

An Improved/ Tool
for
Automated Compiler Construction

Michael Andrew Brian Parkes
Doctor of Philosophy

The University of Aston in Birmingham

February 1989

This copy of the thesis has been supplied on the condition that anyone who
consults it is understood to recognise that its copyright rests with its author and
that no quotation from the thesis and no information derived from it may be
published without the author's prior, written consent.

The University of Aston in Birmingham

An Improved Tool
for
Automated Compiler Construction

Michael Andrew Brian Parkes |
Doctor of Philosophy
February 1989

Summary
Since the advent of High Level Programming languages (HLPLs) in the early
1950s researchers have sought ways to automate the construction of HLPL
compilers. To this end a variety of Translator Writing Tools (TWTs) have been

developed in the last three decades. However, only a very few of these tools have
gained significant commercial acceptance.

This thesis re-examines traditional compiler construction techniques, along with a
number of previous TWTs, and proposes a new improved tool for automated
compiler construction called the Aston Compiler Constructor (ACC). This new
tool allows the specification of complete compilation systems using a high level
compiler oriented specification notation called the Compiler Construction
Language (CCL). This specification notation is based on a modern variant of
Backus Naur Form (BNF) and an extended variant of Attribute Grammars (AGs).
The implementation and processing of the CCL is discussed along with substantial
examples including a CCL specification for the programming langauge Pascal.
The CCL is shown to have an extensive expressive power, to be convenient in
use, and highly readable, and thus a superior alternative to earlier TWTs, and to
traditional compiler construction techniques. The execution performance of CCL
specifications is evaluated and shown to be acceptable.

A number of related areas are also addressed, including tools for the rapid
construction of individual compiler components, and tools for the construction of
compilation systems for multiprocessor operating systems and hardware. This
latter area is expected to become of particular interest in future years due to the
anticipated increased use of multiprocessor architectures.

Keywords : Compilation, Syntax Analysis, Attribute Grammars,
Code Generation, Translator Writing Tools.

knowledsemen

I ' would like to take this opportunity to thank some of the people who have helped
and encouraged me during my research at Aston University. I would particularly
like to thank my supervisor Dr. Edward Elsworth for his direction and assistance,
my wife Carol and my mother Alma for their encouragement and Dr. Brian Gay

for the use of departmental resources while writing up.

The work described in this thesis was supported by a grant from the Science and

Engineering Research Council (SERC).

Chapter Page

1 Introduction = 8

2 A Review of Traditional Compiler Construction Techniques 12
3 An Overview of the Aston Compiler Constructor 36
4 The Compiler Construction Language 42
5 The Implementation of the Aston Compiler Constructor 79
6 A Demonstration of the Aston Compiler Constructor 109
7 A Pascal Specification using the Aston Compiler Constructor 144

8 A Performance Evaluation of the Aston Compiler Constructor 152

9 Conclusions 159

Appendix
1 The Compiler Construction Language Quick Reference Manual 164

2 A Formal Specification of the Compiler Constructor Language 178
3 A Simple Compiler Construction Language Specification - 185
4 A Larger Compiler Construction Lan guage Specification 188
5 A Specification of Pascal 198
6 A Small Pascal Example 242

References 245

Table of Figures

Chapter 2
Figure Page Figure Page
2.1 13 2.2 16
2.3 19 2.4 23
2.5 29
Chapter 3
Figure Page Figure Page
3.1 38 3.2 39
3.3 40 3.4 41
Chapter 4
Figure Page Figure Page
4.1 43 4.2 45
4.3 46 4.4 47
4.5 47 4.6 48
4.7 49 4.8 50
4.9 51 4.10 52
4.11 53 4.12 53
4.13 53 4.14 55
4.15 55 4.16 56
4.17 57 4.18 58
4.19 59 4.20 60

4.23

4.25
4.27

4.29
4.31
4.33
4.35
4.37

Chapter 5

Figure

5.1
5.3
5.5
5.7

5.9

5.11
5.13
5.15
5.17
5.19
5.21

;

81
83
85
86
88
90
93
95
96
99
100

4.24
4.26
4.28
4.30
4.32
4.34
4.36
4.38

Figure

5.2
5.4
5.6
5.8
5.10
5.12
5.14
5.16
5.18
5.20
5.22

82
84
85
87
89
91
93
95
98
100
101

Appendix 1

Figure Page Figure Page
Al.l 165 Al2 166
Al3 167 Al4 167
Al.S 167 Al.6 168
Al.7 168 Al8 169
Al9 169 Al.10 169
Al.11 170 Al.12 171
Al.13 172 Al.14 172
Al.15 173 Al.16 173
Al.17 175 Al.18 175

Appendix 2

Figure Page Figure Page
A2.1 183 A22 183
A23 184

. . // .

