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Abstract

The two core systems of mathematical processing (subitizing and retrieval) as well as their functionality are already known
and published. In this study we have used graph theory to compare the brain network organization of these two core
systems in the cortical layer during difficult calculations. We have examined separately all the EEG frequency bands in
healthy young individuals and we found that the network organization at rest, as well as during mathematical tasks has the
characteristics of Small World Networks for all the bands, which is the optimum organization required for efficient
information processing. The different mathematical stimuli provoked changes in the graph parameters of different
frequency bands, especially the low frequency bands. More specific, in Delta band the induced network increases it’s local
and global efficiency during the transition from subitizing to retrieval system, while results suggest that difficult
mathematics provoke networks with higher cliquish organization due to more specific demands. The network of the Theta
band follows the same pattern as before, having high nodal and remote organization during difficult mathematics. Also the
spatial distribution of the network’s weights revealed more prominent connections in frontoparietal regions, revealing the
working memory load due to the engagement of the retrieval system. The cortical networks of the alpha brainwaves were
also more efficient, both locally and globally, during difficult mathematics, while the fact that alpha’s network was more
dense on the frontparietal regions as well, reveals the engagement of the retrieval system again. Concluding, this study
gives more evidences regarding the interaction of the two core systems, exploiting the produced functional networks of the
cerebral cortex, especially for the difficult mathematics.
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Introduction

The ability to process numbers and perform more complex

arithmetic tasks is generally believed to be supported by at least

three component systems, each primarily responsible for estimat-

ing numerical quantities, remembering and retrieving math facts,

and learning and applying calculation strategies, respectively.

Numerical estimation (also known as subitizing) incorporates the

ability to appreciate quantities and establish a sense of numerocity.

Accurate number estimation (without the serial process of actual

counting) is typically observed with up to 4–5 items [1] and is also

found in non-human animals [2], [3]. Moreover, infants by the

first year of their life have the subitizing ability, while the cortical

structures located in the posterior parietal and parieto-occipital

region, bilaterally, appear to be the critical components of this

system [3–6].

A key component of the second system, responsible for learning

and retrieving math facts, appears to be located in the left angular

gyrus (lAG) [7–9]. According to one view [10] the lAG is involved

in the retrieval of verbally stored arithmetic facts (such as

multiplication facts or simple additions) by operating within the

language system through its well-established connections to the left

temporo-parietal cortex [11]. This region is more active in exact

than in approximate calculation. During exact calculation the lAG

shows higher activation for arithmetical operations related to rote

verbal memory arithmetic facts. Thus, lAG shows more activation

for multiplication tables in relation to subtraction or number

comparison [10], [12]. Jost et al. in a functional Magnetic

Resonance Imaging (fMRI) and electroencephalographic (EEG)

study found that that lAG is engaged in arithmetic fact retrieval

together with frontal structures [13]. Small sized problems (with a

sum below 10) activate the lAG more than the large ones and this

is explained as the result that these operations are stored in rote

verbal memory like the multiplication tables [10], [12]. A

comparison of the performance of a large group of left

hemispheric patients, on language comprehension and arithmetic,

showed a relationship between language and arithmetic. In this

study, behavioral and anatomical data were indicative of partially

overlapping networks (including lAG) sub-serving language and

arithmetic [14]. Individuals with higher mathematical competence
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show higher activation of the lAG while solving multiplication

problems as a result of reliance of language mediated processes

and arithmetic problem solving [12].

In contrast to the other findings, reduced activation of the lAG

has been reported in perfect (and faster) compared to imperfect

performers during arithmetical processing, and in easier problems

rather than the more difficult ones [12], [15–17]. This is difficult to

explain since most studies show higher activation of lAG during

arithmetic. One explanation was that this deactivation is related to

the default mode network deactivation since lAG belongs to the

default mode network [12], but this explanation does not cover all

the findings. Grabner used fMRI and the associate confusion effect

which allows the dissociate effects of task difficulty and task-related

arithmetic processes on lAG activation [18]. He ruled out that lAG

activations are an epiphenomenon of task difficulty which affects

the default mode network and concluded that lAG supports

automatic mappings between mathematical symbols and solutions

stored in long term memory.

