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Abstract

Background: Theories of categorization make different predictions about the underlying processes used to represent
categories. Episodic theories suggest that categories are represented in memory by storing previously encountered
exemplars in memory. Prototype theories suggest that categories are represented in the form of a prototype independently
of memory. A number of studies that show dissociations between categorization and recognition are often cited as
evidence for the prototype account. These dissociations have compared recognition judgements made to one set of items
to categorization judgements to a different set of items making a clear interpretation difficult. Instead of using different
stimuli for different tests this experiment compares the processes by which participants make decisions about category
membership in a prototype-distortion task and with recognition decisions about the same set of stimuli by examining the
Event Related Potentials (ERPs) associated with them.

Method: Sixty-three participants were asked to make categorization or recognition decisions about stimuli that either
formed an artificial category or that were category non-members. We examined the ERP components associated with both
kinds of decision for pre-exposed and control participants.

Conclusion: In contrast to studies using different items we observed no behavioural differences between the two kinds of
decision; participants were equally able to distinguish category members from non-members, regardless of whether they
were performing a recognition or categorisation judgement. Interestingly, this did not interact with prior-exposure.
However, the ERP data demonstrated that the early visual evoked response that discriminated category members from non-
members was modulated by which judgement participants performed and whether they had been pre-exposed to category
members. We conclude from this that any differences between categorization and recognition reflect differences in the
information that participants focus on in the stimuli to make the judgements at test, rather than any differences in encoding
or process.
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Introduction

A fundamental aspect of human cognition is the ability to

acquire knowledge of categories. This enables us to assign

properties to an object that we have learned are common to

other members of that category. This has clear survival value, for

instance we may be reluctant to eat a plant with milky sap that we

have not encountered before if we have learned that other plants

with milky sap are poisonous. We should infer that the new plant is

also likely to fall into the category of poisonous plants.

Precisely how the mind represents categories has received a

substantial amount of attention and recently theories of categorization

have been informed by studies involving amnesic patients and

functional imaging. The present research is concerned with two

classes of theory of categorization in particular: episodic models and

prototype models. Both prototype and episodic models assume that

categorization decisions are based on similarity. According to episodic

models we memorize each instance of a category [1]. When asked to

decide whether novel items are category members or not, the decision

is based on a comparison of the item with each stored exemplar. In

effect categorization is little more than a form of episodic memory. By

contrast, prototype models assume that the categorization decision is

based on the similarity of the item to a prototype, rather than to

stored exemplars [2]. A prototype is usually defined as an abstraction

of the central tendency or an average of previously encountered

exemplars. The exemplars themselves need not be stored in memory

giving prototype theory an economical advantage. Exemplar theory

has the advantage of computational simplicity. There are a number of

different candidate models within each class. We refer to episodic

models as any model that describes categorization as essentially a

memory based process as distinct from models that assume some form

of abstraction occurs during learning as is described by prototype

models. We discuss in more detail one episodic model that is based on

exemplar similarity [3], although it is our intention to compare

episodic models generally with prototype models rather than any one

specific episodic model.
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A method that is frequently used to decide between these two

classes of model is to identify dissociations between categorization

and recognition. That is, if different patterns of data are observed

when experimental participants are asked to make recognition

decisions for category members that they have previously

encountered compared to when they are asked to make decisions

about the category membership of novel items, the conclusion that

is often made is that these two decisions recruit different processes

[4,5,6]. The same logic is often used in studies that attempt to

understand many cognitive processes that appear to involve

separate processes, such as between implicit and explicit learning,

re, priming and recognition, and recollection and familiarity based

memory. Typically however, studies of this kind compare

responses to different stimuli. In many respects it seems sensible

to use stimuli in a recognition test that have previously been

memorized and to compare this to a categorization test using

novel stimuli. However, it is inevitably unclear whether any

observed differences in behaviour are due to the differences in the

stimuli (old items are by definition more familiar than novel items),

rather than differences in the processes used to make the decisions.

That is, when dissociations between categorization and recogni-

tion are based on different stimuli it is difficult to determine if the

reported differences are due to the underlying processes, rather

than some difference in the stimuli. A convincing dissociation

would be apparent when it is observed in different decisions about

the same stimuli. The principle aim of this paper is to compare

recognition and categorization using the same set of stimuli. If

differences in behaviour are observed in this case then we can

conclude that these two kinds of decision do indeed recruit

different processes. Because many previous studies have used

neuropsychological methods to dissociate processes, and because

similar behaviour can arise from different underlying processes, we

examined both ERP activity and behavioural responses for

recognition and categorization.

