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Abstract 

Reducing the total emissions of energy generation systems is a pragmatic approach for limiting 

the environmental pollution and associated climate change problems. Socio economic activities in 

the 21st century is highly determined by the energy generation mediums, particularly the renewable 

resources, across the world. Therefore, a thorough investigation into the technologies used in 

harnessing these energy generation mediums should contribute to their further advancement. 

Concentrated Solar Photovoltaics (CSP)  and Enhanced Geothermal Energy (EGE) are considered 

as emerging renewable energy technologies with high potential to be used as suitable replacements 

for fossil products (petroleum, coal, natural gas etc). Despite the accelerated developments in these 

technologies,  they are still facing many challenges in terms of cost. This review paper presents a 

detailed background about these renewable energy technologies and their main types such as solar 

tower, parabolic trough, and so on. Also, the principle challenges impeding the advancement of 
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these energy technologies into commercialisation are discussed. Possible solutions for the main 

challenges are presented and the future prospects for such energy generation mediums are reported. 

Keywords: Renewable energy, Concentrated Solar Photovoltaics, Enhanced Geothermal energy, Fossil 

fuel, Technologies 

1. Introduction 

The demand for cost-effective modern energy sources has increased in the recent years due to the 

rapid increase in the population across the world. Renewable energy sources are considered the 

future of the energy industry. This is mainly because they are very abundant and environmentally 

friendly compared to fossil products [1]. The advancement of renewable energy as the sole medium 

for energy generation in the world faces major setbacks despite their attractive advantages over 

the traditional fossil-fuel ones [2-4]. The major challenges are related to the high initial capital 

cost needed in the execution of most renewable energy projects and the underdeveloped 

technologies for harnessing the energy for some renewable sources.. Such challenges hamper the 

advancement of most renewable sources into full commercialization [5-7]. Today different types 

of renewable sources are springing up like the enhanced geo thermal, concentrated solar 

photovoltaics, ocean energy etc. These types of energy are developed from existing energy sources 

like biomass, solar, hydropower and wind [8]. The emerging types of renewable energy (Fig. 1) 

are ecofriendly and abundant to meet the world energy demand [9]. The focus of the current review 

paper is on some of these emerging technologies, their prospects as well as setbacks impeding their 

advancement into full commercialization [10]. 
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2.  Renewable energy sources 

The world has seen a paradigm shift in renewable energy between 2004 – 2017 [11-13]. The rapid 

rise of renewables clearly shows the prospects of these viable energy generation mediums hence 

are currently competing with the traditional power generation medium. The contribution of 

renewable energy in the field of energy supply varies by country and region due to different 

geographic distribution of manufacturing, usage and export. From the report of the GSR– 2016, 

Brazil, Canada and USA remain the countries for non – hydrogen installations. Jamaica, Morroco, 

Uruguay, Honduras and Mauritania invested huge amount of money into sustainable power and 

fuels. The renewable energy generation capacity and capacity change as a percentage of global 

power is shown in Fig. 2 [14,15]. Over the last eight years there has been a zigzag behavior from 

the graph but appreciable increase for power obtained from renewable sources.  

The performance of renewable energy in terms of investment has seen high rise in the last decade 

as well [16]. The capital cost for the establishment of wind turbines and solar photovoltaics has 

reduced in the last few decades as well. In the year 2015, nearly 103GW of renewable energy 

capacity was established. Large hydropower that was established during this period was not 

factored into the 103GW power capacity recorded [17]. Wind and solar were the dominant source 

of renewable energy in 2014 with their supply capacity reaching 49GW and 46GW respectively 

but in the year 2013, only 32GW of energy was generated from wind while solar supplied 40GW 

to meet the world’s energy demand [18]. In 2014, the International Energy Agency (IEA) 

published the price of electricity produced by renewable energy sources [19]. A comparison 

between the USA energy generation prices and the residential end – use in 2014 was clearly 

presented. Hydropower was observed to be very competitive when compared with the other types 

of renewable energy generation mediums. The main setback of the hydropower was the difficulty 
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in finding a suitable location to install such energy plant. Other renewable energy sources such as 

geothermal and onshore wind were reported to have equally reached grid parity. Renewable energy 

sources continue to be recognized in the research community as the future of energy generation as 

shown in Fig. 3. 