Mathematics and language seems to have an overlap in their

brain regions supporting the performance for both functionalities

[14], [19], [20]. In the triple-code theory, [21] it is proposed that

there are three regions for numerical quantities: the left perisylvian

language network, a ventral occipito-parietal region for visual

representation of digits, and the horizontal Intraparietal sulcus

(IPS) for processing of visual representation of digits [21]. Except

the studies focusing mainly on the frontal and parietal lobes and

their role in mathematics, several other studies exist for differences

of the basic arithmetic operation, detailed function of IPS etc.

These provide interesting insights but they are far from explaining

the brain function during higher mathematical processing.

A question that arises, concerns the identification of the

mechanism and how it supports ‘‘real mathematics’’ like fractions,

negative numbers, negative roots, calculus etc, while another one

concerns the series of events in the brain during advanced

mathematical processing. Both questions are very difficult to

answer; nevertheless the IPS has been recognized as a hub region

for mathematics. Additionally parietal-frontal networks as well as

some basal ganglia and networks associated with long-term and

working memory, are engaged in mathematics and especially in

very difficult problem solving and only in expert calculators [7].

The IPS is activated when numbers are presented in various

notations or spoken number words and it is claimed to contain a

specialized subsystem for numbers [20].

Probably, what it is lacking from the previous analyses is a

proper consideration of the fact that often cortical regions become

activated in concert (i.e. in a network fashion) even during simple

tasks. This could explain why a particular cortical region appears

predominantly in one particular task, while almost disappearing in

another apparently similar one. In recent years, the study of how

the different cortical regions could be functionally connected

during a specific task has been investigated with several

neuroimaging technologies [13], [22–24]. Between the different

neuroimaging methodologies, neuroelectrical imaging [25] is one

of the most suited for the estimation of the activation of the

cerebral cortical networks during a task performed while recording

the Electroencephalogram (EEG).

There have been several attempts to establish associations

between various cognitive processes and electrophysiological

Figure 1. Experimental Design: In this figure the experimental flow is being observed. All the subjects took place in the current study,
were exposed to these four different tasks namely FIX, DL, SM, and DM. The first task was pseudoradomly chosen for each individual.
doi:10.1371/journal.pone.0071800.g001

Figure 2. Head Model: According to our head model, the
electrodes’ positions and the cortical dipoles (yellow dots) are
known. Since the conductivities of the head (gray layer), the outer skull
(blue layer) and the inner skull (purple layer) are also known, we can
compute the mapping from out 28 electrodes to 258 cortical dipoles.
doi:10.1371/journal.pone.0071800.g002
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changes in specific EEG frequency bands. The majority of the

studies have focused on the alpha band demonstrating reduction

in alpha power with task performance [25]. Moreover, electrical

events occurring in the delta band may be involved in the large-

scale cortical integration, whereas increases in theta power have

been linked with memory encoding and retrieval. Brain activity in

the beta band is often regionally constrained and may play a role

in the direction and maintenance of attention, especially during

motor tasks. Finally, synchronization in the gamma band has been

put forward as a correlate of information binding across nearby

cortical sites. With respect to mathematical thinking, the majority

of the electrophysiological studies, employ Event-Related Poten-

tials (ERP) and to a lesser degree Event-Related Desynchroniza-

tion/Synchronization (ERD/S).

In addition to ERPs and ERD/S, EEG data may shed light into

the temporal dynamics of brain networks that become active

during a task performance. In a previous study employing

relatively simple calculation tasks, we reported band- and

region-specific EEG power spectrum changes during performance

of mental multiplication tasks as compared to control tasks (dot or

number viewing) [26]. Specifically, we found increases in the

gamma power over the left hemisphere, reduced alpha2 power at

central and parietal areas, and increased theta power at frontal

locations. These results were consistent with evidence obtained

from other imaging modalities of increased levels of neuronal

signaling within a distributed set of neuronal networks, primarily

in left frontal and parietal areas, but also in the right fronto-

parietal area associated with retrieval of simple mathematical facts

(e.g. multiplication tables), which are typically stored in the form of

verbal representations. Despite the significant difference in

difficulty between the two calculation tasks (corroborated by

performance data), corresponding differences in regional spectral

power have been scarce.

