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SUMMARY

Air lubricated externally pressurised thrust bearings
are commonly used in industry since, even at slow speeds,
they have exceedingly low frictional coefficients.

Conventional capillary or orifice compensated bearings
have, however, low load capacities for the high supply
pressures and feed rates required and their operating range
is often limited by pneumatic instability of the air film.
These disadvantages may be overcome by using a porous pad
in place of the combination of a solid pad and compen-
sating element, ensuring greater positional accuracy and
a smaller tendancy to fail through plockage.

The present investigation is concerned with methods
of predicting the steady-state and dynamic performance
characteristics of a uniform film porous thrust bearing.
Analytic predictions are made, based on the laminar flow
through the bearing of a perfect gas.

A series solution of the pressure distribution
throughcut the porous pad and ailr film is presented for
the steady operation of the bearing. The performance
characteristics are presented in design curves for a
range of bearing aspect ratio and supply pressure. The
complexities involved in the time dependent situation
prevent an analytic solution. In order to obtain

theoretical predictions of the bearing dynamic character-
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istics a complex numerical technique was developed.

Theoretical predictions are based on the assumption

that the bearing can be modelled as a linear dynamic
system.

The design of a porous thrust test bearing and
associated equipment as described. The experimental
results for steady operation are presented as dimen-
sionless performance characteristics as fepresented
by load capacity and mass flow rate. Good agreement
is obtained with predictions from the analysis. The
experimental results for the forced vibration tests
are presented as dimensionless performance character-~
istics as represented by dynamic spring force and
damping force and it is found that the simplé linear

model breaks down for large amplitudes of vibration.
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CHAPTER ONE

INTRODUCTION TO THE INVESTIGATION

1.1 DEFINITKON OF AN EXTERNALLY PRESSURISED POROUS
BEARING

An externally pressurised bearing consists of two
or more surfaces, moving or stationary, between which a
viscous fluid, the lubricant, is fed under pressure.

The lubricant is pressurised at an external source and
then fed into the clearance space between these surfaces,
generally through a flow restrictor. This flow restrictor
ensures that an excess lubricant flow does not occur when
the bearing is unloaded i.e. when éhe bearing flow resist-
ance becomes zero. The purpose of such a bearing is to
support a given load with low frictional resistance, even
at conditions unsuited for hydrodynamic action aﬁd/or to
maintain a high resistance to displacement of the bearing
surfaces. These bearings are often referred to as
'Hydrostatic bearings', or if the lubricant is air, as
'Aerostatic bearings'.

The externally pressurised porous bearing is an
externally pressurised bearing in which the bearing surface
containing the flow restrictor has been replaced by a
surface that is partially or wholly porous. The lubricant
is then fed through this porous section which acts as a

flow restrictor.



Throughout this work the term 'externally pressurised!

will be used rather than 'hydrostatic' or 'aerostatic?'.

1.2 THE ADVANTAGE OF USING A POROUS RESTRICTOR IN AN
EXTERNALLY PRESSURISED BEARING

Ekternally pressurised gas lubricated bearings are
commonly used in industry since they exhibit exceedingly
low frictional coefficients, even at slow spéeds, and are
readily operated from the factory airline.

Conventional capillary or orifice compensated
bearings have, however, low load capacities for the high
supply pressures and feed rates required and their oper-
ating range is often limited by pneumatic instability.

Consider the circular step, capillary compensated
thrust bearing shown in figure 1 pége 3 . Over the
ported region the pressure is uniform, for a deep port
configuration, and through the fluid film region decays
to ambient conditions at the outer radius of the region.
The load capacity of this bearing is the summation of the
pressure forces acting on the bearing top plate. By
increasing the port diameter as shown in figure 2 pagel
the load capacity of this bearing must also increase as
the port pressure is acting over an increased area.

. However, by increasing this diameter thé pressure gradients
in the fluid film are also increased and thus #he lubricant
flow rate is increased. Figures 3 and L pages. 5 and 6

show the variation with port diameter of the theoretical



OO NN YA

\\\\Q\

NS
\

C,cxPiLlar\S
co mper\S&\-or

Q\\\\\

L o

i

Tl kY oy

Thrust  Bearing
PR

pPOrL




——s o,

\ I \
\\\\\\\}\\\\\\\

N\

\
\

CO‘F" La ™

comfer\sﬁor

\ijiﬂs\\\\ )

rO

<.

Figure 2 Circuler Step Thrust Bearing

(large port )V




Bearing Outer Radius 25mm
Su}“r"{.\s Pressure (gaugt) 3Bar
CaPLLLar\A Coedficiént Sx:o_" MH}

0.[;.- N
\
\ — rF/f‘o = 0.2
\ —_ rp/rO =0.6
\
0.3 \

364\/‘(/\3 Load v Kilonewtens
5 )
*
1

e
i

0o ¥ T

o 5} (o 15 20 25
rL‘lM thickness wn  Microns

Figure 3 Variation of Bearing Lead with
Film Thickness for a Gircular Step
Thrust Bearing



0.12
<
A\VH
-
2
*x
0.08 |
Y
s
9
3
2
w
(%}
v
]
¥
0.04 - Bearing Ouler Radiug 25 mm
Subbly Pressure (qouge) 3Bor
CQP:\LQF:& Coeggné\kfﬁ jxlo—(" r.qms
0.0 ' . .
o 5 to 15 20 25

fulm thickness (n mMicroas

Figure 4 Variation of Mass Flow Rate with
Film Thickness for aCircular

Step Thrust Bearing



load capacity and lubricant mass flow rate respec£ively for
this type of bearing when fed with air having a supply
pressure of 3 Bar guage and a capillary coefficient of

300 x 10_9 mm> and a bearing outer radius of 25 mm for two
port sizes. See appendix 1 for theory. If the load
capacity is regarded as the important parameter then a
large port is required and the corresponding increase in
mass flow may be acceptable. There is, however, the
stability of this bearing to be considered. The basic
mechanism of instability can be described, Powell (l),
with reference to figure 5 page 8 which shows a cross
section through a circular step bearing. Under steady
load conditions the mass flow through the capillary, my

is equal to the mass flow out of the bearing, m If the

9&

=

upper plate is forced to execute vibrations about its
equilibrium position as shown by the variation of vy with
time, figure Sa page 8 , and if the condition my, = m,
were to persist, then the resulting pressure change dpp
would be 180o out of phase with yl, as shown in figure 5c
page 8 . This is anaiogous to a mass vibrating on a
spring in the absence of damping. However, in practice
ther effects are manifest which result in the flow

two- o

into the pocket being possibly different to the flow out

of the pocket at any instant.

Firstly the squeeze £ilm effect influences the

flow out of the pocket reducing the flow as the plate

falls The pressure changes arising from this effect
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are proportional to the velocity of the upper plate and
provide pure damping, as shown in figure 5b page 8

Secondly the finite volume of the pocket ensures
that the pocket takes a finite time to fill and to empty.
The pressure variations arising from this effect tend to
lag behind the movement of the upper plate, as shown in
figure 5d page 8.

If the pocket volume effect is greater than the
squeeze film effect the net damping is negative and the
bearing unstable. Many researchers have concerned them-
selves with this problem of instability, (2), (3), (&),
(5), (6), (7). In summarizing the results of this previous
research the following parameters or combinations of para-
meters should be treated as shown, in order to ensure

stability: -

(a) depth of ports

(b) difference between supply and port
pressures minimized

c vibrating mass

o}

(c)
(a)
(e) 1length (radial) of fluid-film maximized
(f)

area ratio. of annular to port
regions

supply nozzle diameter g

' )

It can be seen that these recommendations tend to
reduce the pocket volume effect and/or increase the

squeeze film effect. The important conclusion 1s drawn

that increasing the pocket diameter to increase the load



capacity can lead to an unstable bearing design.

How then can the port pressure be made to act over
a large area without creating an unstable bearing? One
method of achieving this is to fill the enlarged port,
shown in figure 2 page L4 , with a porous material such
that the port pressure is applied over the enlarged area
and yet the volume of the port reduced. The lubricant
when flowing through the porous material experiences a
pressure drop due to the resistance to flow of the
porous material. However, the pressure distribution
in the bearing would appear to be superior to that of
the stable ported bearing in that a greater pressure
value is experienced at nearly all radial positions, see
figure 6 page 11 . This then is the 'landed! porous
pad bearing. The 'full faced' porous pad bearing is
the logical extension of the design of a 'landed!'. porous
pad bearing, achieving maximum distribution of the

supply pressure.

N.B. It should be noted that as there is a resistance
to flow through the porous material there is no
further need for any other form of restrictor on
the lubricant supply line, i.e. capillary or

orifice compensation is unnecessary.
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1.3 THE PRINCIPAL OF STEADY OPERATION OF AN EXTERNALLY
PRESSURISED POROUS BEARING

The principals of steady operation of an externally
pressurised porous bearing can be readily understood by
considering the simple case of a circular, full face,
porous pad, thrust bearing as shown in figure 7, page 13
The lubricant flows from the supply source into the
pressure chamber below the porous pad. The lubricant
then flows axially into the porous pad over the whole of
the pads lower surface and on through the porous material
with a two dimensional flow pattern into the clearance
space between the bearing top plate and the pad upper
surface, In passing through the porous material the
lubricant experiences a pressure dfop due to the resist-
ance to flow of the material. Having entered the clear-
ance space between the pad upper surface and bearing top
plate the lubricant then flows radially outwards,
experiencing a further pressure drop due to the resistance
to flow within this clearance space, to ambient conditions.

The load capacity of the bearing is the summation
of the forces acting normal to the bearing top plate,

i.e. the summation of the lubricant film pressure force
and the ambient pressure force. The lubricant film
pressure profile changes with load, however, a typical

film pressure profile is also shown in figure ‘7 page 13.

12
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CHAPTER TWO

THE PROBLEM DEFINED

2.1 INTRODUCTION

The concept of an externally pressurised porous
bearing is relatively new forliterature has been published
on this form of bearing only since 1955 whereas the
externally pressurised bearing has been known since
the Paris Industrial Exhibition of 1850. However, a
considerable amount of literature has been published on
externally pressurised porous bearings and there now
arises the need for critically reviewing the information
available to determine what gaps in the knowledge‘exist
and/or if there is any conflict in this knowledge. For
this reason a literature survey has been carried out and
is presented in section 2.2, This survey begins with a
discussion on flow through porous material.

Due to the vast amount of published literature that
is available both on flow through porous material and
externally pressurised bearings only a small selection
of papers are reviewed. Having completed this survey of
the literature the area of investigation can be deter-

mined. This is detailed in section 2.3.



2.2 A SURVEY OF THE PERTINENT LITERATURE

2.2.1 Laminar flow through porous materials

The theory of laminar flow through a homogeneous
porous material is based on a classic experiment originally
performed by Darcy (8), in which the pressure drop exper-
ienced by an incompressible fluid flowing through a
homogeneous filter bed was studied. A schematic diagram
of Darcy's apparatus is shown in figure 8 page 16 .. By
varying the quantities involved Darcy deduced the following

relationship: -~

where Q is the total volume of fluid flowing through the
filter bed of height hb in unit time, dh is the pfessure
drop across the filter bed and k; is a coefficient
depending on the properties of the fluid and the porous
material.

The original form of the Darcy law, equation 2.2.1
is rather restricted in its usefulness, in that the
physical significance of the coefficient k; is undetermined.
k, is obviously indicative of the permeability of a certain
porous material to a particular fluid. A coefficient of
the type ki 1is not very satisfactory as it would be

preferred to separate the influence of the porous material
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from that of the fluid.

Nutting (9) stated that:

ki = @/’1‘7 2.2.2

where 77 is the viscosity of the fluid and ® the 'specific
permeability'! of the material. This relationship however,
was not generally accepted until it was verifiea by Wyckoff
et al (10).

The validity of Darcy's law has been tested on many
occasions, e.g. Vibert (11), Iwanami (12), LeRosen (13)
and Emmerich (lh). However, it is known that for liquids
at high velocities and for gases at very low and at very

high velocities, Darcy's law becomes invalid.

5.2.2 Limitations of Darcy's Law, Excluding Inertia
Flow Considerations

Deviations from Darcy's law have not only been
observed at high flow rates, as would be expected by
analogy with flow in pipes.

A category of such deviations is particularly
found in the flow of gases. Fancher et al (15) observed
that gas permeabilities were higher than liquid permeab-
ilities in the same poYous media when calculated from
Darcy's law. Calhoun and Yuster (16) summarised these
facts by stating that Darcy's law breaks down 1f the

pore diameters become comparable with, or less than, the

17



molecular free paths of the flowing gas.

By comparing gas and liquid permeabilities for a
series of porous media Calhoun (17) found that neither
gas or liquid permeabilities were constant as calculated
from Darcy's law. Also gas and different liquid permeab-
ilities were not in agreement; the average for liquids was
usually lower than for gas. Calhoun also found that both
liquid and gas permeabilities depended upon either mean
pressure or pressure gradient.

Similarly Grunberg and Nissan (18) claimed to have
found that there was no correlation between the permeability
of porous materials for gases and liquids. Permeabilities
to gases depended mainly on the linear speed of the gas,
whereas permeabilities to liquids aléo depended on the
pore diameter and specific surface tension. A similar study
to this was made by Deryagin and Krylov (19).

Explanations that have attempted to account fbr these

anomalies have included the following theories: -

(i) A drag theory of permeability, Brinkman (20)
(ii) An absorbtion theory, Bull and Wronsky .(21)

(iii) A capillary condensation theory, Carman (22)
(iv) An Ton effect, Baptist and White (23)

It should be noted that these anomalies are all at

very low flow rate wvalues.

18



2.2.3 Limitation of Darcy's Law due to Inertia flow

The high velocity flow phenomena occurring in porous
materials can be put into mathematical terms in several
ways. Without attempting to understand the mechanics of
the effect, one can simply try to fit a heuristic curve
or equation to the experimental data, so as to obtain a
correlation between pressure drop and flow velocity.
Forchheimer (24) suggested that Darcy's law should be
modified for high velocities by including a second order

term in velocity i.e. in one dimensional flow

o
i}

|

-2 - aq + b,Q? 2.2.3

joR
<

and later by adding a third-order term

The Forchheimer equations were postulated from semi-
theoretical reasoning by analogy with the phenomena
occurring in pipes. The third-order term was added
to make the equation fit experimental data more
accurately.

The Forchheimer relation was further generalised

to contain a time dependent term, Polubarinova-Kochina

(25): -

19



- = a3Q + b3Q2 + C3§_% 202¢5

This time dependent term, however, has been shown to be
negligible, Scheidegger (26).

Another heuristic correlation has been postulated

by White (27), who set:

d -

this result was derived from an analysis of dry air flow

thrqugh packed towers, Missbach (28), however set: =
dp mg3
- d.y- = aUQ 2-2.7

where m5 is indetermined but lies between the value of 1
and 2. Similar experiments wére carried out by
Wodnyanszky (29) and Linn (30). The exact value of the
exponent, however, varied from case to case so that no
universal correlation could be achieved.

It can bé seen from above that heuristic techniques
have failed to give universal correlation and that a
different form of correlation had to be established in
an attempt to obtain a universal correlation. A popular
correlation that has been attempted is that between a

Reynolds number and a friction factor. In order to

20



characterise the Darcy domain a Reynolds number of the

form:

Re = Qd,p 2.2.8
n
has been used. Here d; corresponds to a hydraulic diameter
associated with the porous material. Similarly a friction

factor has been expressed as:

The number of papers proposing correlations between friction
factor and Reynolds number is great. An extensive review

of these correlafions has been given by Romita (31).

Some of the correlations that have been suggested are as
follows, Uchida and Fujita (32) passed gases through beds

of broken limestone and lead shot and expressed their

results in the form of the equation: -

QP _ Q= ‘ng
ay - Ay <2d1> - Re. <d1 2.2.10

where r,; and rg were functions of the packing and A, and

r_ were functions of theReynolds number. Lindquist (33)

2
carefully investigated the previous results and concluded

that Darcv's law was valid for Re < 4 and postulated the

21



equation

Af Re = b,Re + by L < Re < 180 2.2.11
where b, = 40 and bs = 2500. Givan (34) made a similar
investigation and gave an analogous result but with wvalues
of b, = 34.2 and bs = 2410.

Kling (35)obtained the result that Darcy's law held

up to Re = 10 and for 10 < Re < 300 postulated

Af = 9u/ReO'16 2.2.12

The above listed investigations are concerned with a
correlation between )Af and Re given by the previous
definitions only. Other investigators state that the
porosity of the material should be especially significant,
Chalmers et al (35), Barth and Esser (36), Happel (37).

It appears then that this form of correlation is
again non-universal. The correlations are at best valid
each for an application to a set of very specialised
porous media.

Further researchers have attempted to approach the
problem through dimensional analysis. It should be noted
that the representation of friction factor - and Reynolds
number, discussed, above, is an outcome of dimensional

considerations. The Reynolds number and friction factor



are both dimensionless groups and therefore one must be
a numerical function of the other. Rose (38) made a
thorough study of the possible variables that might
influence the flow and the dimensionless combinations in
which they might occur in a flow equation. The analysis
however produced eight dimensionless groups, including a
Reynolds number, all raised to unknown powers. The wvalues
of these powers had to be determined experimentally. The
experimental work carried out was similar to that discussed
in the fitting of heuristic curves and no additional
insight into the physics of the flow phenomina was gained.
Muskat (39) has shown that when changes in elevation
were neglected the Forchheimer relationship as expressed

by equation 2.2.3 can be produced from dimensional consid-

erations., In this case the constants a,; and b, were
a, = =6 b, - 242 2.2.13
17 4 2A ’ 1 d, A b

Green and Duwez (40) considered the case of compressible
flow and included in Muskat's equation a momentum term.
This term, however, was found to be of negligible magnitude
for the cases they considered. They further modified
Muskat's equation by including the length parameter di

in the constants of proportionality. These new constants
they named the viscous and inertia resistance coefficients.

They point out that the viscous resistance coefficient is

no
L



the reciprocal of the viscous permeability as defined by
Darcy's law. Since this paper's publication the reciprocal
of the inertia resistance coefficient has been termed the
inertia permeability. These coefficients were determined
experimentally. They further achieved a correlation of

Reynolds number against friction factor, the relationship

they postulated being expressed by:

Af = = + 2 2.2.14

the porous material under investigation being stainless
steel,

Using a similar approach Ward (41) found that for
flow thrcugh granulated beds the relationship of Reynolds

number and friction factor could be expressed by: -

AFf = = 4+ 1.1 2.2.15

It would appear <that the dimensional analysis approach is
just as abortive as other techniques in producing a
universal correlation of Reynolds number and friction

The limitation of Darcy flow by this correlation

factor.

has, to the authort!s knowledge, not yet been universally

achieved and each case has to be considered in its own

right.



2.2.4 Viscous and Inertia Permeabilities

In introducing the concept of viscous and inertia
permeabilities (reciprocal of viscous and inertia
resistance coefficients), Green and Duwez made an
important contribution to the understanding of the flow
through porous media. A considerable amount of invest-
igation on these permeabilities has resulted, the best
known work being that of Morgan (42). Morgan gives a
technique where both viscous and inertia permeabilities
can be found from one single plot of experimental fesults,
see section 4.3.1. He also states that the inertia
losses are several orders of magnitude smaller than the
viscous losses if a liquid is used as the permeating
fluid, while with gases both kinds of loss have to be
taken into account. This sweeping statement of losses
for gas flow, the author of this text has found to be
in error. It may well apply for highly permeable
material but not for all porous materials, see section
4.3.1.

Greenberg and Weger (43) have investigated the
effect of temperature and pressure on the hitherto
supposed constant values of inertia and wviscous perm-
eability. They found that the viscous permeability,
while not a function of pressure, decreased significantly
as the temperature of the sintered material increased.

This they attributed to the slight changes in the

N
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position or size of the smaller restriction passages plus
small expansions in the surface irregularities. They

also determined that the inertia permeability was neither

a function of pressure or temperature. This, they
explained, is due to the overall structure of the porous
material, i.e. tortuosity and porosity, remaining virtually
constant.

Up to this point the equation for high velocity flow
has been based on Forchheimer's semi analytic heuristic
equation., However, Irmay (4&) has shown that this equation
can be produced analytically from the Navier-Stokes
equations. Similarly it is shown that for low velocity
flows Darcy's law can be analytically produced.

This then completes the literature survey on flow
through porous media. As was stated in the introduction
of this section only a limited portion of the wvast
number of papers on porous material would be reviewed.

If the reader wishes to investigate further into the
work on porous media then the author recommends the text
book written by Scheidegger (26) which he has found

invaluable.

2.2.5 Gas Lubricated Porous Journal Bearings

Before reviewing published work on thrust bearings
it was considered useful to describe some findings with

porous journal bearings which could possibly be of use



in thrust bearing work.

Probably the first published work on porous journal
bearings was that of Montgomery and Sterry (MS). They
demonstrated the practicability of a porous-bearing
supported Jjournal by rotating a 0.75 in. shaft at 250,000
r,p.m. in a pair of porous sleeves. Having shown the
feasibility of such a bearing, Robinson and Sterry (46)
proceeded with a thorough experimental study of the non-
rotating performance characteristics of a porous Jjournal
bearing. They formulated an analysis of the infinitely
long, non-rotating journal bearing assuming isothermal,
compressible flow which was purely axial. Their exper-
imental work was guided by the results of their simplified
analysis. Its objective was to determine the corrections
required to bring the approximate theory and experiments
into agreement. Among the important features of the

bearing which they observed experimentally were:

(a) That the viscous permeability of the porous
material as defined by Darcy's law reduced
as the flow rate increased, an inertia effect.
(b) That a static instability under certain

operating conditions existed.

Constantinescu (h?) carried out an analysis on a
short bearing. This analvsis assumed that the tangential-
pressure gradient in the Reynolds equation could be

neglected. The Reynolds equation used was a modified
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form of the usual Reynolds equation since it included an
additional term to account for the flow through the porous
wall into the clearance space.

Sneck and Elwell (48) presented a perturbation
solution of the Reynolds equation for the non-rotating
journal bearing, which was not restricted by the length
of the bearing. The results of this analysis were in
good agreement with the results of Robinson, Sterry and
Constantinescu while at the same time indicating the
general effect of the length to radius ratio on the
bearing performance.

Sneck and Yen (49) compared the above theory with
the results of an experimental investigation. They found
that for small eccentricities the linear perturbation
theory was sufficiently accurate to predict the load
capacity of the bearing. Significantly they also found
that the apparent bearing clearance was not the meésured
clearance but the sum of the measured clearance and the
arithmetic mean roughness of the porous surface.

In all the published work discussed so far the
investigators have assumed that the porous material has
been pressurised over its entire length and no sealing
of the outer edges of the material was attempted.

Yabe (50) has investigated the effect of sealing the
outer surface of the bushing at both ends, leaving only
a central circumferential band open to the supply

pressure, see figure 9 page 2§ . This results in a
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Figure 9 A Porous Wall Journal Béarmg

Investigated by Yabe
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substantial axial flow within the porous material as well
as within the lubrication film. The analysis was carried
out assuming the gas to be incompressible and the flow to
be strictly two-dimensional, in that no circumferential
flow was assumed. To account for this two-dimensional flow
the concept of an 'effective restricting thickness' was
introduced. In the outer portions of the bushing, which
were sealed from direct contact with the supply pressure,
the axial flow in the porous material was accounted for
by assigning an equivalent thickness to the bushing and
treating it as an extension of the lubricant film. These
effective thicknesses were determined experimentally and
therefore the surface roughness effect of Sneck and Yen
was inherently included. Axial pressure distributions

at various circumferential positions were obtained experi-
mentally and for small pressure differences these agreed
with those predicted by the theory.

Another configuration considered by Yabe was an
annular-pocket journal bearing in which the flow restrictor
was a porous material. This bearing was analysed in the
same way as the previous bearing though no experimental
results were presented.

Barlow and Wildmann (51) theoretically analysed the

case of a pressurised, hollow, non-rotating porous journal

around which a flexible foil of tape moved. As the tape load

was considered small it was assumed that high supply

pressures were not required and the gas was considered
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to be incompressible. The width of the foil was assumed
small compared to the length in contact with the porous
journal so thatva short bearing theory was employed. For
typical operating conditions this bearing was found to
have a greater load capacity than a discrete restrictor
fed bearing operating at the same supply pressure with

the same minimum clearance and flow rate of gas.

2.2.6 Gas Lubricated Porous Thrust Bearings

Published work on porous thrust bearings appeared
not long after the initial work on Journal bearings.
Sheinberg and Shuster (52) considered the analytic
aspects of non-rotating circular -thrust bearings with
and without central holes for a shaft. In each case it
was assumed that the edges of the porous material were
sealed so that the gas was forced to flow axially through
the porous material. It was also assumed that the porous
material could be modelled by a large number of capillaries
of uniform diameter, cf Scheidegger (26) for the inadeq-
uacies of this model. Design curves for the load capacity
of both configurations were obtained from the analysis.
The bearing with no central hole showed better than a two
fold improvement in load capacity over a comparable non-
porous pocket bearing with an orifice feed. A flow rate
design curve has also been constructed from the analysis

for this configuration and is given in the MTI-RPI design

51



of gas bearing notes (53). Experimental results of the
performance of an actual bearing, however, are not given
though the authors state that in actual operation the
bearing with the central hole is highly resistant to
vibrations. They contribute this to the permeable
surface absorbing the energy of the vibrations.

A considerable amount of work on non-rotating porous
thrust bearings has been done by Yabe (50) again using the
equivalent clearance technique. Four thrust bearing
configurations were analysed in this way. The first was
a porous disc fed through a central plenum chamber. The
porous material was considered to be open or sealed at
the outer edge. As might be expected the bearing with
the sealed outer edge carried higher loads. Experimental
results correlated with an incompressible theory for small
applied pressure drops, these results also showed that for
this type of bearing the load capacity was a linear
function of the clearance.

The second configuration considered by Yabke was an
annular thrust bearing with a recessed porous disc forming
a pocket and acting as a restrictor. Again comparison
between theory and experiment was acceptable for small
supply pressures. These results showed that the load
capacity for this bearing was a non~-linear function of
clearance.

The other two configurations considered by Yabe

were a full porous surface and a recessed ring collar



bearing. Neither of these configurations were tested so
that a comparison of theory and experiment is not possible.

Mori et al (5&) investigated the same configuration
of Yabe's first bearing type, though considering three
dimensional flow without employing the effective thickness
technique. They recognised that an analysis of a porous
bearing could be analytically approached as a boundary
value problem, in that the Reynolds equation governing
the pressure distribution in the gas film could be used
as a boundary condition for the differential equation
governing in the porous material. The results obtained
are close to those of Yabe's simplified analysis, lending
credence to the effective thickness concept.

All the analysis so far discussed have used the
assumption that at fthe porous wall boundary of the gas
film, a zero velocity component tangential to the porous
surface occurs. This assumption creates a discontinuity
in velocity according to Darcy's law. Ishizawa and
Hori (55) questioned the validity of this assumption in
their analysis of a circular thrust bearing. They
concluded from a purely theoretical standpoint that there
is a non-zero velocity component tangential to the porous
sufface and that the non-slip condition is only approached
in the limiting cases of infinite film thickness, zero
permeability of the porous material or small lubricant

flow rates. Beavers and Joseph (56) have shown experi-
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mentally that this slip velocity does occur. Their

equipment was designed to measure simultaneously the
flow rate through a long porous block and the flow rate
through a small uniform gap above the block. The
measured flow rate through the gap was larger than that
predicted by the non-slip theory, total repeatability of
their results was claimed.

Gargiulo and Gilmour (57) investigated-the full
faced porous thrust bearing. In their analysis the
boundary value technique of Mori was used. However, an
analytic solution for the pressure distribution was not
achieved. A numerical technique suggested by Peaceman
and Rachford (58), the Alternating Direction Implicit
technique, was used to solve the pressure distribution.
Again for this analysis the non-slip condition was
assumed. ‘The authors, however, did theoretically
demonstrate that anistropic permeability effects in the
porous material had little effect on the load capécity
of the bearing while a large effect occurred in the flow
rate. Also design curves were produced showing the
effect of the aspect ratio of the bearing, i.e. ratio of
bearing outer radius to porous pad thickness. A further
design curve produced showed the effect of reducing the
area over which the supply pressure was provided. Both
effects were shown to be significant.

Experimental verification of the load capacity and

Sk



flow rate was attempted for a bearing in which the supply
pressure was provided to 75% of the total pad area. For
large film thicknesses a reasonable correlation was
achieved. However, for small clearances the theory over-
predicted the load that the bearing experimentally carried.
This the authors attributed to the fact that no attempt
was made to account for the surface roughness of the

porous material when measuring the film thickness.