Today, solar PVs are dominating the renewable energy sector due to their high plausibility 

compared to other types of renewable energy, as shown in Fig. 4. The graph vividly shows that 

renewable energy sources have higher potential when compared to traditional supply of energy. In 

2013, the International Renewable Energy Agency (IRENA) developed a map called the remap 

for the future of renewable energy until 2016. The agency using reports from 40 countries based 

on their national plans has also been reported as a reference case. Table 1 is presented as having 

information for 2013/2014. Renewable energy technology is often subdivided into emerging 

energy technology (EET) and mainstream energy technology (MET). Main stream sources for 

sustainable energy are hydro power, solar, etc  [20 – 25] while the emerging technologies include 

marine, CSP etc [26 – 29].The last decade has also seen the springing up of some new energy 

technology which has been thoroughly researched as well. This new emerging technology has 

either been commercialized but in the early stage of commercialization or still under 

commercialization.  

3. The Concentrated Solar Photovoltaics (CSP) 

The Concentrated Solar Photovoltaic Technology (CSP), as shown in Fig 5, is the medium where 

electricity is generated by directing solar rays to a small point. This technology operates using 

mirrors and lenses to direct the rays from the sun to a receiver where there is a thermal energy 

carrier (Oil, water, molten salt etc.) that functions as a primary fluid in the CSP circuit that absorbs 

the heat. With the aid of a turbine these heats generated can be used directly or sent to a secondary 
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circuit to produce electricity [30]. During unfavorable weather conditions, such as very cloudy, 

concentrated solar PVs can still generate electricity as they have storage system to store parts the 

generated heat to continually generate electricity when the sun goes down. Concentrated solar PVs 

have good capacity factor compared to the other energy generation mediums such as wind and 

traditional PVs due to the storage system attached to it. Developing a proper storage system is of 

particular importance for designing an effective CSP energy plant [31 – 33]. Heat energy is 

generated with the help of the solar collector that absorbs the radiations from the sun. With the 

help of a heat transfer fluid, the heat energy generated is transferred via the collector [33 – 36]. 

The heat transfer fluid performs a role as the link between the power generation system and the 

collector.  

There are four main types (Parabolic trough, Linear freshnel reflectors, Parabolic dish collector 

and Solar towers) of concentrated solar photovoltaic and each of the type is dependent on the 

technology used to absorb the solar radiation, the way the sun’s radiation is directed towards 

Concentrated solar PVs (FT) and how the sun’s rays are received (RT). Each of these types are 

clearly shown in Fig. 6. 

CSP need more solar radiation to meet the minimum threshold to generate the required power. 

They operate predominantly well in hot climates and dry weather conditions. Therefore, CSPs are 

suitable for some places around the globe such as South Africa, North Africa, Australia and the 

Middle East.  

The Parabolic Trough (PT) technology is currently the commonly used type of CSP. However, it 

still undergoing significant developments. The parabolic trough technology is the older idea used 

by researchers compared to the other types and there is reduced risk during its development 

compared to the others. The initial cost used in the establishment of a solar tower and Fresnel 
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systems is expected to be reduced significantly in the next few years due to high research being 

conducted in the area with the sole aim of enhancing its performance at reduced cost. California 

was the first location for the establishment of a concentrated solar plant with no thermal storage 

between 1984 and 1991. Due to the high dependency of fossil fuels which was very cheap, there 

was a break after the discovery of the CSP technology but in the early 2000s researchers revised 

the concept all over again after oil prices started becoming unstable and unreliable. The current 

leading stakeholders for the concentrated solar PVs technology are America and Spain. The total 

CSP as shown in Fig. 7 installed around the whole world in 2012 was 2GW but 15-20GW CSP 

project were being planned commence predominantly in the United states and Spain [35]. Due to 

the high rate of research geared towards this useful technology, many investigations have been 

conducted relating to the types of solar collectors, structures and even the storage as well as the 

electricity conversion systems have all been researched thoroughly [36-40].   

