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Abstract: Interval Data Envelopment Analysis (Interval DEA) deals with 19 
the problem of efficiency assessment when the inputs and/or outputs of 20 
Decision Making Units (DMUs) are given as interval data. This paper 21 
focuses on the problem of ranking DMUs with interval data. First, we define 22 
extreme efficient units, super efficiency score, the best and the worst 23 
efficiency (inefficiency) frontiers in the interval DEA context. Then, we 24 
propose a novel method based on the lower and upper super efficiency 25 
scores of a unit under evaluation and the distance of that unit to four 26 
developed frontiers. Our method ranks all efficient and inefficient units 27 
which is one of the main advantages of it. Our method uses several essential 28 
criteria simultaneously to rank units with interval data. These criteria 29 
increase the discrimination power of our proposed method. Potential 30 
application of this method is illustrated with a dataset consisting of 30 31 
branches of the social security insurance organization in Tehran.  32 
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 64 

1 Introduction 65 

Data Envelopment Analysis (DEA) is a non-parametric methodology for assessing the 66 
relative efficiency of Decision Making Units (DMUs) with multiple inputs and multiple 67 
outputs (Charnes et al. (1978), Banker et al. (1984), Färe et al. (1985), Zhu (2002), Cooper 68 
et al. (2006)). It assigns an efficiency measure between 0 and 1 to each unit. The larger the 69 
efficiency score, the better performance the unit under evaluation has. A DMU is efficient 70 
if its efficiency score is equal to 1, otherwise it is inefficient. The original DEA models 71 
consider the situation that all inputs and outputs have certain values. However, this 72 
assumption can be violated due to the existence of uncertainty in data. The problem of the 73 
evaluation of units with imprecise data has attracted attentions of several scholars. For 74 
example, Cooper et al. (1999) developed Imprecise Data Envelopment Analysis (IDEA) 75 
method. Their method can be applied in the situation where there exist both imprecisely 76 
and exactly-known data in which the IDEA models are transformed into linear 77 
programming problems. Kim et al. (1999) proposed a procedure to incorporate partial data 78 
into DEA. Their original model was a complicated non-linear model that was transformed 79 
into a linear programming problem by applying a linear scale transformation and the 80 
variable change technique. 81 

Lee et al. (2002) proposed methods to determine the inefficiency of units such as slacks, 82 
returns to scale and so on in IDEA. These information helps the Decision Maker (DM) to 83 
improve the efficiency of units. Despotits and Smirlis (2002) proposed an approach to 84 
define the upper and lower bounds for the efficiency score of units with imprecise data. 85 
Their idea shows that the units with imprecise data do not have constant efficiency scores 86 
and their efficiency scores depend on the choice of data. Therefore, one of the attractive 87 
issues in IDEA is to determine the upper and lower bounds for units (See Cooper et (2001), 88 
Entani et al. (2002), Zhu (2003), Jahanshahloo et al. (2004), Wang et al. (2005), 89 
Amirteimoori and Kordrostami (2005), Smirlis (2006), Park (2007), Toloo et al. (2008), 90 
Park (2010), Kao and Liu (2011), Esmaeili (2012), Hatami Marbini et al. (2014), Sun et al. 91 
(2014), and Khalili Damghani et al. (2015) for more studies about IDEA models). 92 
Kordrostami and Jahani Sayyad Noveiri (2014) proposed a method to estimate the 93 
optimistic and pessimistic efficiency scores of units with fuzzy data and then integrated 94 
them into a geometric average efficiency. 95 

Emrouznejad and Yang (2016) proposed a performance index based on efficient and 96 
anti-efficient frontiers in DEA models without explicit inputs (DEA-WEI) and developed 97 
the corresponding performance index in quadratic DEA-WEI models. Piri et al. (2016) 98 
proposed a method to evaluate the efficiency scores of DMUs with interval data in which 99 
the lower and upper bounds of intervals can take both negative and positive values. 100 
Amirteimoori et al. (2017) suggested an approach to integrate the optimistic and 101 
pessimistic perspectives to obtain the interval efficiency scores of units with interval data. 102 
Azizi et al. (2017) proposed a method to obtain the upper and lower bounds for the 103 
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efficiency scores of units with imprecise data when some input and/or output can be 104 
specified as intervals, and some of them can be given as exact values and the other can be 105 
determined as ordinal preferences information. Jiang et al. (2018) developed a DEA model 106 
to measure the scale efficiency of DMUs with imprecise data and analyzed the sensitivity 107 
and stability of their model for scale efficiency. Toloo et al. (2018) developed a 108 
methodology to handle uncertain inputs, outputs and dual role factors and proposed models 109 
to obtain the interval efficiency scores of units based on the optimistic and pessimistic 110 
viewpoints and then suggested an integrated model to identify a unique status of each 111 
imprecise dual factors.  112 

There are another issues that examine uncertainty. In practice, temporal representation 113 
is an attractive problem in a wide range of fields, such as computer science, philosophy, 114 
psychology and so on. For instance, information system deals with the problem of outdated 115 
data. In order to consider questions such as ‘which employees worked for us last year and 116 
made over 15000$’ we need to represent temporal information. See F.Allen (1983) for 117 
more studies about temporal representation. S Ganapathy et al. (2013) combined temporal 118 
features with the fuzzy min-max neural network that is based on a classifier to select the 119 
effective decision in medical diagnosis. See Laxman and sastry (2006), Zhang et al. (2009), 120 
wai and Lee (2008), Simson (1992)) for more studies about temporal data mining, 121 
classification, fuzzy min-max, neural network. 122 

The traditional DEA models cannot discriminate among the efficient units because they 123 
get identical efficiency scores equal to one. In this regard, several ranking approaches have 124 
been developed in the DEA literature. For a review on ranking methods in DEA see Adler 125 
et al. (2002). One of the attractive topics in IDEA is to rank units. Jahanshahloo et al. 126 
(2006) extended TOPSIS method in Interval DEA. Wang et al. (2005) considered the 127 
efficiency assessment of units in the presence of interval and/or fuzzy data. They proposed 128 
two linear CCR models to obtain the interval efficiency of DMUs with interval data and 129 
then applied the interval efficiencies of all units by a minimax regret-based approach to 130 
rank units. Wu et al. (2013) proposed a two-phases approach in which the first phase 131 
obtains the interval cross-efficiency score of DMUs with interval data and the second phase 132 
ranks units by applying an improved TOPSIS technique. Khodabakhshi and Aryavash 133 
(2015) developed a method for ranking units with stochastic data. Rafiee Sani and 134 
Alirezaee (2017) developed some fuzzy versions of trade-off DEA models by applying 135 
some ranking methods based on the comparison of 𝛼 −cuts. Shavazipour et al. (2017) 136 
proposed an approach to rank extreme efficient units with fuzzy data. Their model is based 137 
on the Tchebycheff norm. Ebrahimi (2019) considered DEA with stochastic data and 138 
applied the expected efficiency of units to present a method for ranking DMUs.  139 

Given the importance of ranking the units in DEA, in particular in Interval DEA, we 140 
focus on the ranking of DMUs with interval data and propose a novel approach to rank 141 
units. In this study, one of our main motivations is to extend some concepts from the 142 
traditional DEA into interval DEA and the other is to develop a powerful method to 143 
discriminate and rank DMUs with interval data, hence, we propose an approach using 144 
several essential criteria simultaneously to rank units with interval data. These criteria 145 
increase the discrimination power of our method. 146 

The contribution of this study is to develop a powerful method for ranking DMUs with 147 
interval data as our proposed approach has all desirable features expected for ranking 148 
methods. First, we suggest two linear programming models to compute the lower and upper 149 
super efficiency scores of a unit following the method of Anderson and Peterson (1993). 150 
As in the traditional super efficiency score, it is desirable to obtain the large lower and 151 
upper super efficiency scores in interval DEA. Then, we define the terms extreme efficient 152 
units and non-dominated DMUs in Interval DEA for the first time. Secondly, we introduce 153 
two efficiency frontiers, namely the best and the worst efficiency frontiers, and two 154 
inefficiency frontiers, called the best and the worst inefficiency frontiers and after that we 155 
formulate four linear programming problems to measure the distance of each unit from 156 
these frontiers. It is clear that, units closer to efficiency frontiers and more far from the 157 
inefficiency frontiers have better performance. Hence, by using these distances and the 158 
defined lower and upper super efficiency scores of units, we assign a vector with four 159 
components to each unit. Finally, we sort these vectors by a lexicographic order. In our 160 
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method, as we expect, the rank order of extreme efficient units is better than other DMUs. 161 
Also, if a unit dominates another, it gets a higher rank than the dominated unit. 162 

The rest of this paper is organized as follows: section 2 reviews the interval DEA 163 
preliminaries. In section 3, we present a complete ranking method for DMUs with interval 164 
data. Two numerical examples are provided in section 4. Section 5 concludes the paper.  165 

 

2 Preliminaries and basic definitions 166 

 167 
Consider a system of 𝑛 DMUs, denoted by 𝐷𝑀𝑈𝑗 , 𝑗 = 1, … , 𝑛, where each unit consumes 168 
𝑚 different inputs to generate 𝑠 different outputs. The 𝑖𝑡ℎ input and 𝑟𝑡ℎ output for DMUj 169 
are denoted by 𝑥𝑖𝑗  and 𝑦𝑟𝑗 , respectively, for 𝑖 = 1,… ,𝑚 and 𝑟 = 1,… , 𝑠. Also, suppose 170 
that input and output values are not deterministic for all units and 𝑥𝑖𝑗 ∈ [𝑥𝑖𝑗

𝐿 , 𝑥𝑖𝑗
𝑈] and 𝑦𝑟𝑗 ∈171 

[𝑦𝑟𝑗
𝐿 , 𝑦𝑟𝑗

𝑈 ], where the lower and upper bounds are positive and finite values. Assume that 172 
𝐷𝑀𝑈𝑜 is the unit under evaluation. 173 

Wang et al. (2005) considered the following production possibility set (PPS) in Interval 174 
DEA: 175 

𝑇 = {(𝑥, 𝑦)| 𝑥 ≥ ∑𝜆𝑗𝑥𝑗
𝐿

𝑛

𝑗=1

, 𝑦 ≤∑𝜆𝑗𝑦𝑗
𝑈

𝑛

𝑗=1

,∑𝜆𝑗

𝑛

𝑗=1

= 1, 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛} 176 

They formulated two linear programming models (1a) and (1b) to measure the lower 177 
and upper bounds for the efficiency score of 𝐷𝑀𝑈𝑜 as reported in Table 1.  178 
 179 
Table 1. The lower and upper efficiency score. 180 

The lower efficiency score The upper efficiency score 

𝐸𝑜𝑜
𝐿 = max∑𝜇𝑟𝑦𝑟𝑜

𝐿

𝑠

𝑟=1

+ 𝑢0

s. t.

