 338kg live body mass 

1 Horse or donkey = 1.5 x LSU ≡ 507kg live body mass; this measure is determined a priori. 
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1 Antelope = 3/4 LSU ≡ 254kg live body mass [83, 84]. 

1 Zebra = 1.4 LSU ≡ 473kg live body mass [83, 84]. 

Please note, the measure for LSU may change over time as it is based on livestock production 

output which itself changes over time. The Namibian livestock production system is influenced 

by multiple factors, like: farm management; climate and annual precipitation; palatable forage 

in the extensive livestock production system. 

3.4.7.2 Small Stock Unit (SSU) 

SSU refer to goats and sheep in a commercial and/or communal farming set-up. Ownership is 

clearly identifiable via tattoos in ears and/or ear tags. Ownership is registered at the Meat 

Board of Namibia or the Directorate of Veterinary Services, Ministry of Agriculture, Water 

and Forestry, Namibia. SSU size, as mentioned herewith, pertains to Namibian conditions 

only:  

Whereby, 

1 SSU = 1/6 LSU ≡ 56kg live body mass [85, 86]; 

3.5 TERMS USED TO DESCRIBE MATHEMATICAL, ECONOMICAL AND 
STATISTICAL CONCEPTS USED IN THIS WORK 

3.5.1 Stationarity of data 

A stationary process has the property that the mean, variance and autocorrelation structure do 

not change over time [87]. Stationarity can be defined in precise mathematical terms, but for the 

purpose of this research, it means a flat looking series, without trend, constant variance over 

time, a constant autocorrelation structure over time and no periodic fluctuations (seasonality) or 

infinite shocks (section 2.5.1). That means a stationary data series returns to a fixed value or 

fluctuates around a linear trend. A test for stationarity of data series (using Dickey-Fuller and/or 

Augmented Dickey-Fuller Test and/or autocorrelation function) is established prior to any further 

analysis of data; because if the data is stationary then many simplifying assumptions can be 

made. Testing for stationarity is solved in EViews®8. The data series available to this research 

for South African commercial forestry residues and invasive alien wood based biomass is 

stationary (sections 4.1.3.2 and 4.1.5). 
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3.5.2 Cointegration 

Cointegration is the existence of a common trend or the existence of a cointegrating relationship. 

In this research, cointegration was tested throughout time series analysis for the determination 

of future available wood-based resources in both Namibia and South Africa.Cointegration was 

expressed by the significance of an independent variable (regressor) on the dependent variable. 

For example, section 6.1 established how and if annual precipitation and livestock production 

have influenced bush encroachment in Namibia from 1957 to 2013.  
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4 REVIEW OF LITERATURE AND MODELS  

This chapter covers a review of the literature relevant to resource supply and sustainable 

development, fast and slow pyrolysis technology, and markets for fast pyrolysis products. 

This chapter is sub-divided into four main parts; biomass resource modelling, thermo-

chemical conversion models, literature review related to market potential for fast pyrolysis 

products, previous markets for various slow pyrolysis products and chapter conclusions.  

The models were described and discussed, and according to criteria it was determined whether 

the models were useful to data analysis, modelling approach and research methodology. The 

criteria used to assess the suitability of a model to this research were: 

• C1. Link to economic theory and national policy indicators 

• C2. Spatial considerations 

• C3. Dynamic features  

• C4. Link to other sectors and land use issues  

• C5. Model and data availability and model adjustments needed. 

The criteria are discussed in greater detail under each model considered relevant to this research. 

If a criterion is not discussed, that model does not present a basis for further consideration. A 

review of literature in the context of; wood-based biomass resources and prior or existing uses 

thereof, and prior and exiting uses of slow and fast pyrolysis technology in Namibia and South 

Africa is provided under chapter sub-divisions. Literature review on markets for fast and slow 

pyrolysis products is discussed in section 4.5. 

4.1 REVIEW OF LITERATURE ON BIOMASS RESOURCES MODELLING  

The objective of this section is to review literature and analyse models on biomass resources, 

and in particular wood-based biomass resources. Many biomass resources models were found, 

but after preliminary assessment only two models were considered to be of particular interest to 

this research, namely: 

• The Policy Analysis System (POLYSYS) [180]; 

• A conceptual model of vegetation dynamics in semiarid highland savannah of Namibia, with 

particular reference to bush thickening by Acacia mellifera, sub-species detines [301]. 
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4.1.1 Review of literature on wood-based biomass resources production in Namibia 

Of Namibia’s land surface area, some 60% are desert or semi-arid areas which allows no or 

only limited levels of agricultural production, both livestock (domesticated and wild animals) 

and crop production. 

It is reported that due to uncontrolled overgrazing, agricultural malpractice, long term severe 

droughts over decades and cyclical rainfall patterns, the grass component for animal food 

which makes up approximately 20% [88, 89] of the biomass produced, has been overexploited. 

The latter events led to increased bush encroachment and loss of biodiversity, as one of the 

consequences [98].  

The ultimate concern over bush encroachment for Namibian authorities is loss of 

environmental and socio-economic sustainability [81] of especially the livestock production 

sub-sector within the agricultural sector. As agriculture remains one of the economic pillars of 

the Namibian society and economy, the National Development Plan 4 (NDP4) [90], covering 

the period 2012/13 to 2016/17, inter alia, promotes strategies and activities that “increase the 

land’s carrying capacity for livestock”. The latter is to be accomplished by  

“Debushing, as a strategy for increasing grazing land in order to improve productivity 

and create employment in the sector (agriculture), will be encouraged and supported. 

These activities will be pursued and scaled up across the country, with a specific focus 

on labour-intensive debushing.” 

Based on the aforementioned stance of Namibian authorities, this research accepted that bush 

encroachment must be reduced substantially. Support for debushing and land rehabilitation 

activities following bush encroachment can be expected from the Government of Namibia [81, 

90]. However, the level of support (political and monetary) is not explicitly mentioned, but is 

expected to be provided through annual national budgetary allocations and technical support 

(also from international development and/or finance institutions) towards debushing 

initiatives. 

Literature on the exact causes of bush encroachment could not be found. A national inventory 

system for bush encroachment in Namibia is not available. Data for certain regions is available 

as illustrated in Figure 5-1 and as explained by de Klerk [265]. Research to date has mainly 

concentrated on specific areas or a specific species declared as encroacher-bush [282, 82, 265, 

88, 102, 262, 91, 92]. A comprehensive national database or model establishing how to assess 
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the inventory or growth patterns of encroacher bush was not found. As bush encroachment is 

said to negatively impact on agricultural output, that is mainly livestock production [265, 88, 89, 

97, 102, 116], a relationship between bush encroachment and livestock production was 

endeavoured to be sought and will be discussed further in section 6.1.  

In an effort to investigate causes of bush encroachment and possibly an indication on bush 

inventory and growth pattern, some 100 respective farmers in general, and livestock producers 

in particular across Namibia were interviewed. The focus of the questionnaire was on how they 

are  noting the effects of bush encroachment and how they perceive it to be relating to livestock 

production output. Farmers were also questioned about other factors that contribute to an increase 

in bush encroachment. The interviews were conducted in the period 2008 to 2011. Online 

questionnaires were distributed via the Namibia Agricultural Union, and returned electronically. 

Most interviews had to be conducted personally and/or telephonically as only some 40% of the 

questionnaires were returned electronically. The summarised responses and explanations are 

provided in Table 4-1. 

Table 4-1 Summary of responses received from farmers on bush encroachment; its causes, effect 
and growth patterns  

Summarised 
Responses to: 

The effect of bush 
encroachment on livestock 
production 

The farmers’ arguments why bush is 
encroaching farmland predominantly used 
for livestock production, and how they 
control bush encroachment on farms 

Factors contributing 
to bush 
encroachment & the 
predominant effect 

In general, for all bush 
encroachment affected areas, 
carrying capacity of the 
farmland reduced between 20 to 
43 percent. 
 
 

Preserve a conservative livestock stocking 
rate. 

Causes of bush 
encroachment & the 
duration of on-farm 
bush encroachment 

In general, for all affected areas, 
livestock held had to be reduced 
as the land available for grazing 
decreased. 

It is clearly observable that where cattle 
graze, and overgrazing was prevented, the 
quality of grazing is substantially improved 
since the cow dung is easily processed by 
dung beetles and dissipated by the rain. 
Biodiversity changes after 50 years if no 
prevention is maintained; large game species 
start to dwindle; but if bush encroachment is 
contained, game diversity seems to return 
rather quickly, even birds seem to return in 
masses. 
 
 

What the effect of 
size & density of 
bush encroachment 
is on the farming 
system 

In general, for all affected areas, 
less perennial grasses are 
available as it is noticed that 
grass does not settle under bush; 
it is noticed that the quality of 
grass is maintained though. At 
the same time, for all affected 

Support of any actions to selective poisoning 
of encroacher bush is welcomed, as some 
farms are relatively small and it can only be 
positive to increase the grazing capacity and 
the quantity and quality of grasses. 
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Summarised 
Responses to: 

The effect of bush 
encroachment on livestock 
production 

The farmers’ arguments why bush is 
encroaching farmland predominantly used 
for livestock production, and how they 
control bush encroachment on farms 

areas, the quantity of seasonal or 
annual grass species was noticed 
to have increased due to bush 
encroachment. 
 
 

How the farmer 
perceives bush 
encroachment 
overall, in national 
context 

The reduction of livestock only 
affected large livestock units; no 
reduction in small livestock units 
is/was necessary; equally, no 
reduction in game numbers was 
observed. 
 
 

Keep farm management as natural as 
possible: fire, browsers, no over grazing. 

How the farmer 
perceives bush 
encroachment 
overall, at on-farm 
level 

In general, it is noticed that bush 
encroachment forms ‘islands’ of 
very high bush density. These 
‘islands’ are made of normally 
one specific encroacher specie. 
And, these ‘islands’ are noticed 
to be shelters for game and small 
livestock. However, too many of 
these islands would rather relate 
to the effect as described in 
responses in 1 to 3. 
  
 

It is important that some islands of Acacia 
mellifera spp detines are maintained for the 
game and also on top of the hills to break the 
wind.  

What the effect of 
extra-ordinary 
events and 
weather/climate 
patterns is on bush 
growth 

General bush dieback occurred 
during consecutive drought 
periods; and/or prolonged frost 
periods during winters. 
Bush encroachment is noticed to 
explode in years of high to very 
high rainfall, following 
consecutive years of drought; 
however, in the years of high to 
very high rainfall; grass 
production in general is noticed 
to be good in years of higher 
than ‘normal’ rainfall. 
Mean annual day and night 
temperatures are observed to 
influence bush encroachment 
patterns. 

The overall high rainfall over the last 12 
years contributed to bush encroachment. It 
is very visible that during the peak rainfall 
years of 2000, 2006, and between 2009 and 
2011 most germination took place, even if 
farms were under stocked since around 
1990 up to date. 
 
Increased sprouting/ coppicing is noticed 
after the good rainy season 2010/11. The 
higher grass production seems to help to 
contain further bush encroachment by 
preventing sprouting of bush to some 
extent. 
Prolonged frost in winter months kills small 
bushes which sprouted or coppiced in good 
rainy seasons. Lack of frost or ‘warm 
winters’ was noticed to invigorate bush 
growth. 
 
 

Whether a certain 
farm management 
system affected bush 
growth patterns, and 
how 

Poor land management practices 
are noticed to have had an effect 
on bush ‘explosion’; especially 
the switch from dairy to meat 
livestock holding, and from 
small to large livestock have 
been noticed to have been 
conducive to bush 
encroachment. 

It is very visible that bush encroachment is 
predominantly on farms where sheep have 
been kept in the period 1946 to +/-1984. 
Fencing in/off with 7 wires, are therefore 
not suitable for keeping of goats which are 
browsers. Furthermore, dairy farmers kept 
trekking ways for cows to be milked. These 
trek ways today are highly bush 
encroached. 
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Summarised 
Responses to: 

The effect of bush 
encroachment on livestock 
production 

The farmers’ arguments why bush is 
encroaching farmland predominantly used 
for livestock production, and how they 
control bush encroachment on farms 

 
Bush encroachment, when 
contained by various methods is 
noticed to have a positive effect 
on perennial grass quantity, 
improved carrying capacity of 
the farmland and increased 
ability to hold greater numbers 
of large livestock and game. 
 

Don’t hold small stock together with large 
stock; goats tend to browse extensively and 
thereby spread seeds of bush. Sheep 
overgraze the rangeland thereby limiting 
carrying capacity further. 
 
Bush encroachment has no enemies; 
dedicated interventions are needed to 
manage it. However, bush encroachment 
management or treatment is very cost 
intensive and therefore many farmers don’t 
do it. 
 
Bush encroachment containment / 
prevention is very costly, time consuming 
and often skills of workers are lacking. 
Since 1990, MAWF extension officers 
don’t provided adequate advice any longer. 
This advice is now obtained from arboricide 
sales’ personnel or from other farmers. 
 
Aftercare is recommended as the best 
means to contain bush encroachment. 
Where bush encroachment was managed 10 
years ago, bush is back today! One-off 
treatments are not sufficient either, and if 
no after care is done at all, bush thickening 
may be worse afterwards, which is 
specifically experienced with 
Dichrostachus cinerea. 
 
Due to removal or poor maintenance on 
fences, it is difficult to control game 
movement resulting in the destruction of the 
more palatable grasses, with an increase in 
weeds and poisonous plants. 
Thick bush (bush encroachment) has always 
been a "problem" in Namibia. Before there 
was enough land to buy or lease. These 
days not any longer. Therefore debushing 
must be done to win/obtain more grazing 
land. 
Aerial spraying is not an option as it would 
destroy tree species where birds normally 
nest, especially for sociable weaver birds.  
Lack of or even access to proper 
documented research seems to hamper 
progress in the field. 
 
 

Whether there are 
other effects of bush 
encroachments that 
cannot be observed 
(possibly requiring 
in-depth research) 

Respondents, in general, have 
not highlighted that bush 
encroachment had a specific 
effect on groundwater levels. 
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The outcome of the interviews was used in Chapter 6 to establish a bush re-growth rate as well 

as annualised, disaggregated bush inventory data for Namibia. This was considered necessary 

as bush encroachment data (section 5.1.1) was found to be discontinuous and based on total 

national area being bush encroached.  

4.1.2 Review of existing uses of wood from bush resources in Namibia 

In the context of the bush encroachment, various studies were carried out over the past years 

to make use of the “debushed” material [93]. Until the launch of the National Rangeland Policy 

in September 2012 [81], the main area of interest concentrated among the commercial 

(freehold) farmland areas. Projects to combat the spread of bush encroachment in the 

commercial farming areas [94, 95] have ranged from large scale herbicide application [92] to 

controlled bush fires [96], and recently to more sustainable bush utilisation projects [97, 98]. 

The bush utilisation projects include firewood production, chipboard and composite wood-

chipboard production, wood briquettes, charcoal and charcoal briquettes production [99, 100, 

101], bioenergy production systems [102, 103] and ‘complete wood-based’ industry systems 

[104, 105, 282]. Commercial use of wood biomass in communal farming areas only started 

after Namibia’s independence in 1990 [106]. There has been considerable interest in the 

utilisation of invader bush in the last 5 years. Not only to recover the costs of bush 

harvesting/thinning, but also to establish potentially viable Small or Medium Enterprises 

(SMEs) in rural and communal land areas of Namibia, and to diversify the economic 

opportunities on offer in Namibia.   

Apart from firewood and charcoal production which is regulated, all other initiatives are 

cottage industries serving the domestic market. The existing total production of firewood and 

charcoal together is less than 1Mt per year [58, 107, 116]. Firewood is mainly exported to 

South Africa; charcoal is exported to Europe (UK) mainly and South Africa. The total annual 

Namibian charcoal production varies from 25–40kt and the statistics depend strongly on who 

provides the information. Of this annual production, about 60% is directly exported under the 

Forest Stewardship Council (FSC) label to Europe into the barbeque market, 30% is exported 

in bulk under the FSC label to South Africa, and only 10% is consumed within Namibia. 

Charcoal production and trade statistics are not captured and maintained regularly, and the 

National Accounts of Namibia do not register individual commodity imports or exports. 

Charcoal production and export data was obtained from charcoal producers [108]. The 

charcoal production potential in Namibia is estimated to be very high and could be as high as 

that of South Africa, but limited by the technologically unsophisticated conversion methods 
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(section 4.5.1.1; Table 4-6). Technological improvement could increase the yields and quality 

of the charcoal without increasing the amount of feedstock required. 

Many domestic and foreign investors have shown an interest in using Namibia’s biomass 

potential for charcoal production and power generation [116]. To date and even though a number 

of extensive studies have been carried out over the past 30 years, there is still no coherent 

summary of the full socio-economic and ecological potential of Namibia’s sustainable bush 

biomass either as an energy carrier or a source of other renewable products [109, 116]. 

Commercial uses of wood from encroachment bush in Namibia for composite building materials 

were piloted, but failed [116]. The reasons for failure cited were lack of project management 

skills and insufficient funding. Trials to use invader bush for power generation on a national scale 

basis were carried out between 2006 and 2010 [282, 102]. However, no commercial operation 

has been started up to date. Nampower, Namibia’s bulk electricity provider completed a 

prefeasibility study in 2013 [110, 111], to investigate the viability of using wood from 

encroachment bush in mainly combustion systems for on-grid power production systems. 

Nampower’s aim with the pre-feasibility study was to present the results to possible independent 

power producers for their use as a decision making tool to possibly set up power production 

systems. Nampower would then ’guarantee’ power procurement from them. 

Between 1970 and approximately 1995, multiple Namibian government institutions, mainly 

hospitals and schools with boarding facilities, were supplied with bulk firewood for heating of 

water. The Namibian government exchanged the wood-fired boilers with electrical heating or 

bunker oil-fired systems [116]. An initiative to use wood from bush encroachment as a source of 

energy for the production of cement was initiated in 2011 [112]. The sourcing of the wood is 

concentrated in areas within 75-100km radius of the cement factory due to prohibitive transport 

costs in relation to the resource’s value beyond the latter radius. 

The ‘real’ domestic consumption, other than for mentioned industrial purposes of firewood and 

charcoal is not known. Only recreational firewood and charcoal trade through formal channels is 

accounted for. It is therefore assumed that 1.5kg of firewood per capita per annum is used in 

Namibia, or a 41.79 TJ in total [113]. The assumption is based on consumption patterns as 

computed under South African conditions (section 4.1.4) and the most recent National Household 

Income and Expenditure Survey 2009/2010 (NHIES) [114]. Firewood in Namibia is used for 

recreational purposes (urban formal settlements) and cooking and space heating (urban informal 

settlements and rural areas). Charcoal for domestic recreational purposes is accounted for under 
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firewood for recreational purposes. The domestic retail value of recreational firewood is over 

NAD2.2k/t; the value of charcoal over NAD10k/t. 

Authorities have recognised the opportunities and constraints in developing sustainable 

industries concerning the use of wood biomass in Namibia. Opportunities lie in improved 

agricultural potential, improved energy security coupled with improved air quality through the 

reduction of burning fossil fuels, new economic and technological opportunities, and scientific 

innovation in technology and market mechanisms introduced through the Kyoto Protocol, and 

more recently the Copenhagen Accord [115].  

The above mentioned positive developments seem to be constrained by the ability to develop a 

new biomass resource based industry in Namibia itself [116]; agricultural potential in Namibia 

is limited by erratic climatic conditions and depends on sustainable use of scarce water resources. 

Potential production areas are remote from economic hubs or even urban areas, requiring the 

resolve of meaningful decentralisation in Namibia. Access to broad know-how and technology 

base and innovative funding modalities confine projects to a limited size or mere one offs [39]. 

Since there is great emphasis by authorities on the utilisation of bush for income generation, job 

creation and poverty alleviation [90], their focus remains on investigating socio-ecologically 

sound management practices. These developments have added a new dimension to the 

conventional mix of bush encroachment management strategies, which previously, with the 

exception of firewood and charcoal production to augment farming income, have not considered 

biomass as an asset [109, 116]. 

In the Namibian case, the question therefore to be answered by this research is – can a benchmark 

be established to use bush for bioenergy in a sustainable manner? Subsequently the following 

needs to be established as well: What are the parameters that need to be established to build such 

benchmark? Is the Namibian socio-economic and techno-economic environment ‘right’ to 

embrace a modern bioenergy system? Sections 4.2.1 and 4.2.2 provide an analysis on how to 

establish the wood-based biomass model, which would be linked to the bioenergy roadmap as 

discussed in section 10.2 (recommendations). 
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4.1.3 Review of literature on wood-based biomass production and uses in South Africa 

South Africa is rich in various types of land cover which could potentially be utilised to produce 

bioenergy. Substantial work has taken place in classifying and quantifying the vegetation types 

of South Africa. Some of this pioneering work was started in the 1940s [117, 118] and continues 

to receive attention from South African authorities and international organisations [121, 122]. 

Data is readily available in different formats (e.g. in spreadsheets or as meta data), but may need 

some patience to gather as it is spread over various literature. Data for South African wood-based 

biomass is discussed in Chapter 5. 

South African authorities [7] consider the following biomass resources for energy production as 

commercially exploitable, though exploitation thereof is considered to remain less optimal for 

energy production, especially electricity production [119]: 

• Agricultural waste – bagasse, wood chips and cuttings from forestry operations, corn and 

wheat husks and stalks, manure 

• Energy crops, for 

o bio-ethanol from maize, corn, sugar cane 

o bio-diesel from soya beans, jatropha, palm oil, algae 

o others from switch grass, triticale. 

The focus remained on the various types of wood-based biomass as established in section 

3.1.1. Natural Grassland biomass (grassland as classified by the vegetation Table 4-2), and 

residues from agricultural operations (from crops and horticulture) were considered by this 

research initially. The sustainable quantity available from natural grassland, based on its mean 

annual increment is not quantified and no indicative research data is available so far [150]. 

Data on the specific quantities that could be available for thermo-chemical conversion, in 

particular fast pyrolysis, from residues or waste of agricultural operations concerning cash 

crops and horticulture, could not be isolated from the data presented in official statistics. The 

official statistics available present data on total production (in tonnes), and its value (in South 

African Rand), but not yield or waste/residues remaining from amount of production sold or 

used elsewhere. It is acknowledged by this research that energy crops and residues/waste from, 

e.g., the food and agricultural sector is a feasible feedstock for fast pyrolysis conversion. 

Nonetheless, sourcing and analysing data on potential energy crops and utilising wastes from 

the food and agriculture is beyond the scope of this research. The wood-based biomass 

resources having potential for fast pyrolysis conversion to energy pertain to the following 
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vegetation types in South Africa (Chapter 5): 

• Forest biomass (wood-based plant material from the various forest types); 

• Residues and waste from forest operations and wood primary and secondary processing; 

and 

• Biomass derived from eradication of invading alien plants under the “Working for Water” 

programme (wood based and where feasible, other plants) and bush-encroached areas. 

To establish the commercial exploitability of the wood-based biomass resources, the estimated 

total area under woody vegetation cover is of importance, including thickets, or areas where 

invasion from certain plant species has occurred. The total potential of wood-based biomass 

resource available for fast pyrolysis conversion is established as the mean mass and energetic 

potential on an annual basis in the presence of competing markets as indicated in section 6.3.  

In computing the energy potential of wood-based biomass, it was important to know how 

accessible these areas are for possible fast pyrolysis conversion of wood-based biomass to 

energy, whether for commercial utilisation or for community utilisation. The various land 

cover classifications available to date were published by the FAO ‘Forest Resources 

Assessment – South Africa Country Reports of 2005 and 2010 [121, 122]. Land cover 

information, consistent with the FAO’s categories and definitions are based on the work done 

by Fairbanks [120] which was subsequently published in 2000 [122]. The data published by 

the FAO [121], based on land cover in 2005, was only published in 2010. FAO [121] states 

that a complete forest and land cover inventory is on-going in South Africa and that field 

inventory research and remote sensing survey/mapping would be completed in 2012. The 

currently available data of land cover as published by authorities and FAO, is used in 

modelling bioenergy production from wood-based biomass; the data was found adequate for 

estimations of future trends. 
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Table 4-2 Land cover description of South Africa as reported in 2010 (rounded to the nearest 
ha) [121, 122, 123] 

Land Cover Type Calibrated Area (ha) in 
1995 

Calibrated Area (ha) in 
2000 

Forest  402,016 515,718 
Woodlands (in 1995 classified as forest and 
woodland) 

7,022,481 9,219,818 

Forest plantations 1,793,151 1,722,947 
Thicket, bush land, bush clumps, high fynbos 
(in 1995 classified as thicket and bush land) 

21,443,701 21,957,271 

Shrub land and low fynbos 41,581,091 42,005,260 
Cultivated land 14,776,993 12,766,493 
Degraded land 5,656,750 1,730,934 
Degraded forest and woodland (new in 2000)  1,609,933 
Degraded thicket, bush land, bush clumps, high 
fynbos (new in 2000) 

 1,164,275 

Urban or built-up land: residential, small 
holdings, woodland 

40,528 30,462 

Urban or built-up land: other 1,360,635 1,830,478 
Dongas and sheet erosion scars 186,814 640,324 
Barren rock 260,780 119,902 
Herb land 243,387 213,984 
Improved grassland 128,409 294,255 
Wetlands 582,673 1,300,241 
Water bodies 461,701 599,332 
Mines and quarries (new in 2000)  202,156 
Unimproved grassland (new in 2000)  24,030,993 
TOTAL 122,104,002 121,954,777 

 

The forestry sector is divided into three sub-sectors, depending on the type of forest resource 

being dealt with, i.e. commercial, community and conservation forestry. These sub-sectors by-

and-large directly correspond to commercial plantations (section 4.1.3.2); woodlands or 

savannah (section 4.1.4); and natural or indigenous forests (section 4.1.3.1). Natural, indigenous 

or conservation forests are protected by law and therefore not considered as possible feedstock 

for fast pyrolysis conversion. However, large quantities of invasive alien wooded plant species 

that need to be eradicated by the ‘Working for Water’ (WfW) programme grow in indigenous or 

conservation forests (section 4.1.5). Wood-based biomass from commercial plantations is limited 

due to legislative measures that restrict the planting of these mostly (and potentially invasive) 

alien tree species in South Africa. Thus, land allocated to commercial plantations is unlikely to 

be increased, and the land size for the period 1979 to 2003 remained mostly unchanged.  

This section provides as much information as possible on the current uses of the various types of 

forest biomass available in South Africa. There may, however, be data discrepancy as sources of 

information did not provide for data consistency; or data was based on estimation. Whichever 

the case may be, it was indicated as such.  
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4.1.3.1 Natural Forest Biomass Resources 

The total mapped area of natural forest (also called indigenous forest) in South Africa covers less 

than 1Mha and cannot be used for industrial purposes by law [134, 148]. The natural or 

indigenous forest areas of South Africa can mainly be found in the Western and Eastern Cape. 

Indigenous or natural forests are utilised for recreational purposes and are protected in terms of 

various legislation, notably: 

• Conservation of Agricultural Resources Act, and as amended in 2001 and its amended 

regulations [60, 170]; 

• the National Forest Act [124]; 

• the National Environmental Management Act [125,] and as amended by the National 

Environmental Management Amendment Act [126, 127, 128] (Act 8 of 2004) and its 

environmental impact assessment regulations as implemented on 1 July 2006; and 

• the National Environmental Management Biodiversity Act [129].  

Natural forests and commercial plantations occur in the same South African provinces [130]. 

This is mainly due to the climatic conditions required for production of forest types, where 

rainfall is the key driver of biomass stocks and primary production [150].  

Land ownership of natural forests in South Africa is not known directly, but can be inferred, to 

some extent, by the level of protection. It is assumed that forest patches that do not have some 

form of regulatory protection have either communal or private ownership. Almost half of all 

natural forests in South Africa are found on private property or land under communal tenure 

[134]. Ownership and status of protection of forested land is important as this determines who 

may use the resource, other than commercial use, unless infestations by alien tree-plant species 

have been identified. 

Utilisation of biomass from natural forests is not allowed for commercial purposes, these forests 

play an important socio-economic role, i.e. support in majority to the small, indigenous furniture 

industry and provides for the supply of fuelwood (charcoal and firewood) to local, mostly rural, 

communities living near these forests.   
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4.1.3.2 Wood-based biomass resources available from commercial forest plantations 

Commercial plantation forestry in South Africa started in the 19th century [131] and encompasses 

the large planted forests - established to supply raw materials to satisfy mining, construction, and 

industrial markets as well as resource supply to pulp mills, sawmills and other factories. The total 

commercial plantation area is limited politically to between 1.3 and 1.5Mha [132]. The total area 

of plantation forest is decreasing over time due to continuous land restitution (the political term 

used in South Africa for compensation of land unlawfully expropriated before 1994); non-

transferability of plantation licenses and the accompanying cumbersome licensing procedures, 

and degradation of plantations due to fire [120, 136,]. Table 4-2 indicates that more land is under 

commercial forest plantations than data obtained from Forestry South Africa [132, 133]. From 

explanations provided by the FAO [121] and Forestry South Africa [132], the discrepancy can 

be attributed to integrated woodlots, windbreaks within forest plantations and abandoned land. 

To model bioenergy potential in South Africa, the land cover data provided by Forestry South 

Africa is used; commercial forest production is based on 1.3-1.5Mha, and not on approximately 

2Mha. 

South Africa’s commercial forestry sector is well documented with data on various aspects of 

this sector captured since 1979. Available statistics lag behind by two to three years, depending 

on the data source, and are captured as fiscal years [133] spanning from March of a year to 

February of the next year. The information is readily available from Forestry South Africa [132] 

and the Department of Agriculture, Forestry and Fisheries, South Africa [134]. 

The majority of the timber plantations are in Mpumulanga (largest area) and Kwazulu-Natal (2nd 

largest area) province. Although Mpumulanga has the largest plantation area, Kwazulu-Natal 

produces the most wood. Other plantation areas are found in the Eastern Cape (3rd largest area); 

Limpopo (4th largest area); Western Cape (5th largest area) and a small amount in Gauteng 

Province. Figure 4-1 provides an overview of the total production area of commercial forestry 

for the production cycle 1979/80 to 2007/08. Of the production area, around 80% of the area is 

said to be certified under the Forest Stewardship Council (FSC) as sustainable forest production 

areas [134, 135]. The average, aggregate timber production is 15t/ha [136, 137]. 
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Figure 4-1 Total commercial forestry area (ha) developments for the production years from 
1979/80 to 2007/08 

The commercial forest produce is subsequently delivered to the saw milling industry, paper, pole 

and charcoal production (section 6.2.2.). Of interest to this research is the amount of wood chips 

or other wood-based residues that could be used for bioenergy production via fast pyrolysis; the 

total amount of production over the past 30 years is visualised in Figure 4-2. 
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Figure 4-2 Total weight (t) of wood chips production and wood-based residues in South Africa 
for the production years from 1979/80 to 2007/08 

The species grown for commercial round wood production are softwood species, i.e. various 

Pine species which are highly adapted to the South African climate, Eucalyptus grandis and few 

other adapted Eucalyptus species, Acacia mearnsii (Black Wattle), Poplar (became a negligible 

source for timber as from the mid-1990s) and other adapted hardwood alien species. These 

species were selected for their suitability as saw logs, mining timber, pulpwood, matchwood, 

poles, wood chips mainly for export and fencing materials. Thinning and pruning of these are 

also used as sources for domestic fuelwood and charcoal production (via slow pyrolysis). 

Figure 4-3 provides an overview of round wood sales from plantations vs. the intake of round 

wood by primary processors from production years 1979/80 to 2006/07 [138]. The amount that 

could be used for bioenergy production is modelled and discussed under section 6.2.2. 
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Figure 4-3 Annual round wood production at plantations and corresponding intake of round 
wood by primary processors from 1979/80 to 2008/09 [138, 139, 140, 141] 

A complete assessment of round wood sales (based either on volume or metric tonnes basis) 

since 1979/80 is carried out in terms of the total South African commercial biomass resources 

by Forestry South Africa on an annual basis and are published each August. The data has been 

consistently produced and accounts for the total commercial forest plantation area; new 

afforestation area; area converted to other uses, including for agricultural production; types of 

forest (per area) and their uses; primary conversion volumes; sales of primary product (volume 

and/or weight) and value (South African Rand and US Dollar); and the contribution of wood-

based forestry production to the overall economy. The data is also used for monitoring and 

reporting purposes to the national regulator, that is, the Department of Agriculture, Forestry and 

Fisheries. 

It is assumed that the future potential of converting wood biomass from this source to produce 

energy will not compete with existing uses. In data sets assessed, the direct main source of plant 

biomass from forest plantation is already used for slow pyrolysis processes and is labelled 

‘firewood/charcoal (wet tonnes)’; a further data set is labelled ‘intake of round wood by primary 

processors (wet tonnes) for charcoal plants’. It is assumed that wood resources labelled firewood, 

charcoal and charcoal plants are not available as resources for fast pyrolysis as discussed in this 
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research. An overview of the total biomass resource thus assigned for conversion in firewood 

and charcoal production systems is provided in Figure 4-4. The charcoal plant intake regularly 

exceeds round wood production as charcoal producers do not only source their feedstock from 

commercial forestry plantations, but also from imports, e.g. Namibia; waste and residues from 

primary wood processing industries, such as saw milling; and the ‘Working for Water’ public 

programme (section 4.1.5). 

 

Figure 4-4 Round wood production for firewood/charcoal and corresponding round wood 
intake for charcoal production from 1979/80 to 2008/09 [138] 

All other timber uses have a round wood intake which is different from the yielded primary 

product achieved. This suggests that sufficient ‘waste’ is produced for possible secondary 

conversion to energy from such biomass resources. The Forestry South Africa data set indicates 

that there is indeed biomass available from primary processing plants and is labelled under ‘sales 

of timber from primary processors (tonnes) – wood chips/mill residues’: 

• One part of this ‘waste’ is sold to the pulp and chipboard manufacturing industry 

domestically as an additional source of fibre – and if the pulping industry does not use the 

material as fibre, the primary conversion industry uses the waste as a source of energy to 

generate heat or power.  

• A second part is exported as ‘debarked wood chips’ to mainly Japan. 
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• A third part is used by the charcoal industry; the majority of the charcoal industry maintains 

that this material is not suitable for charcoal production per se but only as a source of heat 

to get the kiln process started. The latter was established by interviewing South African 

charcoal producers in the provinces of Eastern Cape, Gauteng, KwaZulu-Natal, Limpopo, 

Mpumulanga, North-West and Western Cape between 2006  and 2008. Residues of 

considerable size are sold as firewood, and are accounted for as shown in Figure 4-4. 

• A fourth part is collected by nurseries to make mulch and potting soil, mainly from residues 

containing high amounts of bark. 

• A final part is considered as waste material and consists mostly of bark material (too much 

to generate heat or power efficiently; or to make mulch) and degraded chip material. The 

exact quantities of this final ‘waste’ material available for further processing are not known 

as the data source does not provide disaggregated figures for the final destination of the 

wood chips/residues.  

What however becomes clear from the data set is that the resultant amount of wood 

chips/residues actually sold to third parties has grown ten-fold between the production years 

1979/80 and 2007/08, even considering the major decline in sales between 2005/06 and 2006/07 

(Figure 4-5). It is assumed that the difference is the additional resource available for bioenergy. 

How much of the resource is indeed available for bioenergy is modelled and discussed in section 

6.2.2. 
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Figure 4-5 Total amount of residues from saw & veneer mills, mining timber mills and pole 
manufacturing in relation to sales of Wood Chips and Residues from production 
years 1979/80 to 2008/09 [138]. 

In addition, not all biomass from timber production is suitable as round wood for commercial 

use. A considerable amount of biomass accumulates during the growing and harvesting of round 

wood.  This potential source of biomass for conversion to either energy includes: 

• Wood from pruning and thinning young stands; 

• Waste resulting from the first silvicultural thinning (coppices, unsuitable round wood); 

• Logging residues (incl. stems, undergrowth, tops or crowns, branches) from the final 

cutting areas; and  

• Low quality trees with no commercial value. 

This residue or foliage is normally expressed as a percentage of the round wood (trunk) mass.  A 

report done for the Department of Minerals and Energy, South Africa [142], suggests that this 

figure is 21% for softwood and 16% for hardwood resulting in an average of over 3Mt of forest 

biomass waste annually between 1996/97 and 2006/07. After consultations with the industry, 

forest waste as percentage of round wood mass is estimated at 10% for softwood and 5% for 
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hardwood species [135, 143, 144]. After further analysis of data availed by Forestry South Africa, 

it was found that on average the truly ‘utilisable’ forest residue available for conversion to 

bioenergy could be around 20% (wet basis) as a ratio of round wood production per annum, for 

both softwood and hardwood together. The basis of calculation is a comparison of total 

production of round wood, i.e. by area and by average annual yields achieved with the actual 

inputs used by the respective wood-based industries and output of final products. 

 

Figure 4-6 Forest waste in commercial plantations after round wood extraction [138] 

The forest waste typically consists of foliage, tree tops, smaller coppice sprouts, twigs and bark 

and makes up half of the total forest waste (i.e. some 10%) as a ratio of round wood production 

per annum, for both softwood and hardwood. Industry [135, 143, 144] is of the view that the 

forest waste can serve as a source for additional fuelwood, either for domestic or commercial 

use. However, for forest land certified under the Forest Stewardship Council (FSC) label, and 

according to the opinion of ecologists and foresters, forest waste should not be burnt or removed. 

Forest waste should not be seen as a commercially exploitable biomass resource as it may turn 

commercial forest operations unsustainable in South Africa; mainly due to unwarranted 

additional silvicultural costs [145, 146]. The latter resource is therefore assumed as not available 

for bioenergy. 
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The other half of the forest waste, i.e. half of the 20% mentioned afore, is available for conversion 

to bioenergy. The total utilisable proportion of plantation forest residue makes up some 10% of 

roundwood (trunk) mass, for both softwood and hardwood. The forest residue typically consists 

of roundwood damaged by logging operations, cut young and/or damaged trees with no 

commercial value and larger coppice sprouts. Extraction of this wood-based biomass resource is 

costly due to logistical difficulties [142] as well as geographic distribution across South Africa; 

and was thus not considered. 

There is seemingly an additional biomass resource available from the pulp and paper mill, i.e. 

bark [142]. The bark component (9% from softwood pulpwood intake; 0.5% from hardwood 

pulpwood) has been assessed as part of residues available from saw mills, pulp and paper mills 

and mining timber mills. On average, for the past 10 years, some 320kt of bark waste was 

produced by pulp and paper mills [147, 142]. The energy requirements to generate power and 

steam in the pulp and paper industry are not exactly known [142, 28, 147], but are very intensive 

[24] and estimated at 8% as a ratio of total energy demand of the South African industry sector. 

It is assumed that most of the bark produced by the pulp and paper industry is needed in-house 

with little scope for utilisation outside the pulping industry. This resource in South Africa was 

therefore not considered for fast pyrolysis. 

4.1.4 Woodlands and Bush Encroachment in South Africa 

The current status of this resource is not well documented and the roles of different service 

providers in the public and private sectors remain poorly understood [306]. Woodlands are 

considered to constitute a forest resource of major socio-economic importance in South Africa. 

It is the most accessible forest and energy resource for poor communities and possibly for other 

uses, pending further research [306].  

Woodlands collectively cover an area of between 29 and 46Mha depending on the woodland 

classification and/or ownership (Table 4-2, Table 4-3) adopted and various types of woodland 

vegetation [148, 149, 150]. Woodlands in South Africa consist of wood-based plants and 

succulents. For this research woodlands classified as predominantly consisting of bush and trees 

were considered. The area under the latter type of vegetation made up approximately 29Mha in 

2010 [121].  
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Table 4-3 Woodland Types by Ownership in South Africa [148] 

Woodland Type Ownership of Woodland Type (Mha, rounded) 
Communal Private State TOTAL 

High Altitude Acacia 0.3602 8.0027 1.8714 10.2343 
Low Altitude Acacia 0.1961 1.4789 0.6760 2.3510 
Ghaap Escarpment 0 1.8808 0.2822 2.1631 
Kuruman 0 0.6930 0.0597 0.7527 
Southern Renosterveld 0 0.0176 0.0004 0.0181 
Waterberg 0.0256 1.1094 0.0892 1.2243 
Combretum 0.6010 4.7212 2.6071 7.9293 
Soutpansberg 0.0059 0.3525 0.0708 0.4292 
Spekboom 0.0168 0.6949 0.0903 0.8019 
North Succulent Thicket 0.1304 0.3741 0.0168 0.5214 
South Succulent Thicket 0.1899 0.3351 0.0276 0.5526 
Mopane 0.0066 1.1531 1.1647 2.3244 
GRAND TOTAL 1.5326 20.8136 6.9561 29.3023 

 

The Department of Agriculture, Forestry and Fisheries has assessed the ownership of woodlands 

[134]. Land covered by woodlands is also owned and managed by the state, communities and 

private people or companies; and may fall under protected or non-protected woodland area. The 

availability of this resource for bioenergy depends on the ownership. Harvesting of biomass in 

protected woodland areas is limited to communities living inside or adjacent to these areas, and 

for residential/domestic use only [148, 151]. Harvesting of biomass resources from state-owned 

woodlands depends on the willingness of the state to avail such a resource on a commercial basis; 

the process how such access is to be gained is not pursued further by this research. Access to and 

harvesting of privately-owned woodlands can be dealt with on a commercial and direct 

contractual basis between the interested parties. 

According to a Baseline Study [148] there are scattered patches of woodlands (including thickets) 

amounting to approximately 4.7Mha within the remaining parts of South Africa. Woodlands bear 

potential for diversified utilisation of the wood resource, but extraction and industrial scale 

conversion of wood into bioenergy would be a challenge as the resource is owned by multiple 

parties and may not be accessible due to geographic limitations. It is assumed that commercial 

utilisation of the biomass from woodlands shall mainly be drawn from private, not-protected and 

actual woodland areas. An overlap in woodland types that are owned by communities or the state 

and that are protected woodland areas may occur.  

In addition, the Working for Water (WfW) Programme, a programme established by the 

amendment to the Conservation of Agricultural Resources Act (60), has assessed that large 

woodland areas are invaded by both indigenous and alien plant species with very dense cover, 
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that is a woody plant canopy cover of more than 50% as shown in Figure 4-7. The WfW 

programme has indicated the need to clear woodlands from encroachment and eradicate the 

identified alien plant species from the affected areas to, among other objectives, restore 

biodiversity and free up water resources. Woodlands are a potentially large source of biomass 

and make up close to 4% of South Africa’s land area, or four times possibly the resource available 

from commercial plantations, subject to biomass yield per hectare achievable. Woodland areas 

with more than 50% canopy cover (Figure 4-7, shaded grey), and their land classification as 

expressed in Table 4-2, are of interest to this research. The projected available wood-based 

biomass for fast pyrolysis from woodlands follows after the description of the current uses of 

this resource. For the purposes of this research, attention was given to those land areas where 

bush encroachment occurs, and were treated in a similar manner as bush encroachment treatment 

in Namibia. 

 

 
Figure 4-7 Classification of wooded vegetation types, indicating those included in the woodland 

definition adopted by Department of Agriculture, Forestry and Fisheries [148] 

Under South African legislation, it would be difficult to justify commercial utilisation without, 

for example, providing the local community with an alternative source of energy (see also further 

explanations below) [56]. Fuelwood, obtained mainly from natural woodlands, is said to be the 

primary source of energy used by households in most rural areas for cooking and heating. In 

some areas wood as a source of energy is almost completely depleted; in others it is under heavy 

pressure; or a third concern, some areas are heavily encroached by indigenous and alien plant 

species, and thereby limiting productive capacity of otherwise utilisable, especially agricultural 
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land [152] where livestock is reared in ‘High Altitude Acacia’ areas (see Table 4-3). 

Officials of the Department of Agriculture, Forestry and Fisheries [306] estimate that 60% of 

South Africa’s population still makes use of wood as a primary source of energy. Verification of 

this information, by the population censuses carried out in 1996, 2001 and 2007 respectively, 

established that only 14-20% of the population makes use of wood as a source of energy; mainly 

for cooking and heating [153, 154, 155]. This research assumes that 20%, [153, 154] of the South 

African population makes use of wood resources from woodlands as their primary source of 

energy. 

Based on the population censuses carried out in South Africa in 1996, 2001 and 2007, and 

additional research by von Maltitz and Scholes [156] residential energy needs of South Africans 

covered by wood resources may be expressed as follows [159, 157, 154]: 

• For heating purposes up to 2007 and accounting for 14,9% of the population: between 

40.9TJ and 231.5TJ, or the approximate equivalent of between 2.1 and 12.1Mt of wood. 

• For cooking purposes up to 2007 and accounting for 19,6% of the population: between 

53.9TJ and 305TJ, or the approximate equivalent of between 2.8 and 16.1Mt of wood. 

• Total annual industrial energy consumption (mainly for heat) from biomass is 238TJ, or 

the approximate equivalent of 12.5Mt of wood. 

The total amount of domestic energy from fuelwood is considerable and at least of the same 

magnitude as total biomass utilised for industrial purposes. Wood as energy source for the local 

population is obtained from living biomass, waste from commercial forestry plantations (of 

relative little importance) and deadwood collected from woodlands [157]. Figure 4-8 shows the 

current traditional supply and demand for wood as a type of energy in South Africa [40, 7, 142, 

148, 158]. 
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Figure 4-8 Energy reference system for traditional uses of wood in South Africa adapted from 
Ellgård et al. [158] 

Woodlands on average produce deadwood at a rate of 1.5-2.0% of standing biomass per annum 

[159]. Local communities do not utilise this resource completely. However, it is questionable 

whether this wood is suitable for fast pyrolysis conversion and therefore not considered in this 

research. Von Malitz and Scholes [156] assessed that there is positive production of biomass 

from woodlands of 4% of standing woody biomass per annum. 

4.1.4.1 Bush Encroachment 

According to the Conservation of Agricultural Resources Act (CARA, Act 43 of 1983) some 

indigenous tree species (mostly Acacia spp.) pose a challenge for land management in South 

Africa. Bush encroachment in South Africa is mentioned in a similar context as it is in the 

Namibian case (sections 4.1.1 and 6.1.1) in this research. Bush is a potential feedstock to deliver 

bioenergy under the auspices of the South African Biofuels Strategy [7] and possible other uses. 

As under Namibian considerations, it is not the intension to explain the causes or dynamics of 

bush encroachment, but rather to establish the potential and total annual amount of biomass that 

may be available for conversion by fast pyrolysis.  

Bush encroachment is said to affect the agricultural productivity and biodiversity of 10-20Mha 

of South Africa. [160, 161]. The 1996 vegetation map of Low and Rebelo [162] suggests that a 

total area of 3.4% or 41.5Mha of South Africa is subject to bush encroachment. The area includes 
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bush-encroached patches and land invaded by alien plant species (some 10Mha); the proportions 

were however not scientifically assessed in further detail. The areas most affected lie in the 

Eastern Cape, Kwazulu-Natal, Limpopo, Mpumulanga, Northwest and Western Cape Provinces 

[117]. As is the concern in the Namibian case, the environmental threat posed by bush 

encroachment lies in its potential to induce land degradation, notably desertification over the 

affected parts of South Africa [163]. Ward [160] has recorded and summarised the extensive 

research done on bush encroachment dynamics in Namibia and South Africa since 1856. 

According to Ward [160], von Maltitz et al [156], Hoffmann [164] Palmer [165] and Watson 

[166], bush encroachment is an integral part of woodland dynamics, but if not controlled leads 

to loss of biodiversity. 

Although the dynamics of bush encroached areas have been studied, data on physical inventory 

of these areas of South Africa is not readily available nor accessible. A number of indicative data 

was found based on satellite imagery, aerial photography, remote sensing and geo-referenced 

information systems [165, 167, 164, 168, 169 152]. Research using satellite imagery and aerial 

photographs has enabled the documentation of the rate of encroachment in many of the affected 

areas. The biomass quantities available from bush-encroached areas are expressed as “% of 

woody plant canopy cover” (Figure 4-7) or are indicated as “leaf area index” and should hence 

provide information about the size of the infested areas, their location, and to a limited extent 

their species distribution. However, to date, no substantial, all-inclusive evaluation has been 

undertaken to confirm and align the information obtained through satellite imagery and geo-

referencing to actual stand- and/or tree-level inventory. Time series analysis established the 

annual growth or the degradation of land cover; the data is used in Chapter 5 and 6.  

4.1.5 Biomass from alien invasive plants 

South Africa has a long history of problem plants, which have been variably called ‘weeds’, ‘pest 

plants’, ‘plant invaders’, ‘invasive plants’ or ‘naturalised exotics or aliens’ amongst others. The 

first recorded control campaign against an alien plant species in South Africa was in 1860 [149]. 

The Conservation of Agricultural Resources Act (CARA, Act 43 of 1983) and its regulations 

declared about 50 species of “weeds” or “invader plants” in 1984. Also based on a comprehensive 

listing of weeds and invasive plants done in 1986, the Ministry of Agriculture implemented an 

amendment to the regulations of the CARA of 1983 the [170, 149] in 2001.  The amendment to 

the regulations contains a comprehensive list of species that are declared weeds and invader 

plants which need control and/or elimination as per three categories, namely: 
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• Category 1 species (e.g. Triffid Weed, Lantana) are generally the ‘worst offenders’. As 

declared weeds, they may not occur on any land or on any inland water surface throughout 

South Africa. This category of plants should be eradicated completely. 

Category 2 species (such as pine, wattle, poplar and gum) are also problematic but are 

more commonly grown for commercial purposes (section 4.1.3.2) or any viable and 

beneficial function, such as for woodlots, fire belts, building material, animal fodder and 

soil stabilisation. Where these species are to be planted, licensing is required and can only 

be undertaken in demarcated areas. An example is a registered and licensed timber 

plantation. The species are regarded as weeds outside of these demarcated areas, and 

landowners are required to take steps to control the species where they occur on their 

properties, for example, in the case of “wattle jungles”, i.e. Acacia mearnsii (see also 

section 7.1.2.2).  

• Category 3 plants (such as Syringas and Morning Glory) are generally ornamental plants, 

which may be retained, but no new planting or trade or propagating of these plants is 

permitted. 

In 1995 the Government of the Republic of South Africa embarked on the ‘Working for Water’ 

Programme (WfW) to control invasive alien plants [152]. The WfW Programme proposed a 20-

year clearing strategy at 750kha to be cleared per annum and approximately ZAR600M (million 

South African Rand) to be spent on clearing per year, excluding the impact of new invasion by 

alien plants. The Programme estimated that, in total, over 10Mha of invaded land in needs to be 

cleared. The cost per hectare varies depending on a number of factors such as the location, species 

and the density. WfW seeks to optimise its investment by extracting and utilising invading alien 

plant biomass resulting from clearing operations.  

The assessed inventory of invasive plant species is limited to specific locations of the Eastern 

and Western Cape in natural forests and protected land. The inventory of alien wood invader 

plants, notably alien Acacia species, like Acacia mearnsii, is measured against the total estimated 

infestation in the Eastern and Western Cape and is as provided in Table 4-4 [304].  
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Table 4-4 Estimated total area of infestation and the corresponding inventory of wood biomass 
for assessed areas which are infested with alien wood species [304] 

 Estimated 
total 

infestation 
(Mha) 
1996/7 

Assessed 
area 

infested 
(Mha) 
2004 

Foliage 
(Mt) 

Branches 
<25 mm 
diameter 

(Mt) 

Wood 25-
50 mm 

diameter 
(Mt) 

Wood >50 
mm 

diameter 
(Mt) 

Total 
potential 
Biomass 

available as 
feedstock 

(Mt) 
Eastern 
Cape 

0.1161 0.0767 1.2253 1.7862 2.3889 5.7574 11.1577 

Western 
Cape 

3.7274 0.0265 0.6914 1.1585 0.8878 0.9343 3.6720 

Total 3.8935 0.1033 1.9167 2.9448 3.2766 6.6917 14.8298 

The emphasis of the WfW programme lies in the elimination and eradication of Category 1 and 

2 alien invasive plants where these are not wanted [171].Category 1 and 2 alien invasive plants 

(section 4.1.3.2) were focussed on, however, also limited to wood-based alien invasive plants 

(like Acacia mearnsii). Various aspects of work carried out under WfW were reviewed with the 

aim to use the cleared wood-based biomass to investigate which would have the highest potential 

as feedstock to produce bioenergy in South Africa. The WfW Programme achieved to clear and 

do follow-up clearing as summarised in Figure 4-9 until the 2007/08 financial year. After 

2007/08 annual reports on the clearing of alien tree species no longer contained such detail. 

 

Figure 4-9 Areas (ha) invaded by alien plants which were cleared by Working for Water 
Programme in all nine provinces of South Africa, between 1995/96 and 2007/08 [176] 
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Up to 2003/04, the WfW programme had launched more than 300 projects concerned with 

clearing, harvesting and extraction of alien species from the various sites. As part of the WfW 

programme, wood processing industries were started. Seven “pilot projects” on a cottage industry 

basis in South Africa included the production of firewood and charcoal, fencing and other 

construction materials, furniture, and artefacts [176, 172, 173]. 

Three industrial projects were considered in 2001 which were the utilisation of the stems and 

heavy branches for the production of wood chips and charcoal (85% of harvested material), and 

the utilisation of leaves and berries for the production of organic fertiliser (15% of the harvested 

material) [174, 175]. However, it seems that the objectives of the WfW are too broad and that 

funds are lacking to consolidate the research and development work in terms of bioenergy where 

extracted alien invasive plant biomass is the feedstock [176, 177, 178]. 

Particularly, WfW has identified charcoal making as a viable option to create reasonable returns. 

However, WfW programme managers have cautioned that pollution and cost intensive industries 

would not be tolerated. Black Gold Forest Products and Zozithi Charcoal Project were the only 

two projects for which information was documented under the WfW programme. The projects 

utilised wood-based feedstock from alien wood species clearing operations to produce large 

quantities of charcoal, mainly for the domestic market. Black Gold Forest Products declared 

insolvency in 2007; whether Zozithi is still operational is uncertain. 

4.1.6 Authorisation requirements to utilise biomass resources and establish bioenergy 
generation plants 

The National Environmental Management Act (NEMA) [127] as amended [179, 286] presents 

environmental impact assessment guidelines for renewable energy projects as summarised in 

Table 4-5. Compliance to the NEMA attracts considerable costs which need to be taken into 

account when modelling bioenergy generation (section 5.4.1). 