All CSPs have a backup system which allow regular production and to maintain appropriate level 

of certainty with the expected capacity. The backup system is usually powered by fuel. A fuel 

burner supplies the energy to the heat transfer fluids. Fossil fuels, biogas and solar energy can be 

used in place of the fuel burner. The cost of operating the CSP would have increased exponentially 

if the plant relied solely on solar fields. The backups help CSP to also gain from relying on grids 

significantly. Due to smaller losses, the thermal storage technologies for CSP are highly efficient 

compared to other energy storage devices. It is possible for on demand energy to be generated 

through the application of CSP technology [42 – 45].  The 2050 projections of power generation 

using CSP for different regions around the world is shown in Fig.8. Fig. 9 also captures the number 

of CSP installation around the world. The total capacity of CSP developed between the year 1985 

and 1991 was only 345MW and this was done in California. CSP technology over the last decade 
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has seen a huge boost and today there are several CSP being developed over the last few years 

because of reduced investment cost and leveled cost of electricity generation. The leading producer 

of electricity from CSP currently is Spain [46]. Many projects on CSP found in the United States 

are either under construction or even in the planning phase. The increased interest in CSP 

technology has also contributed to the recent commencement of other CSP projects around the 

globe. Fig. 9 shows a newly added CPS and the exact characteristics of each of these types of CSP 

are well defined below. 

3.1 Parabolic Trough (PT). 

Radiations are directed onto heat absorbers positioned on a focal line of the parabolic mirror. 

Coating of receivers is done mainly to increase the absorption rate of the receivers and also to 

reduce re – radiation of the infrared. Heat loss due to convection is curbed by positioning the 

receivers in a glass.  Salt which is the heat transfer liquid is used for the removal of the thermal 

energy and this is sent to a generator to generate a superheated steam [34].  The steam at higher 

temperature drives the turbine and produces electricity. The water then flows back to the heat 

condensers once they are cooled leading to condensation of the water. Nearly 850MW is the total 

installed capacity for parabolic troughs. Most parabolic troughs are with the range of 14 – 80 MW 

and can be found in Spain and the United States. Parabolic troughs utilizes the older method 

commercially accepted as the best CSP technology, it also has an efficiency of nearly 15%, the 

system is modular, good storage capability and good investment cost and cheap to operate are 

some well know advantages of PT CSP. They have high thermal losses and the mode of heat 

transfer is considered not to be that ideal. PTs also have lengthy pipes between the array and the 

steam generating plants and these are considered as some demerits of using this technology.3.1.1  

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

8 | P a g e  
 

Linear freshnel Reflectors. 

The linear freshnel reflectors operates just like the parabolic trough but the linear freshnel 

reflectors comes with a long flat and curved mirror connected in series. A receiver is placed at a 

fixed position to absorb the sun radiation after the mirror fixed at varying angles directs the rays 

from the sun to the receiver [34]. The receiver is designed to be position above the mirror field. A 

tracking system is attached to the mirrors in order to absorb the maximum amount of sun radiation 

and also aid in the optimization of the entire system. The focal length of the linear freshnel 

reflectors may be distorted because of astigmatism which is not the case for parabolic troughs. 

With the aid of secondary reflectors, solar radiation that may not fall on the mirror is redirected to 

the expected location. The compact linear freshnel reflectors, is one of the latest states of the art 

technology being utilized in CSP. It comprises of 2 equivalent receivers for every mirror to reduce 

the acres of land needed for the installation and also uses PT to generate the expected output. The 

world currently can only boast of 3 linear freshnel reflector plants which was established back in 

2008. These plants are located at Murica, South Wales, USA and California. The maximum 

capacity for each of the plants are 5MW, 4MW and 1.4MW. The materials for the linear freshnel 

reflectors are easy to find on the market and the capital cost for installing LFR plants are cheap 

compared to PTs, the steam itself can produce steam due to the fact that water is being used as the 

liquid for the heat transfer process, Hybrid operations can also be executed and the overall losses 

because of heat transfer is less compared to the others. The overall efficiency for converting solar 

to electricity is only 8 – 10% which is far lesser than the parabolic trough, combination with 

thermal storage makes is more complex and these are all considered as some possible 

disadvantages of using the LFR.  