To the best of our knowledge, this is the first time that these

findings were extended in the time and frequency domain by

modeling the associations between the cortical dipoles obtained,

using the inverse solutions, by the signals recorded at different

electrode sites. Network theory (graph theory) was employed in

order to derive patterns of network organization which may in

turn reflect underlying functional brain networks [27]. Our

approach capitalizes the recent application of graph theory which

estimates the regional activity of the cerebral cortex obtained by

the EEG data [28]. As it was mentioned before, this approach was

adopted in order to investigate the changes of the cortical

networks’ organization as a function of (a) task, contrasting two

multiplication tasks (one and two digit multiplications) with two

control tasks (visual fixation and a task involving countable

random dot arrays), and (b) calculation difficulty. The latter goal

was pursued by contrasting the two multiplication tasks which

differed on difficulty and complexity level. Whereas performance

of the single digit multiplication task may rely on math fact

retrieval, the harder, two-digit multiplication task requires

implementation and specific calculation strategies in addition to

retrieval of simple math facts (times tables).

In this piece of work weighted graphs have been used in order to

provide a more realistic representation of the cortical networks,

whereby a ‘‘weight’’ is computed for as an index of the strength of

each connection [29]. Well-established parameters were further

computed describing local and widespread organization of the

networks, including Global Efficiency (Eglob), Local Efficiency

(Eloc), Node Strength (NS), and the ‘‘Small World Network’’

(SWN) index [30]. It is worth noting that high SWN values

characterize networks displaying a high clustering coefficient and

short path length, which all are properties of real networks that

show optimum organization.

In particular, this study investigates the functional networks

subserving the two core systems of the mathematical cognition, as

well as their modulation according to the varying difficulty of a

certain mathematical task. Moreover this study comes to shed light

on the role of each particular EEG frequency band and it’s ability

to describe the difficulty of the proposed mathematical stimuli.

Figure 3. Distribution of the edges’ weights. In this figure, the distributions of the AM weights are illustrated for all tasks and for each frequency
band. As it can be observed, all distributions are identical.
doi:10.1371/journal.pone.0071800.g003
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Materials and Methods

Participants
Twenty four right handed medical students of the University of

Crete were recruited for this study (12 and 12 females with a mean

age of 23 years (SD = 2.1 years). Participants with a history of

psychiatric or neurological illness or under medication were

excluded from the study. All participants had normal (10/10) or

corrected to normal vision. Participants were asked to avoid

alcohol intake on the day before and caffeine consumption on the

day of the experiment; they were also asked to sleep as adequately

and comfortably as possible on the night before. Recordings were

performed during the morning. All participants signed an

informed consent form, while the experimental protocol was

approved by the ethics committee of the Department of Medicine

of the University of Crete.

EEG Recordings
EEG recordings were performed in a dark, electrically shielded

and sound attenuated chamber. Participants were lying in a

comfortable chair and the stimuli were presented on a laptop

screen located about 80 cm in front of the individual. EEG signals

Table 1. Statistical results for the clustering coefficient (CC) and the characteristic path length (L).