∑𝑤𝑖𝑥𝑖𝑜
𝑈

𝑚

𝑖=1

= 1, (1𝑎)

∑𝜇𝑟𝑦𝑟𝑗
𝑈

𝑠

𝑟=1

−∑𝑤𝑖𝑥𝑖𝑗
𝐿

𝑚

𝑖=1

+ 𝑢0 ≤ 0, ∀𝑗,

𝑤𝑖 , 𝜇𝑟 ≥ 𝜀, ∀𝑖, 𝑟.

 

𝐸𝑜𝑜
𝑈 = max∑𝜇𝑟𝑦𝑟𝑜

𝑈

𝑠

𝑟=1

+ 𝑢0

s. t.

∑𝑤𝑖𝑥𝑖𝑜
𝐿

𝑚

𝑖=1

= 1, (1𝑏)

∑𝜇𝑟𝑦𝑟𝑗
𝑈

𝑠

𝑟=1

−∑𝑤𝑖𝑥𝑖𝑗
𝐿

𝑚

𝑖=1

+ 𝑢0 ≤ 0, ∀𝑗,

𝑤𝑖 , 𝜇𝑟 ≥ 𝜀, ∀𝑖, 𝑟.

 

 

where 𝜀 > 0 is Non-Archimedean.  181 
The optimal value of models (1a) and (1b) were called the lower and the upper 182 

efficiency score of 𝐷𝑀𝑈𝑜 by Wang et al. (2005), respectively. It is clear that 𝐸𝑜𝑜
𝐿 ≤ 1, 𝐸𝑜𝑜

𝑈  183 
≤ 1 and 𝐸𝑜𝑜

𝐿 ≤ 𝐸𝑜𝑜
𝑈 . 184 

The efficient and inefficient units in Interval DEA were defined as follows by Wang et 185 
al. (2005): 186 

 

Definition 1. The unit 𝐷𝑀𝑈𝑜 = (𝑥𝑜, 𝑦𝑜) is efficient, if 𝐸𝑜𝑜
𝑈 = 1. Otherwise, it is 187 

inefficient. 188 
 189 
In the next section, we propose an original approach to rank DMUs with interval data. 190 
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3 A complete ranking of decision making units with interval data 191 

In this section, we present a new method for ranking units in the presence of interval data 192 
based on some concepts that is defined in the following subsections. Subsection 3.1 extends 193 
the concept of super efficiency to Interval DEA and formulates two linear programming 194 
models to obtain the lower and the upper super efficiency scores of DMUs. Based on the 195 
obtained lower and upper super efficiency scores, we classify the set of all units into three 196 
subsets and then we present the definition of extreme efficient units in the context of 197 
Interval DEA. Subsection 3.2 defines the best-case and worst-case convex hulls and obtains 198 
two efficiency and two inefficiency frontiers. Then, four linear programming problems are 199 
formulated to measure the distance of each unit from these frontiers. It is clear that, units 200 
closer to efficiency frontiers and more far from the inefficiency frontiers are preferred. 201 
Finally, subsection 3.3 suggests an approach to rank units based on assigning a vector with 202 
four components to each unit and lexicographic order. 203 

3.1 Extending the super efficiency concept to Interval DEA 204 

Anderson and Peterson (1993) introduced the super efficiency concept in traditional DEA. 205 
Their approach removes a DMU from the set of the observed units and constructs the new 206 
PPS by the remaining units and then formulates a linear programming problem to extract 207 
the super efficiency score of that unit and uses the super efficiency scores of units to rank 208 
them. See Adler et al. (2002) for more details. In this section, we extend the super efficiency 209 
concept to Interval DEA. Based on the idea of Anderson and Peterson (1993), we remove 210 
the unit under evaluation from the set of the observed units with interval data and 211 
reformulate models (1a) and (1b) by using the new PPS constructed by the remaining units 212 
to determine the lower and upper super efficiency scores of units with interval data. The 213 
models are reported in Table 2. 214 

 215 
Table 2. The lower and upper super efficiency scores of units with interval data. 216 

The lower super efficiency score The upper super efficiency score 

𝐸𝑜
𝐿 = max∑𝜇𝑟𝑦𝑟𝑜

𝐿

𝑠

𝑟=1

+ 𝑢0

s. t.

∑𝑤𝑖𝑥𝑖𝑜
𝑈

𝑚

𝑖=1

= 1, (2𝑎)

∑𝜇𝑟𝑦𝑟𝑗
𝑈

𝑠

𝑟=1

−∑𝑤𝑖𝑥𝑖𝑗
𝐿

𝑚

𝑖=1

+ 𝑢0 ≤ 0,  𝑗 ≠ 𝑜,

𝑤𝑖 , 𝜇𝑟 ≥ 𝜀, ∀𝑖, 𝑟.

 

𝐸𝑜
𝑈 = max∑𝜇𝑟𝑦𝑟𝑜

𝑈

𝑠

𝑟=1

+ 𝑢0

s. t.

∑𝑤𝑖𝑥𝑖𝑜
𝐿

𝑚

𝑖=1

= 1, (2𝑏)

∑𝜇𝑟𝑦𝑟𝑗
𝑈

𝑠

𝑟=1

−∑𝑤𝑖𝑥𝑖𝑗
𝐿

𝑚

𝑖=1

+ 𝑢0 ≤ 0, 𝑗 ≠ 𝑜,

𝑤𝑖 , 𝜇𝑟 ≥ 𝜀, ∀𝑖, 𝑟.

 

 217 
It is clear that 𝐸𝑜

𝐿 ≤ 𝐸𝑜
𝑈. On the other hand, 𝐸𝑜𝑜

𝐿 ≤ 𝐸𝑜
𝐿 because any optimal solution of 218 

model (1a) is a feasible solution for model (2a). Also, any optimal solution of model (1b) 219 
is a feasible solution of model (2b), therefore, 𝐸𝑜𝑜

𝑈 ≤ 𝐸𝑜
𝑈. Regarding the obtained lower and 220 

upper super efficiency scores, all units can be classified into the following three subsets: 221 
 222 

𝐸++ = { 𝑗 ∈ {1, … , 𝑛}| 𝐸𝑗
𝐿 > 1} (3)

𝐸+ = { 𝑗 ∈ {1, … , 𝑛}| 𝐸𝑗
𝐿 ≤ 1,𝐸𝑗

𝑈 > 1} (4)

𝐸− = { 𝑗 ∈ {1, … , 𝑛}| 𝐸𝑗
𝐿 < 1,𝐸𝑗

𝑈 ≤ 1} (5)

 223 

 224 
𝐸++ includes all decision making units that their lower super efficiency score and as a 225 

result, their upper super efficiency score are greater than one. 𝐸+ includes all DMUs that 226 
their lower super efficiency score is less than or equal to one and their upper super 227 
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efficiency score is greater than one. 𝐸− includes all units that their lower super efficiency 228 
score is less than one and their upper super efficiency score is less than or equal to one. 229 

Next theorem provides a sufficient condition for efficiency of a unit with interval data. 230 
 231 

Theorem 1. The unit 𝐷𝑀𝑈𝑜 = (𝑥𝑜, 𝑦𝑜) is efficient, if 𝑜 ∈ 𝐸+ or 𝑜 ∈ 𝐸++. 232 
Proof : If  𝑜 ∈ 𝐸+ or 𝑜 ∈ 𝐸++ then 𝐸𝑜

𝑈 > 1. We claim that, if 𝑜 ∈ 𝐸+ or 𝑜 ∈ 𝐸++ then 233 
𝐸𝑜𝑜
𝑈 = 1. By contradiction, let 𝐸𝑜𝑜

𝑈 < 1. Assume that (𝜇̂𝑜, 𝑤̂𝑜, 𝑢̂0) is an optimal solution of 234 
model (1b), therefore, we have: 235 

𝐸𝑜𝑜
𝑈 =∑𝜇̂𝑟𝑜𝑦𝑟𝑜

𝑈

𝑠

𝑟=1

+ 𝑢̂0 < 1. 236 

 237 
Also, suppose that (𝜇𝑜

∗ , 𝑤𝑜
∗, 𝑢0

∗) is an optimal solution of model (2b). we have: 238 
 239 

∑𝜇𝑟𝑜
∗ 𝑦𝑟𝑗

𝑈

𝑠

𝑟=1

−∑𝑤𝑖𝑜
∗ 𝑥𝑖𝑗

𝐿

𝑚

𝑖=1

+ 𝑢0
∗ ≤ 0, 𝑗 = 1,… , 𝑛, 𝑗 ≠ 𝑜

∑𝑤𝑖𝑜
∗ 𝑥𝑖𝑜

𝐿

𝑚

𝑖=1

= 1,

𝐸𝑜
𝑈 =∑𝜇𝑟𝑜

∗ 𝑦𝑟𝑜
𝑈

𝑠

𝑟=1

+ 𝑢0
∗ > 1.

 240 

 241 
Regarding that 𝑢0 is a free variable in model (2b), we define: 242 
 243 

𝜇̅𝑟𝑜 = 𝜇𝑟𝑜
∗ , 𝑟 = 1,… , 𝑠,

𝑤̅𝑖𝑜 = 𝑤𝑖𝑜
∗ , 𝑖 = 1, … ,𝑚,

𝑢̅0 = 𝑢0
∗ − (𝐸𝑜

𝑈 − 1) < 𝑢0
∗ .