Jones et al (59), (60) analysed the same bearing
and achieved an analytic  solution for the pressure squared
distribution in the gas film. In this analysis the slip
velocity of Ishizawa and Hori was taken into account.
Darcy's law it was assumed governed the flow through the
porous material. Jones compared the theory of Gargiulo
and Gilmour to his own and found that they predicted
identical load capacities but disimilar flow rates.

Jones also produced design curves for static stiffness
but as Gargiulo and Gilmour had not, no comparison could
be made.

Jones et al then attempted to verify this theory
experimentally. No correlation between the experimental
results and theoretical predictions could be achieved,
in that the experimental results of load capacity were
below that predicted by the theory vet the experimental
results of flow were above the theoretical predictions,
Jones et al assumed that this non-correlation was due

to the flow through the porous material not being
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governed by Darcy's law., They attempted to produce a
theory in which the flow through the material was
governed by Forchheimer's equation, the gas was assumed
to be incompressible, A perturbation technique was used
so that the first order inertia effects alone were
considered., Even though this perturbation approximation
simplified the equations involved, an analytic solution
could not be found. They proceeded with a numerical
solution of the equations‘formed by this perturbation
technique but the final solution that was achieved could
not be proved valid. It should be noted that by halving
the numerical grid size used, similar solutions did not
result. The solutions that were achieved showed little
difference from the viscous theory and therefore
experimental correlation could still not be achieved.
A possible reason for this failure in theoretical
solution is that in using a perturbation technigue to
solve this problem only an approximate solution is
achieved. Therefore by attempting to solve the perturb-
ation equations by a numerical method, another approxim-
ate technique, aﬁ approximation of an approximation was
the result.

In the experimental results no attempt was made to
account for the surface texture of the porous material.
This then shows a severe conflict in the published

literature. Two authors, using different techniques



of solution, achieve like theoretical solutions, with
only one author having taken the slip condition of
Ishizawa and Hori into account. One of these authors
achieves experimental correlation the other cannot, yet
neither of these authors have taken into account the
surface finish of the porous material considered in
porous Jjournal bearings to be essential.

The literature on a steady-state stability analysis
of this type of bearing is extremely scarce. Sahib (61),
it is quoted by Sneck (62), found that the full faced
porous thrust bearing had a narrow stability operating
region and was prone to pneumatic hammer. He suggested
that the stability could be improved by reducing the
capacitance of thie porous material--through reductions
in permeability or the disc thickness. Further details
of this work are not known as this reference is not
available.

Dah-Chen Sun (63) carried out a linear stability
analysis using a perturbation technique. He assumed
that the porous material was thin and therefore the
flow through the material was axial. Experimental
verification of this theory was not attempfed. Dah-Chen
Sun concluded that the lubricants compressibility is the
mechanism of instability. The effect of compressibility
is revealed in two forms; (a) when the film pressure is

high the compressibility effect is more pronounced and



the bearing unstable. A high film pressure can be
achieved by a high supply pressure or a high ratio of
permeability to pad thickness.,. Therefore for a given
bearing there exists a critical supply pressure below
which instability cannot occur and for bearings of
identical size the one with the larger ratio of perm-
eability to pad thickness is more prone to pneumatic
hammer; (b) the lubricants compressibility renders it
impossible for the disturbances to penetrate into the
entire content of the porous disc, It is also
concluded that the greater the supported mass the
greéfér the tendancy for instability and a smaller
film thickness produces a greater film stiffness which
would contribute to the damping of the system,

The general statement that a smaller film gives a
greater film stiffness is incorrect as Jones has shown
that for a constant supply pressure there is an optimum
film thickness above or below which the stiffness
reduces.

Donaldson and Patterson (64)Ahave investigated the
use of porous inserts in plain externally pressurised
air thrust bearings using high supply pressures.,. The
supply pressures used were as high as 3.2 MN/m2 and
bearing clearances of 20 um were reported for a bearing
load of 6KN and a bearing stiffness of 100 MN/m. They

have presented many design curves showing the effects



of: -

(a) supply pressure, insert diameter and insert
permeability on the bearing load/film thickness
curves.

(b) supply pressure, insert diameter and insert
permeability on the static bearing stiffness/
film thickness curves. (stiffness was computed
from differentiating a heuristic curve that
fitted the load curve).

(c) supply pressure on mass flow/film thickness

curve,

They have also produced curves showing the stability
regions, for a material designated as G32, on a load-
supply pressure basis, and the efféct of changing the
insert diameter. Although these authors have not accounted
for the surface finish of the porous material in their
experimental results, it should be noted that as a
landed bearing is used rather than a full face porous
bearing the film thickness could be accurately measured
in the annular region provided that these metal surfaces
have been machined to fine limits.

The authors conclude that the use of porous inserts
enable this form of bearing to be used with a suppl& S
pressure of more than 30 MN/m2, power consumption is

reduced by using the largest insert of high permeability

and reducing the insert diameter increases the possibility



of instability.

The authors also state that the main areas of
investigation left are analytic solutidns including
the fluid inertia in the bearing film and applications
of this form of restriction in ofher configurations.

Gorez and Szwarcman (65) have considered the case
of the use of a row of porous discs on an externally
pressurised slider bearing. They assume fhat the row
of porous discs can be replaced by an equivalent strip
of porous material, they also assume that the porous
material can be modelled by a system of constant diameter
capillaries. No account is taken of the surface finish
in their experimental results or the slip effect in the
theoretical analysis. Correlation _between the theoret-
ical and analytic results shows an error which may be due
to the above omissions.

An interesting point that these authors raise is
that the porous pad when pressurised may not remain flat
but bow like a diaphragm. Due to this consideration the
porous pads are machined flat whilst pressurised. When
the air pressure is shut off the pad then takes a concave
shape. The authors then assume that in operation when
pressurised these bearings take up the flat shape.
However, it must be realised that during machining the
pad is subjected to a pressure drop value of (ps—pa) and

it is this pressure drop that creates the necessary forces
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within the porous pad to form a flat upper surface. Now
during operation the pad is subjected to a pressure drop
of (pS - pf) which, as Pe > pa, is a lower pressure drop
than that which is necessary to create the desired forces
within the pad and thus the pad will still be concave
during operation

These authors also make no attempt to remove the pore
smear that occurs due to this machining, Wheeler (66).

Two interesting practical applications are sited in

this work. These are: -

(1) the standard oil bearings for the wheel spindle
of a grinding machine were replaced by porous
bearings. This resulted .in an improvement of
produced parts.

(2) a slider bearing with a circumferential set
of 48 porous discs has been used in a milling/

boring machine for more than eight years.

In both cases no degradation of the performénce of
these bearings has been evident.

Practically no literature is available on the dynamic
analysis of these bearings. Indeed the only source of
information that was available was the above mentioned
paper of Gorez and Szwarcman. In their analysis these
authors have made no attempt to investigate the individual

dynamic characteristics i.e. dynamic stiffness and damping,



but have combined these to give a dynamic flexibility.
They produce for a specific bearing configuration a
dynamic flexibility/frequency curve which shows that at
resonance the bearing dynamic flexibility tends to zero.
Their theoretical results are compared to those of an
analogue computer model and good correlation is shown.
However, no experimental results are available.
From this literature survey the gaps in the
knowledge that exist and the conflict of evidence
may be briefly summerised: -
(a) Limitations of the Darcy law assumption
(b) The case of Forchheimer flow through the
porous pad
(c) Permeability determination
(d) The slip velocity component of Ishizawa
and Hori
(e) Surface finish effects
(f) Dyfamic analysis

(g) Steady-state stability analysis
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From this it is now possible to outline the
of investigation that need attention for a fuller under-

standing of the performance of porous thrust bearings.



2.3 The Area of Investigation

Before discussing the areas that need to be investig-~
ated a broad outline of the type of bearing to be studied
should be made.

The type of bearing to be investigated is an extern-
ally pressurised, uniform film, air Jubricated, full
faced porous thrust bearing, see figure 7 page 13 . The
landed bearing will not be considered.

The areas of investigation are as follows: -

(a) From the literature survey on porous materials it
has been shown that there are limits to the use of
the Darcy equation. Nearly all analytic approaches
quoted in the porous bearing survey have assumed
that Darcy's law governs the flow through the porous
material. The use of this assumption requires
investigation and if at all possible some form of
criterion for the use of this law, for the design
of these bearings, should be developed.

(b) As far as the author knows there is no solution
available for the case of Forchheimer flow through
the porous material when considering these bearings.
A solution for this case should be developed.

(c) There appears to be two different techniques for
the determination of the viscous and inertia
permeabilities of porous materials, (l) Morgan and

(2) Greenberg and Weger and the results are in
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conflict. These techniques should be tested to
find the correct method of measurement.

The use of the slip velocity component, proposed
by Ishizawa and Hori, by Jones and the omission

of this component by Gargiulo and Gilmour to give
identical non-dimensional load - non-dimensional
film thickness curves needs thorough investigation.
This is a serious conflict and the correct theory
must be found to enable true design curves to bé
produced.

The surface finish effect of the porous material,
considered to be an essential parameter in published
journal bearing literature, should be investigated
for the thrust bearing. A technique of measurement
of this factor needs to be developed.

There seems to be little published literaturg on

the dynamic characteristics of these bearings,

i.e. dynamic spring stiffness and damping coefficient.
A full analytic and experimental investigation is
needed.

A full stability analysis is required such that it
is possible to design and use these bearings with;

out encountering the problem of pneumatic

instability.



CHAPTER THREE

THEORETICAL ANALYSIS

3,1 INTRODUCTION

This chapter is concerned with the analytic and
numerical methods used to predict the steady-state and
dynamic performance characteristics of full faced
hydrostatic porous thrust bearings.

In order to predict the performance and hence
obtain pertinent design information it is necessary to
analyse the flow of the lubricating fluid in two

regions: -

(a) The flow of the lubricating fluid in the
porous pad.
(b) The flow of the lubricating fluid in the

lubrication film.

The flow can either be analysed in both regions and the
solutions matchéd at the porous pad/lubrication film
interface or the eguation governing flow in the lubric-~
ation film, a modified Reynolds equation, can be used as

a boundary condition for the equation of flow in the



porous pad. This boundary condition assumption is.based
on the fact that the lubrication film thickness is small
in comparison with the porous pad thickness, plus the
basic lubrication assumption that the pressure across the
lubrication film does not vary.

The first apvproach is relatively complexX and
therefore it is the second approach that is used. The
choice of the latter is well precedented (67), (68), (57),
(59).

The general differential equation governing the flow
through the porous media and the boundary conditions are
presented in section 3.2 along with the assumptions that
are involved. As previously stated the steady-state
solution of these equations has been presented by Jones
et al (59). although they failed to achieve experimental
correlation. As part of the present investigation is
to find the reason for this non-correlation it was
considered useful to present a precis of the analytic
work of Jones (section 3.3).

An analytic solution of the dynamic equations is
not possible due to the severe non-linearity of these
equations. Thus in order to obtain theoretical
predictions a numerical solution of the dynamic egquations

has been achieved (section 3.4).



3.2 THE GENERAL DIFFERENTIAL EQUATION AND BOUNDARY
CONDITIONS FOR THE POROUS PAD
The coordinate system used is shown in figure 10

page 43.

3.2.1 Assumptions involved in the derivation of the

(i1)
(iidi)
(iv)

general differential equation for the porous
pad

Darcy's law governs the flow of the lubricating
fluid through the porous pad, Taylor and Lewis
(69). That is, all inertia effects are assumed

negligible and the fluid velocities are expressed

by: -

. 2 o
u - n.ar

o
v - - _¥ . 2p
n 0y
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The flow is compressible and isothermal.
The fluid is isoviscous.

Viscous permeabilities are constant but not
necessarily equal
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Figure10 Co-ordinate System
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(v) The lubrication fluid equation of state may be

written as

p = plT

(vi) Axisymmetry conditions prevail, i.e.

<2
o6

3.2.2 The Derivation of the general differential equation
for flow in the porous pad

The continuity equation for flow of a fluid through

a porous media may be written, (26)

« 20 .1 2 ) D () =
P=, ¥ + oo ar(pur) + ay(pv) = 0 3.2.1.

Substituting from Darcy's law (assumption (i)) for the
velocity terms and from the equation of state for the

density terms equation 3.2.1l. becomes:

3.2.2.



Now & is a constant and from assumption (ii) T is a
constant. Therefore both R and T can be taken out of
the differential braéket and cancelled. - From assumptioné
(iii) and (iv) the viscous permeability and lubricant
viscosity terms may also be taken out of the different-
ial bracket. Also remembering 2pdp = d(pz) equation

3.2.2. may be written:

=z 5‘;(1"'5“5@2)) vo, . =22(p?) = 2npr 2 3.2.3.

' v © 9y*? t

Equation 3.2.3 is the general differential equation of
continuity for the porous pad. Thé solution of this
equation will give the distribution of the square of the
pressure within the porous pad. This equation holds

within the limits

O<y<H, 0<r<r, 05t Il

3.2.3 The Boundary Conditions

(i) At the lower supply face of the porous pad the

supply pressure is kept constant.

p = P vy =0, 05 rs T, 0 <t < 1/w

3.2.4.
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(ii) From the assumption (vi) the radial pressure gradient

at the porous pad centre is zero.
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3.2.5.

(iii) As the outer edge of the porous pad is sealed, flow
from the pad edge is prevented and thus the radial

pressure gradient at this edge is zero.

O
N
<
in
i:i
G
N

t < 1/w 3.2.6.

(iv) The pressure is assumed to bé periodic with time.
l rd rd
p(t) =p(t+= O<r<r,, O0<y<H S 3.2.7.
(v) A modified Reynolds equation applies within the
limits

O<r<r,, y=H, 0<t<1l/
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3.2.4 The general form of the modified Reynolds equation

for an externally pressurised porous thrust
bearing

Further assumptions involved in deriving the modified

Reynolds equation are:

(vii) All body forces, including gravity forces, are
neglected.

(viii) The pressure of the lubricating fluid is constant
across the thickness of the lubrication film.

(ix) The film is uniformly thick.

(x) All boundaries of the film are assumed rigid, Taylor
and Lewis (70).

(xi) The flow is continuous at the surface of the porous
media. By virtue of this a slip velocity occurs
at this surface and is evaluated from Darcy's law.

(xii) There is no slip at the upper boundary of the
lubricating film, The velocity of the lubricant
layer adjacent to the bearing top plate is the
same as the velocity of the bearing top plate.

(xiii) The flow through the lubrication film is isothermal,

laminar and compressible.

|2

'
&

(xiv) All velocity gradients other than are neglected.

D

By usé of assumptions (vii), (xiii) and (iv) the

Navier Stokes equations reduce to
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The continuity equation for flow through the film may be

written

1l 2 0 ¢
= -é-;(r.puu) + ﬁ(p,v) + —Q—-(p) = 0.

EE 3.2.9.

Integrating equation 3.2.8. twice with respect to y, as

p is not a function of y, assumption {(viii)
.‘—"'cz < <
2n 5T v + Ay + B H vy H+ h

Using assumption (x} and (xi) to determine the constants

of integration Ay and B yields

20 T
r H
2. — —— 2 — ==
- v2-(2H+h 7 )y + (H2+Hh 2@r<] +1))

H<y<H+h 3.2.10.

Integrating the continuity equation, equation 3.2.9., with

respect to v between the limits H and H+h gives

2: __a_.. ._a- Q.Q.) dy = 0.
<r ar(r.p,u) + ay(,o.v) + 5k



Replacing u by equation 3.2.10, p by the equation of state
and using the assumption that the pressure is not a function

of y yields

] ] H+n 20
&T r or f- 2n 9 v2~(2H+h- _Ez)y
H
i - H+h
H2 +Hh- Ee Jv o4 -k ap
+ H?4Hh Zérng)de - s [ 22 gy
H

1 a2y
-8t [?K@t " 5§> » 1

g

which upon integration and simplification yields the
modified Reynolds equation for an externally pressurised

porous thrust bearing lubricated by a compressible fluid

R

é% (r.h.(h2+6®r) g%(p2)>

il

ey S
129 [ay(pZXJ + 2hn at(ph) 3.2.11.
y=H

Equation 3.2.11. applies within the limits

O0< *t< 1l/w, O<r<r,, H<y<H+h

ok



3.2.5 Non~-dimensional Parameters

In order to generalise the solutions obtained from
the general differential equation and the boundary
conditions for an externally pressurised porous thrust
bearing the following non-dimensional parameters have

been used.

Bearing Aspect Ratio S = H/r,

Permeability Ratio K = @r/qby

Dimensionless Pressure P = P/Pa

Dimensionliess Time T = t.w/2m

Radial Position R = r/r,

Axial Position Y = y/H

Bearing Number A= 12@yroz/h<h2+6®r)ﬂ
Frequency Factor o = Hzngﬁv/®ypa
Velocity Factor Yy = ZMTOZU%%/h(h2+6®P)pa
Frequency Factor B = 12POZHU/(h2+6®P)pa

The use of the above non-dimensional parameters
transforms the general governing differential equation

and the boundary conditions to:

S2X 2 2 (s 0% (5 a0 (pe
2 (R 2(F2)) + =05 (Fr) = & 2 (F2)
R aR< oR' ') T oY = o7
O<R<1l, 0<Y<l, 0<T<]1 3.2.12.
T = Pg V-0, 0<SR<1, 0<T<1 3.2.13.
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9
—=(P) =0 R=0, 0<Y<1l, 0<T«x<1 3.2.14,

2 s —
aR(P) =0 R=1, 0<Y<1l, 0< T<x1l 3.2.15.
P(T) = P(T+1) O<Y<1l, 0<Rc«<1 3.2.16.
1l 2 9 (P2) (P 3
= - ,:R aR<P2)J - A [a—i,(Pz)] yE 2B 4,3
L _ P aT
Y=1
Y=1, 0<R<1l, 0<T<1 3.2.17.

3.3 THE STEADY-STATE SOLUTION

Equations 3.2.12 to 3.2.17 are the time dependant

equations; for the steady-state case these equations

simplify as the dimensionless parameters o, (8, V¥ equal

zero as w equals zero. Thus the steady-state form of

equations 3.2.12 to 3.2.17 may be written:

S2K 9 2_(Pe 9% (B
R B8R [R T q + 592(F?) =0

0O<R<1l, 0<Y<1 3.3.1.
P="P O<R<1, Y=0 3.3.2.
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3.3.3.

2.(F) - -
aR(P) = 0 R = 0, 0<Y<1
0 . — 7 < s
5§(P> =0 R=1, 0<Y<] 3.3.4h,
12 9 (P? _ (P2
Y=1
30305c

Jones et al (59) used the method of decomposition in

order to show that the solution of equation 3.3.1 may be

written
P2 = [A J,(kR) +A, Ko(kR) ][B, cosh(rY) +3, sinn (1Y) ] 3-3.6.

By using the boundary condition expressed in equation

3.3.4 it was further deduced that

3.3.20’ 3'3'3"
o0
- = N . .
B2 = T2 + ¥ + CngJ o (k R) sinh (A7)
n=2

3.3.7.



After differentiating equation 3.3.7. and evaluating the
result at Y = 1 Jones substituted the result into the
modified Reynolds equation, equation 3.3.5., the last
boundary condition. Upon integration of the result and
evaluation of the constants of integration it was

determined that

S [1 X AC, (R2 1) - i A Crs (Jo (k) —Jo(knR))CosmnT

LL X 2
n=2 n

Y =1, O0O<R<]1 3.3.8.

By equating equation 3.3.8. to equation 3.3.7., evaluated
at Y = 1, and by using various properties of the Bessel

functions it can be shown that

— AC,
an - J (k )(k 2Slnh(')\ y + A)\. COoh()\, y) ) 3.3.9.
Fpo |
Cp, = e 3.3.10.
<A2 Z E. - A8 - 1>
!
n=2 .



] ) Y
- A,
n - 2 .3.11.
[an, + & tann(n ) Jk 2 3.3
where
n=(2, 3, L4, .....)

Equations 3.3.8., 3.3.9., 3.3.10., and 3.3.11 give the
pressure distribution in the lubricating film.

Having obtained an analytic solution for the
pressure distribution in the lubrication film the
bearing load capacity and lubricant mass flow rate may
now be determined. The bearing load capacity is found
as the sum of pressure forces acting normal to the

bearing surface

2 Ty

Lij :[ f (P-p_) r drde

In dimensionless form

i

—_ w 2 5
W = = —=— (P-1)R ar .3.12.
7% (57D, (Py-1) [o o7

The lubricant mass flow rate may be calculated from the

lubricant velocity crossing from the porous media into

the lubrication film
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M = 27T/ (pv) .r.dr
0 y=H

Substituting for v from equation 3.2.10., integrating and

re-arranging gives, in dimensionless form

=l

- 2MnRTH I O~ S

(Pg2-1)

The static stiffness of the bearing is

aw aw an  aw

X = - dh :"'dAzdho.dW

Substitution of the above differentials gives, in dimen-

sionless form

. Xho(h02+6®r) :

6A 9P

~ — = — R.d4d

Wroz (PS"Pa) (h02+2@r) (5 _l) [o on R.dR
S

3.3.14.

Differentiating equation 3.3.8. gives
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ar 1 [(re-1) ac
dA ~ SF [ L _<CZ+A 5__1\2>

dacC
0 _ . ne
e r LT, (k) Jo(k R) Jcosm (4 T an)] |
L k 2
n=2 n
3.3.15.
where
2 > ®. dE
_d_c_z — - ._C2._.__ . ZA E + Az .__.Ll —_ .!:
dA S o n dA 8
(Pg2-1) L ;
=2 n=2
3.3.16.
dEn
e o 2,1 4c,_ M
d, T "nz |A 7T, " dn  (k Ztann(r ) +An,)
3.3.18.

Substituting equations 3.3.15 into equation 3.3.14,.

gives
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=G JFERZZS) (ot %3‘%>

S 0
oo an2
o AplTo(k) =T (kg B) Jeosm (4 —% +C )
/ — "RAR
n=2 knzP
3.3'18.
- c2 . . .
Now as M = - z:f;——s- equation 3.3.13., it can be seen
P~ -1
s

from equation 3.3.10. that M is not a function of Es'

Hence

W= £, (Ps’ A, S)
ﬁ = fz (A’ _s)
X = £, (P_,46, 8)

For a given bearing design either the aspect ratié of the
porous media will be limited by the space available or the
lubricant supply pressure will be the limiting factor.
Hence performance curves are plotted as functions of A
for a specific value of S and varying Es’ except in the
case of M which is not a function of Es’ and a specific
value of Es and varying S. These performance curves are
shown in figures 76 to 80 pages 264 to 268.

The expressions for W and X contain infinite series

and are therefore difficult to evaluate exactly and so

numerical integration (Simpson's Rule) has been used to

62



enable these performance curves to be drawn.
The computer programme used to evaluate these

parameters is given in appendix 7.

3.4 THE TIME DEPENDENCE SOLUTIONS

3.4,1 Introduction

An analytic solution of the time dependence system
of equations cannot be achieved. Thus a numerical method
is used to solve this system of equations, equations

3.2.12. to 3.2.17. which is a composite method comprising:

(i) A semi-analytic technique used to discretise the
differential equations, the f‘Roscoe' technigue
(71) see appendix 2.

(ii) The 'Alternating Direction Implicit!'! technique
(A.D.I.) devised by Peaceman and Rachford (58).

(iii) An 'Extrapolated Leibmann Relaxation Parameterft,

As the 'Roscoe'! technique is relatively new, it is
desirable to show that it gives valid results for the
mathematical model of this study.

In order to validate this technique a comparison
was made between the analytic solution and the respect-
ive numerical solution for a steady-state pressure

distribution in the gas film of a porous thrust bearing.



The computation involved and a typical result for compar-~
ison are given in appendix 3. Good agreement is seen to
be achieved.

The formulation and solution of the difference
equations for the time dependence system of differential
equations is mathematically long and tedious. For this
reasonrthe difference equations are directly quoted in
this section and the solution assumed. The full deriv-
ation and solution of these are given in appendix 4.

One of the most common problems when dealing with
numerical solutions of time dependence problems is that
of numerical instability. For example when using a
simple explicit technique to solve a time dependence
problem it can be shown quite easily that the process

‘stability is governed by
< (o)
Ay < (A, /L

see figure 11, page 65 for nomenclature. It is therefore
advisable before using a complex numerical analysis to
ensure that either the process is inherently stable or

the maximum value of A, to ensure a stable process is

t
not exceeded. By virtue of this an error analysis of
the numerical process used in the time dependence case

has been completed. Again the mathematics involved are

long and tedious and therefore are presented in appendix 5
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rather than in the main text. It is found from this
analysis that the process is inherently stable for all
values of the The limit then of At is therefore no
longer governed by numerical instability, but accuracy
of computation and time to reach a converged solution.
Although the numerical process has been shown to
be inherently stable the rate of convergence of the
process may be slow. If this is the case the process of
over-relaxation can be used to increase this convergence
rate. The rate of convergence of this process has been
investigated and the results of this investigation are

given in appendixb.

3.4. 2 Solution of the Pressure Distribution in
the Gas Film

The numerical process requires two forms of the
discretised differential equations. These are written,

see appendix h, firstly implicitely in the R-direction

only
2m+l 2m
Pii %ij o 3 i S
AJ._ S 1 - _ g
o1 Bt e T
P e onsl _ L
2m+l 2m+1 i-1 T+ i-1
$l,1 g3y (bre " 7) 49515 °©
2
_ (AP)
2n 2m 21m
. - - 2¢.. + ¢s -
Pii41 ¢23 $i,4-1 3.4.1.
* (&)
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secondly implicitely in the Y-direction only

2m+2 _ 2m+1

¢ij ¢lJ Qa _ 52K ___ 4
> s - =1 e
Dy (579 (i-1) (1-e 1
J
L .
2m+1l _ 2m+l i-1 2m+1 i-1
¢i+ij ¢ij (l+e )+ ¢i—ij e

r
2m+2 2m+2 2m+2
Pi341 7 %%yy ?33-1

3.4.2,

The computer solution of equation 3.4.1. and
equation 3.4.2. are in the form of”a three dimensional
array. Each array element is a dimensionless pressure
squared value for each nodal point on the numeric grid. .
As the object of this analysis is to determine the
dynamic stiffness and damping ratio values for the
porous bearing, only the gas film pressures are of
interest, as it is these values that determine the
dynamic parameters. Thus only the gas film pressure

values are further analysed, i.e. the values of

3.4.3.



3.4.3 Harmonic Analysis

One of the boundary conditions of the time dependence
system of equations is that the pressure is periodic with
timé. For a first approximation assume that the gas
bearing exhibits linear dynamic characteristics, i.e.
constant spring stiffness and damping cocefficients. This
means that the mass supported by the bearing will have a
motion that is not only periodic but sinusoidal as well,

such that it may be written:
h=h + 0 sin T 3 bk,

By virtue of this the film pressure will also be periodic
and sinusoidal with time but there will be a phase
difference between the pressure vector and the film

thickness vector such that it may be written:
P =P + Pr sin (T +7) 3.4.5.

Now the gas film pressures solved by the numerical method
are in the form of M equally spaced discrete values of
dimensionless pressure for the time range of one cycle
for each radial position. This series of discrete
values must now be converted, by harmonic analysis, such
that for each radial position the dimensionless pressure

distribution with respect to time can be expressed in
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the form of equation 3.4.5. Thus assume that the gas
film dimensionless pressure distribution with time for a

given radial position can be expressed as:

(o0}
T - ay + Z a cos (nT) + b sin{(nT)) 3.4.6,
n=1
where
~
2 ) M
1 - A = =
ao:;;f PdT-—»Msz
o i
m=2
M
21T s = _
1, HNagr = 2 D =
a, = = [ P oos(nT) daT T TPmcos(nT) P 3.4.7.
o /
m=2
21r M
1 = . = oam 2 B s =
b, == j P sin(nT) aT i ZPmsrﬂ(nL) )
0

m=2

As it has been assumed that the gas bearing will exhibit
linear dynamic characteristics and thus the pressure
will be sinusoidal with respect to time equation 3.4.6.

reduces to

P

i

1a, + agcos(T) + b, sin (T | 3.4.8.

Expanding equation 3.4.5. gives
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P = P, + P sin(T) cos(r) + P cos(T) sin(7) 3.4.9.

comparing equation 3.4.8. to equation 3.4.9. gives

- = tan_i(ai/bi) 3.4.10,
P o= ai/sin(T) = bi/COS(T) 3.4.11.
P, = 33, 3.4.12.