Prototype-distortion tasks have been influential in developing

our understanding of how knowledge of categories is acquired [7].

This particular paradigm is useful, because it permits the study of

how participants learn information, whether by memory or

abstraction, that is unlikely to be influenced by prior knowledge.

In this paradigm a prototype stimulus is formed by generating a

random pattern of nine dots, and additional category members are

created by distorting the coordinates of each dot of the prototype

(see Figure 1). In the standard preparation participants are first

shown a set of category members but not the prototype stimulus

Figure 1. Example Stimuli.
doi:10.1371/journal.pone.0010116.g001
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itself. In a subsequent test participants are shown a set of

previously unseen patterns that consists of category members that

vary in their similarity to the prototype, along with the prototype

item itself, and category non-members. Numerous studies report

that participants are more likely to endorse items that are similar

to the prototype, including the prototype, as category members

than dissimilar items [8]. This pattern of results is often interpreted

as evidence that participants abstract a representation of the

category that closely matches the prototype even though this is not

present in the study period. This contrasts with an alternative

model that assumes categories are represented by storing

previously encountered instances in episodic memory [9].

Evidence from studies of amnesic patients and brain imaging

support the prototype abstraction model of categorization by

showing dissociations between categorization and recognition of

study items. These suggest that categorization is predicated on a

set of neural processes different from memory of the study items.

[4,5,10]. The rationale for this is that if the prototype is abstracted

during the study episode then episodic memory would not be

required to store the study exemplars. It follows that knowledge of

the category could be acquired by patients with organic amnesia.

Indeed, at least three studies have found similar patterns of

categorization in amnesic patients and healthy controls [4,5,10].

However, the amnesic patients performed at chance in a

subsequent recognition test of the study exemplars. By contrast

the control participants performed much better in the recognition

test. The conclusion from prototype-distortion studies in amnesic

patients is that category knowledge can be acquired in the absence

of memory for study exemplars.

Data from a number of fMRI studies also lend support to this

model. These tend to be concerned with activity that occurs when

participants are asked to make decisions at test, rather than activity

that might result from prototype abstraction during the study

episode. The first study of this kind reported decreased activity in

regions of the posterior occipital cortex for category members

relative to category non-members [11]. One possibility is that

category members are processed more fluently than non-members.

An increase in activity was observed in frontal cortical areas that

may be related to conscious deliberation of whether an item is a

category member or not [11]. A related study [12] replicated the

finding that the posterior occipital cortex shows a decrease in

activation for category members relative to category non-

members. Moreover, a separate recognition task revealed

increased activation in the frontal and temporal lobes and,

importantly, that the posterior occipital cortex showed increased

activation. This finding appears to show a dissociation in the kind

of activation resulting from categorization and recognition

decisions. A possible interpretation may be that categorization

relies on processes akin to perceptual priming and perhaps

familiarity based memory [11]. However, the activation of

different neural regions may also be influenced by how the

participants are instructed to learn the category. For example,

different patterns of activity have been observed when participants

categorize test items following either incidental or intentional

learning instructions during the study episode [6]: intentional

learning results in activation of the hippocampus; by contrast

incidental learning results in deactivation of the posterior occipital

cortex. Other studies indicate that explicit memory might be

involved in the early stages of learning as shown by hippocampal

activation, but this declines as knowledge of the category is

acquired [13,14].

Despite the evidence in favour of prototype abstraction an

alternative episodic model proposes that categorization is based

merely on exemplar similarity. According to this model [9,15]

participants make categorization judgements on the basis of the

similarity of the test items to an episodic representation of the

study items. Dissociations between categorization and recognition

arise from a more liberal criterion for accepting test items as

category members than for accepting test items as previously

encountered. This model has had some success in accounting for

behavioural data in healthy participants. How then can this model

account for the preserved capacity to form categories in amnesic

patients? The model does this by assuming that episodic memory

is impaired but not entirely eliminated by organic amnesia [16]. In

this way a liberal response criterion results in preserved

categorization. It is not clear however, how this model can

account for the data obtained from fMRI studies, which show

qualitatively different patterns of activity for recognition and

categorization, unless these effects result from the use of different

stimuli in the categorization and recognition tests.

Event Related Potentials (ERP) can also provide potentially

useful information about the neural correlates of category learning

[17], but this technique has not previously been used in this

specific paradigm. This method has the advantage over fMRI in

that categorization and recognition can be disambiguated by

differences in both timing and region. One previous experiment

that used different materials (blobs rather than patterns of dots)

found different ERPs for categorization and recognition [17].