 244 

 245 
Therefore, (𝜇̅, 𝑤̅, 𝑢̅0) is a feasible solution of model (1b), because: 246 
 247 

∑𝜇̅𝑟𝑜𝑦𝑟𝑗
𝑈

𝑠

𝑟=1

−∑𝑤̅𝑖𝑜𝑥𝑖𝑗
𝐿

𝑚

𝑖=1

+ 𝑢̅0 <∑𝜇𝑟𝑜
∗ 𝑦𝑟𝑗

𝑈

𝑠

𝑟=1

−∑𝑤𝑖𝑜
∗ 𝑥𝑖𝑗

𝐿

𝑚

𝑖=1

+ 𝑢0
∗ ≤ 0, 𝑗 ≠ 𝑜,

∑𝜇̅𝑟𝑜𝑦𝑟𝑜
𝑈

𝑠

𝑟=1

−∑𝑤̅𝑖𝑜𝑥𝑖𝑜
𝐿

𝑚

𝑖=1

+ 𝑢̅0 =∑𝜇𝑟𝑜
∗ 𝑦𝑟𝑜

𝑈

𝑠

𝑟=1

−∑𝑤𝑖𝑜
∗ 𝑥𝑖𝑜

𝐿

𝑚

𝑖=1

+ 𝑢0
∗ − (𝐸𝑜

𝑈 − 1) =

𝐸𝑜
𝑈 − 1 − (𝐸𝑜

𝑈 − 1) = 0,

∑𝑤̅𝑖𝑜𝑥𝑖𝑜
𝐿

𝑚

𝑖=1

=∑𝑤𝑖𝑜
∗ 𝑥𝑖𝑜

𝐿

𝑚

𝑖=1

= 1.

 248 

 249 
The value of the objective function of model (1b) for this feasible solution is: 250 
 251 

∑𝜇̅𝑟𝑜𝑦𝑟𝑜
𝑈

𝑠

𝑟=1

+ 𝑢̅0 =∑𝜇𝑟𝑜
∗ 𝑦𝑟𝑜

𝑈

𝑠

𝑟=1

+ 𝑢0
∗ − (𝐸𝑜

𝑈 − 1) = 𝐸𝑜
𝑈 − (𝐸𝑜

𝑈 − 1) = 1. 252 

 253 
which is a contradiction with the optimality of (𝜇̂𝑜, 𝑤̂𝑜, 𝑢̂0) for model (1b). thus, 𝐸𝑜𝑜

𝑈 = 1 254 
and 𝐷𝑀𝑈𝑜 is efficient according to Definition 1. 255 

 256 
In traditional DEA, 𝐷𝑀𝑈𝑂  is an extreme efficient unit if its super efficiency score is 257 

greater than one. We define the extreme efficient unit in Interval DEA following the 258 
definition of extreme efficient unit in traditional DEA. 259 

 260 
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Definition 2. The unit 𝐷𝑀𝑈𝑜 = (𝑥𝑜, 𝑦𝑜) is an extreme efficient unit if at least one of its 261 
lower super efficiency score or its upper super efficiency score be greater than one. In the 262 
other word, 𝐷𝑀𝑈𝑜 is an extreme efficient unit in Interval DEA if 𝑜 ∈ 𝐸+ or 𝑜 ∈ 𝐸++. 263 

 264 
In the following example, we determine the extreme efficient units in a numerical 265 

example with five units in the presence of interval data. 266 
 267 

Example 1. Consider five decision making units with interval data. Each DMU consumes 268 
one input to produce one output. The second and third columns of Table 5 reports the data 269 
and Figure 1 shows the PPS. Columns 4, 5 and 6 of Table 5 show the lower efficiency 270 
score, the upper efficiency score and the status of efficiency of units, respectively. As we 271 
see, the upper efficiency score of units A, B and C are equal to 1 and hence they are 272 
efficient. The upper efficiency score of unit D and E are less than 1 and hence they are 273 
inefficient. We solve models (2a) and (2b) to obtain the lower super efficiency and upper 274 
super efficiency scores of DMUs and then classify all units into 𝐸++, 𝐸+ and 𝐸−. The 275 
results are summarized in columns 7, 8 and 9 of Table 5. The last column of Table 5 shows 276 
that each unit is extreme efficient or not. Note that 𝐴, 𝐵 ∈ 𝐸+, according to Definition 2, 277 
they are extreme efficient units while C is an efficient unit belongs to 𝐸−, units D and E 278 
are inefficient and belong to 𝐸−. Therefore, according to Definition 2, units C, D and E are 279 
not extreme efficient units. 280 

3.2 Efficient and inefficient frontiers 281 

This section considers two convex hulls of DMUs, namely the best-case (𝐿𝐵𝐶) and worst-282 
case (𝐿𝑊𝐶) convex hulls. 𝐿𝐵𝐶  is made by the points that represent the best mode of units, 283 
similarly, 𝐿𝑊𝐶  is made by the points that represent the worst mode of units. 284 

 285 

𝐿𝐵𝐶 = {(𝑥, 𝑦)| 𝑥 =∑𝜆𝑗𝑥𝑗
𝐿

𝑛

𝑗=1

, 𝑦 =∑𝜆𝑗𝑦𝑗
𝑈

𝑛

𝑗=1

,∑𝜆𝑗

𝑛

𝑗=1

= 1, 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛} (6)

𝐿𝑊𝐶 = {(𝑥, 𝑦)| 𝑥 = ∑𝜆𝑗𝑥𝑗
𝑈

𝑛

𝑗=1

, 𝑦 =∑𝜆𝑗𝑦𝑗
𝐿

𝑛

𝑗=1

,∑𝜆𝑗

𝑛

𝑗=1

= 1, 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛} (7)

 286 

 287 
Figure 2 shows 𝐿𝐵𝐶  and 𝐿𝑊𝐶  for five DMUs reported in Example 1. Thick lines specify 288 

𝐿𝐵𝐶  and dashed lines specify 𝐿𝑊𝐶 . Shadowed region is the subscription of 𝐿𝐵𝐶  and 𝐿𝑊𝐶 . 289 
In the following, we define two efficiency and two inefficiency frontiers by considering 290 

the frontiers of 𝐿𝐵𝐶  and 𝐿𝑊𝐶 . 291 
We consider two sets 𝑇1

𝐵𝐶  and 𝑇2
𝐵𝐶  constructed by the frontier of 𝐿𝐵𝐶  as follows: 292 

 293 

𝑇1
𝐵𝐶 = {(𝑥, 𝑦)| 𝑥 ≥∑𝜆𝑗𝑥𝑗

𝐿

𝑛

𝑗=1

, 𝑦 ≤ ∑𝜆𝑗𝑦𝑗
𝑈

𝑛

𝑗=1

,∑𝜆𝑗

𝑛

𝑗=1

= 1, 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛} (8)

𝑇2
𝐵𝐶 = {(𝑥, 𝑦)| 𝑥 ≤∑𝜆𝑗𝑥𝑗

𝐿

𝑛

𝑗=1

, 𝑦 ≥ ∑𝜆𝑗𝑦𝑗
𝑈

𝑛

𝑗=1

,∑𝜆𝑗

𝑛

𝑗=1

= 1, 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛} (9)

 294 

 295 
And then, we define the best efficiency and the best inefficiency frontiers, namely 𝜕𝑇1

𝐵𝐶  296 
and 𝜕𝑇2

𝐵𝐶 , as the frontiers of 𝑇1
𝐵𝐶  and 𝑇2

𝐵𝐶 , respectively. Note that, 𝜕𝑇1
𝐵𝐶  and 𝜕𝑇2

𝐵𝐶  are 297 
named as the best efficiency and the best inefficiency frontiers because they are made by 298 
the best mode of all units. 299 

Similarly, we consider two sets 𝑇1
𝑊𝐶  and 𝑇2

𝑊𝐶  made by the frontier of 𝐿𝑊𝐶  as follows: 300 
 301 
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𝑇1
𝑊𝐶 = {(𝑥, 𝑦)| 𝑥 ≥ ∑𝜆𝑗𝑥𝑗

𝑈

𝑛

𝑗=1

, 𝑦 ≤ ∑𝜆𝑗𝑦𝑗
𝐿

𝑛

𝑗=1

,∑𝜆𝑗

𝑛

𝑗=1

= 1, 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛} (10)

𝑇2
𝑊𝐶 = {(𝑥, 𝑦)| 𝑥 ≤ ∑𝜆𝑗𝑥𝑗

𝑈

𝑛

𝑗=1

, 𝑦 ≥ ∑𝜆𝑗𝑦𝑗
𝐿

𝑛

𝑗=1

,∑𝜆𝑗

𝑛

𝑗=1

= 1, 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛} (11)

 302 

 303 
And then, we define the worst efficiency and the worst inefficiency frontiers, namely 304 

𝜕𝑇1
𝑊𝐶  and 𝜕𝑇2

𝑊𝐶 , as the frontiers of 𝑇1
𝑊𝐶  and 𝑇2

𝑊𝐶 , respectively. Note that, 𝜕𝑇1
𝑊𝐶 and 𝜕𝑇2

𝑊𝐶  305 
are named as the worst efficiency and the worst inefficiency frontiers because they are 306 
made by the worst mode of all units. 307 

Figure 3 illustrates the efficiency and inefficiency frontiers for decision making units 308 
reported in Example 1. Top thick lines show the best efficiency frontiers, lower thick lines 309 
show the worst efficiency frontier, top dashed lines show the best inefficiency frontier and 310 
lower dashed lines show the worst inefficiency frontier.  311 

After defining the frontiers 𝜕𝑇1
𝐵𝐶 , 𝜕𝑇2

𝐵𝐶 , 𝜕𝑇1
𝑊𝐶  and 𝜕𝑇2

𝑊𝐶 , one of the attractive issues 312 
is to measure the distance of each unit from them. Therefore, we formulate models (12a) 313 
and (12b), reported in Table 3, to determine the minimum distance of each DMU from the 314 
best and the worst efficiency frontiers. 315 

 316 
Table 3. The distance of 𝐷𝑀𝑈𝑜 from the efficiency frontiers. 317 

The distance from the best efficiency 

frontier 

The distance from the worst efficiency 

frontier 

𝑍𝑜
∗ = max∑𝑤𝑖

−𝑠𝑖
−

𝑚

𝑖=1

+∑𝑤𝑟
+𝑠𝑟
+

𝑠

𝑟=1

s. t. (12𝑎)

∑𝜆𝑗𝑥𝑖𝑗
𝐿

𝑛

𝑗=1

+ 𝑠𝑖
− = 𝑥𝑖𝑜

𝐿 , ∀𝑖,

∑𝜆𝑗𝑦𝑟𝑗
𝑈

𝑛

𝑗=1

− 𝑠𝑟
+ = 𝑦𝑟𝑜

𝑈 , ∀𝑟,

∑𝜆𝑗

𝑛

𝑗=1

= 1,

𝜆𝑗 ≥ 0, ∀𝑗,

𝑠𝑟
+ ≥ 0, ∀𝑟,
𝑠𝑖
− ≥ 0, ∀𝑖.

