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The wire drive pulse—echo system has been extensively used to
excite and measure modes of vibration of thin rectangular plates.
The frequency spectra of different modes have been investigated as
a function of the material elastic moduli and the plate geametry.
Most of the work was carried out on isotropic materials.

For square plates a wide selection of materials were used. These
were made isotropic in their in-plane dimensicns where the
displacements are taking place. The range of materials enabled the
dependence on Poisson's ratio to be investigated. A method of
determining the value of Poisson's ratio resulted fram this
investigation.

Certain modes are controlled principally by the shear modulus.
Of these the fundamental has two nodal lines across the plate
surface. One of them, which has nodes at the corners, (the Lamé mode)
is uniquely a pure shear mode where the diagonal is a full wave
length. One controlled by the Young's modulus has been found.

The precise harmonic relationship of the Lamé mode series in
square and rectangular plates was established. Use of the Rayleigh-
Lamb equation has extended the theoretical support.

The low order modes were followed over a wide range of sides
ratics. Two fundamental types of modes have been recognised: These
are the longitudinal modes where the frequency is controlled by the.
length of the plate only and the 24f product has an asymptotic value
approaching the rod velocity. The other type is the in-—;zalane flexural
modes (in effect a flexurally vibrating bar where the 2“/w is the
gecmetrical parameter]. Where possible the experimental work was
related to theory. Other modes controlled by the width dimension of
the plate were followed.

Anisotropic materials having rolled sheet elastic symmetry were
investigated in terms of the appropriate theory. The work has been
extended to examine materials fraom welds in steel plates.

'Key Words -

IN-PIANE VIBRATION, RECTANGULAR PLATE, ELASTIC ANISOTROPY,
' MATERTAL CHARACI.’ERISATION , RAYLEIGH-LAMB.




ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude
to his supervisor, Dr. J. F. W. Bell, for his guidance
and encouragement during his study. Thanks are also due
to Mr. F. Hunt, Mr., B. Hale and the late Mr. E. Clenton
in the departmental workshop for their fruitful help in

preparing the samples required for these investigations.

Special thanks to all my colleagues and the technicians
in the Department of Electrical and Electronic Engineering
fof their co-operative and their cheerful characters.
Finally, thanks are due to Helen Turner for her patience

in typing this thesis.




- CONTENTS

List of Symbols

List of Figures

" CHAPTER ONE

GENERAL INTRODUCTION

CHAPTER TWO

THE

INSTRUMENTS AND THE TECHNIQUES OF THE MEASUREMENTS
Introduction

The Pulse Echo System - Basic Feature

The Magnetostrictive Probe

The Vibrational Nodal Pattexn Identification

The Driyving Technigue

CHAPTER THREE

THE

3.8

RESONANT MODES OF SQUARE PLATES
Introduction

Some Experimental Considerations

Low Order Square Plate Modes

The Resonant Frequency Characterisation
The Modes of Harmonic Relations

The Rod Modulus Mode

The Anisotropic Effects of the Grain Orientations
on the Resonant Modes of the Square Plate
3.7.1 The Symmetrical Modes

3.7.2 The Non-Symmetrical Modes

Non-Homogeneous Materials Study

(1)

10
11

19
19
21
23
29
31

33

34
35

36



- CHAPTER FOUR

FREQUENCY SPECTRUM OF RECTANGULAR PLATES
4.1 Introduction
4,2 Presentation of the Observations
4,3 Aspects of the In-Plane Reétangular Plate Modes
4,4 Some Spectral Characteristics
4.4.1 The Lamé Mode
4,4,2 The Mason Mode
4,4,3 The Breathing Mode
4,4,4 The End Resonance
4.5 Non-Imaging Spectrum Mode
4.6 The Other Mddes
4.7 Mode Degeneracy of the Rectangular Plate

4.8 General Comments

CHAPTER FTIVE

WAVES AND VIBRATIONS IN ISQTRQPIC RECTANGULAR PLATES
AND STRIPS

5.1 Introduction

5.2 The Basic Theory

5.3 The Longitudinal Resonance

5.4 The Longitudinal Resonant Mode Relations

5.5 Final Comments

CHAPTER SIX

THE LONGITUDINAL ELASTICITY MEASUREMENTS OF
ANISOTROPIC MATERIALS

6.1 Introduction

(ii)

54
54
56
57
59
61
64
66
68
70
75
76

77

106

106
107
115
123

126

159

159




6.2

General Aspects of Anisotropic Effects on the

Modal Resonances

Samples Preparation

Young's Modulus Relations with the Grain

Orientation

Comparison with the Theoretical Concept

Applications in Weld Ingpection

6.6.1 Experimental Investigations of the
Longitudinal Wave Velocity Through
Austenitic Weldments

Final Comments and Recommendation for Furthex

Investigations

APPENDIX A

APPENDIX B

BIBLIOGRAPHY

(iii)

161

163

168
170

172

174

189
200

205



LIST OF SYMBOLS

half the plate thickness, and its equal to half

the width of the strip

the plate length -

the plate width
the resonant frequency
the wave length
the propagation cgnstant~= Y
the radial frequency = 2nf
the rod velocity
the plate velocity
the shear velocity
the phase velocity = 2&£
<§§L2 = G52
p
Poisson's ratio
the phase velocity normalised to the shear velocity
= (Cc,/cql
the phase velocity normalised to the plate velocity
= CCQ/CPL
the phase velocity normalised to the rod velocity

= (CQ/COL

(iv)




LIST OF FIGURES

Figure' Page

2.1 A schematic diagram of the pulse—echo 13
system.

2.2 A typical oscillogram of the echo pattern 14

2.3 A sketch for the magnetostrictive probe 15

2.4 Shows some typical vibrational patterns of 16

square.plate modes .

2.5 Shows the conditions to drive different '17-18
modes of square and rectangular plates.

3.1 The sketches for the lowest fifteen modes of 37
the square plate resonator.

3.2 - Shows the vibrational nodal patterns for the 38
lowest order modes of the square plate and
‘their corresponding disk modes.

3.3 Shows photographically the set of the samples 39
used in the experiment.

3.4 The graphical plot for variations of square 40
plate modes as a function of Poisson's ratio.

3.5 Shows the variation of the breathing mode to 41
the Lamé mode frequency ratio as a function
of Poisson's ratio.

3.6 Demonstrates the harmonic relationships of 42
the Lamé modes series.

3.7 The graphical plot for the variations of the 43
squarxe plate modes normalised to the shear .

velocity as a function of Poisson's ratio.

(v)




Shows the variations of different square
plate modes normalised tQ the rod wayve
Velociﬁy as a function of Poisson's ratio.
The grain Orientati@n effects on the

different square plate modes.

_ The variation of the two fundamental modes

with the grain orientations and the effect
of this on the apparent Poisscon's ratio of
the material.

Sketches for symmetrical and non-symmetical
nodal pattern configurations showing the
effect of the grain orientati@n on the
mode splitting,

Spectrum for nuclear graphite showing effect
of anisotropy.

A sketch illustrating the method of
presenting the observation.

Showé an empirical representation of the
spectrum of different @luminium rectangular

plate modes.

~ The fundamental longitudinal and the

fundamental flexural mode of the rectangular

plate.

The typical vibrational patterns of the

symmetrical and non-symmetrical modes and

. their variations with the drive conditions.

(vi)

Page

44

45

46

47

48

80

81

82

83




Figure

4.5

4.8

4,10

4.12

Shaows the modal configuration pattern of

the fundamental Lamé mode and its variation
with the plate geometry.

The symmetrical and the anti-symmetrical
longitudinal modes of a narrow strip.
Graphical plot for the first and the third
longitudinal modes.

Shows sketches for the vibrational patterns
of the Mason mode and its variation with the
plate geometry.

Shows the graphical representation of the
progress of the breathing mode as the plate
geometry changes.

The graphical plot of the breathing mode for
three different materials measured.

Shows the variations of both the end
resonance and the Lamé mode as a function of
Poisson's ratio.

Sketches of the vibrational patterns for the
two modes which are combined to form the end
resonance.

The graphical variations of the value of %——
with the plate geometry for the fundamental
flexural mode.

sketches for the vibrational pattern of the
fundamental flexural mode and its variation

with the plate geometry -

(vii)

- Pagey,

84

85
86

87

88

89

90

91

92




- Figure

4,15

4.17

Shows graphically the variation of mode
(1,3) with the plate geometry. The mode
split to two different modes (2nd
longitudinal and 3rd flexural).

The variation of the vibrational pattern of
mode (1,3) as the plate geometry change.
Two modes are generated as a result of the
plate ended to a long narrow strip.
Sketches for the variations of the
vibrational pattern for mode (2,2) with the
plate geometry.

The co-ordinate system of an isotropic
elastic plate of infinite length and width
with thickness (2b), and the corresponding
thin strip of width (w).

Shows graphical plots for the first three
modes of the Rayleigh-Lamb's equation. The
phase velocity normalised to the shear
velocity is plotted as a function of (w/A)
The graphical plot shows the variation of

the frequency ratio of the breathing mode

to the Lamé mode as a function of Poisson's

ratio.

The frequency spectrum for the first five .
modes as a function of (w/A). The modes are
solutions of the Rayleigh-Lamb frequency

equation. (Poisson's ratio = 0.33].

(viii)

95-96

1. 97

128

129

130

131




- Figure - Page

5.5 Shows some vibrational patterns of the 132
square plate modes and their defining values

of the width-to-wavelength ratios.

5.6 Sketches of the lowest vibrational modes 133
of a rectangular plate.
5.7 Graphibal plot shows the variations of the 134

longitudinal resonance normalised to the rod
velocity as a function of (w/)) for different
Poisson's ratio values. R. obtained from

the solution of Rayleigh-Lamb frequency

equation.

5.8 Graphical plot shows the variation of the 135

phase velacity normalised to (Col as a

function of (w/A) for an Aluminium

rectangular strip.
5.9 The graphical variations of the corrected 136
phase velocity as a function of Poisson's

ratio for an Aluminium rectangular strip.

-]

5.10 The graphical plot for the variation of the 13
phase velocity as a function of Poisson's

ratio for the silica rectangular strip.

5.11 Graphical plot of the corrected phase L 138
velocity for different Poisson's ratio for
silica rectangular strip.

5.12 The variation of the longitudinal phase 139
velocity as a function of (w/\) for the glass

rectangular strip. :

(ix)




- Figure " Page

5.13 The variation of the corrected longitﬁdinal 140
phase velocity for different Poisson's ratio
values (glass stripl}.

5.14 The variation of the longitudinal phase 141
velocity with (w/A) for pyrolytic graphite.

5.15 The variation of the corrected longitudinal 142
phase Velocity for different Poisson's ratio
values (pyrolytic graphite strip).

5.16 This shows the variation of the longitudinal 143

phase velocity for silica rectangular strip

as a function @f n ,nz and n3 where (n) is the
mode order.
5.17 Shows the variation of the longitudinal 144

phase,velocity for an Aluminium strip as a
function of n, n2 and n3 where (n) is the
mode order.

6.1 Demonstrates the effect of the grain 176
direction on certain modes of different
resonators.

6.2 Shows photographically the samples prepared 177
in strip geometries with grains directed at
an angle with the length of the strip.

6.3 The variation of the rod velocity with the 178
grain direction for shim steel strip.

6.4 Shows graphically the variation of the 179
Young's modulus as a function of the grain

orientation for shim steel and steel (A).

(x)




'Figure' : - Page

6.5 Shows_gxaphically~the.variation of the 180
Youngt!s modulus as a function of the grain
orientation for steel (B).

6.6 The variation of the Young's modulus as a 181
function of the grain orientation for
steel (B).

6.7 Shows the theoretical and experimental 182
results of the variation of the elastic
constants with the grain direction for shim
steel metal sheet.

6.8 The longitudinal velocity (C.) variations 183
with respect to the grain angle for the

two welds.

(xi)



CHAPTER ONE

GENERAL INTRODUCTION

The differential equations for in-plane vibrations

(50)).

of thin isotropic plates are well established (Love 1926
Their solutions are particularly difficult for any but
the simple circular plate, which in effect has only one
boundary. The complete solutions involving all possible
modes of vibration were obtained through numerical methods

as used by HollanchOL.

For the cartesian case of square and rectangular
plates,only one satisfactory solution has been obtained.
This is the Lamé mode of square plates where the corners
are nodes. In this work, which is essentially
experimental, a very large number of modes has been studied.
Extensive use has been made of the approximate solutions

obtained by Holland(3l ) (48,49)

and Redwood .The pulse
echo technique used is applicable to all materials and
by using these with a wide selection of Poisson's ratio

a fresh insight has been obtained.

As stated, for thin plates having rectangular
geometries, a general solution of the differential
equations of motion is not at present der ivable. The
difficulty of obtaining the exact solution is due to the

restrictions imposed by the boundary conditions of the

-1—



straight edges of the plate. Certain related modes with
no disélacements at the corners have been solved by

M. G. Lamé, 1866(‘45 1. Since then, various approximate
methods have been developed and employed to obtain the
solution of other vibrational modes of rectangular plates.
For instance, Eksteinczzl has applied a perturbation

(691

method; Mindlin and Medick have developed an

(78)

approximate plate theory; M. One has approached the

problem via an approximate theory based on an energy
principle;EerNissg?Qhas developed the coupled-mode theory;
Lloyd and Redwoodc48l have employed the finite difference
method to find the solution of different rectangular
plate vibrational modes; and recently R. Holland(31 )has
obtained more accurate results by applying a technique
similar to that used by Ekstein. In his work, the frequency
spectra for rectangular plate modes have been determined
and represented as a function of Poisson's ratio.
Extensive theoretical data for the normalised resonant
frequencies of different modes as a function of width-

to-length ratios and Poisson's ratio values are fully

represented in reference (32).

Experimentally, the method employed to excite and
to measure these modes has been only partially successful.
This is initially due to the finite thickness of the plate,
which requires special techniques to excite the different

(23 )

modes. An optical interference method to observe
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the displacements on the straight edge of the plate has

(1,48,49,78) made use of a

been used. Other researchers
split-quartz electrode system on the surface of the plate,
which required different electrode polarities to excite

the different modes of vibration. This method is only

applicable to piezoelectric materials.

In recent years, the explosive growth of electronic
instruments in the fields of measurements, has madé its
contribution to measurements of the natural vibrations
in response to the demand for material investigations.

By determining their elastic and their mechanical properties
the stress analysis of high temperature structural designs
can be carried out. The wire drivé type pulse-echo

G,14). L, excite and measure

system has been developed by Bell
very weak resonant vibrations with high precision under
suitable driving conditions. This has been successfully
used to excite and measure the different resonant modes

of disks(‘8’9']31

with an accuracy higher than 0.2%. The
pasic feature of the system and its diagram are

illustrated in detail in Chapter Two.

The excellent results obtained from the disk by this
method and the high accuracy of measured eigen values
have induced further application of this system for the

measurement of the freguency spectrum of rectangular plates.

The changes of the square plate resonant frequency



for different Poissonls ratio values have been
extensively investigated through the use of various
materials which were carefully machined to be isotropic
in their in-plane dimensions. It must be noted that the
disk modes have been taken as a reference in determining
the two elastic moduli (Young's modulus and Poisson's
ratio). The full results are covered in detail in

Chapter Three of this thesis.

The type of square plate modes which are principally
dependent on the shear modulus have been identified. The
sensitivity of certain modes towards the anisotropy of
the materials have.also been shown through exploring the
nodal patterns of the vibrational modes, which make use

of the magnetostrictive probe.

Modes have been followed to a finite limit dictated
by signal strength of the plate width-to-length ratio.
Two beam vibrational modes have been distinguished: these
are the longitudinal and in-plane flexural modes. Other
modes whose frequencies are controlled by the width
dimension of the plate, have also been found and
investigated. Particularly interesting were modes
associated with end resonance and with purely plate

velocity.

Chapter Four and Chapter Five cover in detail the .

full experimental results and the theoretical investigations,



which have employed the theory of the wave motion in the

plate to a limited extent.

Fur@her investigations related to the anisotropic
measurements of the materials have been carried out in
Chapter Six. The results indicate that the longitudinal
modes of a long strip are sensitive to the direction of
the grains w.r't the plate length. The method has proved
successful in measurement of the elastic constants of
materials with this symmetry. The theoretical analysis
supports the results and has giyen excellent identical

results.

Tt is clearly established that the pulse-echo method
is a sensitive instrument for measurements related to the

materials characterisations and for investigations related

to non-destructive testing and evaluations of the materials,
which have unhomogeneous properties. Part of Chapter Six
demonstrates an industrial application which has recently

been published in a periodical journal (see reference (39)).



CHAPTER TWO

THE INSTRUMENTS AND THE TECHNIQUES

OF THE MEASUREMENTS

2,1 INTRODUCTION

For many years the resonance behaviour of structures
has attracted a great deal of attention. The
theoreticians have been engaged to apply different
methods to determine theoretical solutions for certain
modes of vibration under specific geometrical and
boundary conditions. Experimentally many methods have
been employed to excite and measure these vibrational
modes, obtaining the frequency spectrum and the

associated eigen functions.

Shaw (l955)£g”in his work used the optical

intereference method to observe the surface
displacement patterns of the vibrating disks. Others
used a split-quartz electrode system on the surface of
a plate, which required different electrode polarities
to excite different modes of vibration (P. Lloyd et al.,

1966) and (R. Holland, 1968).

With the growth of electronic instruments in recent
years in the field of measurement and as a result of the

demand in non-destructive evaluation of the materials,



the wire drive pulse-echo system used here was developed
to excite the natural vibrations of certain modes, and
can resolve very weak resonances with high precision under

suitable driving conditions.

Basically, the echo system designed for resonant
ultrasonic thermometry by Bell(5'6),,Since then it has been
used for many other applications, concerning
measurement of elastic constants and internal friction

8,9,12,13,14)
of refractory materials over a wide temperature rangeg' P

2.2 THE PULSE ECHO SYSTEM - BASIC FEATURE

The pulse echo system can be considered as two
individiual units; an electronic unit which generates

and receives the signals, and the transmission line.

In the electronics a signal generator produces bursts
of oscillation, the number being controlled manually.
These are coupled to the line with a magnetostrictive
transducer producing longitudinal stress waves. The
echoes reflected from the remote end of the line, where
the resonator is attached, are then amplified and
displayed on an oscilloscope. A schematic diagram for
the system is shown in Fig. 2.1 , the transmission line
is made of nickel wire or telcoseal (nickel-iron alloy)
and should be long enough to accommodate the number of
waves needed to obtain the required echo pattern without

signal overlap. To minimise the attenuation, and the
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backward noise and echoes due to the presence of the kinks
in the line, it is important to stretch and anneal a part
of the line which is to be matched at a position about
A/4 from the end of the transmission line. The highly

stressed line has low attenuation but poor magnetostrictive

properties. Theanealed part of the line has good
magnetostrictive properties and being short does not
contribute excessively to the attenuation. A coil
provides electrical coupling and a magnetiis required to
produce a d.c. bias. The coil is tuned by means of a
decade capacitor. The echo pattern forms as a result
of combining the echo signal from the resonator and the
backward signal from the junction. These two signals
are in reverse phase, consequently they form a cross-
over at a stage when the two signals have the same
amplitude. This cross-over or a "null" is a signature
that confirms the vibration of the resonator as it
indicates that the frequency of the transmitted waves
is equal to the natural resonant frequency of the
resonator. It also confirms the coupling to the line
which is jointed to the resonator by a cementing agent.
Figure 2.2 is a typical oscillogram of the echo
pattern. The echo pattern can be regarded as two parts;
the echo signal and the echo decrement which is the
exponential radiation of the stored energy due to the
resonance and it occurs after the echo signal. The

echo signals have an amplitude of the order of one volt-

—8—



for an input sinusoidal signal of 30 V. peak-to-peak,
which is sufficiently strong for background electronic

noise to be neglected.

The attractive feature of this system is that the
electronic unit is at a far distance from the 'resonator,
so that the spectra of the bodies can be measured at

various temperatures, (Chaplain, K. R., 1980).

The electronic unit is designed to generate a sqguare
wave signals in the range from 5 kHz to 1 MHz in

frequency, the frequency limit of the techniques.