 

 

 

 

 



 
94 

Table 4-5 Renewable Energy Authorisation Requirements [179] 

Legislation and/or guideline Aim of legislative measure 

The Constitution of the Republic of South Africa, 
1996 (Act 108 of 1996) 

 

• Prevent pollution & ecological degradation 
• Promote conservation 
• Secure ecological sustainable development 

National Environmental Management Act (Act 107 
of 1998); included are the following ‘sub’-acts: 

• Waste Act (Act 59 of 2008); and Waste 
Amendment Act (Act 26 0f 2014; Government 
Gazette No. 37714) 

• National Environmental Management Laws 
Amendment Act (Act 25 of 2014; Government 
Gazette No. 37713) 

• Air Quality Act (Act 39 of 2004) 
• Biodiversity Act (Act 10 of 2004) 
• Protected Areas Act (Act 57 of 2003) 
• Occupational Health and Safety Act (Act 85 of 

1993) 

After compliance to all requirements, provide 
authorisation to commence industrial activity, 
informed by: 

• Integration of the principles of environmental 
management 

• Principles of safeguarding biodiversity, air 
quality and emissions control 

• Effective waste management 
• Identification, prediction & evaluation of actual 

/ potential impact on the environment 
• Potential effects are duly considered before 

actions are taken 
• Adequate & appropriate public participation 
• General compliance & enforcement. 

The National Water Act (Act 73 of 1998) • Issuing of water use licences in relation to 
extraction, storing, specific use of fresh water 
and disposed of contaminated water, including 
necessary consultative processes prior to 
licencing 

• General compliance & enforcement. 

Water Services Act (Act 108 of 1997) • Regulating the right of access to basic water 
supply and basic sanitation, and related matters 
at municipal level 

• General compliance & enforcement. 

Hazardous Substances Act (Act 15 of 1973) • Control of substances which may cause injury, 
ill-health or death 

• Defining of substances as hazardous in relation 
to degree of danger, prohibition/ control of 
trade, manufacture, use, operation, application 
and disposal 

• Provide for minimum requirements for 
handling, classification and disposal hazardous 
substances and/or waste 

• General compliance & enforcement. 

Physical Planning Act (Act 125 of 1999) • Promotes the structured physical development 
of South Africa at regional level 

Development Facilitation Act (Act 67 of 1995) • Provide for general principles governing land 
development throughout the country, at national 
level 

Electricity Regulation 2006 (No. 4 of 2006), as 
amended by ERAA (Act 47 of 1999, as amended in 
2007) 

• Provide for a national regulatory framework for 
electricity supply industry, and makes the 
National Energy Regulator of SA the overseer 
and enforcer of the framework 

• Provides for minimum requirements for 
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Legislation and/or guideline Aim of legislative measure 

registration & licencing of generation, 
transmission, reticulation, distribution, trade (or 
import/export) of electricity. 

• General compliance & enforcement. 

Municipal Systems Act (Act 32 of 2000) • Development at local level, including e.g. 
Integrated Development Plans (IDPs) and tariff 
setting 

• Regulates municipal service delivery and 
mechanisms for municipal service delivery 

• General compliance & enforcement. 

Conservation of Agricultural Resources Act (No. 43 
of 1983) 

• Conserve agricultural resources, including soil, 
water and vegetation, but excluding weeds and 
invader plants 

• General compliance & enforcement. 

Mineral and Petroleum Resource Development Act 
(No. 28 of 2002) 

(has only indirect relevance to fast pyrolysis 
operations) 

• Provide for environmental management in 
prospecting and mining operations, but excludes 
provisions for extraction of coal, bituminous 
shale or other stratified deposits 

• Focus is on “petroleum” in any form occurring 
in the earth’s crust 

• Provide for equitable access to and sustainable 
development of such resources 

• General compliance & enforcement 

Road Traffic Management Corporation Act (No. 20 
of 1999), and  

 

National Roads Act (No. 93 of 1996) 

(has only indirect relevance to fast pyrolysis 
operations, but directly to logistics concerned with 
such operation) 

• Provide for cooperative & coordinated strategic 
planning, regulation, facilitation & law 
enforcement in respect to road traffic, and 
includes e.g. 

• Protection of road infrastructure & environment 
• Ensuring overall quality of road traffic service 

provision (security, safety, order, discipline, 
mobility) 

• General compliance & enforcement. 
 

Spatial Planning and Land Use Management Bill 
(SPLUMB) [B14 – 2012] 

(the Bill is not yet promulgated into an Act) 

• To confirm & regulate the role of municipalities 
in land-use planning and management 

• To ensure the system of land-use planning and 
management promotes socio-economic 
inclusion 

• Provide for sustainable & efficient use of land. 

 

 

 

 



 
96 

4.2 REVIEW OF BIOMASS RESOURCE MODELS  

4.2.1 The Policy Analysis System (POLYSYS) 

The Policy Analysis System (POLYSYS) modelling framework was developed to simulate 

changes in policy, economic or resource conditions and estimate the resulting impacts for the 

U.S. agricultural sector [180, 181, 182]. POLYSYS is structured as a system of interdependent 

modules simulating crop supply for 305 production regions; crop demand and prices; livestock 

supply and demand; and income in the US agricultural sector. The POLYSYS modelling 

framework can be expanded to include analytical capabilities to endogenously consider (a) a 

wide variety of region-specific crop rotations and management practices; (b) environmental 

impacts; (c) production of energy crops characterised by multi-year production cycles; (d) crop 

derivative products such as fats and oils; and community economic impacts.  

4.2.1.1 C1. Link to economic theory and national policy indicators 

POLYSYS anchors its analyses to a published baseline of projections based on official data 

published by US authorities. The projection periods span 5-10 years. The economic theory 

underlying the POLYSYS is not clear, however is assumed to be a sector model, focussed on 

agriculture. POLYSYS is based on a number of simulations which provide projections, both 

baseline and best case/worst case projections on a number of variables relating to the 

agricultural sector. 

In the Namibian context, neither baseline data nor baseline projections exist. This means that 

baseline data needed to be established by this research for a wood-based biomass resource model. 

The baseline data was used to establish baseline projections (section 4.2.1.5). In the South 

African context, baseline data exists though at an aggregated level (section 4.1.3). However, no 

baseline projections exist. 

4.2.1.2 C2. Spatial considerations 

At its core, POLYSYS is structured as a system of interdependent modules simulating crop 

supply for 305 agricultural production regions. The data collected in the respective modules 

include national crop demand and prices, national livestock supply and demand, and 

agricultural income. Other modules are available within the POLYSYS modelling framework 

to expand its analytical capabilities. The POLYSYS provides lessons relating to the following: 

• The biomass resources available in Namibia and South Africa need to be considered 
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independently and according to the geographical and political regions respectively. 

• For each, Namibia and South Africa respectively, the type and quantity of wood-based 

biomass resource must be determined separately. 

• The economic impact of utilisation of wood-based biomass resources available to certain 

communities need to be considered in both cases. The total available wood-based biomass 

resources available to fast pyrolysis will reduce by the amount of resources which are used 

currently, and is likely to be used in future by a community depending on such resource. 

4.2.1.3 C3. Dynamic features 

In the Namibian context, the model as proposed by this research for wood-based biomass 

resources may not be the framework model itself. The main reason is that POLYSYS is a policy 

analysis tool. However, there is a great lack of policy governing biomass resource production 

and use in general in Namibia. In the South African case, policies governing biomass resource 

production and use exist (section 4.1.3), but the scope of this research is on production of wood-

based biomass resources and the use thereof for fast pyrolysis only. The impact of use of wood-

based biomass for fast pyrolysis and ultimately bioenergy is seemingly very small; no major 

policy impact is expected in Namibia and/or South Africa; therefore limiting the usefulness of 

the principles of POLYSYS for this research. 

4.2.1.4 C4. Link to other sectors and land use issues 

POLYSYS focuses on the variables which influence the agricultural production system in the 

USA. The variables may also originate from sectors other than the agricultural sector. In the 

Namibian and South African context, the linkage to other sectors beyond agriculture is important. 

The principles underlying the POLYSYS framework model are useful to assist with establishing 

the relationship between the agricultural sector (encompassing biomass production and use) and 

other sectors, like; supply to the agricultural sector, markets for agricultural products (in this case 

including products from fast pyrolysis), and the energy sector. The POLYSYS model can be 

adopted and adapted to encompass the sectoral relationships in the Namibian and South African 

case. 
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4.2.1.5 C5. Model and data availability and model adjustments needed 

POLYSYS is a US data and policy based model and as such not useable in the Namibian or 

South African situation. The model structure is also not adjustable to that of the Namibian and 

South African agricultural and/or energy sector. However, the principal scenarios and the type 

of data underlying the POLYSYS model are of importance. Using the principles of POLYSYS 

and the baseline as a starting point, can introduce a wide variety of exogenous shocks and 

simulate the resulting impacts for biomass supply and demand and agricultural income 

(section 2.6).  

The data and principles of the POLYSYS model to be used in the Namibian context, would 

include encroachment bush only. In the Namibian context, the relationship between bush 

encroachment and livestock production systems and output needed investigation [265, 88, 102, 

98, 116] (section 6.1). Furthermore, economic impact for community development is very 

important in the Namibian case. 

The data and principles of the POLYSYS model used in the South African context include the 

following:  

• Biomass endogenously considered in the conceptual model (section 2.6) include 

commercial forest waste and residues, residues and waste from timber mechanical 

processing, natural woodland, bush encroachment, alien plant species control. Agricultural 

production residues were not considered for this research as the available data is too 

aggregated and their source destination is uncertain.  

• To model biomass commodities in South Africa, the conceptual model simulates the 

impacts of changes from the baseline upon commercial timber supply and demand 

variables including planted and harvested land, yield, production, exports, costs of 

production, current demand, government programme outlays, and net realised income. The 

model simulates supply and demand for each timber commodity, and is dependent on its 

geographical region. 

The results of wood-based biomass data and resource modelling and the resulting potential of 

biomass resources use in Namibia and South Africa are presented in Chapter 5 and 6 

respectively. 
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4.2.2 The conceptual model of vegetation dynamics in semiarid Highland savannah of 
Namibia, with particular reference to bush thickening by Acacia mellifera 

The conceptual model of vegetation dynamics (abbreviated as CMVD) proposes a state-and-

transition model for vegetation dynamics in semiarid Highland Savannah of Namibia [301], 

with particular reference to bush thickening by Acacia mellifera, i.e. only one type of wood-

based plant species which has been identified as indigenously invasive in a relatively small 

part of Namibia.  

4.2.2.1 C1. Link to economic theory and national policy 

Although a model with its origin in Namibia, the CMVD does not link economic theory and 

national policy. The CMVD is a conceptual model built on states of bush and grass interactions. 

The CMVD conceptualises and describes the dynamics, mainly influenced by climatic events, of 

how a predominantly ‘bush state’ can transit to become a predominantly ‘grass state’; and vice 

versa. The CMVD calls for models with the aim to describe vegetation dynamics by considering 

theory of maintaining an ecological balance, not an economic equilibrium. However, better 

understanding the intrinsic interaction between ecology and economic output would assist 

farmers in particular. With better management of the land and its biomass resources, livestock 

and human productivity, farmers could essentially grow economic output, yet maintain 

ecological sustainability (Table 4-1). This means, controlling bush encroachment, maintaining 

appropriate stocking rates of livestock, recognising the importance of climatic events, and taking 

potential management actions, induces and/or sustains a “stable vegetation state”. A stable 

vegetation state would be where perennial grasses dominate the landscape, ‘decorated’ with 

indigenous wooded plants. An unstable vegetation state would constitute land degradation, e.g. 

by bush encroachment or desertification induced by prolonged droughts. 

4.2.2.2 C2. Spatial considerations 

The CMVD considers only one bush encroachment species, i.e. Acacia mellifera spp. detines 

and is limited to the Highland Savannah of Namibia. The research underlying the CMVD is 

limited to an area of approximately 20kha, which is very small in comparison to the area covered 

by bush encroachment (approximately 29 Mha) and the types of species declared as bush 

encroachers in Namibia. 

The CMVD is useful to describe bush encroachment growth and inventory dynamics in Namibia 

(section 6.1) and South Africa (section 6.2.3). Beyond that, the CMVD was not used.  
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4.3 REVIEW OF LITERATURE ON FAST AND SLOW PYROLYSIS TECHNOLOGY 
IN NAMIBIA AND SOUTH AFRICA 

The objective of this section is to review literature on thermo-chemical conversion technology, 

and in particular wood-based biomass slow pyrolysis. The emphasis is on technology that is 

or was available in Namibia and South Africa because it is important to understand whether it 

is possible to operate the more advanced fast pyrolysis technologies in Namibia and/or South 

Africa.  

Apart from the AGODA production system [191] which was developed in Namibia in the 

1980s, technological advancement with regard to Namibian fast or slow pyrolysis technology 

has not taken place; in Namibia the “Namibian Bush Drum Kiln” is used by and large (Table 

4-6) since approximately 2000. Numerous slow pyrolysis systems were developed in South 

Africa since the 1980s, some of which are still in use. Technological development for slow 

pyrolysis systems in Namibia and South Africa coincided until 1990. In addition and where 

relevant, further research and development of secondary production and use of the primary 

products obtained from operating fast (if applicable) and slow pyrolysis systems will be 

discussed. With the abolishment of the apartheid regime in South Africa, research and 

development work in the field of biomass conversion was more or less suspended in 1994 

[318]; more important socio-economic development issues like poverty alleviation and job 

creation had to be addressed. This e.g. in part explains why data on physical and chemical 

properties of Southern African wood-based biomass was ceased to be published. A similar 

situation was experienced in Namibia for the period 1990 until the launch of the National 

Commission for Research, Science and Technology in 2013 [183]. 

For the purposes of augmenting literature review on technology in this research several study 

tours were undertaken to Namibia and South Africa in the period 2003 to 2008 respectively; 

efforts were made to find out whether fast pyrolysis systems exist in Namibia and South Africa. 

4.3.1 Review of literature on fast pyrolysis conversion technology  

An entrepreneur, a chemical engineer by profession, attempted to pilot a self-designed entrained 

flow fast pyrolysis system in South Africa. The idea was to pyrolyse saw dust and wood chips 

which were a by-product of sawmilling industries in the Limpopo Province, South Africa [184]. 

The pilot system failed. As explained by the entrepreneur [184], seemingly due to too high 

moisture content (above 25wt.%) of the feedstock which exerted extreme high pressure on the 

system, subsequently causing the reactor to explode. The project was supported by the provincial 
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government and in total cost ZAR0.3M in 2004/05. A second attempt to set up a fast pyrolysis 

system was not made [185]. 

A South African company, based in Johannesburg [28], is engaged in producing fluidised bed 

fast pyrolysis plants, which are exported to European based companies involved in fast pyrolysis 

conversion for energy production. The design and technology was patented by South Africans. 

However, the technology itself is not used nationally. 

Kinetics and thermal decomposition mechanisms for the fast pyrolysis of plant biomass and its 

constituents have been extensively studied [66, 186, 187,]. Few studies have focused on in situ 

upgrading of bio-oils to generate chemicals [188, 189]. However, the latter subjects will be 

pursued further in this research (Chapter 7). 

4.3.2 Review of literature on slow pyrolysis conversion technology 

Industrial charcoal-making based on slow pyrolysis has a comparatively short history dating 

back about 150 years [64, 63]. Its principles may be outlined as follows: 

• Relatively high investment costs 

• Intensive use of labour saving equipment and devices 

• Efficient recovery of liquid and/or gaseous co-products for captive and commercial use 

• Wide range of raw material usage, including forestry, agricultural and municipal waste 

• Such undertakings necessarily involve prior feasibility studies, qualified plant design and 

organisation of logistics (norms, standards/quality of products; harvesting, storage and 

transportation). 

Several live examples of slow pyrolysis plants (photographs below) which use wood biomass or 

as feedstock are still operational in several industrialised and emerging economies. These include 

equipment which is used among the following companies, globally: 

• Germany – Chemviron Carbon GmbH, now known as PROFAGUS uses the Reichert 

Continuous Retort System; recovery of wood spirit, liquid smoke, lump charcoal and 

activated carbon; feedstock size optimally at ca. 5 cm x 5 cm x 25 cm; 

• Latvia – e.g. Vertical & interchangeable stationary retorts developed by Latvia State 

Institute of Wood Chemistry [190]; lump charcoal and heat recovery; feedstock size from 

5 cm x 5 cm x 25 cm to up to 15 cm x 15 x cm x 2400 cm; 
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• Belgium, USA and Canada – e.g. Nichols Herreshoff Carboniser; recovery of charcoal 

granulate, steam production and energy recovery; feedstock size preferably smaller than 

2,5 cm x 2,5 cm x 10 cm; 

• South Africa – e.g. AGODA continuous retort system – inactive [191], CG2000 retort 

system [192, 193], beehive kilns [73] made of masonry; Armco Robson [194, 195] kilns 

made of steel; recovery mainly of lump charcoal; heat and pyrolysis liquids recovery only 

with AGODA process; feedstock size from 5 cm x 5 cm x 25 cm to up to 15 cm x 15 x cm 

x 2400 cm. The Nichols Herreshoff pyrolyser was used by Charka (Pty) Ltd [196] in Piet 

Retief, South Africa until approximately in 2000. 

 

The AGODA and CG2000 retort processes have possibilities for automation and heat and energy 

recovery possibilities. The South African industrial type kiln processes are feedstock intensive 

with conversion ratios of between 10 to 30% as well as the emission of 80 to 90wt% of feedstock 

as smoke-like wood gases to the atmosphere. No filter systems are available in the processes and 

therefore, these systems cannot be considered environmentally friendly. This was indicated as a 

problem in the assessments done for the initial Working for Water Programme in Mpumulanga 

province in 2002 [197]. 

For this research, extensive visits to various producers of charcoal in Namibia and South Africa 

were undertaken. The aim of the visits was to establish the status of pyrolysis technologies and 

deployment. Also, the visits were used to investigate whether a potential exists to deploy fast 

pyrolysis technologies in the charcoal manufacturing sector or whether companies and/or persons 

could be identified who are interested in using improved pyrolysis technologies. 

Table 4-6 is a result of the interviews and investigations conducted where a certain technology 

is used in Namibia and South Africa. A thorough desktop study to this end was not possible as 

producers of charcoal were not prepared to commit to information requested via telephonic 

discussion or written requests (electronic mail or via post mail). The investigations of various 

processes were conducted on a regular and follow-up type of basis between 2001 and 2007. 

Table 4-6 shows the various slow pyrolysis processes as employed industrially. Most of these 

processes are still in operation; where a process is dormant or was suspended, this is indicated in 

the Table. 
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Table 4-6 Summary and Status of Slow Pyrolysis Systems developed and used in Namibia and South Africa [own investigations; 234, 190, 191, 193, 

194, 195, 196, 198, 198, 199, 200, 201, 202, 203, 204, 205, 206, 308, 198, 218, 221, 207, 207] 

Type of Apparatus Conversion 
factor (wet 
wood to 
charcoal) 

Reten-
tion 
time 

Equip-
ment 
sizes 
operated 

Feedstock 
type and 
size 

Co- 
Product 
Recovery 

Quality of 
Product 

Product 
Consis-
tency 

Reli-
ability 

Maintenance 
requirements 

Investment 
Costs 

Earth Mould Kiln 
(various African 
countries, stopped being 
used in South Africa) 

11:1 72 
hours 

- Wood 
pieces 

None Poor Poor - - Very low 

Namibian Bush Drum 
Kiln 

6-11:1 24 
hours 

1.36 m³ Wood 
pieces 

None Adequate Adequate - Very low Very low 

Brazilian Beehive Kiln 
(South Africa) 

6-7:1 1 week 70 m3 Wood 
poles 

None Good Adequate Good Low Medium to 
low 

Armco Robson Kiln  
(South Africa, 
Mozambique) 

6-7:1 60-70 
hours 

±27 m³ Wood 
poles 

None Good Adequate Medium Low High  

VMR Box Batch Retort 
(Netherlands, stopped 
being used in Namibia 
and South Africa in the 
1980s) 

3-4:1 6-12 
hours 

15 m³ Wood 
pieces 

Heat 
recovery 

Medium Medium Medium High High 

AGODA Continuous 
Retort ( stopped being 
used in Namibia and 
South Africa in mid-
2000s) 

3-4:1 0,3 th-1 ±25 m³ Wood 
pieces or 

chips 

Heat 
recovery, 
pyroligne

ous 
liquids 

High High High Medium; 
approx. 8 yrs 

life time 

Medium  

Nichols Herreshoff 
Carboniser (USA, 
Canada, Germany, 
Belgium, stopped being 

4:1 1-4 th-1 ±100 m³ Wood 
chips 

Heat 
recovery 

High High High Very high Very high  
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Type of Apparatus Conversion 
factor (wet 
wood to 
charcoal) 

Reten-
tion 
time 

Equip-
ment 
sizes 
operated 

Feedstock 
type and 
size 

Co- 
Product 
Recovery 

Quality of 
Product 

Product 
Consis-
tency 

Reli-
ability 

Maintenance 
requirements 

Investment 
Costs 

used South Africa) 

Constantine Batch Retort 
(operations stopped in 
South Africa in 1990s) 

3-4:1 6-12 
hours 

15 m3 Debarked 
Wood 
chips 

Heat 
recovery  

Very high Very high Not 
known 

Not known Very high 

Gaylard Batch Retort 
(operations stopped in 
Namibia in late 1980s) 

3-4:1 6-12 
hours 

±25 m³ Small 
particles, 

wood chips 
or wood 
pieces 

Heat 
recovery 

Very high Very high High Very high High 

Tilting Batch Retort 
(unknown if still 
operational) 

4:1 6-12 
hours 

±15 m3 Wood 
pieces 

Heat 
recovery  

Very high Very high Not 
known 

Not known High 

PYRO-7 kiln (only a 
prototype is available, 
but not operational) 

3-4:1  ±350kg/h Debarked 
wood chips 

None High Not known Not 
known 

Not known  Not known 

CG2000 continuous 
retort (operational in 
South Africa; operations 
planned for Namibia) 

3-4:1 6-12 
hours 

±25 m³ Wood 
poles or 
pieces 

Heat 
recovery 

Very high Very high Very high High High 
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Photograph 4-1 AGODA Continuous Slow Pyrolysis System at Piet Retief, South Africa; 
visited December 2006 

 
Photograph 4-2 (left) CG 2000 Batch Retort System; (right) charring pot, which is 

inserted into the heat exchanger of the retort system, left. Carbo Group, 
Greytown, South Africa; visited December 2006  
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Photograph 4-3 Masonry Beehive Kiln in operation near Pietermaritzburg, South 

Africa; Operated by E&C Charcoal; visited December 2006. 
 

 
Photograph 4-4 Armco Robson Steel Kiln in operation near Pietermaritzburg, South 

Africa; Operated by E&C Charcoal. Two kilns are connected to each 
other, and share one exhaust system; visited December 2006. 
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Photograph 4-5 Namibian ‘Charcoal Drum’ Kiln in use; this system is the only 
operational charcoal manufacturing equipment still in use in Namibia. 
Photo taken near Grootfontein, Namibia; August 2014 

 

Photograph 4-6 Namibian ‘Charcoal Drum’ Kiln being discharged after charcoal is 
totally cooled. Jumbo Charcoal (Pty) Ltd. Okahandja, Namibia; visited 
April 2007 
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4.4 REVIEW OF BIOMASS THERMO-CHEMICAL CONVERSION MODELS 

Many models to describe thermo-chemical conversion of biomass resources were found, but 

after preliminary assessment only two models were found to be of particular interest to this 

research which are discussed in more detail below. The two models are; Bioenergy 

Assessment Model (BEAM) and Homer/SABRE model. The Namibian-Finnish cooperation 

project “Energy Policy, Regulatory Framework and Energy Future of Namibia” [58] 

considered an energy system model for Namibia; however the project did not consider 

biomass at all as a source of energy in the model. It is difficult to assess the usefulness of the 

model for this research as in addition, the model is for the use by authorities in a policy 

environment only. 

Another ‘model’ was found to be applicable, describes an approach that establishes factors 

influencing the effectiveness, reliability and scalability of biomass-to-energy conversion 

projects. The latter being the “black box” approach [208] to project evaluation and risk 

assessment.  

4.4.1 The Bioenergy Assessment Model (BEAM) 

The Bioenergy Assessment Model (BEAM) is a comprehensive bioenergy model established 

by an IEA Bioenergy Agreement Task in 1998 [209, 210]. The model consists of a collection 

of spreadsheets, called modules. Each module models the cost and performance of a discrete 

part of an integrated bioenergy system. A user defines a basic bioenergy system for evaluation 

by selecting a feedstock, the required product and a conversion route. Once defined, BEAM 

should calculate technical and economic parameters for the system at a specific capacity based 

on cost and performance characteristics typical for the feedstock and technologies used. This 

“generic system” can normally be accepted as the user can adapt the basic system to more 

specific cases by changing variables as required.  

4.4.1.1 C1. Link to economic theory and national policy indicators 

BEAM is an integrated model that takes account of economic theory in terms of its costing 

approach. The costing approach is integrated into each module. Policy indicators do not form 

part of BEAM. The lack of policy analysis possibilities in BEAM is not a draw-back as BEAM 

strictly focuses on techno-economic analysis of thermo-chemical conversion. 
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4.4.1.2 C2. Spatial considerations 

BEAM is limited to conversion of European and North American feedstocks and costing 

approach. As the modules of BEAM make provision for costs associated with feedstock to be 

transported from one location to another where thermo-chemical conversion would take place, 

spatial considerations are not needed. BEAM can embrace that feedstocks originate from 

different locations to one thermo-chemical conversion plant. Bioenergy cost assessments end 

where a pyrolysis product is produced and stored prior to market delivery. The latter principle 

is also embraced by this research. 

4.4.1.3 C4. Link to other sectors and land use issues  

The principles of BEAM may be of use to model an integrated bioenergy system as proposed 

by the conceptual framework to ensure appropriateness of selected technology and are 

discussed in Chapter 8. 

4.4.1.4 C5. Model and data availability and model adjustments needed. 

This research embraces the approach of BEAM without necessarily using the module for 

explicit calculations – these would have to be done on a case-by-case basis. 

The underlying principle of BEAM is useful to this research, especially as BEAM is built on 

spreadsheet modules. However, BEAM as such cannot be used by this research. The modules 

on which BEAM is built need adjustments (section 4.4.1.4.1). This is described below and 

discussed in more detail in Chapters 5, 6, 7 and 8. The results of the modelling process are 

presented in Chapter 9. The model adjustments are required include the modules; feed 

production; feed pre-treatment and feed conversion. 

4.4.1.4.1 Adjustments to the feed production module 

BEAM’s feed production module covers the cost and performance of feedstock production 

and delivery to the feed processing plant where the energy product will be made. The 

downstream limit of the feed production module is the arrival of the raw biomass at the feed 

processing plant, immediately before unloading. 

BEAM’s feed production module is based on biomass originating from Europe or North 

America. Wood-based biomass species from Southern Africa are not considered. The costing 

for Namibian and South African feedstock need adjustments (Chapter 8). 
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In the Namibian case, feed only pertains to encroachment bush. A number of factors may 

influence especially the cost of the feedstock, notably harvesting methods and transport. In 

the South African case, feed would include commercial forestry residues, wood processing 

industry waste and/or woody biomass obtained from bush encroachment and invasive alien 

plant species. The whole tree approach for woody biomass from encroachment bush and 

wood-based alien plant species control is used.  

The feed production module of the bioenergy model of this research factored the adjustments 

into the module (Chapter 8).  

4.4.1.4.2 Adjustments to the feed pre-treatment module 

BEAM covers the reception, storage, handling and pre-treatment of the delivered feedstock 

so that it is supplied to the specified conversion technology in a suitable form. The downstream 

limit of this module is immediately before the prepared feedstock enters the reactor feeding 

mechanism of the specified conversion technology. 

As BEAM is based on feedstock from Europe and North America, the pre-treatment costs for 

Namibian and South African feedstock have to be adjusted. The latter feedstocks are all wood-

based and the densities of these are substantially different from those in Europe and North 

America. 

Feedstock will arrive in random sizes to the conversion plant. Depending on the fast pyrolysis 

conversion process, feed pre-treatment involves cutting and/or milling/grinding to size, sifting 

and drying to a certain moisture content level as determined and required by the conversion 

module to deliver a pyrolysis product to specification. The feed pre-treatment module of the 

bioenergy model of this research has factored the adjustments into the module (Chapter 8). 

4.4.1.4.3 A feed conversion module 

BEAM covers the conversion of the prepared biomass feedstock into the selected energy 

product. The downstream limit of this module is immediately before export of the energy 

product. Thus electricity generation ends at the grid connection terminal; liquid fuel 

production ends with the liquid in buffer storage; and heat production excludes the heat supply 

network. 

BEAM is based on socio-economic needs pertaining to Europe and North America, and 

therefore adjustments are required. Heat production in the Namibian and South African case 
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are limited to the needs by an individual or at corporate level (e.g. hot water production of 

hostels or hospitals); no infrastructure exists that would enable bulk heat supply to a whole 

community. The fast pyrolysis conversion module of this research ends with bio-oil in buffer 

storage. Slow pyrolysis processes on an economic viability basis only serve as comparative 

process to fast pyrolysis (Chapter 9). 

In both the Namibian and South African case, the feed conversion module or the technology 

proposed to be used, involves fast pyrolysis processing. The feed conversion module of the 

bioenergy model of this research has factored the adjustments into the module (Chapter 7, 8 

and 9). 

4.4.2 Homer and SABRE-Gen Biopower model 

In addition to BEAM, the Homer and SABRE-Gen Biopower model was found. From first 

indications it seemed that the Homer and SABRE-Gen Biopower as used by the South African 

national power generator and transmission corporation – ESKOM – would be able to cater for 

the South African situation. This specific model is aimed at the evaluation and assessment of 

‘bio-power’ technologies, for their implementation in South Africa. The model seems to use 

various types of biomass resources as feedstock, which includes wood-based residues, 

agricultural residues and grasses. Although links on the worldwide web were found of this 

model’s usefulness in South Africa, information on whether it was actually implemented could 

not be found  [51, 211, 212, 213]. It seems that certain modules are not accessible to the public 

made it redundant for the purpose of this research. As cited on the websites offering 

information on the model, the aim is to solely produce power by using a gasification thermo-

chemical process. 

In 2005/06, Eskom investigated the possibility of using biomass as a source of energy for 

electricity grid-supply whilst also planning to pilot new technology aimed at providing rural 

power in a remote area in the Eastern Cape. This technology, a gasifier system [283], was to 

use waste from a rural sawmill to generate power and to provide electricity to support the 

creation of business ventures in the area. The system was expected to be launched towards the 

end of 2006, however, to date no further information has become available. All available 

public documents cited discuss the planning the project without providing information 

whether the project was actually successfully launched and/or whether it is still operational. 



112 
 

4.4.3 The “Black-box” approach to project evaluation and risk assessment 

Slow pyrolysis projects are undertaken in Namibia and South Africa on a regular basis. Fast 

pyrolysis is a new concept which was introduced to South Africa around 2006/2007 only. At 

the moment an experimental scale fast pyrolyser is operational at Stellenbosch University, 

South Africa [312]; a pilot scale fast pyrolyser was built at University of Pretoria, South Africa 

[214]; a manufacturer of fluidised bed fast pyrolysis equipment is operational in Johannesburg 

[28], South Africa; and possibilities to import fast pyrolysis technology to Namibia and South 

Africa exist too. What all of the latter have in common, is that fast pyrolysis technology has 

not been seen working on a commercial scale. In addition, project evaluation and risk 

assessment for existing slow pyrolysis processes are largely lacking. Although developers of 

the novel fast pyrolysis technology may be enthusiastic to sell it, potential takers or financiers 

of such novel technology need to be able to assess the economic and environmental 

sustainability and risks associated therewith. At the same time, scaling an experimental fast 

pyrolysis project to the level of prototyping or even commercial operation bears considerable 

risk in general and operational evidence is not documented as yet. 

The approach proposed by the “Black-Box” [208] is valuable to project evaluation and risk 

assessment of fast pyrolysis projects proposed by this research. Experiments to establish 

feedstock behaviour and produce bio-oil (Chapter 7) were carried out in a 150g/h fluidised 

bed fast pyrolyser. However, the commercial feasibility and viability of fast pyrolysis in the 

Namibian and South African context is based on a commercial costing approach (Chapter 8). 

The success to “sell” fast pyrolysis technology to generate bioenergy in the Namibian and 

South African context needs a structured approach and the ability to identify areas of risk 

(environmental, socio-economic); to propose technical design modifications; and to allocate 

responsibility so as to create greatest possible comfort among role players and/or stakeholders 

in the light of perceived risk. The structured approach as suggested by this research is 

diagrammatically represented by the “Black-box” approach (Figure 4-10). 
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Figure 4-10 Black-Box approach to project evaluation and risk assessment [adapted from 208] 

 

The factors that receive specific attention in this research relate to; efficiency, availability, 

chemicals consumption, capital expenditure, operational expenditure, maintenance, 

operability and flexibility, maintainability, buildability, technical novelty, and scalability. 

Competition for resources, labour market and skills, and macroeconomic climate (including 

social issues) are adjustments to the original “Black-Box” approach [208] as shown in Figure 

4-10, and also mentioned and/or discussed in chapters 1 and 2. Issues like parasitic losses, 

level of integration and flexibility of feedstock type are mentioned, but not discussed in detail. 

The “Black-box” approach is the basis on which Chapter 8, and 9 were built. 

The “Black-Box” approach characterises a financial model (based on the hard parameters), in 

summary, as follows:  

• Selection of technology  

• Project development costs 

• Costs of the site, insurances, working capital and contingency allowance 

• Allowance for inflation and taxes 

• Gives internal rate of return (IRR) and net present value (NPV), cashflow and cover ratios 
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(i.e. the ratio of net project revenue to debt service costs) on project investment. 

The model invariably involves much iteration before a satisfactory combination of project 

parameters is assembled. Selected fast pyrolysis projects were assessed with project costs 

including; development costs; and site, insurances, working capital and contingency allowance. 

The model derived by this research allows for inflation and taxes, and gives NPV, cashflow and 

cover ratio on project investment. The model was solved in MICROSOFT EXCEL® and 

EViews®8 and was used to find an optimal combination of the type of income and cost factors.  

4.5 LITERATURE REVIEW ON MARKET POTENTIAL FOR FAST AND SLOW 
PYROLYSIS PRODUCTS 

This section provides a review of literature relating to market potential for mainly fast and 

slow pyrolysis products; market potential specifically for fast pyrolysis products is mentioned 

if/when applicable. Based on the information provided in section 4.4.3, prior markets for fast 

pyrolysis products are assumed to be non-existent. To therefore establish markets for fast 

pyrolysis products, existing markets of slow pyrolysis products are investigated first. The 

emphasis is on South Africa as main market, including information on market developments 

over at least the past 20-30 years. 

4.5.1 Market developments of slow pyrolysis products in South Africa 

 

4.5.1.1 Charcoal 

Until Namibia’s independence in 1990, South Africa and Namibia (formerly known as 

Southwest Africa) formed one common market. Little up to date information was available on 

the slow pyrolysis industry, commonly referred to as the charcoal manufacturing industry in 

South Africa [215, 216]. Until 1982 Emrich [70] confirms that comprehensive slow pyrolysis 

data rarely appeared since the 1940s and much of the information is contained in specialised 

collections only, owned by private individuals [217]. Pioneering work was accomplished in 1982 

when Gore compiled a compendium of charcoal production and properties in South Africa. The 

reports by Gore [218] and Bennie [216] summarised the status of the charcoal manufacturing 

industry in South Africa in general at the time. Charcoal production in South Africa was said to 

have increased by 30% per year between 1976 and 1982 [215]. The total charcoal production in 

1981 was 76.1kt. Between 1982 and 1985 charcoal production had increased by about 47% per 

annum and soared to 206kt in 1983 [218]. The Bennie report [215] also noted that 2kt per annum 

of activated charcoal was manufactured from apricot and peach stones in the Cape Province. 
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Activated carbon in other literature cited plays an important role with regard to its demand in 

the industry, but processing of activated carbon is less extensively mentioned [308, 309, 216, 

220]. 

Although a detailed cost breakdown was provided by Bennie [216] for the various types of slow 

pyrolysis conversion processes in 1982, these were found to be of no real value to this research. 

None of the listed slow pyrolysis technologies operational in 1982 still exist. The findings of the 

studies of Bennie [216] and Gore [218] culminated in a national conference on charcoal 

manufacturing in South Africa with the aim to better coordinate the charcoal manufacturing 

sector and make it more competitive. As a result of that conference, the South African Charcoal 

Manufacturers Association (SACMA) was formed [219] in 1986. The aim of the Association 

was to: 

• Foster, promote and coordinate the manufacture and marketing of charcoal and its 

associated products in South Africa; 

• Promote and protect the interests of manufacturers of charcoal; and 

• Promote, support and oppose any legislation or other measures affecting the industry and 

the interests of the members of the Association.  

The SACMA was re-launched in 2006 after having been dormant for more than 10 years. 

Gore in 1982 [218] further compiled data from analysis and yields of non-condensable pyrolysis 

gas from various commercial grade charcoals. This data was intended to inform on gasification 

of charcoal for powering engines or generators. The data seems not to have been put to use at 

the time. It would have been more interesting if measurements of the non-condensable pyrolysis 

gas of various raw materials or feedstocks from the various retort processes could have been 

made. This data seems to be lacking even to date. 

In 1983, waste materials generated from the pulp and paper industry were considered for 

charcoal production or as replacement for boiler coal [220]. The amount of usable plantation 

waste, bark, chip fines and fibres generated and to be used as replacement was close to 130kt 

per annum. 

In 1985 it was reported [221] that the charcoal sector was facing severe competition within the 

timber industry. The reasons cited were that: 
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• due to expanding markets, the availability of large quantities of cheap timber used for 

charcoal manufacturing ceased to exist. Other uses for plantation waste were developed 

which resulted in greater competition for a relatively fixed amount of available timber; 

• the latter effect was a steady increase in the market prices of all types of timber which lead 

to pressure on processors to achieve greater efficiencies in conversion and for them to 

investigate alternative sources of raw material; 

• at the same time that both above had to be achieved, there was pressure to meet tight 

physical and chemical specifications and consistency of quality. [221] 

In 1986, the National Timber Research Institute [222] reported that the charcoal industry was in 

need of quality standards for charcoal and charcoal briquettes. A committee was formed which 

formulated a specification subsequently published by the South African Bureau of Standards 

(SABS); specifications 1399-1983. Gore in 1983 [220] reported that advanced binding 

technology for the manufacture of charcoal briquettes were to be considered in order to obtain 

net gain from converting forest plantation waste and bark to charcoal. In 1985 Minnaar [199] 

reported of research work on binding techniques and agglomeration technology developments 

and introduced his findings which were in majority based on agglomeration of coal, anthracite 

or mineral fines but rendered valuable information for charcoal fines agglomeration [220]. 

Minnaar patented the process whereby commercial equipment would be available to upgrade 

materials having in excess of 90% fixed carbon without employing conventional heating 

processes to reduce the volatile content. Minnaar claimed that he was the sole holder of this 

superior technology worldwide. The products were produced by Solid Fuels of South Africa 

(Pty) Ltd in cooperation with Minimar Technologies AG (the company of Minnaar). The work 

of Minnaar provided Solid Fuels with contracts for producing charcoal briquettes which are sold 

in South Africa and elsewhere in the world still today.  The total demand for briquettes from 

South Africa as reported by Minnaar is in excess of 100kt per annum henceforth. 

The Council for Scientific and Industrial Research (CSIR) in South Africa invited interested 

parties to a strategic planning workshop on ‘Use of charcoal fines as a soil conditioner in South 

Africa and South West Africa’ in 1985. Information presented at the workshop is based on 

research carried out by Kishimoto and Suguira in Japan [223]. Kishimoto carried out research 

on the fine charcoal’s suitability as soil conditioner [224]. The advantages of the possible 

utilisation of charcoal as a soil conditioner in South Africa were cited to be that: 

• charcoal improves water retention of the soil; 
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• charcoal improves root development; 

• charcoal could increase pH levels of acidic soils and CO2-volumes in the soil; 

• charcoal seems to establish alkaline soils which contribute to micro-organism 

development; increasing the number of micro-organisms in the soil seems to improve 

fertility of the soil; 

• charcoal could act as fertiliser carrier, but in-depth research was not carried out. 

Beyond the contributions made by Kishimoto, Suguira [223] and others [224] in 1986 no 

further developments are known to have taken place to also use charcoal as a soil conditioner. 

The work done by LHA Management Consultants [225] in 2003 provided additional data for a 

forestry and charcoal market subsector analysis. LHA Management Consultants described the 

total charcoal market and the industry of South Africa as per Figure 4-11. 

 

Figure 4-11 South African Charcoal Supply/Demand and Industry Structure [229] in 2003 to 
2006 

It was found that LHA Management Consultants report [225] provides valuable information, but 

cross-checking of some facts was considered to be necessary. This was done by collecting 
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additional information during the annual study tours (Table 4-6) to South Africa from 2003 to 

2008. Information obtained from interviewees augmented data used in constructing and solving 

the fast pyrolysis technology model presented in Chapter 8. 

The findings from LHA Management Consultants were quoted in other research and projects, 

notably the ‘Assessment of Commercially Exploitable Biomass Resources’ [226, 227, 228]; 

G:ENESIS Reports (Parts I to III):  

• ‘Part I: The contribution, costs and development opportunities of the Forestry, Timber, Pulp 

and Paper industries in South Africa’ [226];  

• ‘Part II: Market Analysis’ [227]; and  

• ‘Part III: Technical Notes and Appendices’ [228]; and the ‘Key issues paper on forestry 

enterprise development’ [229]. 

It was found that the charcoal and firewood industry of South Africa is very much entwined with 

that of Namibia. All large South African producers augment their charcoal briquette production 

systems and sales by Namibian charcoal imports. The Namibian charcoal lumps are said to be 

too small for repackaging and onward sales. Namibian charcoal is therefore briquetted in South 

Africa.  

As the economies of Namibia and South Africa continue to grow, it is expected that the 

consumption pattern of wood-based biomass mass will shift from pre-dominantly domestic use 

as basic energy supply, towards more industrial and recreational use of firewood and charcoal. 

Further, in South Africa [230] the demand for electricity will grow. A similar trend is expected 

for Namibia [18]. It is expected that in future the trend to shift consumption away from 

traditional fuels (wood, dung and bagasse) through transitional fuels (coal, paraffin, LPG) to 

electricity is likely to continue, based on previous experiences. Electricity allows for more 

efficient energy use than coal, wood and paraffin, especially for heating water in a domestic 

setting. Residential energy use is expected to grow at the same rate as the population in South 

Africa and Namibia at 1.4% and 1.8% respectively per annum [231, 232]. Industrial energy use 

is expected to follow economic growth trends, on a one-on-one gross domestic product growth 

basis. Wood for domestic heating, cooking and lighting in rural and semi-urban areas in Namibia 

and South Africa do not have a market price. The population using fuelwood as their only source 

of energy expect that the value of the wood is zero when they have to collect it themselves. 

The latter reports and papers as discussed in this section provided a key milestone on the 



119 
 

feasibility of a number of technologies related to converting wood-based biomass to various 

products. Testing the feasibility of technologies also includes costs (labour, operational and 

investment); market dynamics; and standards for products and standardisation of conversion 

operations. Selective information from these reports was used in modelling fast pyrolysis 

conversion (Chapter 8). 

4.5.1.2 Wood tar and pyroligneous acid produced from slow pyrolysis processes 

The very high viscosity of wood tar can supplement fuel oil or diesel in many static applications 

[64] but have lost their value with the rise of petroleum products [70]. In Namibia, the wood tar 

was primarily used in boilers and furnaces of hospitals, prisons and school hostels between 1980 

and approximately 1993 [191], where after the fuel firing system was switched to fossil fuel oils.  

Wood tar can be fractioned into its useful components for producing commodity chemicals. 

Discussions with the petrochemical industry representatives confirmed the latter [54, 233]. Bio-

oil from fast pyrolysis could be an alternative (Chapter 7, 8). As only bioenergy production is 

the focus of this research, chemicals from bio-oil is not discussed further. 

Wood tar can also be used as preservative against termites and fungi. Two grades were tested, 

i.e. low temperature wood tar and high temperature wood tar [201] with high tar content (and 

creosote content) from the slow pyrolysis process. It was concluded that there were no apparent 

differences between wood tar from slow pyrolysis process and creosote from petro-chemical 

conversion processes in terms of ease of treating wood products against termite and fungal 

attack. Wood products which are to be considered resistant to fungal and termite attack are to 

be treated under the standard specification for preservative-treated timber under SABS 1288-

1980 [234]. However, the registration process is time consuming, and costly [235; 236]. Patent, 

marketing and distribution issues within various countries were mentioned to be another 

noteworthy, but costly challenge [237]. 

In Namibia, the slow pyrolysis ‘wood tar’ was successfully sold in bulk to a Namibian supplier 

of veterinary medicines, instruments and vaccines. The moisture, acetic acid and wood spirit 

from oils were removed and the resultant wood tar was mixed with an ointment and was sold as 

a cure to common hoof-illnesses of cattle, sheep, goats, pigs and horses in Namibia and South 

Africa. This was stopped in 1997 after AGODA Carbon ceased operations in Namibia. 

Subsequently wood tar is imported from elsewhere and sold on the Namibian and South African 

market as ‘Stockholm Tar’. 



120 
 

Tests [236] on wood tar revealed that the wood tar is not suitable as caulking agent as it contains 

too much bonded and unbonded water. But the wood tar contains suitable adhesion agents in 

which case dehydration of the wood tar is unnecessary. Other literature cited [188, 189] 

confirmed that substitution of phenol in phenol-formaldehyde resins by using the oil obtained 

(wood tar) by the biomass pyrolysis containing phenolic components is possible. 

The pyroligneous acid is mainly used as basis for the production of organic chemicals, and 

certain acids can be refined to produce pure acids and acetic essences for human consumption. 

The component of this mixture which is of commercial interest is acetic acid. For example, the 

registered trademark ‘SURIG’ is an acetic acid distilled from condensed pyrolysis liquids from 

the ‘Reichert’ retort process (owned by PROFAGUS) in Germany. ‘SURIG’ is commercially 

available as household detergent or acetic acid essence for food processing.  

4.5.2 Assessment relating to market potential in South Africa 

As explained earlier, the South African market offers the greatest potential for pyrolysis 

products in Southern Africa, regardless of whether the products were manufactured in 

Namibia or in South Africa. South Africa has the necessary legislation in place for bio-based 

energy uptake, both power and liquid fuel. Due to South Africa’s advanced industrial base, 

bio-based chemicals or chemical components can also be accommodated in that market. In 

terms of market possibilities South Africa serves as a model with replication to Namibia being 

a possibility. Exports of products from pyrolysis to Europe and other parts of the world are 

also possible as both Namibia and South Africa have preferential trade agreements with the 

European Union in place. 

Under South African conditions, the market for products from pyrolysis conversion of 

biomass is mainly driven by government policy and fiscal (tax and non-tax) incentives and 

based on bioenergy targets that have been set in 2007 [50, 241]. The South African 

Government has published policies and directives for the use of biofuels in 2005 [238] and 

promulgates its “Biofuels Industrial Strategy of the Republic of South Africa” [7] (section 

2.5.4.2). Both renewable targets (biofuels and bio-power generation) are to be seen in the light 

that South Africa wishes to fulfil its international commitments in terms of the Kyoto Protocol 

and the Johannesburg Declaration [239]. A Designated National Authority (DNA) as proposed 

by the Kyoto Protocol [53, 240] was established within the Department of Minerals and 

Energy to cater for projects aiming to qualify to benefit from the Kyoto Protocol’s Clean 

Development Mechanism by setting up cleaner production systems. At the same time, the 
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South African economy strives to diversify and expand to regional and international markets 

regarding power and energy supply.  Thus market potential for biomass based energy products 

can play a key role. 

However, what lacks in South Africa is how new bioenergy products will enter the market. 

Figure 4-12 explains the relationship and information flow between players in the market and 

the market potential on a regional level for bioenergy products. 

Figure 4-12 Approach for a relationship driven model for biofuels market potential in South 
Africa [50, 241, 242]. 

To integrate bioenergy products into the energy product mix in South Africa, the principles of 

the “Black-Box” approach (section 4.4.3) and the roadmap (section 9.9) are suggested. The 

approach of the UK based National Non-Food Crops Centre (NNFCC) [242, 243] is useful in 

directing how such latter ‘roadmap’ could be derived. The NNFCC approach is based on 

biomass-to-liquids (BTL) process flows and models the market potential of bioenergy. The 

BTL process flow can also be seen as a biorefinery approach as diagrammatically represented 

in this research by Figure 2-1 (conceptual framework). The BTL process flow is marked as 

the route whereby biomass is converted by pyrolysis, bio-oil is gasified into syngas. Syngas 

then renders the transport fuels, chemicals and hydrogen. Heat and power are co-products of 
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the main process. 

In Namibia, bio-based energy targets to be achieved are not available due to a lack of 

comprehensive policy and/or legislation [58]. However, a strategic action plan to deploy 

renewable energy (various types) in Namibia was conceptualised in 2008 [18, 244, 245, 246, 

247]. The ‘roadmap’ proposed by this research on how to introduce new bioenergy products 

to the Namibian market will necessarily include lessons learned from South Africa. 

4.6 CONCLUSIONS 

Modelling aspects to explain the conceptual framework adopted for this research have 

considered various relations between national and international drivers on bioenergy with a 

view to introduce novel thermo-chemical conversion technology, i.e. fast pyrolysis, in 

Namibia and South Africa. The model to be derived for Namibia aims to link the macro 

dimension to the micro dimension by incorporating and translating government policy 

instruments through research and new technology to convert wood-based biomass for the 

benefit of socio-economic development and growth. In South Africa, the biofuels directive’s 

[7, 238, 248] main aim is social empowerment and deployment of advanced technology, 

without jeopardising food security. Borsboom et. al [249] and Roos [250] support the need 

for African countries to pro-actively use policy to convert forest and other wood-based 

resources into sustainable bioenergy for the improvement of social wealth and empowerment. 

To some extent the South African government has introduced programmes which aim to 

utilise the vast forest resources of the country for the improvement of socio-economic 

conditions in that country [152, 158,]. On the one hand, considerable potential for bioenergy 

in South Africa exists, but would require that the biofuels directive is expanded to also 

embrace wood-based biomass as a resource for energy (fuel and power) generation through 

the thermo-chemical conversion route, e.g. fast pyrolysis. On the other hand, Namibia still 

needs to develop policies which are conducive to the use of bioenergy at national level; and 

South Africa could lead as example. At a national and international level, Namibia and South 

Africa subscribe to environmental sustainability. Certain national consents (e.g. licenses, 

emission regulations, monitoring and control mechanisms) to govern environmental issues 

associated with the use of novel technologies, like fast pyrolysis to generate bioenergy need 

to be dealt with in both Namibia and South Africa. Another fundamental issue to be resolved: 

will the licences to operate a fast pyrolysis plant be provided under the agricultural sector, or 

rather under the energy sector, or even under the trade and industry sector due to the trading 
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value being added to biomass materials.  

In the Namibian case, socio-economic improvement is not yet based on pro-active policies 

that seek to utilise the vast wood-based biomass resources for bioenergy. Technology 

deployment is key in this regard. The limited amount of bioenergy produced in Namibia uses 

at least partly bush, but the technology employed to convert the bush to bioenergy, and in this 

case charcoal is based on primitive technology. 

The models discussed and the literature reviewed in this chapter form the basis for 

methodology of data analysis and modelling of bioenergy potential derived from fast 

pyrolysis. Chapters 6, 7, 8 and 9 discuss the aspects mentioned in the conceptual framework 

(Chapter 2) and the principles underlying scenarios for the models in more detail, bringing 

together aspects of biomass availability and utilisation with their pyrolysis conversion in an 

optimised manner. Chapter 5 presents the data required for the respective models. Marketing 

of the products derived from pyrolysis conversion will also be discussed, bearing in mind 

policy requirements and market interplay in South Africa, Namibia and Europe, for example 

(section 4.5). The assumptions used for the models are also presented in the respective 

chapters and again in a summarised there. 
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5 DATA AND METHODOLOGY OF DATA ANALYSES 

Data on agricultural and related production systems in general is available in Namibia and 

South Africa. In the Namibian case biomass data is highly dispersed, discontinuous and in 

many cases raw or aggregated in monetary terms; i.e. for similar data types, data is not 

published in the same format. Data specifically relating to wood-based biomass is not freely 

available, and access to private collections were thus also used. By including this chapter in 

the research, modelling is eased and data is presented in a format which could also be used by 

others. The structure of the data by-and-large follows model analysis as presented in Chapter 

4 and modelling requirements and assumptions (Chapter 6, 8) and desired outputs (Chapter 

9). 

The methodology applied to establish data requirements, collect and analyse data as well as 

present data sets in this research is explained throughout the chapter and in relation to the data 

sets presented, for both Namibia and South Africa. Methodology of data analysis can be 

summarised according to the following criteria (Chapter 4) and the actual presented data sets, 

as per below. 

• Socio-economic, ecological and national policy indicators 

• Link to other sectors and land use indicators  

• Spatial indicators 

• Dynamic features of data (e.g. existing formulae, stationarity, cointegration) 

• Data sources and/or manipulation, if needed and how it was applied. 

• Presentation of data sets used in this research 

The aforementioned criteria are discussed in greater detail under each data set considered. 

Consequently, data for wood-based biomass resources, techno-economics, and markets and 

marketing of products were considered. The analytical data for products from fast pyrolysis were 

generated through experimental work (Chapter 7) and augmented by literature review (Chapter 

4). 
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5.1 BIOMASS DATA REQUIREMENTS AND AVAILABILITY - NAMIBIA 

5.1.1 Socio-economic, ecological and national policy indicators 

This research focussed on farmland areas which are more densely populated than 2,500 TE/ha 

(section 3.4.4; section 3.4.6 ). In the Namibian case bush encroachment is said to pose 

challenges on the ecological sustainability [251, 252], productivity of agricultural production 

systems and their management [253,265]; and has increased substantially and rapidly over the 

last 50 years; leading to a loss of job opportunities and a total collapse of many farming 

enterprises [98]. The reasons for bush encroachment have not been investigated in detail. Fast 

pyrolysis to convert the wood from bush encroachment to generate energy is proposed as 

sustainable solution to for example curb bush encroachment and/or reclaim productive 

livestock farming areas. 