3.4.1% Dynamic Characteristics

Having determined the dimensionless pressure
perturbation P’ and the phase angié 7 the dynamic
stiffness and damping forces can now be calculated.
Figure 12, page 71 shows a free body diagram of the
bearing top plate with all forces imposed. Figure 13,
page 71 shows a vector diagram of the dynamic forces
acting on the bearing top plate. The magnitude of the

dynamic pressure force vector P is given by:
To

Dp = 27 f p'r dr 3.4.13.
o}

which in dimensionless form may be expressed as
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It can be seen from figure 13 that the dynamic pressure
force vector can be split into two components. These

components are:

(i) 90O out of phase with film thickness vector. This
component is in phase with the velocity vector and
may be made analogous to the damping force vector
for a linear dynamic system.

(ii) 180°

out of phase with the film thickness vector.
This may be made analogous to the spring force of
a linear dynamic stiffness. Normally in a linear
system the spring force is in éhase with the
displacement vector; however, in this case the

180° phase shift is due to the minus sign involved

with bearing stiffnesses i.e.

. . o dw
Static stiffness = - //dh

The dimensionless dynamic spring force is given by

1

Kp = 2 f P sin(7) .R.AR 3.4,15.
O

the dimensionless dynamic damping force by

2
-2 [ Pt cos(7) .R.4AR 3.4,16.

© 0



For a linear dynamic system a plot of damping force against
velocity and spring force against displacement both result
in a straight line graph. As it has been assumed that the
bearing will exhibit linear characteristics then this
fype of graphical representation will demonstrate the
accuracy of this approximation.

Upon inspection of the non-dimensional parameters
it can be seen that there are three dynamic parametric
groups of which vy is a velocity factor. Thus the
non-dimensional damping force is plotted against VY-
Also y/ﬁ gives a ratio of film thickness perturbation to
mean film thickness, i.e. a displacement factor. Thus
the non—dimensional spring force is plotted against y/ﬁ-
Both of these design curves are plotted for a constant
value of ® the third dynamic parametric group. These
design curves are shown in figures 90 to 97, pages 278

to 285.
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CHAPTER FOUR

STEADY—STATE EXPERIMENTAL TECHNIQUES

4,1 INTRODUCTION

The objective of this portion of the experimental
work is to provide experimental verification of the
steady-state theoretical analysis of Chapter 3. As the
theoretical analysis deals only with the idealised
situation, the significant pfactical effects that, when
accounted for, will lead to a good gorrelation between
experimental results and theoretical predictions need
to be discovered and understood.

This part of the experimental work can be con&en—
jently sub-divided. The first section (section 4.3) is
concerned with the measurement of the porous pad perm-
eability, an exact value of which is required for accurate
performance prediction. The second section (section h.L)
concerns the measurement of the bearing characteristics,
as represented by load capacity, mass flow rate and film
thickness. However, before discussing the experimental
work the design of the steady~state experimental rig is

outlined in section 4.2.
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ly,2 THE STEADY-STATE EXPERIMENTAL RIG

In all cases a circular, uniform section, stationary,
porous pad thrust bearing is to be examined.

It was required to relate non-dimensional load
capacity and non-dimensional mass flow rate with a non-
dimensiénal bearing number incorporating the parameters
known to influence performance. In particular it was
required to determine the individual effects on the
bearing performance of the following indpendent variables
(i) Viscous permeability of the porous pad
(ii) Pad aspect ratio.

In order to evaluate the non-dimensional load, non-
dimensional mass flow rate and non-dimensional bearing
number for each given bearing confiéuration, provision
must be made to measure
(i) Viscous permeability of the porous pad
(ii) Pad aspect ratio |
(iii) Air film thickness
(iv) Air temperature for air viscosity
(v) Air supply pressure
(vi) Air flow rate

(vii) Bearing load.

,,2,1 Design of the Permeability Measurement Rig

The basic experimental rig is shown in figure 14

page 76 . The rig is so designed that, upon removal
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of both the slave journal bearing and thrust bearing top
plate, the remaining portion of the rig, see figuré 15,
page 78 , and plate 1 page 79 , may be used to
determine the porous pad permeabilities.

In designing this portion of the rig to measure the
porous pad permeabilities certain conditions must be
considered, these conditions are: -

(i) As the permeabilities are directional properties

it must be ensured that all direction factors

involved in their measurements are also uni-

directional, e.g. pressure gradient.
(ii) The flow area through the porous pad must be

accurately determinable;

To comply with condition (i) the flow through the
porous pad must be uni-directional, i.e. the porous
material must only have two opposing faces open to air
flow and the remaining faces must be sealed to prevent
air flow across them. As the pad is circular the
circumferential edge may be sealed. Then by applying
a pressure drop across the end faces the axial permeability
may be determined.

One of the difficulties inherent in this task is

that, due to the 'wettability' of porous materials, most

sealing compounds placed on their surfaces will permeate

to the interior of the material, thus inducing anistropilc

. ) . .
permeability effects. Greenberg and weger (43) were
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faced with this problem and recommended the use of an
aluminium putty. Jones et al (60) also recommended the
use of an aluminium putty, a propriety brand 'Devcon F',
which consisted of 80% aluminium and 20% epoxy platic.
Jones et al considered that penetration should be prevented
due to the grain size of the aluminum. As the porous
blanks used are machined down to size on the circumfer-
ential edge pore smear occurs, Wheeler (66), thus the
possiblity of penetration is further restricted.

To comply with condition (ii), the need to easily
determine the flow area, a uniform section of porous
material was chosen., The section chosen by Jones et al
was non-uniform and by virtue of this one directional flow
through the porous pad could not have occurred, Morgan (42).
However, in choosing a uniform section of material a
holding problem occurs in that a circumferential shoulder,
as given in the section chosen by Jones et al does not
exist and therefore solid location‘cannot be achieved.

In order to obliviate this problem the porous pad, having
had the circumferential edge sealed, is cemented, using

an epoxy resin, into a bearing holder, see figure 15,

page 78.

The bearing holder 1is secured to the pressure chamber

with a clamping ring, shown in figure 15, page'78.

An air tight seal between the bearing holder and the

i oY ri seal.
pressure chamber 1is ensured by an 0! ring
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4.2.2 Measurements involved in Permeability
Determination

Before sealing the circumferential edge of a porous
pad, the pad thickness and outer diameter are measured |
using a micrometer. After sealing and cementing the
porous pad into a pad holder the excess sealant and epoxy
resin on the outer diametter of the pad that protrudes out
of the bearing holder is chamfered such that the outer
diameter of the bearing upper face is equal to the
measured diameter seeplate 2, page 82.

It can be seen in figure 15, page 78 that the upper
face of the porous pad is vented to atmosphere giving a
uniform and constant pressure on this face. The use of
a pressure chamber ensures that the .lower face is also
subjected to a uniforﬁ and constant pressure thus complying
with the requirements of uni-directional flow. The
pressure drop across the pad is measured by measuring the
gauge pressure in the pressure chamber using a mercury
manometer for gauge pressures less than 2 Bars and a
standard Bourdon test gauge for higher pressures.

The air volumetric flow rate is measured upstream

of the porous pad using standard variable orifice flow

meters calibrated for air at standard temperature and

] ' 1 w
pPressure. Conversion to true values of volumetric flo

is achieved by using the manufacturers conversion graphs.
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4.2.3 Design of the Bearing Characteristic
Measurement Rig

With the slave journal bearing and thrust bearing
top plate in position on the permeability measurement
rig, as shown in figure 14, page 76 , the thrust bearing
formed can be investigated. The slave journal bearing is
symmetrically positioned above the porous thrust bearing
via a spigot on the pressure chamber. This ensures that
the thrust bearing top plate is held centrally over the
thrust bearing soO that the bearing load is symmetrically
applied. Subsidiary air is fed to the journal housing on
two admission planes through six equispaced orifices in
each plane. In line with the orifices in the upper
admission plane are fine adjustment. flow valves. The
inclusion of these variable flow valves enables bearing
tilt to be eliminated and hence the formation of a‘uniform

film for the porous thrust bearing.
The thrust bearing top plate is fitted with pressure

transducers to enable air film pressure measurements to

be made. The pressure transducers must be flush mounted

in the top plate to avoid pockets and hence avoid their

possible effects on pneumatic instability. To achieve

this, small adaptors were made to the specification given

in figure 16, page ah . Tri-diameter holes were then

drilled into the bearing top plate, see figure 17, Page 8.

The transducer adaptors were inserted into the top plate

and locked up to the shoulder, formed by the two smaller

o
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diameter holes, by small flat bottom screws. The bearing

top plate assembly was then lapped flat. The adaptors
were removed and a pressure transducer was cemented into
each adaptor using an epoxy resin. Care was taken to note
which adaptor fitted which radially positioned hole. To
ensure that the transducers were flush to the adaptor face
the adaptors were placed on a ground glass surface and the
transducers pushed through the adaptors up to this surface.
After cementation the adaptors, now with the pressure
transducers in position, were refitted into the bearing
top plate in their respective positions see.plate 3, page
86 . To ensure air tight seal a silicon rubber solution
was used to seal the back face of these mountings. This
system not only ensures & flush mognting of the trans-
ducers, giving 2 continuous surface to the bearing top
plate, but also enables the transducers to be removed

should they be damaged OT required for use elsewhere.

Lh,2.b Measurements involved in Bearing Characteristic

Determination

Bearing 1ift off 1is monitored by three micro

comparitors, equispaced about the thrust bearing, which

sense the vertical movement of the bearing top plate.

In addition to the inherent load the thrust bearing

can be loaded bY means of calibrated dead weights through

the load plate, which is attached to the journal of the

slaye bearing.

o
\n






The lubricant flow rate and iubricant supply pressure
are monitored ?n the same way as for a permeability test.

As stated in the above section the bearing top plate
is fitted with pressure transducers. The need for these
pressure measurements are discussed in section L.k,

It was initially envisaged that film pressure measurements
would be carried out by different means for steady-state
and dynamic experiments. The steady-state film pressures
were to be measured using standard pressure guages whereas
the dynamic film pressures® were to be measﬁred by means of
pressure transducers. -The reason for using pressure trans-
ducers for the dynamic measurement was that the pressure

" gauges require a large sample volume.

The type of pressure transducer chosen was a miniature
resistive bridge element transducer, manufactured by Kulite.
The major reason for the selection of these transducers
stems from their small size, i.e. small external diameter
of 1.6mm. Because of their small external diameter it is

possible to fit transducers at non-dimensional radial

positions of 0.0, 0.2, 0.4, 0.6, 0.8 and 0.9 for a 51mm

diameter bearing.

As the pressure sensitive area, 0.07mm in ‘diameter,

is small, local pressures can be assessed accurately

uﬁinfluenCQd by any pressure gradients even in ‘the regions

of high pressure gradient.

A benefit of these resistive bridge transducers is

that both static and dynamic pressures can be measured for,

&7



unlike the piezo-electric crystal transducers, these
transducers do not suffer from the charge leakage problem.

However, due to their high cost it was decided.to
reduce the ancillary equipment, in that only one émplifier
and one digital voltmeter would be used to record all
transducer outputs. This can be achieved by the use of
a high quality multi-channel switch selected to ensure
that there is little or no differential voltage drop
across the channels.

There are, however, problems involved in this technique.
Due to the miniature size of these transducers only a
nominal sensitivity is given and a zero balance for each
transducer may be as high as # 6% full scale deflection.
In the case of individual amplificgtion and measurement
this presents no problem. In the case of single amplif-
ication and measurement of a group of transducer outputs
a method must be devised to enable all transduceré to be
zeroed. This has been achieved by designing a resistive
circuit as shown in figure 18, page 89 . Having achieved
a zero match the transducers were then calibrated. The
calibration curves for these transducers are shown in
figures 31 to 32, page 217 to 218.

4.3 PERMEABILITY OF A POROUS MATERIAL

4.3.1 Nature of the FIloW Through Porous Materials

Many investigators of porous bearings assume that the

flow through the porous material is predominantly viscous
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and governed by the Darcy law, i.e. in one-dimensional flow

) 4.,3,.1.

= v
®y

I
gl

Here the viscous permeability of the material is taken
as constant for all flow rates. Sferry and Robinson (46)
in an investigation of a porous journal bearing found that
as the flow rate through the porous media is increased,
this viscous permeability as defined by Darcy's law
decreases. To overcome this problem other authors,
Morgan (M2), Greenberg and Weger (43) have used an equation
suggested by Forchheimer (24) which introduces the concept
of an inertia permeability, such that the governing
equation for the flow through the porous material is
written, again considering'one—dimensional flow, to

include an inertia term.

——@P-—g .V+§)‘ V2 h.3.2.

Morgan re-wrote equation 4.3.2. in the form

(AP) y _ 1 E@ . Eﬁ Q‘,nz
H o, AT gy AP h.3.3.
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and re-arranged to give

(AD) Y

1
—_— = h,3.4,
= 4 —
Qu-m-H @ .

Equation 4.3.4. suggests that by presenting the
experimental results of flow through a porous pad in
graphical form by plotting (Ap)y.A/Qm.n.H. against
Qm'pm/A”n , it should be possible to relate them by a
single straight line for the whole range of experimental
flow rates. The equation thus implies that both viscous
and inertia terms are significant at all flow rates.
However, clearly from equation 4,3,2. when v is small,
v2 is negligible and it is expected that the inertia
term involving v? becomes insignificant. Similarly when

2

v is large, v is negligible in comparison to v® and

therefore the viscous term becomes insignificant. It is
considered that as in the case of flow through pipes, so
for, porous media two distinct types of flow can be

recognised i.e. viscous-dominated flow and inertia-dominated

flow with a transition between these regions. Each region

is governed by a unique law, i.e. 1n one-dimensional flow

Viscous regiomn

5
|
3
<
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W
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Inertia region

.__.dD _ Q 2 ll. 3 6
= " V . - .
T'ransition

—_ — v + < V 2 (] 3. ; L3

Writing equations 4.3.5. to 4.3.7. in the same form as

Morgan, gives respectively

(Ap) A 1 ‘g
Q-7-B o 3.8,
(AP)V'A _ Sfm 1 . 4
Qy-n-H A.p b, .3.9.
(AP>Y%A _ 1y %28@ L 4.3.10.
Q7B Oy .7 Py

Considering the case where full inertial flow is not attained,
then presenting experimental results of flow through a‘porous
pad in graphical form by plotting (A@)y-A/Qm-n-H- against
Qm-pm/A-n should exhibit the two regions expressed by
equation 4,3.8 and 4,3.10. Figure 19, page 95 shows

the results of passing air through a porous bronze specimen.

Tt can be clearly seen that these two regions are in

evidence.
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4.3.2 Determination of the Permeability Valueé

Using the horizontal 'viscous' line in figure 19,
page 93 in conjunction with equation L,3.8. would yield
a value for the viscous permeability. However, due to
experimental scatter, the value would be subject to a
wide tolerance.

A technique then for accurately determining the
viscous permeability is required. Equation L.3.5. in
finite form may be written

(ap), = 32 . @

d_A
5 m

or

H ,
110(Ap)y - 110(%’[&) + 1,09, 4.3.11

Thus plotting liO(Ap)y against lion will result
in a straight line of unity gradient. The intercept of
this line with the y axis, at llon equal to zero, would
give the value of 110(Hn/@yA). NOW’llon can never equal
zero, however, by use of a mathematical method, the least
squares technique, a value of this intercept can be
established. The viscous permeability can then be
determined from this value. The advantage of this form
of graphical representation is that when transitional

flow is encountered the experimental points will break
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away from the unity gradient line, therefore establishing
at what pressure drop the Darcy law aséumption no longer
holds true. Figure 20, page 9 shows the previously
mentioned results plotted on 110(Ap)y - lion basis and
it can be clearly seen where the Darcy region ends and the
transitional region begins.

Having now determined the viscous permeability of
the specimen the inertia permeability must be evaluated.
Now the transitional region is emphasized by the log-log
graph and for this type of flow equation 4.3.10. holds
true. Using the same technique as Morgan and using only
the experimental values in the transition region allows
the inertia permeability value to be determined. It
should be noted that the intercept -value given by this
method does not give the reciprocal value of the viscous
permeability, as can be seen in figure 19, page 93-

All porous material permeability values for this work
have been determined using these improved techniques,
i.e. the lio(Ap)y - llon plot and modified Morgan plot.

Figures 33 to 49, pages 219 to pp5 are the experi-
mental results of permeability tests for a selection of

stainless steel porous pads.

4.4, THE MEASUREMENT OF THE STEADY-STATE BEARING
CHARACTERISTICS

The steady-state bearing characteristics to be

oxamined are the variation of the load capacity, lubricant



~ pod a8yl
SS010D doig 9INSSald aul YlIM ppd 2Zuolg Snolod

D Ybnodul a1y MO1d D1130WN|OA UDDW JO UOI}DIIDA

FIH/ S3p01 21UY 07y iy lamatea  wyiw

0z @4nbi4

..oo.of o.w: o0y on ) o -0 )
1 1 2 l-o
H0
f0
G
R
WY el x AN S - na..“
i- y
a0 - INAYh RN, L
) w? c . " oh
rd o 3 - bx gas%eg - £
¢ ™~
o moNg  aymNosNVYL L1 N dAV4
o
M IGT  3IyrryyI PRIl LNIgUY
XY 7 13 T Y ¥ o0y
o-cot oY arer ot

' D} Hhee

%

Josss

~ ¢

2

iy Ioe

96



flow rate and static spring stiffness with film thickness.
In gas bearings film thicknesses of less than 2 micron may
be encountered and hence it must be ensured that:

(a) The two surfaces forming the bearing are flat.

(b) The film is uniform.

(c) True evaluation of the film size is obtained.

In order to satisfy condition (a) both surfaces must
be finely machined. The bearing top plate of aluminium
presents no problem as conventional machining techniques
can be used, i.e. fine grinding and lapping. The porous
blanks, however, are more difficult to machine. These
blanks are produced by a sintering process. During this
process powdered metal is heated and compacted in specially
made presses and a certain amount of elastic deformation of
the powder takes place. When the presses are removed the
deformed metal !'springs back' to its natural shape so that,
even though flat plates are used to compact the metal, the
product is not perfectly flat. Conventional machining to
eliminate this spring back cannot be used due to the pore
smearing problem, Wheeler (66). Wheeler suggests that
the porous material to be machined should first be immersed
in oxalic acid. The acid should then be heated to its
melting point and allowed to impregnate the metal. After
cooling, the metal may be machined as a solid face, the
acid supporting the porous metal so that no smearing of

the pores takes place. Jones (60) attempted this process,



using a porous material which had the sides sealed with
the aluminium putty 'Devcon F', and found that the temp-
erature required to melt the oxalic acid caused the putty
to peal away from the porous pad. Jones then used a
freeze lapping process, also suggested by Wheeler. In
this process the porous material was impregnated with
water and then placed in liquid nitrogen thus freezing
the water. The porous material was then lapped on a
lapping plate which was kept at a temperafure of -78C by
placing in a mixture of dry ice and acetone. However,
this freeze lapping technique could not be used here due
to the design of the bearing. It may be recalled that
the porous pad, after having sealed the radial edge with
aluminium putty, was cemented into a bearing holder. The
coefficient of expansion of the péfous material differed
from that of the material of the bearing holder, thus,
upon freezing the epoxy bond was damaged. If freeze
lapping was attempted before cementing the pad into the

bearing holder two problems are encountered, these

being: -~

(i) the lapped face may be contaminated with epoXxy
resin during cementation
(ii) the pad may not be truely aligned i.e. the upper

face of the pad may not be parallel to the lower

face of the pad holder.



Due to these problems a new technique of machining the
porous material had to be devised. Various methods were
.attempted, Taylor (72), before a solution was achieved.

The process of machining eventually used is as follows:-

(i) Cement the porous pad into the beéring holder.
(ii) .Machine grind the top face. B
(iii) Clamp the bearing holder to the pressure chamber.
Kiv) Connect air supplye.

(V) Acid etch using a mild solution of Nitric acid.
(vi) Clean pad using water.

(vii) Leave pad to dry by continuing to blow air through

the material.

In grinding the upper face of the bearing the pores
are smeared over and the flow of air through the pad is
severely limited. The acid etching solution is then
wiped over the machined surface while the pad remains
pressurised. The effect of pressurising the porous
material is that the etching proceeds until the pores
are unsmeared. TUpon clearing the pores the flow of air
drastically increases resulting in the prevention of
acid penetration of the pad and further etching of the
nnsmeared pore.

Now it must be ensured that the air film is uniform,
condition b. Non-uniformity of the air film can be
creéted in two possible ways, the first being that of

bearing tilt. This problem has already been discussed



in section 4.2.3 . dealing with the design of the steady-
state rig. The second possible cause is due to structural
flexure of the porous pad.

The porous pad may be madé analogous to a diaphragm
rigidly held at the outer edges. If the elastic properties
of the porous material are inadequate flexure of the porous
pad will occur. It should be noted that these elastic
properties are inferior to the parent material due to
the discontinuities within tﬁe porcus structure. Should
the porous pad bow a non-~uniform film will be created
causing a change in the pressure distribution in the film,
Taylor and Lewis (70) appendix 8. It must, therefore, bhe
ensured that a negligible pad flexure occures. This is
achieved by measuring any deflection of the centre of the
pad relative to the circumferential edge during pressur-
isation of the pad. Figure 21, page 1LOL shows the method
employed for checking pad flexure.

Having now ensured that the two surfaces forming the
bearing are flat and the air film is uniform, conditionc
(a) and (b) the true evaluation of the film thickness must
be considered. As previously mentioned small thickness
values méy be encoﬁntered and the surface finish, due to
acid étching of the porous pad and indeed the pores them-
selves, may be of the same order of magnitude as the film
thickness. It is a fairly well established fact that the

mean roughness of a porous surface has to be taken into

loo
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account when assessing the bearing clearance, Sneck and
Elwell (48), Garguilo and Gilmour (57), Yabe (50). The
problem is how to relate this mean roughness to the film
thickness, The 'Centre Line Avérage‘ technique assesses
the rToughness over a very small area and in itself is not
a measure of mean roughness over the whole bearing. One
technique would be to draw a graph of the surface along a
diameter of the pad under consideration, using a Rank
Taylor Hobson Tallylin machine. The maximum and minimum
metal lines could then be drawn and a mean roughness
determined. This process is subjective in that it depends
upon the skill of drawing the maximum and minimum metal
lines. A considerable number of these grarhs would have
to be produced and statistical methods employed to evaluate
a mean roughness value that may be considered valid.

A far simpler technique has been devised and is as
follows. Figures 22 and 23, page 103 show the ideal and
real air film respectively. It can be shown that for the
ideal air film the volumetric flow at any radial positin-n
can be expressed by

hO
QI" = ZWP[ U dy L,4,1,
(0]

Substitution of equation 4.3.1 for u gives upon integration
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g = 7R A [ég] h,b4, 2,
'R

Now in a porous thrust bearing thne nir tTilters into the air
film over the whole of the bearing. Therefore the only
radial position in the film at which the gas mass flow

rate is known is at the outer radius, where it equals the

measured mass flow rate to the bearing, i.e. at R = 1.0

At R = 1,0 equation 4.4.2, may be written

- 2wr02?1 ap .4, 3.
por T nHA © | 9R
: R=1
or
2
- T].HOQ,R:]_ 8R * ® .
R=1

The gas film thickness is contained in the bearing number
A,

For the real case an equivalent ideal film thickness
hys is postulated for theoretical analysis. It is con=~

sidered to be the addition of the measured 1lift of the



bearing hm and an equivalent pneumatic clearance SF, such

that

h, =h_ + SF A L. k.5,

If the volumetric flow rate and pressure gradient at
the outer radius of the bearing can be determined then the
‘bearing number and hence the film thickness hd can be
determined through equation h.h.h, The volumetric flow
rate at the outer edge can easily be computed from the mass
flow rate, which is known. In order to evaluate the
pressure gradient at the outer edge, pressure transducers
were placed into the bearing tep plate at various radial
positions and the pressure gradient ccmputed using a
polynomial regression technique. If equation LoL,5. 4s
true then by plotting the derived film thickness hd’
which has been computed from equation h,4,4., against the
measured 1ift hm a straight line of unity gradie:xt should
__be obtained, the intercept of this straight line with tile
h, axis giving the value of SF. Figure 24, page 106 shows

d
the results of a series of load tests on bearing number 1.

It can be seen from this that a unity gradient is achieved.

This unity gradient has been achieved by taking into

account any movement of the porous pad due to shear
deflection of the porous pad epoxy bond.

Calibration of this shear deflection before the

bearing load test is achieved by relating pad movement
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to the mean applied pfessure. In the load test itself the
mean applied pressure is taken to be the supply pressure
'less the mean film pressure w/A. |

This pressure gradient teéhnique has been used to
measure bearing clearances for all steady-state experiments.
However, to ensure a uniform 1ift oft of the bearing load
the mitronic comparators were used.

Having now ensured that the gas film thicknesé can be
correctly assessed the experimental verification of the
design curves can be attempted. There are two possible
ways in which the bearing film thickﬁess may be altered,

these two methods being:

(i) Keep the air supply pressure constant and vary the
actual! bearing load.

(ii) Keep the actual bearing load constant and vary the

air supply pressure.

In using the first -method great care must be employed
in loacing =and unlocading the bearing. The loads must be
placed symmetrically on the bearing load plate so that

uncontrollably large bearing tilts do not occur.

Care must also be taken to ensure that the bearing
is not rotated or suddenly loaded as the delicate mitronic
comparators may be disturbed.

The second method does not require the bearing rig

to be disturbed. By altering the air supply pressure

practically no bearing disturbance of the type described
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above occurs and only small bearing tilts have been
expgrienced, these being easily removed by use of the
‘variable flow valves., However, in using this method

of testing the design curves of load capacity and spring
stiffness shown in figures 76 to 80, pages 264 to 268 ,
cannot be cueck.ed directly as both load and stiffness
have been shown to be functions of supply pressure. It
is therefore necessary to draw a design curve in which
the actual bearing load is cénstant and the supply
pressure changes. As this simply entails a small amount
of additional computation the savinghin experimental
accuracy was considered more beneficial and therefore
mathod (ii) has been used to change the bearing film
thickness in all steady-state experiments.

Figures 54 to 75, pages 240 to 263 , show experi-
mental results of these tests in comparison with the
theoretical predictions.

Tt should be noted that although transitionsl flow
through the porous pad was achieved in the permeabilicy

tests the inherent load of the steady state rig and the

upper pressure 1limitation of the equipment prevent

transition flow being encountered during bearing tests.



Before reading the section dealing with
the dynamic experimental analysis the reader may
wish to refer directly to the discussion of the
steady-state results. This discussion can be

found in Chapter 6, sections 2, 3 and b,



CHAPTER FIVE

EXPERTMENTAL TECHNIQUES OF THE FORCED
VIBRATION TESTS

5.1 INTRODUCTION .

The objectives of this portion of the experimental

work are: -~

(l) To provide experimental verification of the time

dependent theoretical analysié of Chapter 3.

(2) As the theoretical analysis of the time dependent
equations considers the bearing film to posséss
linear characteristics the practical limitations

of this linear theory must be determined.
This Chapter has been conveniently sub-divided into

two sections. The fTirst section, section 5.2. 1s concerned

with the design of the forced vibration rig. The second

section is concerned with the experimental approach that

has been used to determine the dynamic characteristics

of these bearings. 3
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5,2 THE FORCED VIBRATTON EXPERIMENTAL RIG

5.2.1 Rig Design Specification

In designing a forced vibration rig to enable the
dynamic characteristics of these bearings to be determined
certain basic design conditions must be adhered to, these

conditions are:

(i) The bearing rig must be shielded from any extraneous
vibrations.

(ii) The forced vibrations must be applied in the
vertical plane only, all other degrees of
freedom must besuppressed.

(iii) The vibration force must be centrally applied to
the test bearing. _

The main reasons for these conditions are:

(a) Due to the relatively small £ilm thickness the

amplitude of any applied vibration will also be small,

i.e. only a small input force will be applied. Any

extraneous vibration force may result in a severe

influence on the experimental results and/or bottoming

of the bearing may occur causing damage to the instru-

mentation.

(b) No measurement of the extraneous motion or force

could be made.

(c) Experimentation must be carried out under conditions

as similar to the theoretical model as 1s practical, the



theory assumes only one degree of freedom.,

(d) By applying an offset vibration force bearing tilt

would ensue.

The following rig specification was used in order
that the design allowed for these conditions.