2.3 THE MAGNETOSTRICTIVE PROBE

This is another important part in the instruments
used to identify and form the exact vibrational patterns
of displacement for the resonator. Figure 2.3 shows
a sketch for the magnetostrictive probe, it consists
mainly of a thin nickel wire (0.5 mm diameter) terminated
with a magnetostrictive coil to pick up the signal. It
is tuned usually with an external capacitor, and has an
attached magnet to polarize the field. The displacement
pattern of the body can be explored by moving the line
gently across the surface of the resonator. The probe
signal will be zero at the nodal lines. Using a double
beam oscilloscope this signal and the echo can be compared.

In moving across a nodal line the probe signal reverses

-9=



the phase. Thus a precise picture can be built up for

the nodal pattern of a vibrating plate at different

resonant frequencies using this probe.

The probe can also be used to resolve two adjacent
resonant modes by identifying the most convenient

driving point for each individual mode.

2.4 THE VIBRATIONAL NODAL PATTERN IDENTIFICATION

Any individual mode of vibration will have a certain
displacement pattern of vibration (the eigen function).
This simple fact forms the basis for studying the
resonant frequency spectrum for the vibrational mode

of a thin rectangular plate.

Square isotropic plates were first investigated.
A resonance is excited when it has a component of
vibrational parallel to the line at the driving point.
Thus a diagonal corner drive will excite the Mason mode
of Fig. 2.4 which has two nodal lines parallel to the
sides of the plate but not the mode having the nodal

diagonals (Lamé mode) .

Nodal patterns were explored using the probe described
in the previous section. In moving across a node the
amplitude goes through zero and the phase reverses. While
nodes at the edges were detected easily, observations of
the nodal lines on the face of the plate were difficult

-10-



as the vibrations were in-plane.

Figure 2.4 shows some typical vibrational patterns
for simple resonances of a square plate. 1In the case of
disk resonances, the driving point determines the nodal

lines position (the mode is degenerate).

In a case where there were two nodes on each edge,
giving four nodal lines it was uncertain whether these:
actually go through the centre giving a node or parallel

to the sides giving an anti-node.

It might be important to mention that for higher
modes, some nodal lines have a curved shape rather than
a normal straight line proposed. This is also true of

flexural (Chladni) vibrations.

2.5 THE DRIVING TECHNIQUE

Knowing the vibrational pattern of displacement for
the plate resonant modes, a proper drive point could be
selected to give an optimum mechanical coupling with
the line, so that the echo signals have maximum amplitude
at that drive point. This could be of major assistance
in identifying and in resolving the different modes of
square and rectangular plate, in addition, in following
their vibrational spectra. It is obvious that the
longitudinal mode requires a drive at the far end parallel

to the length of the plate where the maximum displacements

-11-



are taking place. On the other hand, the flexural mode

(in-plane flexure of a rectangular plate) requires
different drive position, so that the displacements have

vectors parallel to the driving line.

Figure 2.5 shows the proper driving positions of
some square and rectangular plate modes. Typical modes
are shown in this figure and their vibrational patterns

are illustrated for several length-to-width ratios.

Maximising the coupling to the line will result in
a more significant form of the echo signals and,
consequently, more precise measured results will be

obtained.

~ As has been mentioned before, the magnetostrictive
probe can be of great assistance in executing this work,
as It helps to identify the.best drive point of the plate
to the line. The coupled modes (modes occur at one
frequency) can be resleed hy selecting and driving_the
plate at an appropriate.positiqn where one of these mcodes
has maximum Vibrational displacements to the line and the
other modes have a naode at that point or have less

coupling to the line.
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Fig.

2.2

A typical oscillogram of the echo pattern obtained
as a result of combining the echo signal from

the resonator and the backward signal from the
joint of the transmission line. These two signals
are in a reverse phase. The cross over indicates
that the frequency of the transmitted waves is

equal to the natural frequency of the resonator
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This is the mode first identified This is the famous Mason mode

and described by Lamé. which in Quartz has a zero
1 - coupled equal temperature co—efficient.
2 - symmetrical vibration 1= gg?ié coupling by diagonal

3 - diagonal perfect nodes
4 - analogous to (1,2) disk modes

Fig.

but drive do not control nodal

2 - symmetrical vibration

3 ~ axes perfect nodes

pattern. - analogous to (1,2) disk.

no nodal point 1 - strongly coupled tothe edges
the coupling stronger at the 2 - (Aa) is the lowest;

diagonal drive Antisymmetrical vibratiaon,

(B) is the highest;
Symmetrical vibration.

3 - (a) is a flexural type mode,
(B) is dilational tupe mode.

symmetrical vibration
analogous to (1,R) disk
(Breathing mode).

4 - Different dispersion curve,
End resonance mode.

2.4 Shows same typical vibrati&ﬁ patterns of square plate
rescnance. The mode is excited when it has a camponent
of vibration parallel to the line at the drive point.
(Dotted line plate at rest).
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BN _ L ’
N
— 1
A A
1:1 2:1 4:1
Coupllng Ay=h, A1>A2 A strong
D = Node D = significant 22 "2
A, and A, out of phase coupling D significant
(i)
C D
C D C D
B S \ \ 8
A / //_\/_______‘, P
A QJ,.J {
1:1 2:1 4:1
A is a node A is a node A is a node
Coupling B>C C>B B is weakly coupled
C and D out of C and D out of C and D best drive
phase phase C and D out of phase
(i1).
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BREATHING MODE

A .’7 ——
A, 1

1:1 2:1 4-1
£:w ratio
B B
=N__.- >
Al AQ A2 Al Best drive is A or B
B>Al B>A2 in phase A and B are in phase.
Al,A2 and B are s
in phase i11)
¢ B | C JB ‘c
P f/_\
—— Ry
4 Al /o 7
\ / I
v" ~ | —
D D D
2:w ratio 1:1 2:1 4:1
A is a node
D>C and D
C and D are out of phase
B and C are out of phase
(iv)
AB <> o s
A Vibration a ‘ No Vibration
e N
N ~N—
f:w ratio 1:1 2:1 4:1
(End resonance) Best drivg is when B is at an
angle of 457 fram the edge.
(v}

Fig. 2.5 Shows the drive conditions to give maximum coupling of
the vibration to the line. Typical vibrational patterns

are shown for different length-to-width ratios.
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CHAPTER THREE

THE RESONANT MODES OF SQUARE PLATES

3.1 INTRODUCTION

Problems involving the extensional vibration of
circular plates have been solved by Love(50 ). Solutions

of the differential equations of motion for different

(92)

modes are available (Holland,1966,Sharp Y. Experimental.

measurements on thin isotropic disks show good agreement
with these theoretical eigen frequency values. Poisson's
ratio and the elastic moduli for isotropic materials can
be measured precisely better than 0.2%. Using tabulated
eigen values for the various modes, in particular those
modes which are governed principally by the shear modulus
such as (1,2; 1,3;.....), and those which are more

dependent on Young's modulus, e.g. (1,R; 2,1 and 2,R)
(1)

modes, two moduli can be obtained (Ambati , Chaplain(lS)).
The Poisson's ratio modulus is normally used together

with shear, plate or Young's modulus as convenient.

For rectangular plates, no general solution is
known, the difficulties of obtaining exact solutions of
the equation of motion arise from the restrictions

imposed by the boundary conditions on the straight edge

of the plates.

Solutions for some modes have been found under
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(45,64 )

certain limited boundary conditions . Modes with
zero displacement at the corners have exact solutions,
these have been described by Lamé for isotropic elastic

plates. He obtained the exact solutions of the equation

of motion for these boundary conditions.

Different methods have been attempted to obtain the
solutions of the differential equation of motion for

(22 )

different circumstances. Ekstein was first to study
the vibrational modes of square plates using variational
techniques known as a perturbation method. 1In this method
some extensional modes of square plates were calculated,
however his resonant frequencies were only approximate.

" . 51
Then Mahly and TraSch( )

found a method of transforming
Fkstein's infinite determinant into a simple transcendental

equation which could easily be solved exactly.

Oneo,l958(78 ) has studied the modal vibrations of
a rectangular plate with variational techniques using
trail functions. He reported that an accuracy of better

than 1% is obtained for the fundamental longitudinal

mode along the length.

Most recently these modes have been studied using
finite difference(48’49£nd finite element methods(37 ).
In the work of Lloyd.and Redwood, finite difference
techniques were applied to transform the differential

equation system into an approximate matrix eigen value

problem.
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They observed that for square and rectangular
isotropic plates, there exists four distinct families
of modes. They reported that the predicted resonant

frequencies are within 2% of experimental values.

More accurate results have been obtained by
31
Holland( ); using Lagrangian techniques and trail
functions similar to those used by Ekstein. By those

means, he reduced the differential equation eigen value

problem to an approximate matrix characteristic value
problem which is more efficient technique than that of

Lloyd and Redwood.

Holland has confirmed that rectangular plates can
have four types of contour extensional modes: diagonal
shear, dilational-type, flexural along the major axes,

and flexural along the minor axis.

Extensive theoretical data on the normalised
resonant frequencies of different modes of each family is
given by Holland and Roark (1967)(32). They expressed
the results using Poisson's ratio and the ratio of length

to width as independent variables.

3.2 SOME EXPERIMENTAL CONSIDERATIONS

Solutions of problems in anisotropic elasticity often

lead to calculations which are extremely if not
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prohibitively difficult. These require some assumptions

to make a solution possible.

To make a comparison between the theoretical results
of the modal resonant frequencies of the square and the

rectangular plates and the experimental results, isotropic

materials have to be used.

Experience with disks is that sliced from drawn rod,
they appear isotropic. In axial directions there is no
stress and effects associated with longitudinal grains

are not present.

In a rod the longitudinal and shear resonances give
the moduli directly. For some materials different values
of moduli are obtained, which indicate radial anisotropy.
Considering anisotropic rods such as carbon or glass
fibre in polymer where the fibres are simply longitudinally
oriented, the longitudinal velocity is high because of
the high elasticity of the fibres but the shear velocity
is small being controlled by the polymer matrix rather

than the fibre.

Materials such as glass and silica (fused quartz)
show identical moduli values whether these results

are obtained from rods or disks cut from the rod.

Disks cut from rolled metal sheets are anisotropic
as is shown by a split in some modes, in particular the

lower order modes. In aluminium and steel the elasticities
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differ by a few percent parallel and perpendicular to the
direction of the roll. These features have been investigated

in detail and are described in Chapter Six.

The isotropic materials which have been measured were
prepared by machining a thin slice of a plate from
cylindrical rods or bars. They can be considered as a
planary isotropic (orthotropic). The grains direction
which are longitudinally oriented in the rod, are involved
only in the thickness of the plate where no body

displacement takes place in it.

3.3 LOW ORDER SQUARE PLATE MODES

To understand the vibrational spectrum of a thin
rectangular plate, it is convenient to regard the
simplest and easiest geometry in which the vibrations

occur - the square plate.

Materials with different Poisson's ratio have been
prepared as a thin slice of a plate machined from a
cylindrical rod or a bar as described in the previous

section.

Precise values for Young's modulus, the shear
modulus and Poisson's ratio for the materials used were
measured using the disk theory. The vibrational modes
of the square,plates,which were machined from the

isotropic disks, were then investigated using various
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driving techniques. Initially the plate was driven at
the centre of the side where most of the modes with
antinodes at this point will be excited. Modes with a
node at this point need different driving positions,
ideally parallel to the maximum displacement vector to
allow the signal to be picked up and displayed on the
screen of the oscilloscope. The modes were soon
identified, and the vibrational patterns were drawn using
the probe already described. To investigate the nodal
pattern for each mode, the probe was extensively used
and nodes were identified and followed through a point
where the phase of the motion is changing. This is
carried out by touching the probe to the surface of the

plate at a small angle.

The sketches for the lowest fifteen modes of the
square plate resonator are shown in Fig. 3.1 . The
vibrational displacements patterns are illustrated for
the aluminium plate with their normalised frequencies

corresponding to the plate wave velocity.

The resonant modes of the square plate can be
classified into groups according to their vibrational
patterns. The coupling to the line and the phase of the
motion for the opposite sides of the plate must be taken
into consideration for this classification. There are

mainly three types of the vibrational modes for the
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square plate:-

(i) = The dilational type modes — The general feature

is that the displacements at the two opposite sides
of the plate have an equal phase. The mode having
a symmetrical feature of the vibration. The

fundamental of this type is mode (3) in Fig. 3.1 .

(ii) The diagonal ‘shear type modes - These have

nodes at the centre of each side, therefore the
mode requires a different driving position. Mode (1)

represents the fundamental of this type.

(iii) The flexural type modes - These have the

characteristic of "free-free bar" flexural vibrations.
The phase is reversed at the two opposite sides with
maximum coupling at the edges of the plate. These
modes have an antisymmetric vibrational patterns

feature. Mode (2) is the fundamental of this type.

A most interesting feature of the square plate modes
is that, unlike the disk, the mode which has two nodal
diameters is split into two fundamental modes, the lowest
one has nodal lines parallel to the sides and antinodes
at the corners. This mode is historically important
and known in gquartz as "Face Shear G.T. Cut" mode
developed by W. P. Mason(54'552 It gives the low

temperature coefficient quartz resonator which was used

~25-




in Radar and LORAN navigation system of W.W.2.

The second fundamental mode has a node at each corner
giving nodal lines across the diagonals. This is the
original mode described by M, G. Lamé®>) in 1866. since
there is no stress at the corners, this simplified the
boundary conditions for the solutions of the equations
of motion enabling exact solutions to be achieved. These

fundamental modes were found to be the only pure shear

modes in square plates.

The breathing mode in the disk (1,R) is associated
with one in the square plate vibration. In this mode,
the phase of the motion is constant over the whole
periphery. The amplitude is higher at the corners than
at the centres. The total area of the plate is changing,
this means that it is more dependent on Young's modulus,
while the other modes are more dependent on the shear
modulus because there is a distortion in their shape,

and the change in their area is very small.

The breathing mode has a node at its centre if the
plate is indefinitely thin, but the resonant frequency
requires a correction as in the disk, if the thickness
is signficant compared to -its length. The displacement
in the thickness direction is associated with the
lateral contraction due to the Poisson's ratio coupling
of the material.

—26—



The weakly coupled mode to the driving wire at
certain driving positions éan always have an alternative
position where the vibrations have more significant
displacements and consequently the mode will be more

tightly coupled to the 1line.

Some of these modes require an edge drive, while
the others require completely different driving conditions.
In the case of the edge drive, the lowest of these is mode
(2) in Fig. 3.1 . This mode has three nodal lines, two
of them are parallel to the sides of the plate and the
third is crossing them to form two axial nodes in the
plate. The next mode which has three nodal lines 1is
mode (6) of the disk. The three nodal lines are crossing
each other at the centre to form an axial node. This
was confirmed by clamping the plate at its centre. When
the mode has a central node the clamping does not effect
it. The feature of modes having non-symmetrical nodal
patterns has a special interest in the case of the
investigations related to the materials anisotropy, this

will be discussed in detail later.

The other modes which have the feature of being
tightly coupled at the edges of the plate are modes (4)
and (7). These require an angle of 45 degrees with the
driving line for optimum excitation. The resonant
frequency of mode (4) has been investigated extensively,

and it has been found that it is controlled by the Young's
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modulus as will be discussed later. This mode with

mode (2) were found to combinedto form a . single resonance
(end resonance) when the plate length exceeds twice the
width. Maximum coupling again occurs at an angle of

45 degrees between the driving line and the edge of the

plate.

Mode (9) was described as a second breathing mode {48 )

A close look at its vibrational pattern shows that there
are two nodes on each side of the plate indicating by the
phase reverse of the motion at the centre and the edge

of the plate even their coupling to the line is almost
the same. These are forming four nodal lines crossing
each other to form a node at the axial centre. This was
verified by again clamping the plate at its centre. Nodes
on the side of the plate indicate that its shape is
changing rather than its area. For this reason it cannot

be classified as a breathing mode.

Mode (8) was not unambiguously classified. It has
an antinode at the centre indicating that the nodal lines
are parallel to the sides. Extensive use of the probe

indicated a 2x2 nodal pattern.

Figure 3.2 shows the vibrational nodal patterns

for the lowest order modes of the square plate and their

corresponding disk modes.

-28-



3,4 THE RESONANT FREQUENCY CHARACTERISATION

Isotropic materials ranging from brass with Poisson's
ratio of 0.36 to pyrolytic graphite with in-plane value
of -0.10 have been used in this investigation. Accurate
measurements of Poisson's ratios of the materials and
their modulus have been carried out using disk resonators.
The disks were then machined to perfect square plate
geometries. A set of the samples used in this
experimental investigation are shown photographically in

Fig. 3.3 .

The different modes of the vibration have been
excited using an optimum driving position. The
frequency-length product for each mode has been normalised
to the plate wave velocity. The complete set of the
results is shown for different materials in Table 3.1.

The choice of the plate velocity for normalisation is

arbitrary but is widely used.

The graphical plot for variations of various modes as

a function of Poisson's ratio is shown.in Fig. 3.4.

Wwith materials having progressively decreasing
Poisson's ratios, all the modes, except one, rise
linearly. While the one which is going in opposite
direction, like the disk resonant modes, is the breathing

mode. The variation of this mode with Poisson's ratio,

unlike the others, is not linear. It overlaps with the
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Lamé mode and mode (4) at zero Poisson's ratio; i.e. for
materials with low Poisson's ratio, the three modes
(Lamé, breathing and mode (4)) will. be close to each
other. This can be used as a reference for calculating
the Poisson's ratio for isotropic materials. The
frequency ratio between the breathing mode and one of the
fundamental modes can be used as a sensitive method for
measurement of the elastic modulus of the materials.
Table 3.2 shows the frequency ratio of the breathing
mode to the Lamé mode for various materials measured.
The plate modulus and Poisson's ratio have been measured
from the disk. The variation is shown graphically in
Fig. 3.5 . Within the limits of observation the
frequency ratio varies linearly with Poisson's ratio
above (+0.10); then a slight curvature occurs for values

below that.

The large change means that observations on square
plates give a sensitive measurement of Poisson's ratio
and unlike disks present no difficulties in the case of
metals with close frequencies of (1,3) and (1,R) modes.
This is an important practical application for material
studies where sguare plates can be made available. The
accuracy of these measurements, however, depend on an
experimental calibration curve, while the corresponding

disk method is based on a completely accurate theoretical

expression.
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3.5 ~ THE MODES OF HARMONIC RELATIONS

Mason and Lamé modes have been investigated
extensively, as they are the most common fundamental
and simplest resonant modes of square plates.
Measurements on square plates with various Poisson's
ratio show that these are also modes with frequencies
twice and three times the fundamental Lamé mode. This
is illustrated in Table 3.3, the frequency is normalised
to the shear wave velocity (CS) which was measured from
disk resonators for different materials. These harmonic
relationships were accurate to better than 3. In other
words, their resonant frequencies are precise integers
of the fundamental Lamé mode regardless of their
Poisson's ratio. This is an interesting result as
harmonic relationships are not normally encountered in
the vibrational spectra of solids. It does not appear

to have been explicitly reported to date.

It has been found that all these modes share the
same feature of having nodes at their cornexs. This
indicates that they are the modes described and resolved
by Lamé. Exact solution for these modes should be
obtainable because of having zero displacement at the

corners, which satisfy the difficult boundary conditions

for the differential equation Qf motionf

Driving the plate at the centre of the side will

excite the odd Lamé modes, i.e. the first, the thixd,...etc.



modes; while the even modes, because of a node at the
centre of their sides, require an intermediate driving

position where the maximum displacement occurs.

Figure 3.6 demonstrates the harmonic relationships
of the Lamé modes series. It shows the lowest three modal
pattern configurations. The simplest explanation is to
consider that the second harmonic can be regarded as four
Lamé plates of half the fundamental size and twice the
frequency. Subsequently the third, fourth,...etc.

harmonic have similar considerations.

Lamé mode was found to be the only mode with this

feature of being harmonically related . The other. fundamental

mode, Mason, was found to have no harmonic relationship

with any other modes.

Table 3.4 shows the values of the normalised
frequency for these two fundamental modes. It can be
seen that the first Lamé mode has a constant value of
/2. The Mason is also considered to be a pure shear
mode although an experimental variation for the various
materials of about 1% was observed. The results indicate
that these two modes are shear type modes with the

wavelengths equal to the diagonal of the square plate in

the case of Lamé mode.