3.1.2 Parabolic dish collector 
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Solar dish collectors are a concentrated solar power technology which involves solar radiations 

being directed to a focal point.  Tracking of the sun is done by the dish as well as the receiver and 

this occurs due to their movement in the tandem. Parabolic dish collectors therefore do not need 

heat transfer liquid and cooling water simply because of their design and this phenomenon leads 

to a higher heat to electricity conversion ratio. It is also considered as the future provided it can be 

produced on a larger scale. This will therefore create some competition with existing technology 

(solar thermal systems). Today Europe has 10kW systems whiles the United States equally have 

some few projects running but still at the developing stages. Australia on the other hand has 100 

MW project being constructed. There is over 30% conversion efficiency when this technology is 

utilized, making them more advantageous compared to the others. It also does not require any 

cooling systems, it is very useful for stand – alone and remote projects, the system is modular, 

there is no restriction irrespective of the nature of the terrain (Flat terrain), manufacturing process 

is simple, the use of existing parts makes the mass production of the concept very possible. All 

these are some advantages of relying on this technology, but it has its setbacks as well [34]. There 

are no large-scale commercial plants, there is also no investigation to prove the investment, 

performance and the operational cost of this technology and very difficult when the concept is to 

work in parallel to a grid connection. 

3.1.3 Solar Towers (ST) 

Solar Towers (ST) involves using computer supported mirrors, called as heliostat, to track the sun 

path separately on two axes.  A single receiver absorbs the solar energy radiated from the mirrors. 

The receiver is fixed at the apex of the tower where there is the running of a thermodynamic cycle 

using heat and generating electricity.  Comparatively there is more concentration of solar radiation 

using the solar towers to using concentrated solar powers technologies. The transfer fluid used is 
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water stream, synthetic oil and molten salts. It functions even at higher temperatures but solar 

towers on a normal day has its operating temperature between 250 – 1000oC and this temperature 

range is subject to the design of the receiver and even the working fluid. Solar towers today are 

almost at the commercialization stage [47]. Again, the earliest type of solar towers was initially 

built in California, United States between the 1980s and the 1990s. Currently Israel, Germany and 

Spain are championing several solar tower related projects after the initial projects in the United 

States were decommissioned years ago. The operating temperature of ST makes them more 

advantageous compared to the others as this makes them highly efficient, they are also good for 

dry cooling compared to PT and its installation process especially on hilly areas is easy but its 

main setbacks are their lack of their availability commercially, investment cost and their 

performance has also not been verified yet [48]. Table 2 and Table 3 shows some CSP projects 

being installed and their expected completion dates. 

3.2 Obstacles impeding the advancement of CSP energy 

It is projected that the entire CSP capacity will increase to 30 GW in USA and 23 GW in Africa 

in 2020. It is anticipated that these projections might go up to 337 GW by 2030. There are several 

factors that must be critically considered if concentrated solar power technology is to compete with 

existing concepts. Some of these critical issues can be captured under the different categories such 

as storage, power, cooling as well as transmitting the heat and electricity. Another major factor is 

related the high capital cost needed to initiate CSP energy harvesting project [49 – 52]. The 

parabolic troughs and the linear freshnel reflectors must be exploited properly. The thick glass 

sheet used in the aforementioned technologies can be replaced by a less expensive material. Using 

cheap heat transfer fluids should also help reduceing the overall cost of this technology. The 

efficiency of CSP can be improved by using a direct steam generator, often used for parabolic 
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trough, to increase the working temperature. The high demand of land for the different CSP 

technology projects make them less attractive to end users. This is because high intensity reflectors 

are required to direct the sun rays to the receivers and these receivers are normally built meters 

away from the reflectors. Additionally, the CSP plant is normally located on a far-enough distance 

from the end users and this may lead to high distribution losses. Instances where the solar 

radiations are diffused, the performance of the CSP will reduce drastically. 

3.3 Future prospects of Concentrated Solar Photovoltaics (CSPs) 

 