In addition, the information as presented in section 4.1.1 is relevant, and data on the ‘optimal’ 

level of bush coverage is required. However, literature on the socio-economic or ecological 

impact of bush encroachment and policy statements do not elaborate what the ‘optimal’ level of 

bush coverage should be to bring the farming land’s carrying capacity back to balance. This 

research considered the Joubert et al [259] proposal that the standing density of bush (in TE-

units/ha) for ecological and socio-economic reasons should not exceed the equivalent of the 

long-term average rainfall (mm/a). Rainfall data is available; the long-term average rainfall for 

the areas affected by bush encroachment has been established and is presented in Table 5-1. For 

some farmland areas, this research suggests that the ‘optimal’ level of bush coverage should not 

be lowered for ecological and socio-economic reasons; the areas are already prone to 

desertification [254], and the communities living there-in depend on wood as residential fuel 

[114]. The ‘optimal’ level of bush coverage is suggested under section 5.1.3. This research 

considers that a healthy ecological state of the farmland areas must be maintained; thus a 

minimum level of bush coverage should be sustained. Therefore, (i) bush coverage (TE-units/ha) 

should not decrease below the equivalent of the minimum long-term average rainfall (mm/a) 

(Table 5-1); and (ii) bush coverage (TE-units/ha) for any farmland area according to the 

principles of Joubert et al’s proposal should range between the equivalent long-term average 

rainfall for that area and threshold of 2,500 and. Any amount above 2,500 would by definition 

be considered as bush encroached.  

Table 5-1 also presents rainfall data of all farmland areas; this is necessary as bush encroachment 

is likely to spread over time and affect new areas. The latter is explained further under section 
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5.1.3 below on spatial indicators.  

 

Figure 5-1 Distribution map of bush encroachment in Namibia; highlighting bush 
encroachment in commercial and communal farmland areas in 2013 and livestock 
production centres. Based on distribution map of 2004 [254, 255, 256]. 

Rainfall data is presented assuming the 2013-state of bush encroachment [adapted from 256]. 

The farmland areas Karasburg, Keetmashoop, Lüderitz, Swakopmund and Walvis Bay are not 

mentioned in Table 5-1 as they fall into the arid ecological zones of Namibia and are not likely 

to be prone to bush encroachment. Katima Mulilo falls into the semi-tropical ecological zone of 

Namibia, where tree species declared as bush encroachers do not currently grow [254], or are 

not likely to occur in the medium to long term. 
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Table 5-1 Computed long-term mean annual rainfall of farmland areas affected by bush 
encroachment in Namibia [data analysed from 83, 86, 89, 257, 258, 259, 260, 261] 

Name of livestock 
production 
district 

Long-term mean 
annual rainfall 
(mm/a) [261] 

Long-term 
minimum annual 
rainfall (mm/a) 

Long-term 
optimal level of 
bush coverage as 
per Joubert et al 
[259]  
(TE-units ha-1) 

Minimum level 
of bush coverage 
(TE-units ha-1) - 
rounded 

Eenhana 509.38 221.00 510 220 
Gobabis 338.49 124.25 340 125 
Grootfontein 491.64 207.96 490 210 
Karibib 220.34 13.30 220 220 
Khorixas 281.43 33.75 280 280 
Mariental 175.83 34.75 175 175 
Okahandja 348.89 114.60 350 115 
Okakarara 364.80 153.80 365 155 
Omaruru 285.55 42.90 285 285 
Ondangwa 458.44 134.30 460 460 
Opuwo 144.60 0.00 145 145 
Oshakati 431.85 94.93 430 430 
Otjinene 407.40 155.40 405 405 
Otiwarongo 410.18 152.78 410 155 
Outjo 386.92 141.80 385 145 
Rehoboth 241.06 35.50 240 240 
Rundu 535.06 157.73 535 535 
Tsumeb 526.32 222.48 525 225 
Tsumkwe 445.46 0.50 445 445 
Uutapi 424.58 70.70 425 425 
Windhoek 366.39 140.92 365 140 

 

Decreasing bush encroachment levels in Namibia to the ‘optimal’ levels, potentially renders 

large quantities of wood-based material that could to be converted by fast pyrolysis to produce 

bioenergy. De Klerk [265] estimated that the harvestable amount of wood-based biomass 

varies between 8-20 wet-t/ha, and depends on the local vegetation and weather conditions. To 

estimate how much wood is available to specifically fast pyrolysis, biomass data was required. 

The latter data is not readily available in Namibia. However, maps which visualise the areas 

which are bush encroached can be used by following the combined methodology of Bester as 

explained in de Klerk’s report ‘Bush encroachment in Namibia’ [265] and Zimmermann et al 

[262]. Bester derived regression formulae for each type of bush encroachment species as 

visualised by Figure 5-1. Bester [96] cautioned the use of the regression formulae, as these 

were a ‘first try’ to derive the weight (in wet kg) of a TE-unit of a certain bush encroachment 

species. Therefore, 100 TE-unit samples of each bush encroachment species were physically 

obtained, measured and weighed. The regression formulae as presented by Bester [265] were 

tested.  
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Table 5-2 Average mass (kg) of TE-units of encroacher species based on 100 TE-unit 
samples, and the theoretical mass of TE-units based on Bester’s formulae [96, 265] 

Bush encroachment species Average 
Mass 
(n=100)  
(kg) 

Average 
diameter 
(n=100) 
(mm) 

Bester’s formulae, based on 
publication of de Klerk, [256] 

Average mass 
solving 
Bester’s 
formula 
(D=15cm) 

Acacia mellifera subsp. 
detinens 

10.80 114.61 yAM = -10.970+(0.768*D)-
(0.0124*D2)+(0.0000826*D3)  

-1.96 

Acacia reficiens 10.80 107.67 yAR =5.093-
(0.2567*D)+(0.0059*D2)+(0.00
00116*D3) 

-2.39 

Colophospermum mopane 4.74 14.22 yCM = 42.119-
(0.0680*D)+(0.00275*D2)+(0.0
000170*D3) 

41.77 

Dichrostachys cineria 5.07 101.96 yDC = 115-
(0.0680*D)+(0.00275*D2)+(0.0
0000888*D3) 

114.63 

Termalia sericea 5.77 140.10 yTS = 26.866-
(0.609*D)+(0.00463*D2)+(0.00
000572*D3) 

18.79 

The reason why the Bester formulae were not used is that applying the standard definition of 

an TE-unit (diameter between 10 and 15 cm at knee-height) to these for the various species 

resulted in questionable mass outputs, including e.g negative mass (for A. mellifera the 15cm 

diameter results in a negative mass of 1.96kg). For this reason, it became necessary to collect 

real data which was done by physically sampling (cutting down, measuring diameter and 

weighing) 100 TE-specimen and thus determining the average TE-mass for each species. The 

comparison between the actual wood-base biomass weights and the result that would have 

been calculated from the sample using Bester’s formulae is provided in Table 5-2.  

Based on the initial work by Bester [91, 96, 265], Zimmermann and Joubert [262, 265] 

conducted a desktop study to derive wood volumes per species, expressed in TE-units from 

Bester’s maps. They correctly called their work “a crude quantification” and concluded that 

“the results of this study need to be treated with a lot of caution”. However, to date the work 

of Zimmermann et al [262, 265] is the only one which exists. Hereafter the actual average TE-

biomass mass as per 100 TE-samples was used to establish the potential average yield ().The 

results of the current standing densities and total level of bush encroachment across Namibia 

in 2013 (based on Figure 5-1) are presented in Table 5-3. These approximate values were 

required to determine the potential biomass yields and their subsequent sustainable harvest 
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potential and feed-in to the bioenergy model. 

It is acknowledged that the values from the TE-samples are crude, but were representative of 

the various species growth forms and therefore a good enough estimate for the purpose of the 

modelling exercise. The credibility should not be unduly influenced in terms of sustainable 

wood-based biomass supply to fast pyrolysis plants. 

Table 5-3 Approximate area and distribution of densities covered by different dominant 
bush encroachment species in freehold and non-freehold land areas (2013)  

Category of bush encroachment Type of Land Area Affected (ha) 
Main bush species Bush density 

(average TE ha-1) 
Freehold land 
(commercial 

farmland) 

Non-freehold land 
(communal farmland) 

Colophospermum 
mopane 

2,500 266,422 4,933,349 

Acacia reficiens 3,000 1,460,752 780,587 

Acacia mellifera subsp. 
detinens 

2,000 1,192,709 318,218 

Colophospermum 
mopane 

4,000 381,381 2,897,218 

Acacia mellifera subsp. 
detinens 

8,000 1,704,106 51,966 

Acacia mellifera subsp. 
detinens 

4,000 4,428,387 2,440,137 

Dichrostachys cinerea 10,000 2,586,128 1,841,483 

Acacia mellifera subsp. 
detinens 

5,000 197,720 0 

Termalia sericea 8,000 966,490 2,079,706 

Rhigozum trichotomum 2,000 899,852 48,590 

TOTAL  14,087,947 15,391,333 

The information contained in Table 5-3 is derived from converting map data into exact areas (in 

ha) affected by bush encroachment in farmland areas, and more specifically livestock district 

areas using open source software QuantumGIS®. The mapped demarcations of constituencies, 

farmland and livestock district areas (i.e. the shape files of the maps) which can be imported into 

spreadsheets used by QuantumGIS® are freely available from the Namibia Statistics Agency 

[263]. In addition to having quantified the bush encroachment mapped areas (where bush 

encroachment is expressed as TE-units), the wood-based bush quantities that could be converted 

by fast pyrolysis to derive bioenergy, as expressed in kg/ha or t/ha. The resultant quantity of 
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wood-based material per type of farmland area and bush encroachment species is presented in 

Table 5-5. The wood-based material yield assumes that only bush-stem TE-units will be used; 

not the leaves, twigs, branches or off-cuts of the bush. In estimating the potential for fast 

pyrolysis conversion before continuing with detailed modelling work (Table 5-5), the potential 

wet-t wood yields are based on the first time harvest of the bush material as per standing densities 

in 2013. Subsequent harvesting cycles and their estimated yields were provided for specific areas 

only (Table 5-4).  

For planning purposes bush harvesting and re-growth needs to be established (section 6.1). Such 

plan would also consider ecological and economic sustainability and it is therefore assumed that 

a wood yield of approximately 55% of the initial harvest is achieved as from second harvest; 

and then again a wood yield of 55% of the second harvest is achieved from the third harvest. 

Aftercare measures are necessary to prevent substantial bush re-growth or re-occurrences of 

bush encroachment. The sites cleared are assumed to remain ‘un’-encroached for between 15 

and 20 years after the last harvesting intervention; the infestation levels would have considerably 

reduced if all prior harvesting and aftercare interventions were carried out successfully and at 

the suggested intervals. Even with a medium term harvesting cycle of 20 years, the wood 

resource was estimated to be sustainable for a period of more than 100 years. 

Furthermore, wood-based biomass yield cannot practically be 100% of the bush encroachment 

levels for the Okakarara and Otjiwarongo farmland districts (Table 5-16). Thus yield is assumed 

to be 80% at first harvest. Accordingly, wood yield after the first harvest is adjusted too. A 

harvesting (or other types of clearing) schedule is shown below in Table 5.4 with potential yields 

of wood-based biomass made available for fast pyrolysis conversion to energy and/or other 

products. 
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Table 5-4 Harvesting (or other types of bush clearing) schedule for clearing and/or aftercare 
and assumed yields from clearing bush encroachment in a socio-economically and 
ecologically sustainable manner 

Harvesting schedule Year of 
inter-
vention 

Bush 
har-
vesting 
level (%) 

Okakarara - 
biomass yield 
available for 
processing 
(wet-tha-1) 

Otjiwarongo- 
biomass yield 
available for 
processing 
(wet-tha-1) 

Wood yield 
ratio (%) 

1. First harvest 1 95 36.44 48.15 80 

2. First follow up 
harvest 4 55 20.04 26.48 44 

3. Second follow up 
harvest 9 30 5.92 7.82 13 

4. First aftercare 
harvest 19 10 0.46 0.6 1 

5. Second aftercare 
harvest 20 5 0.0 0.0 0 

Additional wood-based biomass would be available from subsequent harvesting cycles making 

the resource sustainable over a long term. However, TE-unit samples of the various species from 

such previously harvested sites were not available to this research. For modelling purposes, it 

was assumed that the yield drops with each harvest according to the harvesting schedule in above 

Table 5-4. 
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Table 5-5 Approximate wood yield from different dominant bush encroachment species in freehold and non-freehold land areas; wood yield is 
based on wet-weight of the same species in the same farmland area after first time harvest (2013) [adapted from 262, 265] 

Category of bush encroachment Average 
mass (kg/TE-

unit) 

Total potential yield from type of land area affected (t) 
Main bush species Bush density 

(average TE ha-1) 
[262] 

Potential yield 
(wet-t ha-1) 

Potential yield from 
freehold land (commercial 

farmland) (Mt) 

Potential yield from non-
freehold land (communal 

farmland) (Mt) 
Colophospermum mopane 2,500 4.74 11.85 3.16 58.46 

Acacia reficiens 3,000 10.80 32.40 47.33 25.29 

Acacia mellifera subsp. detinens 2,000 10.80 21.61 25.86 6.88 

Colophospermum mopane 4,000 4.74 18.96 7.23 54.93 

Acacia mellifera subsp. detinens 8,000 10.80 86.43 147.29 4.49 

Acacia mellifera subsp. detinens 4,000 10.80 43.22 191.37 105.45 

Dichrostachys cinerea 10,000 5.07 50.69 131.09 93.34 

Acacia mellifera subsp. detinens 5,000 10.80 54.02 10.68 0 

Termalia sericea 8,000 5.77 46.14 44.60 95.96 

Rhigozum trichotomum 2,000 Not sampled; it was assumed that this resource has no commercial value [265] 

TOTAL    608.60 444.80 
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5.1.2 Link to other sectors and land use issues 

For this research land ownership in terms of agricultural production systems is of importance  

as it guides in which manner access to the wood-based raw materials is to be obtained and 

how it can be utilised as resource for conversion via fast pyrolysis. The wood-based biomass 

and other natural resources belong to the land owners, except in municipal or proclaimed or 

protected areas where there is mixed ownership and/or regulated use of natural resources. 

Similarly, the right to use water in processes or production systems is determined by land 

ownership and national natural resource management regulations [77, 78]. Wood-based 

biomass from bush encroachment is available from land which is also used for agricultural 

production systems and national parks. Land ownership in the agricultural sector is divided 

into freehold (commercial farm) [77] and non-freehold (communal farm) [78] land. Data on 

land ownership is readily available from official information sources like the Deeds Office of 

the Namibian Ministry of Lands Reform, and the Namibia Statistics Agency. Some 31Mha of 

farmland is demarcated as freehold land; and some 52Mha of farmland is demarcated as non-

freehold land. The non-freehold land includes nationally protected (e.g. national parks) and 

communal land areas. Communal land includes both communal farmland and unproclaimed 

residential, but remote/rural areas. The freehold land includes proclaimed and municipal land 

areas. The data set on land ownership required for this research to which extent bush 

encroachment occurs is presented in Table 5-3.  

The actual size of demarcated agricultural land is important in the context of potential bush 

encroachment spread over time (section 5.1.3). Land demarcated for agricultural production 

(crop and livestock farming; freehold (commercial) and non-freehold (communal) land 

evolved over time. The demarcations were legislated first under the Union of South Africa, 

then under the Administration for Southwest Africa, i.e. Republic of South Africa. Farmland 

demarcations were not changed under the Republic of Namibia since 1970 (Table 5-6). 

Table 5-6 Changes in agricultural land size from 1930 to 2011 

Period Area demarcated as agricultural land (freehold and non-
freehold land; Mha) 

1930 – 1947 14.82 

1948 – 1969 36.16 

1970 – to date 65.41  
(of which 51.72Mha is dedicated to livestock farming only) 
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Access to the wood-based biomass, e.g. harvesting of bush in freehold (commercial) farmland 

is obtained through direct negotiations with the land owner. Access to the wood-based biomass 

in non-freehold (communal farmland or national parks) can only be obtained through either; 

participation in public procurement processes (open or invited tenders); approaching and 

negotiating with communal land boards, or forming partnerships with traditional, regional, or 

local authorities thereby obtaining land use rights (e.g. a permission to occupy (PPO) or 99-

year leasehold). The benefit of a project carried out on communal land must clearly spell out 

the national or public interest, and profits should be shared with the community to whom such 

land is assigned. Central government authorisations may also be required. 

5.1.3 Spatial indicators of bush encroachment 

In view of techno-economic viability of a fast pyrolysis conversion plant it is important to 

sustain a high supply of raw material and as cost efficiently as possible over a prolonged 

period. With the area demarcated as farmland (Table 5-6) it can be established how significant 

(or insignificant) the development of bush encroachment is in terms of the agricultural 

production process and sustainability of a fast pyrolysis conversion plant in the same area. 

That is, what is the total identified area of bush encroachment relative to the overall farming 

area; and how the bush encroachment area expands or reduces over time. Bush encroachment 

area expansion/reduction is discussed below. 

The Bush Encroachment in Namibia Report of 2004 [265], estimated that some 10Mha were 

infested with encroachment bush in 1970, while this figure is said to have increased to 26Mha 

by 2004 [98, 265], and some 30Mha by 2013 (Table 5-3). Densities of bush encroachment in 

commercial and communal farmland areas vary widely, with an average, one-off yield of 

between 5 and 24 t/ha measured as equivalent TE-units, and depending on the type of species, 

geographic and climatic region and soil condition in a specific area [254, 262, 264, 265, 259]. 

The weighted average bush population spread rate for the period 1957 to 2013 was estimated 

at 4.35%; details are presented in Table 5-3. 
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Table 5-7 Reported bush encroachment developments 

Researcher and/ or report, and 
year of report 

Bush 
encroachment 
(wet-Mt total) 

Bush 
encroachment 
(Mha total) 

Time and 
land type 
(year) when 
& where 

Total area 
increment 
between two 
following 
periods (%) 

Rawlinson, J. Meat Industry of 
Namibia 1893 – 1993. 1994 [89] 

 4.56 1957 
commercial 

farmland 

 

De Klerk, J N. Bush Encroachment 
in Namibia. 2004. [265] 

 10.00 1970 
commercial 

farmland 

119 

Reports compiled in 1985 and 
1986 present different figures for 
bush encroachment, e.g. Lubbe 
and Slater, 1985 present the total 
bush encroachment potential to be 
100 Mt; presented at Conference 
"Bush Encroachment and Control 
in Perspective", presented by the 
Rietfontein Farmers Association 
and the Grassland Society of 
Southern Africa, 21 & 22 April 
1993, contribution by Mr Chris 
Shikaputo, Chief Forester, 
Directorate of Forestry, Ministry 
of Agriculture, Water & Rural 
Development, titled "Bush 
Encroachment in Namibia - an 
environmental and forestry 
perspective". 
 

100 estimated  
3.38 

1985 
commercial 

farmland 

-66.16 

Rawlinson, J. Meat Industry of 
Namibia 1893 – 1993. 1994 [89] 
presented data as total area of bush 
encroachment for 1986. 
 

 14.43 1986 
commercial 

farmland 

326.41 

De Klerk, J N. Bush Encroachment 
in Namibia. 2004. [265] 

 17.80 1991 
commercial 

farmland 

23.37 

De Klerk, J N. Bush Encroachment 
in Namibia. 2004 265(based on 
work of Bester [266]) 

 24.19 1996 and 
2002 

Commercial 
& communal 

farmland 

26.41 

Zimmermann et al. 2002. [262]  26.26 2002 
Commercial 
& communal 

farmland 
 

7.88 

Table 5-3 as analysed using 
QuantumGIS® 

 29.48 2013 
Commercial 
& communal 

farmland 

12.26 

The weighted average annual bush population growth rate of 4.35% from Table 5-7 was 

computed excluding the outlying growth rate as reported for 1985. The data for 1985 was 
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omitted as it is practically impossible to decrease bush by over 60% over a 15 year period, 

and within just one year to increase it by over 300% again; neither did specific events or 

climatic occurrences as reported over the same period allude to such (Table 5-8). It is 

acknowledged that basing bush population growth on area spread only may not be a true 

reflection of the bush growth. However, this is the only published data available, and was thus 

assumed to be representative for bush growth at national level.  

Furthermore, it was accepted that various events have influenced bush population growth as 

outlined by farmer interviews (Table 4-1). Regardless, these reported events (climatic, 

political or management) do not seem to have limited spread of bush over the period 1897 to 

2013. 

It is acknowledged that this is not the case in reality as soil types, climate, topography, 

precipitation would differ from district to district and from area to area within a district. 

However, for a lack of other data pertaining to the respective district areas, the national bush 

population growth rate was also applied to all the various districts. 
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Table 5-8 Events which impacted on agricultural production in South West Africa (1897 – 1989) and Namibia (1990-2013) which may have had 
an impact on bush population growth rates [89, 267, 268] 

Event(s) in a 
certain period 

Time frame Primary effect as reported Secondary effect Remedial or other action taken by 
authorities 

Lack of Surface 
Water 

1897 - 1935 limited livestock numbers overgrazing on 1/3 of settled areas, while 
2/3 is under utilised 

sinking of boreholes; wells by 
administration; after 1935, allotment of 
"own" land; Land Settlement Ordinance of 
1920 

Economic 
Recession; Great 
Depression 

1920-1930s; 
1940s 

cancellation of farm allotments; surrender 
after World War I; recovery of rangeland 
conditions 

>50% reduction in stock numbers; lack of 
internal markets; problematic logistics 
situation 

resettlement of farmers from SWA to SA 
union; prices for cattle were more 
favourable in SA, and better assistance to 
farmers there;  

Drought 1920 - 1923; 
1933 

dieback of flora 

Cattle 
Improvement 
Ordinance of 1930 

1930 switch from meat to dairy industry; import 
of improved livestock stud quality to boost 
dairy industry; fencing off of allotments 

 Cattle:= mainly dual purpose breeds 
which are draught resistant, deliver a lot of 
milk and can be used for beef production, 
thus e.g. Afrikaner (hardy and good beef 
characteristics);  
small stock:= multiple purpose meat, 
pelts, wool, milk. 

Favourable rain 
conditions 

1934 -  1939 increased livestock numbers; better 
farming output; re-growth of flora 

excellent export market conditions (e.g. 
Karakul) 
Total cattle number- 1003100; total small 
stock number-4928600 

 

Drought 1941 dieback of fauna & flora   
Above average 
rainfall 

1942 recovery for fauna & flora but army worm 
plague destroys large rangeland areas 

  

Drought 1944 - 1947 moving of cattle from south & central 
areas to north Namibia; Karakul moved to 
Northern Cape for emergency grazing 

decrease of overall stock numbers by 
some 32% 

 

Drought 1947 - 1949 unabated drought in southern Namibia dieback of fauna and flora  

Above average 
rainfall 

1950 recovery of livestock numbers by some 
31% 
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Event(s) in a 
certain period 

Time frame Primary effect as reported Secondary effect Remedial or other action taken by 
authorities 

Low animal 
husbandry & its 
administration 

as from early 
1949 to 1960s;  

proper farm 
planning and 
management 
commenced, 
but only as 

from 1953 with 
the full 

implementation 
of cattle 

ordinance 

low output; no supportive farm 
administration "cattle farming in Namibia 
was very primitive and came closer to 
robber-farming than rotational utilisation 
of natural resources" [263] 

ecological detriments; farms too small to 
render sufficient income; 50% in south 
and 70% in north; 
 
vigorous growth of flora 

long term agricultural policy commission 
= conservation/reclamation of soil& 
pastures, water & augmentation of 
existing supplies; adopt improved farming 
practices to improve quality/quantity of 
farm products; farming with goats which 
belonged to natives was disallowed by 
policy due to detrimental effect on 
environment 
 
90% of all farms were planned/established 
before end 1960s with number of camps at 
least doubling from mid 1940s level 

Focus on dairy 
ranching 

1953 - 1958 intense extensive dairy farming drainage of biological capital; eventual 
collapse of extensive dairy farming 

 

Drought & FMD  1959 - 1962 continuous decline in cattle numbers 
followed by a period of over burdening 
grazing to compensate losses 

disturbed ecological balance; increase in 
bush encroachment due to continuous 
removal of grass and herb layer thus 
removing competition; absence of veld 
fires to kill bush seedlings; reduced no of 
browsing animals; climatic & other 
conditions which favour woody vegetation  

Soil Conservation Act No. 76 of 1969; 
however, not one farmer was charged 
when found trespassing the law 

Introduction of 
commercial game 
farming with aim of 
preserving wildlife 
diversity 

1967 commercialisation of game farming restocking of farms with divers sorts of 
game; more browse of especially bush & 
shrubs  
 
no proper research was done to properly 
stock, harvest and market game 

economising farming where game farming 
was considered a source of income and not 
nuisance  

Intermittent 
drought 

1970 - 1973 continuous decline in cattle numbers  Nature Conservation Ordinance No 4 of 
1975 = regulates game harvesting and 
protection of certain game species 

Intermittent 
drought 

1979 - 1983 continuous decline in cattle numbers reduction in overall flora for livestock 
farming 

Land Reclamation Strategy 1988, 
Administration for Whites 

Specification of 
economic farming 

1983 number of commercial livestock confined 
to a farming unit is confined; expected 

 1 LSU=500kg (adult cow, bull, or calf)  
1 LSU = 6 SSU (adult goat, sheep)  
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Event(s) in a 
certain period 

Time frame Primary effect as reported Secondary effect Remedial or other action taken by 
authorities 

unit better rangeland management and 
prevention of over-grazing 

carrying capacity is # ha of land required 
to feed 1 LSU for 1 year 

Northern 
Communal Areas 
(NCA) – severe 
drought 

1983 decrease of cattle numbers from 110000 to 
15000 
bush is ‘attacked’ by a fungi; large scale 
dieback of especially A. mellifera 

dieback of flora too due to drought  

International 
market for Karakul 
sheep skins 
collapses 

1985 - 1990 Karakul sheep numbers reduce from 
5million to some 300k overtime, 
especially in southern Namibia 

browse of shrubs and bush reduces 
tremendously; bush can spread faster 

 

Commencement of 
conservancies for 
wildlife 

1993 proper game management (e.g., seeing 
game as an additional source of income) 

leads to return of more indigenous, 
endemic and exotic game on otherwise 
agricultural land for livestock/crop 
production only; 
 
game numbers increase considerably, 
confined to conservancy areas; initially 
this reduces bush, later more pressure is 
put on rangeland to accommodate 
increased fauna 

this seems to be a remedial action, trying 
to reintroduce game as a means to browse 
vegetation other than grass (seasonal and 
perennial); 
 
game counts are done only on farms 
members to a specific conservancy; 
additional game counts are done by 
government (Min of Environment & 
Tourism) for endemic, endangered species 
(e.g. Hartmann Mountain Zebra) 

Intermittent 
drought 

1995 – 1998 decrease of livestock numbers in general dieback of flora Government introduces drought relief 
scheme 

Promulgation and 
commencement of 
agricultural 
(commercial) land 
reform act 

1995 Government is enabled to enforce “willing 
buyer-willing seller” principle, and has 
first right of refusal to buy agricultural 
(commercial) land; per hectare land price 
increases 

hasted sales of agricultural (commercial) 
land; 
 
overall livestock production decreases; 
previously productive farms go out of 
production, with little to no rangeland 
management taking place on such farms; 
some 5Mha is affected 

Government resettles previously 
disadvantaged population groups to farms 
bought under the “land reform and 
resettlement programme” 
 
Government makes subsidised loans 
available to resettled farmers under the 
programme “affirmative action loan 
scheme” 
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Event(s) in a 
certain period 

Time frame Primary effect as reported Secondary effect Remedial or other action taken by 
authorities 

Introduction of 
communal 
agricultural land 
reform act 

2002 regulating the use of grazing, water points 
and holding of traditional leasehold in 
communal land areas 

overstocking of livestock in certain areas, 
especially in the NCA; additional pressure 
is exerted on rangelands in NCA 

 

large scale veld 
fires 

2003 – 2006 
2006 

fires created loss of grazing over some 
5Mha in especially large livestock farming 
areas during these years 
 
2006 very good rains spur off vigorous re-
growth of flora 

hasted sales of cattle production 
also bush dieback due to large scale fires 

Government introduces a relief scheme, 
especially in communal farmland areas; 
additional slaughtering of cattle at export 
accredited abattoirs 

Amendments to 
Customs & Excise 
Act 1998 

2003 additional pressure on grazing as large 
numbers of livestock remained in the 
country as Namibian market gets over-
saturated 

over time, commercial livestock numbers 
reduce to accommodate market forces 

Notice on introduction of export levies on 
cattle weaner & pickled skin exports 

Amendments to 
Customs & Excise 
Act 1998 

2007 additional pressure on grazing as sheep 
remained in the country as Namibian 
abattoirs were unable to accommodate 
additional animals to slaughter 

over time, fat tail sheep numbers reduce to 
accommodate market forces 

Notice on regulating export of fat tail 
sheep; 6 sheep must be slaughtered in 
Namibia, before 1 can be exported live for 
slaughter in SA 

Above average 
rainfall 

2008 - 2012 vigorous re-growth of flora restocking of commercial livestock, in 
some areas far more than considered good 
under recommended rangeland 
management practice 

 

Drought 2013 dieback of flora hasty sale of commercial livestock; 
dieback of wildlife, especially that 
confined to conservancy areas where it 
cannot migrate naturally 

Government introduces a relief scheme; 
additional slaughtering of cattle at export 
accredited abattoirs, and ‘opening’ of the 
border to allow additional export of life 
livestock to South Africa 
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In addition to reports as summarised in Table 5-7, data on bush encroachment and the possible 

bush yield in the non-freehold areas were documented in the Ministry of Environment of 

Tourism forest inventory reports from 1998 to 2003. From the reports, total bush inventory 

which can be utilised in various ways is as high as 24wet-t/ha [269]. The high yields are partly 

due to the subtropical ecological zones in north-eastern Namibia [270, 271, 272, 273, 274, 

275] which are strictly speaking not bush-encroached (Figure 5-1). In other areas there are 

almost no trees or the area is declared as arid [276, 277, 278]. The most common bush and 

tree yield after first assessments was documented as being between 13 and 16 t/ha and 

consisting mainly of Acacia-species [279, 280]; however Table 5-5 indicates that yields above 

16 t/ha are possible in very densely populated encroachment bush areas. Table 5-9 presents 

disaggregated data analysed by this research and according to farmland district centres 

(similar to rainfall data analyses) as per standing wood densities in 2013.  

Table 5-9 Analysed bush encroachment levels of affected farmland areas in 2013 

Name of 
livestock 
production 
district 

Weighted 
mean bush 
density of all 
species and 
the bush 
encroached 
area (TE ha-1) 

Total district 
area affected 
by bush 
encroachment 
(rounded Mha) 

District 
area 
(rounded 
Mha) 

Total 
potential 
yield from all 
species 
(rounded 
wet-Mt ha-1) 

Type of land 
ownership 
bush 
encroached 

Eenhana 4,778 0.6 2 14.02 non-freehold 
Gobabis 4,407 3.4 4.8 125.45 freehold & 

non-freehold 
Grootfontein 9,162 2.4 2.4 106.79 freehold 
Karibib 3,000 0.6 1.5 18.59 freehold 
Khorixas 2,672 2.3 5.5 42.77 non-freehold 
Mariental 2,000 0.9 10 3.6 freehold & 

non-freehold 
Okahandja 3,912 0.5 0.6 20.41 freehold 
Okakarara 4,232 1.4 1.4 65.83 non-freehold 
Omaruru 3,241 0.8 0.8 29.53 freehold 
Ondangwa 4,000 0.1 0.2 1.39 non-freehold 
Opuwo 2,501 1.8 6.8 21.89 non-freehold 
Oshakati Bush 

encroachment 
noticeable in 
some parts 

 0.2  non-freehold 

Otjinene 6,422 1.6 1.7 74.09 non-freehold 
Otiwarongo 5,467 3.2 3.2 192.03 freehold 
Outjo 3,845 0.7 0.8 20.30 freehold 
Rehoboth 2,000 0.05 1.2 0.2 non-freehold 
Rundu 10,000 0.7 4.2 33.18 non-freehold 
Tsumeb 6,289 4.1 3.2 125.99 freehold & 

non-freehold 
Tsumkwe 2,708 1.7 4.7 79.35 non-freehold 
Uutapi 1,394 1.5 2.7 17.59 non-freehold 
Windhoek 256 0.9 3.7 30.60 freehold 
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Bush density (in TE-units) levels per farmland district changed for the period 2002 to 2013; 

and, bush encroachment spread to adjacent areas over the same period as visualised by Figure 

5-1. Table 5-10 provides an indication on how bush encroachment developed over time in the 

livestock farming areas between 2002 and 2013. The latter time period is highlighted as 

detailed information is available as presented by Table 5-10. 

Table 5-10 Bush encroachment development in farmland areas between 2002 and 2013 

Period of 
assessment  

Total district 
area (Mha) 

Total district 
area affected by 
bush 
encroachment 
(rounded Mha) 

Weighted mean 
bush 
encroachment 
level (TE ha-1) 

Type of land 
ownership bush 
encroached 

2002, reported 
in 2004 [265] 

32.5 10.5 5,027 non-freehold 

 30.2 15.8 5,018 freehold  
 

2013 32.5 15.4 2,222 non-freehold 
 30.2 14.1 2,541 freehold 

From Table 5-10 it seems that the weighted average bush encroachment level for the 

Okakarara and Otjiwarongo district has halved. However, bush encroachment seems to spread 

first spatially before it increases in wood density. The latter is supported by literature which 

reported on bush encroachment spread, not density levels (Table 5-7). 

Apart from considering the selection criteria for wood harvesting, and subsequent bioenergy 

production via fast pyrolysis such as infrastructure, logistics, handling, storage, manufacturing 

capability, and costs to harvest bush, it was worthwhile to consider the data as presented in 

Table 5-9 and Table 5-10 in a graphic manner as per Figure 5-2 and Figure 5-3. 
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Figure 5-2 Weighted average bush inventory (in kTE ha-1) compared to the size of the 
commensurate livestock production district in Namibia in 2013 

From Figure 5-2 it seemed that harvesting bush material as feedstock for fast pyrolysis 

conversion would be worthwhile to pursue, if sourced from the livestock production districts 

of Grootfontein, Okakarara, Omaruru, Otjinene, Otjiwarongo, Outjo and Tsumeb. The 

standing density of bush, or wood material (in TE-units/ha), is relatively high if compared to 

the land size. 
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Figure 5-3 Weighted bush inventory (standing density, wet-t ha-1) and weighted average wood 
yield (in wet Mt) of all livestock production districts which are bush encroached in 
Namibia, 2013 

As mentioned in sections 3.4.4 and 3.4.6, the level of bush encroachment is directly, but 

inversely correlated to the same farmland’s carrying capacity. Table 5-11 presents the carrying 

capacity developments for the affected farmland areas for the period 1970 to 2010. The 

Namibia Agricultural Union [98] suggests that commercial livestock production (expressed 

as stocking rates in kg/ha) should be at least one-third of or equal to carrying capacity (kg/ha), 

but should not exceed the carrying capacity due to ecological and environmental reasons, to 

be economically viable for the farmer. 
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Table 5-11 Agricultural Land's Carrying Capacity vs Stocking Rates from 1970s to 2010 [86, 
89, 281] 

OVERALL TOTALS 

   1970s 1989 - 2002 2003 - 2010 

AGRICULTURE 
DISTRICT 
(Farmland area) 

Total Area 
of District as 
assessed in 
2003 – ha 
(rounded) 

Total 
Carrying 
capacity - 
assessed kg 
body mass 
per ha 

Total 
Carrying 
capacity - 
assessed kg 
body mass 
per ha 

Total 
Stocking 
Rate - 
produced 
kg body 
mass per ha 

Total 
Carrying 
capacity - 
assessed kg 
body mass 
per ha 

Total 
Stocking 
Rate - 
produced 
kg body 
mass per 
ha 

Eenhana 1,070,300    41.64   43.58 

Gobabis 4,828,995 37.08 24.98 24.08 25.55 17.39 

Grootfontein 3,134,433 44.01 17.43 25.13 17.84 21.40 

Karibib 1,886,300 19.30 6.38 4.91 6.41 4.41 

Khorixas 1,505,012 18.14 7.90 9.41 8.25 9.71 

Mariental 5,494,933 16.71 13.44 9.80 13.39 11.78 

Okahandja 1,769,864 36.55 20.11 26.70 20.72 23.52 

Okakarara 660,919 45.00 28.57 59.18 28.57 43.88 

Omaruru 1,636,375 27.29 13.61 13.04 14.34 13.26 

Ondangwa 5,324 36.00 15.00 6,174.86 15.00 2,690.78 

Opuwo 24,996 36.00 20.00 2,619.09 20.00 2,828.90 

Oshakati 10,235 45.00 15.00 0.00 15.00 0.00 

Otjinene 588,721 45.00 30.00 61.81 30.00 63.97 

Otjiwarongo 2,052,268 42.24 20.02 14.03 23.04 11.49 

Outjo 2,504,822 31.64 14.22 14.05 16.64 12.05 

Rehoboth 1,206,108 18.32 11.39 15.59 11.39 11.17 

Rundu 299,356 45.00 30.00 146.39 18.52 141.31 

Tsumeb 924,331 42.31 18.22 24.81 16.32 94.68 

Tsumkwe 1,320,000   3.34  4.66 

Uutapi 24,995 36.00 20.00 69.62 20.00 3,826.31 

Windhoek 3,701,119 30.98 16.19 17.04 17.51 12.16 

Considering the results as presented in Figure 5-2 and Figure 5-3 in combination, it seems that 

harvesting wood material from Grootfontein, Okakarara, Otjiwarongo and Tsumeb livestock 

production districts would render the most economic for fast pyrolysis route to follow. 

However, from Table 5-11 the Grootfontein and Tsumeb farmland areas seem to be already 

stocked in excess of the suggested carrying capacity. The farmland areas of Okakarara and 

Otjiwarongo were investigated further; stocking rate with commercial livestock is less than 

carrying capacity.  
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5.1.4 Dynamic features of the data 

Keeping record of annual bush growth and inventory would assist interested parties in 

integrating e.g. bioenergy production inputs and livestock production into one system, thereby 

not perceiving bush as an ‘enemy’, but a valuable resource to be sustained. In constructing 

data management records, the rainfall data features are of relevance (Table 5-12).  

Testing rainfall data of farmland areas affected by bush encroachment for stationarity is done 

by conducting the Augmented Dickey-Fuller (ADF) test; the NULL hypothesis is that total 

annual rainfall data has a unit root. If the unit root can be rejected, the data is stationary. To 

reject the unit root, the t-statistic value of the variable at 1%, 5% and 10% confidence levels 

for the number of observations in each respective sample needs to be greater than the critical 

t-statistic value. The tests are solved in EViews®8. Results are shown for all livestock 

production districts which are bush encroached, although not all data sets will be used for 

modelling. Data sets to be utilised for modelling are selected according to the criteria as 

mentioned in section 5.1.3 above and presented in Table 5-14. 

Table 5-12 Data analyses and results rainfall data from the period 1891 - 2012 

Data type analysed Data test conducted Test result Conclusions & 
Remarks 

Long term average 
rainfall of all districts 

ADF (unit root test) t-stat critical value at 
1% confidence level 
v’s t-stat result: 
-3.48 > -11.40 for 
122 observations after 
adjustments  

  

Reject that long term 
average rainfall has 
unit root; therefore 
data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Eenhana 

ADF (unit root test) -3.62 > -4.71 for 37 
observations after 
adjustments  

  

Data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Gobabis 

ADF (unit root test) -3.49 > -10.75 for 
102 observations after 
adjustments  

  

Data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Grootfontein 

ADF (unit root test) -3.49 > -12.22 for 
107 observations after 
adjustments  

  

Data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Karibib 

ADF (unit root test) -3.49 > -10.51 for 
110 observations after 
adjustments  

  

Data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Khorixas 

ADF (unit root test) -3.52 > -9.98 for 77 
observations after 
adjustments 

  

Data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Mariental 

ADF (unit root test) -3.49 > -10.45 for 
105 observations after 
adjustments  

  

Data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Okahandja 

ADF (unit root test) -3.49 > -11.78 for 
115 observations after 
adjustments  

  

Data series is 
stationary, at 1% 
level 
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Data type analysed Data test conducted Test result Conclusions & 
Remarks 

Long term average 
rainfall of Okakarara 

ADF (unit root test) -3.54 > -7.79 for 62 
observations after 
adjustments  

  

Data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Omaruru 

ADF (unit root test) -3.50 > -9.89 for 105 
observations after 
adjustments  

  

Data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Ondangwa 

ADF (unit root test) -3.50 > -10.35 for 94 
observations after 
adjustments  

Data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Opuwo 

ADF (unit root test) -3.59 > -2.69 for 63 
observations after 
adjustments  

Data series is 
stationary, at 10% 
level only. Data 
series is very 
discontinuous 

Long term average 
rainfall of Oshakati 

ADF (unit root test) -3.53 > -6.93 for 67 
observations after 
adjustments  

Data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Otjinene 

ADF (unit root test) -3.50 > -9.59 for 86 
observations after 
adjustments  

Data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Otiwarongo 

ADF (unit root test) -3.50 > -11.57 for 102 
observations after 
adjustments  

Data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Outjo 

ADF (unit root test) -3.50 > -11.22 for 105 
observations after 
adjustments  

Data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Rehoboth 

ADF (unit root test) -3.50 > -10.09 for 110 
observations after 
adjustments  

Data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Rundu 

ADF (unit root test) -3.50 > -9.27 for 99 
observations after 
adjustments  

Data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Tsumeb 

ADF (unit root test) -3.50 > -11.62 for 101 
observations after 
adjustments  

Data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Tsumkwe 

ADF (unit root test) -2.61 < -1.99 for 38 
observations after 
adjustments  

Data series is NOT 
stationary, even at 
10% level only. 
Data series is very 
discontinuous, and 
too few observations 

Long term average 
rainfall of Uutapi 

ADF (unit root test) -3.51 > -7.56 for 82 
observations after 
adjustments  

Data series is 
stationary, at 1% 
level 

Long term average 
rainfall of Windhoek 

ADF (unit root test) -3.49 > -11.75 for 120 
observations after 
adjustments  

Data series is 
stationary, at 1% 
level 

From Table 5-12, all annual rainfall data series of livestock production districts, except that 

of Opuwo, are stationary. Therefore, using rainfall data in modelling bush growth is eased, as 

no further data manipulation is necessary. However, rainfall is highly variable, as visualised 

by Figure 5-4 and Figure 5-5. From Figure 5-5 it can be observed that rainfall is concentrated 

in the period October to April which falls into the summer season of Namibia. 
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Figure 5-4 Weighted average rainfall of all livestock production districts and weighted long 
term average rainfall for Namibia, 1891 – 2012 (as per data analyses done using 
[261]) 

 

Figure 5-5 Analyses of monthly rainfall of all livestock production districts compared to 
monthly rainfall of bush encroached livestock districts for Namibia, 1891 – 2012 (as 
per data analyses done using [261]) 

From Figure 5-5 it can be deduced that bush encroached farmland areas received more rain on 

average than the combined farmland areas. The average higher rainfall seems to be one reason 

why bush (and other plant) growth is more vigorous in certain farmland areas than others. It is 

not the aim of this research to explain how much bush growth will take place during each season, 
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but rather to find a plausible bush growth (and re-growth) rate to establish the amount of wood 

from the selected livestock production districts that could be available for bioenergy production 

on a sustainable basis. Therefore, combining the information of Figure 5-3 and Figure 5-5 

provides a strong basis for biomass modelling in the areas Grootfontein, Okakarara, Otjiwarongo 

and Tsumeb. The analyses results are shown in Figure 5-6. 

 

Figure 5-6 Analyses of long term average rainfall (in dm year-1) for the period 1891 - 2012, 
weighted average standing bush density (in wet-t ha-1) in 2013 and potential 
weighted average bush yield after first harvest (in wet-Mt) in 2013 of bush 
encroached livestock districts for Namibia 

To measure the impact of harvesting bush material in a certain area in view of improving 

agricultural land productivity, this research considers total livestock numbers that can be kept 

(section 3.4.7.1). Scientifically, it would be better to measure rangeland improvements instead 

of possible additional number of livestock. However, grass or plant biomass other than 

harvested, and sold wood from bush, do not have a monetary value; and to measure rangeland 

improvements, scientific research would have to be carried out over several rainy seasons. As a 
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secondary outcome to harvesting bush for bioenergy production, this research sought to establish 

how decreased bush encroachment could improve livestock productivity. Figure 5-7 presents 

information on the possible yield of wood (in wet-Mt) after a first harvest, rainfall and current 

average level of commercially valuable livestock density (in Mt live body mass). 

 

Figure 5-7 Analyses of long term average rainfall (in dm year-1) for the period 1891 - 2012, 
potential weighted average bush yield after first harvest (in wet-Mt) in 2013, and 
long term average livestock density of all commercially valuable livestock types (in 
total Mt) for the period 1986 - 2012 of bush encroached livestock districts for 
Namibia 

From the information presented in Figure 5-7 this research focussed on the farmland areas 

Okakarara and Otjiwarongo, for the following reasons:  

• Wood yield from harvesting bush is considered to be economically viable; 

• Livestock density is significantly lower than many other bush encroached farmland areas, 

therefore bush thinning is considered to be necessary, to improve farmland productivity and 

livestock output. 
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• For both areas, the complete farmland area is covered by bush encroachment (Figure 5-1, 

Figure 5-8).  

• Okakarara and Otjiwarongo farmland areas are adjacent to each other, which eases logistics. 

• Okakarara and Otjiwarongo farmland areas are predominantly encroached by Acacia 

mellifera spp. detines, which eases considerations on techno-economics as these species 

were tested with regard to thermo-chemical conversion (Chapter 7, section 7.1.1.). 

• An electrical distribution hub is situated in the Otjiwarongo district, close to Otjiwarongo 

town which eases potential power transmission and distribution (Figure 5-10).   

 
Figure 5-8 Map indicating the constituencies of Namibia; the farmland areas Okakarara and 

Otjiwarongo are shaded; the livestock prodution area Otjiwarongo is the combined 
constituency area of ‘Otjiwarongo’ and ‘Omatako’ 

Large livestock numbers reduced over the period 1975-2013 [86]. Cattle numbers for Okakarara 

reduced from 90,539 to 87,971. However, at times cattle numbers were as high as 128,454 in 

1977. Other large livestock numbers, i.e. horses, donkeys and game showed little to no 

mentionable decline for the Okakarara district. By 2013 small livestock numbers, i.e. goats and 

sheep, increased to almost double the amount reached in 1975. Cattle numbers in Otjiwarongo 

reduced from 160,486 to 72,033; but were as high as 189,350 in 1972. Small stock livestock 

numbers, i.e. goats and sheep, in the Otjiwarongo district showed similar decline over the period 
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1971 to 2013. Other large livestock numbers (horses and donkeys) remained stable over the said 

period.  

In general, and as specifically discussed in section 4.1.1, farmers and authorities see a strong 

relationship between annual total rainfall, annual livestock output and bush encroachment. This 

relationship was tested  based on data presented; a direct relationship could not be found (section 

6.1). Livestock data analyses for the Okakarara and Otjiwarongo production areas are presented 

in Table 5-13. Data is analysed in EViews®8, in the same manner as rainfall data analyses were 

carried out (Table 5-12). Table 5-13 shows the results for cattle data analyses only; in a similar 

manner, small livestock and other large stock data analyses were undertaken. The combined 

commercial livestock numbers are presented in Table 5-14. 

Table 5-13 Large livestock data analyses and results for the Okakarara and Otjiwarongo 
production areas for the period 1971 to 2013 

Data type analysed Data test conducted Test result Conclusions & 
Remarks 

Cattle data series for 
Okakarara 

ADF (unit root test) t-stat critical value at 
1% confidence level 
v’s t-stat result:  
-2.95 > -3.64 for 40 
observations after 
adjustments  
(1973-2013) 

  

Reject that cattle 
numbers have an 
unit root; therefore 
data series is 
stationary, at 1% 
confidence level. 

Cattle data series for 
Otjiwarongo 

ADF (unit root test) t-stat critical value at 
10% confidence level 
v’s t-stat result: 
-2.31 > -3.62 for 42 
observations after 
adjustments  
(1971-2013) 

  

Reject that cattle 
numbers have an 
unit root; therefore 
data series is 
stationary, at 10% 
confidence level. 

 

Data series for small livestock units and other large livestock units are stationary. Livestock 

numbers were not continuously documented by authorities for the period 1970 to 2013; no 

livestock numbers were available for all farmland areas for the years 2007, 2008 and 2009. 

Interpolation was used to estimate these years’ cattle numbers for modelling wood-based 

biomass resources and to match available data for rainfall. The livestock data series of Okakarara 

and Otjiwarongo are stationary; it can therefore be assumed that the livestock numbers will 

return to the long term average number over time, considering also rainfall patterns and 

harvesting of bush (section 6.1.1). The time series for livestock numbers and rainfall in 

Okakarara and Otjiwarongo which were used for wood-based biomass modelling is presented in 
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Table 5-14. Conversion ratios (section 3.4.7) were used to derive at the total livestock numbers 

equivalent to large livestock units. Interpolation was carried out in EViews®8 using the 

interpolation function of the software for each of the data sets where data was missing. For dates 

before 1971, too many annualised data sets were not provided, rendering the data series 

unreliable and thus data before 1971 was not used. 

Table 5-14 Time series for rainfall (mm/a) and all livestock roaming on farmland for the 
Okakarara and Otjiwarongo production areas for the period 1971 to 2013 

 Okakarara Otjiwarongo 
Time (year) Rainfall (mm/a) LSU-equivalent Rainfall (mm/a) LSU-equivalent 

1971 362.0 76,063 
(interpolated) 

486.4 180,584 

1972 275.0 77,028 
(interpolated) 

381.9 207,488 

1973 167.6 82,415 276.3 158,838 
1974 664.4 94,036 

(interpolated) 
728.8 113,297 

1975 405.1 105,656 364.0 138,175 
1976 613.3 105,657 622.5 136,700 
1977 525.0 142,687 511.7 132,614 
1978 603.0 122,407 572.5 140,488 
1979 520.1 115,155 492.7 123,686 
1980 237.5 101,387 332.2 102,800 
1981 215.1 113,579 187.5 87,497 
1982 257.2 111,767 384.0 87,244 
1983 316.0 109,162 280.7 78,658 
1984 233.4 111,698 285.1 82,128 
1985 229.4 120,980 456.8 93,132 
1986 329.8 120,251 429.1 198,436 
1987 281.3 122,406 393.5 195,228 
1988 275.9 131,646 404.8 198,197 
1989 324.9 124,737 276.2 83,518 
1990 334.8 142,446 447.2 111,849 
1991 422.9 140,482 515.1 102,274 
1992 234.1 (interpolated) 100,913 152.8 112,960 
1993 520.4 (interpolated) 105,718 489.1 109,730 
1994 303.8 (interpolated) 110,923 338.3 99,325 
1995 176.7 (interpolated) 122,326 233.4 69,481 
1996 259.1 121,074 249.5 65,868 
1997 575.0 114,436 522.2 70,530 
1998 287.0 132,140 191.9 68,051 
1999 306.3  114,585 495.3 69,484 
2000 375.9 99,710 394.0 64,193 
2001 404.1 102,998 382.2 66,207 
2002 283.0 95,628 328.6 79,764 
2003 214.3 97,879 297.5 78,861 
2004 393.8 100,248 432.9 93,295 
2005 284.2 100,520 434.1 90,965 
2006 649.8 97,194 744.2 55,113 
2007 166.4 102,026 

(interpolated) 
302.2 63,725 

(interpolated) 
2008 594.9 100,954 

(interpolated) 
468.7 72,337 

(interpolated) 
2009 317.8 102,834 

(interpolated) 
531.3 80,948 

(interpolated) 
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 Okakarara Otjiwarongo 
Time (year) Rainfall (mm/a) LSU-equivalent Rainfall (mm/a) LSU-equivalent 

2010 565.1 104,714 856.2 89,561 
2011 512.3 106,259 512.1 94,447 
2012 410.2 116,634 398.9 86,679 
2013 174.4 112,590 145.1 79,716 

Average 362.8 110,092 412.3 104,978 

 

5.1.5 Conclusions on wood-based biomass and bush encroachment related data of Namibia 

Section 5.1 dealt with data requirements and availability; as well as data manipulation and 

relationships between data series relevant for wood-based biomass modelling in the Namibian 

context. Information was presented for the following types of data: 

• recorded development of bush encroachment in Namibia for the period 1956 to 2013; 

• status of bush encroachment in Namibia, 2013; 

• factors to convert TE-units and TE-units/ha to kg and kg/ha for each declared bush 

encroachment species; 

• potential wet-t/ha wood yield after first time harvest from each bush encroached farmland 

area; 

• bush population annual growth rate in % over the period 1956 to 2013; 

• long term average rainfall of farmland areas most affected by bush encroachment; 

• carrying capacity developments for the period 1970 to 2010; 

• the suggested ‘optimal’ level of bush coverage in TE-unit/ha; 

• dynamic features of the rainfall and livestock (i.e. cattle) data and the implications for ease 

of modelling, and the relationship between data types. 

In addition, section 5.1.3 focused on two specific farmland areas, i.e. Okakarara and Otjiwarongo 

where the potential wood yield from bush encroachment is high; and improvements in the 

livestock output are considered to be noteworthy if bush encroachment is reduced. The specific 

bush encroachment levels (in TE-units/ha and potential wood yield after first harvest in wet-

t/ha) and potential bioenergy yields are presented in Table 5-15. 
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Table 5-15 Analysed potential wood yields after first time harvest of the complete farmland 
areas Okakarara and Otjiwarongo in 2013 

Farmland 
area 

Weighted 
mean 
bush 
density of 
all 
species 
(TE ha-1) 

Annual 
bush 
population 
growth 
rate (%) 

Potential 
wood 
yield 
after 
first 
harvest 
(wet-Mt) 

HHV  
(MJ 
kg-1) 

Potential 
bioenergy 
yield 
after first 
time 
harvest 
(TJ) 

Suggested 
level of 
bush 
density to 
be left 
(TE ha-1) 

Type of 
farmland 
ownership 

Okakarara 4,297 3.18 27.09 18.6 503.87 2,500 non-
freehold 

Otjiwarongo 5,606 3.18 104.87 18.6 1,950.58 2,500 freehold 
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5.2 BIOMASS DATA REQUIREMENTS AND AVAILABILITY – SOUTH AFRICA 

5.2.1 Review of wood-based biomass related data availability 

From Chapter 4, Section 4.1.3 some selected wood-based biomass resources are available for 

bioenergy production via the fast pyrolysis route; others are not allowed to be used or the demand 

for them is in excess of their local production. For example, the demand for residues from wood 

chips generated by saw and paper mills outstrip the supply of the same resource (Figure 4-5); it 

seems that additional wood chips are sourced from elsewhere to satisfy the demand. The data 

and its properties are presented in the tables that follow. The total amount of wood potentially 

available for fast pyrolysis production is summarised in Table 5-16. 