The graphical plot for the values of the frequency-

diagonal productanormalised to the shear wave velocity
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as a function of Poisson's ratio is shown in Fig. 3.7 .
Modes with no variation or slight variation .indicate
that they are governed principally by the shear modulus.
Clearly the breathing mode is the only one which has a.large

curvature change with Poisson's ratio .comparing to the other

modes.,

3.6 THE ROD MODULUS MODES

It is interesting to find some modes which are
controlled by the shear modulus. The dependence of the
two fundamental modes on this modulus was demonstrated
earlier. In the Lamé mode, the shear wave length was

found to form the diagonal of the plate.

Further investigations were carried out concerning
the characterisation of the different resonant modes
with respect to the Young's modulus. Normalising the
frequency-length product for each mode to the rod
velocity shows that mode (4) has a constant value

irrespective of the pPoisson's ratio of the materials

being measured.

A complete set of the measurements is given in
Table 3.5, the values of the rod velocity and the
Poissaon's ratio were measured to an accurate figure from
the disk. It will be noted that the normalised value of

22f to the rod velocity for all the materials is very

close to unity. Therefore it can be said that this mode
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is governed by the rod modulus where the rod wave length

is twice the length dimension of the plate.

It has been thought that the value of 22f can be
very close to the rod velocity for infinitely thin plateS§.
This will reduce the lateral contraction due to the
Poisson's ratio coupling in the thickness direction

of the plate.

The dependence of the other modes on the Young's
modulus can be observed by normalising them to the rod
velocity. This is shown graphiéally in Fig. 3.8 .
Modes with slight variation or no variation at all with
the Poisson's ratio indicate that they are governed

principally by the Young's modulus.

3.7 THE ANISOTROPIC EFFECTS OF THE GRAIN ORIENTATIONS

ON THE RESONANT MODES OF THE SQUARE PLATE

3.7.1 The Symmetrical Modes

In disks cut from rolled metal sheets, which can be
considered as moderately anisotropic,the fundamental
mode which has two perpendicular nodal diameters was
(9,19 )

found to be split in two modes In one, that

with the lower frequency, the nodal lines were

symmetrical about the axis of roll, and in the other they

were at 45 degrees.
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A number of square plates of different orientations
were cut from rolled metal sheets. The variation of the
frequency for the lowest six modes with plate orientation
is shown in Fig. 3.9 . The angle is measured relative to
drive position. The cyclical variation of the two
fundamental modes can be seen clearly but this does not
occur in the flexural modes. The effect is less on the
breathing modes. This obviously has an effect on the
apparent value of Poisson's ratio. It is shown
grahically in Fig. 3.1C . The values of Poisson's ratio
were obtained from the ratio of the breathing mode to
the Lamé mode using the calibration curve shown in Fig.

3.5 .

3.7.2 THE NON-SYMMETRICAL MODES

Measurements on shim steel square plates show the
variation of the two fundamental modes with the plate
orientation. These modes, unlike the disk (1,2) modes,
have not been split. This is because the modes have
symmetrical nodal pattern configurations. On the other
hand, modes with non-symmetrical nodal patterns are

expected to split as a result of the plate anisotropy.

Mode (2) in Fig. 3.1 was described as the

fundamental nfree—free bar" vibration. It has three

nodal lines forming two axial nodes. This mode becomes

double as the existence of the grains remove the mode.
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degeneracy. There is a frequency variation of about 3%
observed in the measurement of shim steel plates. The
best drive to excite the douhle modes is to drive the

plate at the edge where both have displacements. This

is demonstrated in Fig. 3.11 .

In general, for any modes of having (n,m) nodal
lines; there will be no split if n=m, and the mode will

split if n#m.

3.8 NON-HOMOGENEQUS MATERIALS STUDY

Measurements of the resonant frequencies for anisotropic
materials have been carefully investigated. Nuclear
graphite, which might be thought to be isotropic, showed
anomalous results demonstrating a significant anisotropy.
Measurements on square plate, machined out of the disk, show
a greater difference between the observations on different
sides of the plate. This is shown in spectrum form in
Fig. 3.12. The modal frequency was normalised to the
fundamental Lamé mode, and the line height represents the
normalised coupling. The breathing mode was found to be
split into two separate modes, while the fundamental Lamé
has no significant effect. This will show two different
values of Poisson's ratio, one at (-0.05) when the drive is

at (a), and (+0.10) when it is at (B) side.

Since the two fundamental modes have not been affected
significantly by the drive position, this indicates that the

shear modulus has just a unique value for this material.
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Fig.

Sketches for the lowest fifteen vibrational

resonant patterns of square plate (After
Holland, R. reference 31 ).

The frequency-length product 1is normalised
to the plate wave velocity in an Aluminium

plate of Poisson's Ratio (0.338).
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disk modes.

-~38-

DISK MODES SQUARE PLATE MODES
Mason Mode Lamé Mode
Mode Mode l
(1,2) (1,2)
Square————e= —
l
/ '
Flexural 1 Flexural 2
N Lt
AR ARVAR!
Mode —t <+t — Mode —+ <
(1,3) (1,3) ‘
< ——squaretT— /\————»
w KN N
ro Loy T S
I
Mode - — — ﬁgzéelthing
(1,R)
i
Bl b
PRI 2R R I
békl)?i) i nd € <t |
<1 ——
pl1a ) AN
e . |
(2,2) Square
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Fig.

3.

The photographical display shows the set of
samples used in this investigations. These
have been machined in square plate geometries
from disks. The materials shown are ranging
from Brass with Poisson's ratio = 0.357 to
Pyrolytic Graphite of an in-plane Poisson's
ratio = -0.075. The values of Poisson's ratio
and the plate modulus have been obtained from

+he disk measurements.
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Fig. 3.5 The variation of the frequency ratio of the breathing
mode to the Lamé mode as a function of Poisson's ratio.
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Fig. 3.6 This configuration was given by Holland, but the .

harmonic relationship apparently overlooked -

The second harmonic can be considered as four
Lamé plates of half the fundamental size at
twice the frequency. Subsequent results are

determined by considering the third, fourth, etc.

harmonic Lamé modes.
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modes.
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Fig.

3.8

The graphical plot for the variations of the
frequency-length products normalised to the
rod velocity (Co) as a function of the
Poisson's ratio for the lowest ten square

plate modes.
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4000 -\/\/\_/

Mode (1) Mason Mode

Y { T i T 1 ! 1 ! l ' L
o 45 90 135 180 > 0
Grains degree angle

Fig. 3.9 Graphical plot for the variation of different square
plate modes with the grains direction for shim steel.
Grain orientation angle is corresponding to the drive

line.
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Symmetrical Modes
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(about 3% for shim steel)
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3.11 Sketches for the symmetrical and non-symmetrical modal
atterns configuration showing the effect of the grains

Fig.

P
orientation on the modes splitting.
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Fig. 3.12 Spectrum for Nuclear Graphite showing effect of anisotropy
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Brass
Aluminium
Copper

Black
Plastic

Steel
Mica
Glass
Silica
Silicon

Pyrolytic
Graphite .

36.0

1 48.0

27.0Q

36.0
35.0
25.4
77.6

44 .4

41,088

46,414

59,080

32,642
65.040
166.25
38.593
60.181

26.760

1.3880
1.3640

1.3588

1.3354
1.2970
1.2280
1.2235
1.1585

1.1272

0.9254

This shows the measured value
and the variations of their
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carried out for vari

related to better than X%,
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Brass : 0.357] 2095 | 36.0 41,088 82.1701 123.260
Aluginium| 0.338] 3159 48,0 46,414 92.825( 139.235
Coppex 0.328) 2271 27.0 59.080} 118.152} 177.230
Black.
plastic 0.313] le64 | 36.0 32.064 64.125 96.190
Steel 0.285| 3226 35.0 65.040! 130.02 195.05
Mica 0.223] 4912 25.0 135.380| 270.65 406.05
Glass 0.22041 3477 77.6 31.543 63.05 94,610
Silica 0.165{ 3786 44,4 60.155| 120.150| 180.455
Silicon 0.14 1892 50.0 26.710 53.22 79.95
Pyrolytic) 25 71.550| 142.65 | 213.78
,.Graphite__79f97$’_2537,, .._fQ ...... N T LT
The harmcnic relationship of the Lamé modes. Measurement

ous materials shows the modes are harmonically




'TABLE' 4

t:h»eDiSk ........ TR ] EE G £ I Y 7 13 O
C, _p| Iength]Tamé Mode . . | Mason Mode. ...
Sample o) m.sec ~| mm 51 o
| £ Kz Cf £ Rz | AE/C
...................... RS-
........ Ce L
Brass 0.357| 2095 | 36.0 | 41.088| 0.9985| 36.180| 0.6217
Aluminiun| 0.338] 3159 | 48.0 | 46.414) 0.9974| 40.956| 0.6211
Copper 0.328] 2271 | 27.0 | 59.08 | 0.9933| 52.292] 0.6217
Black
Black | 0.313| 1664 | 36.0 | 32.064|0.9810| - -
Steel 0.285| 3226 | 35.0 | 65.040|0.9979| 57.396| 0.6250
Mica 0.223| 4912 | 25.4 | 135.380| 0.9900| 121.110| 0.6263
Glass 0.220| 3477 | 77.6 | 31.543| 0.9956| 27.706| 0.6183
Silica 0.165| 3786 | 44.4 | 60.155|0.9977| 52.905| 0.6204
silicon | o0.14 | 1892 | 50.0 | 26.7100.9982| 23.4%0| 0.6208
Pyrolytic| o o75| 2537 | 25.0 | 71.550| 0.9971| 64.281 0.6334
Graphite . : A o R T R |

The experimental results for Lamé and Mason modes.

The precise values of the freque

various materials.

normalised to the shear velocity (CS)

from the disk.

ncy are obtained for

The frequency-length product is

which was measured




Sample q Co Length | Freq 208 _, 4%
AR PR 'm_‘sec?l: . (Mlnnm Kz ... m.sec CO
Brass 0.357 3452 -36.0 47.681 | 3433 0.9944
Aluminium 0.338 | 5165 48.0 53.292 5116 0.9905
Copper 0.328 | 3700 27.0 67.680 | 3655 0.9878
Black 0.313 | 2697 36.0 37.115 2672 0.9907

Plastic

Steel 0.285 | 5171 35.0 73.043 | 5113 0.9888
Mica 0.223 | 7682 25.4 148.60 7549 0.9827
Glass "0,220 | 5432 77.6 34.69 5384 0.9911
Silica 0.165 | 5780 44.4 64.550 5732 0.9918
Pyrolitic -0.075 {3418 25.0 67.985 3399 0.9945
Graphite

The experimental results for mode (4), one of the square

plate resonant modes.

The frequency-length product is

very close to the rod velocity (CO) which was measured

from the disk for different materials.

at 45 degre
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CHAPTER FQUR

FREQUENCY SPECTRUM OF RECTANGULAR PLATES

4.1 INTRODUCTION

Thin rectangular plates vibrating in contour modes
have been an object of an extensive degree of theoretical
and experimental study. The frequency spectrum, that is
the relationship between the segment frequencies and the
length-to-width ratio of the plates, is of special
interest in material investigations and engineering

applications.

Onoe, M.(78)

was the first to study experimentally
the fundamental longitudinal mode of a rectangular plate
using a piezoelectric vibrator to excite it. He
demonstrated the existence of the edge mode and the
breathing modes (defined earlier) experimentally and
analytically. Subsequently, evaluations were obtained by

tracing these two modes progressively down to a narrow

strip. The accuracy was, however, rather limited.

(81) traced

In further investigations, Onoe and Pao
other extensional modes. Coupled modes were resolved by
considering their characterisation in terms of the

vibrational displacements around the plate.

. 60
Further experimental work by M. Medick and Y. Pao( )
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revealed the existence of the Lamé mode in rectangular

plates of integral sides ratio.

The frequency spectrum of a rectaﬁgular plate was
examined further by P. Lloyd and M. Redwood(4&49{ In their
experimental investigations, the existence of the first
two beam type flexural modes were reported. This was done
by using appropriate electrode configuration system oOn

the surface of the piezoelectric plate in order to excite

them.

The Lamé and the Mason modes of a square plate were
followed to their geometrical limits. They become, as
Redwood indicated, longitudinal and flexural modes
respectively of a long bar. The change of the character
of the Mason mode as a diagonal shear type mode, to a

second harmonic order flexural mode was illustrated.

The other Lamé modes in a rectangular plate were
identified in conditions where the side lengths have

integral ratios, but their prediction was uncertain.

Further investigations of the frequency spectrum of
the longitudinal and the flexural modes have been
d(2l,46,59,79%r

reporte hese analyses have been of major

assistance in this experimental work.

More recent experimental and analytical studies by

R. Holland‘3l)have shown the frequency variation for
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different modes of a rectangular plate and their
vibrational patterns were illustrated, using the same
method as Lloyd and Redwood to excite and measure their
spectra. But, as mentioned earlijier, the coupled modes
remained unresolved. His work hés been a great help in
identifying some unresolved modes in this work,as their

predicted vibration patterns indicated the most suitable

displacement points for the plate to be driven.

4.2 PRESENTATION OF THE OBSERVATIONS

To understand the frequency spectrum of the rectangular
plate modes, it is vital to represent the observations in
a unique and clear form to be satisfactory in both

experimental and analytical aspects.

T+ was realised at an early stage that for certain
modes it was immaterial which side of the plate was
regarded as the "length". In others, the character
changed completely. The method of presenting the observations
is demonstrated in Fig. 4.1 . The sketches are illustrating

the way that the mode has been driven and measured.

Fig. 4.2 shows an empirical representation of the
modal spectrum of different Aluminium plate modes. The

Aluminium plate was chosen because of its particular

compatibility with wire driving system.

Here the axes are the frequency-length and the

~56-



frequency-width products. Straight lines through the

origin represent constant length-to-width ratios, the 45
degrees lines from the axes being that of the square plate.
A rectangular plate of sides length ratio 4-to-1, for
example, can be represented in each of the two segments
‘below and above the 45 degrees line. This depends on
which side of the plate‘is being considered as the length

and the width of the plate.

Therefore the results could all be placed on a 45
degrees segment, but where the frequencies are not the
same for a 90 degrees rotation of the modal pattern, the
other segment is used to enable the continuity of the

mode to be followed.

4.3 ASPECTS OF THE IN-PLANE RECTANGULAR PLATE MODES

In the past chapter, a large number of square plate
modes and their vibrational patterns have been identified
and described. Modes with symmetrical and non-symmetrical
nodal patterns and their dependence on the material

properties have been demonstrated.

Fig. 4.2 , shows that there exists two low order
types of modes in the narrow rectangular plate. These
are the longitudinal modes dominated mainly by the length
of the plate and the Young's modulus when the width is

much less than the length. These are excited by the axial
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drive at the remote end point of the plate, and have an

asymptotic value approaching the rod velocity.

The other type of mode was already shown by P. Lloyd,
et al., to be the in-plane flexural vibration along the
length of the plate. These are similar to that of "free-
free bar" flexural vibrations. The length and the width
are the controlling dimensions and an asymptotic value is
expected to approach zero frequency but a constant value

of f£2/w for each mode.

The fundamental of these two modes is shown in Fig.
4.3 . The axial length drive excites the longitudinal,
while the mid-length drive coupled strongly to the

flexural.

These types of modes have been studied extensively

by several authors(31’46’48’53’66'96)'. Their results have been

of great assistance in the comprehensive work described

here.

Two other modes in narrow plates where the width is
the controlling dimension exist in addition. These are

the end resonances, which are characterised by a large

displacement at the corners neat the driving point but

this diminishes rapidly along the major length of the

plate. The vibrations are in fact 'trapped' at the end.

The other mode,which.can be called the plate resonance,

is characterised as of product has a constant value
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approaches to

half of the plate wave wvelocity, i.e. the

plate width is half the plate wave length,

All the modal vibrations of the square plate are
expected to approach one of these modes when the plate

length is much greater than the width.

4.4 SOME SPECTRAL CHARACTERISTICS

In a series of experimental investigations, a
carefully machined Aluminium plate was driven to investigate
the different modes of vibrations. The resonant freguency
for each individual mode was measured as the ratio of the
length-to-width was altered. Knowing the square plate
resonant modes, it is in principle a matter of tracing
them down to the narrow strip. To achieve a clear picture
of the mode spectrum, it is essential to examine the
vibrational pattern of the displacements and the nodal
configurations of the vibrational plate. This variation
with the geometry of the plate, and in particular the
driving conditions for each mode, were observed by using
the probe method described already in Chapter Two. This
is especially useful for identifying and resolving two OXr
more close modes and for tracing the degenerated modes -
which occur at certain plate geometries- ..to the narrow
rectangular strip. The position and orientation of the
drive could be selected to give maximum displacement for

a particular mode and to discriminate against adjacent ones.
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Typically the longitudinal modes are best excited by a

central axial drive.

A close inspection of the graph (4.2), shows that
there are certain modes where the spectrum along the width
is the same as that along the length. The term'image'was
proposed to describe the modes with an identical spectrum

as they are 'imaged' in the 45 degree square plate line.

The lowest of these modes which exhibit the
characteristics of image symmetry are the two fundamental
square plate modes. These have symmetrical nodal lines
parallel to the sides of the square plate in the lowest
mode (Mason Mode), and form the diagonals in the Lamé mode
as was described in the previous chapter. These two modes
are analogous to mode (1,2) of the disk resonance. The
mode has been split into two different modes as a result

of the change of the plate geometry from circular to square.

These two important modes were followed as the plate
geometry was changed, and the frequency spectrum had been

investigated and a full description follows.

Oon the other hand, the Fig. 4.2 shows certain modes
with no symmetry of the spectrum image along both sides of
the 45 degreesfline segment. In other words, the mode
losses its degeneracy as its geometry moves away from the

square plate. An example of these modes are modes (2)

and (6). The typical vibrational patterns of some modes and

~60~




their variations with the ‘drive position: = for both the

symmetrical and non-symmetrical modes are shown in Fig.
4.4, The nodal lines are altered for the non-symmetrical

one according to the driving position, while the

symmetrical modes have no variation in their nodal patterns

form with the position of the dxive.

The mode can be excited only when the driving line
is at the antinode, but the two modes can be excited when

the drive 1is at a proper position.

It is essential to point out at this stage that the
modes with a symmetry image of the spectrum are intersecting
the square plate axis of Fig. (4.2) at a right angle. The
spectrum image is a continuation from the first segment,
and it is analogous to the reflection of an image from a
mirror, while the non-symmetrical ones are intersecting
the square plate axis at an angle less than 90 degrees.

But for this proposal there is an exception, this is
(7))

represented by the spectrum of mode Fig. 4.2 . The

spectrum of this peculiar mode will be discussed in detail

later.

4:4.1 The Lamé Modes

These have the unigue characteristic of having no
displacements at the cOIners of the plate, and this allowed

an analytical solution to be obtained by Lamé. In a

square plate this accounts for the precise harmonic
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frequency relationship which was found for all the isotropic

materials studied. Similarly, rectangular plates with
sides whose length are in integral ratios, modes with

8
). These

this particular specification are expected(
are confirmed as several observations were obtained by
reducing the size of the plate in steps. The results

are illustrated in Table 4.1 . A series of measurements
of the Lamé modes were obtained by reducing the size of

the Aluminium plate so that its sides ratio are integrally

related.

The progress of each of these modes was followed to
the narrow rectangular strip geometry. The fundamental
Lamé mode of the square plate was found to be approached
by the first longitudinal mode of the long strip. The
rectangular plate of sides whose length is twice the
width has a Lamé mode associated with it, this is formed
as a combination of two square plate Lamé mode patterns

with the resonant frequency, given in Table 4.1 . This

will eventually end as the second longitudinal mode of

the narrow strip. Consequently, the third longitudinal

mode of the strip is expected to originate from the Lamé

mode of a rectangular plate whose length-to-width ratio

is three.

In general, the rectangular plate possessing sides

whose length-to-width ratio is an integral propo rtion,

will have, among its modes ,

N

the Lamé mode associated with it.



The asymptotic frequency spectrum of that mode has to
approach the longitudinal mode of an order equivalent to

the sides ratio of the plate.