p-Values

mean sd FIX DL SM DM

Delta Band

CC FIX 0,157 0,027 – 0,38 0,78 0,006

DL 0,154 0,029 – 0,76 0,005

SM 0,155 0,034 – 0,012

DM 0,182 0,044 –

L FIX 0,052 0,009 – 0,02 0,11 0,83

DL 0,048 0,007 – 0,55 0,021

SM 0,049 0,006 – 0,06

DM 0,051 0,007 –

Theta Band

CC FIX 0,132 0,022 – 0,87 0,41 0,01

DL 0,131 0,024 – 0,64 0,002

SM 0,130 0,020 – 0,001

DM 0,147 0,027 –

L FIX 0,037 0,004 – 0,54 0,93 0,04

DL 0,038 0,006 – 0,61 0,25

SM 0,037 0,005 – 0,04

DM 0,040 0,005 –

Alpha1 Band

CC FIX 0,123 0,022 – 0,10 0,52 0,22

DL 0,130 0,033 – 0,07 0,76

SM 0,120 0,021 – 0,031

DM 0,128 0,022 –

L FIX 0,016 0,002 – 0,001 0,87 0,63

DL 0,019 0,003 – 0,001 0,03

SM 0,017 0,002 – 0,68

DM 0,017 0,002 –

Alpha2 Band

CC FIX 0,134 0,029 – 0,26 0,015 0,16

DL 0,139 0,031 – 0,0004 0,047

SM 0,121 0,022 – 0,06

DM 0,127 0,018 –

L FIX 0,03 0,006 – 0,52 0,024 0,14

DL 0,031 0,005 – 0,003 0,06

SM 0,027 0,004 – 0,21

DM 0,028 0,003 –

These results are not further discussed because they don’t provided an added value, from a neuroscientific point of view at least, while they are almost identical with
the results reported for global and local efficiencies.
doi:10.1371/journal.pone.0071800.t001
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Table 2. Statistical results for Delta, Theta, Alpha1 and Alpha2 Brainwaves.

p-Values

mean sd FIX DL SM DM

Delta Band

SWN FIX 0,826 0,021 – 0,884 0,676 0,012

DL 0,826 0,022 – 0,814 0,004

SM 0,825 0,023 – 0,004

DM 0,840 0,023 –

Eglob FIX 0,250 0,024 – 0,286 0,215 0,0009

DL 0,254 0,029 – 0,586 0,005

SM 0,256 0,034 – 0,017

DM 0,281 0,042 –

Eloc FIX 0,175 0,024 – 0,781 0,844 0,006

DL 0,178 0,029 – 0,958 0,012

SM 0,180 0,034 – 0,018

DM 0,206 0,043 –

Theta Band

SWN FIX 0,795 0,015 – 0,361 0,978 0,004

DL 0,799 0,016 – 0,418 0,040

SM 0,795 0,014 – 0,001

DM 0,807 0,015 –

Eglob FIX 0,241 0,028 – 0,988 0,787 0,007

DL 0,241 0,026 – 0,825 0,004

SM 0,241 0,024 – 0,012

DM 0,256 0,032 –

Eloc FIX 0,157 0,025 – 0,584 0,860 0,023

DL 0,157 0,024 – 0,687 0,042

SM 0,156 0,021 – 0,021

DM 0,172 0,028 –

Alpha1 Band

SWN FIX 0,763 0,032 – 0,677 0,078 0,560

DL 0,765 0,023 – 0,01 0,292

SM 0,752 0,021 – 0,499

DM 0,759 0,021 –

Eglob FIX 0,242 0,028 – 0,857 0,115 0,965

DL 0,242 0,026 – 0,173 0,913

SM 0,242 0,024 – 0,05

DM 0,256 0,032 –

Eloc FIX 0,159 0,038 – 0,860 0,369 0,672

DL 0,158 0,033 – 0,288 0,733

SM 0,148 0,022 – 0,197

DM 0,157 0,023 –

Alpha2 Band

SWN FIX 0,787 0,030 – 0,191 0,134 0,181

DL 0,794 0,024 – 0,009 0,020

SM 0,777 0,025 – 0,529

DM 0,779 0,019 –

Eglob FIX 0,247 0,032 – 0,231 0,018 0,309

DL 0,251 0,031 – 0,0006 0,083

SM 0,236 0,024 – 0,029

DM 0,243 0,021 –
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were recorded with 32 electrodes placed on the scalp according to

the 10/10 international system (FP2, F4, FC4, C4, CP4, P4, O2,

F8, FT8, Fz, FCz, Cz, CPz, Pz, Oz, FP1, F3, FC3, C3, CP3, C3,

F3, FC3, C3, CP3, P3, O1, F7, FT7, and PO7, referenced to

linked earlobes). From these 32 electrodes, one (1) was used as the

trigger (CPz), one (1) for the grounding (AFz), and two (2) for the

detection of eye-movements (VEOG) thereby resulting in 28

electrodes used for the EEG recordings. The signals were

amplified, digitized at 500 Hz and online filtered between 1 and

200 Hz.

Stimuli and Tasks
EEG data were acquired during performance of four tasks

(Fixation, Dot looking, Simple Multiplication, and Difficult

Multiplication). During Fixation (FIX) a small white cross

appeared at the center of a dark screen for 30 s (control

condition). During the dot looking (DL) block participants

passively viewed 2–4 dots for 20 trials lasting 1 second each.