Early visual potentials (N1, 156–200 msecs) were associated with

category membership. The amplitude was significantly more

negative for category members than for non-members. These data

are consistent with fMRI studies that implicate the posterior

occipital cortex in categorization [11], and support the view that

this region (and categorization) is predicated on largely visual

processes [18]. Middle latency components (FN400, 300–

500 msecs) were associated with both category membership and

with recognition. This component is interesting because it is

thought to underlie familiarity based processing in dual-process

theories of recognition memory [19,20]. Later potentials in

parietal regions (400-msecs) were associated with recognition only.

This component is related to explicit recognition (i.e. recollection)

of information from previous study episodes [20], and is thought to

result from deeper hippocampal and medial temporal lobe activity

because it is absent in patients with lesions of the hippocampus

[21]. Because the timings of these effects are so brief differences

between categorization and recognition are not likely to be

detected using fMRI. If there are differences in the processes

recruited by categorization and recognition we believe that they

are most likely to be found using ERPs.

In the experiment that follows we compare the ERPs of

categorization and recognition in the prototype-distortion task.

The experiment is necessary because all of the previous

neuropsychological investigations of this task have been conducted

using fMRI, amnesic patients, or both. Moreover, given that

prototype abstraction is typically related to early visual processing,

ERPs, with their high-temporal resolution, ought to provide the

ideal technique to study these processes [18]. The previously

mentioned examination of ERPs in categorization was conducted

using a different kind of stimuli [17] and it is necessary to

determine if the same processes and neural mechanisms are

involved in this task. The experiment is also important because it

introduces a methodological advance over the previous ones. All of

the studies mentioned previously have compared recognition and

categorization tasks using different items, because the categoriza-

tion tasks require previously unstudied category members and

recognition tasks require that at least half of the test items have

been studied before. Because these previous studies have used

different items in their categorization and recognition tests it is
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conceivable that the reported dissociations have occurred because

of differences in the stimuli rather than purely differences in the

processes underlying the decisions. In the experiment that follows

two groups of participants made either recognition or categoriza-

tion decisions about the same set of test items. Crucially, for the

recognition group the category members used in the test were also

used during the study period as category exemplars. The

categorization group differs in that a different set of category

exemplars was used for the study items. In this way we can ensure

that any differences between categorization and recognition are

due to the underlying cognitive process and not to perceptual

differences between the items used in the two tests. This control of

stimulus equivalence is also crucial for the ERP comparison.

There were also two control groups who made either recognition

or categorization decisions about the same sets of items but who

saw no exemplars in the study period. Two previous comparisons

of categorization and recognition in prototype-distortion tasks

found that in terms of behavioural accuracy recognition was

superior to categorization [10,22]. These studies did use different

items for each test, but if as the authors claim there is a process

difference between the two kinds of decision we should obtain

similar results even when, as in the experiment that follows, the

stimuli are identical. On the other hand, if the two decisions

involve the same underlying process, and if the previous results are

due to differences in the items, then there should be no difference

in the accuracy of recognition and categorization behaviour.

Predications about the precise ERP components that we might

observe are necessarily speculative. However, generally the

prototype model would predict different ERP components for

categorization than for recognition. For instance Early visual

potentials (N1, 156–200 msecs) [17] for categorization and latter

parietal potentials (400-msecs) for recognition [20]. Models such as

the exemplar or episodic accounts that claim that categorization

and categorization are predicated on the same underlying

processes are likely to predict similar components.

Methods

Ethics statement
This study was approved by the ethical review board at the

School of Psychology, University of Nottingham, UK. Written

consent was obtained from all the participants who were free to

withdraw from the study at any time.

Participants
Sixty-three right-handed volunteers took part in the experiment.

Their mean age was 26 years (sd = 5.35); 40 were male and 23

were female. The participants were paid £20 (approx. J27,

US$40).

Stimuli
The stimuli consisted of dot-patterns constructed using the

method described by Posner, Goldsmith and Welton [7]. Using

this method we first created a prototype pattern and then we

created three lists each with 40 items. Distorting the coordinates of

the prototype pattern created List 1 and List 3 items. List 2 items

were pseudo-random patterns (see Figure 1).

Design and Procedure
This was a 26262 mixed model design with Exposure (Pre-

exposed vs. Control) and Instructions (Recognition vs. Categori-

zation) as between-subjects factors and List (1 vs. 2) as a within-

subject factor. In each case these lists were composed of the same

items.