(i) The rig was to be mounted on a large seismic mass
such that extraneous vibrations would be damped
out by this large mass.

(ii) The rig was to be isolated from the earth via
vibration isolation pads.

(iii) The vibrator was to be de-coupled from the bearing
rig, in that the vibrator body was to be isolafed
from the test rig and only the vibrator shaft
directly connected to the rig.

(iv) The vibrator must be centraliy positioned over
the bearing rig.

(v) Motion of the bearing top plate was to be constrained
to vertical motion only. This constraint, however,
must induce little or no frictional drag on
vertical motion as only small input forces are to
be applied during testing.

In compliance with this rig specification the design
shown in figure 25, page 113 and plate L, pagellt was

used. Tt can be seen that the steady-state bearing rig

has been clamped onto a large seismic mass. The selsmicC

mass consists of a large block of concrete on which a

large bed plate of steel has been cemented via a vibration
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absorption pad. The concrete mass has been cast in an
angle iron frame which enables four vibration isolation
pads to be mounted at each corner.

The vibrator has been mounted to a bridging gantry
that spans the seismic mass. This structure has also
been isolated from the floor via vibration absorption
pads. The gantry was positioned centrally about the
seismic mass. The vibrator body is held to the gantry
by four 'all thread' studs which pass through four
location lugs on the vibrator body and screw into the
gantry top beam.

The vibrator shaft is connected to the load plate,
secured to the journal of the slave bearing, by a
specially designed load link. This load link can be
split into three sections. These sections are: -

(a) apiezo electric load cell which records the
imposed vibration force.

(b) a double hemisphere ball joint, to overcome any
slight misalignment of the vibrator and steady-
state rig.

(c) a connection bar.

Details of this load link are shown in figure 26, page 116
and plate 5, page 117.

The steady-state bearing rig design provides the
necessafy restraining mechanism to ensure that only the

vertical mode of vibration is permitted. The restraint
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properties of this rig are inherent in the slave journal
bearing which was originally designed to centralise the

dead load on the thrust bearing and enable bearing tilt

to be eliminated. This journal bearing restrains all

degrees of freedom except vertical vibration and rotation

about the vertical axis. As the journal of the slave

bearing is rigidly attached to the vibrator this rotational
mode is eliminated. The use of an air bearing as the
restraint mechanism is approaching the ideal design as

the only friction drag force experienced by the vibrating
portion of the rig is due to the shearing of the air

film,

5.2.2 Rig Alignment

As has been stated the vibrator gantry has been
centrally positioned about the seismic mass of the rig.

To ensure that the vibrator is concenttrically positioned
over the thrust bearing under test the following procedure
was used: -

Air was supplied to the pressure chamber and journal
bearing of the steady-state rig causing the thrust
bearing top plate to lift off. As the load link between
the vibrator and the slave-journal bearing was not

connected the journal of the slave bearing could be

rotated. A dial test indicator (D.T.I.), graduated in

steps of 0.0001", with a magnetic base was positioned on
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the load plate secured to the journal bearing, such that
it indicated, upon rotation of the journal, the eccentricity
of the steady-state rig in relation to the vibrator output
shaft. The clamps securing the pressure chamber of the
steady-state rig to the bed plate were released such that
by gently tapping the pressure chamber base, with a nylon
headed hammer, it could be repositioned. By rotating
the journal of the slave bearing and gently tapping the
pressure chamber vase the ecgentrioity cf the steady-
state rig in relation to the vibrator, indicated by the
D.T.I., was removed. The pressure chamber was reclamped
to the bed plate and a check on eccentricity was made to
ensure the pressure chamber had not moved during clamping.
The air supply was switched off. The mitronic
microcomparitors were positioned about the thrust bearing
and the load 1link was connected. If any tilting of the
thrust bearing top plate was indicated, by the micro-
comparitors, due to connection, the above proceduiire was

repeated until a successful connection was achieved.

5.2.3. Vibration Measurement Techniqgues

The dynamicArig design incorporates a number of
bolted sections. To ensure that the bolts were tightly
fastened and remained tightly fastened during the test
the ‘acceleration of the two extremities of the moving

portion of the rig were monitored throughout any test.
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The two extremities were (a) the thrust bearing top plate
and (b) the load plate secured to the journal of the slave
‘bearing. The acceleration of these two points were meas-
ured using accelerometers, see figure 27, page 12l | By
checking that these two signals were identical confidence
in the tightness of these bolted sections was validated.
Had any of these bolted sections been loose, the two wave
forms would not have been identical in that one wave form
would have beén distorted such that harmonics would have
been imposed on this wave form.

The accelerometers used were piezo-electric crystal
accelerometers, the outputs of which were passed through
a dual-channel charge amplifier to a dual—channel
oscilloscope. By wusing dval channel instruments any phase
shift of the signals due to the instrumentation should be
identical; This identical phase shifting property of the
instruments involved wés, however, checked by inputing to
the dual channels of the charge amplifier two outputs from
a singie signal source and the outputs from the charge
amplifier to the oscilloscope were superimposed on each
other, If a ndn-identical phaseshift had occurred these
two signals could not have been superimposed on each
other.

Now, as the output from the charge amplifier is a
voltage output a single output can be converted into a
number of outputs by use of a parallel circuit- -system,

see figure 28, page 122 , without altering the magnitude
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KEY TO FIGURE 28

0scC. Beat Sweep Frequency. Oscillator
S.A. Signal Amplifier
D.F.M, Digital Frequency Meter
V. Voltmeter
monitoring signal to vibrator

A. Ammeter
VIB. Vibrator |
F. Force transducer |
Al )

Accelerometers
A2
D.C.A. Dual Channel Charge Amplifier
C.A. Charge Amplifier
T.B. Test Bearing
D.C.O. Dual Channel Oscilloscope
pP.C. Parallel Circuit
D.V.M, Digital Voltméter
V.F.C. Voltage/Freéuency Converter

______ Signifies connection before test i.e. in

setting sweep frequency limits.

a1 2



of this signal. By splitting the voltage signal not only
can the signal be monitored on the oscilloscope but the
voltage value of the signal can be measured by a voltmeter
of some form and the signal can be used to drive any
voltage driven recording machine. As a sweep frequency
test has been used to determine the dynamic characteristics
of the bearing under test, see section 5.3, the output from
the accelerometer on the bea?ing fop plate was split into
three like signals by using éuch a ¢2ries circuit.

The first signal Qas fed to the oscillosqope to ensure
bolt tightness, see above, the second signal was used to
drive the y-axis servo-motor system of an X-Y plotter,
see section 5.3.2., and the third signal was fed to a
aigital voltmeter (D.V.M.) to determine the R.M.S. value
of the signal at a given frequency.

As has been stated, the sweep frequency test has been
used and in order to set the limits of this frequency
sweep accurately, the 6utput signal from the oscillatoi wzs
initially fed to a digital frequency meter (pD.F.M.) which
had thebfacility of measuring the ﬁeriodic time of a
signal input.

The vibrator used throﬁghout these tests was a Goodman
V 50 Mk2. This vibrator has a maximum current input of
2 amps R.M.S., if no external cooling is provided. To
ensure this limit was not exceeded the current inpuf to
this vibrator was monitored by a standard R.M.S. ammeter

in series with the vibrator.



The imposcd vibration force was measured using a
piezo-electric load cell fitted to the load link which
connects the vibrator to the load plate secured to tﬁe
Journal of the slave bearing.

Besides all the above measurements the measurements

for a steady-state test were also token. -

5.3. FORCED VIBRATION EXPERIMENTAL APPROACH

5.3.1 Spring Stiffness and Viscous Damping Coefficient
Determination for a Linear System

It is well known that by applying a constant amplitude
forcé to a spring-mass viscous damper system with linear
characteristics that the resulting amplitude of the mass
acceleration for forced damped vibrations is related to

the forcing frequency by the equation:

2

d o (o) B2 (G e o))

5.3.1.

By plotting the amplitude of this mass acceleration against

the forcing frequency a resonance curve of the form shown

in figure 29, page 126 can be produced.

Tt is also well known that the frequency wr’ at which

the peak acceleration amplitude, a , occurs is related to

w of théisystem by the equation

the *natural frequency, n’
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Wp = Wy / (1—252)2 5.3.2.

Substituting equation 5.3.2. into equation 5.3.1 gives

;r = fo/my / 26(1-2)" 5.3.3.
Also w _ may be replaced by wP(1—§2)i’ in equation 5.3.1
giving
a = - Q2 fo/m; / ((1—252—512)5 + Lg? (1-2g2)02)  5.3.4.
where
Q= w/wP

Consider now the acceleration amplitude shown at point 1
in figure 29, page 126 , and let the relationship between

this a+celeration amplitude and the resonant accleration

amplitude be:

%1 = P 5'305.

Substituting equations 5.3.3. and 5.3.4. into equation

5¢3.5. yields

.



' P2 (1-20,2%+0,% : :
£ = [% {1 + <1 ~ ﬂi&_Pz(éﬂi_iy> } ] 5.3.6.

It can easily be shown that the spring stiffness, k; of
the system is given by

ky = mew 2 (1-2£2) 5.3.7.

-and the viscous damping coefficient, C is given by:

1

C = emw, (1-267) & 5.3.8.

Thus for a constant force test if an acceleration resonance
curve can be produced experimentally then the value of the
spring stiffness and viscous damping coefficient can be
found from equations 5.3.6., 5.3.7., and 5.3.8., by
determining from this resonance curve (1) the ratio of the
acceler=tion amplitude at any frequency and the resonant
acceleration amplitude (2) the ratio of the frequency at
which the above ratio was taken and the rsonant frequency.

5.3.2 Bearing Dynamic Characteristics

In order to test the validity of the time dependent
theoretical analysis of Chapter 3, which assumed that the
bearing could be satisfactorily modeled by a linear system,

the equivalent experimental linear characteristics of the

bearing under test should be determined. This technique



of determining the dynamic characteristics requires the

acceleration amplitude recsonance curve to be drawn. There

are two possible ways of drawing this resonance curve,
these being: -~

(l) Manual Drawing. By selecting specific values of
frequency and manually setting at each frequency
the input power to the vibrator, such that the
vibration force remains Constant, measure the

acceleration amplitude for each frequency.
Having sufficient values allows the resonance
curve to be drawn.

(2) Sweep Frequency Test using an X-Y plotter. By
using an oscillator with feed back ccntrol
circuitry to enable the input power to the
vibrafor to be altered, such that the vibrator
output force remains constant and\with the added

facility of frequency sweeping, the resonance
curve can be drawn automatically. This automatic
drawing of the resonance curve is achieved by
feeding an accelerometer output direct to the
Y-axis servomotor system of anAX—Y plotter
while the X-axis servomotor system is fed with
a signal proportional to the frequency of the

oscillating force.

The manual drawing technique is tedious and inaccurate

3

as the true resonance frequency may not be measured. By



virtue of this the sweép frequency test method was used to
perform all dynamic experiments.

The oscillator used was a 'beat sweep frequency'
oscillator wifh‘the requisite céntrol circuitry 'built-in',
this control circuitry enables the oscillator to vary the
input power to the vibrator such that the force vibrating
the bearing under test remainedconstant. This oscillator
also gave a secondary output signal of constant voltage
with a frequency equal to the primary output signal., Thus
by feeding’this secondary signal to the X-axis sepvometer
system of the X-Y plotter via a frequéncy to d.c. voltage
converter the correct d?ive of the X-axis was achieved.

A schematic diagram of this equipment is shown in
figure 28, page 12> . Plate 6, page 131 shows the actual
equipment used.

As has been stated in sub-section 5.2.3. the
accelerometerksignaf'was‘split into three signals of equal
voitage and one of these signals was directly connected to
the X-1 plotter via the Y-axis servometer system inputs.
It should be noted that the X-Y plotter had the facility
to accept d.c. voltage or a.c. voltage.

~ Having automatically drawn the desired resonance
curve the determination of the dynamic characteristics
could 5e simply achieved by measuring the ratios mentioned
in sub-section 5.3.1.

By measuring the acceleration amplitude at any given

frequency during the sweep frequency test and noting the






frequency at which the acceleration was measured the
resonance curve was automatically calibrated. ‘Knowing

the value of the acceleration at any particular frequency
enabled the velocity and displaéement to be calculated.

The dynamic characteristic resylts are shown in figure 102,

to 109 pages 290 to 297.

5.3.3. Porous Pad Porosity Measurement

i
A porous material»may be defined as a solid body
containing void spaces that are either interconnected
or non-interconnected. The porosity of a porous material
may be defined as the ratio of the voidage volume to the
bulk volume. If the voidage volume used in this ratio is
‘the total veidage volume including the non-interconnected
spacial voidage this ratio is known as the overall porosity.
If the voidage volume used is only the interconnected
voidage ?olume then the ratio is termed the intescommun-
icative or effective pérosity. It is the effective
porosity that is of interest in this case and therefore
where the term porosity is used it should be noted that
reference is made to the effective porosity and not the

overall porosity.

The technique used to measure the porosity of the
materials tested was the 'gas expansion technique', ¢f

Scheidegger (26). Fundamentally this method is the

direct measurement of the volume of air contained in the
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interconnected pores of the material, the equipment used
is shown in figure 30, pagel3; . The porous material to
be tested is sealed in container A, valves 1 and 2 being
closed, valve 3 being open. Valve 1 is then opened to
allow air under pressure into container A. Once the
desired pressure is obtained, measured by the mercury
manometer, valve 1 is re-~closed. At this point valve 3
is also closed. Valve 2 is then opened and the pressure
in containers A and B is allgwed tc egquaiise, container
B having an original pressure equal to the atmospheric
pressure, Once the pressure in containers A and B has
equalised the value of thaé pressure is measured using
the mercury manometer. The system is then exhausted to
a*mosphere by opening valve 3. This process is repeated
for various initial pressures in container A.

By use of the ideal gas laws, Boyle-Mariotte assuming
an isothermal expansion, the volume of gas that was
contained within the porous media can be calculated, if

the volume of containers A and B and the specimen volume

is known, i.e.

o (VA VS+V ) + D Vg = Pe (VA+VB VS+Vp)

(pz-p,)
(p—-—> + VS - VA
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The volume of container B was measured by the

following method:

'(l) Weigh container empty.
(2) Fill container with water.

(3) Re-weigh container,

P

Knowing the density of water the volume of container

B can be simply deduced. Knowing the volume of container

B enables the volume of container A to be determined by

the gas expansion method, thus calibrating the rig.
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CHAPTER SIX

DISCUSSION OF RESULTS

P

6.1 INTRODUCTION

Due to the diversity of Tesults accumulated over the
three year period of this research programme, this section
has been conveniently sub-divided into the following sub-

sections. FEach sub-section deals with its listed subject.

Sub-section Number Sub ject
6.2 Permeability measurement
6.3 Comparison of steady-state

theory and experimental

results

6.4 Theoretical steady-state
performance

6.5 | Theoretical dynamic performance

characteristics
6.6 Comparison of dynamic theory

and experimental results



6.2 PERMEABILITY MEASUREMENT

It was shown in. section 4.3 that the empirical
technique of determining the viscous and inertia permeab-
ilities of a porous material outlined by Morgan (42)
cannot be used to measure these permeability values in
the case of a porous material with a high resistance”to
flow, A new experimental technique involving a logrithmic
plot of pressure drop and mean volumetric flow rate as
outlined in section 4.3.1 enébles the viscous permeability
of such a materizl to be determined accurately. This
logrithmic plot also identifies the experimental points
to be plotted subsequently.on a modified Morgan plot to
enable the inertia permeability to be determined. It was
also stated in sec?ticn M.B.Z{ that both permeability values
would be determined by the combined use of this logrithmic
plot and the modified Morgan plot. |

It has been found, however, that for the range of
pressurs drops used in this research, departure from pure
viscous flow occurred for only two of the seventeen
spécimens tested. Consequently the log plot of the experi-
mental results fevealed sufficient points to enable a A
modified Morgan plot to be drawn in these two cases only.

The experimental results, plotted on this logrithmic
basis, of sixteen of these porous specimens are given in
figures 33 to 48, pages 2l9 to 235 . The results of

the seventeenth specimen plotted on a logrithmic basis



has already been given in figure 20, page 96 . The lines

drawn through these experimental points have been obtained

'by uéing a well known statistical regression analysis

technique i.e. 'Least Squares Method!. The results of all

of these permeability tests are reasonably correlative to

a unity gradient line in tne Darcy regicn of flow. .There

~are, however, two major causes of the experimental séatter

manifest in these graphs, these being: -

(a) The measurements of the volumetric flow rates for
these tests were made using standard variable orifice
flowmeters that were calibrated at ambient cénditions.
This calibration is guaranteed to + 2% of the maximum
measureable flow rate for the meter if metering is
carried out in the upper two thirds of the meterable
range of the flowmeter.. In order to determine the
value of the mean volumetric flow rate at conditions
other than ambient, i.e. higher pressure ana
temperafure, the manufacturers conversion charts
were used., These conversion charts, basically a
Reynolds number - coefficient of discharge plot,
are only available for a limited number of flowmeter
readings and thus interpolation has to be used in
order to obtain correction factors for values of
flowmeter readings other than the plotted values.

(b) In most tests several different flowmeters had to be
used to measure volumetric flow rates, as the range

of flowrates throughout a test exceeded the working



range of some of.the flowmeters, As these flowmetefs

all had different working ranges the calibration

tolerance mentioned above differed for each meter.

This gives a discontinuity of the results as a change

in flowmeter occurs. A typical example of this is

specimen number 7 figure 39, pagez22y . In this~”
example, three flowmeters were used to cover the
flowrate range of the test. It can be seen that at
pressure drops of 1 Bar.and 2 Bar the discontinuity

is in evidence.

However, it can be generally stated that the majority
of the experimental results are within the manufacturers
calibration tolerances.

The two specimers, already referred to, that exhibit
the transitional mode. of flow are: -

(a) Pad number 16. This pad was made from a porous stain-
less steel material. The pad dimensioned 50.8mm in
diameter and 12.7 mm in thickness.

(b) F-d number 1/. This pad was made from a porous bronze
material. The pad dimensioned 76.2 mm in diameter
and 12.7 mm in fthickness.

The logrithmic plots of the experimental results of
these pads are shown in figures 48 and 20, pages 234 and 9§
respectively. All experimental points for these two

specimens have also been plotted using the technique of

Morgan. These plots are shown in figures 49 and 19 pages

235 and 93 for pads 16 and 17 respectively. It can



be seen that for pad i?, both the viscous and transitional
modes of flow are clearly in evidence. However, for pad
'number 16 the two modes of flow are not so easily recog-
nised. This is because the viscous region, as demonstrated
in this graph by a line parallel to the X-axis, is small
and due to experimental scatter this region is hidden.

This scattering effect is inherent in the Morgan technique.

Consider the parametric groups plotted on this graph, i.e.

(ap) .. A/Q_ nH
o) /Qp and QP /AN

Both variables p and Qm are included or implied in both
parametri~ groups. Tn the ordinate group the volumetric
flow rate appears in the denominator whereas in the
abscissa group the volumetric flow rate appears in the
numerator. In the ordinate group the pressure appears in
the numerator as in the pressure drop term whereas in the

abscigaa group it appears in the numerator as the mean

~

density term. Clearly the experimental tolerance of these

quanfities is 'enhanced by the method of presentation in
the Morgan technique. To demonstrate this scattering

effect the results for pad number 10 were plotted using
the Morgan technique, see figure 50, page 236 . It is
known that as all these experimental results are in the

viscous region, as confirmed by figure 42, page 228 which

shows a straight line with a unity gradient, these experimentas



points should form a line parallel to the X-axis on the
Morgan plot. DBy using regression analysis it should be
found that the inertia permeability is infinite i.e. the

it was found that

slope of this line is zero. However,

these results give a negative slope, i.e. a negative
inertia permeability, whict is meaningless as this denotes
a decrease in resistance by increasing the flowrate, 1i.e.
negative inertia losses.

Use of the new technique outlined in section L.3.1.
enables the true values of both viscous and inertia
permeabilities for specimens 16 and 17 to be found. The
values given by the Morgan technique were also determined.
These values are listed below along with the percentage

error tha+v c«ccurs in the determination of these values

using the Morgan technique.

Technique of Pad Permeability Error
Measurement Number XVigﬁgig iniggii Viscous |Tnertia
Log + Mod.Morgan 16 3.0228 L,7270
Morgan 16 | 3.1697 4.8754 |1.86% 3.14%
Log + Mod.Morgan 17 | 3.4563 5.1648
Morgan 17 3.8158 5.6503 [10.4% 9. 4%

It is suggested from this tabulation that as the resistance

to flow of the porous mate

determined by the Mor

An explanatio

rial increases then the values
gan technique become more erroneous.

n of this is that as the fnertia resistance




to flow of the material increases then the slope of the
Morgan graph increases. Since the Morgan techﬁique
'incorrectly assumes that a continuous line passes through
all the experimental values, the intercept of this line
with the Y axis is further removed from the true value

as the slope of the line becomes greater. Similarly the
larger the viscous region the more erroneous the slope
becomes in assuming a continuous line.

It has been shown then that the combined logrithmic
and modified Morgan plot technique is a simple and
accurate method of determining the viscous and inertia
permeabilities of porous materials. Not only is the true
value of the viscous permeability of a porous specimen
found from the logrithmic plot, essential for accurate
performance prediction of a porous bearing, but the upper
limit of pressure drop across the porous material for
which Darcy's law is valid can be found.

Now for pad numbers 1 to 15 the inertia poarmeability
has not been determined. A possible technique for detcr-
mining this permeability value was thoughtto be available.
This is because Green and Duwez (QO) found that for porous
the materiai used to manufacture these

stainless steel,

pads, there existed a friction factor/Reynolds number

relationship, for all flow rate, in the form:



The experimental results for pad number 16 was plotted
using the definitions of Green and Duwez and were found

. to correlate with this relatiopship, see figure 51, page
237. Therefore, it was considered that through their
definitions of friction factor and Reynolds number the
value of the inertia permeability may be found even though
the experimental range was limited to the viscous flow
region for these pads. However, upon inspection of this

|
relationship it was found that thiz coulid not be achieved,

i.e.
Since
- 2
Kf = Reo + 2
v here
P 2(ap) A28
Re = =735~ N = T

Now in the viscous flow region

Re <K 1
thus

2 .

= 2

Re >>

Hence it may be written that in the viscous flow region

7\'f = Z/Re

(Ap) - A2 - nAd,

Hpp, Q) ? T P59




from which it can be seen that the inertia permeability
cancels as it is common to both numerators. Therefore
‘the evaluation of the inertia permeability by this method
is not possible. Thus the traﬁsitional mode of flow must
be encountered, to enable a modified Morgan plot to be
drawn, in order that values of thé inertia permeability
may be determined.

Although the inertia permeabilities of pad numbers 1
to 15 have not been determingd this is nof detrimental to
the assessment of the porous thrust bearings that can be
formed byjthese pads. The analytic approach assumes that
the flow through the porous material is governed by
Darcy's law and by virtue of the fact that transitional
flow has not been encountered for the applied pressure
drops then this assumption is validated for these pads,

for these applied pressure drop values.
Not all of the porous pads that have been subjected

to a permeability test have been used as porous thrust

‘bearings. As the Morgan technique for permeability

determination has been rejected thgre was a need to

amass experimental evidence that the logrithmic approach

used was an exact method of viscous permeability

evaluation. By virtue of the fact that all seventeen

speciments tested exhibited the unity gradient property

on a logrithmic plot of pressure drop and mean volumetric

flow rate sufficient confidence now exists in this method

of wviscous permeability evaluation.



6.3 EXPERIMENTAL VERIFICATION OF THE STEADY-STATE
THEORY

6.3.1 Introduction

The theoretical analysis of the steady-state equations
made in Chapter 3 is only valid withkin tl.e bounds of_ the
assumptions made within that analysis and as such is of no
value uptil it can be shown that the results given by this
analysis accurately predict the real situation. The theor-
etical predictions made by this analysis‘must be experi-
mentally verified so that the engineer may then haﬁe
confidence in the use of these predictions to design a
porous bhearing.

In order to investigate the validity of these
theoretical predicticns, steady-staie tests were performed

on five bearing configurations. The five bearings chosen

were: -
j
Pezring, Outer |Porous Pad | Aspect Material Viscous
Number Radius | Thickness Ratio |Permeability x 101
mm mm cm=?
1 25.4 12.7 0.5 1.3594
2 25.4 12.7 0.5 1.7799
3 25.4 12.7 0.5 2.42873
in 25.4 19.05 0.75 1.8302
5. 25.4 25.4 1.0 1.9662

All of these bearings were prepared by the acid

etching process detailed in section L, L,



It can be seen from the bearing specification tab-
ulation above that (l) three bearings have the same aspect
ratio but different viscous permeabilities, bearings 1, 2
and 3; (2) three bearings have differing aspect ratios
and viscous permeabilities, bearings 1, 4 and 5.

The steady-state tests performed on these bearings

were within the following limitations: -

. . Supply rressure Bars Figuve No.
Test | Bearing|Actual Bearing
Number| Number load N Maximum Minimum W M
1 1 70.7 6 .7 5k 55
2 1 115 6 .9 56 7
3 1 162 5 1.0 58 59’
i 2 70.7 h.5 60 6
5 3 70.7 h,o 0.5 62 673
6 b 70.7 L.,8 0.7 6L 65
7 L 115 L.38 0.9 66 | 67
8 L 159 5.0 . 68 69
9 5 70.7 5.0 1.0 70 ! 7?1
10 5 90.2 5.0 1.0 v2 L T7h
11 5 115 L.5 1.5 7h 75J

It can be seen from the test limitation tabulation that

bearings 1, 3 and , were tested for three different actual
, .

bearing loads.

Thus from the two tabulations above it can be seen that

0

the experimental tests enable the effect of bearing aspect

ratio, material viscous permeability, supply pressure and
b



actual'bearing load to be investigated in turn. The

results of these tests are shown in figures 54 to 75,

page 240 to 263 . For each test the bearing non-dimensional
load and mass flow rate variation with bearing number has
been checked against the theoretical prediction. However,
before discussing the comparison of these test resul;;

with the theoretical predictions the technique of film

thickness measurement, and hence bearing number determin-

ation, will be discussed.

6.3.2. The Film Thickness Determination and
Porous Pad Axial Shift Problem

A new technique of film thickness determination, the
pressure gradient tecrmique, has been detailed in section
4,4, This technique enables a mean pneumatic clearance
to be determined to account for the surface irregularities
on both the porous specimen and bearing top plate surfaces.
The need to take this mean penumatic clearance into account
when measuring the film thickness has been shown to be of
great importance, (49). The pressure gradient technique
entails the detérmination of the pressure gradient at the
outer radius of the porous'bearing. This pressure gradient
value has been obtained by differentiating a heuristic
curve fitted to the experimentally determined pressure/

radius values. The order of this heuristic curve was

empirically obtained by fitting several curves through



the experimental points and identifying the curve that
smoothly passed through these points. To increase the
-fitting accuracy of the curve two boundary conditions

were imposed on the film equation. These boundary

conditions were: -

(a) at the centre of the %wearing the radial pressu;;
gradient was made to be zero, i.e. axisymmetfical
conditions;

(b) at the bearing outer radius the pressure was

equated to atmosphere and the curve was forced

through this point.

The impcsition of these bearing conditions were
achieved by the following modifications to the general
heuristic curve egua:ion: -

the general equation may‘be written

: n
P = Z e, 6.3.1.

TL:O

Boundary condition (a) at
92 _ ¢
ar

Differentiating equation 6.3.1. and equating to zero at r=0

gives ey, = O thus

N
N .
D= e + Z e, T | 6.3.2.
’ =2

»



boundary condition (b) at

substitution of this boundary condition into equation

6.3.2. vields

eO :p - e Po 6.3.3.

substitution of equation 6.3.?. into equation 6.3.2. gives

the equation for the curve as

p=p + ) e (r-r" 6.3. k4.

n=2

Equation 6.3.4. then is the equation used to fit the
heuristic curve through the experimental pressure/radius
points. The regression analysis technique of the Least

Squares method was also used to reduce the experimental

scatter effects.

In order to validate the axisymmetrical condition,

the boundary condition used at the bearing centre, the

following experimental procedure was used. A uniform

film was formed and pressure values taken within the
film. The bearing top plate was rotated through a given
angle and the film was re-adjusted to ensure uniformity.

Film pressures were again measured. This was repeated

for various angular positions and no appreciable difference

in the measured pressure values occurred at any angular

position.