 

𝑍𝑜
− = max∑𝑤𝑖

−𝑠𝑖
−

𝑚

𝑖=1

+∑𝑤𝑟
+𝑠𝑟
+

𝑠

𝑟=1

s. t. (12𝑏)

∑𝜆𝑗𝑥𝑖𝑗
𝑈

𝑛

𝑗=1

+ 𝑠𝑖
− = 𝑥𝑖𝑜

𝑈 , ∀𝑖,

∑𝜆𝑗𝑦𝑟𝑗
𝐿

𝑛

𝑗=1

− 𝑠𝑟
+ = 𝑦𝑟𝑜

𝐿 , ∀𝑟,

∑𝜆𝑗

𝑛

𝑗=1

= 1,

𝜆𝑗 ≥ 0, ∀𝑗,

𝑠𝑟
+ ≥ 0, ∀𝑟,
𝑠𝑖
− ≥ 0, ∀𝑖.

 

 318 
The first and second constraints of model (12a) is made by adding the slacks 𝑠𝑖

− and 𝑠𝑟
+ 319 

for all 𝑖 = 1,… ,𝑚 and 𝑟 = 1,… , 𝑠, to the inequalities 𝑥𝑖 ≥ ∑ 𝜆𝑗𝑥𝑖𝑗
𝐿𝑛

𝑗=1 , 𝑦𝑟 ≤ ∑ 𝜆𝑗𝑦𝑟𝑗
𝑈𝑛

𝑗=1  in 320 

𝑇1
𝐵𝐶 . Regarding that, 𝑠𝑖

− (𝑖 = 1,… ,𝑚) represents the distance of 𝑥𝑖𝑜
𝐿  (𝑖 = 1,… ,𝑚) from 321 

the input of a point on the best efficient frontier and 𝑠𝑟
+ (𝑟 = 1,… , 𝑠) represents the 322 

distance of 𝑦𝑟𝑜
𝑈  (𝑟 = 1,… , 𝑠) from the output of a point on the best efficient frontier, hence, 323 

we maximize the sum of the slacks of inputs and outputs to determine the distance of 𝐷𝑀𝑈𝑜 324 
from the best efficient frontier.  325 

The first and second constraints of model (12b) is made by adding the slacks 𝑠𝑖
− and 326 

𝑠𝑟
+ for all 𝑖 = 1, … ,𝑚 and 𝑟 = 1,… , 𝑠, to the inequalities 𝑥𝑖 ≥ ∑ 𝜆𝑗𝑥𝑖𝑗

𝑈𝑛
𝑗=1 , 𝑦𝑟 ≤ ∑ 𝜆𝑗𝑦𝑟𝑗

𝐿𝑛
𝑗=1  327 

in 𝑇1
𝑊𝐶 . Regarding that, 𝑠𝑖

− (𝑖 = 1,… ,𝑚) represents the distance of 𝑥𝑖𝑜
𝑈  (𝑖 = 1,… ,𝑚) from 328 

the input of a point on the worst efficient frontier and 𝑠𝑟
+ (𝑟 = 1,… , 𝑠) represents the 329 

distance of 𝑦𝑟𝑜
𝐿  (𝑟 = 1,… , 𝑠) from the output of a point on the worst efficient frontier, 330 

hence, we maximize the sum of the slacks of inputs and outputs to determine the distance 331 
of 𝐷𝑀𝑈𝑜 from the worst efficient frontier. 332 
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In models (12a) and (12b), 𝑤− and 𝑤+ are given weight vectors by decision maker 333 
(DM). 334 

Similarly, models (13a) and (13b), reported in Table 4, determine the minimum 335 
distance of each unit from the best and the worst inefficiency frontiers. 336 

 337 
Table 4. The distance of 𝐷𝑀𝑈𝑜 from the efficiency frontiers. 338 

The distance from the best inefficiency 

frontier 

The distance from the worst inefficiency 

frontier 

𝑊𝑜
∗ = max∑𝑤𝑖

−𝑠𝑖
−

𝑚

𝑖=1

+∑𝑤𝑟
+𝑠𝑟
+

𝑠

𝑟=1

s. t. (13𝑎)

∑𝜆𝑗𝑥𝑖𝑗
𝐿

𝑛

𝑗=1

− 𝑠𝑖
− = 𝑥𝑖𝑜

𝐿 , ∀𝑖,

∑𝜆𝑗𝑦𝑟𝑗
𝑈

𝑛

𝑗=1

+ 𝑠𝑟
+ = 𝑦𝑟𝑜

𝑈 , ∀𝑟,

∑𝜆𝑗

𝑛

𝑗=1

= 1,

𝜆𝑗 ≥ 0, ∀𝑗,

𝑠𝑟
+ ≥ 0, ∀𝑟,
𝑠𝑖
− ≥ 0, ∀𝑖.

 

𝑍𝑜
− = max∑𝑤𝑖

−𝑠𝑖
−

𝑚

𝑖=1

+∑𝑤𝑟
+𝑠𝑟
+

𝑠

𝑟=1

s. t. (13𝑏)

∑𝜆𝑗𝑥𝑖𝑗
𝑈

𝑛

𝑗=1

− 𝑠𝑖
− = 𝑥𝑖𝑜

𝑈 , ∀𝑖,

∑𝜆𝑗𝑦𝑟𝑗
𝐿

𝑛

𝑗=1

+ 𝑠𝑟
+ = 𝑦𝑟𝑜

𝐿 , ∀𝑟,

∑𝜆𝑗

𝑛

𝑗=1

= 1,

𝜆𝑗 ≥ 0, ∀𝑗,

𝑠𝑟
+ ≥ 0, ∀𝑟,
𝑠𝑖
− ≥ 0, ∀𝑖.

 

 339 
The first and second constraints of model (13a) is made by adding the slacks 𝑠𝑖

− and 𝑠𝑟
+ 340 

for all 𝑖 = 1,… ,𝑚 and 𝑟 = 1,… , 𝑠, to the inequalities 𝑥𝑖 ≤ ∑ 𝜆𝑗𝑥𝑖𝑗
𝐿𝑛

𝑗=1 , 𝑦𝑟 ≥ ∑ 𝜆𝑗𝑦𝑟𝑗
𝑈𝑛

𝑗=1  in 341 

𝑇2
𝐵𝐶 . Regarding that, 𝑠𝑖

− (𝑖 = 1,… ,𝑚) represents the distance of 𝑥𝑖𝑜
𝐿  (𝑖 = 1,… ,𝑚) from 342 

the input of a point on the best inefficient frontier and 𝑠𝑟
+ (𝑟 = 1,… , 𝑠) represents the 343 

distance of 𝑦𝑟𝑜
𝑈  (𝑟 = 1,… , 𝑠) from the output of a point on the best inefficient frontier, 344 

hence, we maximize the sum of the slacks of inputs and outputs to determine the distance 345 
of 𝐷𝑀𝑈𝑜 from the best inefficient frontier. 346 

The first and second constraints of model (13b) is made by adding the slacks 𝑠𝑖
− and 347 

𝑠𝑟
+ for all 𝑖 = 1, … ,𝑚 and 𝑟 = 1,… , 𝑠, to the inequalities 𝑥𝑖 ≤ ∑ 𝜆𝑗𝑥𝑖𝑗

𝑈𝑛
𝑗=1 , 𝑦𝑟 ≥ ∑ 𝜆𝑗𝑦𝑟𝑗

𝐿𝑛
𝑗=1  348 

in 𝑇2
𝑊𝐶 . Regarding that, 𝑠𝑖

− (𝑖 = 1,… ,𝑚) represents the distance of 𝑥𝑖𝑜
𝑈  (𝑖 = 1,… ,𝑚) from 349 

the input of a point on the worst inefficient frontier and 𝑠𝑟
+ (𝑟 = 1,… , 𝑠) represents the 350 

distance of 𝑦𝑟𝑜
𝐿  (𝑟 = 1,… , 𝑠) from the output of a point on the worst inefficient frontier, 351 

hence, we maximize the sum of the slacks of inputs and outputs to determine the distance 352 
of 𝐷𝑀𝑈𝑜 from the worst inefficient frontier. 353 
In models (13a) and (13b), 𝑤− and 𝑤+ are given weight vectors by DM. 354 

 355 
 356 
Theorem 2 proves that all above four models are feasible and bounded. 357 
 358 
Theorem 2. Models (12a), (12b), (13a) and (13b) are feasible and bounded. 359 
Proof: Clearly, 360 

𝜆𝑜 = 1,
𝜆𝑗 = 0, 𝑗 = 1,… , 𝑛, 𝑗 ≠ 𝑜,

𝑠𝑖
− = 0, 𝑖 = 1,… ,𝑚,

𝑠𝑟
+ = 0, 𝑟 = 1,… , 𝑠.

 361 

 362 
is a feasible solution for model (12a). From the constraints of model (12a) we have: 363 
 364 
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𝑠𝑖
− = 𝑥𝑖𝑜

𝐿 −∑𝜆𝑗𝑥𝑖𝑗
𝐿

𝑛

𝑗=1

≤ 𝑥𝑖𝑜
𝐿 , 𝑖 = 1, … ,𝑚,

𝑠𝑟
+ =∑𝜆𝑗𝑦𝑟𝑗

𝑈

𝑛

𝑗=1

− 𝑦𝑟𝑜
𝑈 ≤∑𝜆𝑗𝑦𝑟𝑗

𝑈

𝑛

𝑗=1

≤ 𝑀𝑟 , 𝑟 = 1,… , 𝑠.