Fig. 4.5 shows the nodal configuration pattern of
the fundamental Lamé mode and its var%@ion with the plate
geometry. This will finally become the fundamental
longitudinal mode as the plate gets narrower. The spectrum
has image symmetry along both sides of the plate. The
axial length drive strongly coupled to the longitudinal,
while the width drive progressively gets weaker, and
eventually when the plate is a long narrow strip, the
transfer displacement is so small that it is univerally

taken to be a nodal line at the mid-length of the plate.

The second longitudinal mode is anti-symmetric, that
is, the fregquency spectrum along the plate length is not
the same as along its width. Consequently, the third and
the fourth longituindal modes have symmetrical and
anti-symmetrical spectrum image, respectively, along both
the length and width of the plate. This is illustrated
in Fig. 4.6 , the odd longitudinal modes have symmetric
spectrum; e.g. modes of harmonic order 1,3,5,...etc., and
the even ones have anti-symmetric spectrum, that is the

mode order 2,4,6,...etC., of a long rectangular strip.

In other words, in terms of square and rectangular

Lamé modes, it can be said that they are symmetric or
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not according to their plate sides ratio, the odd ones aré

symmetric and the even are not.

The progress of the rectanqular plate Lamé modes have
thus been followed to their perfect square plate origin.
Table 4.2 gives experimental results for some sguare
plate modes all of which become simply longitudinal
resonances. This is plotted in a graphical form and 1is
shown in Fig. 4.7 for the first and the third longitudinal
modes as the symmetrical modes. The frequency-length
product approach to a constant value of the wave velocity

in a long rod when the plate is very narrow.

4.4.2 The Mason Mode

This mode was described as the fundamental diagonal
shear mode of the square plate resonant, originally
developed by W. P. Mason(54) as a low temperature coefficient

(48), were the first to

guartz resonator. Lloyd et al.,
trace its frequency spectrum progress to the narrow
rectangular strip. It has been found that this mode is
predominantly flexural of the second harmonic order. The
change of the character of this mode,from diagonal shear

to the flexural mode of a long bar, was demonstrated. This
change 1is accompanied by the radical alteration in the
form of the resonant spectrum curve shown in Fig. 4.2 .

It was realised at an early stage that for certain modes

(such as Mason's), it was immaterial which side was regarded
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as the 'length'. In others - the plate for example = the

character changed completely. It is convenient to say
that the former are frequency symmetry (or mirror

symmetrical), and the others anti-symmetrical.

Fig. 4.8, shows sketches for the resonant patterns
of the Mason Mode. The radical alteration in the nodal
pattern as the plate geometry changes is shown. Two more
nodal lines besides the former two are generated as the
mode character changes from a diagonal shear to the
flexural mode. The axial length and width of the plate
is a node, the best driving position is at the far end
near the edges. The asymptotic value of fSLz/wCO of this
mode might be expected to approach the constant given by
Morse(7l) as (2.8334). Rotational energy, not considered

by Morse, results in a considerable discrepancy.

The experimental results of this mode for various
plate geometry is given in Table 4.3. Aluminium plate

was used in this measurement with Poisson's ratio

(o=.34) and CO = 5170.

Holland has classified all the modes which are
ending as flexural modes of an even harmonic order in a
'the diagonal shear modes'. Some of these

group call it

modes have no displacements in the diagonal direction.



A4.4.3 The Breathing Mode

This is one of the most identifiable square plate
vibrational modes, since the phase of the motion for
this mode, like the radigl mode pf the disk resonance (1,R)
is constant over the whole plate periphery. The mode is
more dependent, unlike the others, on the Young's modulus,
because of the change in the area of the plate. The mode
is strongly coupled to the driving line at the corners in
the diagonal direction., This enables it to be readily
distinguished from the other modes. This is strongly
assessed to resolye the mode from the others by

considering its individual driving position.

The displacements pattern configuration for this
mode and its frequency variation with the material

characterisations was discussed and elaborated in the

previous chapter.

An attempt to trace the mode progress to the narrow
rectangular strip has been done by several authors(21’3l'&L69'782
However, their analysis was unsatisfactory in several
aspects, mainly because this mode couples with the other
modes to form some sort of a degenerate mode at certain
plate sides ratio. The drive orientation overcomes this
and the mode was followed over the full range of side

ratios. It has been erroneously classified as a

longitudinal mode of the third harmonic order(48 ) put
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in fact, when it. is narrow it is controlled by the plate

modulus.

Holland's results of tracing this mode(’31 ) is
identical to that of Medick and Poa(ﬁo L even though

(81)

Onoe and Pao had sorted out the edge mode by

considering its signficant vibrational displacements at

the corners of the plate.

The complication associated with tracing the spectrum
of some modes, including the breating mode, when two Or
more modes degenerate at certain plate sides rétioo This
has been resolved by considering the vibrational pattern
for each individual mode, and selecting the correct
driving position with the line. It is unlikely that two
different modes have the similar displacement pattern of
vibration at the same frequency. The graphical
representation of the progress of the breaégng mode with
the plate geometry change, is shown in Fig. 4.9 . The
driving position of the mode and its coupling with the

line is the key to resolve the mode from the others.

A close look to Fige 4.2 shows that the mode has

a constant frequency over the wide range of the length.

The frequency width product has a constant value, this

approaches . half the plate wave velocity when the plate

length exceeds twice its width. The experimental results

for aluminium, quartz and pyrolytic graphite are given
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in Table 4.4. The corresponding graph is Fig. 4.10

The mode frequency is precisely measured for different
materials with various width-to-length ratio. The plates
were chosen to be isotropic or near isotropic.and the

rod wave velocity is measured and shown in Table 4.4. The
results of the Fused Quartz is more close to the standard
figure of the plate wave velocity, while that of the

Aluminium are about 5% below that of the standard results.

This is due to the material anisotropy of the Aluminium plate

which was in rolled sheet form. The Pyrolytic graphite
has a negative inplane Poisson's ratio which was already

available from the disk resonant frequency measurements.

The Breathing mode is expected to have a symmetry
of the spectrum (mirror image) along both sides of the
plate as it is shown in Fig. 4.2 . This is clearly
obvious from the diagonal drive of the plate which is

coupled strongly to the driving line.

4.4.4 THE END RESONANCE

In the end resonance, the energy of vibration is

confined to a region near the boundary at the end of the

11)

79,8: .
structure( - Onoe( 'ﬂléemonstrated the existence of

this mode experimentally. Further experimental studies

(2'27'&L93)revealed the existence of this mode, and an

attempt to trace 1its progress has been carried out.
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It was found experimentally and theoretically(38)
that the strips have only one end resonance where the
frequency being characterised by the frequency-width

product. The mode has two symmetrical nodal points on

the end of the strip.

This resonance could be completely resolved theoretically

only by considering waves on the strip having real,

al’38).These

complex and imaginary propagation constant
waves in combination at one specific frequency with selected
amplitude ratios gives zero stresses at the free end where

the resonance occurs. An important aspect of the solution

is their considerable dependence on the Poisson's ratio.

The end resonance was investigated experimentally for
materials ranging from brass with Poisson's ratio of (0.37)
to Pyrolytic graphite with an in-plane value of (-0.10).

In an Aluminium plate of the Poisson's ratio (0.34), the
end resonance occurs close to the Lamé mode. This was
verified by the measurements on a rectangular plate of
sides whose lengths ratio have an integral relation.

Fig. 4.11 shows the variationsof both the end resonance

and the Lamé mode with the Poisson's ratio.

In this investigation, the resonant spectrum was
again followed by varying the geometry of the plate. This
can be identified easily by its characteristic of large

displacements at the corners near the driving point. This
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diminished rapidly along the major length.

Two different modes, strongly coupled at the corners,
have been identified as the plate geometry 1is approaching
the square. These two modes have vibrational patterns
so that the end resonance occurs as a result of the degeneracy
of these two modes when the plate length exceeds twice 1its
width. The experimental results are shown in Table 4.5

as the plate geometry was changed step by step.

These two modes have most significant displacements
at the corners . The phase of the motion is same at
the corners near the drive for the two modes, and in
reverse phase at the far remote corners,as it is illustrated
in Fig. 4.12 . The combination of these two modes will
result in strong displacements at the corners where the
phases of motion are the same, and a cancellation in the

displacements when the phases of the motion are in

reverse order.

4.5 NON-IMAGING SPECTRUM MODE

It has been demonstrated before,the existence of two
types of modes in the narrow rectangular strip, and these
are clearly illustrated in Fig. 4.2 . The spectra are
shown in the segments below and above the 45 degrees line

which represents the sguare plate. Some of these modes

have symmetry of +he image spectrum along the two sides



of the plate, while others have not. The former modes

(the symmetric) have already been described , the lowest

of these were recognised as the Mason and the Lamé modes
where each has two nodal lines.- in Mason's case parallel
to the sides and in Lamé's case the two diagonals. The
centre of the plate is a perfect node. These are analogous

to the single mode (1,2) in the disk resonance.

Tt will be observed that the lowest of the modes with
no imaging of the spectrum along both sides of the plate
are modes (2) and (6) on the square line axis of Fig. 4.2 .
The first of those is strongly coupled at the corners
near the drive vector used for exciting the end resonance

as described in the previous section.

Driving the plate at the mid-length will couple to
the fundamental in-plane flexural mode. This is similar
to the "free-free bar" flexural vibration with an

asymptotic value of f(22/ w)/CO will approach the

: (71)
constant given by Morse HE
)
w o T 8121 = 0.453 Brz1 (4.1)
o 4Y3

whéfé (n) is the mode number and Bl= 1.5056, 82=2.499O

1
and B for nx3 = (nt f)

The fundamental flexural mode will approach a

constant value of (1.0279) for an absolutely thin bar
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where the width is very small comparing to the length, this
is shown graphically in Fig. 4.13 . The experimental
values of f(&z/wl/co is plotted for different plate
geometries, then the estimated asymptotic value is
expected to match with the consfént given by Morse.
Different materials were used and identical results have

been observed (Fig. 4.13 ).

The sketches of the vibrational displacements patterns
for this mode of various plate geometry is shown in
Fig. 4.14 . The plate is driven at the mid-length or
at a point where the maximum displacements in occur. It
can be seen that the axial length drive does not excite

this mode, since this point is a node.

Accurate results of the experimental measurements for

an Aluminium plate is given in Table 4.6 .

The next mode which has no imaging of the spectrum is
mode (6) in Fig. 4.2 . The square plate nodal pattern
shows that it has three nodal lines crossing each other at
the centre of the plate to form an axial node. This was
confirmed by clamping the plate at its axial centre and
observing that there was no increase in damping. The
mode is analogous to mode (1,3) of the disk resonance,

and this is used as an identification of the mode.

The vibrational spectrum of this mode has been

examined by driving the plate at two different positions,
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and two different modes have been recognised. The first
is the longitudinal mode when the plate is driven at the
remote end. This mode is of the second harmonic order
as it is two Lamé patterns when the plate side ratio is
exactly two. The frequency-length product approaches a
constant value of the rod wave velocity when the plate
width is small comparing to the length. The second mode
is excited by driving the plate at the mid-length, this
is the flexural mode of the third harmonic order, and it
will approach a constant value of f(SLZ/w)/CO given by

equation (4,1), which is equal to (5.5548) .

Fig. 4.15 is a graphical representation for the two
modes and their splitting as the plate geometry change
away from the square plate. The frequency-length is
normalised to the rod wave velocity which was measured
using a long strip plate machined out from the same plate.
Tt is essential to mention here that some of the flexural
results have been measured using a small plate because
of the difficulties associated with the low frequency
measurements using the line system. The precise
experimental results are given in Table 4.7, the
normalised frequency for different plate geometries of

an inplane isotropic Aluminium plate for the two modes

are represented.

The considerable change of the vibrational patterns

of this mode and the corresponding nodal configuration is
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of great interest. Because of this the mode spectrum

was very carefully followed down as the plate geometxry
changed. Knowing the nodal pattern of the displacements
for both the second harmonic longitudinal and the third
harmonic flexural modes, the change of the pattern
configuration with the geometry of the plate can be
predicted. The pattern alteration fram the Lamé& mode toO
the longitudinal mode has been described already. The
variation of the longitudinal and the transverse
displacements was shown in detail, and this can be used
to describe the pattern variation as the second Lamé mode
changes to the second longitudinal mode. This is
acompanied by a radical alteration in the transverse
displacement, the plate getting naxrower and the
longitudinal displacements dominated the mode. The
transverse movement ig so weak it appears as a node and

is normally regarded as such.

Proceeding further, the third order flexural mode
has four nodal lines parallel to each other with the
£ifth one crossing them at half the width. The complete
picture of the pattern variation with the geometry of the

plate is shown in Fig. 4.16 , and sketches of pattern

displacments are illustrated by the arrows which indicate

the direction of the movement.
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4.6 THE OTHER MODES

The frequency spectrum of some other higher order
square plate vibrational modes were carefully investigated
these are including the other Lamé modes which were already
reported and their harmonic frequency relations were
identified in the previous chapter. Some of these mades
have been reported and their vibrational spectrum have been

(31,32,48)

investigated by several authors" , but onlv for

limited plate side ratios.

The spectra of odd harmonic longitudinal modes always
have symmetry of image along the length and the width of
the plate, but not the even order modes. They become
inherently flexural of odd harmonic orders. For

excitation they are best driven at the mid-length.

Fig. 4.2 clearly illustrates the above discussion.
The image spectrum is a continuation of the original one,
and this is crossing the 45 degrees line at a right angle.
while the non-imaging spectrum seems to Cross this line at
an acute angle. There are exceptions to this proposal
as can be seen in the case of the specrum of mode (7).
The mode is strongly coupled at the edges at 45 degrees
angle with the driving line when the plate is a perfect
square, and it progressively approaches the flexural bar

mode of the fourth haxmonic number when the plate sides

ratio is small. In spite of its intersection with_the‘
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square plate line at an acute angle, there was no
evidence of the continuation of the spectrum in the other
segments. For this reason the mode assumed to have a
symmetry of the spectrum image along the two sides of the
plate, but this mode continues £o be somewhat of an

enigma.,

The spectrum of the even harmonic order flexural is
typified by the Mason mode, which has an imaging along
the both sides of the plate as it was shown before. It
is proposed that all the flexural modes of even harmonic

order have the same spectral characteristics.

4.7 MODE DEGENERACY OF THE RECTANGULAR PLATES

Some square plate modes are degenerate in that two
modes have the same frequency and nodal pattern. These
lose ‘their degeneracy if the plate geometry moves away
from the perfect square. It can also be removed when the

plate material ceases to be isotropic.

In a rectangular plate, degenerate modes commonly
occur. This is well illustrated in Fig. 4.2, where two
spectra intersect each other at éertain plate length-to-
width ratios. For instance, the two fundamental square
plate modes - those of Lamé and the Mason - approach the
first longitudinal and the second flexural modes

respectively,as the plate geometry changes. It can be
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seen in Fig. 4.2 that the two mode spectra are degenerate

at the two successive plate sides ratios (83/50) and
(25.4/7).., It was found that the plate side ratio for
these cqnditions modes are virtually the same for all

isotropic materialsc35){

4,8 GENERAL COMMENTS

The frequency spectra of a large number of rectangular
plate modes have been identified and discussed. The
materials used in this measurement chosen to be isotropic,

although some show a small anisotropic effect.

Modes with certain well-defined vibrational patterns
were easy to identify and their resonant frequencies
were followed over a wide range of geometries. Modes of
special interest were examined. Of these are the end
resonance and the plate resonance. The end resonance
is well defined when the length is more than twice the
width. It will be seen in Fig. 4.2 that two modes which
are completely separate in the square plate come together
to form the end resonance. The plate resonance was
found to be the breathing mode when the geometry becomes
that of the square pl?te. This has a special interest
in material characterisation as 1t shows the effect of
the Poisson's ratio on the resonant frequency. By using
two different modes of the plate, some materials moduli
and other engineering constants can be calculated and
s is comprehensively treated in the early

identified. Thi

chapters.
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The complexity of the vibrational patterns for some
higher order modes set a limit to the procedure for
following the spectra. The recurrence of the Lamé mode
pattern at certain plate geometries gives a valuable
clue to their identity.  The Lamé mode always tends to
approach the longitudinal mode when the plate width becomes
small compared to its length. The nodal pattern symmetry
and the phase of the motion at different points on the
plate periphery is valuable in the process of recognising
the mode spectrum and predicting their asymptotic
behaviour. Certain nodal vibrational patterns can be
simple at certain sides ratios, while the alteration of
their geometry tend to change them to an extremely
complicated form. Some of these vibrational patterns
have complex nodal structures, but using the probe
technigue, and clamping the plate at certain points
provide valuable additional evidence. As an example
for the pattern complexity as the plate geometry change
is mode (2,2) shown in Fig. 4.17. The nodal lines at
certain plate sides ratio have a curved form but are
lines of zero stress. This can be interpreted as a
result of generation of some other nodes and antinodes
on the pattern. The Lamé resonant mode will be identified
when the plate sides ratio will have a value of (3:1).
This mode approaches the longitudinal mode of the third
the plate length is much greater

harmonic order, when

than the width as has been shown earlier. This mode has
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an image of spectrum along both sides of the square

plate line of Fig. 4.2,,
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Frequency-width axis

square line

width
% B
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I gen drive
drive l
The drive
i 1:1 ——— drive
length 1:3
. The drive
width /
\ \9%
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%
\\\\ 3:1
length
/ Wldthwidth
o) -
45
Frequency-length axis
length
drive
Fig. 4.1 The presentaticn of the frequency spectrum according to

the plate drive.

The angle is proportional to the

length-to—width atio. An angle of 45 degrees represents

a perfect sguare

plate.



Fig.

4.

2

An empirical presentation of the observations

for Aluminium rectangular plate, (CO=517O m.sec“l
and Poisson's ratio o = 0.34). Here the modes
spectra are presented by the width and the length
of the plate considering the frequency has a
fixed value of 100 KHz. The two segments below
and above the square plate line (45 degrees line)
are presenting conditions of the mode when they
are driven at an axial length and width
respectively. Anti-symmetric modes are showing
completely different spectra at each segment,

while the symmetric modes have mirror image of

the spectra.
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Axial
length

drive

Fig. 4.3

e
— Jas——
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TTTmTTT
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e —— o — — — — — o
T —
—_—
—
Sa,

Sketches for the resonant vibrational patterns for
the fundamental longitudinal and in-plane flexural modes

of a narrow rectangular plate.

The longitudinal modes are best excited by a central axial
drive at the remote end; while the flexural modes need
different driving conditions, normally at the position
where the vibraticnal displacements have maximum amplitude.
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NODE NODE NODE

NODE
NODE
NODE
(A)
Frequency is not equal (no image)
NODE NODE
NODE NODE
(B)

Frequency equal (equal image display)

Fig. 4.4 This diagram shows sketches for the nodal patterns of
the non—-symmetrical and symmetrical modes of the

rectanqular plate.
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jation of the nodal pattern configuration of the

with the width-to-length ratio of the plate.
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SYMMETRIC MODE

ANTISYMMETRIC MODE

V4 A4 /4 A2 /4
- > L <%
1st Order Mode 2nd Order Mode
A4 A2 A2 /A VA N2 A2 A2 /A
P S W e < —_— —_— | —_— | f— —
3rd Order Mode 4th Order Mode
A N2 N2 A2 /2 WA A4 N2 N2 N2 A2 N2 N4
et | e | —P | | —— | — > —_—tp | — | — | —— | — | — | —

S5th Qrder Mode

4th Order Mode

Fig. 4.6 The longitudinal Rectangular plate modes and their

nodal pattern configurations.
have nodes at the mid-length of the plate with an odd

harmonic mode orders, while the antisymmetric modes have
antinode at mid-length of the plate with an even

harmonic mode orders.

The symmetric modes
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0. £

1000

Fig. 4.7 This is

The Frequency Spectrum of the First and the Third
Longitudinal Modes of an Aluminium Isotropic Plate.

1

(CO=517O m.sec

Poisson's ratio = O, 34)

Driwve

Gy

G— " —f
/

Third Longitudinal

/

|

First Longitudinal

w/L

a direct graph of the exper imental data given

in Table 4.2
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Diagonal
Shear
Mode

ﬂ
|
Rectangular e o Jem ==
Plate J ;
(1.2:1) |
MT\l
T !

Rectangular ~
Plate \ Z 'l
(2:1) I

Second order
Flexural
Mode

Long Strip

Fig. 4.8 'The change of the modal pattern configuration of Mason
Mode to flexural bar mode of the second harmonic order

as the plate geametry changes.