• Wood residues from commercial forestry activities, are considered to be some 20% of annual 

round wood production, for both softwood and hardwood together (Figure 4-6), of which 

half is considered to be left in the forests to decay, and half could be used for fast pyrolysis 

conversion. 

• Wood from woodlands and bush encroachment by mainly indigenous Acacia species, and 

where livestock is reared in Acacia woodlands (Table 4-3), and; 

• Wood and wood chips generated by the ‘Working for Water (WfW)’ programme through 

eradication of alien tree species from selected areas (Table 4-4). 

Table 5-16 Analysed potential amount of wood-based biomass available for fast pyrolysis 
conversion 

Name of wood-based 
biomass 

Average 
amount  
(wet-Mt a-1) 

HHV  
(MJ kg-1) 

Total potential 
bioenergy yield 
(TJ) 

Total energy 
potential 
(Mtoe) 

Commercial forest 
residues after harvest for 
other industries 
(averages for period 1979 
– 2008/09) 

    

Softwood 0.9 20.21 18.1 0.4 
Hardwood 0.6 18.81 11.8 0.3 

Wood from woodlands & 
bush encroachment 
(average for first time 
harvest) 

 

29.7 

 

19.31 

 

574.2 

 

13.7 

Wood-based biomass 
potential harvested from 
alien species growing in 
the Eastern & Western 
Cape 

12.9 18.41 237.7 5.68 
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Considering the information from Table 5-16, it seemed worthwhile to investigate the use of 

wood-based material from woodlands and bush encroachment, as well as the WfW programme 

as resource for conversion to bioenergy via the fast pyrolysis route. Wood-based biomass from 

commercial forestry residues at the onset seemed to deliver a resource worthwhile to consider. 

However, this material is disbursed over 1.3Mha, i.e. delivering approximately around 1t/ha of 

usable biomass. Furthermore, the forestry residues still need to be collected and piled at a more 

central collection point, and thereafter transported to a fast pyrolysis conversion facility. The 

costs of the latter seem to outstrip the potential economic benefit. Thus the use of commercial 

forest residues will not be investigated any further. Under South African circumstances, this 

research thus only investigated the use of wood-based biomass from:  

• Woodlands, mainly indigenous Acacia types, 

• Bush encroachment, mainly indigenous Acacia types, and 

• Alien plant species growing in the Eastern and Western Cape, which are a combination 

of alien Acacia species. 

5.2.2 Socio-economic, ecological and national policy indicators 

The socio-economic, ecological and national policy considerations for woodlands and alien plant 

species have been discussed in Chapter 4, sections 4.1.4 (Woodlands and Bush Encroachment) 

and 4.1.5 (Alien Species). The modelling approach (section 6.2) will considered the use of wood-

based material from woodlands and bush encroachment with a view to reduce bush 

encroachment to ecological sustainable levels. This is similar to the approach used under 

Namibian circumstances. Under the Working for Water (WfW) programme, alien species need 

to be eradicated to re-instate a bio-diverse and ecologically sustainable environment. Therefore, 

when all alien plant species are removed from e.g. the Eastern and Western Cape, this resource 

will be depleted and alternative resource material (e.g. municipal waste or other plant matter) 

could be used to generate energy via fast pyrolysis. WfW also has the policy objective to socio-

economically develop communities, especially in rural areas. This means policies for long term 

job creation and value addition would need to be considered in the modelling approach (section 

6.2).  

5.2.3 Link to other sectors and land use issues 

Under South African considerations, the linkage between wood-based biomass and bioenergy 

production for e.g. industrial use is weak [7] (section 2.5.4.2) on the one hand. On the other 
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hand, the linkage between eradication of alien plant species for improved land use options and 

biodiversity is strong [7, 60; 163]. The results of biomass modelling and fast pyrolysis 

technology modelling will possibly provide impetus to positively link biomass production with 

bioenergy production also for industrial use; keeping various policies in mind (e.g. on climate 

change). 

5.2.4 Spatial indicators 

Woodlands from which wood-based biomass needs to be harvested and bush encroachment are 

occurring in the highland areas of South Africa, i.e. in the Limpopo, Mpumulanga and Northwest 

Provinces. The wood-based biomass to be harvested from alien species is located in the Eastern 

and Western Cape, with the greater part occurring in the Eastern Cape. The distance between the 

resources are long, i.e. more than 800km. This may lead to high logistical costs to transport and 

store resources at one location. It would thus be necessary to consider if only one, or more than 

one fast pyrolysis conversion plant is economically viable to produce bio-energy (section 6.2 

and 8.1). 

5.2.5 Dynamic features of the data 

Unlike the situation in Namibia, woodlands and bush encroachment data have not been captured 

continuously. Data is captured and presented in maps for purposes of explaining coverage; the 

data is freely accessible. However, the data presented in such maps, is ‘only’ a presence/absence 

indicator of all woodlands species, including declared bush encroachment species. The number 

of sightings cannot be related to wood density, but rather to presence of people having sited the 

occurrence of such species.  

The work of Smit [79] provides an indication on how to translate standing biomass, expressed 

as canopy-cover (%), into wood densities (TE-units). The biomass data available can be used to 

derive wood yields, in wet-t. The methodology used to analyse the data and build the biomass 

model is similar to that used in the Namibian bush encroachment situation and discussed further 

in section 6.2. The average wood yield at first harvest was said to be some 15t/ha [79]. 

In terms of the use of wood-based biomass from alien species, the data presented by the WfW 

programme presents itself with a declining trend (i.e. non-stationary) as it is the Government’s 

aim to eradicate these species over time. Section 6.2 discusses how sufficient biomass resources 

could be made available by using biomass from alien plant species to sustain a fast pyrolysis 

conversion operation for the longest possible period of time. 
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5.2.6 Conclusions on wood-based biomass data of South Africa 

Based on the above discussions, biomass from woodlands, including bush encroachment from 

the Limpopo, Mpumulanga and Northwest Provinces; and alien species from the Eastern and 

Western Cape were considered for biomass modelling by this research. The potential wood 

yields are indicated in Table 5-16. 

5.3 TECHNO-ECONOMIC DATA REQUIREMENTS AND AVAILABILITY – 

NAMIBIA 

Data on manufacturing capability, technology performance and their respective cost indicators 

is required to determine the viability of fast pyrolysis operations in Namibia. Data with 

reference to fast pyrolysis operations is not available as fast pyrolysis projects have not been 

piloted or operational in Namibia to date. Therefore references to gasification projects or slow 

pyrolysis operations were made; this subsection draws upon information as presented in the 

literature review, section 4.3, and specifically Table 4-6. 

In Namibia [282], a national wood-based biomass gasification project was launched in 2007/8; 

the project was only marginally operational, after donor funding was stopped. Indigenous bush 

encroachment species are used in a gasifier [283] to produce 250kW power output to a 

community. The power was intended to be fed into the grid. The project was part of a pilot to 

test the feasibility of the concept and technology performance to establish further scale 

gasification plants to produce power either in a decentralised manner for a specific 

community, or to feed power into the national grid under an ‘independent power producer’ 

license. The project was initially driven by the Desert Research Foundation of Namibia, a 

private foundation with the aim of sustainable ecological management. Until March 2015, the 

project is driven by the owner of the land on which the project was established; its economic 

viability was not proven. The gasifier itself is still functional, and it was proven that wood can 

be gasified to produce electricity. Unfortunately, delivery of the generated electricity for 

distribution failed due to the lack of the regional electrical distributors’ (REDs) commitment 

to have installed an appropriate transformer to feed the electricity generated into the national 

grid in a stable and reliable manner [282]. The pilot project was funded through the European 

Development Fund Nine (EDF9) [282], where the main aim is not economic viability but 

poverty alleviation of rural communities by introducing technologies for self-reliance. 

Large scale slow pyrolysis conversion technologies were operated successfully in Namibia in 
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the past. The technology was mainly based on retort conversion processes; nowadays 

technology is based on kiln conversion processes only. The diversity of technology and its 

performance are summarised in Table 4-6 (Chapter 4, section 4.3). 

In light of the aforementioned, this research considers that there is manufacturing capability 

in Namibia; and that fast pyrolysis technology will perform similarly as elsewhere, e.g. in 

Europe. However, as fast pyrolysis technology is new to Namibia, a higher factor for total 

capital employed (TCE) [327] to build a fast pyrolysis plant in Namibia, as compared to one 

build in the USA or Europe will need to be used. Appropriate skills, political commitment 

towards the utilisation of new technologies seem to be essential elements to deploying new 

technologies [39]. Details on the costing approach associated with building and operating a 

fast pyrolysis plant, and the assumed manufacturing capability and technology performance 

are provided in Chapter 8 and 9. 

5.3.1 Socio-economic, ecological and national policy indicators 

Namibia’s policy environment is conducive for manufacturing activities and to increase the 

technological adaptability and performance in general [6, 16, 90]. The Government of the 

Republic of Namibia supports manufacturing activities through taxation based incentives 

[284] and the “Industrial Upgrading and Manufacturing Programme (IUMP)” [285]. On 

taxation based incentives, only new or substantially expanded and/or diversified 

manufacturing activities of registered companies are eligible to apply for registration as 

“manufacturer” or obtain “manufacturing status” with the Ministry of Industrialisation, Trade 

and SME Development (MITSD). Approval to benefit from taxation based incentives is then 

provided by the Ministry of Finance. The IUMP, offered through the Namibian MITSD, is an 

application and techno-economic assessments based direct financial grants programme, which 

is implemented with the assistance of the United Nations Industrial Development Organisation 

(UNIDO). The maximum grant provided depends on the recommendation based on the 

assessment, but does not exceed NAD15 million per application. The establishment of a fast 

pyrolysis operation in Namibia would likely be able to be registered as manufacturer and/or 

benefit from the IUMP. However, grants or subsidies are dealt with on a case by case basis, 

and are not guaranteed. Therefore, for this research the costing approach does not consider 

incentives or financial grants in establishing the feasibility or viability of fast pyrolysis.  

According to environmental and ecological regulations in Namibia [286], before setting up a 
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new or expanding an existing exploration activity, industrial conversion factory or 

manufacturing plant, an environmental clearance certificate must be obtained. The certificate 

is to be obtained from the Namibian Environmental Commissioner. Upon screening the 

application for an environmental clearance certificate, the Environmental Commissioner 

decides if an assessment is required. The steps to be followed for an assessment include: 

• scoping – the Environmental Commissioner decides on the scope and procedure for the 

assessment;  

• environmental impact assessment (EIA) – the proponent carries out the assessment and 

summits an assessment report to the Environmental Commissioner; 

• public consultation – persons who may be affected by the activity are notified and given 

a chance to inspect the assessment report and make submissions on it; 

• review – the Environmental Commissioner reviews the application for the 

environmental certificate. This process can include further consultations or 

investigations; 

• decision on certificate – the Environmental Commissioner decides on whether or not to 

grant the environmental clearance certificate. 

The EIA must be carried out by an independent party, i.e. a professional or team of 

professionals not associated with the technical or financial viability or business plan of the 

project. The costs involved depend on the size of the team of professionals and complexity of 

the project. Table 5-17 and Table 5-18 provide an overview of indicative costs associated with 

carrying out an environmental impact assessment to obtain an environmental clearance 

certificate before the commencement of construction of a new fast pyrolysis conversion plant 

in Namibia. The information on cost indicators to carry out an EIA was obtained by sourcing 

quotations of possible service providers. 

Concurrently to negotiating access to the biomass in both, the Okakarara and the Otjiwarongo 

districts, an environmental clearance certificate needs to be obtained for each site where 

harvesting of biomass would take place [286]. Obtaining such environmental clearance license 

is the responsibility of the owners and/or project promoters. An EIA for fast pyrolysis conversion 

in Otjiwarongo town needs to be carried out and approved before its operationalization. To 

successfully conclude agreements to access the biomass and utilise it, it is suggested to appoint 

a lawyer, or a group of lawyers as well as a land valuator. The costs involved are summarised in 

Table 5-15. 
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Table 5-17 Indicative rates to carry out an environmental impact assessment (EIA) for a fast 
pyrolysis conversion plant in Namibia (at 2012/13 market prices) 

Type of professional Daily Rate (NAD) Hourly Rate (NAD) 
Environmental Assessment 
Practitioner 

from 10,000 from 1,500 

Ecologist/ Rangeland Scientist from 4,500 from 500 

Hydrologist/ Geo-Hydrologist from 5,000 from 600 

Soil Scientist from 7,500 from 1,000 

Agricultural Engineer from 10,000 from 750 

Site Rehabilitation Specialist from 10,000 from 750 

Specialist for accreditation under e.g. 
FSC or ISO 14000  
(no expertise available in Namibia) 

from 12,000 from 1,500 

 

Table 5-18 Other than directly related to the engagement of professionals, cost indicators to 
carry out an environmental impact assessment (EIA) for a fast pyrolysis 
conversion plant in Namibia (at 2012/13 market prices) 

Type of expense Rate (NAD) 
Travel   

Road transport, 4x4 vehicle from 4.50/km  
Domestic air transport, return 

flight 
from 3,500  

International air transport, 
return flight 

from 8,000  

Accommodation, bed and 
breakfast type 

from 500/ overnight  

Per diem (costs other than 
travel & accommodation) 

from 200  

Public hearing and/or 
workshop 

per day per hour 

Venue hire from 1,500 from 300 
Refreshments (per participant) from 360 from 50 
Audio-visual material hire (per 

type of equipment) 
from 1,000 from 100 
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5.3.2 Link to other sectors and land use issues 

The considered fast pyrolysis operations under Namibian conditions focused on the farmland 

areas of Okakarara and Otjiwarongo (section 5.1.5). Biomass use in the Okakarara district is 

guided by land use options for Okakarara, and need to consider traditional, communal land use 

rules and regulations. This means, that the Okakarara Traditional Authority would need to 

provide the authorisation first, then only would the Namibian Government issue a license 

allowing the use the wood-based biomass. The Okakarara Traditional Authority would guide the 

rate at which the biomass may be removed; and determine the price to be paid per unit wet-

weight of biomass. The biomass would be harvested from the Okakarara district; fast pyrolysis 

conversion would take place in Otjiwarongo town area or on a commercial (freehold) farm in 

the Otjiwarongo district area. 

Wood-based biomass use in the Otjiwarongo district is guided by land use options for the 

Otjiwarongo commercial farmland area. This means, land titles are registered as freehold land 

and land owners themselves can guide the use of wood-based biomass, and determine the price 

to be paid per unit wet-weight of biomass. Biomass removed from Otjiwarongo freehold land 

will be transported to Otjiwarongo town; fast pyrolysis conversion would take place in 

Otjiwarongo town or on a commercial (freehold) farm in the Otjiwarongo district area. 

Table 5-19 Professional fees for lawyers and land valuators in Namibia (at 2012/13 market 
prices; rates are indicative only) 

Type of expense Rate (NAD) 
Lawyer From 3,500/ hour 

Land Valuator From 3,000/ site valuation 

Out of office rates As indicated in Table 5-16 

 

5.3.3 Spatial indicators 

5.3.3.1 Harvesting considerations and indicators 

By policy direction [81] the socio-economic and ecological sustainable state of Namibian 

rangelands needs to be achieved; a time horizon is not provided. to ease modelling,  a time 

horizon of at least 20 years was considered, because: 

• the affected farmland area is very large and interventions are expected to be very resource 
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intensive (human, financial, equipment, logistics, time for planning and execution); 

• downstream activities which can utilise the wood-based biomass resource need to be 

considered for their feasibility and viability under a set of useful parameters like typical 

project loan periods, technical lifespan of equipment, taxation regime ; and 

• positive socio-economic and ecological impact of reducing bush encroachment would be 

expected to be noticeable and measurable, notably e.g. with the Vision 2030 economic 

policy planning frame. 

Bush encroachment is lessened by various types of harvesting and/or clearing methods (Table 

5-20). Clearing methods used in Namibia involve manual, semi-mechanised, mechanised and 

arboricide application methods. The most common method is manual clearing and application 

of some kind of arboricide. Manual clearing involves labourers who use non-mechanised hand-

tools to slash or cut bush; hand-tools are most commonly axes and pangas (a type of machete). 

The tools are easy to handle, relatively cheap and of very low maintenance.  

Arboricide application is commonly used for thinning heavily infested areas to gain some access 

to that land and as a follow up or aftercare treatment after manual or types of mechanised 

clearing. Though selective killing of trees is not guaranteed and non-encroaching bush or tree 

species may also be killed in the process. There are various types of arboricides available on the 

Namibian market (pellets, liquids and suspension concentrates). Application of arboricides is 

either by manual distribution of pellets or spraying (large scale aerial application of arboricides 

was discontinued in the early 1990s). The arboricides sold in Namibia are either photosynthesis 

blockers or disrupters. The use of arboricides is continuously monitored as there is the possibility 

that metabolites of such may be traced in especially beef [287]. The guidelines followed by 

Namibian authorities for monitoring arboricide use are informed by the Environmental 

Protection Agency (EPA) based in the USA. 
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Table 5-20 Bush harvesting and clearing methods used in Namibia, their costs, effectiveness and environmental impact caused 

Bush harvesting or 
clearing method 

Equipment or 
other means used 

Approximate 
time and 
minimum 
amount of 
personnel 
required to 
clear 1ha of 
bush at 
2500TEha-1 

Impact/effect of clearing 
method on environment 

Ease of utilising the 
method and season in 
which method is 
recommended to be 
used 

Can wood 
material still be 
of use to fast 
pyrolysis after 
method is used? 

Approximate cost 
of method 
(NADha-1, at 
2012/13 prices), 
incl. labour and 
equipment 

Veld burning Matches, fire-clap, 
some dry plant 
material to start fire 
off, water 

1 day, must be a 
team of 6-8 
persons to 
monitor and 
control fire 

All plant material is burnt 
at once; but regrowth of 
“wanted” plant species is 
vigorous  

Unskilled people 
should not do this; 
supervision is 
necessary as there is 
great risk for fire to 
become uncontrolled; 
only to be done 
between July and 
September 

Unlikely as most 
material would be 
charred or partially 
charred; better to 
leave plant 
material behind for 
soil and small 
fauna nutrition 

<200 

Stem burning Matches, some dry 
plant material to 
start fire off, shovel, 
water 

>7 days; can be 
done single 
handed or in 
teams; time to 
clear reduces as 
team size 
increases 

Selective invasive 
tree/bush species are burnt 
only 

Semi-skilled persons 
can carry this out; each 
stem must be 
extinguished after 
being burnt down; only 
to be done between 
May and September; 
recommended to be a 
follow up or aftercare 
treatment only (after 
manual, semi-
mechanised cutting) 

Unlikely as 
material would be 
charred; better to 
leave plant 
material behind for 
soil and small 
fauna nutrition 

~900 

 

Manual arboricide 
application (pellets) 

Arboricide, 
protective clothing 

1 day, 1 person Selective invasive 
tree/bush species are to be 
treated only 

Half-life of arboricides 
vary between 6 weeks 
and over 24 months; 
arboricides that have a 

Yes; arboricides 
application is 
advised to be used 
only as follow up 

546-712 
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Bush harvesting or 
clearing method 

Equipment or 
other means used 

Approximate 
time and 
minimum 
amount of 
personnel 
required to 
clear 1ha of 
bush at 
2500TEha-1 

Impact/effect of clearing 
method on environment 

Ease of utilising the 
method and season in 
which method is 
recommended to be 
used 

Can wood 
material still be 
of use to fast 
pyrolysis after 
method is used? 

Approximate cost 
of method 
(NADha-1, at 
2012/13 prices), 
incl. labour and 
equipment 

Manual arboricide 
application (liquids 
or suspension 
concentrates) 

Arboricide, water 
(or suspension 
liquid like Diesel), 
syringe, pump (in a 
rucksack), 
protective clothing 

1 day, 1 person Selective invasive 
tree/bush species are to be 
treated only 

long half-life remain 
active for a longer 
period of time and have 
a greater potential for 
contaminating 
groundwater supplies in 
semi-arid zones (like 
Namibia); desired 
tree/plant species may 
also be killed through 
groundwater 
contamination; health 
hazards are not fully 
known; arboricides are 
only effective if applied 
just before the rainy 
season starts 

or aftercare 
treatment; cutting 
dry wood material 
is extremely 
cumbersome and 
expensive (due to 
high maintenance 
costs on 
equipment) 

550 

 

Manual cutting Axe, panga, 
protective clothing 

4-7 days, 2 
persons (1 
cutting, 1 
dragging and 
compiling 
wood) 

Selective invasive 
tree/bush species are cut 
only 

No negative impact on 
environment; also 
creates many jobs for 
unskilled and semi-
skilled labour; can be 
done throughout year, 
but best if done from 
May to November, to 
better prevent bush 
from coppicing 

Yes, though wood 
should still be 
comminuted and 
dried to the right 
size 

670 – 700 



167 
 

Bush harvesting or 
clearing method 

Equipment or 
other means used 

Approximate 
time and 
minimum 
amount of 
personnel 
required to 
clear 1ha of 
bush at 
2500TEha-1 

Impact/effect of clearing 
method on environment 

Ease of utilising the 
method and season in 
which method is 
recommended to be 
used 

Can wood 
material still be 
of use to fast 
pyrolysis after 
method is used? 

Approximate cost 
of method 
(NADha-1, at 
2012/13 prices), 
incl. labour and 
equipment 

Semi-mechanised 
cutting OR 
chipping 

Chainsaw, axe, 
panga, protective 
clothing; and for 
semi-mechanised 
chipping, a chipper, 
fed manually 

1 day, 2 persons 
(1 cutting, 1 
dragging and 
compiling 
wood) 

Selective invasive 
tree/bush species are cut 
only 

No negative impact on 
environment; also 
creates many jobs for 
unskilled and semi-
skilled labour; can be 
done throughout year, 
but best if done from 
May to November, to 
better prevent bush 
from coppicing; 
trees/bushes must be 
still alive to save on 
maintenance costs of 
equipment and tools 

Yes, though wood 
should still need to 
be comminuted 
and dried to the 
right size 

700 – 1,000 

Fully mechanised 
operations (incl. 
felling, chipping, 
compiling and often 
comminution) 

Bulldozer OR 
mechanised feller 
and chipper; 
protective clothing 

<½ day; 2 
persons (1 
driver, 1 scout to 
lead through 
terrain) 

Unselective clearing with 
great potential damage to 
soil (compaction and other 
disturbance); danger that 
very invasive species like 
Dichrostachus cinerea 
regrow  and spread even 
more vigorously, 
especially when 
bulldozers are used. An 
EIA must be in place prior 
to harvesting 
commencement. 

Only to be done by 
skilled and trained 
persons; can be done 
throughout the year, 
and when bulldozers 
are used, recommended 
to be done for making 
roads and 
protective/access fire-
strips only 

Unlikely if 
bulldozer was 
used; rather costly 
to sort wood from 
piles of debris. 
Yes, if 
mechanisation 
involves tree/bush 
felling, chipping 
and compilation. 

1,000 – 1,100 
(felling, chipping, 
compilation) 

2,000 – 4,000 
(clearing by 
bulldozer) 
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Large scale contracting for bush clearing, compiling and wood processing is done occasionally 

only. As an example, bush clearing and processing for energy production for a cement factory 

in the Grootfontein farmland district [112] is done at large scale. The bush harvesting and 

clearing is an activity commonly carried out in the interest of the farmland owners and as source 

of energy for the cement factory respectively. The farmer would pay an agreed amount per tonne 

of wood removed, and the cement factory or its subcontractor(s) would extract the wood as 

source of energy. The company [111] clears about 5kha land annually, with the available 

environmental clearance certification for the specific farmland areas. This model is a good 

solution where farmers do not possess the equipment or capacity to clear bush, yet have an 

interest to do so. This model can co-exist alongside the methodology proposed in the research. 

As a large quantity of wood is required annually (some 80kt), the cement also source wood from 

third parties to augment its own supply. 

Small scale contracting for bush clearing and/or harvesting with wood processing takes place 

more regularly. For example, the farmer would pay for the arboricides and farm workers to apply 

arboricides; the bush is left to dieback and not utilised thereafter. A similar case is with stem 

burning or veld burning – the farmers do not readily use the wood after burning. Where manual 

cutting is involved, usually also contract harvesting or clearing is done for the production of 

charcoal on such farm. In the latter case, contract labourers are engaged to manually fell bush, 

cut the wood to size and compile it to dry prior to the charcoal making process. The charcoal is 

made in the Namibian Bush Drum Kiln. The labourers in this case are paid on a per-tonne 

charcoal produced and not how much land was cleared of bush; a practice that is often 

problematic [116]. Problems relevant to this research include;  

• labour dissatisfaction due to very low prices paid for the charcoal in relation to the price 

the farmer obtains for the same charcoal; 

• negative environmental impact: it is easier to cut and use larger trees (diameters above 

15cm at knee-height) for charcoal making than thinner (diameters between 5 and 15cm at 

knee-height) and shorter bushes; charcoal from larger trees is more lumpy and heavier than 

from smaller bushes; and uncontrolled veld fires can be caused by the rather primitive 

charcoal making process as no protective barriers are set between the site where charcoal 

is made and the rest of the veld where bushes are being harvested. 

• Seasonality: farmers who have a bush encroachment problem usually know they need to 

do something about it, but may not have the financial means due to fluctuating income 
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streams in the farming business; therefore labourers are only engaged when the farmer has 

spare cash available. 

5.3.3.2 Infrastructure, logistics, handling and storage indicators 

Indicators and data on infrastructure, logistics, handling and storage are required to cost the 

setting up of fast pyrolysis conversion facilities in Namibia; from harvesting the wood-based 

biomass (bush) to marketable product (bio-oil). Table 5-21 and Table 5-22, summarise the 

various indicators, expressed as costs Namibian Dollar (NAD or N$) per unit associated with 

infrastructure, logistics, handling and storage. Infrastructure includes, e.g. various types of 

buildings required to operate a fast pyrolysis plant; logistics includes, e.g. the types of 

equipment or modes of transport to forward input materials to and products from the 

production site; handling includes e.g. type of equipment to forward input materials and 

products on the production site; and storage includes, e.g. the stock holding, either as input 

material or product on site.  

Table 5-21 Infrastructure indicators (at 2012/13 market prices) 

Type of infrastructure Costs NAD/unit Costs/unit  
(rental or lease hold) 

Property costs   

Industrial, urban land within Otjiwarongo 
(for fast pyrolysis plant) 

800/m2 not applicable/ not 
available 

Industrial, rural land  161/m2  
Commercial farmland in Otjiwarongo 

district area 
From 4,000/ha Usually calculated on 

basis of market value; 
approximately 1% of 
purchases price/ month 

Building costs   

Offices 5,000/m2 100/m2 
Industrial shell 3,000/m2  

Shed 1,000/m2  
Ablution facilities 3,000/m2  

Roads construction   

Tarred from 1,000,000/km not applicable 

Gravelled  from 500,000/km not applicable 
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Type of infrastructure Costs NAD/unit Costs/unit  
(rental or lease hold) 

Fast pyrolysis plant; excludes electricity 
generator and grid connection 

1t/h Costs to be modelled by 
this research  
(Chapter 8) 

not available 

from 5t/h Costs to be modelled by 
this research  
(Chapter 8) 
 

not available  

Furniture and fixtures (average, lump 
sum per person employed) 

from 10,000/ person not applicable 

Internet and communication technology 
(ICT); hardware only Average, lump 
sum per person employed 

from 15,000/ person not applicable 

 

Table 5-22 Logistics and handling indicators (at 2012/13 current market prices) 

Type of logistics Costs (NAD) /unit Costs (NAD)/unit  
(rental) 

Transport   

On-farm/ on-site handling & transport (e.g. 
tractor-trailer combination; forklifts) 

20/ running-km -- 

Transport of products ex-farm or ex-factory to 
market 

34/ freight-km -- 

Grader (on-site & on-farm road 
maintenance) 

not recommended 600/h 

Bulldozer (for on-site & on-farm road 
maintenance) 

not recommended from 1,000/h 

Storage equipment and related costs   

Stainless steel tanks (for bio-oil) from 200,000/ 2,500l 
tank 

Not recommended 

PVC tanks (for bio-oil) from 3,500/ 2,500l tank Not recommended 

Biomass stockholding 5% of biomass purchase 
price 

-- 
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5.3.4 Techno-economic indicators 

The information (data) on the biomass physical and chemical properties is provided in detail in 

Chapter 7. Personnel and commensurate skills/expertise requirements in general for all 

operations (bush harvesting, logistics, conversion process and administration) are discussed in 

Chapter 8 and 9. 

For calculations on capital requirements, the following information was considered:  

• Commensurate with the harvesting cycle of 20 years, the life of the project is also 20-

years.  

• The long term reposition rate (i.e., repo rate following a target band for consumer price 

index of between 3 to 6%) moves in a target band of between 3 and 6%. 

• The spread between repo rate and the prime interest rate is not to exceed 375 basis points 

(a Bank of Namibia policy directive from 2010).  

• Financial institutions usually charge a market interest rate which is based on the prime 

interest rate plus a mark-up, resulting in a 10-12% interest rate on loans. However as 

market long term interest rates on loans can vary significantly and past trends have 

favoured high-end interest rates, 12% is assumed a realistic value to use. 

• All costs for the pyrolysis equipment have been calculated for 2012/13, based on €2010-

rates and converted to Namibian Dollars (NAD or N$); capital and operational costs 

have been calculated for 2012/13 based on €2010-rates and converted to Namibian Dollars 

(NAD). 

• Plant life is based on prior track record and commercial experience of the technologies, 

and for fast pyrolysis 80% availability is assumed. 

• European based costs for equipment (assuming that essential plant parts will be bought 

and imported from the EU). 

• For modelling a priori base case feedstock costs are set at NAD100/wet-t at central 

collection point. The cost recovery feedstock price will be determined by solving the 

model. VTT report data [102] suggest a range of NAD180-220/dry-t bush delivered to 

10 MW electricity output fast pyrolysers.  

• Shipping and other transportation costs for conversion plants, or parts thereof, from 

Europe to Namibia are not included in the costs. These were assumed to be included in 

commissioning costs. 

• Compliance with EU emissions standards for NOx, SOx, particulates, VOCs and CO. 
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• Grid connection costs have not been incorporated nor land purchase costs 

(understanding is that these will be very low relative to the plant cost). 

• Fees for disposal of residues only. 

• All electricity production cost estimates are pre-tax, no incentives (e.g., no CO2 credits 

through Clean Development Mechanism (CDM) or carbon sequestration by burying 

char in the soil, no capital allowances or tax breaks in the first optimisation calculations 

of the model). Environmental credits were not provided to CDM projects to date; and 

the Kyoto Protocol lapsed in 2012. It is therefore assumed that no environmental credits 

will be provided in future. E.g. the cement factory [112] applied for such based on an 

energy supply switch from fossil fuels to biomass based energy and was denied such. 

• No financial incentives or subsidies or other environmental credits. 

Apart from the spatial considerations provided above, the assumed techno-economic indicators 

for Namibia, used in the assessment are summarised in Table 5-23.  

Table 5-23 Calculation factors used in the techno-economic assessment of a fast pyrolysis 
conversion operation, adapted from [116, 288] 

Description Calculation factor 

No of plant replications 1 

Life of project (years) 20 

Base case feedstock costs (ZAR or NAD/t) 100 

Bank reposition (repo) rate (%) 6 

Prime interest rate (%; repo rate +375 basis points) on loans 9.75 

Market interest rate (%) on loans 12 

Market interest rate (%) on deposits 4 

Long-term inflation rate (%) 6 

Corporate income tax rate (%) 29 

Management rate (NAD/year) 450 000 per person 

Labour rate (NAD/year) 70 000 per person 

No. of shifts 4 (3 shifts on, 1 on rotation) 

Overhead cost (%Capital Costs (CC)/year) 7 

Maintenance (%CC/year) 10 

Availability (hours/year) 6960  

Capital allowances None 

Exchange rate (NAD:ZAR; NAD is pegged to ZAR) 1:1 

Exchange rate (EUR:NAD); average 2010-2014 10:1 

Exchange rate (GBP:NAD); average 2010-2014 12:1 

Exchange rate (USD:NAD); average 2010-2014 8:1 
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Table 5-24 Utility costs and other reagent and techno-economic data for a fast pyrolysis plant 

Parameter Value 
Fluidisation and Cooling  Costs  

N2 (NAD/t) 200 
(Dry ice)  

Utilities-Services  
Water charge – supply (NAD/m3) 23 plus a base charge of 30 

Water disposal charge-Reception (NAD/m)3 25 
Water disposal charge-Biological (NAD/m3) 30 

Plant ash (NAD/t) 75 
Hot gas filter residues (NAD/t) 50 

Transport costs (NAD/t) 100 
Municipal refuse removal (NAD/month) 184 

Bulk electricity (per 3-phase connection)  
Deposit (NAD) 3,000 

Network charge (NAD) 550 
Capacity charge (NAD/amp) 32.40 

Usage (NAD/kWh) 1.61 
Energy Levies (NAD/kWh) 0.2252 

 

5.3.5 Data sourcing and dynamic features of the data 

All cost indicators exclude factors for or costs associated with value added tax, import or export 

duties and taxes; governmental subsidies or taxation based incentives, discount rates or 

professional fees payable for design, project management, installation, commissioning and 

training. All indicators are obtained from dealers and service providers, either in Namibia, South 

Africa or Europe. Price indicators are spot prices, and current market prices for the year 2012/13. 

Adjustments to the data are not necessary. The model (Chapter 8) takes account of prices which 

may change over time mainly due to inflation. The viability calculations are based on cost-

benefit analyses, that is, net present value (NPV) determination. 
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5.4 TECHNO-ECONOMIC DATA REQUIREMENTS AND AVAILABILITY – 

SOUTH AFRICA 

All cost factors as presented for the Namibian case, are also applicable for South Africa, except 

where indicated. This is due to legislative requirements and/or market related differences; either 

is indicated under the relevant sections. 

5.4.1 Socio-economic, ecological and national policy indicators 

The Government of South Africa has deployed a range of complementary and integrated 

measures to grow the economy and create jobs. The latest Industrial Policy Action Plan (IPAP) 

2014/15 - 2016/17 [289] is one of the key pillars of the socio-economic development plans of 

the South African Government. The IPAP is revised annually, and presents a three-year rolling 

IPAP with a 10-year outlook in the overall economic development context. The South African 

government promotes that the IPAP analyses the latest trends in the global and regional 

industrial policy for optimal policy coherence within Government, between government 

departments and across a full range of stakeholders and social partners. 

The IPAP 2014/15 - 2016/17 highlights the importance of the forestry, timber, paper, pulp and 

furniture; and biofuels industrial sectors. Within the forestry sector, e.g. mechanical conversion 

of wood-based resources is promoted, in terms of addressing raw material supply and; yield and 

productivity improvements in this sector. The focus of the biofuels sector is on  

 

‘accelerated development in the biofuels sector by leveraging the Regulations on 

Mandatory Mixing of Biofuels with Petrol and Diesel which is due to come into operation 

from the 1st October 2015’. 

The South African government aims to support the production of biofuels feedstock in seed 

production for soybean and sorghum. The intervention is based on the economic rationale to 

make biofuels production commercially viable, and the biofuels sector’s linkages to agriculture 

and manufacturing, with the potential to especially create jobs in the agricultural sector. 

However, thermo-chemical conversion of wood-based biomass or deriving energy from wood-

based biomass is not mentioned in the IPAP 2014 - 2017, and therefore it is assumed that such 

activities would not likely attract state support, or need additional motivation before support is 

granted. 
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Authorisation to engage in renewable energy projects requires compliance to a number of 

ancillary legislations. These are presented in Table 4-5, and all are relevant to fast pyrolysis 

conversion of wood-based biomass into energy. Environmental authorisation for any given 

activity would only be granted by the component authority after the developer has complied with 

the procedural requirements as set out in the environmental impact assessment (EIA) regulation 

of the NEMA [125, 179], and they must be carried out by an independent and competent 

environmental assessment practitioner. The environmental impact assessment and authorisation 

processes take about one-and-a-half to three years. The procedural length induces great 

uncertainty for investors; some may choose to discontinue any investment plans [290]. The costs 

associated with environmental impact assessments are comparable to those of Namibia (Table 

5-17). 

5.4.2 Link to other sectors and land use issues 

Fast pyrolysis operations under South African conditions were focused on the alien species 

invaded areas of the Eastern and Western Cape, as well as Acacia type biomass from bush 

encroachment areas predominantly located in the Limpopo, Mpumulanga and Northwest 

Provinces of South Africa (section 5.2.6). Biomass use in South Africa is guided by the socio-

economic planning and environmental legislative measures as described in Table 4-5 which 

summarises the link to other sectors. Cost factors and the costing approach under South African 

circumstances are comparable to those in Namibia. 

5.4.3 Spatial indicators 

5.4.3.1 Infrastructure, logistics, handling and storage indicators 
 

Generally farmland units in South Africa are much smaller than those in Namibia. In Namibia, 

economically viable farming units (depending on the ecological zone) are multiples of one-

thousand hectare per farm. In South Africa, economically viable farming units range from 5 

hectare up to some 300 hectare per farm for crop farms, or some 1,000 hectare for a large 

livestock farm. Farmland is South Africa is far more expensive than that in Namibia. The price 

factors are provided for the provinces Eastern and Western Cape, Limpopo, Mpumulanga and 

Northwest Provinces. 
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Table 5-25 Infrastructure indicators (at 2012/13 current market prices) 

Type of infrastructure Costs/unit  
(purchase price) 

Costs/unit  
(rental or lease 

hold) 
Property   

Industrial, urban land 
(for fast pyrolysis plant) 

(ZAR/m2) 

from 15,000 not applicable; 
model to be 
ownership based 

Farmland (ZAR/ha) from 500,000  

 

5.4.4 Data sourcing and dynamic features of the data 

Data was sourced from national economic and market reports as published by national 

authorities, like Statistics South Africa and Central Government Departments. Prices are 

provided without value added tax (VAT) and presented as real market price-average for the 

calendar years 2012-2014. All techno-economic cost calculations will be presented without VAT 

and not considering, subsidisation, taxation or cash grant based incentives as may be provided 

by the South African government (Chapter 8 and 9).  
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5.5 MARKET RELATED DATA REQUIREMENTS AND AVAILABILITY – 

NAMIBIA 

5.5.1 Socio-economic, ecological and national policy indicators 

Namibia aspires to be energy self-sufficient by 2030 [16], i.e. to provide for the country’s own 

electricity demand and, to a certain extent, liquid fuel demand. The goal of “own electricity 

supply” is to be achieved by enhancing the electricity generation and transmission capacity of 

the national power supplier, NamPower. In addition, a conducive policy and economic 

environment for independent power suppliers at national and regional level is to be provided; 

export of surplus electricity to neighbouring countries is a consideration, once domestic 

demand is satisfied. The electricity demand forecast is presented in Figure 5-9 [2, 291, 292]. 

  

Figure 5-9 Electricity demand forecast until 2036 [2] 

As visualised by Figure 5-9, demand for electricity is increasing; supply though remains a 

challenge and alternative electricity supply initiatives are being considered and promoted by 

the Namibian Electricity Control Board (ECB) [292]. In April 2014, the ECB proposed 

renewable energy feed-in tariffs (REFIT) and rules [293]. The proposed REFITs for electricity 

generated by biomass are presented in Table 5-26. These proposed REFITs will be used in the 

techno-economic modelling of fast pyrolysis for electricity generation (Chapter 8 and 9). 
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Table 5-26 Proposed REFITs for electricity generated by biomass in Namibia [293] 

Proposed REFIT  
(NAD kWH-1) 

Proposed REFIT  
(US cents kWh-1) 

for plants with an 
installed capacity of (MW) 

2.04 18.8 0.50 
1.97 18.1 0.75 
1.90 17.4 1 
1.61 14.8 2 
1.37 12.6 3 
1.30 12.0 4 
1.23 11.3 5 

For liquid fuel, the goal is mainly to have sufficient bulk storage capacity for the liquid fuel 

types, i.e. petrol, Diesel and heavy furnace oil; an equivalent of six-months’ of the country’s 

demand of various types of liquid fuel. The Government of Namibia has tasked the National 

Petroleum Corporation (NamCor) to facilitate bulk storage of liquid fuel, and investigate the 

possibilities of refining crude oil into various liquid fuel types. NamCor has refurbished three 

depots according to international standards, and a fourth is to be set up in Walvis Bay [294]. 

Fossil oil refining capacity is an idea, but not substantiated by a policy or financial 

commitments of the government to date. Data on liquid fuel demand and supply is not readily 

available. Independent production of liquid fuels and national bulk marketing thereof is not 

regulated in Namibia. To model the techno-economic viability of bio-oil production, South 

African coal and national liquid fuel price structures will be utilised as comparison. The price 

structures are presented in Table 5-27. 

Table 5-27 Energy price structure for Namibia 

Liquid fuel as supplied by various 
providers; Walvis Bay* Harbour pricing 

Rate; average for years 
2011-2014 (NAD) [295] 

Industrial grade Diesel; wholesale price, 
ex-Walvis Bay 

1157.0 cents l-1 

(0.05% Sulphur content) 

Industrial grade Diesel; wholesale price at 
Otjiwarongo 

1180.9 cents l-1 

(0.05% Sulphur content) 

Export grade coal imported from South 
Africa, ex-Walvis Bay 

714.40 NAD t-1 

* in Namibia, the proxy for liquid fuel pricing is Walvis Bay Harbour; the further away from Walvis 
Bay fuel is delivered, the more expensive it becomes. The price for Otjiwarongo is provided in the 
table. 
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5.5.2 Link to other sectors and land use issues 

As an indicator for costing of bio-oil and electricity generated using bio-oil, prevailing energy 

prices serve as baseline. Bio-oil is to be compared to crude oil and industrial-grade Diesel; 

electricity pricing via the fast pyrolysis routes is to be compared to electricity generated and 

transmitted via the national grid; the REFITs for electricity pricing as presented in Table 5-26 

was used as proxy. Table 5-27 provides an overview of the energy pricing structure currently 

prevailing in Namibia. As discussed under sections 4.5.1.1 and 4.5.1.2, markets for bio-oil 

could be established in Namibia, notably to supply liquid fuel to government services 

providers, like hospitals, correctional institutions (prisons) or boarding schools as source of 

heat in boilers. The bio-oil could also be used to generate electricity as independent power 

supplier, both to deliver electricity to the national grid, or supply electricity to a defined 

community. 

5.5.3 Spatial indicators 

Otjiwarongo town was of interest to this research due to its strategic location within the 

national electricity transmission network. “Gerus” is the electricity hub in northern Namibia, 

located close to Otjiwarongo; several electricity transmission lines are brought together there, 

and re-distribution transmission lines depart from it. Also, an electricity generation station is 

installed at “Gerus”. Augmenting electricity generation capacity through fast pyrolysis 

conversion and connecting to the electricity transmission grid at Otjiwarongo/Gerus was 

considered to be opportune. Figure 5-10 provides an overview of the national electricity 

network, with Otjiwarongo/Gerus electricity distribution hub highlighted in the central-

northern part of Namibia. 
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Figure 5-10 Electricity distribution network of Namibia [291]. The pin indicates the location of 
Gerus; the circle just below indicates where Otjiwarongo is located. The smaller 
lines and points indicate the national electricity distribution network (lines = 
electricity transmission lines; points = substations) in Namibia. 

5.5.4 Data sourcing and dynamic features of the data 

Consumer prices for energy, i.e. electricity and petrol are regulated. A basic fuel price (BFP) 

mechanism exists for Diesel and crude oil; this means, the wholesale price level is regulated, ex 

Walvis Bay harbour, however profit margins of fuel retailers are not. Energy pricing data was 

obtained from official sources. Electricity prices from the Electricity Control Board (ECB) and 

liquid fuel prices from NamCor. Electricity prices are those of commercial customers, 

consuming equal to or more than 33kV (that is, multiples of three-phase power). For Diesel and 

crude oil, the BFP landed in Walvis Bay harbour were provided. Energy price indicators exclude 

factors for or costs associated with value added tax, governmental subsidies or taxation based 

incentives, discount rates or professional fees payable for design, project management, 
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installation, commissioning and training. Included however, are factors for import or export 

duties and levies. Price indicators are averages of spot prices, and current market prices for the 

past 24 years used for comparison to bio-oil breakeven prices to be determined. Adjustments to 

the data are thus not necessary. The techno-economic model (Chapter 8) took account of prices 

which may change over time mainly due to inflation. Production prices for bio-oil were 

compared to those of e.g. Europe and USA in Chapter 9. 

5.6 MARKET RELATED DATA REQUIREMENTS AND AVAILABILITY – 

SOUTH AFRICA 

5.6.1 Socio-economic, ecological and national policy indicators 

The drivers for the use of bioenergy in South Africa are the 2007 Biofuels Strategy [7], the White 

Paper on Energy [41] and the White Paper on Renewable Energy [40]. The Biofuels Strategy 

aims to introduce liquid fuels from biomass into the transport fuels market. The White Paper on 

Renewable Energy incentivises the generation and use of renewable power generation by 

Renewable Energy Feed-In Tariffs (REFITs), by independent power producers (IPP). The latter 

goals and REFITs were summarised in Table 5-28. 

Table 5-28 Renewable Energy Goals for South Africa 

Type of Energy; description 
of goal 

Penetration rate, nationally; 
operational framework Integrated 
Energy Plan (IEP): 

Approved REFIT [296] 

Liquid Biofuels, based on e.g. 
first and second generation 
biofuels; implemented since 
2009 

2% overall; or at least 400Ml/annum Fuel cost: 
ZAR30/106BTU 
Heat rate: 
15,750BTU/kWh 

Power generation; based on 
supporting independent power 
producers with a REFIT; 
support since 2009 on a tender 
basis. The target should total 
10,000 GWH; implementation 
is monitored by National 
Electricity Regulator of South 
Africa (NERSA) 

Phase I - 2009 – 2013: build 
capacity of >1MW, each; based on 
wind, concentrated solar, land-fill gas 
and small hydro plant. On average, 
each IPP built has 1.1MW installed. 
By 2013, 13MW each, should have 
come from biomass and biogas; 
targets were not attained. 
 
Phase II - 2013-2018: grid 
connection for IPP producing power 
>1MW; focus on large-scale grid 
connected photovoltaic systems (>1 
MW), biomass solids conversion 
(13MW in total), biogas (13MW in 
total) and concentrated solar power 
(CSP) with 6 hours per day storage. 

Not applicable; energy 
from biomass was not 
part of Phase I. 
 
 
 
 
 
 
REFITs for electricity 
generation plants based 
on biomass with an 
installed capacity will be 
reimbursed with a 
levelled cost of 
production of 
ZAR1.18/kWh. 
Assumed load factor: 
80% 
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5.6.2 Link to other sectors and land use issues 

Sourcing input materials for fast pyrolysis is strongly linked to the agricultural sector. The South 

Africa Biofuels Strategy [7] and the IPAP 2014-2016 [289] also link biomass renewable energies 

to the agricultural sector. However, there is a difference between bio-oil from fast pyrolysis and 

bio-ethanol or bio-diesel bio-gas as suggested by South African authorities. Bio-oil production 

was not be based on agricultural input materials like maize, soya bean or sorghum; but was based 

on wood from ‘problem’ species. There is therefore no likelihood that bio-oil production would 

compete with food security or caused deforestation (section 1.1 and 2.3). In addition, feedstock 

for bio-oil production would be sourced from within South Africa; meaning that feedstock 

sourcing is not dependent on imports or the outflow of foreign exchange to source feedstock, 

thus feedstock import price fluctuations are curbed. Prices for bio-oil and electricity generated 

from wood-based biomass can be kept stable as these can be directly controlled by continuously 

monitoring and evaluating the production process, including sourcing of feedstock. 

5.6.3 Spatial indicators 

Marketing and distribution of bio-oil and electricity would be carried out in the South African 

regions/provinces where sourcing of feedstock and production of fast pyrolysis energy types 

takes place, i.e. Eastern and Western Cape, Limpopo, Mpumulanga and Northwest Provinces. 

The latter provinces are inhabited by a large percentage of rural communities and providing 

these with energy fulfils another South African macro-economic development goal [30, 40, 41]; 

stimulating socio-economic development; providing access to affordable energy; and creating 

jobs in rural areas (section 1.1). 

The distribution of bioenergy from fast pyrolysis is dependent on grid access points offered to 

independent power producer and generators. These are presented on a map prepared by the 

national electricity company (Eskom Ltd) [297] in Figure 5-11. The existing ‘renewables’ and 

‘future renewables’ power generation stations operated by Eskom are located in Western Cape 

Province (Klipheuwel); and Northern Cape (Upington);  based on concentrated solar power. 

Eskom is not proposing wood-based power generation; however, grid access points for 

electricity generated via the fast pyrolysis would likely be available at the power stations or 

distribution substations on the grid. Individual agreements with Eskom Ltd would need to be 

concluded prior to the commencement of a project based on the policy guidelines presented by 
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the South African government [40, 41]. 

 

Figure 5-11 South African electricity grid network; the map indicates the various grid access 
points for electricity generated from the various types of resources [297] 

 

5.6.4 Data sourcing and dynamic features of the data 

Data related to South African markets for bioenergy was sourced from governmental agencies. 

The data was presented as policy indicators valid over a certain period; in this case for the period 

2013 - 2018. No adjustments to the data are required. 
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6 BIOMASS RESOURCES MODELLING 

In this chapter biomass resources modelling is discussed, based on data made available in 

Chapter 5. In the Namibian case, wood-based biomass resource modelling for the farmland 

districts of Okakarara and Otjiwarongo was carried out. The species predominantly available for 

fast pyrolysis is Acacia mellifera sp. detines. In the South African case, two wood-based biomass 

types were considered for resource modelling, located at three different sites. These relate to 

woodlands and bush encroachment, growing in the Limpopo, Mpumulanga and Northwest 

Provinces; and alien plant species growing in the Eastern and Western Cape. The wood species 

investigated are mainly indigenous and alien Acacia types, and to a lesser extent Eucalyptus 

types. 

Modelling of the biomass resources was informed by data obtained through  the literature 

review presented in Chapter 4. The distribution of the wood-based biomass resources and data 

relevant to modelling in both, Namibia and South Africa, were discussed in Chapter 5. 

Biomass characteristics in relation to fast pyrolysis conversion are discussed in Chapter 7. By 

modelling biomass resources, the aim of this Chapter is to: 

• determine the long-term wood-based biomass growth rate 

• determine the sustainable use of these wood-based resources for fast pyrolysis over 

the long term;  

• record changes in agricultural land productivity when wood-based biomass resources 

are used in the identified Namibian areas; 

• highlight biodiversity changes in the respective South African provinces; and 

• determine the duration within which the above substantial biodiversity changes could 

occur. 

6.1 BIOMASS RESOURCES MODELLING - NAMIBIA 

This section provides a modelling framework for wood-based biomass resources in Namibia that 

can be used in fast pyrolysis conversion to produce bioenergy. Two model frameworks are 

discussed (Model 1 and Model 2); however only one model was subsequently used for bioenergy 

modelling. 

Bush growth is influenced by a combination of factors such as soil type, availability of ground 

water, altitude, latitude, precipitation, i.e. rainfall, temperature or seasonality, competition 
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with other species, i.e. flora and fauna (e.g. livestock), for the same resources; as well as land 

management principles adopted.  In the literature review, no reference could be found to work 

done on the degree of correlation between any of these factors individually or in combination. 

In fact, because of the growth patterns of bush species, which would take multiple years to 

reach maturity, it is likely that a cause-effect correlation between one-off events in one year, 

and encroachment, could be difficult to demonstrate.  Data outlined in Table 5-1 and Table 

5-12 certainly suggest there was no direct correlation between policy and farm management, 

and changes in bush growth/spread (where land management refers to interventions by land 

owners and/or policy directives for agricultural land use). 

The only historic data available in the literature related to bush encroachment, was regarding 

the extent of bush encroached areas ( 

Table 5-7). There was no comparable data available on bush biomass, or tree equivalent units. 

Therefore in further calculations, bush encroached areas has been taken as a proxy for bush 

biomass growth, accepting that bush spread would not capture possible increases in density in 

already bush encroached areas, and is therefore a “conservative” estimate of biomass growth. 

Based on information available, the parameters that were tested for correlation were time, 

rainfall and livestock stocking rates. 

In Figure 6-1, rate of increase between consecutive measures was plotted against bush 

coverage, to check for patterns. No significant correlation could be found (R2 = 0.6088), 

although it would appear that the rate decreases as the area covered increases. Equally, no 

apparent correlation could be found when plotting the rate of increases between consecutive 

measures against rainfall (as provided in Table 5-1). The rainfall data series (1891-2013) are 

stationary  and can therefore be used for modelling without adjustment. 

From  

Table 5-7, the computed weighted average spread of bush encroachment since 1957 was 

calculated as 4.35% per annum. However, having applied this growth rate to reconstitute bush 

coverage expansion for the period 1957 to 2013 resulted in far greater bush coverage than 

reported (the total area demarcated for livestock would have been bush encroached with an 

area of 51.6Mha in 2014). It thus seems that even reported data causes problems, mainly 

because of outliers (Figure 6-1).   
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Figure 6-1 Plotting the perceived relationship between bush spread rates (%) between 
reporting periods against reported bush coverage (ha) 

When reported bush coverage was plotted against bush expansion rates for the same period 

1957 to 2013, a linear growth trend could be established for bush coverage. This suggests that 

there is not a constant rate of increase that can be applied, but rather bush spread along a linear 

trend would need to be used to predict future bush spread patterns (Figure 6-2); the reliability 

of the trendline was given as R2=0.9604.  