 365 

 366 
where 𝑀𝑟 = max

1≤𝑗≤𝑛
𝑦𝑟𝑗
𝑈 . Since 𝑥𝑖𝑗

𝐿 , 𝑥𝑖𝑗
𝑈 , 𝑦𝑟𝑗

𝐿  and 𝑦𝑟𝑗
𝑈  are finite for all 𝑖, 𝑟, 𝑗, therefore, model 367 

(12a) is bounded. Similarly, models (12b), (13a) and (13b) are also feasible and bounded. 368 
 369 
 370 
In the following, we suggest a method for ranking DMUs with interval data, applying 371 

the lexicographic order defined as follows: 372 
 373 
Definition 3. (Ehrgott (2005)) Let 𝑦1, 𝑦2 ∈ 𝑅𝑝(𝑝 ≥ 2) and 𝑘∗ = min{𝑘 |𝑦𝑘

1 ≠ 𝑦𝑘
2}. If 374 

𝑦𝑘∗
1 > 𝑦𝑘∗

2  or 𝑦1 = 𝑦2, then 𝑦1 ≥𝑙𝑒𝑥 𝑦
2. 375 

3.3 our proposed ranking method for Interval DEA 376 

In this section, we propose a method for ranking DMUs with interval data. This method 377 
assigns a 4-vector, namely 𝑉𝑜 , to each unit 𝐷𝑀𝑈𝑜, for 𝑜 ∈ {1, … , 𝑛}, and then compare these 378 
vectors by lexicographic order. In the following, we describe how each component of 379 
vector 𝑉𝑜 is selected. Each ranking method in DEA is expected to have the feature that the 380 
rank of an efficient unit should be better than the rank of an inefficient unit. Therefore, we 381 
consider the upper efficiency score of DMUs as the first priority. According to Theorem 1, 382 
the upper efficiency score for all units in 𝐸++, for all DMUs in 𝐸+ and for some decision 383 
making units in 𝐸− is equal to 1. Therefore, the upper efficiency score alone cannot 384 
distinguish among them. On the other hand, we consider another priority as the rank of 385 
each unit in 𝐸++ should be better than the rank of each DMU in 𝐸+. Regarding that 𝐸𝑜

𝐿 386 
plays an essential role of creating the distinction between  𝐸++ and 𝐸+, hence, we consider 387 
the lower super efficiency score of 𝐷𝑀𝑈𝑜 as another priority with upper efficiency score, 388 
simultaneously. Therefore, we define the first component of 𝑉𝑜, 𝑜 ∈ {1, … , 𝑛}, as the 389 
maximum of the lower super efficiency score and the upper efficiency score of 𝐷𝑀𝑈𝑜. In 390 
the other word, the first component of 𝑉𝑜 is defined as max{𝐸𝑂

𝐿 , 𝐸𝑜𝑜
𝑈 } implying that a unit 391 

with a higher 𝐸𝑜𝑜
𝑈  and 𝐸𝑂

𝐿  for 𝑜 ∈ {1, … , 𝑛}, gets a better rank.  392 
After defining the first component of 𝑉𝑜, we describe how to define the second 393 

component of 𝑉𝑜 . We consider the next priority as the rank of all units in 𝐸+ should be 394 
better than the rank of all units in 𝐸−. Note that, the selection of the first component of 𝑉𝑜 395 
as described guarantees that the rank of each unit belongs to 𝐸++ is better than the rank of 396 
each DMU in 𝐸+, but it cannot guarantee that the rank of each decision making unit in 𝐸+ 397 
is better than the rank of each DMU in 𝐸−. Regarding that, 𝐸𝑜

𝑈 plays an essential role of 398 
creating the distinction between 𝐸+ and 𝐸−, therefore, we define the second component of 399 
𝑉𝑜 as 𝐸𝑜

𝑈. It should be noted that, maybe there exist units that have the same values for the 400 
first and second components of their assigned vector. So, we need to define other 401 
components to make more distinction between units. As we know, the units closer to 402 
efficiency frontiers and more far from inefficiency frontiers are preferred. Hence, we 403 
consider the distance of units from the efficiency and inefficiency frontiers as our other 404 
priorities.  405 

Note that, we avoid to define the vector with a lot of components, therefore, we must 406 
consider a combination of the distances from the efficiency and inefficiency frontiers as 407 
the third and fourth component of 𝑉𝑜 , respectively. On the other hand, the components must 408 
be selected so the larger value of them indicates the better rank for units. Therefore, we 409 
define the third component of 𝑉𝑜 as the negative of the average of distances of 𝐷𝑀𝑈𝑜 from 410 
the best and the worst efficiency frontiers, similarly, the average of distances of 𝐷𝑀𝑈𝑜 411 
from the best and the worst inefficiency frontiers is considered as the last component of 𝑉𝑜 . 412 
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In summary, the preferences in our ranking method to make a powerful distinction between 413 
all units are: 414 

1) The maximum value for the lower super efficiency score and the upper efficiency 415 
score. 416 

2) The maximum value for the upper super efficiency score.  417 
3) The minimum value for the average of distances of unit from the best and the worst 418 

efficiency frontiers.  419 
4) The maximum value for the average of distances of unit from the best and the 420 

worst inefficiency frontiers.  421 
 422 

Therefore, the assigned 4-vector 𝑉𝑜 to 𝐷𝑀𝑈𝑜 is 𝑉𝑜 =423 

(max{𝐸𝑜
𝐿 , 𝐸𝑜𝑜

𝑈 } , 𝐸𝑜
𝑈, −

𝑍𝑜
∗+𝑍𝑜

−

2
,
𝑊𝑜
∗+𝑊𝑜

−

2
). Finally, we rank these vectors according to 424 

lexicographic order described in Definition 3. 425 
In the following, we summarize our ranking method as an algorithm for more clarity: 426 
 427 

The algorithm of our method 428 
Step 1: Solve models (1b), (2a) and (2b) to obtain the upper efficiency score, the lower 429 

super efficiency score and the upper super efficiency score for 𝐷𝑀𝑈𝑜, 𝑜 ∈ {1, … , 𝑛}. 430 
Step 2: Solve models (12a), (12b), (13a) and (13b) and determine the optimal objective 431 

values 𝑍𝑜
∗, 𝑍𝑜

−,𝑊𝑜
∗ and 𝑊𝑜

−, respectively, to measure the distances of 𝐷𝑀𝑈𝑜 from the 432 
efficiency frontiers and inefficiency frontiers. 433 

Step 3: Define vector 𝑉𝑜 = (max{𝐸𝑜
𝐿 , 𝐸𝑜𝑜

𝑈 } , 𝐸𝑜
𝑈 , −

𝑍𝑜
∗+𝑍𝑜

−

2
,
𝑊𝑜
∗+𝑊𝑜

−

2
) for 𝐷𝑀𝑈𝑜 . 434 

Step 4: Compare the vectors 𝑉𝑗 , 𝑗 ∈ {1, … , 𝑛}, by the lexicographic order and obtain a 435 
complete ranking of units.  436 

 437 
In the following, we present the concept of domination for units with interval data. 438 
 439 

Definition 4. Suppose that 𝑜, 𝑙 ∈ {1,… , 𝑛}. If 𝑥𝑖𝑜
𝐿 ≤ 𝑥𝑖𝑙

𝐿 , 𝑥𝑖𝑜
𝑈 ≤ 𝑥𝑖𝑙

𝑈 for 𝑖 = 1,… ,𝑚 and 440 
𝑦𝑟𝑜
𝐿 ≥ 𝑦𝑟𝑙

𝐿 , 𝑦𝑟𝑜
𝑈 ≥ 𝑦𝑟𝑙

𝑈  for 𝑟 = 1,… , 𝑠, then, 𝐷𝑀𝑈𝑜 dominates 𝐷𝑀𝑈𝑙 . 441 
 442 
The next theorem proves that if a unit dominates the other one, then it has the better 443 

rank than it. 444 
 445 

Theorem 3. Let 𝐷𝑀𝑈𝑜 dominates 𝐷𝑀𝑈𝑙 . Then the rank of 𝐷𝑀𝑈𝑜 is better than the rank 446 
of 𝐷𝑀𝑈𝑙  in our method or equivalently 𝑉𝑜 ≥𝑙𝑒𝑥 𝑉𝑙 . 447 
Proof: Suppose that 𝐷𝑀𝑈𝑜 dominates 𝐷𝑀𝑈𝑙 . Therefore, 𝑥𝑖𝑜

𝐿 ≤ 𝑥𝑖𝑙
𝐿 , 𝑥𝑖𝑜

𝑈 ≤ 𝑥𝑖𝑙
𝑈 for 𝑖 =448 

1,… ,𝑚 and 𝑦𝑟𝑜
𝐿 ≥ 𝑦𝑟𝑙

𝐿 , 𝑦𝑟𝑜
𝑈 ≥ 𝑦𝑟𝑙

𝑈  for 𝑟 = 1,… , 𝑠, and inequality is strict for at least one 449 
component. Without loss of generality, we assume that 𝑥𝑘𝑜

𝐿 < 𝑥𝑘𝑙
𝐿 . Let (𝜇𝑙

∗, 𝑤𝑙
∗, 𝑢0

∗) is an 450 
optimal solution for model (2a) evaluating 𝐷𝑀𝑈𝑙 . Hence, we have: 451 
 452 

𝐸𝑙
𝐿 =∑𝜇𝑟𝑙

∗ 𝑦𝑟𝑙
𝐿

𝑠

𝑟=1

+ 𝑢0
∗ ,

∑𝜇𝑟𝑙
∗ 𝑦𝑟𝑗

𝑈

𝑠

𝑟=1

−∑𝑤𝑖𝑙
∗𝑥𝑖𝑗
𝐿

𝑚

𝑖=1

+ 𝑢0
∗ ≤ 0, 𝑗 ≠ 𝑙,

∑𝜇𝑟𝑙
∗ 𝑦𝑟𝑙

𝑈

𝑠

𝑟=1

−∑𝑤𝑖𝑙
∗𝑥𝑖𝑙
𝐿

𝑚

𝑖=1

+ 𝑢0
∗ ≤∑𝜇𝑟𝑙

∗ 𝑦𝑟𝑜
𝑈

𝑠

𝑟=1

−∑𝑤𝑖𝑙
∗𝑥𝑖𝑜
𝐿

𝑚

𝑖=1

+ 𝑢0
∗ ≤ 0,

∑𝑤𝑖𝑙
∗𝑥𝑖𝑙
𝑈

𝑚

𝑖=1

= 1,

𝜇𝑟𝑙
∗ , 𝑤𝑖𝑙

∗ ≥ 𝜀, ∀𝑖, 𝑟.