-87-




3rd Longitudinal Mode

Centre drlve length

drive

(Breathing Mode)

1.1 7
p/ ydiagonal drive
7 2nd Longitudinal Mode
0.9 Centre drive length
0.7 A e strongly coupled at
length drive
X strongly coupled at
diagonal drive W
0.5 T
T T T I T H T 1 T T T I T 1
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

w/

Fig. 4.9 Graphical plot of the progress of the breathing mode through

the variation of the plate sides ratio. (Aluminium plate

¢ = 5160 m.sec T and o = 0.34).
(@]
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Results of Fused Quartz and

p -
Pyrolytic Graphite
1.1
1.07 . e
0.97 .
The result of
Aluminium plate
0.87]
! | ! 1 1 { T T Y
1 0.8 0.6 0.4 0.2 0 w/h
>
Fig. 4.10 The graphical representation of the breathing mode

variation with the plate geometry. The result plotted

fram Table 4.4.
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0.9 A

Lamé Mode and the End Resonance

Na—

Lamé mode
(w/Xx =%)

.0.857]

0.8 —

The end resonance
(Kalmarczie's result)

T T T 1
0 0.1 0.2 0.3 0.4 0.5

Poisson's ratio ¢ —P

Fig. 4.11 Graphical plot for the variations of Lamé mode and the

end resonance as a function of Poisson's ratio. The
values of the normalised frequency for the end resonance
obtained fram Kalmarczie's thesis (Reference 38 ). Values
of the Iamé mode obtained fram the table in Appendix A.
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Rectangular
Plate ? c —* 2:1
\\ e ‘\«w__—/’l/
\V4 N
Frequency is equal
B = Strongly coupled C = Node

A = Fairly coupled

Fig. 4.12 Sketches for the pattern displacements of the two modes

which their frequencies degenerate to form the end

resonance when the plate length exceeds twice its width.

As the plate increase, the displacements near the drive

add together and at the remote end cancel out.
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1.05+
1.0279 Fram Morse equation
4+ e Steel
L]

1.0 7
+ Quartz

0. 954

0. 90+

+
0.857
T i ' I ' ‘

Fig. 4.13

o O ;)5 0.1 0.15 0.2 0.25 0.3 0.35 0.4

—_—

Graphical plot for the variation of the fundamental

flexural mode of a rectangular plate with the plate

sides ratio. The asymptotic value 1is cbtained fram

equation (4.1).
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Fig. 4.14 This diagram shows the variations of the vibrational

displacem
flexural mode as the plate geametry change.
fundamental 'free-free bar' flexural

ent pattern configurations of the fundamental
The mode

will approach the

vibration.
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Second order
longitudingl

mode Drive).

P
W

3000 7
(width drive)
drive
!
= —
2000 .
Third order flexural
, mode -
— { T T T T T I T T
0 0.2 0.4 0.6 0.8 1.0 w2
—
Fig. 4.15 Graphical plot for the frequency spectrum of the square
(Mode (6) in Fig. 3.1) as the plate

plate mode (1,3)

geametry change. The mode spl

at different driving position. Longitudinal mode when

the plate driven at the remote far end, and flexural
drive (Aluminium plate,

mode excited by_3gn axial width
C, = 5170 m.sec ~ and 0 =0.34].

it into two separate modes
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Fig. 4.16

This is showing the radical variation of square plate
mode (1,3) as the plate sides ratio change. The mode
split into two different modes as the plate changes to
a narrow strip. These two modes are the second
longitudinal and the third in plate flexural of a long

narrow strip.

~96-



Rectangular Plate

2:1

1.5:1

Nodal pattern having curved shape.

The third
harmonic order
Lamé mode
(Corners are
nodes)

Square Plate
Mode (2,2)

1:1

Centre is node
straight nodals

3.1

line

Fig. 4.17 This is showing the pattern variation of the sguare plate
mode (2,2) to rectangular Lamé mode when the plate length
Lpel R

is exactly t
is accampanied
configurations.

by a change in the nodal pattern
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%‘Zigth gthsWidth. gﬁ@ency Iﬁ%secﬁl Iiw sec™t '(?:'w_
B T T s e S
35 1:1 64.082 - 224286 | 2242.86 | 0.7102
70 2;1 63,989 4479,23 | 2239.62 | 0.7092
105 3:1 63.860 6705.31 | 2235.10 | 0.7078
140 4:1 63.877 ,8942'.78 2235.70 | 0.7079
175 5:1 63.926 11187.0 | 2237.40 0.7085

Experimental results for the Lamé modes of Aluminium plate .
_ : -1 -

having harmonic side ratios. (CO = 5170 m.sec , CS = 3158 m.sec

and o= 0.34)
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A T RES

el c ...}.3 T
(RS UL RN BT
Length. 0.20 | 2577.Q | 0.4985| 7562.9 | 1.4628
Driye 0.24 | 2578.8 | 0.4988| 7433.8 | 1.4379
4 Q.30 | 2574.4 | 0.4988| 6287.1 | 1.3625
0.375 | 2550.3 | 0.4933| 6287.1 | 1.2161
2 10.417 | 2547,0 | 0.4926| 5914.5 | 1.1440
| 0.500 | 2528.4 | 0.4891| 5658.0 | 1.0944
0.625 | 2496.9 | 0.4830 5125.3 | 0.9914
T 0.708 | 2466.5 | 0.4771| 4927.8 | 0,9532
o 0.750 | 2443,7 | 0.4727| 4832.9 | 0.9348
T 0.834 | 2385.1 | 0.4613| 4651.7 | 0.8997
0.917 | 2314.2 | 0,4476| 4493.7 | 0.86%2
tmg ————| 1.00 | 2222.7 | 0.4299| 4311.9 | 0.8340
1.044 | 2175.2 | 0.4207| 4217.1 | 0.8157
1.143 | 2054.6 | 0.3974| 4007.4 | 0.7751
1.263 | 1910.0 | 0.3694| 3754.9 | 0.7263
1.412 | 1747.1 | 0.3379| 34%0.5 | 0.6751
1.449 | 1656.1 | 0.3203| 3349.9 | 0.6479
1.600 | 1560.6 | 0.3019| 3203.3 | 0.6196
R<w 1.712 | 1464.7 | 0.2833] 3066.7 | 0.5932
% 1.845 | 1363.4 |0.2637| 2935.8 | 0.5679
— | 5.000 | 1264.2 |0.2445| 2829.0 | 0.5472
ridth 1 5,398 | 1061.5 | 0.2053| 2464.4 | 0.4767
prive 2667 | 956.4 |0.1850| 2357.7 | 0.4560
W 5 334 | 772.3 |0.1494] 2113.3 | 0.4088
4,167 | 618.9 |0.1197] 1784.1 | 0.3451
{|5.000 | 515.4 |0.0997) 1512.6 0.2926

Experimental results for the
modes and their variations wi
Aluminium plate was used with Cg

ratio = 0.34.

b

first and the third longitudinal
the plate sides ratio.
- 5170 msec © and Poisson's




b w/% | Frequency | &f 153
BRitac LT IR An KBz O
30%30 | 1.00 | 64,262 1927.9 | 0.3729
40%30 | 0.750 | 56,271 2250.8 | 0.4354
70x50 | 0,714 | 32:910 2303.7 | 0.4456
80x50 | 0.625 | 31.080 2486.4 | 0.4809
50x30 | 0.600 | 50,588 2529.4 | 0.4892
_90x50 | 0,556 | 29.251 2632.6 | 0.5092
100%50 | 0.500 | 27,305 2730.5 | 0.5281
34x15 | 0.441 | 82,277 2797.4 | 0.5411
50%2Q | 0.400 | 56,558 2827.9 | 0.5470
40x15 | 0.375 | 69,373 2774.9 | 0.5367
120%40 | 0.334 | 22,740 2728.8 | 0.5278
s0x15 | 0.300 | 52,719 2636.0 | 0.5099
70%20 | 0,286 | 37,212 2604.8 | 0.5038
80x20 | 0.250 | 30.806 2464.5 | 0.4767
35x8 | 0.229 | 67,020 2345.7 | 0.4537
75x15 | 0.200 | 28,904 2167.8 | 0.4193
96x15 | 0.156 | 19,395 1861.9 | 0.3601
gox8 | 0.100 | 16,23 1298.4 | 0.2511

the plate gecmetry.
"free—free-bar" flexural vibration. (Results for Aluminium

plate @ =0.34].

Experimental results of the variation
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of the Mason mode with
The mode will be ended as a second order




- TABLE 4.4 (a)

Hlﬁngthﬁdth wh Prequency | 2 'c;z‘}f“
30 30 1.00 101.012 6060.7 | 1.1046
40 30 0.75 | 93.227 | 5593.6 | 1.0194
50 30 0.60 | 9.780 | 5446.8 | 0.9927
60 30 0.50 | 88.355 | 5385.6 | 0.9815
80 0 0.375 | 89.095 | 5345.7 | 0.9742
100 0 0.300 | 8.7% | 5327.4 | 0.9709
125 30 0.24 | 87.836 | 5328.6 | 0.9711
150 30 0.0 | 87.363 | 5241.8 | 0.9553
175 0 0.175 | 87.310 | 5238.6 | 0.9547
200 o 0.150 | 88.903 | 5334.2 | 0.9722

 TABLE 4.4(b)

' 5=0.165 TFWROBKIL. G = 5816.0
y lw lwn £ |t fzwf/cp
31.67| 12.7 | 0.401 | 227.542 | 5780.0 | 0.9938
723 12.7 | 0.341 | 228.765 | 5811.0 | 0-9991
c3.35| 12.7 | 0.20 | 228.250 | 5760.0 | 0-9938
oLs | 12.7 | 0.125 | 229.710 | 5835.0 | 1.C033
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Pyrolytic Graphite

=0.075 Cy = 215 637253
L. W WAoo LE . f.zWﬁ/cp_ g
31,75 | 12.7 | Q.40 |145.42 | 3693.7 {0.9915

63.35 | 12.7 | 0.20 | 148,47 |3771.1 | 1.0122

The variaticon of the Breathing mode with the plate geametry.

The value of 2wf is approaching Cp for long strip.
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. mBLE"LS

----------------------------- Aluninium plate (6=0.34). .. . .

Plate g;reétueibde Secondlvbd ______
B AT il R R ol R
30 1.0 70.613 | 2118.4 | 86,182 | 2586.5
30 Q.75 74.330 2230.0 77.27 2318.1
30 0.60 74.763 2242.9 76.180 2285.4
30 0.50 76.635 2299.1 76.635 2299.1
30 0.376 75.630 2268.9 75.430 2262.9
30 0.30 75.434 2263.0 75.434 2263.0
S 0.2 | 113.150 | 2263.0 | 113.150 | 2263.0

resonance is a
and the other antisymmetric.
frequencies when the plate is nearly square.
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result of cambining two modes, one symmetric
These are separated at different




Lhaty W/ Frequency | &£ £
30x30 | 1,000 | 70.613 |- 2118.4 | 0.4101
30x25 | 0.834 | 66.725 2001.8 | 0.4651
30x19 | 0.634 | 60.696 1820.9 | 0.5566
40x20 | 0.500 | 41.478 1661.1 | 0.6424
34x15 | 0.441 | 45,463 1545.7 | 0.6784
48x20 | 0.417 | 31.730 1523.0 | 0.7077
50x20 | 0.400 | 29.489 1474,5 | 0.7137
50x15 | 0.300 | 25,080 1254,0 | 0.8093
- 60x15 | 0.250 | 18,412 1104.7 | 0.8555
75x15 | 0.200 | 12,400 930.0 | 0.9003
92«15 | 0.163 | 8.580 789.4 | 0.9373
- 96x15 | 0.156 | 8,050 772.8 | 0.9576
. 60«8 | 0.113 [11.200 672.0 | 0.9758

The experimental results for the fundamental in plane flexural mode
This table shows the variations of the

of rectangular plates.

value of 22 f/wC as a function of the plate gecmetry.
(€, for Aluninium = 5165 m.sec L and 0=0.34)
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- |-Axial Length Driye | Mid-Length Drive
i i
Kz ..o m.sec. Koz | m.sec
65.864 3161.5 | 65.870 3161.5
67.299 3230.4 | 67.153 3223.3
68.951 3309.7 | 68.557 3290.7
70.361 3377.3 | 69.877 3354.1
71.984 3455.2 | 71.117 3413.6
73.645 3535.0 | 72.721 3490.6
75.653 3631.3 | 75.260 3612.5
77.752 3732.1 | 75.758 3636.4
80.163 3847.8 | 77.575 3723.6

82.626 3966.1 | 79.101 3796.9
85.658 4111.6 | 80.858 3881.2
89.073 4275.5 | 82.5%0 3964.3
92.453 4437.7 | 84.634 4062.4
96.154 4615.4 | 86.187 4137.0
99.640 4782,7 | 87.558 4202.8
102.068 4899.3 | 88.245 4235.8
103.737 | 4979.4 | 88.935 | 4268.9
7nd Tongitudinal | 3rd Flexural. ..

The experimental results of mode (1,3).

variation with the plate gecmetry. Two modes ar
two different driving positions: The longitudinal mode of the
second harmonic order and the flexur

order. (The measured results are fram Aluminium plate,

and Poisson's ratio = O. 34).
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CHAPTER FIVE

WAVES AND VIBRATIONS ON ISOTROPIC RECTANGULAR

PLATES AND STRIPS

5.1 INTRODUCTION

In the previous chapter the experiments showed that
the frequency of the longitudinal modes of thin
rectangular plates increases as the width decreases. For
a narrow strip the frequency-length product for a given
mode will have a constant value due to standing waves

produced at the rod velocity.

In this chapter, some theoretical aspects will be
represented and discussed which describe and analyse
the different modes of vibration of the plate and strip,
aﬁd compare it to the experimental results. This can be
fulfilled mainly bg considering the theory behind the
wave motion and the vibration of the plate, where the
body exhibit a resonance as a result of wave reflecting

back and forth between two impedance discontinuities.

The method of the general theory of elasticity can

be applied only £
Lamé (43) has described simple modes of vibration of
isotropic rectangular plates.

of the equation of motion as it satisfies the conditions

_ﬂK%‘

or certain problems of elastic vibrations.

The modes are exact solutions



of having no stresses at the corners of the plate

€73)

Morse (1950) has described some modes of the
wave propagation which satisfy the boundary conditions
for the free vibrations of long isotropic bars of
rectangular cross section based on the general elastic

equation of motion.

An empirical study by Graff(26)

shows an extensive
analysis for the modes of the wave motions and vibrations

of isotropic plates and rods.

5.2 THE BASIC THEORY

The frequency equation for the waves propagatﬁﬁﬂin

a homogeneous isotropic elastic plate have been developed

2 ) and Lamb(¢L44)independently. The

by Rayleigh (1889)(8

solution of this theory has peen presented by . several authors

(24,62,63,65,66,67,6§)and the complete frequency spectrum

6 . .
have been extensively reported(z'%”, Yesulting in an

almost complete understanding of the behaviour of thelr

dispersion curves.

Waves propagated in an isotropic elastic body exhibit

two types of velocities; these are the dilational and

the shear wave velocities. In an infinite plate, the

dilational velocity 1is the bulk velocity and in a strip

it is the plate velocity (Cpl.
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The relations between the plate and the shear

velocities in the strip can be expressed as:-

cs 2 l-o
) = & =
P
or )
c =2C 6%
s p (5.1)

Consider an isotropic elastic plate of an infinite
length and width with a thickness (2b) as shown in
Fig. 5.1. The frequency equation which describes the
symmetric and anti-symmetric waves propagated in the plate
was originally given by Rayleigh and Lamb, and was
conveniently given by Graff as:-
1 +1 Symmetric

-1 Anti-symmetric

tan BE + '4aBY2
tan ab 2 2.2
(B™=a")

where

1
o = y(626-1)7

g = Y((bz_l)% i (5.3)
27
Y = 3

In recent years, much work has been done in calculating

the roots of Rayleigh—Lamb's transcendental frequency

equation in order to determine the various modes of the

wave propagated in an infinite plate, and the dispersion

relations for various waves.
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Equation (5.2) may be readily solved for a given

relation between the wavelength term (yb) and the phase
velocity normalised to the shear (¢). This solution is
also valid in the case of a thin long strip by considering
its width (w) is equal to (2b) and the constant 6 has a

value given in equation (5.1), i.e. the plate velocity now

replaces the bulk velocity in all the equations.

This equation can be solved using a numerical approach
to find the roots of the equation for both the symmetric
and non-symmetric modes. Where possible this formula
has been put into a form which is more workable numerically
and in which the variables have more direct physical
meaning. Table 5.1 gives some considerations to be taken

to fulfil the requirements for solving this equation easily.

Some general features of the symmetric solution are

immediately evident:-

(a) When (¢2-2) = 0, the solution is independent

on Poisson's ratio, and requires:-

™
Yb =3
orxr

w _ T (5.4)
™ 2

> &

The values of ¢=v/2 define the solution which was

already given by Lamé for some modes of certain conditions,

that is when the wave length is twice the plate width.
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These are modes with nodes at the corners of the plate
7

and are universally known as Lamé modes. In the previous

chapter, extensive experimental measurements for various
materials with a wide range of Poisson's ratio show a

good agreement with these thearetical results indicating
that the Lamé modes are shear type modes since the frequency

normalised to the shear are independnet of Poisson's ratio.

(b) For small values of yb, the relation is linear

and we have:—-

L
¢ = 2(1-8)°
or
%

C¢ = Cs{2(l+0)I (5.5)

This is the wave velocity in a thin rod (CO). The small
value of yb means the value of (w/A) is small, or the
wave length is greater than the width, and then the

velocity will get closer to the rod velocity C_.

(c) For large values of vYb, the formula will be:-

9 X 2.k
(92-2)% = 4(1-¢70) 7= (5.6)
This ‘equation. is defining the Rayleigh surface wave, and ¢

approaches a constant value - which is dependent .on the

Poisson's ratio - as yb becomes higher.

(d) For small values of vb, the solution for the first

anti-symmetric mode can be approximated to:-
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or

(5.7)

Equation (5.7) is similar to the Morse result(71)

for the 'free-free bar' flexural vibration, see equation

(4.1).

The solutions for the vave equation according to the
table above will determine the different modes of

propagation in an isotropic plate. These modes have been

studied extensively by several authors (59’60’62’63'".65’68’73’74’74’80)

comprehensive treatment was published by Graff(26). The
solution for the first symmetric mode requires ¢ to have
a value greater than one, but ¢6% less than one. While
the solution for the first anti-symmetric mode requires

¢ to be less than one. All the other modes - symmetric

or anti-symmetric - require ¢ to be greater than one.

The phase velocity normalised to the shear wave

velocity as a function of (w/)x) for the first three modes

is given in Table 5.2 and shown graphically in Fig. 5.2.

The first anti-symmetric mode is indicated by the curve

For long wavelengths (w/A=0) a; approaches 2ero,

oaches the Rayleigh wave

a.
and for short wavelengths it appr

velocity. The first and the second symmetric modes are
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represented by the curvesg s, and s

2 Iespectively. For

long wavelengths S1 @pproaches the "rog" velocity (CO),

and for the short wavelengths it approaches the Rayleigh

wave velocity. The normalised frequency-length product

of the second mode s, has an asymptotic value of one for

short wavelengths, and shows a cut-off phenomenon where

the curve approaches infinity for longer wavelengths.

These three modes are extremely important experimentally

as they represent the different groups of the square and
the rectangular plate vibrational modes. 1In particular
is the curve Sq since it represents the variation of the
phase velocity of the longitudinal vibrational modes of
a rectangular strip with the width-to-wagelengths— -

ratio.

The Lamé mode is one well known solution of the
Rayleigh-Lamb equation where the sides of the plates are
integers at A/2, The experimental results are completely

consistent with this.

The next solution for the symmetric mode is

representing by the curve s, in Fig. 5.2, This mode does

not exhibit a cut-off frequency and is determine primarily

by the width dimension. The solution for the square plate

geometry is obtainable by proposing that the wavelength

is twice the width, i.e. w/A=1/2. This is the ideal
condition to be considered for thewave to

~112-~
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in the plate. Such a solution is present in the breathing

vibrational mode of the square plate. Since the Young's

modulus has a major contribution in this mode, the
variation of Poisson's ratio modulus must have an influence
on the phase velécity normalised to the shear. This can

be computed and a comparison with the experimental results,
which have already been given in Chapter Three, can be

made.