The Simple Multiplication (SM) task included 20 trials of single-

digit multiplications (e.g. 363), while the DM task included 8 trials

of two-digit difficult multiplications (e.g. 35672) (see Figure 1). For

the simple multiplication tables we asked the individuals (students

of medicine) if they had any difficulty or question. Responses were

provided orally after the DM task (for analysis we chose pieces of

10 s duration, without visible artifacts and with correct answers

and all the signals were further cleared by ocular artifacts using the

REGICA [31] plugin for the EEGLAB toolbox [32]). No response

was required during dot looking and fixation, while for the SM

and DM tasks, students were not restricted to reply within a

prescribed time period.

Cortical Activity
EEG records the activity of the cortical dipoles oriented in

tangential or radial directions regarding to the scalp surface.

Despite that the variation of the electrical conductivity among the

different head compartments leads to the volume conduction

problem, which is very serious drawback of the functional

connectivity analysis [33]. To face this problem, the cortical

activity was estimated from the 28 EEG signals, by adopting a

realistic head model, which describes the different electrical

conductivities of the head structures and the sensors’ geometry, a

cortical dipole model, which predefines the localization of the

dipole sources, and the inverse solutions [34][35]. In the current

study an average head model from the reconstruction of 152

normal MRI scans (MNI template http://www.loni.ucla.edu/

ICBM/) has been used, while the four different compartments of

the head model (scalp, outer and inner skull, cortex) were

extracted using the Boundary Element Method (BEM). BEM is

implemented in the Brainstorm toolbox which is freely available in

http://www.neuroimage.usc.edu/brainstorm. BEM computes the

aforementioned compartments by closed triangle meshes with

limited number of nodes (in our case we have used 258 nodes).

Regarding the regularized solution of the linear inverse problem,

we have used the column-norm normalization, resulting to a

transition kernel from our 28 scalp signals to 258 cortical signals

(Figure 2).

Graph Analysis
A weighted graph is a mathematical representation of a set of

elements (vertices) that may be linked through connections of

variable weights (edges). In our study, the vertices corresponded to

estimated cortical dipoles. The weight of each edge is given by the

Magnitude Square Coherence (MSC) value within each pair of

vertices (see Appendix S1). At the group level estimation of graph

parameters was conducted on a set of 672 (24 subjects66 bands64

tasks) Adjacency Matrices (AM). The element of the AM denotes

the MSC value across the ith and the jth dipolar sources. Each

matrix consisted of all 2586258 elements (estimated cortical

dipoles) without applying any thresholding procedure. The

distributions of the edges’ weights observed in these AMs are

identical (see Figure 3 and Figure S1).

In order to investigate how each cognitive task modulates the

functional connectivity of the cerebral cortex we have adopted six

parameters which can describe some properties of a weighted

graph. These parameters are node strength (NS), the global

(Eglob) and the local (Eloc) efficiencies and the small-worldness

(SWN). We have also calculated the weighted clustering coefficient

(CC) and the shortest path length (L) (Table 1), but they are only

mentioned in the Table 1 and they are not further discussed

because their findings as well as their interpretation were similar to

the Eglob and Eloc. As described in more detail in Appendix S2,

Global efficiency (Eglob) is the average of the inverse of the length

of the shortest path between two vertices, Local efficiency (Eloc)

reflects the degree to which a graph is organized into local

subgraphs, and Node strength (NS) summarizes the connection

weights for a particular vertex. It should be noted that NS is a

measure of regional engagement, as it flashes out the nodes with

strong and dense connection with the resting nodes.

Finally, high values on the SWN index [30], [36] reflect high

clustering coefficient and short path length values which are

characteristic of many real networks displaying optimum organi-

zation. The computation of graph parameters were performed

using the Brain Connectivity Toolbox (BCT) [37] working on

MATLAB 7.10 (The Mathworks Inc).