The experiment consisted of a study period and a test period.

During the study period the pre-exposed participants were

presented with either List 1 items in the Recognition Condition,

or List 3 items in the Categorization condition. The participants

were told that the study was an experiment on visual attention and

were asked to look for the dot closest to the centre of the screen but

were not given any instructions about the presence of a category or

how to encode the items. Study trials consisted of a 3000 msec

white fixation cross, followed by a study item that appeared for

5000 msecs with a white frame. The control participants were

informed that they were taking part in an experiment on

subliminal perception and visual attention. Control ‘study’ trials

consisted of a 3000 msec white fixation cross. After this a black

screen was displayed for 1000 msec, then the screen flashed white

for 50 msecs, followed by a black screen with an empty white box

visible for 50 msecs, followed by another white screen for 50 msecs

before an empty black screen returned for 4000 msecs. The

control participants were also asked to try and identify the central

dot in each pattern but that they would be presented very briefly

and be difficult to see. After the end of the study period there was a

short break during which the electrodes were checked. No EEG

was recorded during the study period.

Prior to the test the participants in the Categorization

conditions were told that all of the items that they had just seen

were instances of a category and that they would now see some

new items, some of which belonged to the category and some did

not. Each test trial consisted of a 3000 msec fixation cross. Each

test item appeared for 5000 msecs followed by a prompt to

indicate whether the item was category member or not. The

participants in the recognition conditions were told that they

would be given a recognition test for the items that they had just

studied.

We presented the same 40 category members and 40 category

non-members to the four groups during the test phase. The two

Pre-exposed groups had already been presented with category

members during the study phase. For the Pre-exposed Recognition

group these were the same 40 category members as were

subsequently used in the testing phase (i.e. List 1). For the Pre-

exposed Categorization group the study items were different

category members to those we subsequently used for the test phase

(i.e. List 3). By changing the study items in each condition, List 1

items were ‘old’ for the recognition group because they had also

appeared as study item. For the Categorization group the List 1

items were new in the sense that they had not appeared in the

study period but belonged to the same category as the study items.

ERP recording and ERP formation
EEG was recorded throughout each block in the test-phase

using a 128-channel electrical geodesic net (Electrical Geodesics,

Inc.: EGI) [23], digitised at 250 Hz. The recording was performed

with a hardware bandpass filter of 0.01 Hz to 100 Hz. Before

recording, impedance on each of the 128 electrodes was reduced

to ,50 kV. Due to amplification techniques, the EGI system

provides an excellent signal-to-noise ratio, despite these relatively

high electrode impedances [24]. The vertex was used as an

acquisition reference.

Stimulus-locked epochs were created, time-locked to each test

item, with each epoch starting 100 ms before stimulus onset and

ending 1000 ms afterwards. Segments were rejected if contami-

nated by eye-blinks/movements (indicated by EOG activity

greater that 70 mV). This process was also checked manually.

Trials containing voltage amplitudes greater than 200 mv or a

change greater than 100 mv were also removed. We did not reject

‘error’ trials, as control participants who have never seen the items

Category Learning
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before cannot correctly ‘recognize’ them. Instead we objectively

classified stimuli as to whether they were List 1 or List 2 items.

ERPs elicited by these two types of stimuli were compared across

the four groups of subjects. The average waveform for each

stimulus type, for each subject, comprised at least 25 individual

trials.

Waveform comparisons
Segments were average-referenced to a standard adult 128-

electrode montage. Epochs were baseline-corrected for the first

100 ms before the onset of the stimulus. We formed clusters of

electrodes, as means of data reduction. By using clusters rather

than individual electrodes we were able to cover a large portion of

the scalp and still include ‘electrode position’ in our ANOVAs,

alongside the other within- and between-subjects factors, without

the ANOVAs become uninterpretable. Our clusters covered 71

electrode sites, and were organised into 12 clusters, one around

each of the following electrodes: F3, Fz, F4, C3, Cz, C4, P3, Pz,

P4, PO3, Oz and PO4. The specific clusters that we used can be

seen in Figure 2.

We created four time-bins, based upon the preceding literature,

and compared the mean amplitude values across each bin. These

are labelled as the early bin (160–200 ms, post item onset), the

mid-latency bin (320–480 ms) and the late-latency bin (480–

800 ms). In each bin we used a mixed-design ANOVA. This

always comprised the between-subjects factors of Exposure (two

levels, Pre-exposed versus un-exposed Control groups), and

Instructions (two levels, Recognition versus Categorisation groups).