Equation 6-1 Regression formula derived from linear trend for bush coverage 

! = 466961' − 910148554.23 

Where: 

x is the specific year in which bush coverage is to be predicted; and 

y is the predicted bush spread in %. 

 

Applying Equation 6-1 to the initial (1957) value resulted in bush coverage of 29,843,939ha 

by 2013. Although the simulated bush coverage amount differs by 364,660ha from the 

measured area, this difference constitutes a difference of only 1.2%. In addition, the linear 

regression formula seems more reliable to use as tool to predict future bush expansion than 

applying the weighted average bush coverage growth rate of 4.35%. 
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Figure 6-2 Plotting the perceived relationship between bush spread rates (%) between 
reporting periods against reported bush coverage (ha) 

 

Nonetheless, even the simulated expansion rate and trend poses a challenge to predicting future 

bush coverage, and wood inventory. The spread rate slowed exponentially over the period 1957 

to 2013, leading to a situation of uncertainty which average growth rate to apply to bush 

population increase. The matter is furthermore complicated as it is expected, that once bush is 

cleared, the expansion rate may be accelerated, similar to a situation for the period 1957 to 1986. 

To account for this possible accelerated growth of bush, a spatial bush expansion rate of 3.18% 

(Figure 6-3) (which is the average of the simulated growth rates based on the linear regression 

formula) was assumed. This expansion rate is taken as a proxy to indicate the bush population 

growth rate, and thus wood-based biomass growth. 
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Figure 6-3 Various bush growth rates (%): established weighted average growth rate for the 
period 1957 to 2013; the simulated growth rate based on Equation 6-1, and the 
growth rate used for wood-based biomass modelling 

 

Using the bush growth rate of 3.18% without harvesting interventions in future, resulted in the 

prediction that all livestock production areas of 51.7Mha would be covered by bush in 

approximately 2035. This suggests the need to extract bush, thus presenting a possibility for 

improved livestock production output. 

 

Figure 6-4 presents rainfall, livestock stocking and bush coverage graphically for the period 

1957 to 2013. An Analysis of Variance (ANOVA) using EViews®8 to analyse the relationship 

between these three parameters (with bush coverage as the dependant variable) resulted in very 

low reliability of this relationship (R2 = 0.2897). It was therefore concluded that bush growth 

over time occurs regardless of rainfall and livestock stocking rate. 
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Figure 6-4 Plotting the perceived relationship between bush growth rates (%) between 
reporting periods against reported bush coverage (ha) 

 

For modelling purposes the  bush growth rate of 3.18% was  used to model biomass for 

Okakarara and Otjiwarongo farmland areas. The approach seems simplistic (as e.g. climatic 

conditions, including atmospheric CO2–levels [298, 299], policy and regulatory as well as 

farming practices may influence bush inventory levels over time); however with exact data 

lacking for all factors influencing bush growth and/or bush inventory data, it was considered a 

plausible approach. The aim with this approach was to arrive at a bush growth rate to determine 

the quantity of wood-based biomass that could be available in future for fast pyrolysis. The aim 

was not to establish an irrefutable bush inventory and growth model. 

6.1.1 Wood-based biomass from Okakarara and Otjiwarongo farmland areas 

Based on a bush growth rate of 3.18% annually as well as the established bush inventory (2013 

data) the future bush inventory of Okakarara and Otjiwarongo could be computed. It was 

assumed as only a weak correlation between bush, livestock and rainfall exists at national level, 

similar would be true at regional level. In addition, neither historic bush inventory nor spread in 

the districts of Okakarara and Otjiwarongo were available. It should be noted that the complete 

area of Okakarara and Otjiwarongo are already bush encroached; thus bush density is expected 
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to increase, and with that relative wood yield. Over the 20-year bush in Okakarara district, 

composing of Acacia mellifera sp. detines and Dichostachrys cinerea, would have accumulated 

a total wood-based biomass of some 57.39Mt. Over the same period, composing of Acacia 

mellifera sp. detines, Acacia reficiens and Colospherma mopane, bush in the Otjiwarongo 

district would have accumulated some 167.43Mt of wood-based biomass. Predicted bush 

inventories for these farmland areas are provided in Table 6-1. 

The bush inventory is given in Mt as modelling biomass availability for fast pyrolysis is easier 

done on a weight basis; TE-units is not practical for techno-economic modelling.  

Table 6-1 Predicted total bush inventory for the Okakarara and Otjiwarongo farmland areas, 
measured in Million-tonnes (rounded Mt) respectively, if no harvesting 
interventions are undertaken for the period 2013 to 2033 

Observation (corresponding 
to a period) 

Okakarara Otjiwarongo 

2013 (year of assessment) 65.83 192.03 
2014 67.93 198.15 
2015 70.09 204.46 
2016 72.32 210.97 
2017 74.62 217.69 
2018 77.00 244.62 
2019 79.45 231.77 
2020 81.98 239.15 
2021 84.59 246.77 
2022 87.28 254.62 
2023 90.06 262.73 
2024 92.23 271.10 
2025 95.89 279.73 
2026 98.94 288.64 
2027 102.10 297.83 
2028 105.35 307.31 
2029 108.70 317.10 
2030 112.16 327.20 
2031 115.73 337.61 
2032 119.42 348.37 
2033 123.22 359.46 

 

6.1.2 Modelling wood-based biomass utilisation for Okakarara and Otjiwarongo farmland 
areas 

As presented in Table 5-9 and Table 5-11, the Okakarara and Otjiwarongo farmland areas are 

completely bush encroached and carrying capacity is said to have decreased. This means that 

bush cannot spread further in terms of land coverage; it would only become denser in these 

specific areas, or spread to adjacent district areas if that area is less densely populated or if no 

wood-based biomass is extracted. With bush encroachment becoming denser, the area becomes 
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more and more crowded, competing for the same resources; consequently carrying capacity is 

assumed to drop further. Assumptions made when modelling how much wood-based biomass 

can be extracted from the Okakarara and Otjiwarongo farmland areas and thereby improving 

carrying capacity are presented in Table 6-2. A simplified conceptual and mathematical model 

is assumed: for the first model (Model 1) the annual rate of harvesting / extraction of bush is 

greater than the bush population growth rate, expressed in %. The model is solved in a 

spreadsheet approach (section 4.4.1). The proposed harvesting schedule as presented in Table 5-

4 was used, both for Model 1 and 2 extraction of biomass. The extraction models determined the 

area of farmland to be cleared annually; the harvesting schedule determined what type of 

harvesting (or aftercare) is to be undertaken as well as the possible biomass yield from such 

harvesting.  

Proposing the two models for biomass extraction has the purpose to determine the sustainability 

of bush harvesting over the long-term, i.e. beyond 2033. Model 1 proposed biomass extraction 

on an annual percentage bush harvesting rate (% of standing density in wet-tha-1). Model 2 

proposed biomass extraction on a specific area being cleared annually (ha being cleared 

annually, per farm).  
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Table 6-2 Assumptions underlying bush encroachment modelling for biomass in the 
Okakarara and Otjiwarongo farmland areas 

 Okakarara Otjiwarongo 
Desired level of bush density  
(TE ha-1) 
 

2,500 2,500 

Aspired carrying capacity (CC) (level 
as in 1970) (kg ha-1) 

45.00 42.24 

Annual bush growth rate (%) 3.18 3.18 

Potential yield (wet-t/ha) in 2013 45.55 60.19 

Model 1: percentage annual bush 
extraction rate (% of standing density 
in wet-tha-1) 

5 5 

Model 2: area based annual bush 
extraction rate (ha being cleared 
annually, per farm) 

500 500 

Grazing capacity increase for the 
areas treated (annual) 

doubles doubles 

Duration for which biomass is 
modelled (years)  

20 20 

Total potentially available wood-
based biomass at first time harvest 
(Mt) in 2013 

65.83 192.03 

Taking the suggested harvesting cycle (Table 5-4) into consideration, it is assumed that the full 

rangeland potential is only achieved after 20 years or longer of the first bush harvesting 

intervention on a certain site. This means that the areas first harvested will only be fully 

recovered; likely with the aspired carrying capacity after 20 years. Considering Model 1 (Table 

6-2), for example over the 20-year period and extracting 5% wood-based biomass from the 

farmland areas 1.855Mha would have been cleared of the Okakarara farmland area ; and of that 

609.7kha would likely have been fully rehabilitated if the harvesting and aftercare cycle is 

followed as suggested. For the Otjiwarongo farmland area 4.1Mha would have been cleared; and 

of that only 1.35Mha would have been fully rehabilitated. The results of modelling biomass 

resource use at a level of extracting 5% of it, are summarised in Table 6-3 and Table 6-6. 
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Table 6-3 Results of bush encroachment modelling for biomass in the Okakarara and 
Otjiwarongo farmland areas, assuming a 5% extraction rate, after a 20-year cycle 
(Model 1) 

 Okakarara Otjiwarongo 
Total district area (2013) (Mha) 1.45 3.19 

Approximate average area of farmland 
cleared annually (Mha) 

0.24 0.20 

Total area cleared over a 20-year cycle 
(Mha) 

1.86 4.10 

Approximate potential bush yield 
remaining (wet-tha-1) 

26.33 34.80 

Average amount of wood extracted 
annually (Mwet-t) 

2.83 8.25 

Total farmland area gain (Mha) 0.61 1.35 

Adjusted average annual bush (re-) 
growth rate (%) 

1.17 1.17 

The farmland area to be cleared annually in the Otjiwarongo district is less than in Okakarara 

because the original potential yield (wet-t/ha) in the former area is higher. The cumulative area 

cleared is greater in both cases because the harvesting cycle foresees harvesting at the same site 

at multiple times. The rate of re-growth of bush would slow to 1.17% per annum in both cases, 

because the rate of extraction of wood at 5% is greater than the original increment of bush 

inventory at 3.18%.  
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Table 6-4 Results of bush encroachment modelling for biomass in the Okakarara and 
Otjiwarongo farmland areas, assuming bush will be harvested annually from 500ha from each 
registered farm over a 20-year period (Model 2) 

 Okakarara Otjiwarongo 
Total district area (2013) (Mha) 1.45 3.19 

Approximate average area of farmland 
cleared annually (Mha) 

0.067 0.81 

Total area cleared over a 20-year cycle 
(Mha) 

1.35 16.28 

Approximate potential bush yield 
remaining (wet-tha-1) 

31.17 43.60 

Average amount of wood extracted 
annually (Mwet-t) 

1.70 27.12 

Total farmland area gain (Mha) 0.46 5.50 

Adjusted average annual bush (re-) 
growth rate (%) 

1.17 1.17 

Model 2 suggests that in the case of Otjiwarongo more farmland would be gained than the 

demarcated area for that district. The main reason may be that although 603 land titles are 

registered for the district, these are not all either on average 5,000ha large; or not all registered 

titles are exclusively used as farmland, but also other purposes; or a combination to the latter 

factors. This suggests that initial harvesting of wood in the Otjiwarongo district at a constant 

rate could be reduced and still be effective to improve rangeland improvements. Alternatively, 

less land titles could be cleared over the period. 

6.1.3 Conclusions on wood biomass resources in Namibia 

Table 6-3 indicates that at a 5% harvesting level also considering the harvesting cycles presented 

in Table 5-4, wood-based biomass would be available for approximately another 180 years in 

the Okakarara, and 240 years in the Otjiwarongo district respectively. 

Model 1 (total area weight-based biomass extraction) is not very useful in the Namibian socio-

economic context. Farmers prefer to use an area-based clearing factor; this would give them a 

clearer indication of the costs for clearing and logistics to make wood available to a fast pyrolysis 

conversion plant; and possible rangeland improvements annually. Farmers are not subsidised or 

assisted in any way to clear bush; all expenditure in this regard has to necessarily be covered by 

the cash-flow available to the farmer. It may therefore be that the farmer would not clear any 

bush in a given year due to cash-flow constraints. The latter happens typically during drought 
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years or when livestock farming activities slack. 

To sustain the supply of wood-based biomass to fast pyrolysis a two-pronged approach may be 

considered to entice farmers to clear bush for commercial purposes: 

• follow the biomass supply model of the cement factory [112] (section 4.1.2). While 

farmers would have to pay to have their land cleared, they wouldn’t have to own harvesting 

or logistics equipment to extract wood to supply such biomass to a fast pyrolysis plant. 

• offer to off-take wood-based biomass. In this way farmers may want to procure the 

necessary equipment to deliver biomass to a fast pyrolysis plant and may therefore be able 

to sustain a living by bush utilisation. 

The latter mentioned approach was followed to model supply of wood-based biomass to fast 

pyrolysis (Chapter 8). 

Extracting wood using Model 1 seems to show desired results much faster, but may also be more 

expensive. Therefore Model 2 was used to determine the amount of wood-based material 

available for bio-energy generation via fast pyrolysis. The model was integrated into the techno-

economic model and solved in a spreadsheet approach. It was assumed that the average farm 

size in the Okakarara and Otjiwarongo farmland areas is 5kha. Model 2 (Table 6-2) suggest that 

some 500ha per year are considered to be cleared at certain intervals (Table 5-4) as per 20-year 

harvesting cycle. This means, annually some 10% of the land is cleared per farm per year. The 

difference between Model 1 and 2 is however, that on-farm clearing happens in a decentralised 

manner and reliance on wood-based feedstock delivery by the farmer to the fast pyrolysis plant 

is high. Flexibility of feedstock supply can be implemented. If a farmer decides to deliver more 

feedstock at certain point in time, the fast pyrolysis plant operation management could 

accommodate that. If less feedstock is delivered, another farmer’s surplus delivery could cater 

for shortfalls (section 8.3).    
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6.2 BIOMASS RESOURCES MODELLING - SOUTH AFRICA 

This section provides a modelling framework for wood-based biomass resources in South Africa 

that can be used in fast pyrolysis conversion to produce bioenergy. Focused attention will be on 

geographic areas which show the highest potential yield for harvesting biomass sustainably and 

which can be converted via pyrolysis to maximise the returns to communities living in those 

areas as laid out in the Integrated Energy Plan [300] (see also Chapter 2) and the National 

Forestry Act [124]. The geographic areas previously identified for bio-energy production are 

Eastern and Western Cape, Limpopo, Mpumulanga and Northwest Provinces. The wood species 

investigated are mainly indigenous and alien Acacia types, and to a lesser extent Eucalyptus 

types. 

6.2.1 Modelling of wood-based biomass resources in South Africa 

The available wood-based biomass resources for fast pyrolysis in South Africa can be computed 

by adding up mean annual residual wood-based biomass values per resource. This seems to be 

a simplistic approach, but each resource’s potential has to be quantified first. Wood-based 

biomass resource data was available in South Africa as industries generating and/or requiring 

this type of resource are regulated. To establish the quantity of wood available from bush 

encroachment, land cover (Table 4-2) was used as proxy, with densities determined as described 

in 4.1.4. The amount of wood available from eradication of invasive alien wooded plant species 

on an annual basis is a result of the interventions carried out by the ‘Working for Water’ 

programme; described in section 4.1.5. Details follow with descriptions of each type of wood-

based biomass resource below. The general model describing available wood biomass resources 

in South Africa is expressed by Equation 6-2. 

Equation 6-2 Total wood-based biomass resources available for thermo-chemical processing 
in South Africa 

(01)34	(64
7

489

+ 9) 

 

The first objective function of Equation 6-2 is to maximise total net resources available for 

pyrolysis processing at any certain point in time.  

Where: 

αj is the resource production factor (resource harvesting rate) coefficient for a specific 

resource xj;  
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j = is the type of wood-based biomass resource, like forest residues, woodland biomass, 

thicket biomass, shrub land biomass, aliens/bush encroachment biomass, plantation 

wood (round wood, plantation residue, silvicultural residue), agricultural residues/waste 

and processing residues. 

Coefficient αj is the resource accumulation or harvesting rate depending on the resource 

analysed, i.e. forest resource or aliens/bush encroachment eradication.  

Coefficients δ and β are the size of the feedstock available to thermal processing, i.e. δ 

diameter or width, and β length, both in mm. 

Based on various research findings by Ward [160], Eamus and Palmer [161]; Von Malitz and 

Scholes [156]; governmental projects [155, 158] and Shackleton [159], naturally grown 

resources have a growth rate of 2.5% per annum. In addition, naturally grown biomass 

accumulation is assumed to be limited and remains within the boundaries of land cover and use 

classification of South Africa as provided by Table 4-2. 

αj for commercially grown biomass resources is based on past resource production data and 

consequential by-products that have not been utilised. Past inventories, as indicated by data, for 

certain resource types may still be available (e.g. saw dust in saw mills). However, the literature 

review (section 4.1.3.2) has shown that no inventory with commercial viability is available. 

The following sections discuss the models for each residual wood-based biomass resource 

available for bioenergy via fast pyrolysis in South Africa in more detail. The residual wood-

based biomass resources are from commercial forestry industry (section 4.1.3.2); bush 

encroachment and alien invasive wood-based plant species eradicated through the ‘Working for 

Water’ programme. 

6.2.2 Modelling of commercial forest biomass resource available for conversion to bioenergy 

Coupled with the findings (section 4.1.3.2) on sales of wood chips and mill residues for the pulp 

and paper industry, and firewood and the production of charcoal [142], only a negligible amount 

of usable wood residue is available for fast pyrolysis conversion in South Africa. From analysis 

of resources from commercial forest plantations and their registered uses (section 4.1.3.2), a 

certain amount of residue is available for other purposes, but are declining. From data sets 

analysed, the firewood and charcoal production industries have increased the utilisation of this 

resource (Figure 4-4). Regulatory measures further influence the availability of this resource in 

South Africa. The total amount of commercial forestry residues nationally are spread across 
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South Africa, i.e. in those provinces where forestry plantations and primary processing plants 

are situated, over some 1.3Mha. The transport and logistical arrangements to collect and store 

this resource would be cumbersome if thermo-chemical conversion does not take place in close 

proximity of the biomass resource. Planning for security of supply of this resource is uncertain. 

Scope to add additional pyrolysis conversion systems in South Africa seems limited. This option 

was not pursued any further. 

6.2.3 Modelling of available biomass resources from bush encroachment 

Woodlands and forests will remain a key source of biomass to individuals and communities 

which they will utilise as part of their livelihood (section 4.1.4). Poverty is another key driver 

concerning utilisation of forest resources in South Africa. Woodlands and natural forests will 

remain under pressure due to large population groups’ continued reliance on wood for energy. 

Some woodlands may become depleted while others may become inaccessible due to bush 

encroachment. Security of wood-resource supply for bio-energy production as suggested under 

this research considered that energy should first be supplied to rural and poor communities, 

before wood/forest biomass could be considered for fast pyrolysis conversion.  

Various persons (section 5.2.1) have compiled data on bush encroachment species, but without 

providing sufficient detail on inventories prevalent in the affected areas. The data found suggests 

that biomass available pertains to woody plant canopy cover above 50%, apparently irrespective 

of their height and diameter, or possible total biomass available for industrial use per hectare. 

Assessments done (section 154), on how to sustainably utilise biomass from bush encroachment 

in Namibia deliver an example for modelling biomass resources under South African conditions. 

The focus for biomass resource modelling from bush encroachment in South Africa is thus also 

relating to Acacia types. 

Research of dynamics on bush encroachment in woodlands suggests that trees and shrubs 

populations spread at rate of 2.5% per annum, computed as 4% growth minus 1.5-2% natural 

dieback (section 4.1.4). Wood-based resources from woodlands where bush encroachment 

occurs are considered to be spread over an area of 29Mha (Table 4-3) but specifically affect 

19.3Mha within the woodlands areas [148]. The total woodlands inventory was assumed to be 

28.5Mt of harvestable wood in 2011 [161]. If no other harvesting, apart from community’s use, 

takes place, the woodlands harvestable wood inventory would have grown to a total of 45.48Mt 

after 20 years. To render the areas affected by bush encroachment agriculturally productive 
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again, it is required that the mean annual increment and part of the standing inventory of the 

bush is harvested. A bush harvest and aftercare cycle similar to that used in Namibia (Table 5-

4) was considered also for South Africa. This is also in conformity to best regional practice and 

experience from research done in other Sub-Saharan countries, notably Namibia and Kenya [96, 

106, 265, 301]. 

The underlying principles to model the use of available feedstock from bush encroachment in 

South Africa followed arguments as those used for Namibia. The following commercial harvest 

activities, bearing land ownership of woodlands in mind (section 4.1.4), based on a priori annual 

wood mass yields as proposed by Ward [160], are achievable in identified bush encroached 

areas:  

• Only woodlands with canopy cover of over 50% were taken into consideration. Woodland 

areas with less than 50% canopy cover were assumed not to be bush encroached, and the 

yields from these areas were assumed to be too low to warrant commercial harvesting 

activities.  

• Areas with a canopy cover over 50% were assumed to span over an area of 19.3Mha [148] 

and an average possible yield of 11.67t/ha, as computed using Eamus and Palmer’s 

assessment [161]. 

• To prevent further bush encroachment, follow up harvest are suggested to be carried out 

on a cyclical basis as in the Namibian case (Table 5-4). 

• This is accounted for in the model. 

Bush encroachment in woodlands, if harvested or cleared cost-effectively, provides biomass for 

bioenergy which could otherwise not be used. The economic viability of this resource depends 

on securing guaranteed supply contracts based on the relatively broad dispersion of the resource 

over a large area and ownership of the resource (sections 2.1, 4.1.3.1 and 4.1.4; Table 4-3). How 

land ownership was taken into consideration for techno-economic modelling is discussed further 

under section 8.6. 

6.2.4 Modelling of wood-based biomass resources available from alien invasive plant species 

In 1995 Marrison and Larson analysed the biomass energy production potential for Africa by 

2025 [302]. Caveats of the projections were identified by the authors. Nonetheless, under 

South African legislative conditions, the authors suggestions that additional Eucalyptus 
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plantations could be established on ‘not forest, not wilderness and not cropland’ to satisfy 

future bioenergy needs, were considered as not feasible: especially as planting of Eucalyptus 

for commercial purposes is strictly regulated in South Africa. No radical change to the policies 

of South Africa is expected, considering that the Government of South Africa actually spends 

billions of Rand annually to eradicate alien invasive plant species, including Eucalyptus in 

areas outside commercial forestry plantations (section 4.1.5 and 6.2.4.). 

Assessments done through the Working for Water (WfW) Programme [152] on alien invader 

woody plants suggest that various plant species are available for industrial utilisation. Alien 

grass species have also been identified as potential energy sources [303, 149]. However, detailed 

inventory data is lacking. Figure 6-5 illustrates the geographic distribution of invasive alien plant 

species, highlighting the degree of invasion. This research will concentrated on inventory 

assessments of alien plant species in the Eastern and Western Cape as done by Theron [304].  

 

Figure 6-5 Geographical distribution of invasive alien plant species in South Africa [303] 
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In general, the WfW Programme is commended by the South African Government for its efforts 

to align and harmonise the core objectives. In particular though, the programme is facing 

impediments to success, not at its central management level, but rather at satellite projects’ 

implementation level, which can be summarised as follows [174]: lack of production capacity, 

limited financial resources, lack of marketing skills, poor marketing tools, difficulties with 

accurate costing, issues of distance and isolation, transport and distribution and (possibly) a lack 

of capacity for on-going market driven product development and design [175]. It was 

recommended that alternative technologies and approach to the utilisation of wood material as a 

feedstock are to be taken into consideration. This would include thermo-chemical conversion 

technology which is both environmentally friendly and feasible. 

As the aim of the WfW programme is to eradicate alien plant species in South Africa; this 

resource will decline over time. Based on the already treated areas and the inventory assessments 

carried out on Acacia mearnsii (section 4.1.5), it was assumed that a fixed amount of area would 

need to be cleared from alien invasive wood-based plant species on an annual basis; human and 

financial resources of the South African Government permitting. Over time, the yield from initial 

clearings should decline, but follow-up clearing would need to continue until all alien plant 

species in categories 1 and 2 would have been cleared. Taking these factors and data availed by 

the WfW programme into consideration, Equation 6-3 was derived. The regression was derived 

from data on clearings for the period 1995 to 2008. 

Equation 6-3  Regression trendline based on clearing alien invasive plant species in South 
Africa between 1995 and 2008, based on Error! Reference source not found. 

! = ;<;=>>? = 0.5505' − 1093.9 

Where: 

x = time (year) in which clearings took place 

y = WfWwood, is the wood-based biomass availed after clearings (in tonnes). 

 

Interpreting the regression output components of Equation 6-3, an R-squared of 0.6507 indicates 

that this regression is not significant in predicting the amount of biomass that would be available 

after clearing of alien invasive plant species. Even if consideration would be given on how much 

residual biomass would be left after other uses of such biomass has taken, the situation would 

not change to the positive. It was thus considered less useful to base biomass resource modelling 

for fast pyrolysis on the actual amount of biomass cleared for the period the WfW programme 
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has published the data. Figure 6-6 visualises how much wood was yielded after clearings. 

 

 

Figure 6-6 Wood based biomass from clearing of alien invasive plant species in South Africa 

 

There also seems to be no relation between the area cleared from alien species and the yield of 

wood based biomass, i.e. no cointegration (Figure 6-7). The R-squared for this regression 

trendline is rather low at 0.5754. One reason may be that a complete biomass potential 

assessment was not done, and published data from the WfW programme span over a limited time 

horizon.  
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Figure 6-7 The relation between area cleared and amount of wood-based biomass yielded 

from clearing invasive alien plant species in South Africa 

 

In the Eastern Cape, alien plant species are cleared at an average rate of 17,950ha per annum; 

and in the Western Cape at an average rate of 37,401ha per annum for initial clearing [176]. The 

clearing and follow-up clearings are pre-dominantly done mechanically, and aftercare is done 

by arboricides’ application. However, arboricides’ application does not deliver any additional 

wood-based biomass as feedstock for bioenergy production. Table 6-5 summarises the wood-

based biomass potentially still available for bioenergy production via fast pyrolysis, considering 

also wood that is already utilised elsewhere as published by the WfW programme. 

Table 6-5 The potential wood yield derived for bioenergy production from alien invasive plant 
species in the Eastern and Western Cape, South Africa [173, 174, 175, 176, 178] 

 Eastern Cape Western Cape 

Area still left to be cleared 
(Mha) 
 

0.35 3.05 

Average area cleared annually 
(ha) 
 

17,950 37,401 

Wood production at initial 
clearing (t/ha) 
 

70 111 
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6.3 CONCLUSIONS ON ESTIMATED BIOMASS POTENTIAL IN NAMIBIA AND 
SOUTH AFRICA 

The potential of wood-based biomass resources in Namibia and South Africa seems substantial. 

The establishment of how much wood-based biomass resources would be available was however 

challenging in terms of current and future production inventory and yield levels, both from 

predominantly bush encroachment and invasive alien plants. Modelling wood-based biomass 

resources available for bioenergy, under the uncertain circumstances of inventory and yield 

levels as discussed in this chapter, was achieved by analysing panel data obtained from various 

sources and presented in Chapter 5. 

In contrast to fossil fuels, the use of biomass for energy provides significant environmental 

advantages. Plant growth needed to generate biomass feedstock removes atmospheric carbon 

dioxide, which offsets the increase in atmospheric CO2 (carbon dioxide) that results from 

fossil fuel combustion. Pyrolysis is the main way for sequestrating carbon in char which could 

be returned to the soil [76] if not utilised as process energy; thus a way to offset CO2 added to 

the atmosphere that results from fossil fuel combustion. The climate change effects of CO2 

from fossil fuels are now generally recognised as a potentially serious environmental problem. 

To meet the goals of the Kyoto Protocol Agreement, Namibia and South Africa are not obliged 

to reduce greenhouse gas (GHG) to a level below the 1990 emissions in 2012. However, 

Namibia and South Africa face immense shortages of energy. Energy shortages can also be 

mitigated by using alternative technologies, by using fast pyrolysis, to produce energy and 

reduce GHG emissions. Carbon dioxide increases concentration of GHGs. The combustion of 

fossil fuels accounts for two-thirds of global anthropogenic CO2 emissions, with the balance 

attributed to land use change [240]. 

Wood-based biomass sources can be converted to bioenergy and would be a reasonable choice 

to replace fossil oil. By deriving more energy from renewable biomass feedstock like 

agricultural and forestry residues, encroachment and alien bush or trees species, Namibia and 

South Africa may fulfil the earlier described 2013 and 2016-goal of augmenting energy supply 

(power and biofuels) by biomass derived fuels without depriving rural communities of wood 

for their source of energy[305, 306]. Wood is the single-largest renewable energy source 

currently being used in South Africa (some 8% of the 11% renewable energy sources), 

surpassing solar and wind power as an energy source [307]. 

It is expected that bioenergy from wood-based biomass can cover some of the energy needs 
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in both Namibia and South Africa. In the Namibian case, especially the capacity to generate 

additional, i.e. on-grid and off-grid, electricity in the country itself is of importance (sections 

1.3.2 and 2.4). Namibia’s existing electricity needs are around 610 MW with an annual 

increase of 3%. New projects to generate additional electricity of 152 MW in Namibia are 

planned between 2012 and 2016. It is expected that using Namibia’s bush encroachment via 

fast pyrolysis, electricity amounting to at least 20MW could be produced (Chapter 9).  

In the South African case, annual existing electricity demand is above 36,000MW. Additional 

capacity to generate electricity was planned to be installed between 2012 and 2016 amounting 

to some 8,500MW. South Africa also has the ability to produce liquid fuels, however cannot 

provide in its overall demand. South Africa’s wood-based biomass resources could be used to 

produce bioenergy via fast pyrolysis, either electricity or liquid fuels. Electricity is the more 

likely bioenergy product. The South African residual wood-based biomass resources are unlikely 

sufficient in quantity to cover beyond some 5MW electricity-equivalent of energy needs in 

specific locations (Chapter 9). 

The assumption underlying the wood-based energy potential in Namibia and South Africa was 

based on even sized structure of bushes or trees. All projections take into consideration that only 

bush trunks (as measured in TE-units) would be used; not whole tree consideration. Projections 

were presented as a base case scenario under prevailing utilisation practices.  

To translate the mass of wood residues to their energy content in Namibia, a wide range of data 

was compiled. The data is based on research carried out in order to estimate the energy content 

and possible commercial value of this biomass resource. Research was also carried out by Gore 

[308] in South Africa in the 1980 but did not include Namibian feedstock. Annual available 

wood-based biomass has been projected over a 20 year production cycle. A production cycle of 

20 years was chosen to ease techno-economic modelling (Chapter 8). The principles of the 

harvesting and aftercare cycles were assumed to be alike in the Namibian and South African 

case (Table 5-4). The yield ratio (%) related to the total amount of biomass available per hectare; 

the wood yield level (%) related to the amount of wood available for bioenergy conversion per 

hectare. 
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6.3.1 Projections of wood based biomass available for bioenergy in Namibia 

Under Namibian considerations, the farmland areas Okakarara and Otjiwarongo have been 

identified by this research as the wood-based biomass resource areas. The total amount of wood-

based biomass that was available in Okakarara was 65.8Mt or expressed in bioenergy terms was 

some 1.12PJ in 2013; in Otjiwarongo was 192Mt or expressed in bioenergy terms was 3.28PJ in 

2013. This total amount could be available to fast pyrolysis conversion for bioenergy production, 

as existing utilisation wood-based biomass was already catered for. Two models (Table 6-2) for 

annual extraction were investigated. Model 1 based extraction on a rate of 5% of total biomass 

available at any point in time; and for Model 2 the area from which biomass was proposed to be 

extracted is to remain constant for first time harvests, and also using the same harvesting 

schedules (Table 5-4). Utilising the harvesting schedules, and either extraction models, wood-

based biomass from bush encroachment are projected to be available for more than 180 years. 

Namibia currently offers only one biomass resource for potential conversion to energy, i.e. wood 

from bush encroachment. The main aim to harvest wood from bush encroachment is to improve 

livestock production systems, both in commercial and communal farmland areas. The harvest of 

wood from bush encroachment for bioenergy translates into various benefits: additional energy 

potential; and improved rangeland management to maximise livestock production. Actual 

conversion of the biomass was discussed in Chapter 7, 8 and 9 respectively. 

6.3.2 Projections of available wood based biomass available for bioenergy in South Africa 

South Africa offers a multitude of biomass resources which could be converted to bioenergy via 

fast pyrolysis. This research concentrated on wood-based biomass resources, and specifically on 

biomass obtained from woodlands production, bush encroachment and eradication of alien 

invasive wooded plant species. The current uses for these resources were discussed in sections 

4.1.3.1, 4.1.3.2, 4.1.4 and 4.1.5 respectively. The energy requirements in rural areas of South 

Africa are vast, and are largely covered by harvesting of wood in natural or indigenous forests 

and woodlands. To cover commercial/industrial energy requirements through fast pyrolysis 

production systems, the residual wood-based biomass resources were assessed. Residues from 

invasive alien woody plants are declining over time. Wood-based biomass supply from bush 

encroachment in woodlands seems to remain stable over time.  

The existing uses of the wood-based biomass were investigated and it was found that wood-

based biomass potential for pyrolysis conversion was assessed to be in excess of 12Mt per annum 
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over a 20-period. Although wood-based biomass resources from invasive alien plants (harvested 

by the WfW programme) are declining over time, this resource presents the largest potential for 

fast pyrolysis conversion. The resource is furthermore largely concentrated in two South African 

provinces, making the harvesting and conversion of it more economical than wood from bush 

encroachment or commercial forestry residues. The techno-economic assessment and viability 

of use of various wood-based resources follow in Chapters 7, 8 and 9 respectively. The amount 

of wood-based biomass available for bioenergy is based on discussions as presented in sections 

4.1.3 and 6.2 respectively; a summary is provided in Table 6-6. 

Table 6-6 Estimation of wood based biomass energy potential in South Africa, including 
consideration for current uses of biomass 

Type 
Average 

yield 
(Mt) 

Annual 
average 

amount of 
residue 

already used 
(Mt) 

Projected 
residues 

available for 
fast pyrolysis 

conversion 
(Mt) 

Calorific 
value 

(MJ kg-1) 
[308, 309, 310]] 

Projected 
annual energy 

potential 

     (PJ) (Mtoe) 

Woodlands/ 
Bush 
Encroachment 

~39.2 
 

12 
[154] 

27.2 19.31 
[159] 0.53 0.01 

WfW alien 
species control 
programme 

5.42 1.52 3.90  73.06 1.75 

Western Cape 4.17 1.01 3.16 18.73 59.19 1.42 
Eastern Cape 1.25 0.51 0.74 18.73 13.88 0.33 
 

With regard to woodlands and bush encroachment species, as mentioned in Table 6-6, the species 

refer to indigenous Acacia species mainly, of which Acacia mellifera, is the main component. 

Within the group of alien species sought to be eradicated under the WfW programme in the 

Western and Eastern Cape, the most dominant species, are alien Acacia species and Acacia 

mearnsii is the focus, of which over 40 percent of invasion occurs in the area. Some Eucalyptus 

is also reported. 

  



208 
 

7 EXPERIMENTAL WORK 

One of the objectives of this research was to evaluate and compare different feedstocks as 

available in Namibia and South Africa for fast pyrolysis. The feedstocks, i.e. wood based 

biomass, which have been tested, are described and characterised in this Chapter. The received 

condition of the feedstock and any preparation methods used prior to fast pyrolysis are also 

described. 

The fast pyrolysis experiments used to evaluate the feedstocks were carried out in a 150g/h 

reactor system. The equipment was described and procedures for operating the pyrolysis 

system, analytical equipment and obtaining mass balance and analytical procedures were 

included. The results from experimental work on fast pyrolysis were used in modelling fast 

pyrolysis processes and describing the products from fast pyrolysis.  

To the best knowledge, fast pyrolysis of Southern African feedstock were not carried out 

before. Experiments were considered necessary, else techno-economic modelling could not 

be carried out. Tests were carried out in a laboratory environment with no manual available; 

thus test and procedures were described in detail. The various types of analyses provide the 

information for respective components of the bioenergy model. Tests were performed on the 

feedstock, the solid products (char), liquid products (bio-oil) and gaseous products 

(condensable and non-condensable). The detailed analysis of bio-oil was essential to 

determine the viability of the bioenergy model. 

The thrust of this overall research is at macro-level analysis to determine the suitability of a 

feedstock for energy production using bio-oil. Other valuable components found in the 

pyrolysis liquids need further examination. The quantity of organic materials found in the 

pyrolysis liquids does not influence the overall mass balance. 

7.1 FEEDSTOCKS INVESTIGATED 

The following section characterises the feedstocks used during the course of this work. 

7.1.1 Namibian encroachment bush 

The sample feedstock was obtained from the Bush Blok Project of the Cheetah Conservation 

Fund based at Otjiwarongo, Namibia [311]. The Bush Blok project leaders indicated that the 

majority of the feedstock (encroachment bush) is milled Acacia species, and that the feedstock 

contains large quantities of bark, branches, twigs and leaves and mainly consisting of Acacia 
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mellifera spp. detines. The sample also contains some Acacia reficiens, Colophospermum 

mopane and Dichrostachys cinerea. The specific analysis of the relationship between bark, 

leaves and branch material vs. bark free stem material is unknown; a large amount of bark 

negatively impacts on the quality of the bio-oil. From the yield analysis of the bio-oil it is thus 

assumed that the bark content of the feedstock is high (Section 7.7).  

In general, Namibian encroachment bush was received as freshly cut and hammer-milled chips 

in sizes above 100 mm. For fast pyrolysis processing feedstock preparation has to be carried 

out. To prepare the bush for the 150 g/hr reactor, further size reduction and screening was 

necessary.. To improve the yield of bio-oil the moisture content needed reduction to levels 

less than 10% on a dry weight basis (section 7.2). 

 

7.1.2 South African wood-based feedstocks 

The purpose was not to have tested all various species available for possible use for fast 

pyrolysis conversion in South Africa, but rather to exemplify that biomass resources available 

in South Africa could serve as source of energy (Chapters 2, section 2.3 and 4; section 4.1.3). 

Three feedstocks have been used as a basis of analysis for experiments, two of which are 

commercially grown forest resources (Eucalyptus and Acacia mearnsii (Wattle)) but which 

are also declared as alien invader species in certain areas of South Africa; and one alien species 

(Bamboo) which grows wild in certain parts of South Africa. The properties of these species 

are described in the following sections. 

7.1.2.1 Eucalyptus (mixture of E. grandis and E. saligna) 

The sample of Eucalyptus used in the tests was obtained from commercial forest areas of 

Mpumulanga province in South Africa. The sample is Eucalyptus grandis (the majority of 

commercially grown Eucalyptus is of this sub-specie in South Africa [134, 138]) and was 

provided to the project in whole pieces of between 50 to 100 mm diameter and 300 mm length. 

The samples did not contain bark. The bark generally falls off naturally after trees are felled. 

The samples were collected at the time when study trips for this research were conducted to 

South Africa in 2006 and 2007. 
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7.1.2.2 Black Wattle (Acacia mearnsii) 

The sample of Wattle (Acacia mearnsii) used in the tests was obtained from commercial forest 

areas of Mpumulanga province in South Africa. Material was provided to the research in 

pieces of between 50 to 100 mm diameter and 300 mm length. The samples contained bark 

which was only removed with difficulty even after prolonged, i.e. one week of air drying.  

The samples were collected at the time when study trips for this research were conducted to 

South Africa in 2006 and 2007. Due to financial constraints, it was not possible to collect 

Wattle samples from the Eastern and Western Cape areas specifically. It is expected that there 

would be little variance in wood properties between Wattle growing in the Mpumulanga and 

Eastern / Western Cape respectively. 

7.1.2.3 Giant Bamboo (Thamnocalamus tessellatus) 

A sample of Giant Bamboo (Thamnocalamus tessellatus) used in the tests was obtained from 

the Western Cape province in South Africa. 

Although the Conservation of Agricultural Resources Act was enacted in 1983, a private 

entrepreneur has proposed to authorities that Giant Bamboo could be planted in a limited space 

with the aim to provide a project run at the University of Stellenbosch [312] with a sustainable 

biomass resource to produce bioethanol, from the pilot until prototype phase. The Giant 

Bamboo obtained was harvested at 18 months old. Stems of 50 to 100 mm diameter were 

selected and pieces of 300 mm length were cut off and allowed to air dry in Namibia for 10 

days before being taken to the UK for testing. 

7.2 FEEDSTOCK PREPARATION 

For the fast pyrolysis process particle size is of importance; of a suitable particle size, particle 

range and dry. It is acknowledged that other properties may have an influence on the results 

of pre-treatment or fast pyrolysis experiments (e.g. particle or feedstock shape, regularity, 

surface area and surface area/volume ratio). However, by using a small particle size for fast 

pyrolysis processes (less than 600µm) with a reasonably narrow range (355-500µm) it was 

hoped that these other factors were negligible. For all pre-treatment and fast pyrolysis 

experiments the feedstocks were prepared to the following conditions: 
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• Ground and screened to given particle size range – for fast pyrolysis typically 355-500µm; 

and 

• Moisture content measured and where necessary reduced to the value less than 10% mf 

wt.%. 

7.2.1 Size reduction for fast pyrolysis experimentation 

It has been found that the feeder rate can be maintained at optimum levels of 100-150g/h by 

using particle sizes in the range 355-500µm. All feedstocks with which experiments were 

carried out needed size reduction. The first stage of size reduction was to reduce the size of 

the feedstock to less than 75mm to allow it to fit into the cutting mill. 

A Fritsch cutting mill with an interchangeable screen was used to reduce the feedstocks’ 

particle size. Screen sizes of 100, 250, 500µm and 1mm were available.  In all cases a screen 

size of 500 µm was used. This was found to produce the majority of particles in the 355-

500µm range. Some undersized particles were produced, but these were removed by 

screening. 

7.2.2 Screening 

After size reduction the feedstock was in a powder form with a particle size less than 500µm. 

It was desirable to have a particle size distribution as narrow as possible. Thus in order to 

maintain a narrow particle size distribution, but also to minimise the amount of feedstock 

wastage, i.e. undersized feedstock, a size distribution of 355-500µm was chosen. This was 

achieved by sieving the feedstock using standard test sieves of mesh size 500µm and 355µm. 

Oversized fractions were reground using the cutting mill and undersized fractions were saved 

in case further work required smaller particles – this was especially the case for South African 

bamboo. 

Only South African bamboo as feedstock caused extensive blocking in the feed tube aperture 

(Section 7.3.1) and the feed tube in the reactor (Section 7.3.2). A whole day was spent to 

conduct experiments with this feedstock. It was found that this occurred due to the nature of 

the feedstock in combination with the nature of the size reduction and screening, which also 

allowed particles through which were bigger than the selected screen size. It was realised that 

South African bamboo typically tends to break into slender (undersized), but too long pieces 

rather than square sized pieces in the desirable size range. Thus a rectangular particle could 

pass through a screen in a particular orientation, but may not in another orientation. For the 
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majority of feedstocks used, this problem was solved by double grinding of the feedstock. 

This removed long, thin rectangular or ‘pin like’ particles. For South African bamboo, double 

grounding did not solve feeding problems during fast pyrolysis experimentation. It is purely 

a matter of chance of which way a particle is oriented. By double grinding the feedstock the 

probability of pin-like particles remaining was reduced. Feedstock that had been ground once 

was found to occasionally block, whereas double-ground feedstock did not block the feeder 

aperture or reactor feed tube. However, finding reasons why double-grounding in the case of 

South African bamboo did not solve feeding problems was outside the scope of this work. 

7.2.3 Moisture content 

The method used for measuring moisture content was drying to ASTM standards [313, 314]. 

After the feedstock was prepared to the correct size distribution, approximately 1g was 

weighed (to 4 decimal places) and then placed in a pre-dried and weighed crucible, this was 

then placed in an oven at 105ºC for at least 24 hours. From previous experiments involving 

repeated weighing of drying wood samples this has been found to be an adequate time period 

to achieve constant weight. The crucible and sample were then re-weighed, and the moisture 

content of the sample was calculated on a dry feedstock basis. This technique was always 

carried out in triplicate and an average is taken. 

7.2.4 Ash content 

Ash content measurement was carried out in accordance with the ASTM method [313, 314]. 

Approximately 1g was weighed (to 4 decimal places) and then placed in a pre-dried and 

weighed crucible; this was then placed in an oven at 105ºC for at least 24 hours. The crucible 

and sample were then re-weighed and the moisture content of the sample was calculated on a 

dry feedstock basis (section 7.2.3). The crucible was then placed in a muffle furnace at 750ºC 

for a minimum of 6 hours before being removed and cooled in a desiccator for 1 hour before 

weighing (to 4 decimal places). The ash content was calculated on a dry feedstock basis. The 

ash content measurement of feedstock was usually carried out directly after the moisture 

content measurement, since the same crucible and pre-dried sample could be used. This 

technique was always carried out in triplicate and an average was taken. 
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7.2.5 Drying 

Fast pyrolysis requires feedstocks in a relatively dry state, i.e. less than 10 wt.% moisture as 

measured by the method proposed in section 7.2.3. The quality of the bio-oil is negatively 

impacted if feedstock moisture content is above 10%. Feedstocks were dried where necessary 

by storing in a fan oven at a constant 105ºC for 24 hours.  

7.3 FAST PYROLYSIS SYSTEM 

The 150g/h fluidised system (Figure 7-1) consists of three sections: feeder, reactor and 

products collection. The approximate dimensions and operating methods are described in the 

following sections. 

 Char Pot

Fluidised Bed Reactor

Cyclone
Oil Pot 1 Oil Pot 2

Condensers
with dry ice

Electrostatic
Precipitator

Cotton Wool
Filter

Vent

Gas Meter

Furnace

Nitrogen

Stirrer

Feeder

Gas
Analysis

 

Figure 7-1 150g/h reactor and products collection system 
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7.3.1 Feeder 

A diagram of the feeder is shown in Figure 7-2. The feeder consists of a cylindrical storage 

hopper, which is blanketed with nitrogen and slowly stirred by two paddles. Biomass is 

entrained through the feed aperture by a continuous flow of nitrogen into the biomass entrain 

tube, which crosses the hopper at the bottom. The biomass was entrained along the 

entrainment tube where it then passed into the flexible tube linking it to the feed tube in the 

reactor. 

Stirrer

Feeder Top Gas (Nitrogen)

Biomass

Biomass Entrain Tube

Entrain Gas (Nitrogen)

Paddles

Entrain Gas and
Biomass

Feed Aperture

 

Figure 7-2 Schematic diagram of biomass feeder 

The main body of the feeder is constructed from clear Perspex for a number of reasons. Firstly 

Perspex is a strong and robust material, which is easy to machine, thus allowing modifications 

or new designs to be quickly implemented. Secondly, since the Perspex is clear it was easy to 

observe the behaviour of the feedstock during a run, thus problems such as bridging or low 

feedstock levels could be observed and corrected. Further, Perspex is an easy material to clean 

and therefore it was easy to change feedstocks after a series of tests have been completed. 

Problems associated with using Perspex include electrostatic attraction of very dry material 

which sticks to the surfaces. 
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The factors which affected the biomass feed rate were the type of biomass used, its size, 

moisture content, shape, preparation method and the feeder variables, i.e. entrain tube aperture 

size, paddle speed, entrainment flow and feeder top pressure.  For a given biomass prepared 

by the methods described in Section 7.2, the size, moisture content and shape were fixed. 

Therefore, the feed rate of the feedstock was controlled by the feeder variables, and strongly 

influenced by the type of biomass. For example, giant bamboo demonstrated extensive feeding 

problems making it difficult to complete test runs, especially when compared to eucalyptus. 

Calibration 

Every time a new feedstock was used, calibration of the feeder was carried out. A feed rate of 

100-150g/h was desirable since this is the design rating of the equipment. It may be possible 

to run at higher or lower feed rates but this is not recommended. At feed rates higher than 

150g/h the feed tube in the fluidised bed is prone to blocking and at very low feed rates, i.e. 

<50g/h, the dilution of the pyrolysis vapours by the nitrogen gas makes gas analysis difficult 

(Section 7.5.1). 

The feed rate is a function of biomass type as feeder material. Thus it was necessary to 

calibrate the feeder each time a new biomass type was used. The entrain tube aperture has the 

most significant effect on feed rate for a given stirrer speed and nitrogen flow. For most 

feedstocks the 1.7mm aperture is suitable, but for some feedstocks, i.e. dry and powdery or 

more dense, a smaller aperture is required to reduce the feed rate to acceptable limits of less 

than 150g/h. Once a suitable aperture has been found (this is done by trial and error) the feed 

rate can be fine-tuned by altering the feeder top flow (changes pressure in feeder) or paddle 

speed (increases fluid behaviour around the entrainment aperture making it easier to entrain 

the biomass). 

The feeder has mechanical paddles, which slowly rotate to prevent bridging of the feedstock 

and also to maintain accurate and continuous flow of the feedstock. The speed of feeder 

paddles can be adjusted, which allows the feed rate to be altered during a run. 

The top feeder is pressurised with a small flow of nitrogen, which forces the feedstock through 

the feed aperture into the feed tube. This flow can be changed during a run to either increase 

or decrease the biomass feed rate. By increasing the flow rate the pressure in the feeder is 

increased, thus increasing the feed rate. It was found (by trial and error) that the feed rate is 

very sensitive to stirrer speed, and less sensitive to feeder top flow rate. The influence of 
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paddle speed and feeder top flow rate are useful since they can be altered during a run to 

increase or decrease the flow rate. Alteration of entrainment gas flow can be done during a 

run but is not recommended since this makes up part of the fluidising gas and therefore should 

be kept constant. 

7.3.2 150g/h Reactor 

The reactor consisted of a 40 mm internal diameter 316 stainless steel tube with a length of 

260 mm. The top of the tube is threaded allowing the top of the reactor to be removed for 

weighing, cleaning and to add/remove the heating/fluidising medium, sand. The top of the 

reactor has three apertures, one is for a thermocouple to measure the reactor internal bed 

temperature and the second and third are for the feed tube and air cooling line (Figure 7-3). 

The feed tube transports the feedstock into the centre of the fluidised bed. It can be air cooled 

by a pressurised flow of air, which prevents temperature sensitive feedstocks from being 

pyrolysed before they reach the fluidised bed. 

The heating medium in the reactor was inert sand (also weighing approximately 150g) with a 

particle size of 355-500µm. This particle range is used so that the reactor operates on blow-

through mode. This means that the fluidising flow rate (normally 7l/min) of the sand is enough 

to blow the pyrolysed biomass (char and vapours) completely out of the bed while the sand 

remains in the bed. The sand was fluidised using nitrogen, which was preheated by the furnace 

in-line prior to entering the base reactor. The nitrogen then passes into the base of the reactor 

and is distributed by a sintered inconel plate with a 100µm pore size. 

The feedstock (wood-based biomass) was carried down the reactor feed tube in a stream of 

entrainment nitrogen into the centre of the fluidised bed. Once it left the tube it began to 

pyrolyse almost instantaneously, producing pyrolysis vapours and ultimately char. Once the 

biomass had reacted completely, it formed char particles with similar dimensions to the 

original biomass, but with between 10 and 25% of the original weight, depending on the 

feedstock used. This char is then carried out of the fluidised bed by the fluidising gas flow. 
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Figure 7-3 Schematic diagram of 150g/h fluidised bed reactor 

The vapours and char then passed into the first stage of product collection, which is the 

cyclone. The cyclone was used to separate the char from the pyrolysis vapours. The pyrolysis 

vapours passed out of the cyclone via an outlet in the top and the char falls to the bottom of 

the cyclone where it passed into the char pot. 

The reactor, cyclone and char pot sit in a vertical tube furnace, which maintains the 

temperature at a set-point. This can be controlled to a fixed point between 400 and 600ºC. The 

temperature of the reactor was measured by a K-type thermocouple placed directly into the 

fluidised bed. The furnace set-point was approximately 20ºC higher than the desired reactor 

temperature because energy was constantly required by the reactor to heat up the nitrogen and 

feedstock and perform the pyrolysis. To maintain a constant reactor temperature there must 

be enough excess heat available from the furnace to overcome nitrogen and feedstock specific 

heats and the pyrolysis heat of reaction.  The furnace used a proportional controller linked to 

the thermocouple, which was independent from the reactor to maintain the set-point to within 

±5ºC. The furnace thermocouple was mounted in the furnace wall at approximately 100 mm 

from the top. 
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The top of the furnace and hence the top of the reactor, cyclone and char pot was lagged to 

prevent heat loss. The outlet from the top of the cyclone to the second stage of the products 

collection system was also lagged to maintain pyrolysis vapour temperatures above 400ºC. 

This is very important, since below 400ºC the pyrolysis vapours start condensing. Vapour 

condensation can result in blockage of the transfer pipe between cyclone and second stage 

products collection, which would result in an early termination of the run. 

7.3.3 Hot vapour residence time 

Hot vapour residence time is the time that the pyrolysis vapours spend in the reactor system 

above 100ºC. There are two methods of hot vapour residence time measurement, reactor only 

residence time and total hot space residence time. The reactor, cyclone and char pot all sit in 

the furnace and are exposed to the temperature of the furnace. The vapours are kept at a 

constant temperature (around 200ºC) and could undergo secondary reactions. The reactor only 

residence time is not a realistic view of the time/temperature exposure of the vapours, since 

once the vapours leave the reactor they are still exposed to the furnace temperature. In all 

cases the residence time reported will be the total hot space residence time since this represents 

a more realistic view of the time/temperature of which the vapours are exposed to. 

The volumetric throughput of the reactor is the volume of gas at the average reactor 

temperature passing through the reactor system in a given time. The total hot space of the 

reactor system is the volume of the reactor (above the distributor), cyclone and transfer line, 

discounting the volume taken up by the sand. The total hot space residence time is calculated 

from the volumetric throughput of the reactor system divided by the total hot space of the 

reactor. Once the pyrolysis vapours leave the hot space and enter the liquids collection system, 

condensation starts and the liquid products will start to collect. 

7.3.4 Liquids Collection System 

The liquid products collection consists of a water cooled condenser, an electrostatic 

precipitator, dry ice acetone condenser and cotton wool filter (Figure 7-1). All of the liquids 

collection system was constructed from glass for easy cleaning and also for the behaviour of 

the condensing pyrolysis vapours to be observed. The first cooled condenser had a cold finger 

filled with ice (0ºC). This cooled the pyrolysis vapours from around 400ºC to 50ºC and started 

the condensation process. The heavy ends were condensed by the first condenser, collected 

on the inner wall and dripped down to collect into oil pot 1 (OP1). The second condenser had 
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a cold finger filled with dry ice and acetone (approximately -80ºC). This further cooled the 

pyrolysis vapours from around 50ºC to 5ºC. The light ends and water were condensed by the 

second condenser, collected on the inner wall and dripped down into oil pot 2 (OP2). 