Table 2. Cont.

p-Values

mean sd FIX DL SM DM

Eloc FIX 0,161 0,033 – 0,599 0,059 0,780

DL 0,165 0,031 – 0,004 0,227

SM 0,147 0,022 – 0,105

DM 0,154 0,018 –

As it was expected, the most prominent differences are observed in the comparison of the DM with the rest tasks. Considering the alternation of the graph parameters,
it seems that the graphs’ organization of the aforementioned brainwaves is modulated by the engagement of the subitizing and retrieval systems.
doi:10.1371/journal.pone.0071800.t002
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Statistical Analysis
In order to check whether our variables have Gaussian

distribution, Shapiro-Wilk and Kolmogorov Smirnov tests were

employed. Initially, overall graph organization was quantified

through the aforementioned three graph parameters, Eglob, Eloc,

SWN. Both tests suggested that the distribution of individual

values deviated from the normal distribution (p,.01 in all cases).

Accordingly, pairwise task differences on each parameter were

assessed through the asymptotic 2-tailed Mann & Witney U test.

The U tests were used for the statistical comparison of the

alternations in all the graph parameters mentioned above, except

the NS because this measure was computed for each node

separately. Thus, each task was compared in the node level using

also U test, while the False Discovery Rate (FDR) method was

adopted in order to control for Type I error while maintaining the

nominal alpha level to.05 [38].

Results

Table 2 shows the mean and SD values for the three graph

parameters Eloc, Eglob, and SWN for each frequency band and

for all tasks. FDR-corrected p values, for Mann & Witney U tests

assessing pair-wise task differences on each parameter, are also

shown. In delta band, the Eloc index is linearly dependent to the

task’s difficulty, showing its lowest value for the control task and its

highest value for the DM task. Eglob shows the same pattern with

increasing values from the control situation to the difficult

multiplication. In all tasks, the pattern has the characteristics of

the SWN organization differing during the difficult mathematics

compared to the control situation and the rest tasks. The values of

theta band show also a similar pattern. Alpha 1 band shows only

differences in SWN values between the DL and the SM tasks.

Alpha 2 band shows the same SWN difference, alongside with a

statistical significant difference on the DL and DM tasks. Beta and

gamma bands show no differences in SWN and Eloc, Eglob. The

weigthed clustering coefficient (CC) and the shortest path length

(L) (Table 1) have almost identical findings with Eloc and Eglob

respectively. Additionally they show a difference between retrieval

and difficult multiplication for alpha1 band; they also discriminate

the control situation from retrieval in alpha 2 band and the control

situation from dot looking (the CC).

The most striking differences were found during DM. Fig 4

illustrates the strength of connections in the different bands in

weighted graphs. These are represented in a low threshold to

visualize weaker ties and in high threshold to include stronger ties.

For the high frequency bands we used low threshold. Delta and

theta bands show a similar pattern with prominent (weighted)

edges more frontal and fronto-parietal. A similar pattern shows

alpha 1 and alpha 2 bands, but with fewer prominent edges

towards the occipital regions. The higher frequency bands which

are of cortical origin and are activated locally show the most

prominent edges in temporal, temporoparietal and towards

occipital regions. Moreover, Figs 5 and 6 show higher values of

the node strength (an index of node connections) during the

difficult multiplication task, more frontal and more on the left

hemisphere. Finally we would like to report that the results didn’t

reveal any statistical significant difference as it can be observed in

Table 3.

Discussion

In this study network analysis was used to compare the two core

systems of mathematical function with a difficult calculation

estimating the effects on the different EEG bands. It was observed

Figure 4. Connection differences. The color scale represents the magnitude of the difference in weighted graphs between the three examined
tasks compared to the control one (FIX). The adjacency matrix of the FIX task was subtracted from the adjacency matrix of the each task and for each
frequency band revealing connections that were stronger for the latter tasks. Because the herein graphs are complete we have used some thresholds
(.10 for Delta, Theta, Alpha1 and Alpha2 bands and.05 for Beta and Gamma bands) only for the illustration of the engagement of the subitizing and
retrieval subsystems.
doi:10.1371/journal.pone.0071800.g004
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that at rest and during the mathematical tasks, the involved brain

networks showed the optimum (SWN) organization for all

frequency bands and tasks. The graph parameters for delta and

theta bands, and in a lesser degree for the alpha 2 band, seem to

have some statistically significant differences during mathematical

cognitive tasks with increasing difficulty.