The ANOVA also always included the within-subjects factor of

List (two levels, List 1 vs. List 2). This enabled us to test whether

List 1 and List 2 items elicited different ERPs, and whether the

evoked response to the items was influenced by the participants’

prior experience and judgement type. It also enabled us to test

whether or not these factors interacted with one another.

In addition to these three experimental factors we included

electrode cluster location in our ANOVAs, to test whether the

distribution of any of the above effects differed across the

conditions. Electrode cluster location was entered as two factors:

cluster position along the left-to-right lateral axis (three levels,

subsequently labelled electrode [L-R]) and cluster position along

the anteroposterior axis (four levels, subsequently labelled

electrode [A-P]).

All of our analyses were initially conducted on unscaled data.

However, where this revealed an interaction between any of the

experimental factors and any of the electrode factors we

recalculated the ANOVA using data scaled according to

McCarthy and Wood’s [25] rescaling technique. The logic behind

this was as follows: with un-scaled data the interaction between the

experimental and electrode factors is necessarily ambiguous; an

interaction could arise from a genuine difference in the

distribution of the effects across the two conditions, or simply

from the main effect having a multiplicative effect across the

electrodes. Scaling results in data normalisation; with the main

effect removed, one can then test for a genuine interaction

between that experimental factor and electrode position. It is,

however, worth noting that this technique is not perfect: Urbach

Figure 2. Electrode Montage.
doi:10.1371/journal.pone.0010116.g002
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and Kutas [26] demonstrated that this approach can fail to

properly take account of the main effect, resulting in incorrectly

reporting a significant interaction with electrode location; in some

cases this normalisation may produce the opposite effect, masking

genuine topographical differences. However, this is the most

recognised means of disambiguating interactions involving elec-

trode location, and as such we applied it to our data where

necessary. That said, any topographical differences between

experimental factors established using an ANOVA, either

reported here or elsewhere, should be interpreted with caution

[27]. All of the results that we report are corrected using the

Greenhouse-Geisser correction, to account for the potential non-

sphericity of EEG data [28]. (Figures show data prior to rescaling.)

Results

Behavioural results
Responses to items that were identified as category members

were treated as endorsements in the categorization condition, and

responses to items that were identified as ‘old’ were treated as

endorsements in the recognition condition. The mean proportions

of endorsements for each List and Condition are shown for each

condition in Figure 3. These data were entered into a 26262

mixed model ANOVA with Exposure (Pre-exposed vs. Control)

and Instructions (Recognition vs. Categorization) as between-

subjects factors and List (1 vs. 2) as a within-subject factor. This

revealed a main effect of List (F1, 59 = 109.08, MSE = .02, p,.01,

g2
p,.65) indicating reliable discrimination between items. A

marginal effect of Exposure (F1, 59 = 2.87, MSE = .02, p,.09,

g2
p,.05) and a reliable interaction between Exposure and List

indicated that discrimination was higher in the Pre-exposed

conditions than in the Control conditions (F1, 59 = 26.41, MSE = .02,

p,.01, g2
p,.31). These results clearly show that discrimination

between category members and non-members, and between old and

new items is greater following pre-exposure than in control

participants.

However, there was no effect of Instructions (F1, 59 = 0.18, MSE =

.02, p = .67, g2
p,.01), and no interaction between either Instructions

and List (F1, 59 = 1.82, MSE = .02, p = .18, g2
p = .03), or between

Instructions and Exposure (F1, 59 = 0.26, MSE = .02, p = .61,

g2
p,.01). There was no 3-way interaction (F1, 59 = 0.08, MSE =

.02, p = .78, g2
p,.01). This aspect of the results is consistent with the

view that when items to be recognized are the same as items to be

categorized similar patterns of discrimination performance result.

This is indicative of the same or similar processes being utilized to

make different decisions. That is, categorization is a form of

recognition.

To more closely examine discrimination in the four conditions,

and to permit a power analysis, we next computed the sensitivity

index d’ by treating endorsements to List 1 items as hits, and

endorsements to List 2 items as False Alarms. A comparison of the

two pre-exposed groups showed that instructions to recognize or

categorize items did not result in a reliable difference in

discrimination (d’ = 1.30, vs. 1.20 respectively, t31 = 0.39, p = .70).

So that we may be confident that our experiment was sufficiently

powerful to detect a possible difference between recognition and

categorization we estimated the effect sizes of data from two

previous reported comparisons. Both of these made within subject

comparisons of these decisions but used different items in each test.