The electrostatic precipitator (EP) was located between the second condenser and the cotton 

wool filter. The EP was very effective at removing the remaining aerosols which were present 

in the gas after the second condenser. It used a 15,000V negative charge on a thin stainless 

steel wire suspended in the centre. This charged the aerosols, which were then attracted to the 

positively charged plate on the walls of the EP. The pyrolysis liquid ran down the walls of the 

EP and collected in the flask at the bottom where they were drained off during or after the run. 

It is not of absolute necessity to include an EP, however having the EP in the products 

collection system meant that the cotton wool filter (described hereafter) collected only a small 

fraction of the total pyrolysis liquids (less than 2% liquid base) and was used as a fail-safe to 

protect downstream equipment, i.e. gas meter and gas analysis equipment. Also, much less 

cotton wool was required and the pressure drop over the cotton wool filter was lower at the 

start of and during a run. It further ensured that only clean, non-condensable gases entered the 

gas meter and gas sampling/analysis system. 

The cotton wool filter was a glass column, which was densely packed with around 40g of dry 

cotton wool. This formed a dense filter, which acted as a guard that no vapours exited and 

then entered the gas metre. However, during a run, as the vapours condense on the cotton wool 

the pressure drop over the cotton wool increased (starting off at approximately 50 inches H2O 

and often rising as high as 150 inches H2O). As the pressure increased there was a danger that 

the oil pots could be blown off; the run would be stopped if the pressure reached 150 inches 

of H2O. Although the cotton wool was efficient at collecting vapours it was difficult to remove 

the pyrolysis liquid from the cotton wool after the run. Only by using solvent (ethanol) could 

the pyrolysis liquids be completely removed. In order to analyse the chemicals in the pyrolysis 

liquids, the solvent had to be removed. However, even low pressure distillation of the 

pyrolysis liquid and solvent mixture lead to losses of volatile components from the pyrolysis 

liquid (bio-oil), therefore it was better to use a bio-oil collection method that does not require 

solvent washing. 

After the cotton wool filter was a gas meter. The gas meter measured the total volumetric 

throughput of gas through the system and was required to allow the gas to be analysed 

volumetrically for mass balance purposes and gas analysis (Section 7.4). 
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7.4 MASS BALANCE 

The products of fast pyrolysis were separated and collected into three distinct categories, i.e. 

char, pyrolysis liquid (bio-oil) and gas. These three categories have been defined, also for 

mass balance purposes in Chapter 2. 

7.4.1 Mass Balance Reporting 

Table 7-1 shows a typical table, which is used for mass balance reporting. The experiment 

number has the prefix SFB (small fluidised bed) followed by the number. The temperature is 

that of the reactor and is the average recorded temperature from the bed thermocouple. The 

temperature is taken manually at 1 minute intervals throughout the course of the run, the 

temperature reported is the average reactor temperature for a particular run. The total hot space 

residence time is shown next, this is calculated by the method described in Section 7.3.3. 
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Table 7-1 Example of mass balance reporting 

 

Run No. SFB 

Temp. (ºC) Fluid bed in-bed average temperature 

Res. Time (s) Average total hot space residence time 

Feed rate (g/h) Average rate at which feedstock is fed into the reactor 

Moisture (mf wt.%) Moisture content of feedstock 

Ash (mf wt.%) Ash content of feedstock 

Yields (mf wt.%) Major product yields on a dry feedstock basis 

Char Analysis method Section 7.4.2 

Organics Analysis method Section 7.4.3 

Gas Analysis method Section 7.4.4 

Water Analysis method Section 7.5.2.1 

Total liquids Sum of organics and water 

Closure Percentage of feed/input recovered as products 

Gas (mf wt.%) Gas yields on a dry feedstock basis 

Carbon Monoxide Yield of carbon monoxide 

Carbon Dioxide Yield of carbon dioxide 

Methane Yield of methane 

C2s Yield of ethane and ethylene 

C3s Yield of propane and propylene 

Gas (nitrogen free, vol.%) Gas yields on a volume basis not including nitrogen 

Carbon Monoxide Volume of carbon monoxide 

Carbon Dioxide Volume of carbon dioxide 

Methane Volume of methane 

C2s Volume of ethane and ethylene 

C3s Volume of propane and propylene 

 

The rate at which the feedstock is fed into the reactor is shown in grams per hour (g/h). The 

feed rate should be kept between 50 and 150 g/h to maintain consistency and accuracy during 

a run (section 7.3.1). Low feed rates can result in poor gas analysis and high feed rates can 

result in overloading the reactor and collection system leading to blockages. The feed rate was 

calculated by weighing the feeder (±0.01%) before and after the run. The feedstock was not 

weighed alone since the small particle size meant it was difficult to handle, which could have 

introduced inaccuracies. The average feed rate is the difference in feeder weights (before and 

after) divided by the total run time in hours. The moisture and ash content of the feedstock 

was calculated by the methods described in Section 7.2.3 and Section 7.2.4 respectively. 
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The yields of fast pyrolysis products were reported on a moisture free feedstock basis. The 

char was calculated as per Section 7.4.2; the organics were calculated as described in Section 

7.4.3; the gas yield was calculated by the method described in Section 7.4.4; and the water of 

pyrolysis was calculated by analysis of the organics as per Section 7.5.2.1. The total liquids 

were measured by weighing (Section 7.4.3) and this contains both organics and water of 

pyrolysis. The closure is the percentage of the original feedstock which has been recovered. 

It gave a measure to assess the quality of the experiment, since a poor closure (i.e. less than 

90wt% or in excess of 100%) indicated that something has not been measured or accounted 

for correctly. In most cases the closure is in the region of 95-100wt%. Reasons for incomplete 

closure are discussed in Section 7.6. 

The gas yields were further sub-divided into the incondensable gases carbon dioxide, carbon 

monoxide, methane, C2s (e.g. ethane, ethylene) and C3s (e.g. propane, propylene). Other 

gases (e.g. hydrogen, n-butane, and n-butylene) were analysed for but are rarely detected so 

were not included in the mass balance reporting. All gas yields were given on a weight 

percentage dry feedstock basis and also on a nitrogen free volume basis. 

7.4.2 Char 

Char is a black, solid substance that is collected in the char pot as a residual coating on the 

sand, reactor, char pot and cyclone, and as some of very small particle sizes blow through into 

the liquids collection system. The reactor, cyclone and sand are assumed to remain at a 

constant weight, so any increase in weight was due to char. It is feasible that the sand will be 

worn away by attrition, but this effect has been assumed to be minimal. 

The reactor and cyclone were weighed before and after a run (±0.01%) and the difference is 

assumed to be char. The coating on the sand was quantified by weighing the sand before and 

after a run, the difference again being char. The contents of the char pot was also classed as 

char and again are weighed. In both cases the weighing was to 2 decimal places and was 

accurate to ±0.01g. It is possible that some of the sand was blown into the cyclone and 

therefore the char pot, but since sand was weighed before and after it would be accounted for 

through establishing the differences in weight.  

The char which was blown through the cyclone and into the liquids collection system tended 

to stick to the glass walls and can be filtered from the pyrolysis liquid washings (section 7.4.3). 

However, any char which could get into the liquids is very difficult to remove, since the 
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pyrolysis liquids must be diluted with a suitable solvent (ethanol, methanol or acetone) before 

they will pass through a filter. Dilution of the pyrolysis liquids by solvents will result in loss 

of volatile components when the solvents are removed. It should be noted that the pyrolysis 

liquids contain a small amount of microfine char (less than 20µm), this was too fine to remove 

by filtration and therefore had to remain in the liquid (section 7.3.3) 

7.4.3 Liquids 

The collection of the liquid products begans in the first (ice) condenser. They were collected 

on the walls of the first and second condensers, where they run down the walls into oil pots I 

and II which are located at the bottom of the condensers respectively. They were also collected 

in the EP, where again they ran down the walls to be collected in the flask at the bottom of the 

EP. The oil pots were weighed (to the accuracy of ±0.01g) before and after the run and the 

difference was pyrolysis liquid. The condensers and the EP were weighed before and after the 

run (to the accuracy of ±0.01g). The liquids from the oil pots I, II and EP were placed into 

separate storage containers for subsequent water and chemicals analysis. Any liquids 

remaining on the glassware were washed off using ethanol, this was then filtered to remove 

char using pre-dried and weighed Whatman No. 1 qualitative filter paper. The filtered liquids 

had their water content analysed using Karl Fischer coulometry (Section 7.5.2.1) and were 

then stored as washings. 

The pyrolysis liquids are further sub-categorised into organics and water. The organics are 

classified as the total liquids (difference in weight of the glassware and cotton wool) less the 

weight of char and water. The water comes from the feedstock’s original moisture content and 

also from water of pyrolysis (formed as a product of the pyrolysis reaction). The total water 

content of each of the pyrolysis liquid samples (OPI, OPII, EP and wash) was measured by 

Karl Fischer coulometry. The total water from the pyrolysis liquids (i.e. the sum of water from 

the four samples) had the original feedstock water content subtracted from it, thus the water 

product quoted in the mass balance is the water of pyrolysis. 
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7.4.4 Gas 

The volumetric throughput of the fluidised bed reactor system is measured using a 

Schlumberger Remus 3G1.6 total gas meter (Figure 7-1). This measures the total gas 

throughput in cubic metres to three decimal places and is accurate to ±2.0% of the total hourly 

flow rate. After the gas meter a gas pump was used to take representative samples throughout 

the course of the run, usually three or more samples are taken for subsequent gas 

chromatographic analysis (section 7.5.2.2). The samples were analysed for their volumetric 

content of the major pyrolysis gases, which are carbon monoxide, carbon dioxide, hydrogen, 

methane, ethane, propane, propylene, n-butane and n-butylene. It was assumed that the 

remainder of the pyrolysis gas is made up of nitrogen. From this analysis the volumetric 

constituents of the pyrolysis gas could be calculated and hence the weight of gas produced. 

7.5 PRODUCT ANALYSIS 

Accurate measurements and analysis are essential to any experimental-based project. The 

following section describes analytical techniques used to quantify the major pyrolysis 

products and produce good quality reproducible mass balances by accounting for material 

entering (the feedstock) and leaving (fast pyrolysis products) the system.  

7.5.1 Gas Analysis 

Gas samples were taken periodically during the course of the run. These samples were 

analysed for pyrolysis gases using gas chromatography. Three separate systems were used to 

detect the full range of gases. Hydrogen, oxygen, nitrogen and carbon monoxide were detected 

using a molecular sieve column, carbon dioxide was detected using a Poropak Q column and 

C1 – C4 gases were detected using a picric acid column. 

Gas chromatography (GC) is an analytical technique which relies on the comparison of gas 

concentrations. For every gas analysed, a standard gas, with a known concentration and of 

similar concentration to that expected in the pyrolysis system exit gas, has to be injected into 

the column and the peak residence time and area noted. This residence time will then 

correspond to that particular gas as under the specific conditions for that GC system and 

column. Thus, when a gas sample is injected, only the gases, which have been previously 

analysed and calibrated, can be identified and quantified. By using several standard gases, the 

concentrations of all the major pyrolysis gases can be identified and quantified. From the total 

volume measured by the gas meter the mass pyrolysis vapours produced can then be 
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calculated. 

The pyrolysis vapours are dilute because the fluidised bed reactor requires a high throughput 

of gas (6-18 l/min, nitrogen was typically used) to keep the sand fluidised. Extra gas is also 

required to entrain the biomass from the feed and into the reactor (2-5 l/min). The extra gas 

means that the pyrolysis vapours only make up approximately 2% (volume basis) of the total 

volume output of the reactor system, as measured by the gas meter. 

The main problem with the GC systems described above is that the sensitivity has to be turned 

up to detect the low concentrations of gas. The concentrations of gas, which the GCs detect is 

usually in the range of 1.00% (total gas volume basis), for abundant gases such as carbon 

monoxide and dioxide, down to concentrations as low as 0.02% (total gas volume basis) for 

minor gases such as butane and n-butylene. 

Other problems are specified to particular detection systems, thus the molecular sieve column 

uses helium as a carrier gas, unfortunately this tends to mask most of the hydrogen it is 

detecting so only concentrations greater than 1.0% can be detected. As mentioned above, it is 

unlikely that any minor product gas would be found in such high concentrations, thus the small 

volume of hydrogen, which is produced in every run is an unquantifiable loss. This loss could 

be estimated, however this was not done since all mass balances are reported in a format where 

everything had been measured directly. 

7.5.2 Pyrolysis Liquid Analysis 

The main product of biomass fast pyrolysis is pyrolysis liquid called bio-oil. It contains water, 

char fines and organic compounds derived from fragmentation and depolymerisation of 

cellulose, hemicelluloses and lignin polymers. The pyrolysis liquids were collected as 4 

discreet samples from the pyrolysis system, oil pots I and II, EP and washings. All 4 of these 

samples had to be analysed for water content (using Karl Fischer coulometry/titration, ), 

chemicals and elemental content (using HPLC, and using CE-440 and Carlo Erba elemental 

analysers,) and molecular weight (using PL-GPC50 system). 
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7.5.2.1 Water Content Measurement by Karl Fischer (KF) Titration 

A Mitsubishi, model CA-20, KF coulometer was used for quantitative determination of water 

in pyrolysis liquids. Due to the relatively high water content and sometimes high viscosity of 

the pyrolysis liquids and the sensitivity of the coulometer, the pyrolysis liquids were diluted 

using methanol before being analysed. If the liquids were not diluted they would require much 

more reagent (hence increased cost), would take more time or may not dissolve in the 

coulometer properly and give low (false) readings. 

To find the water content of the pyrolysis liquid, a small amount is first weighed into a vial. 

This is then diluted (by at least 1:10) with a known weight of methanol with a known moisture 

content. A known weight (±0.02%) of combined liquid is injected through a septum directly 

into the meter. The meter then determined the amount of water contained in the injected 

sample and, since the weight of the combined liquid was known, the percentage water was 

calculated. The coulometer gives a moisture content, which is reproducible and accurate to 

±0.01wt.%. 

7.5.2.2 Chemical (HPLC) Analysis 

HPLC (High Performance Liquid Chromatography) was used to determine the concentration 

of some chemicals contained in the pyrolysis liquids.  HPLC is a similar technique to GC, in 

that the analysis is achieved by comparison to previously identified chemicals with known 

concentrations. Thus, as for GC analysis, a standard is required which contains the chemicals 

and which are expected to be in the pyrolysis liquid in similar concentrations. The standard 

contains the following chemicals in specified concentrations (typically 0.1-2 wt.%) glyoxal, 

xylitol, levoglucosan, hydroxyacetaldehyde, formic acid/formaldehyde, acetic acid, acetol, 

methanol, 2-furoic acid, cyclotene, cellobiosan, glyceraldehydes, ethanol, fructose and 

glucose. 

HPLC uses a 0.05wt% sulphuric acid solution as mobile phase. The mobile phase is constantly 

pumped through the column and carries the sample to be analysed. Hence only water-soluble 

compounds in the pyrolysis liquids can be analysed. The samples were prepared by weighing 

out an amount of pyrolysis liquid into a pre-weighed plastic vial. A known weight of mobile 

phase was then added to the vial to dilute the pyrolysis liquids (about 4 part mobile phase to 

1 pyrolysis liquid). The sample was shaken and the water insoluble fraction formed a 

precipitate known as pyrolytic lignin. The plastic vial was centrifuged for 5 minutes at 
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4,000rpm to remove the precipitate. The water soluble pyrolysis liquid fraction was poured 

out of the vial and filtered using a Gelman Acrodisc PTFE filter (0.2µm pore size) to remove 

any remaining liquid. The filter was used as a precautionary measure to prevent lignin entering 

the HPLC system and damaging the analytical columns. The precipitate remained in the 

sample vial and after several hours of drying the remaining fraction was weighed and was 

classified as pyrolytic lignin. The HPLC system uses a Bio-rad column which is linked to a 

refractive index detector. The filtered water soluble sample is injected into the column and 

after approximately 30 minutes a trace showing the chemicals detected and their areas was 

produced. The software package then integrated these areas and compared them with the 

standard, thus the chemical concentrations could be found. 

7.5.2.3 Elemental Analysis 

The liquid fraction from oil pot 1 was taken and subjected to CHN analysis using CE-440 and 

Carlo Erba elemental analysers with ±0.3% absolute accuracy. The analysis was undertaken 

by MEDAC Ltd., Surrey, UK. After obtaining the carbon, hydrogen and nitrogen (CHN) 

contents of the liquid samples, the oxygen content of the pyrolysis liquids was derived by 

difference.  

The elemental analysis does not have direct relevance to the fast pyrolysis process, but was 

important for the determination of the higher heating value (HHV) of the pyrolysis liquid, 

based on a correlation developed by Parikh, Channiwala and Ghosal [315] shown by Equation 

7-1. 

Equation 7-1  Higher Heating Value for Liquid Fuels 

 

@@A?BC DE/GH = 0.3491I + 1.1783@ + 0.1005K − 0.1034L − 0.015M − 0.0211N 

Where C, H, O, N and A represents mass percentages on dry basis of carbon, hydrogen, 

oxygen, nitrogen and ash contents of feedstock respectively. The C, H, N and O contents of 

feedstock were obtained by the elemental analysis as mentioned above. The sulphur content 

is not taken into account because it is lower than the detection limits of the instrument 

(<0.1wt.%). The ash content of the pyrolysis liquids were estimated by assuming that the 

solids present in the pyrolysis liquids contained 5wt.% of ash as determined by the ASTM 

method (section 7.2.4) for solids.  
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The heating values were calculated on a dry basis. To calculate the values on as-produced or 

wet basis, Equation 7-2 was applied taking into account the water content of the pyrolysis 

liquid (H2O, wt%). The lower heating values were calculated from HHV and the hydrogen 

content by Equation 7-2 

Equation 7-2  Lower Heating Value for Liquid Fuels 

 

O@A=PQ = O@A?BC(1 − @RL/100) − 2.442×@RL/100 

 

7.5.2.4 Molecular weight distribution 

Molecular weight distribution of pyrolysis liquids was determined using the gel permeation 

chromatography (GPC) technique. An integrated GPC system, PL-GPC50 from Polymer 

Laboratories, UK, equipped with a PLgel 3µm MIXED-E column, 300x7.5 mm, and a 

refractive index (RI) detector. The detector temperature is set at 40ºC. Liquid samples were 

dissolved in HPLC-grade THF (Tetrahydrofuran) solvent at a concentration of 0.01 g/ml and 

were filtered through a 0.2 µm Millipore Millex-GN nylon filter to avoid column plugging by 

solids or insoluble impurities. Approximately 100 µm of the prepared samples was injected 

using a PL-AS RT GPC autosampler. HPLC-grade THF was used as an effluent with a flow 

rate of 1 ml/min. Prior to the measurement, GPC calibration was made with a series of 

polystyrene calibration standards with molecular weight range of 162-19880 g/mol. 

Calculation of molecular weight averages was done by Cirrus 3.0 software. The software 

offered two methods of data calculation, namely height based and area based. Height based 

calculation is analogous to the integrator packages of the late seventies and uses a simplified 

method of calculation, whereas area-based calculation is the rigorous treatment of data and 

the method of choice for accuracy work [316]. This was used for this research. The number 

average molecular weight (Mn), weight average molecular weight (Mw), molecular weight at 

highest peak (Mp) and polydisperity (PD = Mw/Mn) were calculated by the software based 

on the refractive index (RI) signal and the calibration curve obtained. 

7.5.3 Elemental Analysis of feedstock char 

A sample of both the biomass and char was subjected to CHN analysis using CE-440 and 

Carlo Erba elemental analysers with ±0.3% absolute accuracy. The analysis was done by 

MEDAC Ltd., Surrey, UK. After obtaining the carbon, hydrogen and nitrogen (CHN) contents 

of the liquid samples, the oxygen content of the pyrolysis liquids was derived by difference.  



229 
 

The elemental analysis does not have direct relevance to the fast pyrolysis process, but was 

important for the determination of the higher heating value (HHV) of the feedstock and solids 

derived from the pyrolysis process, based on a correlation developed by Parikh, Channiwala 

and Ghosal [317] as shown by Equation 7-3. The lower heating values were calculated from 

HHV and the hydrogen content by Equation 7-2.  

 

Equation 7-3  Higher Heating Value for Solid Fuels 

 

@@A?BC DE/GH = 0.3536TI + 0.1559AD − 0.0078N 

Where FC, VM and A represent mass percentages on dry basis of fixed carbon, volatile matter 

and ash contents of feedstock, respectively. The elemental contents of feedstock were obtained 

by the elemental analysis as mentioned above as well as through the gas analysis during a 

specific pyrolysis run. The ash content was taken as determined by the ASTM method 

explained in Section 7.2.4. All heating values were calculated on a dry feedstock basis. 

There should also be consideration of slow and fast pyrolysis methods for the determination 

of the HHV of a solid fuel. The Equation 7-3 presentation of the HHV has more relevance to 

slow pyrolysis processes where the FC and VM were determined by chemical analysis of the 

char product. The FC and VM are technology dependent variables and thus are likely to 

produce different values depending on the process conditions and the fast pyrolysis 

technologies used. 

Equation 7-2 can also be used to determine LHV for the solid fuels. However, in many 

instances when the LHV for solid fuels is required, published data can also be accessed for a 

variety of wood-based feedstocks and their solid products [310]. 

This research concentrated on conducting as many as possible varying fast pyrolysis test runs 

with the four wood-based biomass types. Compositional analyses of the biomass and fast 

pyrolysis were conducted by MEDAC Ltd. The data on composites required for computing 

lower and higher heating value of the biomass (4 types of wood), char and pyrolysis liquid 

(bio-oil) was available. This saved time and costs to also measure energy content of the various 

feedstock and products. The accuracy using indirect calorimetry was acceptable for this 

research. 
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7.6 EXPERIMENTAL ACCURACY 

The experimental results presented are believed to be the best achievable from the equipment 

available at Aston University. However, this does not necessarily mean that they are 100% 

accurate. In all stages there is an element of error, inaccuracy or non-quantification of a 

product or products resulting in incomplete closure. The point of this is to highlight the areas 

of the mass balance that are believed to be incomplete or less accurate, suggest possible 

reasons and predict the effect on the mass balance.  

Table 7-1 detailed all areas of mass balance reporting, however, this can be summarised into 

four categories: 

• Feedstock parameters; 

• Process conditions; 

• Mass balance yields; 

• Product analysis. 

7.6.1 Feedstock parameters 

The major feedstock parameters were moisture content and ash content. The moisture content 

was measured (section 7.2.3), with a reliable method accurate to ±0.1wt% (dry feedstock 

basis). However, due the hygroscopic nature of biomass, it will naturally absorb moisture from 

the air. The likelihood of this is increased if the moisture content is reduced (i.e. by drying in 

an oven). Thus, although moisture content of a feedstock may be correct at the time of 

measurement, if left open to atmosphere, improperly stored or stored for a long period of time, 

the moisture may change, typically increase to the equilibrium moisture level. The moisture 

content was measured at the time of performing the experiment. 

The moisture content of the feedstock played an important role in the mass balance since the 

original moisture is discounted from the water in the pyrolysis liquids (to leave water of 

pyrolysis).  

The ash content was measured after the moisture content and was calculated on a dry basis, 

thus inaccuracies in the moisture content could have a compound effect on the ash content. 

Unlike the moisture content, the ash content does not have such a significant effect on the 

mass balance. However, ash does have a significant effect on the pyrolysis reaction. Ash may 

accumulate in the reactor resulting in lower than expected bio-oil yield. Ash may form when 

the reaction temperature is not well controlled or oxygen leaks into the reactor. Controlling 
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the process by closely monitoring of set temperatures is key. Additionally, before starting the 

fast pyrolysis process, it was cross checked that all apertures were correctly fitted. 

The feed rate was measured as the difference in the feeder weight (before and after a run), 

divided by the total run time, hence an average. It may seem less accurate to weigh the total 

feeder rather than the feedstock. However, due to the nature of the fine biomass particles (i.e. 

sawdust), it was difficult to pour and tended to become charged with static from the stirrer, 

thus was very difficult to weigh separately. So, although the feeder was weighed to ±0.01% 

this is more accurate that trying to pour the biomass into and out of the feeder to weigh to 

±0.001%. 

The elemental analysis (CHN) of the biomass or feedstock was measured with a 0.3% absolute 

accuracy and subsequently the higher and lower heating values of the feedstock are influenced 

accordingly. 

7.6.2 Process conditions 

The key process conditions are the temperature (i.e. average fluid bed, reactor freeboard) and 

residence time. The reactor temperature was measured directly from a K-type thermocouple 

located in the fluidised sand. The temperature was maintained by a furnace which surrounds 

the reactor, cyclone and char pot. The reactor temperature was measured manually at set time 

intervals throughout a run and noted. At the end of a run the average reactor temperature was 

calculated. The average reactor temperature may not adequately describe the temperature of 

the reactor, since the run could have consisted of 30 minutes at 450ºC, followed by 30 minutes 

at 550ºC, which is an average of 500ºC. This could have been tested more rigorously if the 

average was taken based on more frequent readings with standard error. However, the average 

reactor temperature provided a fair indication of the temperature the reactor was maintained 

at during a run. 

It was important to know the total hot space residence time as this measures the amount of 

time the pyrolysis vapours were exposed to the reactor temperature. This gives an indication 

of the amount of secondary reactions which may have occurred. The total hot space residence 

time (Equation 7-4) is a function of the volume of the total hot space, weight of sand in the 

reactor, density of the sand, total volumetric measurement, total run time and average reactor 

temperature. Thus any error in the measurement of these variables will result in an error in the 

residence time. 
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Equation 7-4  Total hot space residence time 

 

	UVWXYVZ[V	\X]VQ>Q^_	`>Q	ab^cP	defQa 	

=
Aghi]Vj>Q^_k>Qlb^cP 		−

;a^e?
ma^e?	

×60×\Q`PBn>c>db_P×\X]V

1000×\BP^cQ>B×Aghi]VQ>Q^_	Q`B>do`bdQ
 

The total volume was measured at the temperature of the system which is usually the reactor 

temperature. The volume of the total hot space and the density of the sand are constants. The 

weight of sand is accurate to ±0.01g and therefore is unlikely to introduce errors into the 

residence time calculation. The reactor temperature is an average, so could be a potential 

source of error. However, in this calculation it was used to calculate the total volume of gas 

at the reactor temperature and since an average volumetric throughput of gas was calculated, 

it was best to use the average reactor temperature. The total run time was measured ±1s and 

since a run usually lasts at least 30 minutes, there is virtually no error from this variable. 

Table 7-2 Residence time error analysis 

Variable Typical Minimise Maximise Deviation 

Sand (g) 150.00 150.01 149.99 ±0.01 

T measurement (ºC) 0 -5 5 ±5 

Time (s) 1800 1799 1801 ±1 

T reactor (ºC) 500 505 495 ±5 

Volume total throughput (dm3) 400 408 392 ±2% 

Residence Time total hot space (s) 0.51 0.49 0.53  

Percentage Error  4.43 4.65  

 

7.6.3 Mass Balance Yields 

Mass balance yields were categorised into char, liquids (including organics and water) and 

gas. The closure was the difference between input as biomass (dry) and the total outputs 

usually expressed as a %. The way in which each input and output was calculated was 

discussed in section 7.4.2 (Char), 7.4.3 (Liquids) and 7.4.4 (Gas). 

Char is collected in the char pot, as a coating on the sand and inside the reactor, and could 

therefore be weighed directly, making it simple to quantify. However, the small microfine 

char tended to be blown through the cyclone and into the liquid collection system where it 

collected in the pyrolysis liquids. It was very difficult to remove this char from the liquids, 

(section 7.3.4), this was not practical. The level of char in the liquid is generally very low 
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(typically less than 0.05 wt% ). Since the char in the liquids was classed as liquids, it did not 

lead to reduced closure, only to incorrect classification. 

The liquids were collected in the oil pots (OPI and OPII which are located at the bottom of 

the condensers) and the EP (section 7.4.3). Similar to the char, the liquids were weighed 

directly (either to 1 or 2 decimal places), thus it was unlikely that any error was introduced 

here. As mentioned above, some char may have been blown into the liquids, thus giving a 

slightly inflated liquids yield. However, this was minimal. Water content measurement of the 

liquids was accurate to ±0.01 wt%, so it seemed unlikely that this could introduce errors into 

the organic/water categories. 

The most likely source of error in pyrolysis liquids yield estimation was the hold up in 

equipment and possible loss of water and/or volatile organics from the liquids collection 

system. Since large volumes of fluidising and entrainment gas (nitrogen) are used, this will 

act as a carrier gas and could carry a small percentage of the more volatile components out of 

the collection system and into downstream equipment. It was difficult to quantify on a general 

basis, since each feedstock and reactor temperature resulted in the production of a certain yield 

of volatile components. For any run it was uncertain how much volatile organics was produced 

and hence lost. If it were possible to analyse the gas more accurately, then perhaps these losses 

could be quantified. Until more sensitive gas analysis is possible then the loss of water and/or 

volatile organics must remain an unquantified loss. 

Unlike the char and liquids, which were measured after the fast pyrolysis run, the gas was 

measured directly during a fast pyrolysis experiment. Although the total volumetric 

throughput was known, the amount of fluidising and entrainment nitrogen was not measured. 

This could be estimated from the rotameters, which were used to measure the nitrogen flows. 

However, sometimes these flows were altered during a run. In the future, a gas meter could 

be placed on the nitrogen inlet to give an indication of the nitrogen consumption. Even if both 

the nitrogen input and total gas outputs were known this would only give an indication of total 

gas volume, the gas composition and therefore, weight would still have to be determined. 

Determination of the gas composition is carried out by chromatography (section 7.5.1). 

Possible inaccuracies were discussed in section 7.6.4. 
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7.6.4 Product Analysis 

The product analysis were split into three categories: solids, gas and liquids analyses. The 

liquids analysis can be sub-divided into water (Karl Fischer Coulometry), chemicals (HPLC) 

and molecular weight analysis. 

The gas analysis is probably the weakest part of the mass balance. When closure is low it is 

usually due to poor detection of the non-condensable gases due to the high dilution. Also, it 

is possible that some water and/or volatile organics escape undetected as vapour, which could 

also lead to poor closure in the mass balance. The closure was not low for every run, thus it 

would be incorrect practice to estimate vapour losses for runs with low closures and not for 

runs with good closure (95-100%). The loss of vapour can be estimated from the total 

volumetric throughput and partial pressures of components which were believed to be lost (i.e. 

water and volatile organics). 

Although the gas analysis was the weakest part of the analysis, it was not due to poor 

equipment. The problem was that the equipment had to be turned up to its limits of 

detectability and hence was performing at its most upper range. However, in the absence of 

any other method of gas analysis this method must remain. 

The Karl Fischer system and method was described section 7.5.2.1, and was accurate to 

0.01wt%, thus not believed to have been a source of inaccuracy or poor closure. 

. The accuracy of HPLC analysis (section 7.5.2.2) was of less importance to this work as the 

major objective of having analysed the liquids lied with identification of possible organic 

components in the liquids and not with the accuracy of the identified quantities. The number 

of test runs on component analysis in liquids were also too few to warrant accurate 

measurement.  

Establishing the molecular weight is independent of water content and chemical content 

analysis and does not influence the result of the latter measurements. Molecular weight 

measurements were done (section 7.5.2.4) to establish the suitability of the pyrolysis liquids 

for purposes as liquid fuel or commodity chemicals. The molecular weight provides an 

indication of the viscosity of the polymer, the bio-oil which mainly consists of lignin. 
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7.7 EXPERIMENTAL RESULTS 

Taking the description of experiments and the accuracy of the fast pyrolysis yields into 

consideration, the following results were achieved with the biomass tested in 150g/h fast 

pyrolysis reactor. 

7.7.1 Feedstock Characteristics and Analyses 

Table 7-3 Feedstock size range and moisture contents 

Feedstock Particle Size (µm) Average Moisture (wt.%, dry 
feedstock basis) 

Namibian Encroachment Bush 300 – 500 and 300 - 1000 3.03 

Eucalyptus 300 – 500 0.99 

Black Wattle  300 – 500 12.85 

Giant Bamboo 250-355 and 300 - 500 1.43 

 

Table 7-3 describes size and moisture content of the feedstock and in Table 7-4 average 

analysis are presented, following various test runs and analyses. 

Table 7-4 Feedstock analysis (wt%, dry basis) 

 Namibian 
Encroacher- Bush 

Eucalyptus Black Wattle Giant Bamboo 

C 47.10 46.90 45.51 45.78 

H 5.51 5.89 5.78 5.77 

O (by difference) 41.88 45.60 47.73 45.50 

N 0.69 0.10 0.16 0.53 

S <0.1 -- --  

A (Ash) 4.82 1.51 0.83 2.42 

7.7.2 Mass Balances (yield summary) 

The results for the dry wood-based biomass, the feedstock, are provided in Table 7-5. The mass 

balance is based on averages derived for the various test runs and subsequent analysis. The 

mass balance closures were good and follow the discussions presented earlier in this chapter. 

However, fast pyrolysis of Giant Bamboo included several disruptions due to its poor ability 

to feed into the reactor even though various feedstock sizes were tried. Very little to no 

hydrogen or C4+s were detected. 
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Table 7-5 Yields and Analyses (wt.%, dry feedstock basis) 

 Namibian 
Encroachment 

Bush 

Eucalyptus Black Wattle Giant Bamboo 

Process Conditions     
Average fluid bed 
temperature (°C) 

499 504 476 487 

Reactor freeboard 
temperature (°C) 

469 474 435 500 

Average Vapour 
Residence time (s) 

0.37 0.56 0.55 0.50 

     
Yields (wt%, dry 
feedstock basis) 

    

Char 26.5 10.1 11.8 18.8 
Organics 55.8 68.8 61.9 40.0 

Water 10.1 11.3 8.8 16.4 
Gas 8.6 10.9 14.3 14.9 

Closure/Sum 101.02 101.03 96.8 90.07 
     

Gas Yields (wt%, 
dry feedstock 
basis) 

    

CO2 7.63 6.70 8.22 8.86 
CO 0.59 5.17 5.34 4.89 
CH4 0.23 0.29 0.40 0.42 
C2H4 0.05 0.09 0.09 0.05 
C2H6 0.10 0.09 0.10 0.18 

H2 0.00 0.00 0.00 0.00 
C3H6 0.06 0.17 0.16 0.05 
C3H8 0.03 0.01 0.02 0.02 
C4h10 0.00 0.00 0.00 0.00 

 

The char levels in Table 7-6 are typical for woody biomass types, with the Namibian 

encroachment bush and Black Wattle having a lower level of C than the other biomass types 

presented in this research. 

Table 7-6 Char Analysis 

 Namibian 
Encroacher- Bush 

Eucalyptus Black Wattle Giant Bamboo 

C 72.0 83.4 66.8 77.6 
H 2.0 2.2 2.6 1.9 
O + ash 25.08 14.2 30.0 19.4 
N 0.9 0.1 0.6 1.0 
S <0.1 <0.1 <0.1 <0.1 

Closure 100.0 100.0 100.0 100.0 

 

The liquids analyses in Table 7-7 are typical for wood-based biomass. 
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Table 7-7 Liquids Analyses 

 Namibian 
Encroacher- 

Bush 

Eucalyptus Black Wattle Giant Bamboo 

C 34.2 47.0 46.2 40.9 

H 8.4 7.0 7.2 9.1 

O 57.4 46.1 46.6 50.1 

N 0.57 <0.1 <0.1 0.1 

Water content 
(wt%, wet basis) 

7.12 12.0 12.5 11.8 

No work on fast pyrolysis of Namibian and South African encroachment bush, or alien 

invasive plants from South Africa is known to have been carried out before. It was therefore 

important to establish the feasibility of fast pyrolysis and derive indicators of likely 

performance. The indicators presented in Table 7-6 and Table 7-7 were utilised to compute 

the fast pyrolysis models as presented in Chapter 8. 

7.7.3 Further Product/Elemental Analysis 

7.7.3.1 Additional Information for Namibian Encroachment Bush 

In cooperation with VTT Finland, Namibian Encroachment Bush samples of the Cheetah 

Conservation Fund were tested in 2006 under the framework of the ‘Feasibility Study on 

Electricity and Pyrolysis Oil Production from Wood Chips in Namibia’. The elemental 

analysis of the biomass on a percentage weight basis is provided in Table 7-8. The X-Ray 

Fluorescence testing (XRF) method was used to analyse the Namibian feedstock for its 

chemical elements. The analysis results were provided to this study for free and are mainly 

useful to test this feedstock’s suitability in mineral reduction processes, especially for 

production of silicon. 
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Table 7-8 Elemental Analysis of Namibian Encroachment Bush (XRF Method, wt. % dry 
basis of feed) 

Component Content 

Aluminium Al 0.03 

Phosphorus P 0.05 

Silica Si 0.11 

Magnesium Mg 0.10 

Sulphur S 0.08 

Chlorine Cl 0.07 

Potassium K 0.36 

Calcium Ca 1.70 

Iron Fe 0.02 

Titanium Ti 0.006 

Strontium Sr 0.008 

 

7.7.4 HPLC Analysis 

Only Eucalyptus and Black Wattle pyrolysis oils were subjected to HPLC analysis. The results 

are presented in Table 7-9. This was due to financial and time constraints experienced to 

complete experiments on Namibian encroacher-bush and giant bamboo. Although Namibian 

encroacher-bush is of the Acacia type, it was assumed that the Namibian encroacher-bush 

would not render similar results as Black Wattle. Other measures provided for Namibian 

encroacher-bush do not come across as comparable to the Black Wattle. 
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Table 7-9 HPLC Analysis of Eucalyptus and Black Wattle 

Name of Compound Eucalyptus Black Wattle 
 Vol.%, dry basis 
2,3-Butandione 1.32 0.76 

Hydroxyacetaldehyde 14.98 10.36 

Hydroxypropanone, Acetol, Hydroxyacetone 18.83 31.37 

2-Furaldehyde, 2-Furfural 7.63 7.14 

2 FURANMETHANOL 1.83 2.82 

(5H)-Furan-2-one 5.37 5.95 

4-Hydroxy-5,6-dihydro-(2H)-Pyran-2-one 4.17 4.86 

Phenol 0.89 1.91 

Guaiacol 2.47 3.04 

4-Vinyl guaiacol 4.30 3.90 

Eugenol 0.83 0.78 

5-Hydroxymethyl-2-furaldehyde 1.32 1.77 

Pyrocatechol 0.59 0.75 

Syringol 6.54 7.06 

Vanillin 2.30 0.85 

4-Vinyl syringol 2.55 2.15 

Alpha-Anhydro-beta-D-glucopyranose, 
Levoglucosan 

9.28 4.77 

4-Propenyl syringol (trans) 
7.26 6.70 

Syringaldehyde 4.29 1.55 

Acetosyringone 1.51 0.59 

Coniferyl alchol 1.68 0.90 

 

7.8 DISCUSSIONS AND CONCLUSIONS 

7.8.1 Discussions 

Three feedstocks, Eucalyptus, Black Wattle and Namibian Encroachment Bush, were 

pyrolysed with no problems during the experiments (very consistent runs with only tweaking 

of the reactor set point temperature to avoid over or under shooting of the furnace 

temperature). However, Giant Bamboo proved virtually impossible to feed. Even trying to 

feed two different sized fractions did not improve the situation. In all cases, blockage of the 

feed tube occurred even with entrain gas flows as high as 3 l/min and at low feedrates of 10 

g/h and feeder top flow of 50 ml/min. To try to improve the feeding, cooling air was also fed 

down the annular gap in the feed tube and the feed tube exit point was moved up 5 mm more 

from the gas distributor in the fluid bed. It was observed that pulses of solids could be fed in 
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by having a much higher N2 pressure in the feeder; however this also led to blockages. The 

experiments auto-terminated after around 30 min. Mass balance calculations were 

subsequently carried out on what was attainable from the run, leading to the overall poor 

closure as presented in Table 7-5. 

After two runs were carried out with the Namibian Encroachment Bush, which has a very high 

solid density of around 1000 kg/m3, and also proved difficult to feed under the ‘normal’ 

experiment settings, the fluidising gas flow was increased from 5 l/min to 9.5 l/min and the 

average sand size in the bed doubled from a size range of 355-500 µm to 500-850 µm. This 

resulted in virtually no char remaining in the fluid bed, none in the liquids collection system 

and full char recovery in the char pot. In the first experiments with Namibian Encroachment 

Bush, a clear phase separation of the pyrolysis liquids took place in Condenser I and OP I with 

the biggest fraction being rather watery. The high ash content of the Namibian feedstock may 

have caused the phase separation of the bio-oil. 

It was the first time that Southern African wood-based biomass was fast pyrolysed at Aston 

University. It is therefore difficult to assess whether the latter feeding problems under 

‘normal’ settings was peculiar to this experiments set-up. 

The species used to for experimentation showed similar results in terms of higher heating value 

(HHV) as other species occurring in Namibia and South Africa. A comparison is provided in 

Table 7-10. The wood species listed as per Gore [309] in Table 7-10 are derived by proximate 

analysis; the HHV as derived by this research are ultimate analysis. 
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Table 7-10 Proximate and ultimate analysis; higher heating value of Namibian and South 
African wood-based biomass resources [309; own research] 

Species Moisture 
content (%) 

Ash  
(dry-wt.%) 

HHV  
(MJ kg-1) 

Specific 
gravity 

E. paniculata 9.7 0.33 19.782 1.03 

E. cladocalyx 10.0 0.45 19.190 0.87 

E. saligna 10.4 0.45 19.599 0.57 

E. grandis (own 
tests) 

11.3 1.51 18.923 Not tested 

A. mollissima 8.6 0.44 19.213 0.86 

A. cyclopsis 8.5 0.87 18.912 0.82 

A. karroo 9.0 0.99 19.784 0.71 

A. saligna 8.7 1.10 18.750 0.68 

A. mearnsii (own 
tests) 

8.8 0.83 18.478 Not tested 

A. mellifera (own 
tests) 

10.1 4.82 18.603 Not tested 

P. pinaster 9.8 0.55 20.165 0.65 

P. insignis 9.7 0.44 19.679 0.54 

P. longifolia 9.9 0.55 19.903 0.49 

P. patula 9.9 0.33 19.439 0.48 

P. caribaea 9.9 0.55 21.866 0.38 

Thamnocalamus 
tessellatus (own 
tests) 

16.4 2.42 18.485 Not tested 

It would be interesting to compare the values of various wood properties of Namibian and South 

African species with those of wood species growing elsewhere. The unit ‘National Timber 

Research Institute’ of the Council for Scientific and Industrial Research (CSIR) which produced 

relevant biomass data as presented in Table 7-10 was closed down in the mid-1990s in 2007, 

CSIR opened the Forest and Forest Products Research Centre (FFP), a partnership with the 

University of Kwazulu-Natal. FFP analyses wood for its physical and chemical properties on a 

needs basis only; a wood properties database is not publically accessible. However, plant growth 

patterns generally differ from those prevailing in Namibian and/or South Africa (because of 

differing prevailing temperatures and rainfall). The chemical composition (and density) also 

differs with the age of the tree and also within the tree itself. The latter aspects make the values 
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incomparable.  

7.8.2 Conclusions 

Through the experiments, the three feedstocks, Eucalyptus, Black Wattle and Namibian 

Encroachment Bush were found to all demonstrate characteristics suitable for fast pyrolysis, 

and given the analysis presented and specific thermo-chemical conversion requirements 

discussed in Section 7.8.1. This work will thus continue on the basis of elaborating bioenergy 

opportunities presented by the utilisation of specifically Black Wattle and Namibian 

Encroachment Bush. The biomass resources potential modelling described in Chapter 6 and 

the technology modelling discussed in Chapter 8, takes the experimental results offered in 

Chapter 7 into consideration. Eucalyptus is a wood-based biomass resource from commercial 

forestry of which there is not sufficient to warrant fast pyrolysis conversion for bioenergy 

(Chapter 4, 5 and 6). Therefore, the use of Eucalyptus species for bioenergy production via 

fast pyrolysis conversion will not be pursued further by this research. 

The yields of the fast pyrolysis products obtained through experimentation and as summarised 

in Tables 7-4, 7-5, 7-6 and 7-7 are used to model the fast pyrolysis process. 

  



243 
 

8 TECHNO-ECONOMIC MODELLING OF FAST PYROLYSIS – THE 
BIOENERGY MODEL 

This chapter describes techno-economic modelling of fast pyrolysis under Namibian and 

South African conditions. The information gathered and discussed in Chapters 1 to 7 on the 

socio-economic developments, policy and political environment, the biomass resource 

availability in Namibia and South Africa and technological requirements were used to build 

the techno-economic model. The concluding part of this chapter proposes how a relatively 

new technology like fast pyrolysis could succeed in Namibia and South Africa; its benefits 

from and challenges of introducing a new technology in the market.  

South Africa essentially halted research and development for biomass processing between 

1994 and 2010 [318]. Namibia only adopted research and development as part of socio-

economic development initiatives in 2004 [319]. The Namibian Research and Development 

Act only became operational with allocation of funds to the research council in the 2011/12 

budget year with the commissioning of the Namibian Commission for Research, Science and 

Technology [4]. The latter aspects on applied research are important to bear in mind as this 

research, as one objective, would propose a roadmap on how to implement fast pyrolysis 

technology to produce bioenergy, both in Namibia and South Africa, if fast pyrolysis is a 

feasible and economically viable option to pursue for bioenergy production. National support 

mechanisms that may be required to render infant technologies economically viable were 

identified and discussed in this chapter. Modelling fast pyrolysis operations assists in 

determining the parameters that would be required to establish a bioenergy system based on 

fast pyrolysis. Section 8.1 describes the parameters and models a typical fast pyrolysis process 

using the available wood-based biomass resources in Namibia (section 6.1) and in South 

Africa (section 6.2). 

8.1 DESCRIPTION OF FAST PYROLYSIS OPERATIONS 

Fast pyrolysis systems modelling was based on fluid bed pyrolysis, with the capacity to deliver 

between 1 to 20MW electricity equivalent output. The system requirements were assumed to be 

the same under Namibian and South African conditions. The substantial differences for fast 

pyrolysis in Namibia versus fast pyrolysis in South Africa were manifested in the different types 

of feedstock to be used. Fast pyrolysis systems in Namibia would use wood from bush 

encroachment only, while fast pyrolysis processes for South Africa were suggested to use wood 

from bush encroachment in woodlands and invasive alien wood-based plants as feedstock. 



244 
 

Bio-oil can be made, suitable for transport to another location (e.g. for upgrading to a fuel), or it 

can be used onsite for power generation as required (Figure 2-1). Most fluid bed reactors have 

strict particle size requirements (section 7.2); due to heat transfer limitations in large particles 

[320]. The feedstock was considered to be delivered as chips from conventional clearing of 

encroachment bush, or other chipped invasive alien wood-based plant material. For the fast 

pyrolysis process, the feedstock needs to be comminuted to the correct size; the cost of 

processing the chipped bush to fine particles was accounted for in the model. The flowsheet for 

the process is given in Figure 8-1 and the process unit definitions are given in Table 8-1. 

A highly detailed mass and energy balance of the different types of feedstock from Namibia and 

South Africa was based on experimental work carried out on actual samples (Chapter 7, section 

7.7.2). Conditions were optimised for liquid (bio-oil) production. 

Table 8-1 Process unit definitions [68, 116] as used in Figure 8-1 

No.  Description No.  Description 

C01 Wood feed Conveyors R02 Char and Gas combustor 

C02 Wood Metering Conveyor R03 Recycle Gas Combustor 

C03 Wood Feed Conveyor R04 Excess Gas Combustor 

C04 Char Recovery Conveyor S01 Char Cyclone 1 

C05-07 Char metering screws S02 Char Cyclone 2 

C08-10 Char Return Conveyor S03 Quench Condenser 

C11 Char discharge screw to storage S04 Electrostatic Precipitator  

E01 Cooling Tower S05 Hot gas Filter 

E02 Dual fuelled diesel engine V01 Wood Hopper 

F01 Air Fan 1 V02 Wood Metering Hopper 

F02 Recycle Gas Fan V03 Char Feed Hopper 

H01 Air Preheater V04 Liquids sump tank 

H02 Quench Liquid Cooler V05 Liquid Storage Tank 

H03 Gas Preheater V06 Demister 

P01 Quench Liquid Pump V07 Recycle Gas Buffer 

P02 Bio-oil Pump V08 Char and ash Receiver 

R01 Pyrolysis Reactor V09 Diesel storage tank 

Based on prior work [116], the grinding of woodchips to sawdust is an expensive process on a 

small scale. There is a significant cost penalty for systems less than ~2 dry-t/h, as the output of 

electricity is virtually all consumed in the generation of electricity for on-site use. From prior 

analysis of feedstock preparation [102], the installation of a complete wood preparation system 

for small plants less than 2 t/h is not economical [116]. In most cases, purchase of a feedstock 
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to the required specifications is cheaper, or as mentioned above, the use of available sawdust 

which could be sourced from elsewhere (accounted for in the South African case only). 

However, for this research, comminution costs were accounted for. 

The commercial fast pyrolysis process is similar to the fast pyrolysis process as described under 

experimental conditions (Chapter 7). The commercial fast pyrolysis process commences with 

feedstock (wood chips) delivery. Feedstock delivered to site is stored in a 3 day buffer area. The 

delivered chips are then prepared as outlined in Figure 8-1. The dried ground feedstock is 

conveyed [C01] to the feed hopper [V01], then through an intermediate storage vessel [V02] to 

the biomass metering screw(s) [C02] and then in the high speed feedscrew [C03] into the 

fluidised bed pyrolysis reactor [R01]. The bed is fluidised using recycled and oxidised pyrolysis 

gases, preheated in the catalytic oxidiser [R03]. Where appropriate, a small gas burner is used 

to ignite the recycled gases in R03. The pyrolysis reactor is heated by means of the by-product 

char being combusted in an annular fluidised bed [R02], which has multiple char feed screws 

[C08-10], fed by metering screws [C05-07]. Char is recovered from the hot products exiting the 

pyrolysis reactor in cyclones [S01 and S02]. For larger scale plants, multiple cyclones would be 

used.  

The remaining pyrolysis gases and vapours are quenched and cooled in a co-current scrubbing 

tower [S03], with residual aerosols removed in an electrostatic precipitator [S04]. The recovered 

liquids are circulated to S03, being indirectly cooled in a water cooled heat exchanger [H02], 

with some drawn off for storage [V05]. The liquids are then co-combusted with diesel [V09] in 

a dual fuel engine or engines [E02].  

Residual non-condensable pyrolysis gases are passed through a demister [V06] and are then 

pumped by the gas fan [F02] to a gas buffer tank [V07]. The pyrolysis gases are preheated [H03] 

and then some are sent to R03 to fluidise the pyrolysis reactor and excess gases may be 

combusted in the char combustor [R02] or burnt off through a catalytic oxidiser [R04]. The hot 

combustion gases from the char combustor are hot gas filtered to remove char and ash particles, 

prior to being used to preheat the recirculation gases and preheat the air [H01] to the char 

combustor [R02].  
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Figure 8-1 Fluid bed fast pyrolysis with power generation in a dual fuel diesel engine [68, 116] 
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8.2 BIOENERGY MODELLING APPROACH 

This research focused on fluidised bed (Figure 8-1) fast pyrolysis operations which deliver an 

electrical output of 1MW, 5MW, 10MW and 20MW. Dependent on the electrical output required 

for each fast pyrolysis operation, it was important to take the following data and information into 

account which was presented in Chapter 5, 6 and 7: 

• Feasibility testing and statutory approvals prior to operations (Chapter 4 and 5) 

• Wood biomass availability (annualised, and daily) to serve as feedstock (Chapter 5 and 6) 

• Compositional analysis of the biomass feedstock as well as bio-oil feedstock, including 

moisture and ash content of the feedstock (Chapter 7) 

• Proximate and/or ultimate analysis of the feedstock (Chapter 7) 

• Operational year of the fast pyrolysis plant (Chapter 5) 

• Operational cost factors (Chapter 5) 

• Market opportunities for the end products, both bio-oil and electricity (Chapter 6)  

Other factors which influence fast pyrolysis operations and which are determined in this Chapter 

and Chapter 9, include: 

• Desired electrical output (1, 5, 10 or 20MW)  

• Engine electrical efficiency 

• Diesel energy input and consumption 

• Bio-oil feedstock requirements for electrical production 

• Personnel requirements and availability and their cost during the operational year and day  

• Capital requirements and the cost thereof are considered in the costing approach 

• Technical and non-technical barriers to fast pyrolysis operations in Namibia and South 

Africa 

Although the wood-based biomass feedstock is expected to be delivered to the fast pyrolysis 

operations in a chipped form, the techno-economic viability for energy production is dependent 

on techno-economic viability of the various individual elements in the value chain (Figure 2-1). 

For each component of the model, assumptions based on the literature review (Chapter 4), the 

conceptual model (section 2.5 and 2.6) and empirical knowledge, were integrated into each 

component of the model. The mathematical model and timeframe to the modelling approach are 

described hereafter. 
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8.2.1 Mathematical modelling approach underlying the bioenergy model 

Following the conceptualisation of the model, a mathematical model was developed which can 

be described, in summary, as an optimisation model which combines social, environmental 

and techno-economic factors to deliver the most feasible option for fast pyrolysis of wood-

based biomass. The model was solved in a spreadsheet approach (section 4.4.1) for only one 

objective function, i.e. maximisation of output (e.g. products or profits) under certain 

constraints (endogenous or exogenous). A linear programming (LP) approach was used to 

solve the model. The modelling approach is similar to a refinery optimisation and yield 

management model; and contains elements of distribution, resource allocation, blending and 

marketing in a multi-period setup (scheduling & assignment). Sensitivity analysis on the model 

can be done, for the variables. The model was analysed for sensitivity to key cost variables 

(biomass costs and size, some economic indicators and market prices of products). The model 

draws upon panel datasets compiled and generated in terms of:  

• wood-based biomass resources; 

• technical requirements and their cost implications; 

• economic indicators; and 

• market prices of products, where available. 

The time frame for which the model was solved spans over a 20-year economic cycle and is 

directly linked to the considered harvesting cycle as presented in Table 5-4. The results of the 

model were presented in Chapter 9. 