-
o

. ,/, .
-
. \wr,;"\',’”’j’,\;‘/:,
e ’,/\w\ L
',/{/w/, M/m .
e o v_/"’/’ . ,\,f,,'\;/y(\,'\\)”
-
- ,\»,,\
..
\ ,fr»/\‘/::;"‘ . .
. > u,w -

Chapter

. o

. .,,W” :
L ,,\/,, .
e 77,, s

. .
.
L e
i \\0’;"%"\(}(” L
...
. . \,,\),,,\
o
B ,\\,’wgw P
i ”//,\,(«/r(y;,l’g’(‘;-\;/,‘,(\m \‘q \

. Introduction

- ,x/\\o(,,, . w,/\.\ .
u{'\;’(“Q\'w/,' i \'w,/ /‘«,,’”
. .
.
G L
G
,m%,/zw,wm,\,“ G
\ ,,l’\ivlw’;i/os;r:’r .
.
S

e

i)u’u/,,,l\i, L\;;, o . i

. «w,q\:s,\, .

,), o ./,m '\’\'ﬁ’w\,
o ,\,/,(L

- o
e

i c;/zz/"’ L
..

;/u\\\\\ﬁ/ m'a\r\, i w,r,c,,(
o

~ Chapter1

The first High Level Programming Languages (HLPLs) were developed in the

early part of the 1950s. The first HLPL compiler was developed between 1954
and 1957 by International Business Machines (IBM), for the IBM 705 computer.

Since these early years HLPLs have received wide-spread acceptance and are now

used in most areas of computer programming. This wide-spread acceptance has

lead to a large demand for HLPL compiler construction.

The construction of HLPL compilers was not well understood, in the early years,

and there was little theoretical work to draw upon when designing or constructing
a compiler. Three decades of research has helped to relieve many of the problems
associated with compiler construction and has led researchers towards the concept
of developing automated compiler construction tools, or Translator Writing Tools

(TWTSs) as they are more usually known.

The ultimate aim of most of the research on TWTs has been to construct systems

that were capable of automatically constructing a HLPL compiler from formal

specification of a programming language and a target machine. It was believed
that the development of such systems would make the construction of compilers
much more rapid and would greatly reduce the costs associated with compiler

construction.

The construction of HLPL compilers using TWTs is the general theme of this
thesis. In the following chapter the components of a traditional HLPL compiler
are reviewed. An examination is then made of each of these components to see

how existing TWTs can be used to aid their construction. In chapters 3 and 4 a

10

Chapter 1

new form of TWT and compiler specification language are proposed with the aim

of further reducing the effort associated with traditional HLPL compiler
construction. In chapters 5 and 6 the implementation and operation of this new

['WT is examined, with reference being made to a number of small demonstration

examples. In chapter 7 a specification for the programming language Pascal is
reviewed. Finally, in chapters 8 and 9 the performance of this new TWT is

discussed and a number of conclusions are drawn.

11

Chapter 2

A Review of
Traditional Compiler Construction

Techniques

Chapter 2

Introduction
The traditional techniques used in commercial High Level Programming Language
(HLPL) compiler construction have changed little in the past two decades. In

outline, these traditional techniques are to define a HL.PL compiler in a HLPL,

such as C, using a five phase structure.

The overall structure of a typical traditional compiler is as follows.

Source Code

|
&

Lexical Anaysis

v

Syntax Analysis

v

Semantic Analysis

B A

Code Generation

v

Code Optimisation

Object Code

Figure 2.1

13

Chapter2

The first three compiler components, in a traditional compiler, are usually grouped
together and called the compiler Front End' or Analysis phase. The last two
compiler components are also usually grouped together and called the compiler

‘Back End' or Synthesis phase.

The main commercial motivation for using traditional compiler construction
techniques is that these techniques allow the construction of high quality
compilers. Such compilers are usually compact, run time efficient and produce
good quality code. This is important in the commercial world as a poor quality
compiler can lead to loss of reputation and sales. However, constructing
compilers in this way is both time consuming and expensive. These are major

drawbacks and ways to overcome them have long been sought.