With the consumption of fossil-based product increasing every day, the drive to reduced carbon 

emissions globally continue remain a critical issue in today’s world. Nearly 40 – 43% of the 

world’s energy demand is obtained from fossil fuels. One of the non-conventional energy systems 

as explained earlier is the CSP [53,54]. Some researchers considers this technology as the future 

of energy generation and for this it has received increased research efforts in the recent years. R&D 

activities financed by the International Energy Agency (IEA) on concentrating solar technologies 

like the SolarPACES have helped reduce the cost of CSPs (Solar thermal plants) as well as their 

performance. There have been tremendous improvements in CSPs pilot plants as well as other 

large scale testing projects. These advances, along with cost reductions made possible by 

increasing mass production rates and construction of a succession of power plants, have made CSP 

systems the lowest-cost solar energy in the world and promise cost competitiveness with fossil-

fuel plants in the future [55]. As explained earlier, the trough system utilizes linear parabolic 

concentrators to direct sun radiation to a receiver along the focal line of the collector. Due to their 

thermal characteristics, the trough system can be hybridized or operated using fossil fuel and solar 

energy. Hybridization will increase the CSP technology in terms of increasing their availability 

and dispatchability. This in turn will reduce the cost [56]. 

In Southern California , the parabolic trough connected to the grid since 1980s is considered the 

most matured types of CSP technology in the US. The performance of these plants have increase 

over their operational lifetime [57]. The Kramer junction site where another parabolic trough is 

located, achieved a 30% reduction in their operation and maintenance (O&M) costs. The reduction 
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is achieved by improving the design of the collector and enhancing the O&M procedures [58]. 

Also, there has been advancements in the production techniques for the trough. Companies like 

SOLEL in Israel has improved the absorber tubes and the Flabeg. A further reduce in the cost of 

the technology can be attained by designing a cost-effective collector field and more durable 

receivers and collector structures [59]. Further advancements are also required in terms of the 

operation and maintenance of the system. The possibility of replacing the synthetic oil with water 

must also critically be investigated as a way of reducing the cost of the system. Further advanced 

hybrid designs must be considered. For instance, solar/fossil hybrid design integrated with a 

combined cycle power plants will effectively improve their performance. There should also be 

more research geared towards concentrating solar energy on linear receivers like the linear Fresnel 

reflector that uses a flat mirror located close to the ground in Australia [60]. This technological 

advancement reduces the concentrator wind loads but increases the packing density. This therefore 

reduces the overall cost of the CSP system. These investigations are being carried out in 

German/Spanish Direct Solar Steam Project. The projects goal is to reduce the cost of the energy 

produced by this technology by 26%. Plataforma Solar de Almeria is also conducting series of 

investigations into the receiver configurations as well as the reflectors for trough applications. For 

power tower plants, improvements in the heliostat field due to better optical properties will be the 

future for this technology [61]. Again, reducing the cost of the structures during the installation 

process will further decrease the cost of this technology. Some modification on the heliostat design 

can include increasing the area of the heliostat. This investigation is being carried out by Inabensa  

and  Ghersa in Spain. Improvements in the system integration by reducing parasitic loads, 

optimization of startup procedures as well as better control strategies will further increase the 

overall performance of the system [62]. A novel technique used in Israel is the application of a 
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second reflector on the tower top to direct solar energy to the ground level for collection at higher 

temperature for their application in a gas turbine [63]. Integrating a high temperature solar system 

to a gas turbine will increase the efficiency of the gas turbine compared to steam turbine 

applications. There is also the advantage of a faster start up times, lower installation and operating 

expenses [63]. 

4.0 Enhanced Geothermal Energy Systems (EGES) 

This type of energy is stored in the earth. It is believed that geothermal energy is formed from the 

decay of material radioactively [63-65]. Geothermal gradient is the difference in temperature 

between the surface of the earth and the core of the earth. Today geothermal energy is in good 

competition with the other energy generation medium [66]. Fig. 10. Shows the capital cost and 

payback for traditional renewable energy generation mediums. Regional and local tectonics 

actively contribute to the future sustainability of these natural reservoirs. These critical factors 

make geothermal energy techniques location dependent as only places with good natural reservoirs 

can have these energy generation media being used. Today, researchers have developed a new 

technology which is an upgrade of geothermal energy called enhanced geothermal systems (EGS) 

[67]. This technology is also called engineered geothermal energy (EGE). This implies that the 

approach can be suitable for all other areas irrespective of the possibilities of natural reservoirs or 

the opposite. The lifetime for most EGS is higher than traditional geothermal energy techniques. 