In order to show that the gradient technique gives
valid film thickness measurements the film thickness
-derived from this technique can be plotted against the
experimentally determined bearing lift. This plot, it
is pointed out in section 4.@.{ should result in a straight
line of unity gradient. A plot of the derived film thick-
ness against measured bearing 1lift for bearing number 1
has already been given in figure 24, page 106 . It can be
seen from this graph that the pressure gradient technique
not only giVes valid results but enables minute film thick-
ness variation, sub-micron variations, to be measured
accurately.

In plotting the results shown in figure 24 any axial
deflectior of the porous pad epoxy bond has been taken into
account, This axial shift of the pofous pad was calibrated
using the technique given in section 4.4, Figure 52, page

238 shows the derived film thickness results for one load
test plotted against the measured bearing 1ift before and
after any account of bearing shift. It can be seen in
this figure that the effect of bearing shift is to reduce
the gradient of this plot. This is due to the fact that
before accounting for the bearing shift the measured bear-
ing 1lift is greater than the actual bearing 1ift. To
explain this consider performing a load test on the
bearing by the following method. Load-the bearing before

applying the air supply. Zero the bearing 1lift measuring
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devices. Connect the supply pressure to the bearing and
measure the bearing 1lift. In applying the load to the
’bearing without any supply pressure aﬁ unbalanced downward
force.is applied to the porous'pad. This force creates a
downward axial shift of the porous pad until the downward
force is baianced by the shear forces in the epoxy bond.
This deflected position of the porous pad is taken to be
the zero position for the measuring devices. Upon connect-
ing the supply pressure to the bearing the air flows
‘through the porous pad and supports the load at a given
film thickness, the bearing 1lift off being measured by

the mitronic measuring devices. Now the integral of the
film pfessure forces equals the load applied to the
bearing. Thus the same downward force is applied to the
pad. If no other forces were presént the porous pad
would remain in its downward deflected position. However,
there is another force now being applied to the porous
’pad. This force is the upward acting force of {he supply
pressure, thus the pad moves axially upwards. Now the
mitronic devices have measured the upward 1lift of the

nd thus no account is made of the

bearing top plate a
porous pad zero shift. Hence the measured upward 1ift

of the top plate is greater than the actual bearing 1lift.
By knowing the applied supply pressure the actual bearing
1ift can be determined by subtracting the upward bearing

shiét from the measured bearing 1lift, the upward bearing

shift having been found from the calibration previously



mentioned.

Now having discussed the technique of film thickness

measurement and the method of taking axial shift into

account, it is possible to produce individual graphs of

derived film thicknessagainst measured bearing 1ift for

each bearing tested.

is, however, a method
graphs can be plotted
Consider the equation

measured bearing 1lift

This leads to numerous graphs. There
by which all the above mentioned
on one non-dimensional graph.

of thid derived film thickness/

graph, i.e. equation 4.L4.5.

By dividing through by the mean pneumatic clearance SF the

equation becomes:

hd hm
w— = e 6- . 3
T 1+ SF 3.5

As each bearing tested will have a differenu mean
pneumatic clearance value, as the surface irregularities
of each bearing will be different, the use of equation
6.3.5. correlates all the derived film thickness/measured
bearing liff graphs on to one non-dimensional graph. The
results of the five bearings tested have been presented

It can be seen that

this way, see figure 53, page 2359 -

mental confirmation is achieved. Clearly the

good experi

.

mean pneumatic clearance SF is dependant on surface finish
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only., It is constan£ for a given pad independent of load-
ing. The actual 1lift off hm can be corrected by adding SF
"to obtain an equivalent ideal film thickness hd in order

that the performance of real bearings may be successfully

predicted.

6.3.3. The Load and Flow Test Results

The results of the steddy-state tests are shown in
figures 54 to 75, pages 240 to 2635 . These results show
that by correctly evaluating the viscous permeability of
the porous material, Dby accounting for the porous pad
surface finish and axial.shift, and by ensuring that thne
flow through the porous material is within the Darcy law
region, it is now possible to obtain good correlation of
observed performance and theoretical prediction.

There is, however, omne anomaly that must be discussed.
In all the steady-state test results at moderat:ly high
bearing.numbers the bearings appear to be unpredictibdbly
stiff. This is in fact due to touch down of the bearing
A continuous air film is no longer

on roughness peaks.

being maintained. As stated before, the porous pad is

not smooth and the peaks of the two surfaces now contact,

the gas film no longer fully supports the load, as the

load is transmitted through the peaks. This can be seen

by examining the results for any of the bearings tested.

Consider the results for bearing number 1. The unpredictable



bearing stiffness occurs at a bearing number of approximét—

ely 2.5 independent of the load supported by the bearing.

In using the mean pneumatic clearance figure to calculate

a bearing number the result is‘a bearing number of 7.7.

Now in order to obtain a film thickness of the mean

pneumatic clearance value, some of tiie material in the

roughness peaks would have to be displaced into the

material roughness troughs. This obviously cannot be

achieved. Therefore, bearing touchdown must occur at

a bearing number below the value of the bearing number

obtained by using the mean pneumatic clearance as the

film thickness. This is also shown in the flow data

in that the flow rate is lower than predicted. If contact

of the suifaces occurs then the film flow area is reduced.
No measurement of the bearing stiffness has been

made. However, as good correlation between the experi-

mental and theoretical values of the bearing non-dimensional

load/bearing number has been achieved and as the non-

dimensional static stiffness is defined as the rate of

change of the non-dimensional bearing load with respect

to the bearing number multiplied by three times the

bearing number, it can be stated that at low bearing

numbers the theoretical non-dimensional static stiffness

values can be used to design porous bearings.

At high bearing numbers the bearing, it has been

stated, is unpredictably stiff due to bearing touchdown.

It is therefore, necessary to operate these bearings at



a bearing number beloQ the touchdown bearing number in
order that the steady-state theoretical curves can be

- used in designing the bearing. Insufficient data haé
been accumulated in order to détermine a relationsﬁip
between the value of the bearing touchdown point and
other bearing properties. Indéed tuuis relationship.may
be extremely complex as the touchdown point will be
directly related to the mean pneumatic clearance value.
The mean pneumatic clearance value will be a function

of the etching time, grain size of the material, viscous
permeability and possibly other properties of thelmaterial
and may even be related to the surface roughness as
determined on a Tallysurf. It may be that this touchdown
value can conly be determined empirically. In order that
bearing touchdown does not occur the overall film thick-
ness must be large in comparison to the mean pneumatic
clearance value. This large film thickness may mean that
the optimum bearing static stiffness bearing number may
not be attained. As the engineer may wish to design a
bearing at the optimum static stiffness the bearing
number at which the optimum static stiffness occurs can
be reduced by increasing the supply pressure, increasing
the viscous permeability of the material and reducing

the bearing aspect ratio, as discussed in the following

section.

1 eg



6.4 THEORETICAL STEADY-STATE BEARING PEFORMANCE

6.4,1 Introduction and Definitions

The steady-state analysis of Chapter 3 enables

theoretical design curves of non-dimensional load

capacity, W, non-dimensional mass flow rate, ﬁ, and’
non-dimensional static stiffness, i, against a parametric
group defined as the bearing number, A , to be drawn.
However, before discussing these design curves an
explanatory note on the meaning of these parametric
groups is required.

The non-dimensional load capacity is the ratio of
the actual load the bearing area can support at a given
£ilm thichness to th2 masimum possible load the bearing
area can support, i.e. at zero f£ilm thickness, for the
same supply pressure. In itself it is basically an
efficiency figure giving the efficiency value of the

bearing, i.c. how effectively the bearing utilises the

available pressure energye.
The non-dimensional mass flow rate is the ratio of

ate through the bearing to the

-

the actual mass flow T

maximum possible flow rate through the porous pad given

certain conditions. It is basically an inverse efficiency

figure for the higher the mass flow rate the higher the

ratio of the available pressure drop used to create this

mass flow rate through the pad to the overall "available



pressufe drop. Clearly it is desirable to minimise this
non-dimensional group.

The non-dimensional static stiffness is the ratio of
the force required to bottom the bearing top plate from
its operating position if the operational static stiftness
of the beari ng wsas to remain bonstant to the maximum load
the bearing can support, i.e. stiffness x film thickness/
maximum load.

The bearing number is g parametric group containing
the bearing outer radius, the pad thickness, the pad
viscous permeability and the film thickness. For a given
aspect ratio and pad viscous permeability this parametric
group is basically the film thickness design parameter.

In designing a bearing the engineer is liable to be
limitéd by available space, thus fixing the bearing outer
radius and pad thickness. This group enables the engineer
to determine at what film thickness the bearing will
operate for a given viscous permeability.

In designing a porous thrust bearing the engincev
will obviously desire a highly effective use of the
pressure energy available, i.e. desiéning for a high W
and low M. However, the engineer's design may require

the bearing to have large resistance to positional

fluctuations, i.e. a large stiffness. This may be in

conflict with the efficient use of pressure energy for
high‘load capacity. In designing a bearing the engineer
must decide which of these parameters is the most desirable

and use the design curves to determine the optimum bearing

parameters to suit the working conditions.



The steady-state design curves are shown in figures

76 to 80, pages 26L to268 , and depict:

(a) the effect of the bearing aspect ratio on the
variation of the non-dimensional load capacity,
non-dimensicnal mass flow rate and non-dimensional
static stiffness with the bearing number, see
figures 76 to 78, pages 264 to 266 ;

(b) the effect of the supply pressure on the variation

i
of the non-dimensional load c=pacity and non-dimen-
sional static stiffness with bearing number, see

figures 79 and 80, pages?267 and 268 .

The non-dimensional mass flow rate has been shown not tso
be a function of supply pressure, See section 3.3.

The effa:t of the viscous permeability of the porous
material cannot be shown on the non-dimensional curves
" mentioned above, as this effect is hidden by an ensuing
" f£ilm thickness effect,_(sectjon 6.4.5.). By virtue of
this the permeability effect is shown in the dimensicnai
‘plots of load capacity, mass flow rate and static stiff-

ness against film thickness curves, see figures 81 to 83,

pages 269 to 271 .

6.4.2. The General Shape of the Steady-state
Design Curves

* Before discussing the individual effects mentioned

above let us first consider the general shape of the



non-dimensional curves. In order to show clearly what

occurs these curves have been plotted on a logrithmic/
linear basis, the bearing number being plotted on the

logrithmic scale while the bearing parameters, i.e. W,

M, or X are plotted on the linear scale. The need to
plot the bearing number on a logrithmic scale existgw
because this parameter can vary from a near zero value
for a very large film thickness to an infinite wvalue for
a zerc film thickness.

In the case of the non-dimensional load capacity
and the non-dimensional mass flow rate curves it can be
seen. that the design curves are asymptotic to zero and
unity values of the bearing parameters. At high bearing
numbers, i.e. small film chickness, one approaches bearing
ttouch-down', The film resistance to flow increases, thus
decreasing the mass flow through the bearing. As the mass
flow through the bearing is reduced the pressure drop
throvgh the porcus material reduces, leading to higher
film pressures and hence é higher load capacity. In thé

limiting case i.e. zero film thickness, the mass flow

rate through the bearing is zero and the load capacity is

unity. However, the bearing number becomes infinitely

large and therefore cannot be expressed in graphical form.
This then leads to an asymptote at high bearing numbers
d capacity, which approaches

for both non-dimensional loa

unity, and non-dimensional mass flow rate, which approaches

ZeTro.



At low bearing numbers, i.e. large film thickness,
the film pressure becomes close to the afmospheric pressure
'yet, theoretically, the film éressures cannot be equal to
the atmospheric pressure unlesé there exists an infinite
film, i.e. the bearing top plate is removed. For an
infinite filin thickness the mass flow through the porous
pad is a maximum as all the available pressure energy is
used in creating this mass flow. This gives a unity wvalue
to the non-dimensional mass flow rate and a zero value to
the non-dimensional load capacity. However, an infinite
film thickness gives a zero bearing number which cannot
be represented on a lpgrithmic sgale. This then leads to
an asymptote at low bearing numbers for ooth the non-
dimensional load capacity, approaching zero, and non-
dimensional mass flow rate approaching unity.

In the case of the non-dimensional static stiffness
the design curve shows that at high and low bearing
numbers this parameter. is asymptotic to a zero value,
with én optimum value at some intermediate bearing nual=r,
The reason for this shape is apprecigted by referring to
the definition of non-dimensional static stiffness. It

is defined as the negative value of the rate of change of

the non-dimensional load capacity with respect to the

bearing number, multiplied by the bearing number. As the

non-dimensional load capacity curve is asymptotic at both

.

high and low bearing numbers the non-dimensional static
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stiffness must also be asymptotic to zero at high and low
bea?ing numbers as the rate ofvchange of the non-dimensional
-load cap?city approaches zero. However, the rate of change
of non-dimensional load capacity with bearing number does
maximise through the transferance from one asymptote to

the other and therefore there is a bearing number at which
the non-dimensional static stiffness obtains an optimum

-

value.

‘6.h.3. The Effect of the Bearing Aspect Ratio
on the Bearing Performance

Let us now'considér the individual effects mentioned
previously. Firstly consider the effect of fhe bearihg
aspect ratio, S, on the variation of the non-dimensional
bearing parameters with bearing‘humber, see figures 76 to
78, pages 264 to 266 . | The béaring aspect ratio is
defined as the ratio éf the pad thickness to the bearing
outef radiusj; there are therefore three ways of alterinrg

this ratio. It must be shown that, no matter which pad

parameter is'altered to alter the aspect ratio a similar

effect on performance occurs.

Suppose there is an increase in the aspect ratio due

to an increase in pad thickness. The effect is to increase

the porous pad's overall resistance to flow. This increase

causes the air passing through the pad to experience a

greater pressure drop. The increased pressure drqp gives,

for a constant supply pressure a reduction in the film

14T




pressures, hence reducing the load capacity. This can be

described as a reduction in the efficient use of the

available pressure energy as more pressure energy has

had to be used in overcoming‘tﬁe increased resistance to
flow of the porous pad. If it can be shown that reducing
the pad outer madius also reduces the efflciency (1oad
capacity)‘of the bearing then it will have been shown

that altering either of these pad parameters has a similar

effect on the bearing. !

In order to demonstrate that a smaller diameter
Bearing is not asleff1c1ent in using pressure energy as
.a large diameter bearing, compare a bearing that has an
outer radius of 2 units to a bearing having an cuter

radius of 1 unit. Consider that these,bearings are

supplied with air at the same supply pressure,.operate

at the same £ilm thickness and thatvthe bearing pads are

the same»thlckness and have the same viscous permeability.
As the pad thickness and viscous permeablllfy are

jdentical in these bearings the axial resistance to flow

through the pads will be jdentical. As the bearings are

operating at the same film thickness the film resistance

.to flow per unit length will also be identical. A

reduction in the outer radlus will meanvthat the film

resistance must be reduced and thus the smaller bearing

will have a smalleT overall resistance to flow. As the

same supply pressure ijs available to these bearlngs the

mass flow rate through the smaller bearing must be greater




due to the reduction in overall flow resistance. To create

a greater mass flow rate through the bearing pad a greater
proportion of the pressure energy available must be
utilised. This then means that the available pressure
energy to sﬁpport the load must be reduced»and therefore
the smaller bearing:operates at a lower efficiehcy in

comparison to the larger bearing.
Now consider the design curves shown in figures 76 to
78, pages 264 to 266 - It can be seen that this reduction

in the efficient use of the available pressure energy by an

increase in the bearing aspect ratio diStorts the non-
dimensional loéd.capacity cur?e. This affects the non-
dimensional static stiffness of the bearing for not only

has the optimum stiffness been reduced in value but its
occurance relative to the bearing_numbér hés alsp been
altered. This increase in bearing number for'the'occurance
of optimum non-dimensiénal static stiffness may seem trivial,

but it has been shown in the previous section that high

beariﬁg numbers, i.e. small film thicknesses, may not be

attainable due to the surface roughness of the bearing

pads., This means then that an engineer may find that an

increase in the bearing aspect ratio will prevent the

designing of a bearing at the optimum non-dimensional

static stiffnesé condition as . the requisite film thickness

: tic clearance value.
may be less then the mean pneuma cl
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This red i ; . .
uction in non-dimensional static stiffness can

be seen in the non-dimensional load curves in that the rate

‘Of change of non-dimensional load with respect to bearing

number for a high aspect ratio is less than for a low

aspect ratio, i.e. a large range of bearing number is

- required to transgress from one non-dimensional load to
another. This exblains the interlacement of the non-
dimensional static stiffmness curves that occurs at high
bearing numbers. In the casg of the low aspect ratio
bearing the non-dimensional load capacity curve has tended
éto the asymptote before the high aspect ratio bearing

curve. By .virtue of this the rate of change of the low

aspect ratio bearing tends to zero at a lower bearing
nﬁmber than the high aspect ratio bearing.

Upon inspectioh of the non-dimensional mass flow rate
curves, see figure 77, page 265 » it can be seen that an 3
increase in bearing aspecf ratio also distorts these curves. v

This also requires explanation for in increasing the aspect

ratio of the bearing by increasing the pad thickness results .

in a reduction of the actual mass flow rate through the

bearing. However, in increasingAthe pad thickness the»

_maximum poséible mass flow rate through the porous pad is

also reduced, given the same operating conditions. As the

efficiency of the bearing 1is reduced by increasing the

aspect ratio, a greater proportion of the pressure energy

~
3

| is used is creating massS flow through the porous pad. Now

in the maximum mass flow conditions all the available




ressure ener i .
P gy is used in creating mass flow. Therefore,

this increase in Proportion‘of pressure energy used to
‘create mass flow for a high aspect ratio bearing, as
compared to a low aspect ratio.bearing, means that at a
given bearing number the ratio of pressure energy used to
crrate mass flow through the porous pad to total pressure
energy available is higher for the larger aspect ratio
bearing, resulting in a higher non-dimensional mass flow
rate. |

It can be stated then t£at the smaller the bearing
éspect ratio the greater the effective use of the available
pressure energy. However, it must be realised that a |

decrease in the bearing aspect ratio may result in the

porous pad having insufficient strength‘to withstand the
pressure 1oad across it, this pressure load being due to ﬂ
the difference in film pressures to supply pressures.

This lack of strength may cause the pad to bow like a

diaphragm, creating a mon-uniform film. This has detri-

 mental effects on the lecad capacityAand mass flow rates,

Taylor and Lewis (70). The designerAmust be aware of

this problem and ensure that, if the design of his bearing

is based on the uniform film theoretical design curves,

that a uniform f£ilm exists.




6. 4.4, The Effect of t
Do Fe e : he Supply Pr
Bearing Performance y Pressure on the

Consider now the curves ghowihg the effect of the
supply pressure on the variation of the non-dimensional
1oad capacity and non-dimensional static stiffness with
the bearing number as shown in figures 79 and 80, pages
267 énd 268 respectively.

These curves show that_an iricrease in the supply
pressure causes a decrease in the bearing number such
that the design curves move the left without any distort-
;ion of the curve occurring. This is explained by the
reasoning thaﬁ an increase in the supply pressure has no
effect on the efficiency of the bearing, this is assum-
:ng that Darcy's law still govermns within the porous pad.
As there 1is no.change in-bearing efficiency the ratio of
pressure energy to supporﬁ the bearing load to the overall
pressure energy availéble remains constant. However, the
actual pressure energy.available is increased giving rise

to higher film thicknessesS. This means that the non-

dimensional load capacity 1s unaffected but the bearing

number decreasesS. Thus the curves are moved to the left.

Because there is no distortion of the non-dimensional

1oad capacity curve the rate of change of these curves with

respect to the‘bearing number 1S uqaffected. This means

that the non-dimensional static stiffness curves are

de but simply shifted to the

unaltered in shape or magnitu

left.
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Although it has been shown mathematically that the
non—dimenéi?nal mass flow rate is not a function‘of supply
pressure a physical explanation of this phenomina shéuld
‘be given, Consider the case of a bearing operating with
a given load at a given film thickness for a given supply
pressure. By increasing this supply pressure, there“is a
resulting increase in the film thickness. Now increase the
bearing load such that the original film thickness is
obtained, thus the overall resistance to flow of the
bearing remains unaltered. Due to the increase in supply
pressure there is now more pressuré energy available.

This increase in pressure energy is absorbed in two ways:
(a) a portion of this extra energy enables a greater
load to;be suﬁportedzﬂ a given film thickness;

(b) the remaining extra energy creates a higher actual

mass flow through the bearing.

Now in increasing the supply pressure the maximum
possible mass flow réte through the porous pad is also
increased. As the increase in supply pressure has not

altered the efficiency of the bearing, the ratio of

pressure energy used to create mass flow to the overall

available pressure energy remains unaltered and therefore

the non-dimensional mass$ flow rate remains unaltered. As

the same film thickness is maintained the bearing number

must remain unaltered. Hence it 1is immaterial what supply

pressure is used for only one non-dimensional mass flow




rate/bearing number curve can be produced
.

1

In f .
actual terms an increase in supply pressure means
-that for a given film thickness there is a resulting

increase in .
actual bearing load, actual mass flow rate and

actual static stiffness. Also the film thickness at which

thg optimum static stiffness occurs is increased. As
previously mentioned the bea;ing surface finish effect
affects the possibﬂity of attaining high bearing numbers.
Thus if the bearing number aL whicih this optimum stiffness
occurs can be reduced fhere is a greater possihility of

designing a practical bearing that can operate under

optimum stiffness conditions.

6.4.5. The Effect of the Porous Material Viscous il
Permeability on the Steady-state Performance

It has been stated that the effect of varying the

viscous permeability of the porous pad cannot be demon-

strated on the non-diménsional plots. For this reascn

this effect has been shown on dimensional plots of load §

capacity, mass flow rate and static stiffness against

film thickness, see figures 81 to 83, pages 269 tP 271.

The viscous permeability of a porous material is, in

effect, a measure of the viscous conductivity to flow of

that material. Hence by decreasing the viscous permeab-

ility the resistance.to flow of a material is increased.

Consider two bearings having the same basic dimensions

| i i ’ ith the same |
operating at the same film thickness fed wi | |
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supply pressure but having different viscous permeabilities.
The bearing with the higher viscous permeability, lower
resistance to flow, uses less of the available bressure
energy in overcoming the resisfance to flew of the porous
material., Therefore the air passing through this porous

pad experiences a smaller preseure drop; This gives™
higher film pressures and thus a higher load capacity at
this film thickness. This can readily be seen in figure

81, page 29 -

Because these two bearings are operating at the same
film thicknesses the film resistance to flow is identical.
The.driving force for the mass flow through the film is
the pressure gradient within the film. Because the film
pressure-profdles are of the same form, the pressure
gradients in the bearing with the lower viscous permeability
will be lower due to smaller film pressures. This means
that the driving force for the mass flow rate is smaller
for the bearing with the lower viscous permeability
resulting in lower mass flow rates. This can readily be
seen in figure 82, page 270.

The static.stiffness of these two bearings does not
ver or higher category as the load and mass

fall into a low

flow rate. It depends on what film thickness .these

bearings operate at which of these bearings “has the

superior value of stiffness. At these bearings have the

same operational area and are fed with the same supply

pressure fhe maximum load capacity of these bearings will




b . 3 ’
e identical. It has been shown that, for the bearing with.

the lower viscous permeability, the film thicknesses

‘experienced will be lower than the film thicknesses for

the bearing with the higher vigcous permeability. Therefore,
the bearing with the lower viscous permeability must have a
greater rate of change of load capacify with film thickness
in comparison with the bearing with the higher viscous

permeability. However, it should. be remebered that in

order to obtain a zero load Japacity there must exist

within the bearing an infinitely large film thickness.

This means that the load/film thickness curve will be
asymptotic at high film thicknesses. The bearing with the
lower viscous permeability has a load/film thickaess curve

that approaches this asymptotic line more rapidly than the

bearing with the higher viscous permeability. Hence at

high film thicknesses the bearing with the higher viscous

permeability will have a greater rate of change of the
load with respect to filﬁ thickness than the bearing with
the low viscous permeability. This gives rise to the high
viscous permeability bearing having a‘superior static

'stiffness at high film thicknesses.

This phenomina can readily be seen in figure 83, page

271 ., It should also be noted that the film thickness at

ess occurs reduces as the viscous

which the optimum stiffn

permeability reduces. This as has already been mentioned -

: i ions on surface finish
may lead to problems, see dlscu551o

effects ih sub-section 6.3. _ . ‘
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6.4.6 The Effect on the Desi

the 'Slip Factor! gn Curves of Neglecting

of Ishizawa and Hori

It was mentioned in section 2 that two authors have
produced identical design curves yet one of the authors
had neglected the slip flow effect of ITshizawa and Hori.
There is an obvious need to determine why this occurred

and also to determine the effect of neglecting this slip
flow. . :

|

The bearing number has?been defined as

128 rg? 128 1,2 |
A= ¥.° P A 6.4.1,
ho(ho?+68 ) H ho® (1+68.,/h?) H

the term 63 /h,? is a slip factor accounting for the slir

flow of Ishizawa and Hori. Let

60, /ho? | 6.4.2.

=
1l

2ur? |
) A = FR (T+pk _ 6.4.3.

If the slip factor is neglected

2 2.
A = Z4Eas = (Lep)d 6.4 1.
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where A, is the bearing number calculated without the slip
factor. | |
Cgrves showing the effect of neglecting this siip
factor are shown in figures 84.to 86, pages 272 ‘to 274'
It can be seen from these curves that at a given film
thickness neglection of the slip factors causes an erroneous
value of non-dimensional load capacity, non-dimensional mass
flow rate, non-dimensional static stiffness and the bearing
number at which the optimum static stiffness occurs. An
engineer using a design curve which neglects this slip
factor to design a porous bearing under optimum s£iffness
conqitions will find that the actual load capacity is
insufficient, the mass flow rate for which he designed for
is below fthe éctual mass flow rate .and the static stiffness
is below the optimum value, all of which lead to bearing -

failure. It is obvious then that the slip factor'is of

great importance. ' ) i

Now the curves depicted in figures 84 to 86, pages
272 to 274 have been drawn assuming a constant slip

factor value for changing bearing number. This in

practice cannot happen, for in order to obtain a constant

.slip factor value for changing bearing number, and hence

changing film thickness, the viscous permeability must

also vary In pracfice the viscous permeability is fixed.

This means that at relatively‘high film thicknesses the

slip factor will be small thus the neglection of this

factor will have 2 negligible effect in this region in




comparison to the effect the neglection of this factor has

at relatively low film thicknesses. From this it can be

'seen that a practical line crosses the iso-slip factor
:lines shown on these design plots and eventually at a
high bearing number, the value.of the bearing number
depending on the permeability, blend té the true thg;ret-
ical .curve. | |
In the case of the low permeability material the

slip factor is small, thus the effect of neglecting the
slip factor may not be evident. This then is the. reason
why in comparing the curves of Garguilo and Gilmour (57)

to these of Jones et al (60) there was no appreciabie_
difference. The material viscous permeability used by
lGarguilo and Gilmcur was 1.68 x 10"t in®. The lowest film -
thickness encdunteredeas 2 x 10 %*in. This gives a
maximum slip factor of 2.52 x 10~ °.

| The slip factor fhen can onl§‘be neglected at very
high film thicknesses and for very low viscous permeability
materials. However, it:is not advisable to neglect this

factor as designing from curves which neglect this factor

may result in under designing of a bearing leading to

‘bearing failure.

6.4.7. Comparisdn of a Porous Bearing with a Capillary

Compensated Bearing

A considerable amount of discussion has been presented

on tﬁe effects on the steady performance of a porous thrust

2
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bearing by the variation of certain bearing parameters
without actually showing that a porous thrust bearing

performance is an improvement on the more standard form

of thrust bearing. In this section a comparison has been

made between a pofous thrust bearing and a standard cap-
illary compensated thrust bearing, both air lubricated,
in order to determine if the porous bearing characterist-
ics are superior to the capillary bearing.

In order to compare thesk bearings it was decided to
equalise the resistance to flow through the bearing

festrictors. This means that, for a given supply pressure,

the mass flow through the capillary of the capillary

compensated bearing, when vented to atmosphere, =quals
the mass flow through the porous pad of the porous bearing, ga
when vented to atmosphere. In order that this is so the

Darcy law must be equated to the Hagen-Poiseuille law,

i.e.
(P 2_'p 2)Ao® L.
g m = ZHBT: y Darcy law 6.5.5.
kx (p.2-p.2)
{ m = c'Ps & Hagen-Poiseuille law 6.4.6. ;g
engT |
2_1 2
. (Psz_paz)A°?X = kc(ps Pa ) 6.4.7. .

o - 2HRT7 . .‘.'.2_778']:'




leading to

= k ' 6.4.8.