 453 

 454 
Since 𝑥𝑖𝑜

𝑈 ≤ 𝑥𝑖𝑙
𝑈 for 𝑖 = 1,… ,𝑚, we have: 455 

 456 
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1 =∑𝑤𝑖𝑙
∗𝑥𝑖𝑙
𝑈

𝑚

𝑖=1

≥∑𝑤𝑖𝑙
∗𝑥𝑖𝑜
𝑈

𝑚

𝑖=1

= 𝛼. 457 

 458 

It is clear that 𝛼 > 0. Now, we prove that (
1

𝛼
𝜇𝑙
∗,
1

𝛼
𝑤𝑙
∗,
1

𝛼
𝑢0
∗) is a feasible solution for 459 

model (2a) evaluating 𝐷𝑀𝑈𝑜: 460 
 461 

1

𝛼
(∑𝜇𝑟𝑙

∗ 𝑦𝑟𝑗
𝑈

𝑠

𝑟=1

−∑𝑤𝑖𝑙
∗𝑥𝑖𝑗
𝐿

𝑚

𝑖=1

+ 𝑢0
∗) ≤ 0, 𝑗 = 1,… , 𝑛.

1

𝛼
(∑𝑤𝑖𝑙

∗𝑥𝑖𝑜
𝑈

𝑚

𝑖=1

) = 1

1

𝛼
(𝜇𝑟𝑙
∗ ) ≥

1

𝛼
𝜀 ≥ 𝜀, 𝑟 = 1,… , 𝑠,

1

𝛼
(𝑤𝑖𝑙

∗ ) ≥
1

𝛼
𝜀 ≥ 𝜀, 𝑖 = 1,… ,𝑚.

 462 

 463 
Hence, 𝐸𝑜

𝐿 ≥ 𝐸𝑙
𝐿 . 464 

Also, suppose that (𝜇̅𝑙 , 𝑤̅𝑙, 𝑢̅0) is an optimal solution for model (1b) evaluating 𝐷𝑀𝑈𝑙 . 465 
Then, we have: 466 

 467 

𝐸𝑙𝑙
𝑈 =∑𝜇̅𝑟𝑙𝑦𝑟𝑙

𝑈

𝑠

𝑟=1

+ 𝑢̅0,

∑ 𝜇̅𝑟𝑙𝑦𝑟𝑗
𝑈

𝑠

𝑟=1

−∑𝑤̅𝑖𝑙𝑥𝑖𝑗
𝐿

𝑚

𝑖=1

+ 𝑢̅0 ≤ 0, 𝑗 = 1,… , 𝑛,

∑𝑤̅𝑖𝑙𝑥𝑖𝑙
𝐿

𝑚

𝑖=1

= 1,

𝜇̅𝑟𝑙 ≥ 𝜀, 𝑟 = 1,… , 𝑠,
𝑤̅𝑖𝑙 ≥ 𝜀, 𝑖 = 1,… ,𝑚.

 468 

 469 
Since 𝑥𝑖𝑜

𝐿 ≤ 𝑥𝑖𝑙
𝐿  for 𝑖 = 1,… ,𝑚 and 𝑥𝑘𝑜

𝐿 < 𝑥𝑘𝑙
𝐿 , we have: 470 

 471 

1 =∑𝑤̅𝑖𝑙𝑥𝑖𝑙
𝐿

𝑚

𝑖=1

>∑𝑤̅𝑖𝑙𝑥𝑖𝑜
𝐿

𝑚

𝑖=1

= 𝛽. 472 

 473 

It is clear that 𝛽 > 0. Now, we prove that (
1

𝛽
𝜇̅𝑙 ,

1

𝛽
𝑤̅𝑙 ,

1

𝛽
𝑢̅0) is a feasible solution for 474 

model (1b) evaluating 𝐷𝑀𝑈𝑜: 475 
 476 

1

𝛽
(∑𝜇̅𝑟𝑙𝑦𝑟𝑗

𝑈

𝑠

𝑟=1

−∑𝑤̅𝑖𝑙𝑥𝑖𝑗
𝐿

𝑚

𝑖=1

+ 𝑢̅0) ≤ 0, 𝑗 = 1,… , 𝑛.

1

𝛽
(∑𝑤̅𝑖𝑙𝑥𝑖𝑜

𝐿

𝑚

𝑖=1

) = 1

1

𝛽
(𝜇̅𝑟𝑙) ≥

1

𝛽
𝜀 ≥ 𝜀, 𝑟 = 1,… , 𝑠,

1

𝛽
(𝑤̅𝑖𝑙) ≥

1

𝛽
𝜀 ≥ 𝜀, 𝑖 = 1,… ,𝑚.

 477 

 478 
Hence, 𝐸𝑜𝑜

𝑈 ≥ 𝐸𝑙𝑙
𝑈 . This means that max{𝐸𝑜

𝐿 , 𝐸𝑜𝑜
𝑈 } ≥ max{𝐸𝑙

𝐿 , 𝐸𝑙𝑙
𝑈}. 479 

If max{𝐸𝑜
𝐿 , 𝐸𝑜𝑜

𝑈 } > max{𝐸𝑙
𝐿 , 𝐸𝑙𝑙

𝑈} then regarding the lexicographic order, it is clear that 480 
𝐷𝑀𝑈𝑜 has a better rank than 𝐷𝑀𝑈𝑙 . Otherwise, we should compare the second components 481 
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of 𝑉𝑜 and 𝑉𝑙. Suppose that (𝜇̂𝑙 , 𝑤̂𝑙 , 𝑢̂0) is an optimal solution for model (2b) evaluating 482 
𝐷𝑀𝑈𝑙 . Hence, with a similar argument, we can prove that 𝐸𝑜

𝑈 ≥ 𝐸𝑙
𝑈. If 𝐸𝑜

𝑈 > 𝐸𝑙
𝑈 then 483 

considering the lexicographic order it is clear that 𝐷𝑀𝑈𝑜 obtains a better rank than 𝐷𝑀𝑈𝑙 . 484 
Otherwise, suppose that (𝜆 𝑜∗, 𝑠−𝑜∗, 𝑠+𝑜∗) is an optimal solution for model (12a) evaluating 485 
𝐷𝑀𝑈𝑜. Hence, we have: 486 

 487 

𝑍𝑜
∗ =∑𝑤𝑖

−𝑠𝑖
−𝑜∗

𝑚

𝑖=1

+∑𝑤𝑟
+𝑠𝑟
+𝑜∗

𝑠

𝑟=1

∑𝜆 𝑗
𝑜∗𝑥𝑖𝑗

𝐿

𝑛

𝑗=1

+ 𝑠𝑖
−𝑜∗ = 𝑥𝑖𝑜

𝐿 ≤ 𝑥𝑖𝑙
𝐿 , ∀𝑖, 𝑖 ≠ 𝑘,

∑𝜆 𝑗
𝑜∗𝑥𝑘𝑗

𝐿

𝑛

𝑗=1

+ 𝑠𝑘
−𝑜∗ = 𝑥𝑘𝑜

𝐿 < 𝑥𝑘𝑙
𝐿 ,

∑𝜆 𝑗
𝑜∗𝑦𝑟𝑗

𝑈

𝑛

𝑗=1

− 𝑠𝑟
+𝑜∗ = 𝑦𝑟𝑜

𝑈 ≥ 𝑦𝑟𝑙
𝑈 ∀𝑟,

∑𝜆 𝑗
𝑜∗

𝑛

𝑗=1

= 1,

𝜆 𝑗
𝑜∗ ≥ 0, ∀𝑗,

𝑠𝑟
+𝑜∗ ≥ 0, ∀𝑟,

𝑠𝑖
−𝑜∗ ≥ 0 ∀𝑖.

 488 

 489 
Now define: 490 

𝑠̃𝑖
− = 𝑥𝑖𝑙

𝐿 −∑𝜆 𝑗
𝑜∗𝑥𝑖𝑗

𝐿

𝑛

𝑗=1

− 𝑠𝑖
−𝑜∗ = 𝑥𝑖𝑙

𝐿 − 𝑥𝑖𝑜
𝐿 ≥ 0, 𝑖 = 1,… ,𝑚, 𝑖 ≠ 𝑘,

𝑠̃𝑘
− = 𝑥𝑘𝑙

𝐿 −∑𝜆 𝑗
𝑜∗𝑥𝑘𝑗

𝐿

𝑛

𝑗=1

− 𝑠𝑘
−𝑜∗ = 𝑥𝑘𝑙

𝐿 − 𝑥𝑘𝑜
𝐿 > 0,

𝑠̃𝑟
+ =∑𝜆 𝑗

𝑜∗𝑦𝑟𝑗
𝑈

𝑛

𝑗=1

− 𝑠𝑟
+𝑜∗ − 𝑦𝑟𝑙

𝑈 = 𝑦𝑟𝑜
𝑈 − 𝑦𝑟𝑙

𝑈 ≥ 0, 𝑟 = 1,… , 𝑠.

 491 

 492 
Therefore, (𝜆 𝑜∗, 𝑠−𝑜∗ + 𝑠̃−, 𝑠+𝑜∗ + 𝑠̃+) is a feasible solution for model (12a) 493 

evaluating 𝐷𝑀𝑈𝑙 . Since, 𝑠𝑘
−𝑜∗ + 𝑠̃𝑘

− > 𝑠𝑘
−𝑜∗ we have: 494 

 495 

𝑍𝑙
∗ ≥∑𝑤𝑖

−(𝑠𝑖
−𝑜∗ +

𝑚

𝑖=1

𝑠̃𝑖
−) +∑𝑤𝑟

+(𝑠𝑟
+𝑜∗ + 𝑠̃𝑟

+)

𝑠

𝑟=1

>∑𝑤𝑖
−𝑠𝑖
−𝑜∗

𝑚

𝑖=1

+∑𝑤𝑟
+𝑠𝑟
+𝑜∗

𝑠

𝑟=1

= 𝑍𝑜
∗ . 496 

 497 

Similarly, we can prove that 𝑍𝑙
− ≥ 𝑍𝑜

−. Therefore, 
𝑍𝑜
∗+𝑍𝑜

−

2
<
𝑍𝑙
∗+𝑍𝑙

−

2
. Therefore, 498 

𝑉𝑜 ≥𝑙𝑒𝑥 𝑉𝑙 .  499 
 500 
Next theorem provides the main property of our ranking method. 501 
 502 