Again, there is also an increase in productivity using EGS and the location where the projected 

can be sited is limited to any specific conditions. The resources can be expanded and there is also 

some flexibility in the sizing of the project. Finally, EGS is environmentally friendlier than the 

conventional geothermal energy generation mediums [68-70]. There are several parameters 

involved in other to keep EGS in an operational mode. These parameters are the reservoir, the 
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conditions of the environment, well drilling as well as completion of the well. Drilling to an 

appropriate depth where the temperature of the rock is enough to justify the investments a key 

stage in thermal energy generation. Developing EGS reservoir is the first stage in developing a 

power plant using enhanced geothermal system at an appropriate location. Several other stages are 

required to generate geothermal energy and this has been captured in a report [71,72]. He explained 

five main stages in the geothermal energy generation process. 

A well is built into a heated basement rock which is less permeable with less fluid content as shown 

in Fig. 11. This basically serves as the point of injection. For existing fractures to reopen, water 

with high pressure is pumped into these openings. The water is injected continuously even when 

existing fractures are opened, and this sometimes leads to more fracture openings precisely at the 

hot basement rock. The fracture system created is intersected with a drilled well and the main 

purpose is for the water to easily be in circulation. The research into enhancing the performance 

of geothermal energy has been conducted by several researchers around the world [73]. Some areas 

that has been critically investigated has to do with the geothermal resource base assessment, 

recoverable EGS estimates, in depth research on EGS technologies and the present performances, 

designing of subsurface systems, drilling technology economics, topics surrounding the 

conversion of energy using enhanced geothermal systems, the effect of this technology on the 

environment, analysis of enhanced geothermal systems and their sustainability [74]. There are 

several benefits involved in the usage of EGS, but this viable technology is not evenly distributed 

in terms of its resource base. For places considered as high tectonic regions, for a depth of 6km or 

less, almost 150oC temperature is expected but this is not dependent on the resources in that 

specific environs [75 - 77]. In areas where flow of heat is extremely high especially in high 

temperature regions, thermal conductivity is low and this makes the region very suitable for this 
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technology. Due to local limitations, even areas considered as being favorable may not be able to 

have all the EGS potential being exploited. Some of these limitations are main roads, urban 

communities, utility corridors, government protected reserves and national monuments. Today 

Japan, German, France and UK are all championing projects in this area. The completion of the 

project gave rise to others like the Roemanowes project. The main object for this project was to 

expand the concept of building a storage site in a rock. The experimental research was conducted 

in 1975 in the United Kingdom. Similar experiments were equally performed in Japan [78]. 

Systems used in the energy conversion for enhanced geothermal systems is done using traditional 

geothermal systems with some little changes being done. Challenges relating to the usage of 

enhanced geothermal fluids, leads to adoption of ideas from fossil fuel energy conversion systems. 

Using carbon dioxide as the transfer medium for the heat in enhanced geothermal systems has its 

own setbacks. Some investigations have been conducted to examine the impact of using this 

approach [79]. Geothermal power projects have severe impact on the environment. Irrespective of 

these implications on the environment, they are still considered as being more environmentally 

friendly compared to fossil fuel as well as nuclear power projects [80]. Some considerations must 

be carefully examined before the commencement of any enhanced geothermal system related 

project. This is basically related to the possibility of ground water being contaminated, induced 

seismicity and land subsidence. There are other related issues like noise pollution and air pollution 

that must equally be well evaluated. Differences between enhanced geothermal systems and 

hydrothermal systems are few. The enhanced geothermal system is designed to support the mining 

of heat and stimulation of a reservoir from a small area of rocks at specific depths to extract thermal 

energy [80]. The reservoir has the same characteristics to hydrothermal systems. There are several 

systems used in the conversion of geothermal energy to power. The binary recuperators, single 
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flash and triple expansions are some major energy conversion systems used in enhanced 

geothermal systems [81].  