Figures 87 to 89, Pages 275 to277 , show the load
capacity, mass Tlow rate and static stiffness variation
with film thickness curves for a porous thrust bearing
and a capillary compensated bearing Which (a) is inherently
compensated, (b) has a port #adius to outer radius ratio
of 0.2 and (c) has a port raaius to oﬁter radius ratio of
0.6. The outer radius of these bearings has also been
equated such that the maximum load of these bearings is
identical.

'The load capacity curves, shown in figure 87, page?275

show that at high film thicknesses, 15 micron or above,

all forms of the capillary compensated bearing will

support a higher load than the porous thrust bearing.
However, the magnitude. of the load at this film thickness O

is very small and the bearings are operating in a regicw

of very low efficiency. As the film thickness is reduced

to 4 micron or less, the general operating region of an

air bearing, the porous bearing load capacity is shown

to be superior to all forms of the capillary compensated

bearing. The reason for this is for the capillary

compensated bearing there are two basic regions in which

preséure forces are applied to the bearing top plate (a)'

the port area and (b) the film area. As the film thickness




decreases the port pressure can rise to practically the
supply pressure due to direct connection to the pressure
chamber via the capillary. However, the film pressures
cannot approach supply pressuré valuevuntil the beéring
has practically shut down as there is no direét connection
to the pressure chamber. In the case of the porous
bearing the whole of the film region can approach the
supply pressure value more easily_ due to the direct

connection via the porous pah to the supply chamber.

This more even spreading of the supply pressure in
:the porous bearing gives a superior pressure profile at
small film thicknesses, and hence a higher load capacity.

For a given film thickness the pressure gradient at

+he outer radius of a porous bearing is higher than the E@

.pressure gradient for a capillary bearing. As it is i
this pressure gradient that is the driving force for mass
flow out of the bearing film, the mass flow through a n

porous bearing 1is greater than the capillary bezring,

-see figure 88, pagea7@ This then is the disadvantage

of a porous bearing in comparison to a capillary bearing.

However, generally the designer of a bearing is concerned

. more with load capacity and stiffness of a bearing than ﬁ;

mass flow rate through the be@ring.

The static stiffness of the porous bearing is mnever

less than the capillary bearing, for the condition of

equal resistance to flow, .as can be seen in figure 89,

page 277 - It can also be seen that the rate of change




of the static stiffness from its optimum value of the
porous bearing as the film thiékness is reduced is not
’as high as that of the capillary bearing.

Consider the case of an éﬁgineer designing a bearing
to operate at its optimum stiffness. 1In comparing the
porous bearing and capillary cdmpensateﬁ beafing'having
a port radius to outer radius ratio of 0.6 in which flow
resistance has been equalised itvwould be found that:

Using the capillary bearing as a base the porous

bearing would give 18.75% more load capacity,

34.38% more static stiffness yet requiring only

32,8% more mass flow.

Not only are the steady performance figures of the

i

porous bearing superior to the comparable capillary bear-

ing but the porous bearing is. less liable to pneumatic

hammer effects, due to the émaller volume content of the

bearing (2),_(63) and is chéaper to manufacture as the “s

complicated machining of the bottom bearing plate is

'un-neéessary, (66), (69).

6.5 THEORETICAL DYNAMIC BEARING CHARACTERISTICS

6.5.1 Introduction and Definition

For the case of forced vibration of these bearings,

i.e. a time dependent situation, it was stated in section

3.4, the section dealing with the time dependent analysis,




that a truely analytic solution could not be achieved dué

to the complexity of the equations involved. It was

therefore necessary to resort to a numerical method of
solution in order to obtain the theoretical predictions
of bearing performance. The numerical method used in
"itself is not a simple one, nuﬁerical instability was
encountered by using a standard central difference method
and in order to eliminate this instability excessive
computational storage and time‘was required. The
ﬁumerical method employed is a combination of the Roscoe
technique, the Alternating Direction Implicit technigue
and a relaxation process, see section 3..4. Even though
this sophisticated numerical process of sqlution was
employed the éomputational time involved was still high
and therefore solutions proved to be prohibitively
expensive. Due to this the dynamic characteristic curves
havevbeen 1imited to one bearing configuration{ The
dynamic characteristic curves produced, however, are
. thought to-exhibit the -general -trends involved.

The theoreticai analysis performed was in two
sections, these sections were:

.(a) A constant displacement analysis. This analysis

was to determine if the air film dynamic spring

force was a linear function of displacement.

(b) A constant'velocity analysis. This analysis was

‘to determine if the air £ilm damping force was a

linear function of velocity.




Before discussing the results of the'above theoretical
analysis an explantory note on the meaning of the para-
“metric groups involved isiecessary. |
The frequency factor, &, AS a parametric group
containing the following indpendent variables: -
the porous pad thickness, porosity
and viscous permeability,
the lubricant viscosity,
the frequehcy offoscillation,

the atmospheric pressure.

For a given bearing configuration with air lubrication this

parameter is basically a measure of the frequency of

oscillation.

The velocity factor, Y, is a parametric group

containing the following variables: -

the bearing outer radius and film

thickness,

the porous’ pad viscous permeability,

3 : .
3 the lubricant viscosity,

? _ the velocity of bearing top plate due

to the forced vibration.

g'configuration with air lubrication

For a given bearin
e of the velocity of

this parameter is basically a measur

oscillation.
The frequency factor,ﬁ , is a parametric group which

although prevalent in th
ot considered to be a de

e analysis, is not an independent
variable, i.e. it is n sign factor




in its own right. This parametric group is combined with

the velocity factor parametric group to give a displace-
ment factor. By dividing the velocity factor by this
frequency factor, the result ié a ratio of the amplitude
_ of vibration of the bearing to the mean film thickness.
The non-dimensional dynamic spfing force is the
ratio of the in-phase component of thé pressure perturb-
ation integral vector to thg atmospheric pressure force

experienced by the bearing. |

The non-dimensional damping force is the ratio of
the quadrature component of the pressure perturbation
integral vectdr to the atmospheric pressure force

experienced by the bearing.

6.5.2 Constant Displacement Factor Analysis

The theoretical results of the constant displacement

analysis are shown in figures 90 to 93, pages 278 to 281
Figure 90, page 278 shows the non-dimensional dynamic
spring force variation with the displacement factor %

for a series of frequency factor values, & values. It.

can be seen from this family of curves that for a given

frequency factor, O value, the non-dimensional dynamic

spring force is a jinear function of the displacement

factor, Y Now this linear relationship could be due

ﬁ L
to: ‘(see figure 13, page 71 )

(a) a linear increase in the pressure perturbation integral




vector wiﬁhout any change in the phase angle T
between this vector and the film thickness |
vector;

(b) én increase in the phase éngle 7'bétWeen the
pressure perturbation integral vector and the
refereice vector without any change in the
magnitude of the pressure perturbétion
integral vector;

(c) a combination of (a) anf (b).

? " One technique of determining which of the above three
variations give rise to this linear relationship between
the non—dimensional dynamic spring force and the displace-

"ment factor is to inspect the relationship between thé

non-dimensional damping force and the displacement factor.
If (a) is the cause of this linear relationship then the

relationship between the displacement factor and the non-

dimensional damping force will also.be linear, in that as
the displacement factor increases the non-dimensional

damping force will increase. If, however, (b) is the

cause then there will still be a jinear relationship

between the non-dimensional damping force and the

ldisplacement factor but in this case as the displacement

factor increaseé the non-dimensional damping force will

decrease. If (c) is the reason for the linear relation-

ship between:the non-dimensional dynamic spring force and

the displacement factor the relationship between the
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non-dimensional damping force and the displacement factor

will be a non-linear relationship. Figure 91, page 279

. shows the variation of the non-dimensional damping force

with the displacement factor %. It can be seen that a

non-linear relationship exists between the non-dimensional
dzamping force and the displacement factor. Tﬁus it can
be stated that as the displacement factor is increased
the magnitude of the pressure perturbation integral
vectér increases and there is a resultiﬁg change in the
phase angle T between this vector and the reference vector.
The quesfion now to be answered is why does the phase
angle betweeh these vectorsalter with displacement factor?
An explanation of this can be given by considering the
pressure changes that take place during vibration, in
the same way as the pneumatic instability problem of the
ported bearing was explained in section 1.2. In forcibly

vibrating the porous'bearing thpee pressure change effects

~are manifest. These effects arei-

(a) The quasi-static £ilm pressure effect.

(b) The squeezeAfilm effect.

(c) The porous pad content effect, analogous

to the ported bearing port content effect.

Consider the quasi—static film effect. In this case, if

the mass ihflow equals the mass outflow, by increasing

the displacementlfactor the pressure force on the bearing

top plate would increasSe jinearly and the phase angle




betw§en the pressure perturbation integral vector and the
reference vector would remain constant, analogous to a

spring-mass system with the absence of damping. The

squeeze film effect, for a given frequency, increases in

an (l-e- ) form for an increase in the amplitude of
vibration, C.H.T. Pan (73). By increasing the amplitude
of vibration, without increasing the frequency, fhe
squeeze film effect wéuld give rise to an (l—e- 15
increase in the damping of tbis Bearing and a resulting
decrease in the phase angle 7.

However, by increasing the amplitude of vibration,
without increasing the frequency, the film pressures, on

an upward stroke will decrease to a lower value than

previously. This decrease will result in a greater
exhausting of the porous pad content. This could have
peen explained by the fact that an increase in the ampli-

tude of vibration for a given frequency gives an increase .

in velocity of vibration. This increase 1in the velocity

of the bearing top plate createsva greater suction effact |

on the porous pad. Now on a downward stroke the 1ubricants

compressibility renders it impossible for the pad pressure

to be increased throughout the pad from the film. Instead

the disturbances are squeezed within a thin layer adjacent

to the porous pad/gas film interface, Dah-Chen Sun (63).

The pérous pad then can only have its content filled from

the pressure chamber.

This porous pad exhaustion effect




ives rise t ] .
g o negative damping and a resulting increase in

the phase angle 7.

is an (1 _12)'
-e increase due to the exponent form of

exhausting from the pad, Peaceman and Rachford (74), though
of a different rate of change than the squeeze film effect.

The addition then of the squeeze film effect and the

porous pad content effect is the addition of two (l—efl)

effects. This then gives rise to the change in phase angle

and the resulting non-linear| relationship between the non-
‘ .

dimensional damping force and the dicplacement factor.
'The squeeze film effect appears, from the results obtained,
to be irtially the dominent effect with the porous pad

content effect becoming more effective as the displacement

factor values increase.

Now from figures 90 and 91, paées 278 and 279 it
can be seeﬁ'that both the non-dimensional dynamic‘spring
force and.the non-dimensional damping force relationship

to the_displacement factor is also dependent upecn the

frequency factorfx. To examine these relationships

figures 92 and 93, pages 280 and 281 have been drawn.

Figure 92, page 280 shows the variation of the non-

dimensional spring force with the frequency factor «

for a series of displacement‘factors while figure 93,

page 281 shows the Vafiation of the non-dimensional

damping force with the frequency factor o for a series

of &isplacement factors.

The increase in the negative damping‘

:
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It can be seen from figurev92, page 280 that by
increasing the frequency and hence increasing the
" frequency factor o whilst the displacement factor remains
constant, that the non-dimensioﬁal spring force decays in
an exponential form, eventually becoming asymptotic to
some value, this value being dependent upon the value of
the displacement factor. This decrease in the value of
the non-dimensional dynamic stiffness force may be

explained by an inertia effeét. By increasing the value

of the frequency, the time available for pressure changes
is reduced. 1In a quési—static situation there is ample
"time for the full pressure change relevant to the dis-
placement to occur. However, as the time of change
raduces then the full pressure change will not be manifest
due to the inertia of the gas molecules. There will,

however, be a minimum pressure change that can occur for

a given displacement.
Tt can be seen in figure 913, pag928lthat | 57 increasing

the frequency and hence increasing the frequency factoX,

whilst the displacement factor remaips constant, that the

non-dimensional damping force initially increases, reaches

- a maximum value and then decreases, eventually leading to

a negative damping force. In increasing the frequency

of oscillation the squeeze film effect will initially

increase but eventually will optimise at a given frequency

and will remain at this optimum value for any further




increase in the frequency, C.H.T. Pan (73). However, in
increasing the frequency and keeping the amplitude of
vibration constant the velocity of vibration increasesS.

Ig increasing the velocity'the.porous pad experiences a
greater suction effect on the upward stroke, as previously
mentioned. This increase in the‘velecity of the bearing
top plate causes'an increased porous pad content effect,
i.e. increased negative damping effect. Aéain from the
results obtained it can be %een that the squeeze film
‘effect is the initial'dominating effect with the porous
;ﬁad content effect becoming more effective as fhe freduency
factor increases. At high frequency factors the porous
pad content effect dominates with a resulting regative

damping for high displacement factor values.

6.5.3 Constant Velocity Factor Analysis

The theoretical results of the constant velocity
analysis are shown in figures 94 to 97, pages 282 tec 285

Figures 94 and 95, pages 282znu1283'sh0w the non-dimen-

sional dynamic spring force variation with the velocity.

factor Y and the non—dimeneional damping force with the

velocity factor y’respectively for a series of frequency

factor values. For a given frequency factor value an

increase in the velocity factor can only be achi®ved by

an increase in the amplitude of vibration, for a given

bearing Configuration. Now an increaseé in the amplitude




of vibration gives an increase in the displacement factor.
Thus these curves musf exhibit identical relationships to
~those shown by an increase in the displacement factor,

: see figures 90 and 91, pages 278 and 279 . It can be

seen that this is so and therefore these relationships

shown in these families of curves require no explanation.

The relationships between the non-dimensional dynamic
spring force and the non-dimensional damping force with the
frequency factor & for a series of given velocity factors
are shown in flgures 96 and 97, pages 284 and 285
respectlvely and it is these relationships that are more
infprmative in ‘this analy51s. The variation of the non-
dimensional dynamic spring force with the frequency factor
d for a given value of velocity factor is sthn in
figure 96, page 284 . It can be seen from this family
of curves that as the frequency factor increases there is
an initial sharp decline in the non-dimensional dynamic
stiffness which eventually becomes asymptotic at high
values of the frequency factor, the asymptotic value
t upon the velocity factor value. The

being dependen

explanation of this behaviour can be given by referring

. to the family of curves showing the relationship for a

given displacement factor of the non- —dimensional dynamic

spring stiffness with the frequency factor a , figure 93,

page 281 - t can be seen in figure 93 that for a

constant displacement factor the initial reduction of




the non-dimensional dynamic spring forcevis far less than

that for a constant velocity factor. For a given bearing

'configuration in orden to keep the velocity factor constant
;for an increase in the frequenoy factor the amplitude of
vibration must.reduce. The relationship between frequency
factor and displacement factor'for 4 constant velocity
factor is shown in figure 98, page 286 . 1t can belseen
that initially the variation of the amplitude is high
eventually becoming asymptotic to zero. This then explains .
the initial sharp decline in the velocity factor curves
and asymptotic behaviour at high frequency facton values.
Thus a superimposition of the velocity factor family of
curves on the displacement factor family of curves would
show that a éiven velocity factor curve would transgress

from one displacement factor curve to another for a given

increase in the frequency factor oo 4, See figure 99, page

287

A similar explanation of the relationship of the
non—dimensional damping force to the frequency factor o
for a constant velocity factor can be given A super-

imposition of the velocity factor family of curves on

the displacement factor family of curves is shown in

figure loo,bpage 288 . The results of these two analysis

. then show thats: -

(a) the non-dimensional dynamic spring force has a

linear relationship with the displacement factor

v
B

-




(b) the non-dimensional dynamic spring'force has a
non-linear relationship with the frequency
factor O .
(¢c) The non-dimensional damping force has a non-linear
relationship with both the velocity factor y and
the frequency factor a . An optimum value of

the damping force occurs within this relationship.

6.5. 4 The Use of the Dynach Characteristic Curves
in the Design of a Porous Bearing

In designing a 8gas bearing the engineer requires
information on the dynamic characteristics of the type
of bearing to be designed, for during the operational
1ife of the bearing it may Well be that the bearing will
be subjected to vibrational forces, as in the case of a

machine tool situation. The engineer needs to design

the bearing such that when it 1s subjected to these

vibrational forces, stable operation of the bearing

will continue. This means then that the design of tie

bearing should be such that positive damping of the

vibrational forces will ensue from the gas film forces.

Consider the case where an engineer requires to

design an air jubricated porous thrust bearing for use

within a machine tool under the optimum static stiffness

condition. Having designed the bearing for steady

operation from the steady-state design curves presented
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preV1ously, the engineer must ensure thaf stable conditions

will continue for dynamic operation. In designing the

Abearing for steady operation the designer will have found

the operating bearing number. -Generally in machine tool
design the space available for bearings is severely
limited and by virtue of this the designer will have
little or no choice on the outer fadius of the bearing
and porous pad. thickness..

'In designing a bearinglfor use within a machine tool

the engineer should have detalls of the operatlonal speeds

'of the machine tool, these speeds will be the values of

the primary frequencies of the vibrational loads. Consider

that the engineer has a limited choice of porous material

" and that he is limited to a given porosity. By knowing

the porous pad thickness, porosity and viscous permeability
and the range of forcing frequencies the englneer can
determine the range of the frequency factor & . By use of
the design curve showing the dimensionless damoing force
variation with the .frequency factor - & for a series cf

displacement factor values the engineer can determine which

displacement factor is desirable to give positive damping

- throughout the known frequency factor range. -

In knowing this displacement factor the engineef can

then determine the range of the dimensionless dynamic

spring force and hence the dynamic sprlng stiffness of

the bearing. This will allow the computation of the range

of natural frequencies the bearing will have for a given

supported mass. If it is found that these natural

190




frequencies are within the operating frequencies of the
machine tool then the ehgineer should choose a different
displacement factor, such that the new range of naturel
frequencies are out of the 0pereting range of the machine
tool speeds. If this procedure is not followed, natural
vibration of the bearing may oceur. ¥
Having determined the displacement factor that gives
the desired damping and dynamie stiffness the engineer
may then decide the maximum»emplitude of vibration the
design will allow. In knowing this he can compute the
requisite steady oﬁerational f£ilm thickness to give the
required displacement factor. BY knowing the steady
operatlonal f£ilm thickness he can then compute the
necessary poreus pad viscous permeability from the oper-
ating bearing number. If this permeability value does
not agree with the value used in computing the range of
the frequency factor a the engineer must either reiterate
the above procedure,until agreement 1s reached or determine

if the static stiffmess-—of the bearing for the new bearing

number is adequate.

6.6 THE FORCED VIBRATION EXPERIMENTAL RESULTS

It was stated in section 5.3;2. that the experimental

approach used in the forced vibration tests would be the

sweep frequency test in which the applied force amplitude

would be held Constant. -This form of test enables the




acceleration/frequency of oscillation resonance curve to be
automatically drawn by a system of monitoring equipment as
'described in section 5.3.2. It was also shown in section
5,3.1., that the dynamic spring'stiffness and damping
coefficient of the vibrating system could be determined
from this acceleration amplitude/frequency of oscillation
resonance curve.

Consider then a sweep frequency test on a porous
bearing which is operating u#der a given set of steady
conditions, i.e. bearing 1oaa, supply pressure, film
5thickness etc. Before the sweep frequency test begins
a force amplitude value is set at the lower limit 6f the

frequency range of the frequency test. This foxrce ampli-

tude gives a corresponding value of displacement, velocity Qﬁ

and acceleration of the bearing top plate. “Upon initiation

of the sweep frequency test the frequency of oscillation is

increased and, assuming the lower frequency level is below

the resonance frequency, approaches the resonant frequency.

: In approabhing the resonant condition the displacement,

velocity and acceleration of the bearing top plate increase.

Upon attaining the resonant frequency a further increase in

- frequency gives a decrease in the displacement, velocity

and acceleratidn of the bearing top plate.

It can be seen then from this description of a sweep

frequency test that for 2 given set of steady operating

conditions and a given force amplitude that the displace-

ity factor Y vary. Thus it

ment factor %and the veloc

-




can be seen that a sweep freduency test gives a range of
displacement, frequency and velocity factor values. By
changing the amplitude of the applied vibrational force a
different range of displacement factor and velocity factor
values can be obtained, for the same steady operating
conditions ond rrequency factor values. There is obviously
an upper and lower limit to the range of forcés'that can
be applied to this bearing. The upper limit of the force
is the force value that will!cause, at resonance, the
amplitude of vibration.to eq&al the steady film thickness.
The lower limit of the force is the féfce value that can
overcome the inertia gf the system.

Further ranges of velocity and displacement factor
values can, however, be obtained by changing the steady
film thickness value. By altering this value no alter-
ation is made to the frequency factor o and thus a new.
range of forces will give new ranges of displacement and
velocity factbr values, By obtaining these varicus ranges
of displacement'and velocity factor values for a given
range of frequency factbr values enables a series of non-
dimensional dynamic spring force/displacement factor and
non-dimensional damping force/velocity factor values to
‘be determined for discreet values of the.frequency factor
a . Thié means that a comparison between the theoretical
predictions and experimental results can be made.

‘Now consider a resonance curve produced by a sweep

n a linear system. For such a system it

frequency test o




is immaterial at what frequency, other than resonance, the

ratio of acceleration amplitude to resonance acceleration
amplitude and ratio of frequency to resonance frequency
ére taken the same value of dynémic stiffness and damping
coefficient should be determined. This means that as
resongnce is approached the dynamic Spring force and damp-
ing force should increase as the displacement and velocity
increase respectively. These two forces should maximise
at the frequencies the displ%cement and velocity maximise
and then decrease as the freéuency increases. This linear
Eystem should also retain the same resonant frequency
value no matter what the value of applied force.

In performing the sweep frequency tests on the porous
bearings it has been found that these_bearings do not |
always exhibit linear charactéristics. Indeed great
difficulty has been experienced in obtaining linear vib-
rations of these bearings.and in order to do so the range
of the displacement factor of the bearing top plate is
~severely limited. When'lérger values of this displacement
factor were encountered, i.e. DY either increasing the
amplitude of the applied force or as resonance was

.approached, the motion of the bearing top plate was no

longer sinusoidal. The motion encountered was a distorted

sinusoidal motion, the distortion was caused by harmonics.

This distortion of the motion is a characteristic of non-

linear vibrations.




This meant then that at the beginning of a sweep
frequency test for a small applied force sinusoidal motion
'Of the bearing top plate occurred, but as resonance was
approached it was possible that non-linear vibrations of
the bearing ensued. Upon passing the resonance point it
wa.s possible that linear vibration of the system occurred
again. Another_indication that the bearing was vib?ating
in a nonglinear fashion was shown by comparing the reson-
ant- frequencies of various tbsts for the same steady film
thickness. As the value of the applied force amplltuae
'was increased the resonant fréquency also increased. A
typical family of resonance curves for a given set of
steady operating conditions are shown in figure 101,
page 289 . It can be seen from this family of curves that
for the smaller force amplitude the resonance curve appears
to show;linear characteristics, in that a smooth resonance
curve has been produced. As the forcevmagnitude and hence
displacement increases the resonance curve becories severly
distorted at the resonant frequency. The sharp cut off
form of distortion exhibited in these curves is a common
1ndlcat10n of a vibrating system w1th a hardenlng spring
stiffness (75). This increase in spring stiffness will
greater increase.in spring force than

give rise to a

would be encountered if the bearing had linear character-

.istics.

' Now as a considerable proportion of the time available

for this research programme had been employed in determining




the re¥evant practical factors involved in the steady-state
analysis of these bearings it was decided that eveﬁ though
'non-linear vibrations were encountered in the majorify of
the frequency sweep tests, the acceleration amplitude/
;frequency of oscillation resonance curves should be drawn
for these sweep frequency tests. From theseAresonagge
curves,the equivalent linear characteristics should'Be
determined such that a first approximationlof the dynamic
characteristics of these bea;ings could be achieved.

A typical sample of the cqmparison of the theoretical
predictions and experimental results are shown in'figures
102 to 109, pages 290 to 297 . It can be seen from these
figﬁres that for‘all values of the frequency factor &
the theorpticél predictions of the non-dimensional spring
force at moderate to high values of displacement factor
seriously under-estimate the‘real value of the non-dimen-
sional spring force. At low values of displacement factor
the theoretiéai predictions, although still under-estimating
the real'non-diménsional spring force, do not show such a
serious under-estimation. This is the hardening spring
" stiffness effect. The experimental results show that as
the displécement factor increases there is a distinct
upward curving in the value of the non-dimensional spring
force the result of an increasing value of the spring
stiffness.

".In the case of the non-dimensional damping force the

dimensional damping force

theory over predicts the mon-=




available for low values of the frequency factor Oa. As
the frequency factor is increased the theory correctly
‘predicts the non-dimensional damping force available but
eventually under predicts the non-dimensional damping
force.

These results then show that for the bearing tested
" in this series of tests the linear characteristics assump-
tion in the theoretical analysis 1is invalid. This means
that the theoretical analysiL in itself does not truely
?describe the real sitﬁation of this research programme.
‘However, the statement that this theory is invalid for
all forms of Qibfation is unfair as this theory has not
been tested for truely linear vibrations of these bearingse.

Thus two statements can be made from the above
discussion. The first statement is that the theoretical
analysis presented in Chapter 3 is invalid if the
vibrations of the poreus bearing are non-linear and a
new theory must be preduced, see section 7. The second
statement is that the experimental tests performed on
these bearings do not fully. invalidate the linear dynamic
theory as the range of the experiments are outside the
domains of the theoretical assumptions. Further tests

in the 1inear’vibration mode must be performed in order

to check this theory.




6.7 CONCLUSIONS

A new and accurate technique of measurement of the
viscous and inertia permeabilities of a porous material
has been specified. This technique not only enables
accurate measurement of these properties but also enables
a designer to determine the pressure drop limitation of
the Darcy law of flow through the porous material.

The effect of surface finish on effective film
thickness can be accounted fér by 2 new method of film
thickness measurement ﬁased on a knowledge of film
pressufe distribution.

The slip velocity term of Ishizawé and Hori has been
found to be of great importance in the cbnstruction of the
son-dimensional steady—state design curves.

Good agreement between theoretically predicted and
actual performance of a full faced porous thrust bearing
is possible provided account is téken of several practical
influences. Those coﬂsidered are elastic deflection of
the porous pad, shear distortion of fhe pad bond, surface
finish of the pad and the nature of gas flow through it.

A linear vibration analysis of full faced porous
' bearings has been presented. Experimental verification

of this analysis has not been achieved.

High amﬁlitudes of vibration of these bearings result

in the bearing having non-linear vibrational characteristics.




CHAPTER SEVEN

FURTHER WORK

7.1 INTRODUCTION

°

Even though this researéh programme has enabled a
considerable amount of work £0 be carried out in analysing
;and understanding the perfdrmance éf the full faced porous
thrust bearing a complete analysis of the mechanisms
involved in these bearings is still not available. Some
of the work areas listed in the area of investigation,
see section 2.3, have not been analysed either theoretic-
ally or experimentally due to the limited tlme avallable.
The author of this text, however, has considered some of
the problems involved ‘in these areas and it is hoped that
the following ideas of analysis shown below may be oY
soﬁe use to future workers in this field.

The basic fields of analysis together with experi-
_mental verification still to be investigated are: -
(a) The éase where the Forchheimer law

governs the flow through the porous

material. |

(v) A steady-state stability analysis




(c) A non-linear theoretical analysis of

the time dependent situation.

7.2 FORCHHEIMER FLOW THROUGH THE POROUS MATERIAL

7.2.1 Goveruningz Differential Equation -

For this form of flow through the porous material
the law governing the flow may be" written as, considering

one dimensional flow
_dp _nv e 7.2.1.
dy : .

solving equation 7.2.1. for v gives:

. 2 apt
v = - Py 1 -(1 - Effl; 2 ' 7.2.2.
2p0 ' gby'r]? dy

Substitution of equation 7.2.2. into the continuity
equation for flow of a fluid through a porous media,

equatidn 3.,2.1., gives

pt gp . 1.0 re¢.m A 2@1.2 3 (p2)\ * '
—Tat+?a_'<,2q>r_[: < $mPRT or >]>

2®2- 7.2.3.
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whi i i
ch upon non-dimensionalisation gives

2 S 2 =
=1 == 82 [ _ (1 -, 2()
P aT |: < Qg
KR 9R 3R
0 = ¥
+ =11 -(1 - a XK, 2 (PN
3Y‘: < %8 oy ) | T ° -
7.2.4.
where
2Hp P*
oci—_._.X_.TwPa
BN
K = ¢ / by
2p 2
L P
2 = PRIt
T.2.2 Bour.dAry Fauations for Forchheimer Flow
At three of the boundaries similar conditions prevail,
1.e.
?:'138 o<R<1l, ¥=0
l P2 = = 0 0 Y < .
55 (P2 =0 R =0, 1
2 () = . _1, 0<Y<1
aR(P)..O R =1, , ‘




Now at the fourth bounaary the Reynol&s equation holds.
However, as this equation contains the slip velocity term
the equation must be modified to take into account |
‘Forchheimer flow.