Delta band increases in pathological brain disturbances and

during sleep. Oscillations in delta range are believed to be

generated by neocortical and thalamocortical networks [39]. This

band is important for large scale cortical integration [40]. During

cognitive processes, changes on delta band are produced and their

degree depends on the complexity of tasks [41]. Decreases of delta

activity have been recorded in conditions that require attention to

the external environment, whereas increases have been manifested

during cognitive processes requiring attention to internal process-

ing [42], [43]. In mathematical calculations, increases of delta

activity have also been reported [41], [42], [44–47]. The increase

of the delta band is believed to be related with inhibitory

mechanisms [42] and especially with inhibition of the default

mode network. This inhibition has also been observed in other

studies of mental calculation using fMRI or bioelectrical signals

[44], [48], [49]. In the present study, interesting findings are

related to network organizations of delta band during the

Table 3. Statistical results for Beta and Gamma Bands.

p-Values

mean sd FIX DL SM DM

Beta Band

SWN FIX 0,826728 0,012205 – 0,847 0,867 0,399

DL 0,826184 0,012957 – 0,995 0,616

SM 0,826204 0,014302 – 0,552

DM 0,824631 0,013091 –

Eglob FIX 0,217919 0,027464 – 0,177 0,193 0,677

DL 0,212669 0,020283 – 0,782 0,120

SM 0,213138 0,020402 – 0,122

DM 0,217006 0,023572 –

Eloc FIX 0,14579 0,021042 – 0,718 0,657 1

DL 0,142066 0,015834 – 0,893 0,516

SM 0,142368 0,017031 – 0,627

DM 0,14506 0,017661 –

Gamma Band

SWN FIX 0,81255 0,014384 – 0,104 0,245 0,311

DL 0,816167 0,012885 – 0,461 0,819

SM 0,81434 0,011113 – 0,710

DM 0,815431 0,012426 –

Eglob FIX 0,231598 0,033379 – 0,070 0,206 0,779

DL 0,222402 0,018434 – 0,423 0,066

SM 0,224617 0,021325 – 0,150

DM 0,230667 0,027769 –

Eloc FIX 0,154207 0,027926 – 0,502 0,556 0,764

DL 0,147176 0,015078 – 0,975 0,269

SM 0,148614 0,017083 – 0,369743

DM 0,154713 0,024452 –

It seems that Beta and Gamma brainwaves are not involved in the organization of the subitizing and retrieval systems.
doi:10.1371/journal.pone.0071800.t003

Figure 5. Statistical Significant Differences of NS. Nodes found to
be significantly stronger for the DM than the SM task at three frequency
bands. The size of green nodes is inversely proportional to the
significant (,.05) p-values: the larger the node the more significant the
effect is.
doi:10.1371/journal.pone.0071800.g005

Functional Networks of Mathematical Cognition

PLOS ONE | www.plosone.org 8 August 2013 | Volume 8 | Issue 8 | e71800



mathematical tasks. The increasing values of Eloc and Eglob from

subitizing to the retrieval of simple multiplication and difficult

multiplication show increasing nodal organization and efficient

remote connectness. During the difficult multiplication, the higher

cliquish organization (higher Eloc) could be indicative of higher

and more specific demands; moreover, the integration (Eglob) is

more effective. This is an interesting finding that depends not only

on the role of delta band for large scale cortical integration. The

network reactivity of delta band shows more prominent (weighted)

connections in frontal/frontoparietal regions in higher thresholds

(Fig. 4). Additionally, there is a hemispheric asymmetry with

higher activation of the left hemisphere during the difficult task

(see Figures 5, 6, S2, S3, S4) which comes into accordance with

previous studies [50].

Theta band increases during sleep stage I, but also during many

cognitive tasks and especially during numerous working memory

processes [51], [52]. Additionally, theta band synchronizations are

visible during remote dynamic information transfers between

distant cortical regions; theta band oscillations during cognitive

tasks are visible mainly at the frontal midline regions [43], [51],

but they can be also present on parietal and temporal sites [53].