The first reported d9 values of 7.23 and 0.72 for recognition and

categorization respectively, from a sample of 4 participants who

were acting as controls against an amnesic patient [10]. From the

figures that they report we first estimated the pooled standard

deviation (s2
p = 0.80) and used this to estimate the effect size (Cohen’s

d = 7.27). We then calculated the sample size that we would need to

find an effect of this magnitude in a between subjects design. The

result was 2 participants in each group. Our sample size of 31 easily

exceeds this. The second study reported a mean percentage of

correct recognition decisions to be 86.0% versus, 64.2% correct

categorization decisions, with a sample of 10 and 9 respectively (due

to a recording error) [22]. As before we estimated the pooled

standard deviation from their reported figures (s2
p = 11.81). The

resulting effect size smaller than the other study but is nonetheless

large (Cohen’s d = 1.85). The sample size needed to find an effect of

this magnitude in a between subjects design is 8 participants in each

group. Our sample size also easily exceeds this. The average

weighted effect size of both of these studies is Cohen’s d = 3.45, and

requires a total sample size of just 6 participants. We are therefore

confident that had there been a difference in categorization and

recognition judgements it would have been detected in our sample

of 31 participants. We conclude from this that previous dissociations

between categorization and recognition might reflect differences in

the test items rather than differences in process.

We also examined whether the control participants were able to

discriminate between items by comparing their performance against

a chance value of d’ = 0. There was some indication of above chance

performance following recognition instructions (d’ = 0.47, t14 = 3.09,

sd = .59, p,.01), but not following categorization instructions

(d’ = 0.32, t14 = 1.76, sd = .71, p = .10). This suggests that some

abstraction of the category structure can occur during the testing

period, in the sense that untrained controls were able to make

accurate decisions without any exposure to the study items [29], but

this is insufficient to account for the substantially greater number of

correct decisions made by the pre-exposed participants.

ERP Results
Although the behavioural performance was equivalent across

the Recognition and Categorisation groups we were keen to

Figure 3. Behavioural Results. Showing the proportions of
endorsements for each list for recognition and categorization
conditions by exposure. Error bars are +/2 SEM.
doi:10.1371/journal.pone.0010116.g003
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establish whether the ERP data shown in Figures 4 and 5 could

distinguish between categorisation and recognition judgements,

with and without prior exposure.

Early effects (160–200 ms). Our first comparison was

centred on the window most reliably associated with the N1

potential. This had previously distinguished between category

members and non-members [17]. In our data, the effect elicited by

the items appeared to be more negative in the Categorisation

groups than in either of the Recognition groups; more negative in

the un-exposed Control groups than in the Pre-exposed groups

and more negative for List 1 items than for List 2 items.

Furthermore, it appeared that these factors interacted: whilst both

the Pre-exposed Categorisation and Recognition groups showed a

more negative N1 component for List 1 relative to List 2, of the

un-exposed Control groups, only the Categorisation group showed

a greater negativity for List 1 relative to List 2.

Our ANOVA revealed main effects of Instruction with the

amplitudes in the Categorisation groups being more negative than

in the Recognition groups (F1, 56 = 7.40, p,.01), Exposure with the

Exposed groups being more negative than the Control groups

(F1, 56 = 4.03, p,.05), and List with List 1 eliciting a greater

negativity than List 2 (F1, 56 = 5.93, p,.02). There was also a

marginally significant interaction between these three factors

(F1, 56 = 3.98, p,.06). This resulted from an interaction between

List and Instructions in the un-exposed Control groups only

(F1, 28 = 5.04, p = .03): there was a relative negativity for List 1

relative to List 2 in the Control Categorisation group (F1, 14 = 4.84,

p..05), but not in the Control Recognition group. By contrast, in

Figure 4. ERPs potentials in the Recognition conditions.
doi:10.1371/journal.pone.0010116.g004
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the Pre-exposed groups there was no interaction between List and

Instructions, there was just a simple main effect of List

(F1, 28 = 4.65, p = .04), with List 1 items eliciting a greater

negativity relative to List 2 items.

We also observed various interactions between these experi-

mental factors and one or both of the electrode factors. Given the

main effects of the experimental factors, we scaled the data and

recalculated the ANOVA. An interaction between List and

electrode[A-P] survived the normalisation (F2.53, 141.85 = 3.02,

p = .04). This resulted from List 1 items being significantly more

negative than List 2 items over the parietal (F1, 59 = 5.47, p = .02)

and occipital electrode clusters (F1, 59 = 4.35, p = .04), though not

over the other electrode clusters. An interaction between List,

instruction and electrode[L-R] also survived the normalisation

(F1.95, 109.54 = 3.73, p,.03. This resulted from an interaction

between List and instruction over the midline electrodes

(F1, 58 = 4.83, p = .03), though not over the left or right-hemisphere

electrodes. This in turn resulted from a significant negativity for

List 1 items relative to List 2 items in the Categorisation groups

(F1, 29 = 7.34, p = .01), though not for the Recognition groups.