Integrating equatlon 3 2. 8 and evaluating the

‘constants of integration A and B wiih the boundary ==

conditions of:

y=H+h U=20

el

y=1H U

l

yields

_ L 82(ye- B_%
U = 2,»;;’31-(5’2 (cHin)y + B2 + HO) + Ug(l + {5 — %)
7.2.5.

Integrating the contlnulty equation, equation 3.2.9. with

respect to y between the l1imits H and (H + h) gives

H-«h ' B
1.2 2 20y ay =
f (r ar(rpu) + ay(pV) + at) dy = O
H _ :

Replacing u by equation 7.2.5.5 P bY the equation of state

and using the assumption that the pressure is not a

function of ¥ yields upon integration and simplificatidn:
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y=H

7.2.6.

Equation 7.2.6., is the modified Reynolds equation which

upon non-dimensionalising becomes:

Te2:e70

where - -
az = 6Pon?¢rﬁm / h?2.p,?

(X* = 2I'OK(X3 / h-Ki

12r.2nw / 1PPy

™
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7.2.3 Equation Systems for both Steady-State and Time
Dependent Cases

The steady-state system of equations to be solved for

the case of Forchheimer flow méy be written:

S 9 . 9/s N DTy /1 - %%
EZKEE’I'{E'@“Z aR<P2)_l+aY ot T es

0<Y¥<l, 0<R<1 7.2.8.
1‘3:1‘38 O<SR<1l, Y=0 7.2.9.

2 (P2) =0 R =0, 0<Y<1 7.2.10.

oR

é% (P2) =0 R =1, O0<Y<l 7.2.11.

el
2l
';UQ)

o (5) - - (o )]
& 7))

<1, Y=1 7.2.12

1
&
1
1
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-
Vﬂg
"’3‘

o
N
o

The time dépendent system of equations to be solved for
: e ti

the case of Forchheimer flow may be wrlttenv-
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O<R<1l, 0<Y s‘l, 0<T<1l 7.2.5,

P = ?S 0O<R<1, 0% T<1l, Y=0 7.2.13

2(F) =0 R =0, 0<Y<1l, 0<T<1  7.2.14
BR

é%(§2) -0 R=1, 0<Y<1l, 0<T<1 7.2.15

3D = B(T + 1) 0O<R<1l, 0<Y<1 7.2.16
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A truely analytic solution of the two setslof equations
given‘above is thought to be improbable éue to their
severe non-linearity. Solution then mustvbe made by a
numérical process. The author considers that,the'A.D.I..

heme of Peaceman and Rachford should be used to solve
sche




both the time dependence and steady-state cases. In the

case of the time dependence equations either a linear or

non-linear analysis can be made.

7.3 STABILITY ANALYSIS

The problem of pneumatic instability.can still be
encountered for porous bearings, indeed some of the

°

bearings manufactured during phis research programme
were fouhd to be prone to thié form of instability. The
following analysis was compiled by the author as it was
hoped that during this research programme this problem
could be investigated. However, insufficient time was
available and this analysis has not been proven by
experimental correlation,

The analysis itself is based on the classical work
of Licht, Fuller and Sternlicht. It has been assumed
that the flow through the porous media was gover:iied by
Darcy's law. However, a like analysis could be made fox

\}
the case of Forchheimer flow.

7.3.1 Mass Content within the Bearing

7.3.1A Mass content of Porous Pad

It is known from the_steady-state analysis made in

section 3.3 that the pressure distribution within the

porous pad is given by -




. - L
- - 2
Ppad = [?S + C,Y + §~0n2 sinh(an)Jo(knR):‘ 7.3.1.

n=2

The mass content heid in an elemental volume of the porous

padl is givex by -

Amp = 2P*.r.rp.dr.4y 7e3.2.

The total mass content contained in the porous pad is given

|
by = r, H :

mP = [’j 2P*.r.r.p.4dr.4dy Te3e3
o ‘o

Substituting for p Dby the equation of state gives

n = o HP* Fpad opr dr.dy 7.3. k.
D~ T )
(0] (o}

which may be written as

‘ i 1 H PaP*PO.?. _ . 5
mp = 21 ]O f BT PpadR.dR.dY‘ 7e2eDs

(0]

now if P is expressed in this double integral by equation

.7 3.1. the double intégration cannot be performed. Let

fhe pressure distribution in the porous pad be described

by

‘ ﬁpad =Pg * (Pfilm-Ps) ;{:Cnxn 7.3.6.

n:O




thus evaluating 7.3.6., at Y = O

gives
P_ =71 3 -7 |
] s»+ (Pfilm PS)CO 7.3.7.
thus Co = 0 which gives
- oo
P . =P P - P n
pad s * ( film sl ;{:CnY 7.3.8.

‘Substituting equation 7.3.8. into equation 7.3.5. gives

1 1 foand
_ 2pr 2HP* = = =
m, = RT——-—Pa jf l:PS+(Pfilm PS) chyn:l R.dR.4AY
oY O

n=1

7‘309.

now as the pressure function expressed by equation 7.3.8.
is a continuous function the double integration of
equation 7.3.9. can be performed in two sections yieldirg,

i.e. firstly integrating with respect to y

1 . ‘ oo
2nr 2 HP* = S ) \
. (0]
n=1

7.3.10.

now integrating with respect to R gives




(o]

o Ememe, Ry, 0 S '
P BT 2< ?nﬂ) + Ynﬂ f Film & dR]

n=1 n=1
‘ 7.3.11
now let
- _ . _ -
Peiqg = P, * FF -
also
1
] Pf* R dR = A! ¢ 7T¢3.12
o}
1 —
0 J
thus

7.3.1B Mass Content of Gas Film

Total mass cqntained in the gas film is given by, as

the gas film pressure is not a function of y see section
3.3.
T, |
Mo =[ 2rrhp dr 7.3.14
0 ' .

Substituting for p from the equation of state gives

_ 2mrofh 3 ' .3.1
- 2z ~af PrRAaR . 7.3.15

o

e




f PVT a (AQ+A,) 7.3.16

7.3.1C Time Rate of Change of Mass Content of Bearing

T e _ i .
Hence total mass content of the bearing is given by

the addition of equation 7.3.13 and 7.3.16

...<AO+A'> :} 7.3.17

The time rate of change of the mass content of th

e bearing
is given by,

differentiating equation 7.3.17 with respect

to time

00
. - (¢}
_ 2mro?p ai __n\ 94
My = ’8 & [(A°+A') at " <h + HP¥ ;n-kl) ot ]
. n=1 )

7

.3.2 Mass Outflow From the Bearing

In the film the mass flow through an annular gap is

. h-

| 3 ~ 3.1
he, = 2 f ppU, T 7.3.19
o




1l 9 | 2
U = — — _X - r
r =595 & "By -5 7+3.20
hence
27 3 b oy
s = SHIpr 9 y2 _ T
r n T3 £i1m f (5 h, - ——) 4y 7.3.21
0
giving
!
. rrh(n?+60.) |
mf, = = TIZgT 3 (P31

. 0 .
ft bstitut £ —(p2. from equation 3.3.8
after substitution Ior ar(pf1L9 q Fe3.0,

equation 7.3.21 may be written as

» o
mh(h? +62.) P 2A I:CzR N z Ay Cp 2RIy (kR cosh?\n:‘

mfp = = TIZnET K

n=2

7.3:22

evaluating equation 7.3.22 at R = 1.0 gives

mh(h? 4+62,) D, 2AC,
Bout™ ~ ~ 2LnBT. ...

now

' 2
A = 120,707 / Hn(b?+60.)




hence .

m - - 2 ¥ 7.3.23

=

7.3.3 Mass Inflow to the Bearing

To

= 27r[ (pw rar - 7.3.20L
0 y=0

m,
in
substituting for p by the equation of state and for v

from Darcy's law gives

!

! To
p. 9 5]
my :'_277[ S—l[— ]rdr
in o 1 ‘ay(Ppad> .
1e€o
2qr2p 20 P
" __ofa ysf 2(F ) RGAR
in B,THT) o aY PadY:O

substituting for éi(P d? by differentiating equation
y pa

7.3.6 and evaluatiné'Y = 0 gives upon completing the

integration: -

2 p_5.C P
- o , _ 2WP0 spa vy a Ao + A - 3?] 7.3.25
in . QTHn et .




7.3.4 Mass Continuity

The time rate of change of the mass content of the
bearing must equal the difference of mass inflow and mass
outflow changes. -

| 2nr 2D 2% C,A!
Change of mass inflow =< " sPa y
| FHn

cn . . TPy22 T o2 09Cy oA
ange of mass outflow =~ ZnREH " 35 ° 55 .

dh

time rate of change of bearing mass content is given by

equation 7.3.18, Thus from mass continuity

TGP 8 T 0° aC, oA 21rrozi>'spa_2@yciA'

ongTH oA 7m - - RTHN

2TT 5? Py 'j dh [/ | . = Cno 17
= o \:(Ao + M) gt <h + HP ?r&l)-a_% |
. - n=1 . -

7.3.26

now the equation of motion of the bearing may be written

r, 4

m*Hr o ] p% r dr = ZWPO?%J EH R dr
o : o

l

where

h=h0+_h"

hence




hence
III&HI = 2Tr OpaA’
. 7.3.27
h DA’
m, h = 2A
&h 27r oD, 2 ]

‘substituting from equation 7.3.27 int?o equation 7.3.26

gives
2 2 P
TP, @yro oC, Eﬁ - Pspa@ycim¢ o
2nH 9N T 9h Hnp
= ZWPozpath’ + <h0 + HP* Zm>m*h’
’ n=1 i
7 L] 3 L] 28 1y
Now let ﬁi
o g . §;
D o\, 3t
Zy = (ho * H n+l ) % R
' n=1 i
my P, Cs
> 7.3.29 i
Za = 27TpaP02AO |
_ TPy? 0y To” 002 . ok
Ly = 2Hn ... OA. oh. :
. n. J

Therefore equation 7.2.28 may be written

~

7 Br + Zht + Leh' 4 Zght =0




Using the Routh-Hurwitz stability criteria

> 0 and Z, >0

Thus the porous bearing will be stable if

—

Zy%, > Z,Z, and Z, >0

7.4, NON-LINEAR THEORETICAL ANALYSIS OF THE
TIME DEPENDENT EQUATIONS

In the time.dgpéndent experimental analysis carried
out in this;fesearch programme it was found that porous
bearings may execute ncn~linear vibfations when forced
to vibrate. In order to the;retically predict the non-
dimensional spring force and‘non-dimensional damping
force of the'gas £ilm when the bearing oscillateé in a
non-linear tfashion it is necessary to determine the
harmonic distortion of the sinusoidal motion. Having

determined the form this distortion will take, a slight

"modification to the computer program for the linear

analysis will give a non-linear analysis.

Consider that the motion of the bearing can be

described by the following equation:

R R AR

Fo e S R

s o S e




3
h=hy+o0 an sin(nT) 7.k
n=1 h

ji.e. the fundamental frequency with tﬁo imposed harmonicse
Bv changing the program line which contains the motion
description, the pressure -variation for a non-linear vib-

ration will be found. The'préssure variation will be of

a form v i

3
-15=PofP' Zgn sin(nT + 7) 7.h.2

n=1

Thus the harmonic analysis section of the computer program

B ———

will require changing to suit the order of harmonics.

AR

ST M NI

Having now determined the values of P/ and 8, the non-

dimensional damping and non-dimensional dynamic spring
forces can be calculated.
The non-dimensional dynamic spring force will be

given by:

K. = vector addition of three spring forces

and the non-dimensional damping-fdrce will be given by:

D, = &ecfor addition of three damping forces.
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" APPENDIX ONE

THE CAPILLARY COMPENSATED GAS LUBRICATED
CIRCULAR STEP BEARING

The theory of this bearing is well known and it can
be shown that under certain counditions, cf Powel (l), the

modified Reynolds equation for this bearing can be

expressed as:

4, 98) _ o
—(r p g3) =0 A.1.1

The bearing being considered isshown in figure 1
page 3.

If the lubricart is air then using the perfect gas
law, i.e. P =p RT the density term in equation A.1l.1
may be replaced by p/RT and remembering that 2pdp = d(p2)

equation A.l.1 can be integrated twice to give:

pz = zs1 T + % ‘ A.1.2

Now the following boundary values apply

Use of these boundary values enables the.constants

of integration to be evaluated such that it may be
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written

Now iet

b — P - D -
- =P, 2=7, £=F, v/r, =R, r/ro =R
Pg Py Py ’ Y Y
substitution into equétion A.1,3 Zives
(P.2-1) .1 R
T P 1 A.l.L
P2 = TR + 1
nop

Now the load capacity of the bearing is the summation of

the forces acting normal to the bearing top plate thus:

To
Wc = 27 j p.r.dr + er2pp - Wro2pa el
r
D
non—dimensionalising gives
1 P 2
W _ P_.R
W = c ::'Z——EIP.R.dRJr—P-é——p——%}
c - ’IT1°02 (PS—Pa) (P _.1)
- . _'S Rp




The mass flow through the bearing film is given by the

integral

h

oo | s R
0

. 1 4 . '
Remembering that UC = = aﬁ(yz—hy) for this form of

3

bearing gives

) [
mr o) :
m = . . 2 .
c — 2nptT dr f (v h;y) d‘y A.1.8
)
. : : R p?)
which upon integration and substitution of ar from
differentiaving equation A.1.3 gives
_ 1h3 2_p 2)
m = (Py” P, A.1.9
c 12nRT1n(Pp/Po)
Non-dimensicnalising gives
om T - onnd (Pp-1)
A.1.10

M, = = = -
c = o2 D7) ¥, 121n(Rp)kC (Ps_l)

where k_is the capillary coefficients.
c

The mass flow through a capillary is given by the

Hagén-Poiseuille law which states

réa|




k

_ C
Do = SrRT (02 - ppz) A.1.11
_ Combining equations A.1.9 and A.1l.11 leads to
2p h377'
D2 = 2 _ 2 ___2hdqm
P C n - p c s
in non-dimensional form
P2 = (? 2 - —_TET——)> ' (1 - “—*gT**)> A.1.13
S . L] -
D ALy (R / A1 (R,
where A, = 12k/mh?
The Bearing Static Stiffness, Xc’ is defined as:
dWC
X, =~ an A.l.1h
which may be written as:
. - dWC _ dWC . dWc ‘ ar. . dAC A1.15
¢ dh aw aP dAC dh
c D
now from equation A.1.6
aw
—C - 7,2 (pgp,) | A.1.16
dWC .

from equations A.1.4 and A.1.6
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aw, 1 1 55 1_(RR.AR
= { f = + sz} A.1.17

dp P -1 T
o (B A p1 (R)
: o A
from equation A.1.13
ap (1 - P 2)
=F = ——= ( S A.1.18
c 2P (1 - !
Ag D A1 { )> 1an
cTptp
from equation A.1.1L
dA
c_ _2 A.1.1
& - n e 7

substituting equations A.1.16 to A.1.19 into equation

A.1.15 leads to

= 1
L] -— . ™
. - 3rre” (D pa) (PS+1) {j 2.1, (RIR.aR . B
c 2 ) — Ry .
ha (1 - Y"1 R P 1R )
. c Aclan nop R np
P
" A.1.20
in non-dimensional form
X h 3(P + 1)
X, = c( )y T R
e TR a1 EE) IR
_ . c Aclan np
1 51 R.R.AR
n
[ B )
P1L R
R n P A.1.21




Thus the following equations give the following non-

dimensional parameters.

Equation Number Non-dimensional Parameter
A,1.8 WC e
A.1.13 MC

P
A.1.14 p
A.l.zl X
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APPENDIX TWO

THE ROSCOE TECHNIQUE

Before describing the Roscoe technique of discret-
ising differential equations it is first necessary to
explain why a standard technique of discretising was
not used.

The use of finite diff;rence equations to express
differential equationé may or may not, due to certain

factors give a valid solution. An example leading to a

valid solution is

d= 7

&= = °

written in finite central difference form equation A.2.1

is expressed
- 2%. + %, =0 A.2.2
Zi+1 2 1 i—-1 )
The analytic solution of equation A.2.1 is known to be

If éhe difference equation, equation A.2.2, is to give

a Qalid solution then the solution of equation A.2.2
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should be of a like fofmat as equation A.2.3. That is

2y = Ty + fzi‘ A.2.k

Substituting equation A.2.4 into equation A.2.2. gives

£, +f, (i+1) - 2(f1+f2i) + £, +F,(i-1) = 0O

which is true. Hence equation A.2.4 is the solution of
equation A.2.2.

Consider now an equation of the form

ExXpressing the differential term in first backward

difference form we get

+’1)Zi =0 A.2.6

The analytic solution of equation A.2.5 is known to be

Equation A.2.6 gives

i
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Consider (a) 1 > 0O
As i increases Zi tends to =zero. This is in agree-

. ment with .the analytic solution and the desired behaviour

may result
(b) v<oO ‘

(i) if ]vAX] <1
the desired behaviour may result.
(i1) If |pa | > 1
. Ve
for i being odd Zi is negative
for i being even Zi is positive
i.e. the process is unstable and the desired behaviour will
not result. From this it is clear that for a set grid
size the value of v governs the wvalidity of the finite
difference technique.

The question now arises what technique should be
used to express equation A.2.5 in difference form such
that a valid solution is obtained.for all values of i’.
If we inspect the analytic solution of equation A.2.5,

i.e. equation A.2.7., wWe see that byiexpressing the space

variable x in finite form, x = (i—l)A , the resulting
equation is .
-vhy i-1 (a1

If a numerical equation could be formed such that equation

A.2.9 was the solution, then the numerical equation would
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give a valid solution for all values of v. This then is

the basis of the Roscoe Technique.

The Roscoe Technique

Consider a differential equation of the form

2
FdZ d Z

7 axz T Fg = 0 A.2.10

The analytic solution of this equation is known to be
Fa A.2.11

Replacing x by A (i-l) in equation A.2.11 gives
x

i-1
’ A.2.12
Zi = G, + Gy\e 7
Forming a secondary numerical equation from equation A.2,12

by subtracting the terms raised to the power (i-l) from a

numerical operator 'm' gives

(m-1) <m - e FE?%) = 0 | A.2.13

The numerical operator 'm' is treated in the same sense as
the differential operator 'D'. Hence the numerical equation

for which equation A.2.12 is the solution may be written
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using equation A.2.13.as

Feh,, FeA

Z Z < - > Oy
i+1_il+e -i"-e .Zi_l:O

A.2.14

The Roscoe Technique then works backwards froﬁ‘the
analytic solution to form a numerical equation which can
be used to give a valid solution of the original differ-
ential equation., This in ifself may at first appear to
be of no use, for if an analytic solution is known why
use a numerical approximation? In the case where an
anélytic solution contains infinite series whose converg-
ence rate may be slow this process is of great assistance
for the numerical sclution may be more rapid inconvergencé.

Consider now an equation of the form

02 ¢ el 92 ¢
AS' 8R2 + A& 5% + A5 372 =0 A.2.15

The Roscoe approach is to split this equation into two

sub-sections such that

dz a
(1) Az Eﬁ% + Ay E% = 0 A.2.16
'di(é = O A‘2¢l7

" (2) As T2



and

= A Q‘Z—Q+A-a—@+A5i?—@:O A.2.18

The numerical equations are formed from the solutions
of the ordinary differential equations given as equations
A.2.16 and A.2.17 and the multiplier y is then found
such that equation A.2.18 holds.

Equations A.2.16 and A.2.17 are similar to equations
A.2.10 and A.2.1 respectively. Thus the valid numerical

solutions may be written as

< __4__AI,> . A&Ar>
- A Ay ) _
5.1 g\ o+ e S/ @5 1C =0 A.2.19
and
As(¢4,7 ~ 2¢3 r o) 0
= A.2.20
(Ay)

respectively. Here i signifies the nodal position in the

FR—direction and j the nodal position in the Y-direction on

a two dimensional space grid.

Now the multiplier ; must be found such that
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- A A
ﬂ.¢i+ij ¢ij 1+e ° + ¢i-lj N
¥ Ao (1501 = 255 + 4150 0
S =
. )
. A.2.,21
or e
< Bah MDA,
- — > - >
PA\biyqg T byt e TR ¢1~1j e 3
As(pii0 = 2035 * 8330 - peg 29
* 2 = A5 5% * P 3R
(Ay)
a2
+ .A5 a_Y‘_g' =0
A.2.22

replacing the ¢ij

operator 'm' such that

Q¢i = ¢i+1

equation A.2.22 transposes to

- -
ﬂ<m—1+e Aa'+me A3'¢ij
B (hsgq ~ %P5y * P34
+ 2
(6)"
) 32 . 3¢ 92 ¢
= A3 3Rz + Ay 3 + As Sy

- 312

terms in equation A.2.22 by a difference

A.2.23



n .
Now let $ = R = [Ar(i~l)]n equation A.2.23 may be

written

. A, Ay
pArn<in - (i—l)n<1 i e Aff) . (1-2) e AiP)

JA,

24 .
P13 F Pi5q
2

* = 45 n{n-1)a 77 (1-1) "7
(a,) r
y
- n-— 2
+ A, n APn (i-1) 7" & %§% A, A.2.2b4

Now a value of L should be found such that equation A.2.24
holds. This, however, is not possible and in order to
obtain an approximate value of y the highest powers of i
are equated. After expanding the bracketed terms
binomiallwv if can be seer that the highest power of i

is 1771, Equating coefficients give

( o Aaly
#Apn<nin"»i 1+ e B > _oni™t e A3>

_ n-i.n-1 A.2.25
_A“,anr i

which gives

As A.2.26

The combination of equation A.2.21 and equation A.2.26
givés the numerical equation for the differential

equation, equation A.2.15, that is
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a2
As 9d_ 99 + Ag 929 _ 0

sk T A& 3R 572
'is discretised such that
< _ et N Aely,
B [i+lj BRI s > T P15 Aa]

This then is the Roscoe Technique. It should be noted that
this technique is based on the work of D. Roscoe (71). A
full explanation of the mathematics involved can be found

in this r=ference.
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APPENDIX THREE

VERIFICATION OF THE ROSCOE TECHNIQUE

From Section 3.3 the governing differential equation
for the steady-state pressure distribution in the porous
media together with the relevant boundary conditions may

be written in dimensionless form, ‘equations A.3.1 to
)

SPK 9 2./ 92 /5

O<SR<1l, 0<<Y¥Yxl1l A.3.1
P2 = P2 O<KR<1l, Y=0 A.3.2
é%(Pz)—O 0<Y<1l, R=0 A.3.3
5%('?2):0 | 0O<Y<1l, R=1 A.3.04
1 9 J_ (P2 Al O (Pe
i [r 5] ]
v=1
O<R<1, Y=1 A.3.5

Using the Roscoe technique to discretise A.5.1, see

appendix 2, we obtain replacing K by ¢
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. .
S2 < - *:f) - =5
K< _ L {:¢i+1jf¢ij e T ags e 1:
(a7 (i-1)\1-e i'1>

$i341 7 %P5t Py
+ Z

The boundary conditions, equations A.3.2. to A.3.5. may be

written as fespectively

1< Jjs<Jd, 1

il
H
>
W
O

- >
i—-1 i-1
1 +¢i_1je :]

1

T;_)[:¢i+lj_¢ij<l+e

(Ar>2(i~l)<l—e_ i1

8955793 5-1)

By

1<i<I, J=4d A.3.10

Equations A.3.6 to A.3.10 then are the set of difference

equations which replace the set of differential equations.

However, they are not in a form acceptable for a computer

solution, i.e. explicit in ¢ij’ Hence re-orientating

equétion A.3.6 to a form that is acceptable gives
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~

B . .
_ 4[¢1+13 * ¢i—lj Byl + B5[¢ij+1 + ¢ij—l

]

¢.. =
1]
""" B,(1 + B;) + 2Bg
A.3.11
where
R )
B3 = € 1_1 -
. 92K B )
B = ) -0 (1-55) A.3.12
1
B5 = ( 2
‘Ay) J

Equation A.3.11 along with equation A.3.12 is used to
solve the pressure at each internal grid point, i.e.
1< i< Iand 1< j (J, see figure 11 page 65 for
nomenclature.

Now at j = 1, 1< i < I both equations A.3.6 and
A.3.7 apply and therefore both must be satisfied.
However, ejuation A.3.7 shows that¢il = 5;3 hence as the
vAalue is known at this point equation A.3.6 need not be
applied. Similarly this applies to points j = 1, i =1
and j = 1, i = I where equations:A.3.6, A.3.7, A.3.8.

and equations A.3.6, A.3.7, A.3.9, apply respectively.

Hence

~ i3 = P2 1<i<I, j=1 A.3.13
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At points i = 1, 1 < j < J both equations A,3.6 and
A.3.8 apply and therefore both must be satisfied. It
- should be noted that both equations hold a point outside
the bounds of the grid. By coﬁbining both equation A.3.6
and A.3.8 this point may be eliminated and at the same

time both equations will be satisfied. Thus

(1+B,) .B,.¢
¢ij -

1023t (85 35,1795 5-1) Bs

(1+4B5) B, + 2Bj

A.3.14

IE should be noted that for R = 0, i.e. i = 1, the constants
By and B, produce singularities. This is overcome bw
replacing (i-1) by i, i.e. R = A_i not Ar(i—l). It can
be seen that in the limit as 1i- and henceAr becomes
small that An(i-1) = A -

This then leaves the grid point i = 1, j = J undefined.
This point will be defined later.

At points i = I, 1< j< J .both equations A.3.> ond
A.3.9 apply and therefore both must be satisfied. The

same approach is used as was used for points i = 1, giving

(14B) By 15 + ($55,94655 1) Bs

b = ,
1d (1+B5) B, + 2Bg

A.3.15
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This leaves the grid point i = I, j = J undefined. At
this point atmospheric conditions prevail and therefore

it may be written
¢.. = 1.0 i=I, j=Jd A.3.16

At the grid points j = J, 1 < 1 < I both equations

A.3.6 and A.3.10 apply so both must be satisfied. Equation
|

A.3.6 holds a point outsidelthe beunds of the grid. A
similar technique as fhat used at the boundaries R = O
and R = 1 may be considered. However, this technique
cannot be used at this boundary for it assumes that the
pressure gradient is continuous. This is not the case.
The pressure across the film is assumed constant and by
virtue of this é discontinuity in the pressure gradient
.must occur at this boundary. At this boundary only
Reynolds equation is used. Upon examination of the
Reynolds equation it can be seen that it contains a term
which includes the axial pressure gradient. As the main
equation has been used to determineAthe o) values at

the nodal points used to express this gradient then the

main equation is inherently used. Thus it may be

written for j = J, 1 <1 <1

5 ,
13 —$

2e(¢;,197Bady 5 * Pediga
24(1+Bg) + Bg : A.3.17
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where

Bse = A/ A
6 = 0 By

This then leaves the nodai point i =1, jJ = J
undefined. At this point the two boundary conditions,
equation A.3.8 and A.3.10 are éombined to eliminate the
term, held in both equations, outside the bounds of the

griq, i.e.¢i_lj giving

B, (1+B.)
—*éﬁ*—3 b. - . + Bgo. . _
b.. = i+1] ij-l £.3.18
+d E&Lli@s) B
SK T DBa

Equations A.3.11 to A.3.18 are in a form acceptable to the
computer. A relaxation process is used in the program

to assist convergence, convefgence being achieved when
each new calculated value of ¢ is within an acceptable
percentage,iin this case O.l%, of the previous calculated
value of ¢ for each nodal point.

A typical comparison of the gas film pressures
obtained from the above numerical procedure and the
analytic solution of Jonés et al.is shown below in
tabulated form. Figure 110, page 424 shows this comparison
graphically. The maximum error involved in this case

occurred at R = 0.9 and the magnitude of the error

.-

is 1.54%,
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From this it can be seen that at the boundary R = O

the assumption that
Arl =R not AP(‘l—l) = R

does not incur large errors. Therefore for all cases at
this boundary when singularities arise this assumption
can be made without incurring large errors.