4.1 Obstacles impeding the advancement of Enhanced Geothermal Systems. 

Some assumptions are made during the design process for all enhanced geothermal systems. These 

assumptions require an in-depth research investigation if this technology is to be used on a larger 

scale aside the high initial capital cost need in the establishment and running of the project. The 

other related issue has to do with the sustainability of the reservoir. According to an investigation 

conducted, fluids flowing with a temperature of 200oC at 80kg/s is required for enhanced 

geothermal system plant even though all Enhanced geothermal systems currently under 

investigations are not even able to have a mass flow rate of 25kg/s. There are currently no 

experimental research conducted to determine the performance of an enhanced geothermal 

reservoir capable of being operated at a commercial level at their specific locations having different 

properties geographically. A good investment in research and development will make enhanced 

geothermal systems a good competitor with other energy generation mediums as especially with 

it being environmentally friendly. The competition in effect will reduce the high dependency on 

fossil fuels and other energy generation mediums that are very harmful to the environment. EGS 

are highly sustainable but they can sometimes lead to earthquakes and landslides especially where 

the wells or reservoirs are to be sited. Enhanced geothermal technology also have the tendency of 

reducing the quality of water bodies and some little air pollution in instances where there is poor 

maintenance of the plants. 
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4.2. Future prospects of Enhanced geothermal energy 

There is urgent need for more R &D programmes on the exploration data, technologies used for 

drilling as well as the operation and maintenance of the reservoir. To reduce the cost of enhanced 

geothermal energy, technologies used in harnessing these types of energy generation medium must 

be critically evaluated. Some of these technologies include temperature hardened submersible 

pumps, zonal isolation tools, monitoring and logging tools and coupled models to determine 

reservoir development [82]. Development of the techniques used in the drilling process for 

harnessing enhanced geothermal energy would contribute in reducing the drilling cost as well as 

the electricity produced via this medium. An integrated energy conversion system like solar 

geothermal hybrid should be encouraged in order to enhance the quality of geothermal energy and 

increase the efficiency as well as the capacity of the energy system. Cascade technology for 

enhanced geothermal systems must be encouraged to ensure sustainable exploitation and usage of 

geothermal energy [83]. Other recommended ways of improving the advancement of enhanced 

geothermal energy is their application in water desalination, geothermal plants with carbon capture 

and storage [84 – 86], geothermal water usage for spas and health tourism [87], synergy of 

geothermal energy exploitation using deep oil and gas systems [88,89] and coupled with district 

heating systems [90,91]. Optimization of enhanced geothermal energy must be economically 

viable. Other criteria like the thermodynamic efficiency and the life cycle environmental impact 

must all be carefully evaluated [92 – 94]. These are some of the key factors that will lead to the 

easy commercialization of this novel energy generation medium. The cost of energy production 

still remains a challenge to businesses as well as the entire community. Enhanced geothermal 

energy can be produced domestically, therefore ensuring security for energy supply for domestic 

applications [95]. Enhanced geothermal energy is not directly linked to any extra cost like land 
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degradation, pollution, animal and plants destruction etc. The advantages of geothermal energy are 

enormous. It can provide job security and revenue for rural communities [96 - 99]. Again, most 

geothermal communities currently support in community development projects and programmes. 

Deep wells typically exhibit high uncertainty on well costs, which are controlled by the probability 

distributions of key variables. The decision aids for tunneling (DAT) programme was developed 

to explore the uncertainty of well costs as a function of a fixed material cost, hourly cost and the 

time needed for an enhanced geothermal project [100]. Some researchers have developed a 

correlation to determine the economic feasibility and risk of an enhanced geothermal energy 

project between 2400 – 4600m geothermal wells [101 - 103]. 

5. Conclusion 

Enhanced Geothermal Energy (E and concentrated solar photovoltaics are emerging types of 

renewable energy technologies that are still undergoing significant developments. Factors 

impeding their commercialization was critically reviewed and discussed. Solutions to the major 

challenges were also presented. Furthermore, the prospects of such interesting energy generation 

mediums were also ascertained. In order to push the borders of these technologies and achieving 

further advancements, there is an urgent need for more governmental support in terms of research, 

technological development and demonstration projects. Major investments are needed to properly 

develop and market both technologies and this can only be achieve through developing long-term 

regulatory policies which can only be provided by legislative and governmental support. 
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Fig. 1: Emerging renewable energy generation medium 

 

 

 

Fig. 2: Global renewable energy capacity [18]. 
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Fig. 3: Global Energy demand [Permission to reproduce from 16] 

 

  

Fig. 4: Sustainable energy sources [Permission to reproduce from 16, 34] 
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Fig. 5: Concentrated solar plant built near Tecate Mexico [Permission to reproduce from 32]  

 

Fig. 6: Concentrated solar photovoltaic types [Permission to reproduce from 34] 
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Fig. 7: Concentrated solar photovoltaic technology currently being used [Permission to 

reproduce from 41]. 
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Fig. 8: Projections made for 2050 on regional energy generated via CSP technology [Permission 

to reproduce from 34]. 