Mid-latency effects (320–480 ms). There were no main

effects of any of the experimental factors within this time window.

However, there were two interactions between the experimental

and electrode factors: prior exposure interacted significantly with

electrode[L-R] (F1.72, 96.50 = 3.87, p = .03). This was not driven by

any one cluster significantly, though List 1 items elicited a

Figure 5. ERPs potentials in the Categorization conditions.
doi:10.1371/journal.pone.0010116.g005
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marginally more negative amplitude over the midline electrodes in

the Exposed groups relative to the Control groups (F1, 56 = 3.43,

p = .06). We also observed a marginally significant interaction

between List, electrode[L-R] and electrode[A-P] (F3.53, 197.72 =

2.45, p = .05). This was because List 1 items elicited a

greater positivity than List 2 items over the right-hemisphere

central cluster (F1, 56 = 12.73, p,.01), but not over any other

clusters.

Late-latency effects (480–800 ms). There were no main

effects or interactions between any of the experimental factors.

There were two significant interactions between experimental and

electrode factors: Instruction, Exposure and electrode[L-R]

interacted significantly (F1.55, 86.83 = 3.67, p = .04). There was no

clear effect driving this interaction, though the closest to reaching

significance was an interaction between Exposure and electrode[L-

R] in the Categorisation groups (F1.37, 38.33 = 3.44, p = .06), which

had not been present in the Recognition groups. This marginal

effect was, in turn, driven by relatively more negative amplitudes

for the Exposed, relative to the un-exposed Control group, over

the left-hemisphere clusters (F1, 28 = 3.96, p = .05). We also noted a

significant interaction between List, electrode[L-R] and

electrode[A-P] (F3.94, 220.87 = 5.62, p,.01). This was the result of

a significant negativity over the left frontal cluster (F1, 58 = 5.45,

p = .02), and a significant positivity over the right frontal

(F1, 58 = 7.24, p,.01) and central (F1, 58 = 7.31, p,.01) clusters,

for List 1 items relative to List 2 items.

Discussion

The aim of this experiment was to examine the ERPs of

categorization and recognition in the well-known prototype-

distortion task [7]. Previous studies have used either amnesic

patients [5] or fMRI [6] to dissociate categorization from

recognition. To our knowledge this is the first to use ERP to do

so, although one previous study has used a less well known

paradigm to examine the same processes [17]. These previous

studies have compared recognition judgements made to one set of

items to categorization judgements made to a different set of items.

The resulting differences are frequently cited as evidence that

prototype knowledge is used to make categorization decisions

using a separate process than episodic memory of the study items

that is used to make recognition judgements. This particular

experimental preparation makes the interpretation of dissociations

involving amnesic patients or fMRI difficult because they may be

due, as is claimed, to the processes involved, or to differences in

the stimuli themselves. In this experiment we sought to resolve this

problem by asking participants to make recognition and

categorization judgements to the same set of stimuli. The

participants were allocated to four groups were presented with

the same category members and non-members (termed ‘List 1’

and ‘List 2’ items, respectively). A key finding was that participants

were equally able to distinguish List 1 from List 2 items, regardless

of whether they had been asked to attempt to categorise or

recognise them. This is in contrast to previous studies that have

compared these decisions to different items [10,22]. We did not

replicate these effects despite sufficient experimental power to do

and so conclude that the dissociations reported previously could be

due to differences in the stimuli rather than difference in the

processes used to judge them. Nonetheless, previous studies have

reported activity in different brain regions dependent on the

decision that participants are asked to make, and although we

observed no differences in the decisions that the participants made

this does not preclude differences in the neural processes used to

make those decisions. Indeed the ERP data from our experiment

demonstrated that the early visual evoked response that distin-

guished category members and non-members was modulated by

whether participants had been asked to categorise or recognise

them, and, although not to the same extent, by whether

participants had previously been exposed to those items.