Theorem 4. The rank of DMUs belonging to 𝐸++ is better than the rank of DMUs in 𝐸+ 503 
and the rank of DMUs belonging to 𝐸+ is better than the units in 𝐸−. 504 
Proof: Suppose that 𝑜, 𝑙, 𝑒 ∈ {1, … , 𝑛}, and let 𝑜 ∈ 𝐸++, 𝑙 ∈ 𝐸+, 𝑒 ∈ 𝐸−. According to 505 
definition of  𝐸++ and 𝐸+, it is clear that: 506 
 507 

𝐸𝑜
𝐿 > 1, 𝐸𝑜𝑜

𝑈 = 1
𝑦𝑖𝑒𝑙𝑑𝑠
→   max{𝐸𝑜

𝐿 , 𝐸𝑜𝑜
𝑈 } = 𝐸𝑜

𝐿 > 1 (14)

𝐸𝑙
𝐿 ≤ 1, 𝐸𝑙𝑙

𝑈 = 1
𝑦𝑖𝑒𝑙𝑑𝑠
→   max{𝐸𝑙

𝐿 , 𝐸𝑙𝑙
𝑈} = 𝐸𝑙𝑙

𝑈 = 1 (15)
 508 

 509 
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From (14) and (15), we can conclude that: 510 
 511 

max{𝐸𝑜
𝐿 , 𝐸𝑜𝑜

𝑈 } > max{𝐸𝑙
𝐿 , 𝐸𝑙𝑙

𝑈}. 512 
 513 
So, 𝐷𝑀𝑈𝑜 has a better rank than 𝐷𝑀𝑈𝑙 . 514 
 515 

𝐸𝑙
𝐿 ≤ 1, 𝐸𝑙𝑙

𝑈 = 1
𝑦𝑖𝑒𝑙𝑑𝑠
→   max{𝐸𝑙

𝐿 , 𝐸𝑙𝑙
𝑈} = 𝐸𝑙𝑙

𝑈 = 1

𝐸𝑒
𝐿 < 1, 𝐸𝑒𝑒

𝑈 ≤ 1
𝑦𝑖𝑒𝑙𝑑𝑠
→   max{𝐸𝑒

𝐿 , 𝐸𝑒𝑒
𝑈 } ≤ 1.

 516 

 517 
If  max{𝐸𝑙

𝐿 , 𝐸𝑙𝑙
𝑈} > max{𝐸𝑒

𝐿 , 𝐸𝑒𝑒
𝑈 } then 𝑉𝑙 ≥𝑙𝑒𝑥 𝑉𝑒 . Otherwise, since 𝑙 ∈ 𝐸+ and 𝑒 ∈ 𝐸− 518 

therefore, 𝐸𝑙
𝑈 > 1 and 𝐸𝑒

𝑈 ≤ 1, and we have 𝐸𝑙
𝑈 > 𝐸𝑒

𝑈. Hence, 𝑉𝑙 ≥𝑙𝑒𝑥 𝑉𝑒 .  519 
 520 
In the next section, we provide two numerical example to illustrate our ranking method. 521 

4 Numerical example 522 

Example 2. Consider the data of five DMUs reported in Example 1. As we see in Example 523 
1, Table 5 reports the data units, the lower efficiency score (𝐸𝑜𝑜

𝐿 ), the upper efficiency 524 
score (𝐸𝑜𝑜

𝑈 ), the lower super efficiency score (𝐸𝑜
𝐿) and the upper super efficiency score 525 

(𝐸𝑜
𝑈) of DMUs. Now, we apply our ranking method for the data in this example. So, we 526 

should solve models (12a), (12b), (13a) and (13b) and obtain the optimal objective values 527 
𝑍𝑜
∗, 𝑍𝑜

−,𝑊𝑜
∗ and 𝑊𝑜

− to measure the distance of each unit from the best efficiency frontier, 528 
the worst efficiency frontier, the best inefficiency frontier and the worst inefficiency 529 
frontier, respectively. The results are summarized in Table 6. 530 

Now, we should assign a 4-vector 𝑉𝑜 = (max{𝐸𝑜
𝐿 , 𝐸𝑜𝑜

𝑈 } , 𝐸𝑜
𝑈 , −

𝑍𝑜
∗+𝑍𝑜

−

2
,
𝑊𝑜
∗+𝑊𝑜

−

2
), reported 531 

in Table 7, to 𝐷𝑀𝑈𝑜, 𝑜 ∈ {1, … , 𝑛}. Finally, we rank the vectors 𝑉𝑗 , 𝑗 = 1, … , 𝑛, by 532 
lexicographic order. The first component of 𝑉𝐴, 𝑉𝐵 and 𝑉𝐶 are the same and greater than the 533 
first component of 𝑉𝐷 and 𝑉𝐸 , hence, we should compare the second component of 𝑉𝐴, 𝑉𝐵 534 
and 𝑉𝐶 to determine the rank of 𝐴, 𝐵 and 𝐶. As we can see, the second component of 𝑉𝐴, 𝑉𝐵 535 
and 𝑉𝐶 are 3, 1.17 and 0.83, respectively. Therefore, units 𝐴,𝐵 and 𝐶 have the ranks 1, 2 536 
and 3, respectively. Then, we must determine the rank of 𝐷 and 𝐸. The first component of 537 
𝑉𝐷 and 𝑉𝐸 are 0.20 and 0.25, respectively. Hence, units 𝐷 and 𝐸 have the ranks 5 and 4, 538 
respectively. The last column of Table 7 reports the obtained rank of units by our ranking 539 
method. Our method ranks all efficient and inefficient units. As we can see in Table 1 and 540 
Table 7, 𝐴, 𝐵 ∈ 𝐸+ and the rank of them is better than the rank of each unit 𝐶, 𝐷, 𝐸 ∈ 𝐸−. 541 

 542 
Example 3. In this example, the results of applying our proposed approach to the dataset 543 
in Jahanshahloo et al. (2011) are presented. This dataset has 30 decision making units 544 
which are branches of Tehran social security insurance organization with three inputs, The 545 
number of personal (𝐼1), the total number of computers (𝐼2), the area of the branch (𝐼3) in 546 
order to produce four outputs, the total number of insured persons (𝑂1), the number of 547 
insurance policies (𝑂2),  the total number of old age pensioners (𝑂3) and the received total 548 
sum (Income) (𝑂4). The input /output data are reported in Table 8. We apply our ranking 549 
method the dataset in this example. So, we should solve models (1b), (2a) and (2b) to obtain 550 
the upper efficiency score (𝐸𝑜𝑜

𝑈 ), the lower super efficiency score (𝐸𝑜
𝐿) and the upper super 551 

efficiency score (𝐸𝑜
𝑈) for 𝐷𝑀𝑈𝑜, 𝑜 ∈ {1, … , 𝑛} and then, the results are summarized in 552 

columns 2, 4 and 5 of Table 9, respectively. In Table 9, column 3 represent the efficiency 553 
status of all units according to Definition 1, column 6 shows the category that each unit 554 
belongs to it and column 7 specify the extreme efficient units according to Definition 2. 555 
Then, we solve models (12a), (12b), (13a) and (13b) and obtain 𝑍𝑜

∗, 𝑍𝑜
−,𝑊𝑜

∗ and 𝑊𝑜
− to 556 

measure the distance of each unit from the efficiency frontiers and inefficiency frontiers, 557 
the results are reported in columns 8, 9, 10 and 11 of Table 9, respectively.  558 

Then, we assign a 4-vector 𝑉𝑜 = (max{𝐸𝑜
𝐿 , 𝐸𝑜𝑜

𝑈 } , 𝐸𝑜
𝑈 , −

𝑍𝑜
∗+𝑍𝑜

−

2
,
𝑊𝑜
∗+𝑊𝑜

−

2
), reported in the 559 

second column of Table 10, to each unit 𝐷𝑀𝑈𝑜. Finally, we rank the assigned vectors to 560 
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units by lexicographic order. The obtained rank by our proposed method and the method 561 
of Jahanshahloo et al. (2011) are shown in columns 3 and 4 of Table 10. The Spearman’s 562 
rank order correlation between our proposed method and the method of Jahanshahloo et al. 563 
(2011) is 0.76. It can be seen that our method and the method of Jahanshahloo et al. (2011) 564 
have a relatively high correlation at least in this instance.  565 

5 Conclusions and further research 566 

In many real world situations, the inputs and/or outputs of decision making units can 567 
be given as imprecise data. One of the attractive issues in IDEA is to rank the units. This 568 
paper addressed the problem of ranking DMUs with interval data which is a special case 569 
of uncertainty in data. The contribution of this study is to develop a powerful method for 570 
ranking DMUs with interval data as our proposed approach has all desirable features 571 
expected for ranking methods. We extended some concepts in traditional DEA such as 572 
super efficiency, extreme efficient unit and dominated units to Interval DEA and then 573 
proposed an original approach to rank all units with interval data. Our proposed method 574 
was based on four preferences: the maximum value for the lower super efficiency score 575 
and the upper efficiency score, the maximum value for the upper super efficiency score, 576 
the minimum value for the average of distances of unit from the best and the worst 577 
efficiency frontiers and the maximum value for the average of distances of unit from the 578 
best and the worst inefficiency frontiers. Then, we assigned a 4-vector to each unit by 579 
regarding these preferences. Finally, the rank of DMUs obtained by comparing the 580 
assigned vectors with the lexicographic order. Our method ranks all efficient and inefficient 581 
units that is one of the main advantages of it. Also it uses several essential criteria 582 
simultaneously to rank units with interval data which these criteria increase the 583 
discrimination power of our proposed method and this is another advantage of our method. 584 
We proved that our proposed method has all desirable features that are expected for a 585 
ranking method. 586 

The idea of this paper can be extended for ranking DMUs with interval data by using 587 
another method such as TOPSIS instead of lexicography method. 588 
 589 
 590 
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Figure 1. The PPS for five DMUs in Example 1. 

 

 

 

 
Figure 2. 𝐿𝐵𝐶  and 𝐿𝑊𝐶  for units in example 1. 
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Figure 3. The efficiency and inefficiency frontiers. 

 

 

 

 
Figure 4. The values of 𝐸𝑜𝑜

𝑈 , 𝐸𝑜
𝐿 and 𝐸𝑜

𝑈 for all units. 
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Figure 5. Heatmap graph of the distances of each unit from the frontiers. 
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Table 5. The data and obtained results for five DMUs in Example 1. 