 

Fig. 9: Concentrated solar power capacities for various regions in the world in 2012 [Permission 

to reproduce from 34]. 
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Fig. 10: Payback period and capital cost for renewable energy generation mediums [Permission 

to reproduce from 34] 

 

Fig. 11: Stages for Geothermal energy system development [Permission to reproduce from 34] 
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Table 1: The projected future of renewable energy sources by 2050 [34] 

Types Medium  Measured 

value 

Year 2013/14 Scenario 

(2015 - 2017) 

projections 

Renewable 

Energy 

roadmap by 

2050 

Electricity Hydro power 

Wind 

Solar PV 

Bioenergy 

Geothermal 

Ocean 

Battery 

Storage 

GW 

GW 

GW 

GW 

GW 

GW 

GWh 

1170 

370 

175 

95 

12 

0.5 

130 

1830 

1070 

780 

250 

42 

2 

1580 

1995 

1990 

1760 

430 

92 

7 

4000 

Transport Electrical Million 0.8 60 160 

Vehicles Vehicles    

2/3 Wheelers Million 200 500 900 

 Vehicles    

Bio - liquids Billion 130 251 499 

 Liters    

methane B/m3 0.02 0.29 0.89 

Commercial 

purposes 

(Coperations) 

Bio – energy 

heat 

Exajoules per 

year 

0.8 10 16.9 

thermal  0.1 8 105 

thermal Million m2 0.99 50 659 

Geothermal Exajoules per 

year 

0.019 0.048 0.39 

thermal Pump M 0.2 3 18 

 units    
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Buildings Bioenergy 

Bioenergy 

Bioenergy 

Heat 

Solar thermal 

Geothermal 

Heat Pumps 

Exajoules per 

year  

EJ/yr 

Million m2 

EJ/yr 

Million m2 

35 

2.5 

4 

534 

0.3 

4 

21 

4 

10 

2020 

0.7 

32 

0 

13 

15 

3230 

0.8 

42 
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Table 2: Some CSP projects around the world [34]. 

Project Developer Technology Heat 

Transfer 

Capacity 

(MWe) 

Storage 

capacity 

(Hours) 

Date of 

Completion 

SEGS I – 

IX 

Luz Parabolic 

trough 

Oil  354 0 1986 – 

1991  

Nevada 

Solar One 

Acciona Parabolic 

trough 

Oil  64 0 2007 

Martin Florida 

power and 

light 

Parabolic 

trough 

Oil  75 0 2010 

Solana Abengoa Parabolic 

trough 

Oil  250 0 2013 

Ivanpah Bright 

source 

energy 

Solar 

Tower 

stream 390 0 2014 

Mojave Abengoa Parabolic 

trough 

Oil  250 0 2014 

Genesis NextEra Parabolic 

trough 

Oil  250 0 2014 

Crescent 

Dunes 

SolarReserve Solar 

Tower 

Molten 

salt 

110 0 2015 
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Table 3: CSP project with storage currently being developed around the world [34]. 

Project Country MWe Storage 

capacity 

(Hours) 

Power 

Purchase 

agreement 

price 

(PPA$/kW 

Status  Completion 

date 

Crescent 

Dunes 

U.S. 110 10 13.7 operation 2015 

Noor III Morocco 150 7.5 16.3 construction 2017 

Redstone South 

Africa 

100 12 12.5 Development 2018 

DEWA 

CSP 

Project 

Phase I 

United 

Arab 

Emirates 

200 12 8.0 Planning 2021 

Copiapo Chile 240 14 6.3 Planning - 
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Graphical abstract 
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Highlights 

1. Technologies for harnessing Concentrated Solar Photovoltaics and Enhanced Geothermal Energy are 

thoroughly discussed.  

2. Challenges impeding the advancement of these energy generation mediums are also presented.  

3. The future prospects of Concentrated Solar Photovoltaics and Enhanced Geothermal Energy are 

captured in this investigation.  

4. Some recommendations for easy commercialization of these technologies are also reported.  
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