The computed results of the breathing mode for a range
of the Poisson's ratio is given in Table 5.3. The
corresponding frequency ratio of this mode to the
fundamental Lamé mode is plotted for both experimental
results and the computed results for different Poisson's

ratio, and it is shown in Fig. 5.3.

The two results are close to each other for the lower
value of the Poisson's ratio, and both have a slight

curvature at this range. But for the higher value of

Poisson's ratio a slight disagreement is shown. This

could be due to the thickness of the plate which will be

most significant for t he high Poisson's ratio materials.

Additional information on the resonant modes of the

: i nsiderin
various plate geometries can be determined by cOns g

the frequency spectrum of Rayleigh-Lamb mgdes. The

resulting frequency gpectrum for the first fivemodes as a
tio (0)=0.33

0 ]
function of (w/\) for the case of Poisson's ra
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4
[ |

is shown in Fig. 5.4 where;-

Covb 2w 2wE
Q= Sl = P = X
¥ _¢>\ C (5.8)

The experimental measuremeﬁfs already carried out for
the different square plate modes is expected to have - for
some of them - comparison results. For instance, the
Lamé mode gives a perfect matching with the figure in the

graph. That is the first symmetry mode when (w/A)= 1/2.

The Mason mode is expecting to have the same value as
the anti-symmetric mode. But this gives a higher value
of (w/A);this is egqual to (0.75) instead of the (0.5) assumed.
This result is rather interesting and a similar feature

for (w/\) for the other modes can be determined.

Figure 5.5 shows some vibrational patterns of the

square plate modes and their defining values of the width-

to-wavelength ratios.. The harmonic relationship of

the Lamé modes is clearly shown since each of them is

represented by a certain mode of the wave propagation. The

other square plate modes which are described as the flexural

modes,are determined from, the first anti~symmetric modes.

These will have higher values for (w/\) from that obtained

from the Mason mode according to their resonant fregquencies.
Table (5.4 gives the computed frequency spectrum of

the breathing mode, assuming it is the second symmetrlC mode.
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The frequency is controlled by the plate width dimension.
The frequency-width product approaches a constant value
when (w/A) becomes smaller. The frequency equation was
solved for Poisson's ratio (0.33) and the plate geometries
were found by assuming (A=2%). The asymptotic value of
(2wf) is close to the plate wave velocity (Cp). The
experimental measurements have already shown the
dependence of the breaﬁhing mode on the width dimension

of the plate.

5.3 THE LONGITUDINAL RESONANCE

In the longitudinal resonance, most of the wave
motion is directed along the length of the plate. One
can now think of the longitudinal resonance as the result
of waves reflecting back and forth between two impedance
discontinuities. For example, consider a thin bar or a
strip free on both ends, the wave will be in resonance

when the wave reflecting from either end will undergo

a phase reversal.

The velocity of the wave moving along the length of

the plate is then called the phase velocity. If a very

narrow plate is considered (i.e. w<<A) the phase velocity

will approach the rod velocity (CO)

The vibrations of various modes are shown in Fig. 5.6.

e ends are going in and out together

For the fundamental th
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(reverse phase). In the second mode they vibrate in

phase, and so on. i.e. odd orders are in the reverse

phase and even orders are in phase. For all cases the

system is dynamically balanced. The wavelength will be

given by 2&/n where £ is the leﬂéth and n the mode order.

It was mentioned earlier that for an indefinitely
narrow strip there is no dispersion and the phase
velocity is equal to the wave velocity in the rod (Co),
otherwise a correction must be applied to the phase
velocity due to the width of the plate which has a

considerable effect on the lateral contraction.

The formula for the correction is that which was
described by Rayleigh-Lamb frequency equation mentioned
earlier. The solution for the first symmetric mode is
represented by the variation of the phase velocity
corresponding to the shear with the width-to-wavelength ..
ratio. This has a considerable dependence on the Poisson's
ratio. The graphical plot of R, the phase velocity
normalised to the rod velocity (CO) versus (w/X) is shown

in Fig. 5.7 for different Poisson's ratios.

A complete tabulation of values of R for a wide range

of Poisson's ratios, from (0=0.5) to (0=-0.1) step (0.01)

is given in the appendix A
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5.4 ‘THE EXPERIMENTAL MEASUREMENTS

The materials used in this investigation cover the
range from Aluminium with Poisson's ratio (0=0.34) to
Pyrolytic Graphite (¢=-0.10). They have been prepared
by machining them to thin narrow strip geometries and
chosen to be homogeneous and in-plane isotropic or
orthotropic materials. The longitudinal resonant modes
have been excited by coupling the driving line to the
plate at its remote end toward the axial direction. The
resonant frequencies for different longitudinal modes
were precisely measured, and the harmonic relations for

these resonant modes were soon identified.

Aluminium was first investigated in detail. It
has been machined from a disk prepared as a thin plate
sliced from a cylindriocal rod. The plate made in this
manner was isotropic in its in-plane direction where the
vibrational displacements are taking place, but not in

its thickness where the grains are elongated and no

movement is expected to occur.

The results of the experimental measurement are

given in Table 5.5, the frequencies were measured for

each mode, and the phase velocities were calculated from

the frequency—wavelength.product. The wavelength is

simply. related to the length of the plate from the

relation A= 2%/n where I is the harmonic mode order, and
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the formula for the phase velocity will then be:=-

_ £
Ccp = 2% = (5.9)
The Width-tO—WéveIéﬁgthw:f; ratio is related through
the following formula:-
Wo_ o, W (5.10)
A 2% : '

This indicates that the ratio of (w/A) is linearly

proportion to the mode order (n).

The variation of the phase velocity C¢ for the
Aluminium rectangular strip with.(w/k) through the harmonic
mode order (n) is shown in Fig. 5.8. This is similar to
the curves,shown in Fig. 5.7, which were for the Rayleigh-
Lamb longitudinal frequency equation, where the curvature
of the phase velocity Versus (w/\) is controlled by the
Poisson's ratio of the material measured. The phase
velocity has a cut-off value when (w/)r) or (n) is zero.
This gives the correct value of the phase velocity when
the wavelength 1is infinitely greater than the width of
the plate. This value is the true rod velocity (Cj). It

can be found by extrapolating the curve in the above

figure.
A comparison petween this result and the theoretical

results shown earlier indicates that the correction can be

made for the phase velocity using the tables given in the
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Appendix A.

This correction is often called the Rayleigh-Lamb phase
velocity correction, and the rod velocity (C_1 can be
: o

found as soon as the correct value of the Poisson's ratio

has been chosen.

It is important to mention at this stage that the
smooth curvature of the phase velocity versus (w/A) 1is
1imited to a certain mode harmonic order. This depends
on the plate geometry or plate sides ratio{ In other words,
it depends on the value of (w/\). The experimental
results shows that when the value of (w/A) exceeds (1/2),

the mode will no longer be related in a harmonic order.

Problems accompanied by using the tables of the
Rayleigh-Lamb phase velocity correction, are usually
related to the values of (w/A) being used. These must
be matched with the experimental values obtained. The
method to obtain such similar values of (w/\) to that in
the table is by smoothing the curve of Fig. 5.8
(mathematically or graphically) and extrapolating the

deserved values of (w/A) to match those given in the

table.

The final results of the Aluminium plate modes

phase velocities correction for different Poisson's ratios

is given in Table 5.6. R is the Rayleigh-Lamb normalised

phase velocity to the rod velocity (R=22£/C_) -
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The graphical variation of this correction is shown

in Fig. 5¢9. The deviation of the curves depend on the
value of the Poisson's ratio chasen from the tablé. The

value inferred from the graph is 0.33 with an uncertainty

of about *0.0l.

Materials like silica and glass are expected to be
isotropic in their properties. These are considered to
be the most homogeneous materials in this investigation.
They provide reference standard of measurements for
verifying experimentally the analytical approaches shown
earlier. The longitudinal modes of the silica have been
measured and the values of the phase velocities and the
width—to—wavelengthAratiQ have been determined by

following the procedure.described earlier.

Tabhle 5.7. gives the measured results, and the
graphical plot for the phase velocity as a function of

(w/A) is shown in Fig. 5.10.

The procedure of determining the correction of the
phase velocities corresponding to the different values
of Poisson's ratio made use of the table in Appendix A..

Table 5.8 demonstrates the calculated values, and these

are shown graphically in Fig. 5.11. The values of the

Poisson's ratio were chosen from the table to show a

comprehensive variation for the corrected phase velocity .

curves.



The abhove figure shqws an acceptable result of the

+ t . s R v .
Poisson's ratio for the material used. The value is close

to that obtained from the same material by using the disk

resonator.

The experimental results from the glass strip is
given in Table 5.9. The values of the phase velocity for
the different modes and the corresponding values of (w/A)
is shown graphically in Fig. 5.12. The corresponaing
correction for the phase velocity according to the table
in the Appendix A for different Poisson's ratio is given
in Table 5.10. These values are graphically represented
in Fig. 5.13. The result obtained for the glass Poisson's
ratio is fairly close to that obtained from the disk
resonator. Although the disk resonator gives the result
directly and more precisely due to the tabulated eigen
values available, there are certain problems accompanied
with both procedures which effects or alters the accuracy
of the measurements. These problems are related to the
geometry of the plate (disk), and the thickness of the

plate which have a vital influence in the measurements

and the final results.

Even though the results from this method give a guide

to determine the mechanical properties of the material

with a precise figure. This might be an alternative method

for evaluating and measuring the rod velocity for isotropic

and orthotropic materials and their Poisson's ratios. This
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is vexry important in the field of the material studies and
in determining the mechanical characteristics and‘the
properties of the metals. This has a wiae range éf
applications especially in the field of the non-destructive

testing and evaluations of the materials.

The grains orientation in the material will have
a significant influence on the values of the rod velocity
and the Poisson's ratio. This is demonstrated clearly in
the case of Aluminium plates machined from a rolled sheet
metal. Further studies and investigations for the case

of anisotropic materials will follow later.

The solution of the Rayleigh-Lamb frequency equation is
also obtained for the negative values of Poisson's ratio.
These will give virtually identical solutions to the
positive values as the energy balance is unchanged. The
resultant ambiguity in the sign of Poisson's ratio can
usually be resolved. This is shown in the table in

Appendix A. The solution is symmetric to that of

positive Poisson's ratio for only the lower value of (w/A).

This means the solution can only be used for narrow strips.

When the value of (w/)») is close to the (0.5) or above it,

the disagreement is shown for the two Poisson's ratio (the

negative and the positivel.
Pyrolytic graphite is a polycrystalline form of graphite

grown from the vapour phase by the thermal decomposition
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RN
of a carbon-bearing gas a refractory mandrilﬁ

Pyrolytic graphite is a material which has negative
Poisson's ratio. This was prepared in a narrow thin strip
geometry. The longitudinal resonant frequencies were .
measured and the phase velocity as a function of the modes
order has been determined and given in Table 5.11. The
variation of the phase velocity with the value of (w/A). is

shown graphically in Fig. 5.14.

The phase velocity was..corrected for specific values
of (w/)A), using the eigen values for negative Poisson's
ratio. In fact, by using either eigen values of positive
or negative Poisson's ratio it should not effect the
result. The complete results for the range of Poisson's

ratios is given in Table 5.12.

Figure 5.15 shows the final plots of the curves for
different Poissons ratio. The curve with less curvature

indicates the closest value of the Poisson's ratio for

the material measured.

5.5 THE LONGITUDINAL RESONANT MODES RELATIONS -

The relations between the longitudinal resonant

frequency and the modes order (n) for a narrow thin strip

have been demonstrated previously. This was given by

the Rayleigh-Lamb frequency equation which has been
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explored earlier. The experimental results supported
this relation for a limited value of width-to-wavelength
ratios (w/}), where this is linearly proportional to

the mode number (n). The values of the Young's modulus
and the Poisson's ratio modulus“can be obtainable by
applying the required correction for the phase velocity
as described above. This method is applicable only for

isotropic or orthotropic materials.

Tt has been shown experimentally that this relation
is no longer valid when the value of (w/)) exceeds (0.5),
and the modes order will no longer be in a harmonic

relationship.

The following is an attempt to find a simple, direct
method of determining the longitudinal elastic modulus
for the materials in long strips geometry, by obtaining
a relationship between the resonant frequency and the

mode order (n).

The measurements carried out for the silica material
of a long strip geometry revealed that the longitudinal

resonant modes have a clear frequency dispersion. This

was presented in Fig. 5.10. To obtain the true rod

elasticity the curve must be extrapolated back to zero

value of (W/\). A simple parabolic mathematical formula

was found to fit the yvalues of the resonant frequencies

to a smooth curve for low (wW/A).
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Although the formula was given by Rayleigh-Lamb has been
well demonstrated,it requires tabulated eigen values for

different Poisson's ratios to make full use of it.

The crutial point about the resonant frequency curve
is its wadical variation when the value of (w/\) is close

to or above the (0.5).

The Table 5.13 gives the measured longitudinal phase
velocity for silica and the calculated value of (w/A)
which is obtainable from the relation (5,10). This is
linear proportion to the mode order (n). The table also
shows the gquadratic and the cubic values of (n). The
variation of the phase velocity with each of these three

values of n, n2 and n3 is shown graphically in Fig. 5.16.

A close inspection of these three curves shows that
the curve has been flattened as the index of the mode
order increases from 1 to 3. In fact the lower segment

of the curve for n3 retains a slight curvature which can

be easily taken into account.

This relation is extremely useful for determining
the Young's modulus and the Poisson's ratios modulus
precisely for the materials of having rectangular strip

geometries. It is obtained directly from the experimental

results by fitting them in a quadratic curve using &

least squares fit method.
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It should be noticed that this is only applicable

in a case of the lower longitudinal modes order where

the ratio of (w/A) is low and does not exceed the (0.5)
value. The modes relations for an Aluminium plate 1is
also presented here. The resonant frequencies of the
longitudinal modes were measured for the mode order, and
the phase velocity as a function of (w/X) has been
determined. This is given in Table 5.14 where the values

of n2 and n3 are also presented.

The variations of the phase velocity as a function
of the modes order (n) is shown graphically in Fig. 5.17.
This is clearly shown in the quadratic variation of the

curve for the phase velocity with the n3.

This method is more conyenient and accurate than the
graphical method to obtain the rod velocity (Col, which

does not yield good results in practice.

Tt is of interest that in rods where the corresponding

4) ‘
correction (Bancrofts) is used, the very simple

2 . .
relationship £§& = k(w/A)° is valid.

5.6 FINAL COMMENTS

The difference between the wave motion and the

vibration is that the latter arose from standing waves

while the former consists of waves propagated in the

med ium The nature of the reflection from the boundary
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to form standing waves has yet to be fully resolved.

The Rayleigh-Lamb equation is concerned with. the
waves travelling in a solid media and the dispersion
relatipnships with the wave nuﬁber. This dispersion
is dependent on the.ratiQ of the plate width side to
the wavelengthf It was found to be valid in the case
of the longitudinal resonant modes in a narrow strip but
only for limited values of (w/X). This dependence on
the value of Poisson's ratio for the materials; i.e.
materials with high Poisson's ra?io will have more
dispersion, while the one with zero Poisson's ratio will
have no dispersion at all, since there will be no

lateral movement.

For materials with negatiyve Poisson's ratios, the
Rayleigh-Lamb equation predict the same results as the
positive Poisson's ratia. This was verified experimentally

and a precise result was observed.
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Fig.

o i O [ .
\

The coordinate system of an isotropic elastic
plate of infinite length and width of
thickness (2b), and the corresponding thin

strip of width (w).
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Fig. 5.2 The variations of the normalised phase velocity to

+he shear with the plate gecmetry assuming A=2% and

yo=mw/A and for Poisson's ratio 0.33
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Fig. 5.3 The graphical representation for the variation of the

breathing to the Lamé modes ratio as a function of
Poisson's ratio. The experimental and the theoretical

results are close at the lower range.
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Fig.

5.

4

The frequency spectrum for the lowest symmetric
and antisymmetric modes of Rayleigh-Lamb frequency

equation as a function of (w/A).

This clearly shows some solutions of the
vibrational sguare plate modes. The Lamé modes
are exact solutions which are obviously

harmonically related.
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Fig. 5.5 Sketches for the lowest s
their width
determined fram the

frequency equati
modes.
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Fig. 5.6 The longitudinal resonant modes of a rectangular strip.
Sketches for the first three modes.
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Fig. 5.7 Graphical plot shows the variations of the longitudinal
resonance normalised to the rod velocity as a function of

(w/A). for different Poisson's ratio values. R obtained fram

the solution of Rayleigh-Lamb frequency equation.
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w/A >

The variation of the phase velocity for Aluminium

plate with (w/)). The value of the rod wave velocity

can be found by extrapolating the curve.
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Fig. 5.9

ALUMINIUM STRIP

0=0.

35
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0 0.1 0.2 0.3 0.4 0.5

The graphical plots show the variations of (2%£/nB)
with (w/))for Aluninium plate using three different
Poissan's ratio values. It is apparent that ¢=0.33
is the better postulated value for Aluminium. R is

obtained fram the table in Appendix A.
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T SILICA STRIP
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By Extrapolation C =5780
o

T ] I l | I |
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Fig. 5.10 The phase velocity spectrum of the longitudinal silica
strip modes as a function of w/A which is directly
related with the modes order (n).
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Fig. 5.11 The graphical plots for the phase velocity corrected

using the eigen value (R) fram the table in Appendix A
for different Poisson's ratio. 1t is evident that the

closest value of Poisson's ratio for silica is (0.17).
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The frequency spectrum as a function of the plate
width-to~wavelength ratio for Glass having strip

geametry. (9=77.76 and w=9.7 1) .
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The graphical plot for the value of (20£/nR), where R

fram the table in Appendix A, as a function of the plate

width—to—wavelength ratio. Three different Poisson's

ratio values were used in this figure.
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CO can be found by extrapolation
- the phase veloicty curve.
o~ CO = 3738.0 m/sec.
\
\
' T T T I
o o.1 0.2 0.3 0.4 0.5 w/A

pyrolytic Graphite phase velocity spectrun as a function

of (W/A).
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FIG. 5.15 Graphical plot of the corrected phase velweity values

as a function of (w/\). Four different Poisson's ratio
values used, and it is apparent that (0=—0.15) is the

nearest Poisson's ratio value for Pyrolytic_Graphite.
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FIG. 5.16 The variations ©
ctangular strip, where
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n is the mode orders.
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ALUMINIUM PLATE
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Fig. 5.17 Shows the variations of the longitudinal phase velocity

with n, n2 and n3 in Aluminium, rectangular strips,

where n is the mode order.
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... (Poisson's Ratio 0=0.33)

w/A ¢ b 0
| Antisymmetry 1.} Symmwetry.l.} Symmetry .2

0.0 | 0.0 1.63095 .