8.3 MODELLING OF RESOURCES IN GENERAL 

Modelling of resources encompasses wood-based biomass, land, personnel and capital 

resources. Materials and equipment resources were accounted for under either fast pyrolysis 

operations or capital investment requirements. Each of these resources were shortly discussed 

to summarise the important aspects for modelling. The detailed discussions are provided for 

in preceding chapters as outlined. The descriptions below also encompass the assumptions 

underlying the resources model. 

8.3.1 Wood-based biomass resources 

The wood-based biomass resources refer to bush encroachment, under both Namibian and 

South African conditions; and invasive alien wooded plant species to be eradicated under the 

Working for Water (WfW) programme in South Africa. The biomass resources availability 
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was determined (sections 6.1.2, 6.1.3, 6.2.3 and 6.2.4 and section 6.3). The physical and 

chemical properties of the feedstock were determined as described in sections 7.2, 7.5 and 7.7. 

Harvesting costs were considered for the wood from bush encroachment only; harvesting of 

invasive alien wooded plant species were considered to be covered by the WfW programme. 

These resources are available at source, i.e. the model takes into account that it should be 

transported, handled and stored prior to fast pyrolysis conversion. No third country imports of 

wood-based biomass were considered; neither in the raw (feedstock) form nor in the bio-oil 

form. If considered, these wood-based biomass resources would augment feedstock supply 

over the shorter term.  

The cost of the wood-based biomass as feedstock were determined by solving the model. 

However, to prevent a circular reference while solving the model, an input value (a dummy 

value) for feedstock needed to be inserted. Once the breakeven value of the feedstock was 

established when solving the model, the dummy value is overwritten. The following dummy 

values for the various types of wood-based biomass were used: 

• NAD100/wet-t wood from bush encroachment in Namibia; the resource is to be available in 

chipped form at the exit point of the farm or at biomass buffer storage sites. 

• ZAR100/wet-t wood from bush encroachment in South Africa; the resource is to be available 

in chipped form at the exit point of the biomass harvesting site or at a biomass buffer storage 

site. 

• zero for invasive alien wooded plant species residues obtained from the WfW programme in 

South Africa, at the exit point of the harvesting site. This value is also considered as the price 

for the resource. 

The effect of biomass price on feasibility of the fast pyrolysis operations will be tested using 

sensitivity analysis. 

8.3.2 Land Resource 

Two types of land resources were considered: land on which biomass is produced and land on 

which the fast pyrolysis processes would take place. Land ownership for biomass production 

rests with farmers (Namibian case); rural communities (Namibian and South African case) and 

authorities (South African case). The use of wood from areas with bush encroachment makes 

additional land available for productive agriculture, contributing to sustained food security in 

Namibia and South Africa respectively. Wood-based biomass (feedstock) as required by the 

respective fast pyrolysis processes would be delivered at a cost at the exit of the land in 
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question. The costs of the various feedstock were determined by solving the model. This 

research did not consider the harvesting and on farm transport as part of the techno-economic 

model, nonetheless the results of selective harvesting models were provided in Chapter 9 to 

determine the breakeven selling price of feedstock and test the sensitivity of fast pyrolysis 

operations to feedstock price. The underlying data was provided in Chapter 5.  

In South Africa, the eradication and use of invasive alien wooded plant species contributes to 

a two-fold improved return on investment: restoration of biodiversity; and revenue generation 

for the parties involved. The land on which fast pyrolysis processes are to take place is 

considered to be bought and owned. 

8.3.3 Personnel Resource 

With bioenergy operations, it was expected that additional jobs would be created in Namibia 

and South Africa. The output from the model would determine how many additional skilled, 

semi-skilled and unskilled jobs will be created. Job creation positively contributes to socio-

economic outcomes as desired by the Namibian and South African governments (section 2.1). 

It was assumed that essential training takes place relevant to the respective functions in the 

conversion process. Labour would be contracted on a needs basis, and availability at duty 

station. 

Biomass resources would be bought at source; therefore labour costs and production inputs 

associated with obtaining the wood-based biomass resource fall outside the model. The 

feedstock price (section 8.3.1 and 8.3.2) was assumed to take these costs into consideration. 

Cost of labour, expressed as unit labour costs (ULC) and labour productivity are determined 

by national regulations of Namibia and South Africa respectively. The model accounts for 

minimum wages for unskilled and skilled labour. 

The personnel requirements for fast pyrolysis processing were summarised in Table 8-2. 

Staffing requirements were provided for fast pyrolysis processes of the equivalent of 1 MW, 

5MW, 10MW and 20MW. Please note Table 8-2 excludes staffing requirements for the 

electricity generation process itself; but all staffing requirements for up-stream and fast 

pyrolysis operations were included. 
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Table 8-2 Personnel requirements to operate a fast pyrolysis plant, using electrical output as 
measure of requirements 

Duty of staff 1 MW [E] 
production 

5 MW [E] 
production 

10 MW [E] 
production 

20 MW [E] 
production 

Logistics and storage of 
feedstock at harvest site / 
conversion plant ** 

9 40 40 40 

Chipping and milling of 
feedstock to correct size ** 

4 8 8 12 

Procurement of feedstock *** 0.5 2 2 2 

Sales of products *** 0.5 1 2 2 

Maintenance  and operations 
of all equipment 

2 3 4 6 

Process Engineer*** 
Electrical Engineer*** 
[E] transmission / feed-in 
specialist 
 

    

Maintenance Artisan*** 1 1 3 5 

Hourly/Shift workers ** 5 5 32 64 

Administration ** 2 3 4 4 

Overall Management *** 1 1 3 3 

TOTAL 74 294 528 988 

(ns=non-significant skills or technical training requirement of staff; *=weakly significant skills or technical training requirement of staff; 

**=strongly significant skills or technical training requirement of staff; ***=very strongly significant skills or technical training requirement of 

staff) 

For staffing requirements as summarised in Table 8-2, the general requirements (Table 5-23) are: 

four-shifts per working day; 290 plant operations days per year, 40 days for annual overall 

maintenance and the remainder for annual and other types of leave per annum are assumed. All 

personnel were expected to be on site for plant operations and maintenance periods and financial 

(internal and external) audits. 

Tasks indicated with (**) in Table 8-2, denote that prior technical training would be required to 

fulfil the task capably and deliver the performance needed to secure smooth operations of the 

fast pyrolysis plant(s). Further ‘on the job training’ would also be required to synchronise input 

and output operations. 

Tasks indicated with (***) in Table 8-2, require relevant higher education with corresponding 

qualifications at post-graduate level and at least five years practical experience in the field of 

operations of a thermo-chemical conversion process. 



252 
 

Namibia and South Africa so far do not have any fast pyrolysis plants in commercial operation. 

The in-country personnel do have the technical capability to run the operations. However, all 

tasks denoted with (***) in Table 8-2 would require a dedicated recruitment process where 

talented personnel would need to be identified that can be trained to manage a fast pyrolysis 

plant. These employees could be recruited from operations which also run chemical conversion 

processes in Namibia, e.g., from the mining or food processing sector. Alternatively, skilled 

personnel would need to be recruited from abroad who can then work in Namibia for a limited 

period (subject to immigration legislation). A dedicated skills transfer programme should be 

engaged into by the fast pyrolysis system owners to sustain local operations. The latter was 

accounted for in the model by higher commissioning costs. 

For the farmer, it would be more feasible to clear bush in a fully mechanised manner; rangeland 

rehabilitation would be accomplished relatively fast as opposed to manual cutting. However, the 

management of large machinery for initial clearing may be difficult to handle on the one hand, 

although initial clearing of land is limited to 500ha/farm/annum. On the other hand, manual 

clearing requires large harvesting teams to be accommodated on the farm – this is yet another 

challenge to overcome. In some years considerably more than the average number of workers 

(Table 9-4) is required to clear bush as well as to carry out the follow up and aftercare treatments. 

Harvesting personnel on each farm would then amount to 311 for the Okakarara and 408 for the 

Otjiwarongo farmland areas respectively. On average, complete manual harvesting operations 

delivers 6.6wet-t/worker/month of wood. Fully-mechanised harvesting operations deliver 

approximately 58.3wet-t/worker/month of wood. It should however be stated that fully-

mechanised harvesting operations also have their limitation; bush-encroached land is not always 

accessible by heavy machinery due to inaccessible mountain areas, and the growth pattern of 

bushes itself. 

8.3.4 Capital Resource 

Capital is freely available on the open market at long term assumed market interest rates which 

are linked to the reserve banks’ reposition (repo) rate. It was assumed that there would be no 

limitations on foreign direct investments or other capital in- and outflow restrictions and that 

foreign exchange legislation would not be reversed to a state where capital cannot flow freely 

between markets. Furthermore, the Namibia Dollar (NAD) would remain pegged to the South 

African Rand (ZAR) over the forecast period. The long-term foreign exchange rates between 

hard currency (USD, GBP, EUR) and NAD and ZAR respectively are difficult to track and 

were assumed to follow depreciation/appreciation as per inflation movements. Over the 
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modelling period the long term exchange rate was assumed to be as per Table 5-23. Other 

capital related economic indicators were provided for in Table 5-23 too. It was assumed that 

sufficient operating capital would be available for fast pyrolysis operations, i.e. no overdraft 

facilities would be required or taken. Overall capital cost is a function of the operations carried 

out in the project and is case and location sensitive. 

8.4 HARVESTING, LOGISTICS, TRANSPORT AND STORAGE OF BIOMASS 
RESOURCES 

Harvesting of biomass would commence at least three months prior to commissioning of the fast 

pyrolysis operations. Feedstock supply to a central buffer storage points would commence one 

month prior to commencement of fast pyrolysis process until the 3-day buffer storage would be 

reached at optimal moisture content levels. Storage of feedstock would be in the form of wood 

chips. This would save costs of bulk feedstock preparation and transport. 

Although harvesting was not part of the fast pyrolysis model, there would be a requirement by 

the project that harvesting methods comply with national regulations (Table 4-5) [321]. It was 

assumed that all biomass feedstock suppliers continuously abide by these and comply with 

environmental laws and standards at all times, including renewals of certificates when/where 

required. 

In Namibia, fast pyrolysis operations were assumed to take place in Otjiwarongo and would cater 

for biomass from the Okakarara and Otjiwarongo farmland areas (section 6.1.3 and 6.3). In South 

Africa, three fast pyrolysis operations were considered: one in the Eastern Cape, one in the 

Western Cape and one in Gauteng Province. The cost of transport and logistics of biomass as 

feedstock to the fast pyrolysis plants were indicated in Table 5-22. The cost of transport may 

render fast pyrolysis operation not economically viable if the distance between locations of the 

wood-based biomass resource and the fast pyrolysis conversion site is further away than 200km. 

Thus, buffer biomass storage sites are assumed. This would allow suppliers of biomass to deliver 

smaller loads of chipped feedstock to such site. The buffer biomass feedstock sites would serve 

a dual purpose: larger loads of chipped feedstock can be delivered to the fast pyrolysis conversion 

site at lower cost just-in-time; and storage holding space and cost at the fast pyrolysis conversion 

site can be optimised. 

A 3-day feedstock inventory at the fast pyrolysis conversion site is assumed. Feedstock in the 

form of wood chips is to be stored at the conversion site. Comminution or grinding of woodchips 

would take place as feedstock enters the conversion process. The size of the feedstock for 
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conversion should be even sized, i.e. maximum 1 mm diameter and 5 mm length.  

Moisture content for all feedstock is crucial. Moisture content of feedstock would be measured 

twice; first prior to storage and then before conversion. All feedstock entering any of the above 

listed conversion processes were assumed to have a moisture content on a weight basis of equal 

or less than 18%. Maximum tolerable moisture content would be less than 20% on a weight basis. 

High moisture content or large variations in moisture content between wood particles negatively 

influence the quality of the final product. It was assumed that storage facilities for feedstock are 

appropriately and sufficiently ventilated. The Namibian and South African climatic conditions 

allow for feedstock to be air-dried in areas protected from rain and being well ventilated. 

However, during certain times of the year air-drying may not be possible. Therefore, additional 

feedstock drying equipment would be required  (Figure 8-1). Inappropriate feedstock storage 

facilities induce degradation of feedstock prior.  

Storage costs for biomass feedstock were assumed to be less or the same as biomass resource 

costs and should not exceed the cost of the resource. Maximum tolerable feedstock preparation 

costs for the fast pyrolysis conversion process would be determined by solving the overall model. 

The costs were limited to grinding wood chips to desirable size directly before conversion.  

8.5 MODELLING OF FAST PYROLYSIS OPERATIONS 

Modelling of fast pyrolysis took account of the products derived from the process, with process 

settings determined to maximise bio-oil yield. Products from fast pyrolysis yield charcoal in 

powder form, bio-oil (liquid extracts) and incondensable gas, all with their resultant properties. 

Product yields for a specific wood-based biomass were determined and the results were 

presented in Chapter 7. 

Fluidised bed processing as per experimental work (Chapter 7), and existing pilot and/or 

commercially available technology and cost structures (section 8.1) were consisered. 

Equipment and parts costs were obtained from suppliers of the equipment, some of them 

operating in Namibia, others in South Africa. For the fast pyrolysis reactor, equipment and 

components were assumed to be imported from Europe and/or the USA, attracting high costs 

due to payments necessarily to be done in hard currency. Emphasis was placed on the primary 

fast pyrolysis conversion process, i.e. conversion of wood-based biomass into bio-oil. The 

downstream production of electricity was only accounted for in the model to determine the 

production price of electricity. This is because authorities require that the provider of such 



255 
 

electricity should also install the transmission infrastructure to the nearest transformer station 

or distribution hub. The latter is outside the scope of this research. 

The production price for electricity was determined to compare it with proposed statutory 

renewable energy feed-in tariffs (REFIT). If electricity production via fast pyrolysis would 

more expensive than REFITs (section 5.5 and 5.6), fast pyrolysis processing of wood-based 

biomass may not be economically viable; or operational cost savings would need to be 

investigated; or in the worst case scenario, REFITs as proposed may have not accounted for 

all cost factors while introducing a new energy production system at a national basis. The 

sensitivity analysis would assist in identifying cost factors that would require re-consideration. 

8.6 LOGISTICS, HANDLING AND TRANSPORT OF BIO-OIL 

Bio-oil production was considered to be the main purpose of fast pyrolysis conversion of 

wood-based biomass in Namibia and South Africa. Bio-oil would be used for the production 

of electricity on site as per Figure 8-1. Both, on-grid and off-grid electricity production were 

considered to be feasible and thus warranted further investigation. Only excess bio-oil would 

be stored and/or sold to other markets, either inside or outside Namibia and/or South Africa. 

Bio-oil is handled, stored and transported according to international standards. The technical 

standards for bio-oil handling are as follows [322, 323]: 

8.6.1 Bio-oil handling, storage and transport 

All bio-oil wetted surfaces should be of Stainless 304, 316, HDPE, EPDM, PVC or Teflon 

drums because of bio-oil’s acidity (pH of 2.2 - 3.0). During storage and transportation bio-oil 

should be kept above 15°C to maintain good fluidity, but should not be stored at temperatures 

higher than 40°C for long periods to avoid polymerisation. During storage bio-oil should be 

agitated or circulated to maintain good homogeneity. Bio-oil does not exert pressures at 

temperature much different from water. Carriers designed to handle diesel fuels or similar 

products would suffice also for bio-oil.  

For pumping large quantities of bio-oil (more than 10t), all piping must be large enough and 

not less than 75mm (3 inches) diameter on suction (keeping it as short as possible with a 

generous net positive suction head ‘NPSH’) and with a 50mm (2 inch) diameter on discharge-

use reinforced PVC hose if practical. 
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8.6.2 Cleaning bio-oil out of tanker and cleaning agents for bio-oil 

Cleaning is best done with denatured ethanol. It will depend on end user requirements of the 

bio-oil but it may be possible to add the collected wash spill to the bio-oil, in particular if the 

end use is as a fuel. The tanker should not be washed with water as it will cause separation. 

Ethanol is preferable to methanol. The carrier is advised to carry a small amount of denatured 

ethanol with him to clean tools and valves.  

Denatured ethanol (recommended) and methanol are both good cleaning agents for bio-oil. 

However, as the latter are also hazardous materials their use should also be guided by their 

materials safety and data sheets (MSDS) information. Ethanol and methanol are poisonous and 

combustible. Bio-diesel in industrial applications has proven to be a good cleaning and solvent 

agent. 

8.6.3 Cleaning of bio-oil spills in water  

Unlike with oil spills, bio-oil being heavier in water will quickly sink to the bottom where 

much of it will dissolve with time (up to 65%). Parts of bio-oil are water-soluble [322, 323].  

8.6.4 Bio-oil and other fast pyrolysis products’ production price structure for modelling 

No market value for bio-oil exists in Namibia and South Africa. Charcoal does have a market 

value; however, that is for lumpy/solid pieces of charcoal produced from slow pyrolysis 

processes. Fast pyrolysis delivers a charcoal in powder form and thus the model assumed that 

charcoal is a co-product used in process as source of heat. The breakeven selling price of bio-

oil derived from fast pyrolysis conversion processes would be determined by solving the 

model. The breakeven selling price for bio-oil would be calculated based on all input costs. 

The market value for producer gas obtained from the fast pyrolysis gas is not known. It is 

therefore assumed that renewable energy feed-in tariff for biogas under the South African 

governments’ renewable energy programme for the generation of electricity is also valid for 

pyrolysis process gas should a possibility arise to sell this. The suggested price applied for 

costing bio-oil under South African conditions is ZAR0.96/kWh equivalent [296] (Table 

5-28). 
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8.7 MARKET RELATED ISSUES CONSIDERED BY THE BIOENERGY MODEL, 
PARTLY ALSO REFERRING TO POLICY MEASURES 

The aim of this research was inter alia to analyse the opportunities of bioenergy production 

for socio-economic development in Namibia and South Africa. This means, marketing of 

bioenergy was determined by the demand for and the possibility of on-grid feed-in of 

electricity produced by using bio-oil as fuel for electricity generation. Potential was also based 

on future supply of wood-based biomass resources. Renewable energy production is currently 

supported by conducive national policies and regulations in Namibia and South Africa. 

However, the policies and regulations in place do not specifically mention bioenergy 

production via the fast pyrolysis route. The policies mention bioenergy from “biomass and 

biogas” (Table 5-26 and Table 5-28) though. Thus, bioenergy via the fast pyrolysis route seems 

not to be specifically excluded. It was therefore assumed that national policies, procedures and 

regulations are also applicable to bioenergy production via fast pyrolysis, and would pertain 

to the following: 

• The respective industrial policy of Namibia [6] and South Africa [289]; 

• For Namibia REFITs, tariffs as per Table 5-26 apply 

• For South Africa, the biofuels strategy and directive [7], and proposed feed-in tariffs for 

electricity (Table 5-28) apply 

• Renewable Energy Technology accreditation procedures and standards (Chapter 9.9)  

• Market and product standards are determined by the Namibian and South African 

authorities, for example –  

o Namibia: Ministry of Mines and Energy (bio-oil standards); Electricity Control 

Board (electricity generation based on bioenergy); 

o South Africa: South African National Standards (bio-oil standards); National 

Electricity Regulator of South Africa (electricity generation based on bioenergy). 

In terms of bio-oil an existing market is lacking. The model assumed that all bio-oil would be 

utilised for electricity production on site where fast pyrolysis takes place. However, with time 

there may be surplus supply. Any surplus supply was assumed to be sold at NAD or ZAR0.50/l 

ex-factory. This is the indicative price for wood-tar from the AGODA process as sold in 2008. 
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8.8 SOCIAL AND ENVIRONMENTAL IMPACT AND SUSTAINABILITY 

Constraints to the model are driven by national policy and regulation with regard to 

• National [286, 125, 179] and international sustainable development objectives, standards 

and agreements, notably the Kyoto Protocol [240]; 

• National health and safety regulations [324, 325] 

• International voluntary standards on social responsibility and labour / employment 

measures [326]. 

Choosing biomass to generate additional energy capacity for Namibia and South Africa bears 

greenhouse gas emissions abatement potential [66]. The potential was assumed to be 

materialised through CO2-income at ZAR150/CO2-t. However, optimisation of the model does 

not consider income from CO2 as a first option as the trading possibilities with CO2 in Namibia 

and South Africa are limited. The trading framework has caveats and the likelihood to obtain 

CO2 trading license in both Namibia and South Africa is very limited. 

Additional governmental fiscal and tax-based subsidies were not considered. However, such 

may turn an otherwise less feasible and economically less viable bioenergy generation 

investment into a profitable one.  

Any new fast pyrolysis conversion systems and corporate entity to be built in Namibia and 

South Africa is required to integrate sound environmental practices, labour practice and social 

responsibility into its business model.  

8.9 MAIN ASSUMPTIONS UNDERLYING THE BIOENERGY MODEL FOR 
NAMIBIA 

8.9.1 Biomass resource use; feedstock supply and security of feedstock supply 

Although potential may exist to source other types of biomass resources (dung, municipal 

waste, agricultural production waste) in Namibia, these have not been taken into consideration. 

The bush inventory at hand and annual bush growth rate for the Okakarara and Otjiwarongo 

farmland areas respectively was provided in Table 5-15 and were considered to be sustainable 

to continuously supply feedstock to fast pyrolysis operations. The wood harvesting cycle 

coincides with 20-year bioenergy modelling period. Any future use of wood from bush 

encroachment for fast pyrolysis would not compete with any current or future residential and 

industrial use of the same resource. 
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Farmers would harvest and supply bush to fast pyrolysis operations under supply contracts. 

The bush would be bought directly from the farm owners. Targeted government interventions 

for bulk harvest and supply of bush would be limited to government owned farms and 

communal farming areas, as may be the case for the Okakarara farmland area. In addition, 

buffer or bulk feedstock storage sites would be put up (section 8.4). To sustain supply, 

renewable 3-year contracts would be agreed upon with farmers, stipulating the annual amount 

of supply, and were assumed to be in place before operations commence. 

8.9.2 Costing approach 

The base case cost was taken as the breakeven price of the biomass (in NAD  per wet-t) 

delivered in bulk to the farm gate or the bulk storage site. Transportation of bulk biomass or 

the wood chips is not further than 100km from the fast pyrolysis site. The wood chips are 

produced from bush encroachment and consist mainly of bush trunks, disbranched and no 

leaves (i.e. TE-units). It was assumed that wood would only be harvested from bush 

encroachment and according to regulatory requirements [321]. Harvesting schedules (Table 5-

4) served to assess the socio-economic and environmental impact of wood utilisation from 

bush encroachment. 

All other cost indicators required for bioenergy modelling were provided under section 5.3. 

The costing approach for fast pyrolysis operations is described hereafter. 

In the course of the techno-economic assessments and deriving the relevant cost information, 

consistency in the approach for comparisons was provided for as suggested by the “black box” 

approach (section 4.4.3). To determine individual cost items, the factorial estimation 

methodology was used. For the fast pyrolysis and each of the clearance options noted above, 

the following basic parameters were set: 

• Capital cost was calculated as total plant cost (TPC), including both direct and indirect 

costs. 

• Maintenance and overheads was calculated as a percentage of TPC. 

• The following financial scenarios have been considered: 

o 100% loan and 0% equity 

o 75% loan and 25% equity 

o 0% loan and 100% equity 

• Production costs were estimated based on annual operating costs and the net electrical 

output. 
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• The profitability analysis was based on nominal (influenced by inflation) discounted cash 

flows. 

• The following formula was used for the calculation of the discount rate 

Discount rate = Debt ratio x Interest rate + Equity ratio x IRR on equity = 14% at 75:25 

ratio for 12% interest rate and 20% return on equity 

• A 20% internal rate of return [IRR] on equity was assumed for the determination of average 

bio-oil price over the lifetime of the plant. 

Costs associated with the production of bio-oil, comprise an annual cost of capital (assuming 

all of the capital was loaned), to which the annual operating costs of the plant were added. The 

operating costs comprise feedstock cost, labour, utilities, maintenance and overheads. The cost 

of electricity was obtained by summing the production cost elements, and dividing by the total 

annual production of electricity. The methodology for calculating each of the production cost 

elements was described in section 8.9.3. 

8.9.3 Capital Cost estimation 

Capital cost was calculated as a total plant cost, which includes both direct costs (installed 

equipment) and indirect costs (engineering, design, supervision, management, commissioning, 

contractor’s fees and interest during construction, contingency). 

The validity of any model can only be confirmed by comparison with actual cost data for 

installed plants. This was difficult in the Namibian and South African situation as no fast 

pyrolysis plants exist (section 4.3.1). Comparative costs from Europe were used instead. 

Where possible information was obtained from plant manufacturers or owners, or other 

published data. Information established by setting up a database over time was also used. Own 

prior work carried out on the techno-economic assessment of bioenergy systems was found to 

correlate closely with industry costs for most of the options costed in this research. 

Based on the duration of the project, equipment cost and unit operation costs were used to 

compile the capital costs estimation over the long term; these can more easily be updated with 

a cost index over longer periods than a five year horizon mentioned by Gerrard [327]. 
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8.9.3.1 Total Plant Cost [116] 

Total plant cost [TPC] was built up in the following manner: 

The delivered cost of each process unit as purchased or as obtained and the final installation 

cost based on actual costs from industry (by obtaining quotations) or calculated costs. Various 

items related to installation were then added to the equipment cost (EC) to give the direct cost 

for each process unit. This was done using direct cost factors published by the UK Institution 

of Chemical Engineers [327]. The factors can take the form of the equation below. 

Equation 8-1  Final installation costs 

! = #(%&'() 

Where: 

a and b were constants for a given factor, and c was a multiplier to be included if 

unusual or atypical conditions pertain. Factors were applied for piping, 

instrumentation, lagging, electrical, municipal installations, structures and buildings. 

The direct cost [DC] was then calculated as per Equation 8-2. 

Equation 8-2  Direct costs for plant installations 

*+' = &'(, + !) 

The direct costs were added to give the direct plant cost (DPC). Indirect costs were then added 

to give TPC. This was undertaken using factors published by Bridgwater [328] and Gerrad 

[327]. 

8.9.3.2 Operating Cost Calculations [116] 

For the operation of the system, staff requirements were adjusted to commercially operate the 

system for continuous operation on a 4 shift pattern (3 on, 1 off). The components of the 

operating cost were: annual cost of capital, labour, utilities (electricity and water), maintenance 

and overheads. The system was assumed to be automated as much as possible as would be the 

standard industrial case. 

8.9.3.3 Capital Amortisation and Depreciation [116] 

Capital was amortised using the standard relationship [329] and further simplified since the 

equipment used is likely to have different working lives and some items may need replacing 
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during the life of the project. A fixed charge was accounted for to take account of equipment 

replacement during the lifespan of the conversion system, which was assumed to be the same 

magnitude as costs of spare parts. 

For depreciation, the allowances granted by the Namibian and South African governments are 

similar and were taken into consideration, i.e. 20% of capital employed in the first year in 

which the plant and equipment has become operational, and thereafter 8% for the next 

consecutive 10 years. 

8.9.3.4 Utilities 

Only utility requirements for continuous operation were taken into account; any start-up 

requirements were ignored. The two utilities considered were electricity and water and these 

were based on the operational experience and from estimates obtained from the overall mass 

and energy balances for each process. 

8.9.3.5 Electricity 

In a complete electricity production plant, the electrical power necessary to operate the plant 

would be taken from the gross output from the generator terminals prior to the point of 

connection to the customer. 

For “Greenfield” investments in fast pyrolysis operations, especially those to be located in 

rural areas or on commercial farms, electricity supply would come from system itself. Cost for 

building transmission lines for the electricity to be fed to the national grid may have to be 

considered. The national power company usually does not provide this to independent power 

producers, in both Namibia and South Africa. These costs have not been considered by this 

research as it falls outside the main objective of the research subject. 

8.9.3.6 Water 

Water requirements are for make-up water for the cooling tower of the fast pyrolysis systems 

respectively. Bulk water supply is required for replacement of cooling water losses from 

cooling towers; costs thereof were shown in Table 5-24. Any recovered condensate from gas 

cleaning operations is sent where possible to drain, or used for onsite irrigation (if appropriate, 

i.e. condensate meets emission requirements in terms of contaminants). However, it should be 

noted here that under Namibian conditions it may happen that the owner a fast pyrolysis 

operation in the “Greenfield” would have to provide for his own water supply. This is 

especially the case when a fast pyrolysis plant is to be established in rural areas or on a 
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commercial farm. Water in this case is usually sourced from boreholes. 

8.9.3.7 Maintenance and overheads 

Maintenance and overheads were both included as a fixed percentage of TPC per annum. 

Values for the overhead and maintenance rates were taken as averages for a range of industries 

in Namibia and South Africa. A typical value of 7% was used. It can be argued whether 7% is 

sufficient in the context of introduction of new technologies like fast pyrolysis. Experience has 

shown (Chapter 2, section 2.1, 2.3, 2.4 and 2.6) that 10% may be more appropriate.  

If the fast pyrolysis plant is to be located in a rural area or on a commercial farm, no ash 

disposal costs become necessary. Ash could be reintroduced to rangelands as soil ameliorant 

where livestock is frequently roaming or resting. 

8.9.3.8 Working Capital Requirements 

This cost factor was calculated as 30% of the capital cost estimate [327]. An additional cost 

factor of 10% was assumed for challenges possibly to be encountered due to the introduction of 

a new technology into Namibia and South Africa (Chapter 2, section 2.1, 2.3, 2.4 and 2.6). 

8.10 MAIN ASSUMPTIONS UNDERLYING THE BIOENERGY MODEL FOR 
SOUTH AFRICA 

8.10.1 Biomass resource use; feedstock supply and security of feedstock supply 

Two options were considered for available wood-based biomass in South Africa, i.e.: 

• Wood from bush encroachment in mainly woodlands; the resource grows at a rate of 2.5% 

per annum and the amount of wood assumed to be available is 29.7 Mwet-t (Table 5-16); 

this resource will be harvested from the Limpopo, Mpumulanga and Northwest Provinces. 

• Invasive alien wood-based plant species as occurring in the Eastern and Western Cape – 

the assumed amount of wood-based biomass available is 12.9 Mwet-t per annum (Table 

5-16), but declining over the next 20 years or until its full eradication is achieved. 

To source wood from bush encroachment in woodlands, private farmland owners would 

harvest and supply biomass in a chipped form to a central location. Targeted government 

interventions for bulk harvest and supply of invasive alien plant species are assumed. Fast 

pyrolysis systems owners were assumed to collect and transport the biomass resource to 

conversion sites. 

For all biomass supply chains in South Africa contracts with potential suppliers are essential. 
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To sustain supply, 3-year renewable contracts, stipulating annual amount of supply were 

assumed to have been agreed upon. Supply of biomass should start three months before 

commissioning of fast pyrolysis operations to establish and maintain the 3-month inventory 

level due to the distances to be covered between harvesting and conversion sites.  

8.10.2 Costing approach 

The cost structure for South African wood from bush encroachment was assumed to follow 

the Namibian example. Wood as harvested from clearing alien plant species through the 

Working for Water (WfW) programme are residues and assumed to be chipped to technical 

specifications, and would be free of charge in line with the policy objective of the programme 

(section 4.1.5). Collection of the feedstock and storage at conversion site were considered to 

follow market rates of similar commodities at ZAR10/wet-t.  

All other cost indicators required for bioenergy modelling were provided under section 5.4; 

except for land costs which differ considerably from Namibia (section 5.4.3.1), were as 

indicated in specifically sections 5.3.3.2 and 5.3.4; the costing approach for South African fast 

pyrolysis operations were described in sections 8.9.3. 

8.11 EQUATIONS USED FOR MODELLING 

8.11.1 Resource availability 

Total resource availability has been established in section 6.1.2 (for Namibia) and section 6.3.1 

(for South Africa), consequently the results obtained will be used. 

8.11.2 Cost of biomass resources  

A base case cost for the biomass resources is assumed as per sections 8.9 and 8.10. However, 

the cost of the biomass resources needs to be established and is equal to the breakeven selling 

price of the resource. Determining the breakeven feedstock selling price assists to optimise 

pricing for this resource and is expressed as: 

Equation 8-3 Cost of resources 

. = / − #′(1, 3, 4, 5, 367) 
Where:  

p is the breakeven feedstock selling price (NAD or ZAR/wet-t) at farm gate/resource location (if 

valued or costed), and c’ was calculated using Equation 8-4.  
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Equation 8-4 Establishment of c’, the sum of harvesting, transport, grinding, drying and 
storage costs 

#8 = [(18 + 38 + 	48 + 	58 + 	3678)(, + ;)<
<

8

] 

Where: 

h is the additional marginal harvesting and feedstock preparation cost on farm prior to delivery 

to the fast pyrolysis conversion or the buffer storage site (if any),  

d is the transport distance charge for each resource type j in NAD or ZAR/km,  

g is the grinding or feedstock preparation cost,  

s is the storage cost (only considered where stockpiling is necessary for security of supply), 

dry is the drying cost for feedstock with moisture content above 20% on a weight basis; and π 

is the assumed inflation rate in percent (%).  

Distance charges are scaled according to kilometres to be transported, with a maximum 

transport distance of resources to the fast pyrolysis operation of 100km in the Namibian case 

and 200km in the South African case. The marginal cost or breakeven value of the feedstock 

(p) would be determined by solving the model. To prevent the solving of the model to revert 

to a circular reference, a dummy value for feedstock had to be assumed; in this case e.g. NAD 

or ZAR100/wet-t. The cost of feedstock was upper-bound to NAD or ZAR300/wet-t, after 

which it was considered to become unfeasible to use a certain resource type j for fast pyrolysis.  

8.11.3 The fast pyrolysis conversion processes under review 

This section deals with the second objective function, i.e. the assignment of biomass resource 

(feedstock) to a fast pyrolysis plant with an assumed electricity output of 5MW in relation to 

the first objective function and factors of production, like labour force available, technological 

and economic suitability. A 5MW electricity output was chosen as the initial step. Depending 

on the availability of wood-based biomass resources for the chosen sites, the electricity output 

capacities would be adjusted to either 1, 5, 10 or 20MW for each site, as desired. The feasibility 

of each electricity output capacity was be tested. All fast pyrolysis processes would use a 

fluidised bed system (section 8.1). The feasibility and economic viability is benchmarked to a 

5t/h fast pyrolysis operation. Should additional installations of fast pyrolysis become feasible 

and economically viable, it was considered that first the replication of the equivalent electricity 

output would be installed, before the next bigger fast pyrolysis conversion option would be 

suggested for feasibility and economic viability testing. All fast pyrolysis conversion processes 

were considered to be Greenfield investments. As this research specifies the need to only test 
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feasibility and economic viability of fast pyrolysis for heat, electricity or fuel production (not 

chemically valuable components), all resources were allocated as discussed in sections 8.3, 

8.4, 8.9 and 8.10.  

The model is capable to assign resources to a specific pyrolysis process at a certain site and 

matched to the desired electricity output capacity. For Namibia, only one fast pyrolysis site was 

earmarked, that is in Otjiwarongo; for South Africa, three fast pyrolysis sites were earmarked 

respectively (Eastern and Western Cape, and Mpumulanga Province).  

The first fast pyrolysis option to be tested would have a capacity of up to 5t/h air-dried 

feedstock intake, and would therefore produce bio-oil (prod6), producer gas (prod4) and 

recovered gas (prod5) charcoal (prod1) in the amounts determined by experimentation 

(Chapter 7). The other fast pyrolysis options were tested in a similar manner. The following 

equation for modelling a 5t/h fast pyrolysis process holds: 

Equation 8-5  Total production costs per tonne of bio-oil in the fluidised bed fast pyrolysis 

system 

>. @AB8 + >. CD + AE. @F − G	 − 	HC> ≥ J 

 

Equation 8-6 Total annual production capacity per 5MW-equivalent reactor size, and where 

maximisation of bio-oil production (prod4) is the proxy 

/6K3LB8 + G	 − 	H>JMM ≥ J 

Where: 

The sum of prodixj is equal to 1 as determined by fast pyrolysis experimentation (Chapter 7). 

The ratios in which the products (prodixj, that is char, gas (producer and recovered gas) and 

bio-oil) occur are e.g. prod1 = 0.138; prod2 = 0.055; prod3 = 0.055; prod4 = 0.752 for e.g. 

Namibian encroachment bush was used as feedstock. 

The constant 23,044 represents the amount of annual feedstock capacity intake for a 5t/h fast 

pyrolysis plant. 

• prod1 is product1, i.e. charcoal produced, by fast pyrolysis; prod1 is internally combusted 

as fuel for the fast pyrolysis process;  

• L is hours of operation (composed of labour (lab) and technical (tech) availability; denoted 

as a ratio of total operational hours available) as per Table 5-22;  

• K is capital requirements in NAD or ZAR (convertible to hard currency when necessary) 
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as described in section 8.9.3; 

• ω is the wastage/start-up feedstock/by-products from the process (to be minimised); and 

xj, L and K ≥ 0. 

The fast pyrolysis production system has the following boundaries: 

• (lab + 0.8tech)L ≥ 7008 operational hours (Table 5-22), divided into shifts, per annum; this 

represents 80% of total annual hours for plant availability to produce 5MW electricity 

continuously 

• K is composed of cost and economic indicators as per Table 5-23 and Table 5-24, as well 

as indicators of the costing approach as outlined in section 8.9.3 

• δ ≤ 150 (feedstock diameter in mm) 

•  β ≤ 1,500 (feedstock length in mm) 

• MC ≤ 0.2 (feedstock moisture content on weight basis less than 20%) 

• Ω ≥ 20 (technical life span of conversion equipment in years, after which capital 

replacement is necessary). 

 

8.12 BENEFITS 

The benefits of clearing bush encroachment or alien invasive plant species were considered to 

be eminent from: 

• total land area cleared (ha or Mha) 

• improved rangeland conditions, thus improved carrying capacity and livestock production 

output (g or kg (live body mass)/ha) 

• improved biodiversity, where total land area would be used as proxy 

• additional employment created through harvesting of wood-based biomass and through 

pyrolysis operations; and 

• other macro-economic gains, like additional GDP. 

 

The measures applied were considered as follows: 

• actual lessening of spatial spread of bush encroachment (ha) and its density (possible yield 

expressed as t/ha) (Table 6-3 and Table 6-4) 

• actual lessening area invaded by A. mearnsii in the Eastern and Western Cape respectively 

(Chapter 9) 

• number of additional jobs, skilled and unskilled created (Table 5-20, Table 9-1, Table 9-2, 
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Table 9-3) 

• monetary amount of possible additional taxation income, capital formation and output to the 

primary (agriculture) sector generated by the total value chain of bioenergy generation 

• total amount of the population sustainably supplied with electricity on an annual basis.  

 

The results of benefits per fast pyrolysis output capacity (1, 5, 10 or 20 MW equivalent) were 

presented in Chapter 9. 

 

8.13 SUMMARY 

In the Namibian case, fast pyrolysis process modelling considered one site, that is, Otjiwarongo-

town, for biomass to bio-oil conversion, but four different outputs, sourcing the wood-based 

biomass from multiple sites in the Okakarara and Otjiwarongo farmland areas. Feedstock supply 

was assumed to be sourced under contractual arrangements between the farmer harvesting and 

delivering it, and the fast pyrolysis plant owners.  

In the South African case, fast pyrolysis modelling considered three sites at which biomass could 

be converted to bio-oil, that is, in the Eastern and Western Cape, and in Mpumulanga Province 

respectively. Feedstock for the fast pyrolysis plants in Eastern and Western Cape would be 

derived from wooded alien plant species to be eradicated according to the ‘Working for Water’ 

programme. Feedstock for fast pyrolysis operations in Mpumulanga Province would be derived 

from bush encroachment occurring in Limpopo, Mpumulanga and North-Western Province. 

Mpumulanga Province was suggested as the conversion site due to central geographic location 

as well as the availability and density of existing energy infrastructure within the areas identified 

as bush encroached. 

The objective of the fast pyrolysis process would be to produce bio-oil for electricity, heat or 

fuel. The capacity of the fast pyrolysis plants was modelled to an equivalent of 1, 5, 10 or 20 

MW electrical output. Feedstock and bio-oil were considered to be transported not further than 

100km in the Namibian case and 200km in the South African case due to high transportation 

costs. A dummy feedstock price was used (NAD or ZAR100/wet-t) to enable the computation of 

the breakeven feedstock price. Feedstock was considered to be delivered in chipped form with a 

moisture content of ≤20% to the fast pyrolysis conversion site. Conceptual and mathematical 

models were presented to derive the breakeven selling prices for feedstock, bio-oil and 

electricity. The models were solved using the presented equations in a spreadsheet approach.   
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9 RESULTS OF BIOENERGY MODELLING 

This Chapter presents the results of bioenergy modelling in Namibia and South Africa. The 

first part of the Chapter (section 9.3, 9.5) presents the results of bioenergy modelling, while 

the second part (section 9.6) provides an overview of the technical and non-technical barriers 

to fast pyrolysis operations in Namibia and South Africa. 

The description of the bioenergy models was presented in Chapter 8. With the different types 

of biomass and technology in mind, various costs and benefits were taken into consideration 

to test the feasibility and economic viability of fast pyrolysis for bioenergy production in 

Namibia and South Africa. Namibia has one wood-based biomass resource available for fast 

pyrolysis conversion; South Africa has two economically viable wood-based biomass 

resources available for fast pyrolysis conversion.  

Fast pyrolysis is presented as a greenfield investment. It was therefore useful to compare the 

results to existing fast pyrolysis operations elsewhere, e.g. in Europe or the USA. The latter 

was considered important in view of technology and know-how transfer required, bio-oil price 

competitiveness testing and market diversification. Comparison to existing operations also 

assisted to counteract doubt or suspicion in Namibia and South Africa to why and how a new 

technology could/should be introduced into these countries. The matter was discussed in 

Chapter 10. 

9.1 SUMMARY OF NAMIBIAN SCENARIOS CONSIDERED FOR MODELLING 

In the Namibian case, techno-economic assessment included various harvesting options for the 

encroacher-bush to determine the breakeven selling price for the wood resource delivered at 

the farm gate. The scenarios assessed under which conditions the encroacher-bush could be 

supplied, were based on a harvesting level of 500ha per farm per year of an average farm size 

of 5000ha from some 50 communal (non-freehold) farms in the Okakarara and 600 commercial 

(freehold) farms in the Otjiwarongo farmland area. The harvesting options for which a 

feedstock breakeven selling price was determined are: 

• Complete manual operations, aided by pangas (a type of machete) and axes only; chipping 

of wood would still be required and would attract additional costs for feedstock 

preparation. 

• Fully mechanised harvesting, compilation and chipping to size of wood ready for transport 

to the buffer storage or fast pyrolysis conversion site. 
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Cost of transport of the chipped feedstock from the farm gate to the buffer storage site and/or 

fast pyrolysis conversion site is additional to the costs of fast pyrolysis conversion.  

The options to test the feasibility of fast pyrolysis conversion for bioenergy production were 

considered based on a 20-year investment and operational cycle. The breakeven selling prices 

for feedstock based on harvesting models were calculated. The fluidised bed pyrolysis 

conversion processes assessed included: 

• 1 t/h feedstock intake; 

• 5 t/h feedstock intake;  

• 10 t/h feedstock intake; and  

• 20t/h feedstock intake. 

All costs and benefits were presented relative to the sustainable supply of feedstock, thus 

rendering the most feasible and economically viable option of a fast pyrolysis conversion 

processes for bioenergy generation. Only wood from bush encroachment as feedstock under 

Namibian conditions was considered. The feedstock would be supplied combined from the 

Okakarara and Otjiwarongo farmland areas. The fast pyrolysis conversion operations would 

be located at Otjiwarongo; bio-oil for power generation is the primary product, and thus power 

would be supplied to the national grid at ‘Gerus’. Off-grid power generation and distributions 

would also be a possibility. The breakeven selling price for bio-oil and then per unit power 

produced was determined by solving the bioenergy model. 

9.2 SUMMARY OF SOUTH AFRICAN SCENARIOS CONSIDERED FOR 
MODELLING 

In the South African case, two types of biomass were assessed for their suitability as feedstock 

for fast pyrolysis conversion at three different locations. The types of feedstock are processed 

at the following locations: 

• Wood from bush encroachment in woodlands; the fast pyrolysis conversion site was 

suggested to be located in Mpumulanga Province due to its central location within the 

bush-encroached area and the existing energy infrastructure; and 

• Invasive alien wood plant species from and processed in the Eastern and Western Cape 

respectively. 

Similar to the Namibian case, costs of harvesting biomass from bush encroachment were 

determined by establishing the breakeven selling price of the wood-based biomass as 
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feedstock. The price of feedstock from alien wood plant species was assumed to be zero, 

because clearing of the sites would already have been accomplished by the Working for Water 

interventions. 

The feasibility of fast pyrolysis conversion options to deliver bioenergy was considered based 

on a 20-year investment and operational cycle. All costs and benefits were matched to the 

sustainable supply of feedstock, thus rendering the economically most viable option of fast 

pyrolysis conversion for bioenergy generation. The fluidised bed pyrolysis conversion 

processes assessed include: 

• 1 t/h feedstock input; and 

• 5 t/h feedstock input. 

By solving the bioenergy model, it was determined that feedstock supply in the South African 

case does not warrant erecting fast pyrolysis plants beyond a 5t/h feedstock input capacity 

(section 9.5). 

9.3 TOTAL PERSONNEL REQUIREMENTS 

Under socio-economic considerations, personnel requirement is a function of harvesting methods 

and capacity of the fast pyrolysis conversion process, expressed in equivalent of power output. 

Complete manual labour harvesting operations combined with the highest capacity of fast 

pyrolysis conversion process requires the most personnel. The skills level required for manual 

operations would be limited. Productivity of personnel was not measured, but was assumed to 

be on par with, for example, mining operations. All employment in the category harvesting, 

compilation and to a limited extent chipping feedstock to size for storage would be created on 

commercial and communal farmland areas. Fast pyrolysis conversion would take place in urban 

or semi-urban areas. Table 9-1 and Table 9-2 summarise the personnel requirements for 

harvesting options and therefore the additional employment opportunities created. These are 

valid for both Namibia and South Africa. 

Table 9-1 Personnel needs - complete manual harvesting and compiling operations, requiring 
unskilled to skilled labour [adapted from 102], expressed in electrical output 
equivalent 

 1 MW [E] 5 MW [E] 10 MW [E] 20 MW [E] 
Complete manual harvest 24 64 256 1024 
Complete manual compiling 24 64 256 1024 
Complete manual chipping 8 16 49 169 
Transport 21 49 256 1521 
Overall organisation 2 5 10 20 
TOTAL 79 198 827 3 758 
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Table 9-2 Personnel needs – fully mechanised harvesting, compiling operations and feedstock 

preparation, requiring skilled to highly skilled labour; 1 operator per equipment 
type [adapted from 102], expressed in electrical output equivalent  

 1 MW [E] 5 MW [E] 10 MW [E] 20 MW [E] 

Skid steer and rotary saw 3 8 15 30 
Skid steer and grapple fork for 
compiling 3 8 15 30 

Tractor for chipping 2 4 7 13 
Tractor for road transport 3 7 16 39 
Chipper 2 4 7 13 
Trailer 3 7 16 39 
Overall organisation and 
management 2 5 10 20 

TOTAL 18 43 86 184 

 

The need for personnel associated with harvesting operations does not grow with the same rate 

as electrical output increases. This is mainly because of economies of scale achieved with 

increased fast pyrolysis plant capacity and therefore increased electrical output capacity. 

Personnel needs for administrative duties concerned with supply of feedstock and fast pyrolysis 

conversion processes equivalent to electricity output required are listed in Table 9-3. For 

administration and management of these operations, skilled and highly skilled workers are 

required. 

Table 9-3 Personnel needs for administration and management of feedstock supply, fast 
pyrolysis conversion and sales, expressed in electrical output equivalent 

 1 MW [E] 5 MW [E] 10 MW [E] 20 MW [E] 
Procurement 0.5 1.5 2 5 
Sales 0.5 0.5 2 2 
Operations and maintenance 
(technical) 

5 7 37 72 

Finance 0.5 1 3 3 
Human capital 0.5 1 3 5 
Daily administration 1 1 5 5 
Overall organisation and 
management 2 2 4 4 

TOTAL 9 14 56 96 
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9.4 NAMIBIAN FAST PYROLYSIS OPERATIONS 

9.4.1 Breakeven selling price for feedstock 

Feedstock prices were assessed based on an annual harvesting of 500ha per farm and an 80% 

infestation level of total harvestable bush in the Okakarara and Otjiwarongo farmland districts 

respectively (Table 9-4). The breakeven selling price includes harvesting and on-farm (10 km) 

transport costs only; comminution or chipping cost was excluded as this cost was included in fast 

pyrolysis operations part. The harvesting excludes the already existing uses of bush material 

elsewhere. 

Table 9-4 Breakeven selling price for feedstock and on-farm harvesting personnel 
requirements to sustain harvesting operations on Namibian farms 

Harvesting Method Okakarara 
feedstock 
breakeven 
selling price 
(NAD wet-t-1)  

Mean 
harvesting 
personnel 
requirements 
per farm 

Otjiwarongo 
feedstock 
breakeven 
selling price 
(NADwet-t-1) 

Mean 
harvesting 
personnel 
requirements 
per farm 

Manual harvesting for 
all clearings 

30 187 29 248 

Fully mechanised 
harvesting for initial 
clearing; thereafter  
semi-mechanised 
harvesting and manual 
clearings 

36 91 45 120 

 

The number of on-farm employment created (Table 9-4) is based on the amount of personnel 

required per type of harvesting operations (Table 5-4 and Table 5-20) to clear 500ha off bush 

annually, on the Okakarara and Otjiwarongo farms respectively. This number is not linked to the 

electrical output requirements (these were established separately). 

The breakeven selling prices for feedstock (Table 9-4) are relatively low. However, for each 

additional on-farm transport-km to be driven, the feedstock price increases by NAD2/wet-t. The 

low feedstock price is mainly explained by the benefits that clearing or harvesting have on 

rangeland rehabilitation and consequently increased livestock production output because more 

grazing becomes available. The feedstock breakeven selling price decreases proportionately with 

improved carrying capacity of the farmland. 

In addition, harvested bush would still need to be chipped to desired feedstock size, therefore 

requiring additional handling and transport which attracts additional costs not reflected in the 
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breakeven selling price. Uncertainty induced due to potential on-farm labour unrests (section 

4.3.2) poses great risk on sustainability of feedstock supply; therefore potentially jeopardising 

any benefits the farmer could have for continued income generation, improved carrying capacity, 

increased livestock production output, and ultimately sustainability of fast pyrolysis operations 

for bioenergy generation at national level. 

9.4.2 Annual feedstock supply 

For the Okakarara farmland area, an average of 14.8kwet-t (or 286wet-t/week or 58wet-t/work-

day) wood could be produced per farm over a 20 year period. In years 6, 7 and 8 on-farm wood 

production could be as high as 33.5kwet-t/annum. In the Otjiwarongo farmland area, an average 

of 19.6kwet-t (or 278 wet-t/week or 68wet-t/work-day) would be produced per farm over a 20 

year period. The highest production of 44.3kwet-t/annum is noted for combined Okakarara and 

Otjiwarongo farmland areas for the years 4 to 8. To assist the farmers to handle such large 

quantities of wood which need to be harvested and transported on an annual basis, it is necessary 

to offer logistical support services. Logistical support services include appropriate feedstock 

storage and regular transport from the farm to the fast pyrolysis conversion site and/or buffer 

storage site. Farmers could store the feedstock for a limited period of time only before it 

deteriorates, especially in the summer season when it rains. However, feedstock should be 

supplied consistently throughout the year to sustain fast pyrolysis operations. Feedstock should 

thus be collected from several farms at regular intervals on an appointment bases thereby 

optimising feedstock supply to enhance feasibility and economic viability of fast pyrolysis 

operations. 

9.4.3 Conversion processes and breakeven product selling prices 

For the various harvesting methods and resultant feedstock breakeven selling prices the 

feasibility and economic viability of fast pyrolysis operations were analysed. No manufacturing 

incentives or potential rebates that could be provided by the Namibian government (e.g. CO2 

rebates through the ‘Clean Development Mechanism’) were taken into account. The breakeven 

selling price was determined for bioenergy products (bio-oil and electricity-equivalent) at the 

conversion site and taking into consideration that fast pyrolysis operations could be either equity 

or loan funded, or a combination thereof. Table 9-5 presents the results for a 100% loan financed 

pyrolysis operations. The even-valued feedstock price of NAD100/t was taken as proxy (dummy 

value). It was assumed that the feedstock price would be fixed, and not fluctuating depending on 

which harvesting method was used to deliver such feedstock to the fast pyrolysis operations. 
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Table 9-5 Price for bioenergy products via fluidised bed fast pyrolysis, expressed in required 
electrical output equivalent using a feedstock price of NAD100/t; investment funded 
on a 100% loan basis; feedstock is derived from bush encroachment in Okakarara 
and Otjiwarongo farmland area 

Required 
electrical output 

Feedstock 
costs (NADt-1) 
- comparative 

Transport 
distances 
(km) 

Main 
product 

Breakeven 
selling price 

1 MW 100 100 bio-oil  
electricity 

NAD 620/t 
NAD 0.51/kWh 
 

5MW 100 100 bio-oil  
electricity 

NAD 503/t 
NAD0.33/kWh 
 

10 MW 100 100 bio-oil  
electricity 

NAD 487/t 
NAD 0.29/kWh 
 

20 MW 100 100 bio-oil  
electricity 

NAD 488/t 
NAD 0.29/kWh 

 

Prices of bio-oil increase substantially as feedstock prices and transport distances increase. The 

sharpest price increase for bio-oil is noted when feedstock prices increase from its breakeven 

selling price (Table 9-4) respectively to NAD100/wet-t. The bio-oil prices increase with more 

than 30% when the feedstock price increases from their breakeven selling price to NAD100/wet-

t and by some 15% if the feedstock price increases from NAD100/wet-t to NAD200/t; Table 9-6 

shows how for each fast pyrolysis process considered. When the transport distance increases 

from 100 to 200km, the bio-oil breakeven price increases by between 58% for a 1t/h to 74% for 

a 20t/h fast pyrolysis operation at a feedstock price of NAD100/t.  Table 9-6 shows how 

feedstock price increases together with transport distance increase from 100 to 200km influences 

bio-oil price under 100% loan funded operations.  
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Table 9-6 Breakeven selling price for bioenergy products via fluidised bed fast pyrolysis; 
investment funded on a 100% loan basis; feedstock is derived from bush 
encroachment in Okakarara and Otjiwarongo farmland areas 

Required electrical 
output 

Feedstock costs 
(NADt-1) 

Transport 
distances 
(km) 

Main 
product 

Breakeven 
selling price 

1 MW 100 200 bio-oil  
electricity 

NAD 978/t 
NAD 0.81/kWh 

 200  bio-oil  
electricity 

NAD 1,170/t 
NAD 0.97/kWh 

 300  bio-oil  
electricity 

NAD 1,362/t 
NAD 1.13/kWh 
 

5MW 100 200 bio-oil  
electricity 

NAD 862/t 
NAD0.57/kWh 

 200  bio-oil  
electricity 

NAD 1,054/t 
NAD0.70/kWh 

 300  bio-oil  
electricity 

NAD 1,245/t 
NAD 0.82/kWh 
 

10 MW 100 200 bio-oil  
electricity 

NAD 845/t 
NAD 0.50/kWh 

 200  bio-oil  
electricity 

NAD 1,037/t 
NAD 0.61/kWh 

 300  bio-oil  
electricity 

NAD 1,229/t 
NAD 0.73/kWh 
 

20 MW 100 200 bio-oil  
electricity 

NAD 847/t 
NAD 0.50/kWh 

 200  bio-oil  
electricity 

NAD 1,038/t 
NAD 0.61/kWh 

 300  bio-oil  
electricity 

NAD 1,230/t 
NAD 0.73/kWh 

The breakeven selling price for bio-oil drops considerably between the 1t/h fast pyrolysis option 

and the 5t/h option; thereafter the breakeven selling price drops further for bio-oil produced in a 

10t/h fast pyrolyser, and increases for the 20t/h fast pyrolyser when feedstock costs and transport 

distances increase. It seems that the economies of scale for fast pyrolysis lie between a 5t/h and 

10t/h operational unit. 