DMU Input Output 𝐸𝑜𝑜
𝐿  𝐸𝑜𝑜

𝑈  Efficient 𝐸𝑜
𝐿 𝐸𝑜

𝑈 Extreme efficient 

unit 

A [1, 3] [2, 4] 0.33 1.00 Yes 1.00 3.00 Yes 

B [3, 5] [4, 6] 0.20 1.00 Yes 0.20 1.17 Yes 

C [6, 8] [6, 8] 0.37 1.00 Yes 0.37 1.00 No 

D [5, 7] [2, 3] 0.14 0.20 No 0.14 0.20 No 

E [8, 9] [2, 5] 0.11 0.25 No 0.11 0.25 No 

 

 

Table 6. The distances of each unit from the efficiency and inefficiency frontiers. 

DMU 𝑍𝑜
∗ 𝑍𝑜

− 𝑊𝑜
∗ 𝑊𝑜

− 

A 0.00 0.00 2.75 3.00 

B 0.00 0.00 3.00 3.00 

C 0.00 0.00 2.00 2.00 

D 2.50 2.00 0.00 1.00 

E 3.00 3.00 0.00 0.00 

 

 

Table 7. The obtained rank of units by our proposed method.  

DMU 𝑉𝑜 Rank 

A (1.00, 3.00, 0.00, 2.88) 1 

B (1.00, 1.17, 0.00, 3.00) 2 

C (1.00, 0.83, 0.00, 2.00) 3 

D (0.20, 0.20, -2.25, 0.50) 5 

E (0.25, 0.25, -3.00, 0.00) 4 
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Table 8. The inputs and outputs for 30 branches of the insurance organization. 

DMU 𝐼1
𝐿  𝐼1

𝑈 𝐼2
𝐿 𝐼2

𝑈 𝐼3
𝐿 𝐼3

𝑈 𝑂1
𝐿 𝑂1

𝑈 𝑂2
𝐿 𝑂2

𝑈 𝑂3
𝐿 𝑂3

𝑈 𝑂4
𝐿 𝑂4

𝑈 

1 96 100 86 87 4000 4000 55830 57318 30 45 1307 1350 145 192 

2 75 81 88 90 2565 2565 36740 36852 0.001 22 8385 8571 175 486 

3 77 80 85 89 1343 1343 38004 38783 11 27 6588 6601 113 276 

4 91 94 93 96 1500 1500 35469 36017 10 55 10820 10821 128 316 

5 89 92 83 83 1680 1680 52927 54817 9 43 9493 9751 101 263 

6 102 105 97 97 3750 3750 70254 78574 7 19 7536 8752 82 615 

7 96 100 90 92 3313 3313 32585 37443 47 129 14118 14994 154 392 

8 85 90 92 92 1500 1500 42900 47270 11 27 1634 1661 54 220 

9 106 112 84 92 1600 1600 85399 87220 43 97 10206 10775 179 289 

10 107 111 95 95 1725 1725 46924 47316 9 36 6608 6823 117 342 

11 94 101 78 78 1920 1920 36652 44298 81 242 11996 12261 37 286 

12 78 79 89 89 4433 4433 39582 39620 11 31 7422 7624 124 184 

13 102 102 107 111 2500 2500 56144 58816 30 57 7380 7936 185 430 

14 82 88 92 94 2800 2800 87716 90250 28 43 630 660 51 167 

15 77 82 92 94 1630 1630 50210 50593 6 16 10247 10256 28 295 

16 89 91 85 85 1127 1127 47727 49489 15 30 7302 7542 85 286 

17 84 90 104 104 3400 3400 52923 53249 15 28 4740 5058 109 240 

18 94 108 91 92 1304 1304 78550 89111 13 25 4745 5151 72 224 

19 97 103 95 96 4206 4206 46154 46791 13 21 1611 1636 129 477 

20 82 87 100 101 1340 1340 27978 32943 29 325 14473 14820 190 368 

21 71 73 88 90 1393 1393 27128 27940 0.001 20 921 973 55 179 

22 112 118 120 123 2191 2191 102175 103047 31 49 252 3577 120 320 

23 80 86 100 100 2140 2140 31819 35627 12 32 1963 2147 156 522 

24 87 93 91 93 1231 1231 51345 55163 35 73 10157 10238 85 205 

25 97 103 90 90 1960 1960 72915 74633 40 52 4193 4668 112 427 

26 79 83 81 81 3375 3375 42887 44363 11 33 560 628 218 390 

27 107 110 101 101 2540 2540 78068 79695 26 46 8963 9338 136 265 

28 96 102 87 97 1603 1603 71743 72534 50 92 8762 12569 102 240 

29 67 69 81 86 2300 2300 38054 38914 13 33 1405 1477 23 156 

30 88 93 90 94 2930 2930 63182 64541 10 32 11143 11609 122 378 

715 



Table 9. The results for 30 branches of the insurance organization. 

DMU 𝐸𝑜𝑜
𝑈  Efficient 𝐸𝑜

𝐿 𝐸𝑜
𝑈 Category Extreme efficient 𝑍𝑜

∗ 𝑍𝑜
− 𝑊𝑜

∗ 𝑊𝑜
− 

1 0.674 No 0.629 0.674 𝐸− No 0.885 0.694 0.000 0.060 

2 1.000 Yes 0.705 1.123 𝐸+ Yes 0.000 0.073 0.156 0.000 

3 0.848 No 0.629 0.848 𝐸− No 0.468 0.520 0.235 0.265 

4 0.864 No 0.762 0.864 𝐸− No 0.633 0.501 0.169 0.200 

5 0.870 No 0.785 0.870 𝐸− No 0.384 0.263 0.467 0.510 

6 1.000 Yes 0.778 1.248 𝐸+ Yes 0.000 0.373 0.000 0.000 

7 1.000 Yes 0.994 1.120 𝐸+ Yes 0.000 0.000 0.000 0.000 

8 0.697 No 0.492 0.697 𝐸− No 0.838 0.710 0.238 0.091 

9 1.000 Yes 1.036 1.205 𝐸++ Yes 0.000 0.000 0.910 1.000 

10 0.836 No 0.533 0.836 𝐸− No 0.933 0.881 0.183 0.215 

11 1.000 Yes 0.990 1.132 𝐸+ Yes 0.000 0.000 0.299 0.000 

12 0.715 No 0.693 0.715 𝐸− No 0.700 0.503 0.000 0.000 

13 0.851 No 0.673 0.851 𝐸− No 0.577 0.354 0.384 0.440 

14 1.000 Yes 1.055 1.192 𝐸++ Yes 0.000 0.000 0.000 0.000 

15 0.993 No 0.890 0.993 𝐸− No 0.021 0.000 0.000 0.000 

16 1.000 Yes 0.857 1.074 𝐸+ Yes 0.000 0.245 0.355 0.392 

17 0.737 No 0.655 0.737 𝐸− No 0.629 0.546 0.000 0.261 

18 1.000 Yes 1.105 1.254 𝐸++ Yes 0.000 0.000 0.000 0.746 

19 0.808 No 0.481 0.808 𝐸− No 0.962 1.000 0.000 0.000 

20 1.000 Yes 1.340 1.900 𝐸++ Yes 0.000 0.000 0.249 0.000 

21 0.566 No 0.376 0.566 𝐸− No 1.000 0.774 0.000 0.000 

22 0.990 No 0.881 0.990 𝐸− No 0.081 0.000 1.000 0.000 

23 1.000 Yes 0.435 1.291 𝐸+ Yes 0.000 0.709 0.031 0.000 

24 1.000 Yes 0.977 1.012 𝐸+ Yes 0.000 0.000 0.423 0.483 

25 1.000 Yes 0.577 1.085 𝐸+ Yes 0.000 0.671 0.652 0.330 

26 0.804 No 0.593 0.804 𝐸− No 0.641 0.000 0.000 0.000 

27 0.887 No 0.839 0.887 𝐸− No 0.326 0.203 0.697 0.819 

28 1.000 Yes 0.852 1.065 𝐸+ Yes 0.000 0.000 0.750 0.783 

29 0.626 No 0.542 0.626 𝐸− No 0.738 0.593 0.000 0.000 

30 1.000 Yes 0.908 1.056 𝐸+ Yes 0.000 0.000 0.584 0.649 
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Table 10. The rank of units by our method and the method of Jahanshahloo et al. (2011). 

DMU The assigned vector (𝑉𝑜) Rank (Our method) Rank (Jahanshahloo et al. (2011)) 

1 (0.674, 0.674, -0.790, 0.030) 28 23 

2 (1.000, 1.123, -0.036, 0.078) 8 18 

3 (0.848, 0.848, -0.494, 0.243) 21 22 

4 (0.864, 0.864, -0.567, 0.184) 19 17 

5 (0.870, 0.870, -0.324, 0.488) 18 15 

6 (1.000, 1.248, -0.187, 0.000) 5 16 

7 (1.000, 1.120, 0.000, 0.000) 9 6 

8 (0.697, 0.697, -0.774, 0.165) 27 27 

9 (1.000, 1.205, 0.000, 0.955) 6 1 

10 (0.836, 0.836, -0.907, 0.199) 22 26 

11 (1.000, 1.132, 0.000, 0.150) 7 5 

12 (0.715, 0.715, -0.601, 0.000) 26 19 

13 (0.851, 0.851, -0.456, 0.412) 20 20 

14 (1.055, 1.192, 0.000, 0.000) 3 4 

15 (0.993, 0.993, -0.011, 0.000) 15 9 

16 (1.000, 1.074, -0.122, 0.374) 11 11 

17 (0.737, 0.737, -0.588, 0.131) 25 21 

18 (1.105, 1.254, 0.000, 0.382) 2 3 

19 (0.808, 0.808, -0.981, 0.000) 24 28 

20 (1.340, 1.900, 0.000, 0.124) 1 2 

21 (0.566, 0.566, -0.887, 0.000) 30 30 

22 (0.990, 0.990, -0.041, 0.500) 16 10 

23 (1.000, 1.291, -0.355, 0.015) 4 29 

24 (1.000, 1.012, 0.000, 0.453) 14 7 

25 (1.000, 1.0855, -0.336, 0.491) 10 14 

26 (0.804, 0.804, -0.320, 0.000) 23 24 

27 (0.887, 0.887, -0.265, 0.758) 17 13 

28 (1.000, 1.065, 0.000, 0.766) 12 12 

29 (0.626, 0.626, -0.666, 0.000) 29 25 

30 (1.000, 1.056, 0.000, 0.617) 13 8 

 