0.05 | 0.1455 1.63020  |17.180
0.10 | 0.2141 1.6279 8. 4804
c.15 | 0.3912 1.6238 5.5696
0.20 | 0.4834 1.6173 4.1238
0.25 | 0.5577 1.6074 3.2720
0.30 | 0.6172 1.5924 2.7245
0.35 | 0.6651 1.5692 2.3560
0.40 | 0.7038 1.5332 2.1085
0.45 | 0.7355 1.4809 1.9491
0.50 | 0.7615 1.4142 1.8539
0.60 | 0.8013 1.2766 1.7664
0.70 | 0.82% 1.1693 1.7302
0.8 | 0.8501 1.0943 1,7083
0.90 | 0.8654 1.0430 1.6886
1.00 | 0.8770 1.00C0 1.6635
1.10 | 0.885% 0.9831 1.6259
1.20 | 0.8929 0.9658 1.5749
1.30 | 0.8983 0.9536 1.5186
1.40 | 0.9026 0.9447 1.4640
1.50 | 0.92060 0.9382 1.4142
1.75 | 0.9117 0.9286 1.3130
2.00 | 0.9150 0.9240 1.2401
2.25 | 0.9168 0.9216 1.1875
2.50 | 0.9178 0.9204 1.1491
2.75 | 0.9184 0.9198 1.1204
3.00 | 0.91870 0.9195 1.0988
500 | 0.9191 . ]0-213L 1.0300

The solution of the Rayleigh-Lamb transc

idental frequency equation

for the first three modes. _146-




o

-0.15

Poigsson's ratio o
g For the Ratio of —
................................ ‘Breathing Mode | - ¢Lamé |

0.50 2.1058 1.4890
0.45 2,0331 1.4376
0.40 1.9584 1.3848
0.35 1.8836 1.3319
0.30 1.8100 1.2799
0.25 1.7380 1.2290
0.20 1.6686 1.1799
0.15 1.6016 1.1325
0.10 1.5371 1.0869
0.05 1.4746 1.0427
0.00 1.41421 1.0000
~Q.05 1.34%0 0.9539
-0.10 1.2860 0.9093
1.2250 0.8662

ratios for different Poisson's ratio values.

that the second symmetric mode of
sents the breathing mode. ¢ for the Lamé mode

equation repre

is equal to V2.
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The camputed values of the breathing to the Lamé frequency

the Rayleigh-Lamb frequency

It is assuned



TABLE 5,4
(Poisson's ratio ¢=0.33)

Geametry w/A Y w/R
Iength:Width Assuming ¢ o= 2WE | 2wE
. o le N B CS - Cp .
S(?\}?re Plate | 0.50 | 1.00 1.8539 1.8539 1.0730
0.45 | 0.9 1.9491 1.7542 1.0153
0.40 {0.80 2.1085 1.6868 0.9763
0.35 | 0.70 2.3560 1.6492 0.9545
0.30 | 0.60 2.7245 1.6347 0.9462
Rectangular 0.25 | 0.50 3.2720 1.6360 0.9469
Plate (2:1)
0.20 | 0.40 4,1238 1.6500 0.9550
0.15 [ 0.30 5.5696 1.6710 0.9672
0.10 ] 0.20 8.4804 1.6960 0.9816
Strip 0.05 | 0.10 17.1800 1.7180 0.9944
(10:1)
Asymptotic 0.0 0.0 Infinity | Expected | 1.0000
Value to
Approach
1.7277

The frequency spectrum for
Rayleigh-Lamb frequency equation. The mode is controlled by the

value approaches the plate wave velocity (CO) .

this represents the frequency S

~148-

the second symmetric mode of the

plate width, and the frequency times twice the width has a constant

For this reason,

pectrum of the breathing mode.




n . EinKazj £/ .} 20E/m | w/h

2 25.725 12.863 5145 0.1%0
3 38.375 12,792 5117 0.225
4 50.490 12.623 5049 0.300
5 61.555 12,311 4924 0.375
6 70.446 11,741 4696 0.450
7 76.515 10.931 4372 0.525
8 81.120 10.140 »4Q56 A >056OO

The measuremental results of the longitudinal
Aluminium rectangular plate modes. The phase
velocity was determined from the phase frequency
and the length of the plate. The value of w/XA is
the result of the w/& ratio and the mode orders n

product. The plate dimensions are 200 mm by 30 mm.
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_______ 2%£/nR

cw/A | 2%E/n | 0=0.30 Q=Q,33 0=0.35
0.10 5155 5163 5165 5166
0.15 5145 5164 5168 5171°"
0.20 5130 5l6a 5173 5179
0.25 5100 5162 5175 5184
0.30 5055 5157 5177 5192
0.35 4990 5155 5186 5208
0.40 4870 5136 5180 | 5209
0.45 4700 5121 5176 | 5212
0.50 4490 5119 5178 5217
0.55 4250 5104 “5;61 ‘.SLQS,

The longitudinal phase velocity cor

Aluminium plate as a function of Poisson's ratio.

The eigen value (R)

velocity coO

is the Rayleigh-Lamb phase

rrection given in the table in Appendix A.

rections for



SILIGA - .

B | WA | fFinKEZ| fh 2£/n
1 0.0625 | 28.295 | 28.295| 5749.5
2 0.1250 | 56.835 | 28.418 | 5774.4
3 0.1875 | 85.265 | 28.422 | 5775.3
4 0.2500 | 113.435 | 28.359 | 5762.5
5 0.3125 | 140.910 | 28.182 | 5726.6
6 0.3750 | 167.815 | 27.969 | 5683.3
7 0.4375 | 192.365 | 27.481 | 5584.1
8 0.5000 | 209.936 | 26.242 | 5332.4
9 0.5625 | 219.745 | 24.416 | 4961.4

10 0.6250 | 237.716 | 23.772 | 4830.5
11 0.6875 | 247.325 | 22.484 | 4568.8

The experimental results

of the longitudinal modes of silica (fuzed g

strip.

show the phase velocity

uartz)

The plate geometry is 101.6 mm by 12.7 mm.
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TABLE 5.8

8 0Q.5000 5320.0 5729,6 5754.2 5779.

-------- SI&K@;&H&P...AA,A.A
RN SRR 2%£/nR :
'n .\; w/A .. .| 2&£/n . [ 0.16 | 0.17 [ 0.18
1 | 0.0625 | 5746.5 | 5746.5 | 5746.5 | 5746.5
2 0.1250 5742.0 5742.1 5742.2 4742.3
3 | 0.1875 | 5736.0 | 5743.8 | 5745.6 | 5747.2
4 0.2500 5724.8 5744.9 5747.5 5750. 3
5 | 0.3125 | 5704.4 | 5744.7 | 5750.4 | 5753.4
6 | 0.375 5664.2 | 5738.8 | 5750.6 | 5759.3
7 0.4375 5565.0 5731.3 5754.6 2766.8

o)

The experimental results of the silica rectangular
strip (101.6 mm X 12.5 mm). The longitudinal phase

velocity has been corpected using the eigen value R

for different Poisson's ratio from t he table

Appendix A.

~152-
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TABLE 5.9

Mode
22f/n
L -Number | w/A f in KHz| f/n -
. (_n) REENEIE IS oy m. sec
1 0.0624" | 34.953 | 34.953 | 5429.6
2 0.1249 69.811 | 34.906 | 5422.2
3 0.1873 | 104.420 | 34.807 | 5406.9
4 0.2500 | 138.637 | 34.659 | 5384.0
5 0.3122 | 172.095 | 34.419 | 5346.6

The experimental results of the
for the glass strip.

mode is determined as a function of the mod

(n).

The strip 1

~153-

The phase

longitudinal modes

velocity for each

s of a geometry 77.67 mm by 9.7 mm.

e orders



s

TABLE 5,10

..................... AR
wW/A 28/ Poisson's | Poisson's| Poisson's
Ratio Ratio Ratio
_____ 0.20 ... .|0.25 . . |o0.30
0.05 5438.0 5438.2 5438.3 5440.0
0.10 5434.0 5437.7 5440.0 5442.3
0.15 5422.0 5430.8 5435.0 5441.8
0.20 5403.0 5415.4 5438.0 5440.9
0.25 5384.0 5413.5 5429.9 5449.6
0.30 53SQ.O } .5399..3. - 542_6'2 A »5458.2

The phase velocity is normalised tothe eigen value (R)

for three different Poisson's ratio values. The phase

velocity (22f/n) has been found fram the velocity dispersive

curve in Fig. 5.12.
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TABLE 5.11

Mode

wW/A

ooder f/n 20f/n

e R N
1 0.0464 13.44 13.44 3736.0
2 0.0928 | 26.873 13.437 3735.0
3 0.1392 40,208 13.403 3726.0
4 0.1856 | 53.513 13.378 3719.1
5 0.2320 | 66.767 13.353 3712.2
6 0.2784 | 80.113 13.352 3711.9
7 0.3248 | 93.030 13.290 3694.6
8 0.3712 | 105.766 13.221 3675.4
9 0.4176 | 117.940 13.105 3643.2
10 0.4640 | 129.290 12.929 3594.3

The experimental results of P
longitudina
velocity calculated for each

(Plate lengt
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yrolytic Graphite.

1 modal frequency was measured and the

mode harmonic number (n).

h = 139.0 mm and width = 12.9 mm)

The



TABLE 5.12

PYROLYTIC GRAPHITE

- 28£/mR

w/A  |28£/n }0=0.08 [0=0.10 {0=0.12

0=0.15

0=0.18

0.05 [3736.3 |3736.3 |3736.3 {3736.3
0.10 |3733.5 }3733.5 |3733.5 |3733.5
0.15 [|3730.8 |3730.8 |[3733.5 |3733.5
0.20 |3725.2 |3728.0 |3728.0 |3730.8
0.25 |3716.9 |3719.6 |3722.4 3725.2
0.30 |3705.7 |3708.5 |3714.1 |3716.9
0.35 |3689.1 {3697.4 |3703.0 |3711.3
0.40 |3664.0 |3689.1 [3691.8 |3703.0

0.45 13608.4 |3647.4 |3666.8 |3683.1

0.50 |3475.0 |3611.3 |3644.6 3677.6

3736.3
3736.3

3733.5

3730.8 |(3739.

3728.0 |3730.

3725.2
3722.4

3722.4

3728.0 |3766.

3726.5

3736.
3736.

3736.

3

3

The calculated values of (22f/nR) show the

corrections

applied to the phase velocity for five different

Poisson's ratio values. (R from the table in Appendix A)
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TABLE 5,13

SILICA
n W/ 20£/n | n? | a3
1 | 0.0625 | 5749.5 1 1
2 | 0.125 | 5774.5 4 8
3 | 0.1875 | 5775.3 9 27
4 | 0.25 5762.5 | 16 64
s | 0.3125 | 5726.6 | 25 | 125
6 | 0.375 | 5683.3 | 36 | 216
2 | 0.4375 | 5584.1 | 49 | 343
8 | o.500 | 5332.4 | 64 | 512
9 | 0.5625 | 4961.4 | 81 | 729
1o | o0.625 | 4830.5 | 100 | 1024
11 | 0.6875 | 4568.8 | 121 | 1331

The variation

for the silica (fuzed quartz)

and width 12.

s of the phase veloc¢ity with the mode

7mm. 0=0.165 CO=5783 mm .
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TABLE 5,14

2 0.150 5145 4 8
3 | 0.225 | 5117 9 27
4 0.300 5049 16 64
5 0.375 4924 25 125
) 0.450 4696 36 216
7 0.525 4372 49 343
8 0.600 4056 64 512

This shows the variations of the longitudinal phase

velocity as a function of the modes order (n) for

Aluminium having strip geometry;

(6=0.34 and C_=5165 n.sec b)

-158-
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CHAPTER SIX

THE LONGITUDINAL ELASTICITY

MEASUREMENTS OF ANISOTROPIC MATERIALS

6.1 INTRODUCTION -

There is general agreement about the problems
associated with the materials being anisotropic. Although
the theoretical treatments were, to some extent, restricted
only for isotropic materials, there are certain cases when
these are difficult to obtain, or in other cases where
the degree of the anisotropy is required to be measured.
For example, non-metals such as graphite which are
isostatically prepared can be expected to be isotropic.
This is the case where the advanced technical apparatus 1s

required to be used and better results needed to be

obtained and resolved.

The method of the delay line pulse-echo system is
again used here to observe the spectrum of the various
geometries. The general feature of the apparatus was

fully covered in Chapter Two of this work.

This investigation can be considered as an extension

to the work which was cuccessfully carried out by
Bell et al.('8’ 2 using this technique for measuring
or ultrasonic characterisation

the elastic constants and f
~159~-




of refractories at high temperatures

In this chapter, further investigations related to
the angle dependence of the longitudinal elastic modulus
of anisotropic materials will be considered in detail.
Their industrial applications in the field of the
material studies and as a practicle tool in investigations

related to non-destructive testing will be also shown.

6.2 GENERAL ASPECTS OF ANISOTROPIC EFFECTS ON THE MODAL

RESONANCES

Extensive experimental measurements on disks machined
from drawn rod revealed that they are isotropic. No
significant displacements occur in the axial thickness
direction of the disk, and consequently anisotropic effects
associated with the longitudinal grains are not present,
Meanwhile, the disks cut from the rolled metal sheets
show considerable anisotropy. This arises from the
nature of the rolling process. In aluminium and steel,
the fundamental modes of the vibration which has two nodal
diameters was found to be split into two modes. Their
frequencies differ by a few percent when excited parallel

and perpendicular to the direction of the roll. 1In

square plates, the resonant modes are also effected by

grain orientation. The elastic anisotropy removes certain

mode degeneracy, and they become double. Fig. 6.1

demonstrates this effect on certain modes of different

=160~




resonators. The modes split due to the effect of rolling

and they become double.

The effects of the grain direction on the elastic
measurements of the materials can be better studied by
considering the longitudinal modes of long strips. Here
the particle motionshave only one direction parallel
to the plate length, and the effects due to the grains
present are evident. The modes can be simply excited by
an axial length drive of the plate with the line. The
longitudinal vibration of rectangular plates and strips
have been extensively studied in the early stages of
this work. An empirical treatment has already covered
the spectral harmonic relations, and their dispersion
characteristics as a function of the plate width-to-

wavelength ratios.

Further investigations concerning the longitudinal
modes of anisotropic materials having strip geometries

will be discussed and explored in the coming sections.

6.3. SAMPLE PREPARATION

The moderate anisotropy which occurs in rolled metal

sheets was found to have a highly sensitive effect on

certain modal vibrations of plates. Mode splitting is

evident for the lowest mode of disks (two n

but is not so evident at the higher modes. Splitting is

~161-
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observed on higher modes of rectangular plates which are
cut with sides parallel to the grain direction making

the elastic anisotropy match with the plate geometry.

Different types of anisotropic materials have been
employed in this investigation and accurate measurements
have been obtained. The materials being investigated
have been in the form of rolled metal sheets. They range
from shim steel, mild steel and aluminium. The grains
due to the rolling process of the metal are elongated
with the length dimension of the plate. These are guite
observable by polishing and examining the surface of the

plate through a conventional microscope.

The materials have been prepared as thin narrow strip
geometries machined out of the sheet plate with the grains
oriented at an angle with the length axis of the plate.
Consequently these will have an angle with the direction
of the wave motion in the plate since the latter is

directed with the plate length.

Grains elongated parallel to the plate length are
considered to have an angle of zero degrees. While
perpendicular to the length the angle is "9o" degrees.
The grains angle is considered in this measurement to

be between "0°" and ngo®n, Symmetry of results about

these two angles are expected.

Fig. 6.2 shows photographically the samples prepared
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with the grains orientations. Here the grains considered
to be oriented to the.norfh‘when they are parallel to the
length of the strip. That with grains across the length
(perpendiculaxr to it) are considered to be oriented to
the east. The other three samples have beeﬁ cutuwith
grains which are oriented a? an angle between the nérth
and the east direction. The 45 degrees angle is clearly
the north-east directlen. The choice of the geographic
direction in indicating the grains orientation is not
essential, but here it is used as an easier and more

convenient method to indicate the angles.

6.4 YOUNG'S MODULUS RELATIQNS WITH THE GRAIN ORIENTATION

Shim steel cut in stxip_geometries as described
aboye were the first to be inyestigated. The strips were .
driven at an end, after which the longitudinal resonances
were excited and measured. An accurate value of the rod
velocity was then obtained from the plotted values of
the phase velocities as a function of their longitudinal
mode orders. This has been extrapolated as the value of
(w/\) approaches zero. A great deal of the procedures
and the theoretical treatments for doing this have been

given and explored in the preyious chapter.

Knowing the rod Velocity, the Young's modulus can

be found through the well known relationship:-

2 (6.1)

-163~



e e U

Where E is the Young's modulus, C_ is the rod

velocity and p is the density of the material measured

Full experimental results for shim steel are given
in Table;'6fl\f The rod velocity was measured with
respect to the grains elongaﬁed at an angle with the
length of the strip. The corresponding elasticity was
then calculated from the relation (6.1). The variation
of the rod velocity with the grain orientation is
shown graphically in Fig. 6.3, The angle corresponds

to the length axis of the plate.

The primary inspection of the results in the figure
above reveals the complex cyclical variations of the
rod velocity and, consequently, the Young's modulus of
the materials (shim steel) corresponding to the grains
direction which is the rolling direction of the metal
sheet, Two peaks can be observed in this curve, one at

an angle of zero degrees (grains parallel to the length)

and one at an angle of 90 degrees (grains across the length).

The latter has a higher amplitude. The minimum value of

the rod velocity occurs at an angle of about 45 degrees

of the grains with the length.
eresting result, since it was initially

This is an int

assumed that the variation might be of a sinusoidal form

rather than of a distorted wave form, which obviously

needs more complicated nmathematical expression to be fit.
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However, this result cannot be considered as general
relations of the rod velocity with the grains direction.
Further measurements on different rolled metal sheets
have shown different variations.of the rod wave
velocity .and, in additipn,.the.elasticity as a function

of the grains orientation.

The measurements carried out on two different rolled
metal sheets of steel show two different results. 1In
those obtained from the sheet (A), the results were
similar to those obtained from the shim steel shown above,
while the results obtained from the other sample, sheet (B),
show completely reverse values.—- the maximum now occurring

at 45 degrees.

Fig. 6.4 shows graphically the variation of the
Young's modulus as a function of the grains orientation
for shim steel and steel (&). This demonstrates very well
the identical variations for both of these samples. It
is clearly noticeable that the maximum amplitude of the
elasticity occurs at an angle of 90 degrees (grains

perpendicular to the length of the strip).

If the curve in the figure above is symmetrical

about 6=0° and §=90°, then this can be mathematically

expressed as:i-

E =E_ +E cos26 +,E200849 (6.2)

0 o
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where Eq 1s the elasticity at the angle © in degrees, and

Egr Ey and E, are constants which can be determined for
each given sample from the measured values given in the
table above. Then by entering the values of 6 from zero
degrees to 360 degrees a plot of the theoretical variations
of the elasticity with the grain angles is obtained. This
is shown in the figure above (Fig. 6.4). The two results
are quite close, but it can be demonstrated better if more

terms are added to the mathematical expression above.

The measurements on steel sheet (B) are fully given
in Table 6.2. The variations of the Young's modulus as
a function of the grains angle are plotted and shown
graphically in Fig. 6.5. Here the curve has a peak of
maximum rod velocity at an angle of about 45 degrees, and
it has two minima values at zero and 90 degrees angle
respectively. The yvalues obtained in this wrk were
confirmed also by exciting the flexural resonant modes
of the strips, and the rod velocity was determined by
using the formula given by Morse(’7l) which has already
been described and shown 1in Chapter Four. The results
of this method have been found identical to the

longitudinal resonance method, which has essentially

been employed in this work.

Aluminium metal strips cut from rolled sheets have

also been investigated. Accurate measurements of the rod

r each strip with various grain angles
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have been obtained. The full experimental results are

given in Table 6.3.  The precise value of the Young's

modulus is also determined, and its variation as a function

of the grains orientation is shown graphically.in Fig.
6.6. The waveform in Big. 6.6 is close to that of the
shim steel, but the curve is less distorted. The
amplitude of the two maximum values at "o" and "90"

degrees are close to each other.

The three constants Eo’ E) and E, of equation (6.2)
can be determined for each sample from the experimental
values obtained and they have been given in the tables
above. This is shown in Table 6.4. A final comment
can be made about these constants which obviously
control the wave form of the elasticity variations with
grain angles. This concerns the values of E, and E, and
their signs, which determine the maxima and the minima
of the curve. This is obviously clear from the
Aluminium constant values. Since the two maxima are

close to each other, the value of ElAiS close to zero.

These results need further inspectio” related to
the crystallographic structures of the materials,
which need to be investigated in detail as far as the
metallurgists are concerned. The two different results

shown by two types of rolled steel sheets are interesting

for further investigation. The similarity between the
steel (B) and the weld, which will be shown later, is:
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obviously important as far as the crystallographic

structures are concerned. The elementary answer to the
problem of the results obtained from steel (A) and (B)
is that the crystallographic difference of the two
types, due to the heat treatment} might be the cause of

the unusual results shown earlier,

6.5 COMPARISON WITH THE THEQORETICAL CONCEPT

The results presented in the previous section show
the experimental measurements of the longitudinal elasticity
with the grains orientation in rolled metal sheets. At
this stage, some aspects of the analytical fcrmulae
concerning the theory of elasticity for anisotropic
materials will be considered. Their comparison with the

experimental results will also be discussed.