Influence of instruction and prior exposure on early

visual processing of items. In the window usually associated

with the N1 potential, List 1 elicited a significantly more negative

potential than did List 2 items. This was most prominent over the

parietal and occipital electrodes. However, unlike previous research

[17], we found that the N1 amplitude was modulated by more than

just category membership. Whilst the early effect of List was not

affected by judgement for both the Pre-exposed Recognition and

Categorisation groups, the effect was only present for the Control

Categorisation group. The Control Recognition group showed no

such early differentiation between List 1 and List 2 items. This result

overlapped with another result: taken together the Categorisation

groups showed an increased negativity for List 1 relative to List 2

items over the midline electrodes, whereas the Recognition groups

did not, presumably because whilst both Categorisation groups

showed the effect, only the Pre-exposed Recognition group did.

Effects driven primarily by changes to the N1 amplitude are typically

ascribed to early visual processing in the extrastriate cortex [18].

Indeed, recent fMRI studies have linked early visual processing with

prototype abstraction/application [6,12]. Interestingly, we observed

these effects for both Categorisation groups, regardless of whether or

not they had previously been exposed to the category members.

Possibly, when the participants’ task is to categorise items, prototype

abstraction/application can occur within the test phase. This would

explain why even the un-exposed Control Categorisation group

showed the N1 amplitude differentiation for List 1 and List 2 items.

By contrast, this might not be the case when the participants’ task is

to attempt to recognise the items. In this case, participants only

engage in prototype abstraction/application when they have already

had some experience of category members. This account makes

intuitive sense: when the task is to categorise abstract items based

upon arbitrary but consistent perceptual characteristics, the

participant will pay close attention to those consistent

characteristics that distinguish category members from non-

members – this is the case even these have not been encountered

previously. By contrast, when the task is to ‘recognise’ abstract items,

the participant might only proceed with prototype abstraction/

application when it becomes apparent that those membership-

defining characteristics discriminate between the items that were

studied earlier form those that were not. That is, when attempting to

recognise the items, participants will only engage in this process

when they have already been exposed to the category members. The

Control group might simply not realise the prototype abstraction/

application is beneficial for their ‘recognition’ task.

When one observes an effect that can occur in both Pre-exposed

Categorisation and Recognition groups, it might be tempting to

take this as evidence that both tasks tap some common

recognition-like mechanism. However, in the case of this early

N1 effect, this would not explain why the Control Categorisation

group also show the effect: they cannot be recognising items that

they have not seen before. By contrast, both the Pre-exposed

Categorisation and Recognition groups could be employing a

categorisation-like strategy. With our stimuli and procedure such a

strategy would be successful for both of the Pre-exposed groups,

but only for the Control Categorisation group. The Control

Recognition group, in contrast to the Pre-exposed Recognition

group, would have no category for ‘‘old’’ items and therefore

would not be able to use this strategy. Interestingly, this is precisely

the pattern of N1-like effects that we observed.
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Influence of instruction and prior exposure on later

potentials. The effects elicited by List 1 and List 2 items also

differed later in the epoch: there was a greater positivity for List 1

relative to List 2 items over the right-hemisphere central electrode

cluster, between 320 and 480 ms. Again, later in the epoch,

between 480 and 800 ms, List 1 items elicited a negativity over the

left-hemisphere and positivity over the right-hemisphere, relative

to List 2 items. Whilst the time window corresponds to the

differences reported in previous papers [17], the effects themselves

are quite different in terms of distribution and amplitude in our

data. Unlike the early N1-like effects, the later effects were

primarily driven by differences between List 1 and List 2 items,

regardless of which judgement participants performed and their

prior exposure to category members. At least with regard to these

later effects, they appear to reflect some process common to

categorisation and recognition, a conclusion perhaps supported by

the similarity in behavioural performance between the two

judgement types.

Conclusions
Participants were equally good at distinguishing category

members from non-members, regardless of whether they were

performing a categorisation or recognition judgement. This result

contrasts shapely with previous studies that have reported

differences between categorization and recognition judgements.

However, the ERPs suggested that participants’ early visual

potentials (160–200 ms), often associated with prototype abstrac-

tion/application, distinguished category members from non-

members in both the Pre-exposed Recognition and Categorisation

groups. By contrast, in the un-exposed Control groups, only the

participants explicitly asked to categorise the items showed this

early visual differentiation of members and non-members – the

un-exposed Control Recognition group did not. One possible

interpretation of these data is that prototype abstraction/

application occurs on both categorisation and recognition tasks,

but only when participants have actually been pre-exposed to

category members. If they have not been pre-exposed then

prototype abstraction/application will only occur in a categorisa-

tion task. The data suggest that both categorization and

recognition in prototype distortion tasks appear to rely on the

same underlying process.
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