Their power depends on the cognitive load. Theta band coherence

between frontal and parietal sites has also been described in recent

literature [40], [51]. In mental arithmetic tasks, enhancement of

frontal theta activity [54], [55] or synchronization in a large

number of electrode pairs have also been reported [53]. Our

findings are indicative of high nodal and remote organization

during the difficult multiplication task. The Eloc value was highest

during the difficult multiplication task and Eglob during the dot

looking task. The mapping showed more prominent connections

in frontoparietal regions. Node strength showed more prominent

nodes in frontal regions of the left hemisphere. These are in

accordance with previous studies [23], [50], [56]. Thus, theta

band network parameters can describe mathematical tasks and

add information in accordance with previous studies [44], [46].

Alpha 1 band oscillations are of corticothalamic origin and are

the most well-studied EEG oscillations. Increased cortical activity

is accompanied with a decrease of alpha 1 activity. Increases of

alpha2 activity are described in combination with increases of

theta band. The mapping of the (weighted) interconnections in this

piece of work, were stronger in frontal and frontoparietal regions

and the node strength was higher frontally on the right side for the

alpha 1 band. Eloc and Eglob showed only a few differences in

alpha2 during difficult multiplications (Eglob) and retrieval (Eloc).

The frontoparietal finding is the result of working memory load

[51], [52].

High frequency bands that are of cortical origin and are

activated locally, showed connections with high temporal/

temporoparietal strengths during the difficult mathematical tasks.

Altogether, the network analysis of the different EEG bands of

core mathematical tasks and comparisons with difficult mathe-

matical calculations, showed differences in network organization

especially in low frequency bands. Mental arithmetic is a complex

mental task differing from the core systems (subitizing, retrieval).

The core system tasks are simple functions especially subitizing.

This is an evolutionally ancient system; it is an ‘‘automatic’’ and

efficient function which is evident in the minimum reactivity

shown by the graph parameters in comparison to the other tasks.

The retrieval is an automatic simple process and the brain function

is more efficient differing from the difficult multiplication task. The

difficult multiplication task is a complex mental act requiring the

integration of multiple cognitive processes. It differs from the other

tasks as seen from the delta and theta band reactivity. Delta band

reactivity could be the result of higher Default Mode Network

(DMN) reactivity, while theta band reactivity could be seen as the

result of working memory activations mainly. Additional interest-

ing findings are prominent in fronto-parietal connections for delta,

theta, alpha 1 and alpha2 bands with temporal-temporoparietal

enhancements for beta and gamma bands. The node strength

shows prominent frontal activity and on the left hemisphere for the

lower frequency bands.

As a conclusion, the network analysis presented herein, seems to

be a quite useful tool upon describing cognitive processes such as

mental arithmetic tasks. It is, therefore, expected that it could be

used to study disturbances in arithmetic ability, such as

dyscalculia. Thus, a good idea for a future research is the study

of the cortical networks obtained by adults suffering from

dyscalculia during mental arithmetics. Their dysfunction of

subitizing and retrieval systems are expected to alter the formed

networks, while it is assumed that this departure from the results

presented herein will provide further evidence for the functionality

of the aforementioned systems [57].

.

Supporting Information

Figure S1 Boxplots of the distribution of the edges’ weights.

(TIF)

Figure S2 The hemispheric differences for Delta and Theta

Bands.

(TIF)

Figure S3 The hemispheric differences for Alpha1 and Alpha2

Bands.

(TIF)

Figure S4 Node Strength among all tasks. This figure was

extracted like the Figures 5 and 6 in the manuscript. The size of

green nodes is inversely proportional to the significant (,.05) p-

values: the larger the node the more significant the effect is.

(TIF)

Appendix S1

(DOCX)

Appendix S2

(DOCX)

Figure 6. Node Strength among the DM and FIX tasks. This
figure was extracted like the Figure 5, with the only difference that here
we compare the DM with the FIX tasks in the delta band. The size of
green nodes is inversely proportional to the significant (,.05) p-values:
the larger the node the more significant the effect is.
doi:10.1371/journal.pone.0071800.g006
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