The elastic constants matrix for the transverse

2 )

5
isotropic body has been given by Mason(' shows the
Young's modulus corresponding to the co-ordinating axes
of the body. If the lateral dimensions of it are large

compared with the thickness, the state of the stress is

approximately plane, and the problems of elasticity can

be dealt with on a twWOo dimensional basis. The elastic

constants matrix can be reduced to the following

elements; Cll’ Ciyv C33 and Cyy where the first three

elements are represented by the longitudinal modulus.

The matrix is symmetyital and the other elements are zero.
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(17)

Cady has shown that C,;p and Cy3 are the Young's

modulus when the grains are parallel and perpendicular
to the length axis of the plate respectively. He had

shown,in an analytical treatment,that the variation of

the Young's modulus with orientation is given by

equation (6.3).

(14c0s28) 2 }’sin226-*'(1+c0826)2

- + - (6.3)
9 4C1q 2Cy3 4C53

L=
E

2 .
where Ee = pCe (Ce is the rod velocity corresponding to
the grains angle 6 ).
0 is the angle of orientation with. the length of

the plate.

The three elastic constants can be determined using
the experimental results obtained earlier for each rolled

metal sheet, since:-

1 1
Eg_00  C11
1 - L (6.4)
Eg_go0  ©33
and
L N -
- + +
1
E,_se0 11 L1z 33

o o .
Then by entering the values of 6 from O~ to 360" in

equation (6.3), the theoretical plot for the elasticity

of the material corresponding to the grains orientation,
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will be obtained. This shows that the curve is symmetry

about 6=0° and 8=90°.

Fig.t6}7 shows a ploﬁ,for the theoretical elastic
modulus obtained from equation(6.3)and the ekperimental
results obtained earlier for shim steel.. This clearly
shows the close agreement between the curve obtained from
the three observations and the two extra readings at 22%

and 67% degrees.

gimilar results are expected ta be found for the
other measured materials, e.9. steel (both types) and
Aluminium. The elastic constants Cll and C33 are identical
to the experimental observations of the elasticity
parallel and perpendicular to the rolling process of the
metal sheets respectively. The value of Ci3 is only
required to be found from equation (6.4). The elasticity
obtained from the othexr extra two observations at 22%
degrees and 67% degrees grainsangles can be regarded as
checking results with the theory. This has given an

excellent spot on results with high accuracy.

6.6 APPLICATION IN WELD INSPECTION

The excellent results obtained earlier, relating the
variation of the longitudinal elastic properties of the
materials with the grains rotation along the plate axis,

has clearly shown that the method used 1is qui?e
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suitable for such investigations. This has encouraged

to extend the work for further investigations of the
materials similar in elastic symmetry in certain

types of weld.

Research in welding.tedhnology has increasingly
becaome of major interest in industrial applications.
Austenitic weldments contain long columnar grains with
the major axis along a {100 > crystallographic direcﬁioh(33

such a structure is said to possess a fibre texture.

Problems with inspections of such grain structure
in the weldments were essentially related to the methods
and apparatus being used. Different techniques have been
already employed to investigate the variations of the}
elastic properties with the grains structure of the
weldments, all based on the use of commercial ultrasonic
probes(&L36’%%3%)These operate by generating and sending

ultrasonic compress$ion waves through the structure. Their

propggation is influenced by the grain, structure.

These technigues are regarded to be difficult due
to the high level of scattering from the coarse dgrain

structure and consequently the attenuation present in such

materials.

Joint research work has been carried out with the

Department of Metallurgy and Materials Engineering of
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the University of Aston in Birmingham, to investigate
the longitudinal veloci?y in the weldments. Théy were
provided with two types of weld geometries to be
measured. These were:-

(a) Double-U 316 austenitic weld

(b) Single-V 316 austenitic weld
their macrographs are shown in the publication given 1in

Appendix B.

The signficant feature of this work is its accurate
and comparable results obtained which can be easily
recognised through the comparison of these measurements
with the other methods.

6.6.1 Experimental Investigation of the Longitudinal

Wave Velocity'through;AusteniticiWeldments

To investigate how the grain structure influences
the wave velocity in the weld, the number of samples in
shapes of thin narrow strip geometries have been
machined out of the weld with grains elongated at
different angles with the length of the strips. Using
the method described previously, the values of the
resonant frequencies for different modes were obtained
for each of the five strips. The longitudinal wave

velocity (rod Velocity'co) was then determined as

approximate as possible,. bearing in mind that the high

anisotropy of the
-172-
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The measured values of the rod velocity, as a function

of the grains angle corresponding to the length of the
strip for the two welds, are given in Table 6.5. This
shows that the maximum wvalue of the rod velocity-ocdurs
when the grains have an angle of about 45 degrees. This
has two minimum values at zero and 90 degrees respectively,
(see Appendix B). In this respect it is similar to

steel (B).

Assuming that the curve of the rod velocity is

ieal
symmetr| about 9=0° and §=90°; where 6 is the grain

direction with respect to the plate length. The variation

of the rod velocity can be then expressed as:-

cC. =C + C,cos280 +C

8 o 1 2cos46 + C300566 + C4c0586 (6.5)

where Co, Cl’ C2, C,y and C, are constants which can be
determined from the experimental values given for each
weld in the Table 6.5. BY entering the values of ©
from 0° to 360° a plot of Co,as a function of 6 for each
of these two welds,is obtained. This is clearly shown

in Fig. 6.8.

It is vital to emphasise at the end of this section
that this work has shown .. .. - recognised measured values
for both welds with,comparable results to the experimental
and the.theoretical investigations already reported(1L36’wL99x
The results have been fully desqﬁbedin a publication
which is shown in}Appendix B.
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6.7 FINAL COMMENTS AND RECOMMENDATION FOR FURTHER

- INVESTIGATIONS -

The methocd of determining the longitudinal rod velocity
of the rectangular plate geometries shows its sensitivity
towards the anisotropy of the materials. This is clearly
demonstrated by measuring the longitudinal modes of strips
machined out of the rolled metal sheets. These can be
considered as moderat%fanisotropy since the rolling
process direct the grains obviously at certain dimension
of the plate. The angle of the grains direction can be
considered with respect to the length of the axis of the

plate.

Clearly the variation of the modal resonant
frequencies with their harmonic orders 1is evident from
the graphical plot which was used to find the rod

velocity (CO) by extrapolating the curve.

This curve could be less smooth if the material is
highly anisotropy. while the smooth variation of the

curve is only obvious when the material is isotropic.

The investigation could well be extended for

further work related with non-metallic materials where

the grains are elongated toward certain axis of the body,

e.g. wood, graphite cut from the sheet plate and other

carbon fibre composites. This is important in determining

their elastic constants and consequently their physical

properties.
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The method of exciting the resonant vibration of

the plate is quite suitable and no modification is

required for the range of the freguencies used to excite

the resonant spectra of the body.
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Grains
Directiaon

Disk Mode (1,2)

The anisotropy removes the mode degeneracy and the mode becamnes double

(The frequency difference was found to be about 8% in shim steel metal
sheet) .

(B)
Lt
Grains R T RE
Direction —_l —_
T i AEEN
Square Plate ‘ ‘ L

The Flexural Mode

The anisotropy again removes the degeneracy of this mode which becames
double. (The frequency difference was found to be about 3% in shim

T (C)
|

steel metal sheet).

Grains
Direction
‘_._—____.___ ._...._-———__.._—'
Rectangular Strip
The Fundamental Mode

The anisotropy is effecting the mode frequency. NO split in mode 1is
expected. The results give the elasticity parallel and perpendicular
to the direction of roll.

FIG. 6.1 The effects of grain orientation on different modes of

various resconatars.
-176-



NwW

w W

SE

s W

fwmﬂmNMHWHMM”MWHWWHM“mMHWMHMHWWQUWHWHWNPNUNWHWHWMHNWWHWHWWW
cm 1 2 3 4 5 6 7 8 g 10 "N 12 13 ¥ ©
Tor NI

e} G 12 o e Z L o
’IHI|IHI’HHIH lll FLL NERN ]|z|m|Innlmimtmhnlm\m\n\\\m\m\

" Fig. 6.2 A photographical display showing the samples
prepared with different grains direction angle.
Here the grains considered to be oriented to
the North when they are parallel to the length of
the strip. That, with the grains across the

length, are considered to be oriented to the East.
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SHIM STEEL
Elasticity
Co 1 EXlOlO
. sec Grain | to Length Nm_Z
,T\
5400 r23.0
L22,5
5300
Grains 22.C
to
Length //
// 7 Length #21.5
5200 J
~21.0
5100 4 -20.5
-20.0
>0 1 1 19.5
1 1 1 T T T T T

0 22.5 45 67.5 90 112.5 135 157.5 180 8 -
Grain Orientation (deagrees)

Fig. 6.3 Shows the variations of the rod velocity (CO) and the

elastic constant of shim steel with the grains

orientation (8).
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Elasticity

Ex101°

Nm—-.?

23,01

22.0

Sosd 4

20.0 -

19.0+

SHIM STEEL AND STEEL (A)

-+ Experimental values

— Values obtained fram

,‘*‘\ expression (6.2)
! . \
/ 72N Steel ()

I W //
lé\‘\ /f LY, /./;\(‘\
N N \ . Yo
.\\ > /,/,/ \‘\ N /, ;

\ . s X AN / K
\ ~. x,’ ' \ - J
X / \ N
'\ J \ %
- ~X/~/ i ;\ * /‘/
Shim Steel

Fig. 6.4

22% 45  67% 90 1125 135 157% 180" ¢°
Grains Orientation in dejrcc

Shim Steel Steel (A)

E 21.0435 21.4000

10
_0.7185 | -0.3900 *10

E 1.1573 | =0.6700

The graphical representation of the variations of Young's
modulus as a function of the grains orientation in shim
steel and steel (A). The curve is symmetry about 6=0°
and 6=90°.
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Elasticity

Ex1070
STEEL, (B)
23.5
E =
23.0 § o B COS20+E cosds
22.5 -
22.0 -
21.5 7] _| to Length
21.0 ] 4§/t° Length // to Length
{ i H 1 B 1 i 1
[¢]
0 22% 45  67% 9 1125 135 157% 180 §——*

Grain direction in degrees

£ ] 22.012

© 10
E 242 *10,
Ey | O N
E, | =0.655

Fig. 6.5 The graphical plot of Young's modulus variations with
the grains angle corresponds to the length of the plate

for steel of type (B).
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Elasticity

10
Ex1
e

7.3 4

7.2 4

7.1
7.0

6.9

ALUMINIUM ROLLED SHEET

Grain$ . ‘
// to Length ~ CGrains jto Length Grain$ // to Length

1 T ] 1 1 i i i

o 225 45 673 90 1125 135 1675 180 6 —»

Fig. 6.

Grain. direction in degrees

i

E 7.0533

o) : XlOlO
El —0.0055 Nm—z
E2 . 0.1863

6 The variations of the Young's modulus with the grains
angle corresponds to the length of the aluminium strips.
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Elasticity

23.0 =
° — Theoretical

@ Experimental

I i i 1 i i i 1 i

o 10 20 30 40 50 60 70 80 90
6 ——s
Angle in degrees

c,, | 21.4830

o xlolo
Cpy | 18:0232 |2
Cyg. | 22.9206

Fig. 6.7 'The theoretical and experimental plot of the shim steel
elastic constant variations with the grain direction.
(Zerc degrees grains parallel to the length, 90 degrees
grains perpendicular).
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Eg = Ej + Ejcos20 + E,cos46

{o
_Sample E %10 Na2] By xi6'nt E, xi0° N

SHIM STEEL 21.0435 -0.7185 1.1575

STEEL - A 21,4000 -0.3900 0.6700
STEEL - B 22,0113 -0.2415 -0.6547
ALUMINIUM 7.0533 -0.0055 0.1863

The values of the constants of equation (6.2) for four
different samples. These constants have been obtained
from the experimental results,shown earlier, of each
sample. The elasticity at any angle can be obtained

theoretically by introducing these constants in the

equation above.
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APPENDIX A

TO THE ROD VELOCITY

. C

RAYLEIGH-LAMB PHASE VELOCITY CORRECTION

0.9999897

o . =%
R = = ¢{20+0)}
° i

0.025 0.05 0.075
0.9997425 | 0.9989642 | 0.9976472
0.9997527. | 0.9990050 | 0.9977397
0.9997627 | 0.9990451 | 0,9978305
0.9997725 | 0.9990844 | 0.9979193
0.9997820 | 0.9991228 | 0.9980064
0.9997914 | 0.9991605 | 0.9980916
0.9998005 | 0.9991973 | 0.9981750
0.9998095 | 0.9992333 | 0.9982566
0.9998183 | 0.9992684 | 0.9983364
0.9998268 | 0.9993028 | 0.9984143
0.9998351 | 0.9993363 | 0.,9984903
0.9998433 | 0.9993690 | 0.9985646
0.9998512 | 0.9994009 | 0.9986370
0.9998589 | 0.9994320 | 0.9987075
0.9998665 | 0.9994622 | 0.9987762
0.9998738 | 0.9994916 | 0.9988430
0.9998809 | 0.9995202 | 0.9989080
0.9998878 | 0.9995480 | 0.9989711
0.9998945 | 0.9995749 | 0.9990323
0.9999010 | 0.9996011 | 0.9990917
0.9999072 | 0.9996264 | 0.9991493
0.9999133 | 0.9996508 | 0.9992050
0.9999192 | 0.9996745 | 0.9992587
0. 9999249 | 0.9996973 | 0.9993106
0 9999303 | 0.9997193 | 0.9993607
0.3999356 | 0.9997405 | 0.9994088
0 5999406 | 0.9997608 | 0.9994551
0.9999455 | 0.9997803 0.9994995
0.9999501 | 0.9997990 0.9995421
0.9999545 | 0.9998168 0.9995827
0.9999588 | 0.9998339 0.9996215
0.9999628 | 0.9998500 0.9996583
0.9999666 | 0.9998654 0.9996933
0.9999702 | 0.99928800 0.9997265
0.9999736 | 0.9998937 0.9997577
0.9999768 | 0.9990654 0.9997870
0.9999798 | 0.9999186 0.9998145
0.9999826 | 0.9999298 0.9998400
0.9999852 | 0.9999402 0.9998637

) 0.9999585 | 0.9999053

crisaread
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0.025 . .. 0.05 . .. | 0.075 . .
0.9999897 | 0.9999585 | 0.9999053
0.9999934 | 0.9999663 | 0.9999233
0.9999934 | 0.9999734 | 0.9999394
0.9999959 | 0.9999796 | 0.9999576
0.9999963 | 0.9999850 | 0.9999659
0.9999974 | 0.9999896 | 0.9999763
0.9999983 | 0.2999933 | 0.9999849
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-0.08| 0.9856373 0.974053 . °
-0.09| 0.9829818 0.9709873 8'3233837
-0.10| 0.9802836. 0.967959 | 0.9483927 |
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w/A
Q 0.55 0.75 ]_.OO
0.50| 0.7767124 | 0.6592038 | 0.5911544
0.49] 0.7792635 | 0.6610465 | 0.5926686
0.48| 0.7818386 | 0.6628997 | 0.5941902
0.47] 0.7844381 | 0.6647630 | 0.5957194
0.46| 0.7870622 | 0.6666365 | 0.5972559
0.45| 0.7897113 | 0.6685200 | 0.5987966
0.44| 0.7923857 | 0.6704133 | 0.6003506
0.43] 0.7950857 | 0.6723162 | 0.6019087
0.42| 0.7978115 | 0.6742285 | 0.6034737
0.41| 0.8005634 | 0.6761500 | 0.6050456
0.40| 0.8033418 | 0.6780804 | 0.6066243
0.39:| 0.8061469 | 0.6800194 | 0.6082095
0.38] 0.8089789 | 0.6819668 | 0.6098010
0.37]| 0.8118382 | 0.6839222 | 0.6113989
0.36] 0.8147249 | 0.6858852 | 0.6130028
0.35| 0.8176392 | 0.6878555 | 0.6146126
0.34| 0.8205813 | 0.6898326 | 0.6162281
0.33] 0.8235515 | 0.6918160 | 0.6178490
0.32] 0.8265496 | 0.6938052 | 0.6194751
0.31] 0.8295760 | 0.6957998 | 0.6211062
0.30| 0.8326306 | 0.6977989 | 0.6227419
0.29] 0.8357132 | 0.6998022 | 0.6243821
0.28] 0.8388239 | 0.7018087 | 0.6260263
0.27| 0.8419624 | 0.7038179 | 0.6276743
0.26| 0.8451285 | 0.7058289 | 0.6293258
0.25| 0.8483216 | 0.7078409 | 0.6309804
0.24| 0.8515416 | 0.7098528 | 0.6326376
0.23| 0.8547874 | 0.7118639 | 0.6342972
‘6.22| 0.8580581 | 0.7138729 | 0.6359586
o.21| 0.8613527 | 0.7158788 | 0.6376215
0.20| 0.8646698 | 0.7178805 | 0.63928>4
5.19| 0.8680075 | 0.7198766 | 0.6409497
0.18| 0.8713638 | 0.7218658 | 0.6426140
0.17| 0.8747359 | 0.7238467 0.6442778
0.16| 0.8781207 | 0.7258179% 0.6459405
0.15| 0.8315143 | 0.7277777 0.6476015
0.14| 0.8849116 | 0.7297244 0.6492601
0.13| 0.8883070 | 0.7316565 0.6509159
0.12] 0.8916931 | 0.7335720 0.6525680
5. 11| 0.8950612 | 0.7354690 0.6542159
0.10| 0.8984005 0.7373457 | 0.6558589
5.09| 0.9016979 | 0.7391399 0.6574961
o.08| 0.9049376 | 0.7410296 0.6591269
o.07| 0.9081003 | 0.7428326 0.6607504
o.06| 0.9111627 | 0.7446066 0.6623660
0.05] 0.9140973 0.7463495 | 0.6639727
o.04| 0.9168720 | 0.7480590 0.6655697
0.03| 0.9194500 0.7497327 | 0.6671563
0.02] 0.9217913 0.7513684 | 0.6687314
0.01| 0.9238542 0.7529636 | 0.6702943
0.0 | 0.9255986 0.7545162 | 0.6718440
-0.01| 0.9269903 0.7560240 | 0.6733797
-0.02| 0.9280054 0.7574846 | 0.6749003
-0.03| 0.9286338 0.7588962 | 0.6764051
-0.04| 0.9288808 0.7602566 0.6778932
-0.05| 0.9287657 0.7615640 0.6793627
~0.06| 0.9283192 0.7628165 0.6808167
Z0.07| 0.9275781 | 07610130 0682208,
~5.08| 0.9265819 | O- HO 83
-0. 3690 | 0.7662310 0.6850
_8'23 8:g§§9751 0. 7672506 | 0.6864163
° /~
e




-0, 1

0.643902

g 1.25 1.50 . | 1.75
0.50| 0.563034 | 0.550587 | 0.544692
0.45| 0.570202 | 0.557630 | 0.551721
0.40| 0.577552 | 0.564862 | 0.558946
0.35| 0.585074 | 0.572279 | 0.566364
0.30| 0.592757 | 0.579872 | 0.573970
0.25| 0.600581 | 0.587628 | 0.581751
0.20| 0.608522 | 0.595529 | 0.589692
0.15| 0.616547 0.603548 | 0.597771
0.10! 0.624612 | 0.611652 | 0.605958
0.05| 0.632663 | 0.619798 | 0.614212
0.0 | 0.640637 | 0.627932 | 0.622485

—0.05| 0.648458 | 0.635991 | 0.630716
0.656044 0.638835




= 'w/IX_

- 2.0 .. 2, ,:220150:1_”
0:50| 0.541747 | 0.540218 | 0.539400
0.45| 0.548795 | 0.547289 | 0.546492
0.40| 0.556043 | 0.554565 | 0.55379¢
0.35| 0.563491 | 0.562043 | 0.561296
0.30] 0.571132 | 0.569719 | 0.568999
0.25| 0.578957 | 0.577584 | 0.576894
0.20| 0.586951 | 0.585622 | 0.584965
0.15| 0.595092 | 0.593813 | 0.593191
0.10| 0.603353 | 0.602129 | 0.601544
0.05| 0.611694 | 0.610531 | 0.609986
0.0 | 0.620068 | 0.618972 | 0.618469

-0.05| 0.628414 | 0.62739 0.626932

~0.01| 0.636663 | 0.635719 | 0.635305
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