A sample computer program is given in appendix Te



COMPARISCUN Oi ANALYTIC AWD NUMERIC SOLUTIONS OF FILM PxESSURE

Bearing Data

Pad outer radius

Pad thickncss

Pad Permeability (viscous)

Ratio of viscous permeabilities

Supply pressure (gauge)

Almospheric pressure

Gas film thickness

Numeric grid size

i

38.1 mm
10.0 mm

-1l2 2
cm

1.423% x 10
1.0

1.0 Bar
1.013% Bar

12.7 microns

0.1

Dimensionless Dimensionless Pressure % krror

Radial Assuming
Position Analytic Nuneric Analytic solution
solution Solution correct
0 1.84329 1.85186 O 465
0.1 1.8%972 1.84559 0.555
0.2 1.520066 1.63505 0.338
0.3 1.50971 1.61671 0. 207
O.L 1.78064 1.76502 0.471
0.5 1.75596 1.74927 0.593
0.6 1.680%2 1.69533 0.7¢e2
0.7 1.590665 1.61456 0.995
0.8 1.46169 1.50107 1.294
0.9 1.20674 “1.32092 1.544
1.0 1.0C000 1.060000 0
% error in load capacity . 2.515%

incurred via numerical technique
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Figure 110 Comparison of the Gas Film
Pressures obtained using
the Numerical method of
Roscoe and the Analytic
solution of Jones
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APPENDIX FOUR

THE FORMULATION AND SOLUTION OF THE
DIFFERENCE EQUATIONS FOR THE TIME DEPENDENCE

CASE
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APPENDIX FOUR

THE FORMULATION AND SOLUTION OF THE DIFFERENCE
EQUATIONS FOR THE TIME DEPENDENCE CASE

The governing differential equation along with "its
boundary conditions for the time dependence case may be

written in dimensionless form as, Section 3.2.

S2K 0 9 /= 92 ,— 9 =
R oR [R 5§<P2>] *aye (B = 2 —=(72)

aT
O<KR<1,0<Y¥Y<1l,0<T<1 AbLI
P = P, Y = 0, O<R<1l,0<Tg1 A.L.2
5%(132)—0 R = O, 0<Y<1l,0<T<x 1 A.bL.3.
5%(PZ)_O R =1, 0<Y¥Y<1l,0<T<1 A.bb,

1 3 o 2 (s | A[a = B 9 (s =
1 2 1p 2 (F) | = o %(F) |+ £ =(P2) + P
I R L_ oR J oY 5 o7
Y=1
Y =1, O<KR<1l,0<T<1 A.b.5.
E(T) = 5(-T-+l) 0 <Y < 1, O RZ<LK1 A.Ll».6.

It is well known that the use of explicit differencing
techniques for the solution of time dependence equations

require, due to an instability problem, an uneconomically

large number of time steps of limited size. The use of a
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full implicit procedurebin which both space second deriv-
atives are‘replaced by second differences evaluated in
terms of forward time leads to a large set of simultaneous
equations which can only be soived, practically by
iteration.

Peaceman ana Rachford (58) suggested that only one
of the space second derivatives should be replaced by a
second difﬁerence evaluated in forward time while the
other derivative is replaced by a second difference in
terms of known vglues. At the next time step the proced-
ure is rep;ated but implicit in the second space variable
in this caée. This they termed an tAlternating-direction
jmplicit method?®, (A.D.I.).
| This procedure has been adop:ced for the solation of
the time dependence governing differential equation. Thus
writing equation A.L.1. in a difference form obtained by
applying the Roscoe technique and remembering for the

A.D.I. procedure two forms of tnis equation are required,

firstly implicit in the R-direction only

[:¢§?+l - ¢§E o _ S2K
| st - T\ e

St @ij : (1-1) \1-e i_1>

I R

N ¢§?*1<1+e o), ST L

‘ (n)”
+ ¢§?+1 ~ 2¢§? i ¢§?—1

2 AL.7.

(&)




and secondly implicit in the Y-direction only

2m+2 2m+1

-[ﬁij " #iy ] @ _ _ __ 5K
A (¢m+2) ( 1 >
t | S
H (1-1)\1-e 171

1
2m+l _ 2m+l< B i—l> T I-1 [ em+l
. '¢i+lj ¢ii l+e + € ¢i—lj

=

2m+2 2m+2
2t R A4 .8,

(6

where

Now for a square space grid

AP = Ay = A
Let
L% _ ¢
Ay

By re-arranging equations A L4.7 and A.4.8 such that only
" implicit terms appear on the left hand sides of the

equations we get
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.

< 1 > #3413 * © FPio1g
(i-1)\1-e *71
(%)
1 \ 1 B
- — 2m+ 1y = )
(1—1)<1—e i-1, (655 )
2n QQ“_~ 21 2m
Pije1 7 ( (20 1) ® > i3 7 Pi5-1
iJ
A.L4.9,
and
om: 2 . _ Sa_ 2m+2 2m+2
Pijur” |27 (20+2) = EERE T
P13
1
S2K 2m+1 2m+1 i-1
- - N bi41 * Pi-1y - ©
(i—l)<1—e 1"1>
< _ _;_>
sek\1+e 2/ _ dot gomrt
+ <'” 1 > R iJ
- i-1 2m+2y 2
(i-1) \1-e ’ (¢ij )
A L.10.

Use of equations A.4.9. and A.4.10. at each time step leads

to ﬁ sets of N simultaneous equations, where N is the

number of nodal points on the space grid. The solution




of these equations is obtained by following the procedure

of Peaceman and Rachford.
Consider first the use of equation A.4.9. within the

region 0 < R< 1, 0 Y <1 for a given time step and

axial position, i.e. constant m and j values. Let
_ _ ,2m da. 2m om )
[o;] = - 34,1+ (2 T T omal %> P13 7 Pi4-1
J (3 )
» T 1d
= 82
[7,] K

j A
J (i—l)&l—e— i‘1>

> A L.11,

==
=
i

1
i‘j - I:_§_%K<l +e i—1> So ]

T\ ° B
- = o 2m+1y F
(1—1)<1—e * 1) (955 )

1
[p.] = ([F.] e i‘1>

\J

) . 0 (5 o
Now ac¢ R = 0, i.e. 1 = 1, I8 (Pz) = 0, boundary condition

expressed in equation A.4,3. Therefore ¢i+l = ¢i-l'

Equation A.L4.9. may be written, using the definition

given in equation A.L.10 as
[E,] ¢, + ([D, ] + [F:i]1)¢, = [Gy] Ak, 12,
J o o j

For O < R< 1, i.e. 1 < i< T equation A,4.9. may be
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written

[Di]j¢i—1 + [Ei1j¢i +,[Fi]j¢i+l = [e;]

J
A-LI'olBQ
Now at R = 1, i.e. i = I, g%(Ez) = 0, moundary condition
d i i = .
expressed in equation A.4.4., Therefore ¢i+l ¢i-l
Equation A.L,9, may thus be written
(0.1 + [r ) )gp g + (8] gy = Log)y
J J J
AL 1k,

The N simultaneous equations given by equation A.L4.12 to

A. 4,14 may be solved directly by writing

W
. = LE
a5 = 1]j
— - i <
855 = [E;] [Di]..bi_lj 1<ix<I
J J
] &.A.h.lS
b., = [F.] / a;; 1<ixgI
1J 1 J 1J :
1J 3 J
= - [p.] .g. -J/a.. 1<is<1I
gi5 = ([Gi]j [Dl]j glflaZ/ 13 J
From equation A.4.12 by using the definitions given in

equation A.4,15 it can be seen that

¢, = 8135 ~ blj¢2 ) ’ A.L,16

331




From equation A.h.lB'for i=2

.[Dz].¢1 + [E21'¢2 + {FQ]_¢3 = [Gg].
' J J : dJ J

substituting from equation A.L.16

o

[Dz],g;j - [Dz],'bij'¢2 + [E2].¢2 + [Fbl_¢3 = [Gzl‘
J J J J J
hence
b2 = 855 ~ b2j¢3
This can be shown to hold for all values of i up to
i = I-1, simply by repeating the above process for
i = 3,4,....I-1. Hence the general equation can be
formed
¢y = 85 ~ bij'¢i+1 1 <ixKlI
AL17.
From equation A.4.14 it can be shown that
A.L}'ls.

$1 = 813

Hence the solution of the N simultaneous equations.for

a given time and axial position is given by: -

~
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H
|
0o}
[
c.

} ‘ALL,19.

©-
e
If
oQ
1

Thus aij’ b and gij are computed in order of increasing

ij
i and ¢i is computed in de~reasing order of 1i. The
axial boundaries of the grid must now be considered.
Y=0, j=1, P2 ='§; , boundary condition expressed by
equation A.L4.,2, This is so for all time steps and radial
position. Hence having once sét these values no numerical
calculation at this boundary is required.

Y =1, j = J. At this boundary Reynolds equation for
the porous bearing is used to solve the pressure squared
values, see Appendix A.3. Remembering that at this time
step the equations are writtén implicit in the R-direction

only, this boundary condition may be written as, again

using the Roscoe technique : -

f 1 1
1 2m+1 2m+1< - —T'> - =
< : 1>[¢i+1j_¢ij lre 7L e ITH gEml
(1-D\1-e *7F

= 2m+1y 3 ij
(83577
2 2
L% . © A.k.20.



Re-arranging equation’A.h.ZO such that only implicit terms

appear on the left hand side of the equation gives

1
- I-1
,,,,, 6l e #5015
(1—1)(1-6— E:i> ' -
< _ 1
1 4 e 71 N el ¢2m+l
1 . iJ
- — 2m+1y 2
(i"l)<l~e 1‘l> (¢i?+')
2m
CB[Eo ) e o0
J (420+1) F ij (42 *
| Pij Pi;
A L4,21
Let
-
_ A _ Fy N2y 2m AN, 2m
[Gi1J = [ 2 ‘“%5:3‘; - ] %15 - 2 %151
[F;] = é N _;_>
(i-1) \1-e =1
AU,
< ] _;;> ?.A 22
-1\1 i-1 &
[Ei]J': = - —;—> } é§+l<é
(1-1)<1—e' =1 (635 )
_ ._1__>
(0,] = \[F,].e 77
T 1




Now at R = 0, i,e. i = l,é% (55) = 0, boundary condition
expressed in equation A.4.,3. Therefore ¢i+l = ¢

i-1°
. Equation A.4.21 may be written, using the definitions

given in equation A.L4,22, as

\

[Ei] ¢4 + ([D,] +[F 1)¢, = [6,] “KE.b4.23
J J J J

For 0 < R< 1, 4di.,e. 1 <i <TI equation A.4.21 may be

written
[D.] ¢.  + [E.] ¢, + [F.] 4. . = [a.] AL, 24
175 i-1 17571 177 i+l 175
Now at R = 1, i.e. 1 = I atmospheric conditions prevail
i.e,

P2 = 1.0 = ¢I AL, 25

The N simultaneous equations formed by equations A,L4,23
to A.4.25 may be solved by the technique used previously.

Define

= [Ei] \

aiJ = 3
#ig = [Ei]J B [?i]J'bi—;J 1<ixsI

byp = (] e [0 ]) /a,; A4 26
by = [Pyl 7 as; 1<isT ]

z2ZC



giJ = [Gi:[J_ / aiJ
, AL, 26
g.- = ([6.] - [p,1 . P <
iT i [ 1]J gi—lf‘/ I 1<i<1I
Hence it can be shown the solution is -
¢I = 1.0
AL.27
B = 85 T PigPii 1<icl
Again a; gs biJ and giJ are computed in order of increasing
i and ¢i is computed in decreasing order of 1. Consider

now the next time step for which equation A.4.10., is used.
For the region 0 < ¥ < 1, 0< R 1 for a given time

value and radial position, let,

N
oL
S2K 3 omel  2m+l -1
[Gjli = / ~ .1 > &¢i+lj +'¢i—lj . €
(i-1)\i-e 7% -
s2K\1lye 1 _ S om+1
¥ SRR <- - Tl‘> Om42, % ¢ij
(i-D)\1-e 71 (6557
: VAL L. 28
. = 1.0
[Fy .
04
[EJ]. = —<2 + ( 2m+2)z )
1 9313
[D.] = 1.0
Ji




Equation A.4.10 may be written

[Dj]i¢j—1 + [Ej]igbj + [Fj]i¢j+l - [Gj]i Ak, 29

at Y = 0, i.e. j = 1 P? ='§: hence no computation

required. At Y

1, i.e. j = J the Reynolds equation
holds. The Reynolds equation written in this case implicit
in the Y-direction and re-orientated such that implicit

terms only appear on the left hand side of the equation

iss
A g 2m+2  AA 2m+2 N2y 2m+1
8y h ¢35 -t - ¢ = ?
.2 (¢2m+2)£ ij 2 ij-1 (¢2m+1)% I By
ij ij
-
1 . 2m+1 i-1 2m+ 1
+ < 1 > Pip1y *© - P31
(i-1) \1-e i-1
)
1+ e 71 _ 88| gemel
_(! < 77 ($2™+2) * -
/ 1
[(1-D)\1-e / ! | A.L.30
dLet
A= 2m+1 1 .
[GJ]l ( 2m+1y ?1; ,..< _ 1 )
1] (1-)\1-e 7%
_1 < -;%—Q
2m+1 i-1 ¢2m+1 1l + €
Pivij ¥ i-1j < ___1___>
(i-1)\1-¢ 7%
__BL g+t
( 2m+2)£ ij
3

AJL.31



1J
AN o A.L.31
[DJ]_ = = cont.
1
Thus
‘_ A L,32
[DJ]i  $7_q + [E;] 65 = [a;]
1 1
!
Now let
)
821 7 |:E"‘]i
.. = [E. - [D. . b. _. 2 < j<dJd
aJl [ J]i [ 3]i J—1i J
(i — T 2
g, _(LGQJi [Dg]i . B?) /ey,
= . - . . .o .. L.
g5 = L651, ~ 050 - gy /ooy PALb.33
2<j<d
bsi = Ty4 / ay;

The solution of the set of simultaneous equation expressed

by equation A.4.29 and A.L.32 is given by

¢ = 81:
- - } AL, 3L

| S o
b1 = &1 " Pyi v Py P SIS
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also

$,, = P2 A k.35

Again a.., b < ‘ A i i i
g 3i? ii and gji are computed in increasing

order of j and ¢ﬁ computed in order of decreasing Jj.

e

The radial boundary conditions must now be considered
R =0, i,e., i = 1.

Y

.-o.zl :—2
O i.e. J ¢>‘1 PS

0<Y<1l idi.e. 1< <J

only the definition of [Gj] need be modified as the
i
other term definitions are identical to the previous

section
)
] _ S2K\l + € i-1 2m+1
legd = LN | fie1d
o (i-)\1-e 71
| ey o TT)
S2K\1l +e -1 _ oY 2m+1
+ TS 7 Conenyi | 'O
) < - i—l> (p<Tte) *
A (i-1\1-e ij
AL, 36

Use has, been made of the boundary conditions expresse d

!

|
in equation A.L.3.

s



Again only the definition of [GJ]‘ need be modified.
. 1

__1_
_ OB 2m+l (1 >
ol T T +E =) P1413
' +d (i- 1) l1-e 7
_ <l+e > B¢ 2m+1
< - —l—> ) 2m+2 % ¢ij
(i-1) 1 (¢ij )

A.L.37

The solution of this set of simultaneous equations is

then identical to the previous set.

( I
. | s2K\Lre =) ot 42l
< - E%i> (¢ 2m+2) 1
(i-1) P13

A. 4,38
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Use has been made of the boundary condition expressed in

equation A.L4.L4,

Hence the simultaneous equations to be solved are

. _ S 5
¢1 - PS
|

[Dj]i¢j + [Ej]i¢j + [Fj]i¢j+l = [Gj]i 1< j < J ’A.4-39

¢y = 1.0 g
Using the nomenclature of the previous solution this
solution is given by

¢J = l.o

. ___:’ L. - b . . 3 ACL"OL“O

b; = 851 " Pyify1 <Y

¢, = P82
Once again aij’ bij’ and gij are solved for increasing

.order of j and ¢j for decreasing order of j.

Hence the N sets of N simultaneous equations can

be solved. However, iteration is required as some of

the terms expressed in the functions nominated as
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have

(c)

(d)

(e)

(a1 [_Gj]i, (o, ]

, [¢.1, [E.], [Ei] ,
J Jr 1

J J J

[E-] ’ [E.] ‘e
J1 J
forward time positions.
The technique of solution by computer then is -
Initialise values of ¢T, for 1 € i< I, 1< j S
i

J

and 1 € m <

.

1=

!
Solve using A.D.I. for ¢‘;‘j for 1 <i <71, 1< j

and 1< m< M.

m
Test for convergence i.e. compare¢ij old
¢

Use values of¢b.'ldj previously calculated in (b) to

1

initiate ¢.J
1J

against

m. for 1< i <T, 1< j<J, 1< mc<M,
ij new 2

Repeat (b), (c) and (d) until convergence.
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APPENDIX FIVE

ERROR ANALYSIS OF A.D.I. SCHEME

In the A.D.J. procedure two different equations are

usced. These are dealt with separately.

In this error analysis it is assumed that the errors

involved are small.
|

I

The first step in the A.D.I. zcheme uses equation

A.4.9, Appendix 4.

1
' < - 1—1\
S2K 2m+1 N 2m+1 _ SPK\1l+e /.
1 ) Piv1j T Pi-13 < ~ 1 >
(i-1) i1 (i-D)\1-e 7%
6‘@ 2m+1 _ 2m _
--j'( onel, | P13 C fagt 2 2m+l) ¢ 13 -1
3
AR
2m

Assume that the initial error in initiated wvalues of ¢ij

are such that we may write

2m 2m 2m

(42 ] (43 ] + 27 A.5.2
2m 3 - -

where £¢ij] is the initiated wvalue
2m .
. [¢ ] is the true value
z?@ » is the error.
1J
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Substitution of equation A.5.2 into equation A,.,5.1 yields

1
PE |62 e I -
(i-1) <l—e i—'1>
. : '
‘ 82K<l+e i_l> 506 2m+1 2m
< N P10 77 %y
!(i—l) 1-e 1‘1> (Lo3y D

e LR T S

Now the true values of ¢ must satisfy equation A.5.1. By¥
subtracting equation A.5.1. from equation A.5.3. an equatién
regarding the error in the initiated values will be formed.
However, upon inspection of the second term on the left
hand side and the second term of the right hand side of
these equacions 1t can be seen that the denominator of the
terms containing Sa changes and hence straight forward
subtraction will not yield the desired result. This is
pbecause the equations are not linear. However, as it

has been assumed that the error involved is small the
square rooting of these terms halves the error involved.

Hence assume that
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) ,i . ”“iu..

2my & s 2m, *
(DT () 6l

Hence the analysis can continue. Upon subtraction we

get -

=

S2 K 2m+1 T i1 2m+¥]

1 [%i+1j te R
(i-1) \1-e i-1 .

1
- |
_ S2K <l+e l_l> ' So 2m +1
_ _l_> R
(1-1)\1-e 171 (65

2m _ oo 2m 2m
= - 2. . + <2 > Zij - Zij—l

A.5.4,

Now expressing the error as a finite double series
of orthogonal functions that satisfies the boundary

conditions

I J
2m 2m o A.5.5.
EiJ }: EZ;Alj cos(w R)cos( ( Y)) 5.5
i=1 j=1 )

where
pyo=2r, Yy = (2j+1)w/2

Substituting equation A.5.5. into equation A.5.4., gives,




examining each term in the series separately.

j2m+1 _ sPK [ cos (y; (R+1)) cos (y5(1-1))
(i-1) o -

ij < _ 1>
1-e 71

(,. ™)
[ s2rk\1+e 171

(i—l)(l—e— i:%—>
Jo. -

+ (¢§?+1)£ hkos(wiR)cos(wj(l—Y)):]: A??[}cos(wiR)cos cen

- L
L e 1—1. [}os(¢i(R—A))cos(wj(l—Y));&_

L (s ((1-D40)) 4 <2 : @ﬁ;}j&;‘—l—;)cos(m) cos (4, (1-9)) ...

...—cos(wiR)COS(wj((1~Y)—A))j

2m .
Dividing equation A.5.6. by Aijcos(wiR)cos(Wj(l—Y» gives

fggi% S2K . {Cos(wi(R+A)) ‘e T:TI~COS(Wi(Rf£Q)X
Ay (i-1) 1—6—'??T> cos (3F) cos(y;®) ]|

COS(wj((l—Y)—A)

cos(wj((l—Y)+A) . <2 _ Sa ) _
(¢

cos(y; (1-9) e+l cos (34 (1))

1]

A.5.7.



Now

COS(wj«l—Y) +A) cos(wj((l—Y)-A)

1l

2cos(¢ja) A.5.8.

Also the 1loft hand side of the equations can be reduced

to
' 1

Aiml SZK<1+e— 1_‘i> . -
e cos(y ) -1 = = ...
Aij < __._1._> ' (1-1)

(- \1-e 7T

. Sa
ceo tan(yyR sinlyo) - T A.5.9.

Equation A.5.7. after re-arrangement may be written: -

Sa

p2m+l ( 2m+1y & - Zcos(wia)
i T I, : 5 :
T C ¥ = “—%
AT ; | cos(z,’:iA) —1—‘ S-L tan(y . R) sin(y,a) - —2%——.
===l o e
(1-1) \1~e i3
A.5.10

2m+l/A2m
iJ iJ

the numerical procedure, using only equation A.5.1. The

The ratio of A is the amplification factor for

second part of the numerical procedure uses equation

A.410 Appendix L.

21,8

1

|
d




ij
—l 1
2m+1 T oi-1 2m+1 < - -—>
S2K (¢ - R S -_
- ($5,05 + @ 5-17 s2g\l+e 171
_ L1\ T 1
(1-1\1 - ¢ 17LJ [(1—1)<1—e i“l>:
_ oo 2m+1
Smeon® | Pij A.5.11.
(559

Using a procedure identical to the one previously used to

obtain an equation regarding the error gives

2m+2 do 2m+2 2m4-2
zij+1 <2 * (¢2m+2)é> 2i5. Zi5-1

iJ

1 .
omel  I-1 2m+1> < - Tl—>
2 ; -
5 K<Zi{;j v e 2513 s2K\14e 173
= +
— __,l_> ( ___1_>
(i-0\1 - e 71 (1-1) \1-e 171
So__ 2m+1
(2m2) ¢ ij A.5.12
iJ

Substituting from equation A.5.5. into equation A.5.12

and' examining each term separately leads to -




( - __1,> ' :
i-1
S2K\l+e <cos(zjfiA) - 1> _ _S%K [«;an(z/fiR) sin(wiA)] + (_5%_2—5—*

7
2m+2 [ - 1> (i-1) o=
Al Gmnha-e 171 h
A2m+1
i3 |: da
2 + —mtmr - 2cos(¢f.A)]
(¢2m+2) ) 3

14

A.5.13.

The ratio of A2m+2 / Ai?+l is the amplification factor for
the numerical procedure using only equation A.511.
Multiplying equations A.5.10 and A.5.13 gives the amplii-
ication factor for the use of two time step equations,

Remembering that
cos2A = 1 - 2sin®A

the multiplication of the two equations A.5.10 and A.5.°%3.

gives
- — B 6‘a '—1
- 2 - 2
o2 By m+1) ] Ey Ez + (¢ m+2)
A - |
1 =
25" - - __ o -
d E, + 2m+2 B, - By ~ [, 2m+1, ?

A.5.1k4,
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where

32K<1+e 5 >

1
)
E, - Lo (eosp) -1 7 A.5.15
(i-1) <1—e i"l>
ES :(filj{.) (tan(wlR) Sil’l‘(ﬂ'liﬂ)

Evaluation of the trigonometric functions show that

O
N
‘_L

<h
0

<

H =& oo
0

- & <

oo S o

3
By substituting the above values into equation A.5.15.

it can be seen that the amplification factor modulas

can never be greater than unity. Therefore the n»umerical

procedure is inherently stable for all values of time

step.
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THE CONVERGENCE OF THE NUMERICAL SYSTEM




"APPENDIX SIX

THE CONVERGENCE OF THE NUMERICAL SYSTEM

Although the numerical method outlined in Appendix 4
has been shown to be inherently stalble the convergence
rate of this numerical method may be slow, i.e. the
amplification factor modulas mentioned in Appendix 5 may
be close to unity, giving high computational run time
and thus high computer costs. If this is so, then the
rate of convergence must be increased purely for économical
reasons. This increase in convergence rate can be achieved
by using an 'Extrapolated Liebmann Relaxation Parameter'
(76).

In order to verify the nged for a relaxation para-
meter a computer analysis using the numerical method
given in Appendix 4 was made. The convergence rate was
such that the computational run time was prohibitive,
approximately 5000 mill units (where 1 mill unit is
approximately one second). This programme was run for
only 2000 mill and the éonvergence rate achieved is shown
in figure 111 page 354

In (76) an analytic method is outlined to obtain an
optimum relaxation parameter for a system qf equations,
However, Frankel states that 'The usefulness of the
extrépolated Liebmann method is limited by the difficulty

of determining the optimum relaxation parameter value for
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more complex problems!. Thus an empirical technique was
employed to optimise the relaxation parameter value.
Using Frankel's definition of the relaxation

parameter, i.e.

0 < Rel < 1 -

¢new = (1 - Rél) $.1q * Rel (difference equation)

the above computer program wés modified such that a relax-

ation parameter (rel) was usedAfor eight iterations and

the resulting number of converged points outputed for

each iteration. The relaxation parameter was changed

and the above process was repeated from the same start

point. The resulting convergence rates for various

relaxation parameters are shown in figure 112, page 356

Figure 113, page 357 shows the convergence rate after

eight iterations for each relaxation parameter. From

figure 113. page 257 it can be seen that the optimum

value of the relaxation parameter is approximately 0.6.
This relaxation parameter value was then used to

obtain a full solution and the resulting convergence

time is shown in figure 111, page 354 . Also shown is

a computational run using a relaxation parameter value

of 0.7. It can be seen that, in comparison to the non-

relaked computation run, the convergence time for a

relaxation parameter of 0.7 as compared-to 0.6 is not

355
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drastically increased.

The relaxation parameter optimum may depend upon
‘bearing parameters, however, more computational time‘may
be spent determining optimum vélues of the relaxation
parameter for each bearing configuration than assuming
the optimum value for all bearing cunfigurations is. 0.6,
Thus for all computation a relaxation parameter value of
0.6 has been used.

It may be recalled that in Appendix 3 it was stated
that only Reynolds equation is used at the boundary
marked by the gas film in solving pressure distriﬁutions.
The combination of the Reynolds equation with the main
governing differential equation mathematically assumes a
continuit~ in the pressure gradient. It is known that
there would then be a confligt in assumptions as it has
previously been assumed that the pressure does not vary
across the gas film. This conflict of assumptions would
lead to greater computational run time. To show that
this i1s so, a compuatational run was made where both the
governing differential equation and the Reynolds equation
were used, i.e. no discontinuity in the pressure gradient.
"It can be seen in figure 111, page 354 that the converg-

ence time is greatly increased.
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COMPUTER PROGRAMME FOR DETERMINING THE

STEADY-STATE PERFORMANCE DATA FOR A

UNIFORM FILM AIR LUBRICATED POROUS THRUST

’ BEARING USING THE ANALYTIC SOLUTION OF

JONES ET. AL.

C
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COMPUTER PROGRAMME FOR DETERMINING THE

STEADY-STATE PRESSURE SQUARED PROFILE

IN THE AIR FILM OF A UNIFORM FILM AIR

LUBRICATED POROUS THRUST BEARING USING

THE NUMERICAL METHOD DEVISED BY D, ROSCOE
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COMPUTER PROGRAMME FOR DETERMINING THE STEADY

STATE PERFORMANCE DATA FOR A NON-UNIFORM FILM

AIR LUBRICATED POROUS THRUST BEARING USING

() THE NUMERICAL METHOD DEVISED BY D. ROSCOE

(NON-UNIFORMITY OF FILM DUE TO POxOUS PAD

FLEXURE TAUSED Ly SUPPLY PRESSURE LOADING)
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COMPUTER PROGRAMME ¥FOR DETERMANING THE DYNAMIC -~

CHARACTERISTICS OF A UNIFORM FILM AIR LUBRICATED

POROUS THRUST BEARING USING A COMBINATION OF

NUMERICAL M=THODS

(BEARING ASSUMED TO HAVE LINEAR CHARACTERISTICS)
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