The price/t bio-oil produced in a 5t/h fluidised bed fast pyrolysis at a feedstock cost of 

NAD100/wet-t and completely loan funded capital expenditure can be favourably compared with 

currently used coal-based electricity production. The bio-oil breakeven selling and thus 

electricity prices are very price sensitive to funding structure changes.; Table 9-7 shows how. As 

loan funding decreases, prices of bio-oil and thus electricity increase. The reasons lie with taxes 

that become payable and relatively high discount rate. The sharpest price increases for the type 

of funding used was noticeable with the 1t/h fast pyrolysis unit of some 65% between 100% loan 

funded and 100% equity funded operations. 
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Table 9-7 Breakeven selling price for bioenergy products via fluidised bed fast pyrolysis; 
investment funded on a 100%, 75% or 0% loan basis; feedstock at a cost of 
NAD100/wet-t is derived from bush encroachment in Okakarara and Otjiwarongo 
farmland areas together; feedstock is transported for a maximum of 100km 

Required electrical 
output 

Feedstock costs 
(NADt-1) 

Type of loan 
funding (%) 

Main product Breakeven 
selling price 

1 MW 100 100 bio-oil  
electricity 

NAD 620/t 
NAD 0.51/kWh 

  75 bio-oil  
electricity 

NAD 721/t 
NAD 0.60/kWh 

  0 bio-oil  
electricity 

NAD 1026/t 
NAD 0.85/kWh 
 

5MW 100 100 bio-oil  
electricity 

NAD 503/t 
NAD 0.33/kWh 

  75 bio-oil  
electricity 

NAD 589/t 
NAD 0.39/kWh 

  0 bio-oil  
electricity 

NAD 844/t 
NAD 0.56/kWh 
 

10 MW 100 100 bio-oil  
electricity 

NAD 487/t 
NAD 0.29/kWh 

  75 bio-oil  
electricity 

NAD 570/t 
NAD 0.34/kWh 

  0 bio-oil  
electricity 

NAD 818/t 
NAD 0.48/kWh 
 

20 MW 100 100 bio-oil  
electricity 

NAD 488/t 
NAD 0.29/kWh 

  75 bio-oil  
electricity 

NAD 569/t 
NAD 0.34/kWh 

  0 bio-oil  
electricity 

NAD 812/t 
NAD 0.48/kWh 

Bio-oil prices are very sensitive to feedstock prices, transport distance and type of funding 

mechanisms used for the fast pyrolysis operations. In general, the electricity breakeven selling 

prices for all pyrolysis options fall within the suggested REFITs as presented in Table 5-26. 

However, bio-oil prices for all fast pyrolysis options presented are higher than the NAD714.40/t 

benchmark presented in Table 5-27. Bio-oil prices compare favourably with industrial grade 

Diesel, though (Table 5-27).  

As initially assumed, fast pyrolysis operations smaller than 5t/h come at a higher cost. The 1t/h 

fast pyrolysis operations are most sensitive to feedstock price, transport distance and selected 

funding mechanisms. 

9.4.4 Land use and other gains 

In Namibia, the objective to clear a substantial amount of bush encroachment is based on the 

need to put infested agricultural land back into productive livestock farming areas. In the case of 

Okakarara, the rangeland improves its carrying capacity (refer to definition 3.4.6) by some 1.1% 
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per annum or some 360g live body mass per farm area/annum; for the Otjiwarongo farmland area 

carrying capacity is improved by 1% per annum or 290g live body mass/annum. This means that 

after 20 years of consecutive bush harvesting, the rangelands of Okakarara would have improved 

its carrying capacity from 28.57kg/ha to 45kg/ha; in the Otjiwarongo farmland area, carrying 

capacity would have improved from 23.04kg/ha to 28.80kg/ha. In both cases, this falls short of 

the envisaged target of 45kg/ha for the Okakarara; and 42.24k/ha for the Otjiwarongo farmland 

area respectively. It can therefore be concluded that rangeland rehabilitation needs time, but is 

beneficial in socio-ecological and economical terms. Table 9-8 summarises the gains from 

reducing bush encroachment in Namibia. 

Table 9-8 Summary of approximate land use and other gains from clearing encroachment 
bush consecutively, and according to suggested harvesting plans over 20 years at a 
rate of 500ha per farm 

Farmland area Weighted average 
bush density (tha-1) 

Land gain 
(Mha) 

Grass production 
in treated areas 

Carrying Capacity  
(kg ha-1) 

Okakarara 
2013: 45.55 
after 20 years of 
treatment: 42.08 

some 0.5 

At least 10-fold, and 
recovery of 
perennial grass 
species 
 

2013: 28.57 
after 20 years of 
treatment: 35.71 

Otjiwarongo 
2013: 60.19 
after 20 years of 
treatment: 43.60 

~1.1 

At least 10-fold and 
recovery of 
perennial grass 
species 

2013: 23.04 
after 20 years of 
treatment: 28.80 

The relatively low breakeven selling price for wood harvested manually (Table 9-4) suggests 

that the minimum wage of some NAD220/worker/month, is very low. Therefore the assumed 

(dummy) feedstock price of NAD100/wet-t seems reasonable as it could enable farmers to pay 

their workers a higher wage and provide the farmer additional income without jeopardising 

feasibility of fast pyrolysis operations. 

9.5 SOUTH AFRICAN PYROLYSIS OPERATIONS 

9.5.1 Price for feedstock 

As in the Namibian case, the breakeven selling price was determined considering two harvesting 

options and two bush encroachment densities (section 6.2.3; Table 9-9). Feedstock from alien 

wood species is assumed to be availed for fast pyrolysis conversion free of charge. However, all 

feedstock types have to be transported from the harvesting areas to the buffer storage and/or fast 

pyrolysis conversion site; costs for transport and comminution were taken into account in 

computing the breakeven selling price of bio-oil. 
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Table 9-9 Breakeven selling price for feedstock from bush encroachment to sustain harvesting 
operations on South African farms; average farm size of 300ha 

Harvesting Method 

Breakeven selling price 
for feedstock; woodland 
canopy cover >50%  
(ZAR/wet-t)  

Manual harvesting for initial clearing; 
follow up and aftercare treatments are also 
done manually 

65 

Fully mechanised for initial harvesting;  
semi-mechanised harvesting for follow up 
treatments; manual for aftercare 
treatments 

97 

The breakeven selling prices for feedstock include on-farm transport of 5km of the harvested 

wood material. This distance is shorter than in the Namibian case, as farm sizes are smaller. 

Feedstock prices are sensitive to transport distances. Should there be no on-farm transport, the 

breakeven feedstock price is lowered with ZAR9/wet-t for the harvesting methods provided in 

Table 9-9. As in the Namibian case, this means that for each on-farm transport-km of the 

feedstock, some ZAR2/wet-t needs to be added to the feedstock price, which has a significant 

influence on the feedstock price. The price sensitivity is explained by the relatively slow 

rehabilitation process of the rangeland and biodiversity which served as basis for modelling 

feedstock prices. The influence on feedstock price of farm size and area to be harvested annually 

is insignificant. 

9.5.2 Fast pyrolysis conversion product prices  

Under South African circumstances two types of wood based biomass resources were considered 

to be converted in bio-oil by fluidised bed fast pyrolysis: invasive alien wood-based plants in 

Eastern and Western Cape and bush encroachment in woodlands, and the fast pyrolysis plant 

suggested would be located in Gauteng Province. 

As per the invasive alien plants eradication programme of the South African government, these 

plants are cleared by mainly applying of arboricides with manual follow-up and aftercare 

treatments, or complete manual harvesting and extraction of such plants. Follow-up and aftercare 

treatments are assumed to start two to three years after the initial treatment. In line with the 

objectives of this research, it is assumed that complete manual and/or semi-mechanised and 

mechanised operations are used for initial harvesting operations to clear bush encroachment in 

woodlands and eradication of alien plants. Transport and comminution of feedstock costs are 

part of the costing approach. As in the Namibian case, different feedstock prices and types of 
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capital expenditure funding were considered. Table 9-10 summarises the resultant breakeven 

prices for bio-oil derived from bush encroachment and invasive alien plant species in fluidised 

bed fast pyrolysers.  

Table 9-10 Breakeven selling price for bioenergy products via fluidised bed fast pyrolysis; 
investment funded on a 100% loan basis; feedstock is derived from bush 
encroachment and/or alien plant species; transport distances from farms to 
Gauteng is no longer than 200km 

Location of fast 
pyrolysis plant 

Feedstock type Feedstock 
price  
(ZAR wet-t-1) 

Breakeven bioenergy selling price in 
equivalent of desired electrical output  
(ZAR t-1 or ZAR kWh-1) 

   1 MW 5 MW 
Gauteng 
 

Wood from bush 
encroachment  
 

100 Bio-oil: 978 
Electricity: 0.81 

Bio-oil: 829 
Electricity: 0.55 

Eastern Cape 
 

Wood from 
invasive alien 
plants 
 

0 Bio-oil: 686 
Electricity: 0.57  

Western Cape Wood from 
invasive alien 
plants 

0 Bio-oil: 761 
Electricity: 0.63 

Bio-oil: 649 
Electricity: 0.43 

Although wood-based feedstock is available in abundance in South Africa, the residual amounts 

are not sufficient to realise sustainable fast pyrolysis operations beyond the required electrical 

output of 5MW. This is due to two main reasons: the relatively low bush encroachment density 

in South Africa requires a larger area from which wood would need to be harvested than in 

Namibia; and considering that alien plant species are eradicated within the ‘Working for Water’ 

project parameters from which only a limited amount of wood would be available for fast 

pyrolysis conversion annually. 

The breakeven selling prices for bioenergy products change significantly with feedstock price 

changes. Should the ‘Working for Water’ e.g. charge a fee of ZAR100/wet-t for wood from alien 

plant species, the price for bio-oil produced in the Eastern Cape would change from ZAR686/t 

to ZAR 859/t; and the electricity breakeven price from ZAR0.57/kWh to ZAR 0.71/kWh. Table 

9-11 summarises the effect of feedstock price on bioenergy products. 
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Table 9-11 Breakeven selling price for bioenergy products via fluidised bed fast pyrolysis 
subject to varying feedstock prices; investment funded on a 100% loan basis; 
feedstock is derived from bush encroachment and/or alien plant species in different 
locations; transport distances of 200km 

Location of fast 
pyrolysis plant 

Feedstock type Feedstock 
price 
(ZAR wet-t-1) 

Breakeven bioenergy selling price in 
equivalent of desired electrical output  
(ZAR t-1 or ZAR kWh-1) 

   1 MW 5 MW 
Gauteng Wood from bush 

encroachment  
100 Bio-oil: 978 

Electricity: 0.81 
 

 

 
 

200 Bio-oil: 1,170 
Electricity: 0.97 
 

 

 
 

300 Bio-oil: 1,362 
Electricity: 1.13 
 

 

Eastern Cape 
 

Wood from 
invasive alien 
plants 

100 Bio-oil: 859 
Electricity: 0.71 

 

  200 Bio-oil: 1,032 
Electricity: 0.85 
 

 

  300 Bio-oil: 1,205 
Electricity: 1.00 
 

 

Western Cape Wood from 
invasive alien 
plants 

100 Bio-oil: 949 
Electricity: 0.79 

Bio-oil: 837 
Electricity: 0.55 

  200 Bio-oil: 1,137 
Electricity: 0.94 

Bio-oil: 1,025 
Electricity: 0.68 
 

  300 Bio-oil: 1,326 
Electricity: 1.10 

Bio-oil: 1,213 
Electricity: 0.80 

As in the Namibian case, the effect of amount of loan funding required for the investment is 

relatively small if compared to the effect that transport or feedstock costs have on bioenergy 

breakeven selling prices. For all South African pyrolysis options considered, the breakeven 

electricity selling price drops by not more than 3ZAR-cents between a 100% loan funded versus 

a 100% equity funded operation. However, breakeven electricity prices are within the proposed 

national REFITs for biomass based electricity production (Table 5-28). 

9.5.3 Land use and other gains 

If a 5t/h fast pyrolyser is considered to convert South African wood from bush encroachment to 

bioenergy, some 5.47Mha, at an average wood yield of 10.8wet-t/ha, of land needs to be cleared 

annually. This means that after 20-years some 16Mha of land would have been cleared at least 

once. It therefore is not economically viable to engage in setting up a fast pyrolysis plant with a 

capacity of more than 5t/h. Table 9-12 summarises the land use gains. 
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Table 9-12 Summary of approximate land use gains from clearing encroachment bush or alien 
plant species consecutively, and according to suggested harvesting plans in South 
Africa over 20 years 

Type of area affected 
by problem plant 
species 

Weighted 
average plant 
density (tha-1) 

Land use gain 
(Mha) 

Annual average 
area to be 
cleared (ha) 

Bush encroachment 
in woodlands area 

2013: 11.67 
after 20 years of 
treatment: 10.87 
 

5.47 810,000 

Alien plant species in 
the Eastern Cape 

2013: 69.7 
after 20 years of 
treatment: ~6.4 

~0.18 17,950 

Alien plant species in 
the Eastern Cape 

 
2013: 111 
after 20 years of 
treatment: ~10.2 

~0.42 37,401 

 

9.6 BIO-OIL PRICE COMPARISON 

Bio-oil prices as computed in this research for Namibia and South Africa compare well with 

those in Europe and the USA for example. The price comparisons are presented in Table 9-13. 

Table 9-13 Bio-oil breakeven selling price comparisons 

Country or region Breakeven selling price range ex 
production site (NAD or ZAR t-1) 

Breakeven selling price range ex 
production site (NAD or ZAR/GJ) 

Namibia 620 – 1245 26 to >70 
South Africa 859 – 1326 45 to 75 
Europe 982.85 – 1,601.34 [330] 64.20 – 104.60 [330] 
USA 8,137 - 19,867 [331] 215.10 [332] 

 

9.7 MACRO-ECONOMIC BENEFITS 

A number of macro-economic gains could be derived by harvesting unwanted wood-based 

biomass resources for bioenergy production. These include: 

• Additional total employment creation, of between 800 to 1,000 for both harvesting and fast 

pyrolysis operations, for the desired, respective electrical output.  

• Additional taxation, depending on the funding and harvesting model as well as the desired 

electrical output, amounts of between NAD110 billion (1MW equivalent) to NAD 1,567 

billion (20MW equivalent) could be collected by the Namibian State over a 20-year period. 

In South Africa, this benefit could amount to ZAR224 billion for a 1MW equivalent, and 

some ZAR5,645 billion for a 5MW equivalent output operation.  

• For each MW of electricity supplied, an additional 2,000 households could be supplied with 

electricity each year.  
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• Gross Domestic Product (GDP) growth, in  

o the primary agriculture sector,  

o the financing sector, mainly in the form of capital formation 

o the energy sector. 

 

By considering only the additional amount of taxes collected each year the Namibian economy 

could additionally grow by 0.2% annually. If the contribution to agriculture, the financing and 

the energy sector are added, this contribution could grow by some 0.5% annually. In South Africa 

a similar trend would be possible. However, the South African economy is much larger than the 

Namibian, and the total additional GDP growth would be expected to grow by some 0.18% 

annually. 

9.8 TECHNICAL AND NON-TECHNICAL BARRIERS TO FAST PYROLYSIS 

Based on the lessons learned and experiences of mainly slow pyrolysis in Namibia and South 

Africa since the 1970s, techno-economic models for fast pyrolysis were built; considering 

Namibian and South African data in relation to wood-based resource availability and the skills 

required to sustain fast pyrolysis operations in these countries. Assessing technological viability 

based on resource availability helped to already exclude certain biomass options for fast pyrolysis 

before complete economic and/or plausibility assessments are carried out. 

9.8.1 The Namibian case 

Even though feedstock supply contracts would be expected to be concluded between operators 

of the fast pyrolysis system, incentives would be needed to on a large scale harvest the wood 

from bush encroachment areas to secure a feedstock supply chain for bioenergy production 

systems. The financially based incentives and governance support systems that would be required 

include: 

• guarantees for independent power supply into the national grid; 

• secured feed-in tariffs for electricity supplied into the national grid; 

• offer CO2-emissions mitigation rebates and allowance for a CO2 trading platform; 

• relaxation of or concessions to be made under immigration laws to allow for import and 

dissemination of skills which are not available in Namibia, if/when needed;  

• provision of funding for industrial research and development to adopt and adapt new 

technologies and prototype/commercialise new products; and 
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• in terms of public-private partnerships (PPPs), offer to take an equity stake in strategic 

projects like fast pyrolysis for bioenergy.  

9.8.2 The South African case 

For techno-economic viability of bioenergy production systems like fast pyrolysis to become a 

reality a number of technical and non-technical barriers need to be overcome:   

• because South Africa possesses vast fossil solid and liquid fuel resources there seems to be 

little appetite for new technology adoption based on biomass resources for national energy 

production; 

• political willingness and rigorous support through mandatory supply and uptake of bioenergy 

(Table 5-28) on belated implementation of “biomass and biogas”-based electricity feed-in 

tariffs for independent power production in the national interest);  

• relaxation of some of the stringent provisions under environmental laws to open up the 

market for technological innovations; and 

• increasing the availability and access to affordable funding (section 5.4.1, 5.6.2) for 

bioenergy solutions. 

9.8.3 Summary of technical and non-technical barriers 

Table 9-14 provides an overview of the most pertinent barriers to be overcome before realisation 

of macro-economic targets. Technical and non-technical barriers inhibit the ease of application 

of fast pyrolysis operations in Namibia and South Africa. The information presented herewith is 

indicative and is guided by the conceptual framework (Chapter 2) and the standards in place to 

adopt new renewable energy technologies (section 5.5 and 5.6). South Africa was used as a 

benchmark as laid out in the country’s Energy Plans [30, 40, 41, 241, 244, 245, 246, 247] and 

the Biofuels Industry Strategy [7]. For the Namibian situation, the targets and standards 

mentioned in Table 9-14 with regards to renewable energy in general, and bioenergy in particular 

require confirmation from authorities.  
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Table 9-14 Technical and non-technical barriers which impede techno-economic viability of new pyrolysis systems to be introduced in South Africa 
measured against existing initiatives to deploy renewable energy technologies 

 Overall aspired outcome  
(Biomass conversion technologies) 

Current & possible 
additional contribution by 
use of fast pyrolysis 

      Techno-economic assessment of past and current situation 

   Non-Technical Barriers Technical Barriers 
Macroeconomic 
Drivers  
(policy and 
planning) 

• 26 MW by 2018 in addition to 
existing renewable supplies 

• 2% penetration level of final 
biofuels product, or 400Ml p.a. 

• no increase in greenhouse gas 
emissions 

• development of rural areas 
• >20k new, sustainable jobs to 

be created 
• import substitution of foreign 

energy sources 
• trade distortion is overcome 

 

• >60,000 kWh/a from the 
wood-based biomass 
resources identified in this 
research 

• national food security 
remains intact  

• no additional land 
degradation as no 
deforestation would take 
place 
 

• complicated, contradicting legal 
& regulatory framework for 
licensing and registration of 
renewable energy projects 
which aspire production of 
alternative energy, even for 
relatively small generation 
capacities  

• limited, and not attractive fiscal 
incentives, even for additional 
job creation 

• economies of scale achieved by 
fossil energy based conversion 
technologies are comparable but 
not better than those based on 
fast pyrolysis conversion 
technologies 

• fast pyrolysis is a new technology 
and not commercially proven in 
Africa yet 

• the scalability of fast pyrolysis 
technology beyond 10t/h feedstock 
intake plants remains a challenge 

• reliability of fast pyrolysis 
technology smaller than 2t/h 
remains a challenge 
 

Microeconomic 
Drivers 
(supply side) 

• self-sufficient income 
generation 

• quick return on investment 
• profitability 
• scalability of technology 
• acceptable quality of product 
• higher process efficiency 

• economic viability with 
additional job creation is 
assumed to be achieved 

• further product quality 
improvement 

• expansion of operations  
• process efficiency 

• no or difficult access to limited 
funding  

• high labour turn-over 
• limited skills, and high skills 

mobility  
• limited human capacity 

development 
• access to feedstock is insecure 

due to limited land access rights 
• current operators of conversion 

technologies already 
established may compete for 
similar feedstock 

• price of feedstock or the 
fluctuation thereof strongly 
influences the product price 
 

• lack of choice of commercially 
available technologies 

• lack of technological 
innovativeness 

• insufficient/ uncertain supply of 
energy precursors (e.g. biomass) 

• severe competition for same source 
raw materials and un-diversified 
sourcing of feedstock 
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 Overall aspired outcome  
(Biomass conversion technologies) 

Current & possible 
additional contribution by 
use of fast pyrolysis 

      Techno-economic assessment of past and current situation 

   Non-Technical Barriers Technical Barriers 
Market Drivers  
(demand side) 

• acceptable product prices 
• market preservation, and new 

market penetration 
• high quality of product 
• recognition of new product 

range 
• approved labelling  
• meeting of market standards 

(e.g. FSC, ISO 9000) 

• product diversification 
subject to quantities 

• retail markets are lucrative, 
based on some niche 
products and ability to 
certify products (product 
diversification subject to 
quantities) 

• no mandatory uptake of 
products (even REFITs are not 
mandatory) 

• un-diversified markets impede 
uptake of new energy products 

• lack of market knowledge 
• insufficient quantities of 

product available which 
warrants uptake of alternative 
energy carriers other than 
current markets available  

• price developments for energy 
products are static or regressive 

• lack of commitment for 
technological adjustments to 
current electricity or heat 
generating equipment could 
hamper uptake of bio-oil 

• limited secondary processing 
possible or available, i.e. bio-oil 
refineries  

• non accommodative market entry 
standards & certification 
procedures for new bioenergy 
products entering the market 

 



 
 

9.9 CONCLUSIONS 

Fluidised fast pyrolysis of feedstock from Namibian and South African encroachment bush and alien 

plant species in the Eastern and Western Cape, South Africa is feasible. The breakeven selling prices of 

bio-oil and electricity produced in Namibia and South Africa compare favourably with in-country prices, 

as well as with those of Europe and the United States of America. The breakeven bio-oil selling price is 

very sensitive to feedstock and transportation costs as well as feedstock characteristics; but less sensitive 

to capital expenditure funding types, i.e. loan or equity funding.  

Power production via fast pyrolysis is an attractive technology as the final product prices fall within 

current price levels of electricity prevalent in Namibia and South Africa respectively. However, 

economic viability and bankability of bioenergy production based on wood-based fast pyrolysis could 

not be conclusively proven. Fast pyrolysis is a new technology, even in Europe and North America, 

where fully commercialised operations are still under implementation. 

Fast pyrolysis is CO2-emissions neutral, and could thus be an alternative to current methods of electricity 

production systems used in Namibia and South Africa. Nevertheless, the policy setting seems to suggest 

that the deployment of such new technology is neither economically viable nor bankable. Furthermore, 

fiscal incentives would be the only enabler offered by these states to overcome this hurdle. However, 

the administrative system to obtain them seems to be overly challenging.  

In conclusion, while fast pyrolysis is feasible in both Namibia and South Africa, the political and 

economic settings do not readily embrace this novel approach to power production, and/or addressing 

bush encroachment in Namibia and South Africa, and invasion of alien plant species in South Africa. 

Unless macro-economic and nationally embraced strategic interventions take place, the bankability of 

fast pyrolysis for bioenergy production is expected to remain a challenge. The future interventions 

required to make fast pyrolysis an economically viable option were outlined in Chapter 10. 
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10 CONCLUSIONS AND RECOMMENDATIONS 

The primary objectives of this research were to: 

• Collect, analyse and model biomass resource data in Namibia and South Africa; 

• Analyse, evaluate and provide recommendations on the current and predicted Namibian and 

South African fast pyrolysis industry; 

• Analyse and evaluate opportunities for the use of fast pyrolysis to convert the wood-based 

biomass into bioenergy in Namibia and South Africa; 

• Assess the environmental and techno-economic sustainability of fast pyrolysis systems to produce 

bioenergy (e.g. power, heat or fuel) from wood-based biomass resources in Namibia and South 

Africa. 

To fulfil the primary objectives, the scope of work in more detail related to: 

• modelling wood-based biomass resources; 

• assessing the possibilities and challenges to introduce fast pyrolysis for bioenergy production; 

• producing a techno-economic model, including future prediction, opportunities and constraints 

for bioenergy production via fast pyrolysis; 

• assessing the feasibility and techno-economic viability of fast pyrolysis; 

• defining the resources and skills required to operate a fast pyrolysis process; and 

• if bioenergy production via fast pyrolysis was found to be feasible and economically viable, 

producing a “roadmap” for technology deployment and a timescale to achieve market penetration 

for products derived from fast pyrolysis, including the need for knowledge and technology 

transfer. 

Furthermore, the question was posed whether a benchmark could be established to use bush for 

bioenergy in a sustainable manner in the Namibia case, and if so what would be the parameters needed 

to constitute such benchmark. Is the Namibian socio-economic and techno-economic environment 

‘right’ to embrace a modern bioenergy system?  
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10.1 CONCLUSIONS 

There are uncertainties related to the use of fast pyrolysis for electricity production in both Namibia and 

South Africa. However, there are considerable opportunities to exploit excess encroacher bush in 

Namibia, and both encroacher bush and alien invasive plant species in South Africa for improved land 

management, generation of biomass resources, and establishment of new technology in Southern Africa. 

With the generation of biomass resources and subsequent thermo-chemical conversion of the biomass, 

new job opportunities could be created, know-how and technology transfer could take place, which both 

could lead to GDP growth over the medium to longer term. 

10.1.1 The Namibian case 

The Namibian wood-based biomass resources, in the form of bush encroachment, are spread over an 

area of 30 Mha. Following an analysis of potential yield, the study area was limited to sourcing of 

feedstock for fast pyrolysis operations to the Okakarara and Otjiwarongo farmland areas comprising 

an area of 5Mha, where high-density bush encroachment exists. Fast pyrolysis operations were 

considered to be located close to or in Otjiwarongo-town, which is located centrally to the Okakarara 

and Otjiwarongo farmland areas and closely located to the power transmission hub ‘Gerus’. This 

warranted the consideration for modelling various fast pyrolysis operations that would not impede 

existing slow pyrolysis and firewood production systems or domestic use of wood for energy. The 

four proposed fast pyrolysis operations, i.e. 1, 5, 10 and 20t/h fast pyrolyser options for electricity, 

heat and/or fuel production, were analysed to be feasible; proving its economic viability would pose 

a challenge. 

It seems that multiple fast pyrolysis operations of varying capacity could be sustained across Namibia; 

this would be based on extrapolating the results of fast pyrolysis operations analysis from the 

Okakarara and Otjiwarongo areas, i.e. some 5Mha, to bush encroached areas of 30Mha on a national 

basis. However, a national, strategic initiative should include planned investments for the installation 

of the new fast pyrolysis systems for electricity generation. This could include the upgrading of 

existing slow pyrolysis systems to more efficient and effective slow pyrolysis operations. Feasibility 

considerations then need to include additional cost factors for skills development, technology transfer 

and pro-active marketing of fast pyrolysis products. 

In principle it was found that the socio-economic setting of Namibia is receptive to the introduction 

of new technology, such as fast pyrolysis for bioenergy production. Wood from bush encroachment 

is a feasible feedstock resource for fast pyrolysis conversion. Deliberate national interventions or 
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strategies would be required to embrace new energy generation technologies in general.  In addition, 

there are challenges that impede the establishment of a benchmark. These relate to the implementation 

of knowledge and technology transfer as well as feedstock supply side and product market constraints. 

Knowledge and technology transfer is limited by the non-availability of the required number of skilled 

personnel in the field of bioenergy and quantitative data on biomass and bioenergy markets. 

Technological adaptability is the major factor that inhibits technology transfer.  Possible and existing 

feedstock supply side constraints allude to: 

• accessibility to the wood resource;  

• limitations to the current harvesting techniques and introduction of large-scale mechanised 

harvesting; 

• high harvesting and transportation costs of the feedstock; and 

• limitations of farmers to supply feedstock on a regular basis as agricultural production is their 

first priority, and do not necessarily concern wood harvesting and supply unless incentivised 

in some manner. 

10.1.2 The South African case 

The encumbering factor to prove techno-economic viability of fast pyrolysis systems in South Africa 

is availability of sufficient wood-based resources over the long term. As mentioned in section 4.1.3.2, 

residues suitable for fast pyrolysis from commercial forestry activities are not viable; and, wood-based 

biomass resources from bush encroachment and alien plant species are also limited (section 9.5). It 

may be a consideration to further enhance currently used slow pyrolysis technology to increase 

resource efficiency operations as existing markets for charcoal prevail. For example, harvesting 

exhaust gases to pre-dry feedstock may reduce the biomass resource and pyrolysis retention time 

requirements per kiln or retort slow pyrolysis cycle considerably; thereby enhancing profitability of 

each operation. Short term investments would need to be made, but over the long term, product quality 

and acceptability benefits, e.g. sustainability standards like the Forest Stewardship Council (FSC) that 

need to be adhered to, would certainly outweigh the costs. 

Biomass resources from bush encroachment and invasive alien plant species are not sufficient to 

sustain the development of fast pyrolysis operations beyond the 5t/h scale. As clearing of invasive 

alien plants in the Eastern and Western Cape provinces enjoy national priority and harvesting 

operations are largely subsidised, economic viability of fast pyrolysis operations is supported. Such 

fast pyrolysis operation would not compete with existing slow pyrolysis and firewood production 
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systems nor supply of wood for domestic energy use in the Eastern and Western Cape Province 

respectively. Finding the optimal location is a limiting factor. A 5MW electricity output equivalent 

fast pyrolysis operation is only viable in the Western Cape.  

Of all South African provinces, Cape Town (the provincial capital of Western Cape) is the only 

authority that incentivises power production sovereign from the national grid by sourcing power from 

independent power producers, mainly based on renewable energy sources; a unique situation in the 

South African power generation landscape. Additional feedstock to sustain a fast pyrolysis operation 

beyond the supply of feedstock from the Working for Water programme may also be sourced from 

domestic waste collected by municipal services. This aspect was not covered in this research and 

would need further analysis. However, after the invasive alien plant species would be eradicated, the 

feedstock for the fast pyrolysis operation would necessarily need to be switched from wood-based 

biomass feedstock to an alternative. This research therefore suggests that a fast pyrolysis operation 

based on feedstock from invasive alien plant species be located in the Western Cape, and optimally 

in the metropolitan area of Cape Town. 

Only one fast pyrolysis plant based on feedstock supply from bush encroachment in the Limpopo, 

Mpumulanga and/or Northwest provinces in South Africa is feasible. However, proving economic 

viability needs to be based on additional factors which were not included in the considerations of this 

research. This research suggested the optimal location to be in the Gauteng Province due to the high 

density of energy infrastructure there. However, bush densities and specific wood yields of all 

provinces have not been investigated. It may therefore be that a more feasible location could be found 

in the other provinces, which would then affect the economic viability further.  

10.1.3 Wood-based biomass resources 

Namibia has one type of biomass resource available in abundance, wood from bush encroachment. 

Over a 20-year period, bush encroachment should decrease to restore agricultural production land. 

The wood-based biomass available is in excess of 25Mwet-t per annum. Both harvesting and various 

fast pyrolysis conversion options are feasible. However, capacity to harvest and supply large amounts 

of wood on an annual basis is questionable under existing socio-economic conditions in Namibia. The 

reasons are manifold and include: 

• Mechanisation of harvesting of the wood-based biomass is limited: the type of wood biomass 

resource, i.e. bushes, limits the degree of mechanised harvesting; a limited skills base exists under 

the labour force which is typically employed in the agricultural and forestry industry; and the 
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geographic layout of Namibia does not always allow for access to the bush-encroached land for 

heavy machinery. 

• The biomass resource is dispersed over an area of 30Mha and yields vary greatly. 

• Logistical, transport, comminution and handling costs associated with the biomass supply to fast 

pyrolysis operations are high. 

• The biomass resource is privately owned by farmers and/or rural communities governed by 

traditional leaders. Access to the resource is not free and must be arranged on a contractual basis. 

 

In the South African context, two types of wood-based biomass resources were analysed, to be derived 

from bush encroachment and invasive alien plant species. The collective potential biomass resource 

base is vast, totalling over 20Mwet-t/year, but highly dispersed over the country. Apart from 

encroacher-bush, the biomass resources are readily available and no additional harvesting is required. 

Considering fast pyrolysis conversion of these resources over the long term, the following challenges 

could be encountered: 

• Biomass resources are dispersed over the country, and where the resources occur, the 

concentration is not high enough to warrant fast pyrolysis operations beyond a feedstock intake 

of 5t/h. 

• Bush encroachment in South Africa occurs over more than 19Mha, posing harvesting and 

logistical challenges to concentrate the feedstock intake for large fast pyrolysis conversion 

processes to one central point. The cost of logistics drives the price of the feedstock. 

10.1.4 Pyrolysis industry 

In both cases, Namibia and South Africa, there is a certain amount of resistance to accept new 

technologies in general even more so where a similar kind of technology has been used for decades, 

but the technology has not been technologically improved or adapted to account for technological 

advancement, for example slow (kiln) pyrolysis processes. Also, coal-based energy is still cheap and 

based on combustion technology to convert the coal to electricity which is commercially proven and 

reliable. Industry regulations are less important in deciding on a ‘new’ technology option, however 

environmental regulations to introduce renewable energy production technology are rather stringent. 

Legislation classifies pyrolysis, i.e. mainly charcoal manufacturing as a scheduled industry, subjecting 

it to all industrial norms and specifications relevant when start-up or expansion of any industrial 

activity is planned. These regulations have to be adhered to, also by small scale slow pyrolysis 

operations like kilns. Introducing improved pyrolysis or the new fast technology would require a 
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number of steps to be followed and robust reason why and how a new technology would be more 

effective and profitable than the existing one. A “roadmap” would be required to explain what and 

how new technologies can be introduced in the market. 

Fast pyrolysis processes provide additional economic viability and feasibility over slow pyrolysis 

retort processes. However, the technical and non-technical barriers to be overcome impede a ‘simple’ 

switch over or up-scaling from kiln to fast pyrolysis systems. People’s mind-set seem to be fixed on 

relatively small scale slow (kiln) pyrolysis operations. However, fast pyrolysis operations are large 

scale which poses a huge challenge in terms of management capacity and capital investment. 

Therefore, perceived technical and non-technical barriers have to be overcome before investment in 

the advanced fast pyrolysis technology would be made. Consequently, the better the parameters are 

defined and explained, the easier it would be to introduce the advanced fast pyrolysis technology in 

Namibia and South Africa.  

10.1.5 Costs of and markets for bio-oil 
From the analyses, bio-oil can be produced in a cost efficient manner. The breakeven selling price for 

bio-oil produced in Namibia is from NAD620/t and depending on the feedstock intake capacity and 

price. In South Africa, the breakeven selling price of bio-oil is from some ZAR850/t. These prices 

compare well with the price of ZAR714/t for South African coal exported to Namibia for electricity 

generation. The average price of coal produced and used in South Africa for energy production in 

general is below ZAR400/t. Thus bio-oil prices cannot compete with the prices of coal, posing a 

challenge for bio-oil to enter the South African energy market, unless incentivised by government 

policies, in this case for example guaranteed renewable energy feed-in tariffs (REFITs). 

Bio-oil can ideally be used to produce heat, power or fuels. However, because the biomass resources 

in Namibia and South Africa are dispersed, not enough quantities can be produced at any production 

site to warrant more than the production of one product category, for example power. 

Bio-oil can ideally be used to produce off-grid electricity in specific communities located close to the 

biomass resource. On-grid electricity production is a possibility. Although the enabling environment 

in Namibia and South Africa exists for feeding electricity into the national grid, implementation 

thereof is cumbersome. Only the metropolitan city of Cape Town, South Africa offers independent 

power producers the possibility to feed electricity into the municipal power supply grid. 
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10.1.6 Other challenges that could hamper the introduction of fast pyrolysis technology  

The challenges encountered with retort systems and reasons why kilns are still the preferred 

technology for thermo-chemical conversion of wood-based biomass in Namibia and South Africa are 

(not mentioned in order of priority): 

• There are no markets for the co-products generated by the slow pyrolysis retort, thus assumed 

that these would not be existing for fast pyrolysis processes either. 

• It is easier and cheaper to discard an obsolete slow pyrolysis kiln after 10 years of operation and 

purchase a new one than maintain a sophisticated system, even if such system could have a 

lifespan in excess of 20 years. Therefore, investment for the introduction of fast pyrolysis 

equipment could be perceived as overly expensive, and possibly rejected to be adopted as an 

alternative to slow pyrolysis operations, even if proven to be feasible and economically viable. 

• Slow pyrolysis kilns are more ‘user friendly’, thus even unskilled and semi-skilled workers can 

operate them. Fast pyrolysis operations management requires a skilled labour force which is not 

readily available.  

• Apart from skilled labour shortages, technological readiness of the labour force is a limiting factor 

to introducing a new technology. Policy and regulatory impediments aggravate the situation 

further. 

• Potential plant operators and technicians are not sufficiently trained. Skills development is needed 

to efficiently run fast pyrolysis operations. Training and staff development needs to be conducted; 

which could significantly increase productivity, enhance adherence to health and safety 

regulations at the work place and effect further improvement of process controls and sustainability 

of resource material supply. Intensive training and staff development is limited currently due to 

their high operational and overhead costs. 

• Staff turnover remains very high, due to better salaries and wages being paid in service or mining 

related industries; and the consequences of the HIV and AIDS pandemic. The latter fact, for 

example, impedes effective and efficient trainings and skills development as part of staff 

development and on-the-job training initiatives at private sector level. It is furthermore extremely 

costly for the private sector to continuously train staff just to maintain capital cost intensive 

manufacturing systems when kiln systems suffice. The overall production costs based on slow 

pyrolysis kiln operations were said to be cheaper even if higher input costs (mainly feedstock) 

would have to be considered. 

• There is no real need to switch to ‘high-tech’ equipment when labour costs are still relatively 
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cheap, measured against the hourly minimum wage bill. This aspect becomes very questionable 

when the former two points need to be taken into consideration as well. 

• There is a continuing lack of scientific knowledge about resources and new technologies that 

could be deployed. For example, data is lacking on the appropriate yield that can be harvested 

from bush encroachment without damaging natural vegetation levels. 

• Coupled with the former aspect, the transfer and popularisation of new technology suited for 

various production levels remains a barrier. Even though much of South Africa’s research and 

development efforts have been directed towards the needs of the established large companies in 

the past, larger companies in e.g. the charcoal industry have not sustained their operations with 

more efficient technologies but reverted back to older technologies. New environmental 

obligations mean technological improvements have to be made to encompass sustainable large 

and small-scale production systems based on efficient and effective conversion methods. It seems 

however, that there is little appetite for South African companies to adapt if legislation is not in 

place which would make technological improvements mandatory, coupled with penalties if not 

implemented. 

• Even though fast pyrolysis systems are feasible, costs on capital expenditure to introduce fast 

pyrolysis systems are high when compared to the situation in Europe for example. Although, 

borrowing of capital has become more affordable since 2000 (the national reserve bank reposition 

rate – ‘repo rate’ remained stable at around 6% since 2008 if compared to the average 1998 repo 

rate of 18.5%). Capital formation and access to affordable capital still hampers the fast-tracking 

of various developmental and technical adjustment costs. Also, key elements of the fast pyrolysis 

systems need to be imported from Europe and North America. With exchange rate fluctuations 

the costs of imports tend to be very high, limiting economic viability even further. 

• Manufacturing of charcoal by-and-large is still considered to be a cottage industry, or only 

providing an auxiliary income to other agricultural and forestry activities. This is especially the 

case in Namibia where the mainstay of agricultural income is generated by rearing livestock. 

• There is no contracted or guaranteed linkage between wood-based resource management and 

primary use of forest products. This would result in a very inconsistent supply of raw materials 

to fast pyrolysis plants making it difficult for fast pyrolysis operation owners who could produce 

large amounts of charcoal or new products like bio-oil to sustain their operations; especially when 

pyrolysis system operators do not own the wood-based biomass resources like forest plantations 

or bush on farms. 
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Because of the deep economic integration of Namibia and South Africa the aforementioned challenges 

are valid for both Namibia and South Africa. Namibia, and in particular South Africa has introduced 

a number of policies to overcome the challenges, but the introduction of new technologies remains 

partial. Additional support measures in South Africa are offered to overcome technical and non-

technical barriers when introducing advanced technologies in the renewable energy sector. However, 

the implementation thereof is slow. Support measures in Namibia are very limited. Additionally, 

administrative red tape hinders the desire to switch to improved, advanced or adapted technologies.  
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10.2 RECOMMENDATIONS 

In an attempt to explain how fast pyrolysis operations could be made viable, the recommendations 

take the form of a proposed roadmap on what would be need implementation and how to deploy fast 

pyrolysis technology in Namibia and/or South Africa. The challenges for companies are big and need 

the assistance from governments and/or regulators. Collaborative efforts are important in launching 

fast pyrolysis, especially as the technology is advanced, but not yet available on a commercial basis. 

Table 10-1 provides a summary of the issues to be addressed, based on the conclusions. Unless a 

conducive macro-economic environment would be implemented and measures to promote new 

technologies would be taken, a technology deployment roadmap may not be helpful. 

Table 10-1 Challenges and opportunities for the introduction and deployment of fast pyrolysis in 
Namibia and/or South Africa 

 Challenges Opportunities Who or what can 
help 

When 

Policy 
framework 

Conducive policies if 
they exist, are not 
implemented (e.g. 
biofuels directive, 
renewable energy in 
general) 

Energy market 
diversification 

Competition among 
energy suppliers 

Reduced price per 
unit energy 

Government should 
implement existing 
policies 

Immediately 

Commercialise 
fast pyrolysis 
technology 

Fast pyrolysis of 
biomass at 
commercial scale 
requires optimisation 
before commercial 
production can begin 

Scalable operations 
that can take up 
large quantities of 
biomass 

Improved 
economies of scale 

Research 
institutions, e.g. in 
UK, USA, SA  

Short to medium 
term 

Prototype or 
pilot fast 
pyrolysis plant 

Such is not available 
or built locally 

Import of a 
demonstration plant 
for proof of 
principle 

Market introduction 

Research 
institutions 

Private sector 

short term 

Skills and 
knowledge 
network 

Skills and knowledge 
base too small in 
Namibia / South 
Africa 

Easing the 
implementation of 
new technology in 
the market 

Import of skills, 
if/when required 

Systemic & 
Operational 
efficiency  

Research 
institutions (mostly 
foreign) 

Tertiary education 
organisations 
(local) 

immediately 
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 Challenges Opportunities Who or what can 
help 

When 

High productivity  

Increased success 
rate on technology 
deployment 

Capacity to 
innovate/ adapt 
technology to local 
circumstance 

Technology/ know 
how transfer 

Fast pyrolysis 
champions 

They do not exist 
locally 

Role models that 
can share 
knowledge 

Build international 
connections and 
networks 

Private sector 
currently operating 
other pyrolysis 
systems (ideally) 

Use universities as 
agents for change 
and network with 
international 
communities 
already engaged in 
fast pyrolysis 

 

Short to medium 
term 

Coordination, 
ownership and 
commitment 

Much was tried, but 
often on a one-off 
basis leading to 
negative press 

Network of like-
minded people 

International 
partnership 

Building of market 
intelligence 

Association of like-
minded fast 
pyrolysis 
champions 

Medium term, in 
parallel with 
prototyping or 
commercialisation 
of technology, and 
fast pyrolysis 
champions 

Feedstock 
harvesting, 
logistics and 
processing 

Several suppliers for 
feedstock not 
working together 

Harvesting 
limitations due to 
type of plants 
delivering wood 

High costs associated 
with feedstock 
preparation 

Founding of a 
cooperative or 
industry association 
which serves 
suppliers by 
offering feedstock 
harvesting and 
logistics services 
thereby being cost 
competitive  

Process integrations 
to maximise energy 
efficiency  

Newly formed 
biomass supply 
cooperative/ 
association; 
Working for Water 
programme 
coordinators 

Equipment 
suppliers 

Medium term, 
once site specific 
feasibility and 
economic viability 
studies are 
completed 

Technical 
standards, 
testing, 

As no 
commercialised 
technologies exists, 
this is also hard to 

Market ready, 
competitively priced 
product 

Standards 
authorities 

Universities, also 

Medium to longer 
term 
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 Challenges Opportunities Who or what can 
help 

When 

certification attain via international 
research institutions 

Finance & costs Cost of introducing 
new technologies is 
high 

 Development 
financing 
institutions 

Governments 

Medium to longer 
term 

 

10.2.1 Technology deployment roadmap process 

This section outlines the steps and key questions that a national approach to a fast pyrolysis technology 

deployment should consider in designing a roadmap process that would lead to the development and 

uptake of fast pyrolysis technology. There are six vital aspects to consider when designing a ‘roadmap’ 

process for fast pyrolysis technology deployment: 

• Stakeholder participation 

• Resource constraints 

• Critical inputs 

• Roadmap design 

• Buy-in and dissemination; and  

• Monitoring, tracking and evaluation. 

Table 10-2 provides an overview of what would be required to establish the roadmap process for fast 

pyrolysis technology development and deployment in Namibia and/or South Africa. In the Namibian 

case, a non-governmental agency specifically set-up under the auspices of the National Planning 

Commission (a department under the Office of the President, which is tasked with macro- and socio-

economic planning and implementation) could be the most suitable agency to spearhead the process. 

In the South African situation, the Department of Energy is an appropriate agency to spearhead the 

roadmap process.  
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Table 10-2 Roadmap process for deployment of fast pyrolysis in Namibia and/or South Africa 

Aspect Description of what needs to be done 
Stakeholder participation • Identification of key stakeholders in the industry 

• Assigning responsibilities to certain stakeholders 
• Identifying which human resources are available to accomplish roadmap 

activities & priorities in country, and which may need to be secured from 
elsewhere 

• Identifying stakeholders critical to roadmap success 
 

Resource constraints • Identifying skills and tools required to prepare the roadmap 
• Sourcing funding for the development of the roadmap 
• Timing of (broad) stakeholder engagement 
• Availing personnel to manage & implement roadmap development process 

 
Critical inputs • Analysing appropriate data to establish baseline conditions, set goals and 

prepare forecasts 
• Availing essential analytical capabilities & tools for evaluation 
• Evaluating technology performance & limitations 
• Providing insight on factors affecting technology adoption 
• Identifying markets for technology deployment & products 
• Analysing competitor & market leaders 
• Identifying private entities critical to technology success 
• Proposing & costing of pilot or commercial projects 
• Establishing supply-side constraints 
• Establishing solutions for harvesting & logistical constraints 
• Establishing market and marketing channels 
• Establishing risks & success factors 

 
Roadmap design • Setting goals & milestones 

• Providing essential information 
• Planning for detail required for effective implementation & action 
• Acquiring supporting data 
• Assigning activities to organisations for action 

 
Buy-in and dissemination • Communicating to convey key messages & engage critical partners 

• Establishing the methods of communication and mechanisms to reach 
stakeholders & partners 

• Reinforcing the value of the roadmap and creating buy-in 
 

Monitoring, tracking and 
evaluation 

• Assigning responsibilities for tracking progress towards roadmap goals & 
milestones 

• Identifying data & analysis tools to create & track roadmap metrics 
• Adjusting technology scenarios as time advances 
• Re-evaluating & updating technology pathways at regular intervals 
• Adjusting national policies if roadmap targets are not met 
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10.2.2 Fast pyrolysis deployment roadmap 

Considering the information contained in Table 10-1 and Table 10-2, a roadmap for key actions and 

respective leading roles to achieve milestones for fast pyrolysis technology development and 

deployment was put together as shown in Figure 10-1. The roadmap is guided by the conclusions as 

presented throughout this research and key recommendations. The roadmap process is linked to a 10-

year project cycle. Thus only key issues to be considered are mentioned in the roadmap. A 

comprehensive roadmap for fast pyrolysis technology development and deployment in Namibia and 

South Africa would probably span over a period of 20 to 30 years, i.e. beyond the Vision 2030 

(Namibia) and the AsgiSa 2025 (South Africa) period respectively. However, key issues need to be 

addressed rather soon, else deployment of fast pyrolysis technology would be absorbed into greater 

socio-economic development issues or overall renewable energy technology deployment. Thereby, 

other considerations of why fast pyrolysis is offered to be a solution to successfully eradicate alien 

plant species or use wood from bush encroachment for agricultural development; create sustainable 

employment; and diversify biomass value addition options while providing additional energy 

capacities would be forgotten.  
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Figure 10-1 Diagram on the roadmap process for fast pyrolysis technology development and 
deployment in Namibia and South Africa 

 

2015 2020 2025

Public engagement and environment

Technology and industry

Policy framework

Power, heat & fuel systems

deployment targets monitoring of progress against targets

integrated deployment plans

best practice exchange; targeted development financing & trading mechanisms

raised public awareness  & need for stronger technology systems

improved mitigation systems

resource assessment
industry databases of resources, operating 
experiences

advanced, commercial fast pyrolysis  technology

education & training programmes

intensified R&D programmes and funding

integrated planning & incentives

assessment of additional systems flexibility & deployment

optimised markets; responsive demand; smarter uptake systems



303 
 

10.2.3 Existing institutions and implementation agencies identified as important stakeholders 

To introduce fast pyrolysis technology in Namibia and South Africa, a number of research, 

development, accreditation and certification institutes and materials testing laboratories are available 

from whom knowledge and partnerships could be sought. This list also includes the state owned 

enterprises which are to consider bioenergy for future supply of electricity and/or liquid fuels. Project 

funding (though limited) has become available for existing institutions to carry out duties of research, 

development, standardisation and certification as well as studying the feasibility for commercial 

implementation. Namibian institutions of similar kind or dedication are available at a limitied scale. 

The South African institutions and systems are listed below; these may serve the Namibian market 

too: 

• National Energy Regulator of South Africa (NERSA) 

• National Research Foundation (NRF) 

• Central Energy Fund (CEF) 

• South African National Energy Research Institute (SANERI) (Pty) Ltd 

• Biofuels Research Chair at the University of Stellenbosch 

• Carbon Sequestration Leadership Forum (CSLF) 

• Council for Scientific and Industrial Research (CSIR) 

• Nuclear Energy Corporation of South Africa (Pty) Ltd (NECSA) 

• Palindaba Analytical Laboratories (Pty) Ltd 

• South African National Accreditation System (SANAS) 

• South African Timber Auditing Services (Pty) Ltd (SATAS) 

• SGS (Pty) Ltd – (standards auditing and certification) 

• South African Bureau of Standards (Pty) Ltd (SABS) 

• Institute for Thermal Separation Technology at the University of Stellenbosch; 

• Petronet  

• PetroSA  

• SASOL  

• South African Petroleum Industry Association (SAPIA) 

• ESKOM and ESKOM Demand Side Management (DSM)  

• Electricity Distribution Industry (EDI) Holdings  

• Energy Intensive Users' Group (EIUG): South Africa  
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• Southern African Power Pool (SAPP); Namibia is a member 

To revitalise initiatives for bioenergy also based on converting plant biomass via fast pyrolysis to 

electricity (or commodity chemicals), the following initiatives or organisations may be of assistance: 

• Sustainable Energy Society of Southern Africa (SESSA) 

• International Energy Agency (IEA): Bioenergy 

• World Council for Renewable Energy  

• World Energy Council - Energy for Sustainable Development  

• Renewable Energy and Energy Efficiency Partnership (based on Johannesburg Plan of Action 

which resulted from the  United Nations ‘World Summit on Sustainable Development’) 

• Energy Information Administration  

• International Energy Foundation (IEF)  

• Several European and north American initiatives (e.g., Bioenergy Research Group (UK), PyNe 

(pan-European and North American), Carbon Trust (UK) 

In Namibia, the institutions assisting and concerned with renewable energy initiatives (similar to those 

in South Africa) are limited. The ones listed below are most relevant to the development of, for 

example, new renewable energy technology development in Namibia: 

• Desert Research Foundation of Namibia (DRFN); a non-governmental organisation that piloted 

the encroacher-bush 0.25 MW electricity equivalent gasifier between 2006 and 2010 

• Renewable Energy and Energy Efficiency Institute (REEEI) 

• Electricity Control Board (ECB) 

• Nampower Ltd (the national bulk power generation and transmission company) 

• Namcor Ltd (the national bulk fuel storage and distribution company) 

• Regional Electricity Distributors (REDs) 

• Several private sector companies, focused on solar energy. 

The latter lists may not be all inclusive but is intended to assist with at least gathering appropriate 

information and supplying vital data for further analysis. 
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