Research aimed at overcoming these problems started as long ago as 1962, an
early example of such work is the Brooker Morris compiler compiler [Brooker
1962]. It was hoped that it would be possible to construct tools capable of
automating the construction of high quality compilers and compiler components.
Such tools were called Translator Writing Tools (TWTs), as previously noted.
Research in certain areas of TWTs (particulary parser generation) proved so
popular that P.J. Brown [Brown 1979] commented "An enormous amount of
effort has been spent in developing these automatic tools. The effort has been
rather disproportionate, given that parsing is only a small part of a compiler. A
huge number of automatic parsing tools have been written, most of which have

been dead and forgotten within a few years of their birth". This certainly seems to

14

Chapter 2

be the case. A selective bibliography on TWTs by Meijer and Nijholt [Meijer
1982] contains over a 180 references. A number of other bibliographies are
referenced by the authors, such as [Fisher 1981], for further reading in selected
associated areas. However, after almost three decades and a great deal of research
only a few TWTs have achieved much commercial impact. Again P.J. Brown
[Brown 1979], commenting on TWTs, said "A few however are good and have

stood the test of time. You may well find one available on your computer'”,

We can conclude therefore that it would seem worthwhile to re-examine the whole
area of TWTs in relationship to traditional compiler construction techniques. It is
believed that such a re-examination will highlight a number of areas where
improvements can be made to existing traditional construction techniques by

developing improved TWTs.

The following sections examine the main phases of traditional compilers and
contrast traditional construction techniques with the automated construction

techniques offered by a selection of existing TWTs.

Lexical Analysis

The first phase of most traditional HI.PL compilers is lexical analysis. The main
purpose of this phase is to determine and check the lexical structure of the source
code read by a compiler. This source code is usually input by the lexical analysis
phase and grouped into lexical categories known as tokens. These tokens are then

passed on to the syntax analysis phase of the compiler.

15

Chapter 2

It is widely accepted that the construction of lexical analyzers can be automated by

the use of lexical analyzer generators. A great deal of research has been carried

out in this area and several lexical analyzer generators already exist (see the
bibliography [Meijer 1982] and the review [Ganapathi 1986]). A typical and well
known example of such a system is Lex [Lesk 1976]. This system is capable of
constructing a lexical analyzer automatically from a formal lexical notation. This

notation consists of a series of lexical token specifications defined using a

modified form of Regular Expressions (REs).

For example, the crucial part of a typical Lex specification may be as follows.

o
o

"PROGRAM™ return{ PROGRAM };
""VAR" return(VAR);
"BEGIN™ return(BEGIN);
"IF" return{ IF);
"THEN™ return(THEN);
Y"ELSE" return(ELSE);
nEIT return(FI);
"END™ return(ENDS);

ne_n return(ASSIGN);

Hpn g n_n return(SUM)

x| n return(TERM) ;
u:u|n<>"|'l<"!"<="|">"I">=" return(COMPARISON) :
nom return(COMMA);

nan return (SEMI_COLON) ;
won return{ DOT);

[A-Z] [A-20-9] % return{ IDENTIFIER);
[0-9]+ return(VALUE);
TompE\ g H\nn VA Skip white space */

return (OTHER_CHARACTER) ;

o
o

Figure 2.2

16

This specification defines the recognition of a number of keywords, (eg.
PROGRAM, 'VAR/, etc), identifiers, numbers and various other delimiters,
(eg. =" '+, - etc). Such specifications can be processed by Lex to give the
source code for a lexical analyzer in the programming languages C or Ratfor.
When processing a specification Lex performs the following steps. First the
specification is processed to give a Non-deterministic Finite state Automaton
(NFA). It is then further processed to give a Deterministic Finite state Automaton
(DFA). It s finally reprocessed to produce tables which are incorporated into the
final source code generated by Lex. This source code can then be compiled or

incorporated into some other software system.

Lex is widely available and has been used in the construction a number of
commercial compilers, for example the Portable C Compiler (PCC) [Johnson
1979]. The lexical analyzers generated by Lex usually operate at acceptable
speeds. In a test conducted by the author, typical Lex generated analyzers
processed source at around 4,000 characters per second on a machine rated at 0.6
MIPS. Although hand crafted lexical analyzers can operate at higher speeds their
construction is often more complex and time consuming and inherently less

reliable.

It would therefore seem that Lex demonstrates a valid approach for automating the

construction of lexical analyzers for traditional HLPL compilers.

17

Chapter 2

Syntax Analysis

The second phase of most traditional HLPL compilers is syntax analysis. The
main purpose of this phase is to determine and check the syntactic construction of
the statements read by a compiler. The tokens passed from the lexical analysis
phase are checked by the syntax analysis phase to make sure they form legal
syntactic sentences. The syntax analysis phase and the following semantic

analysis phase often work in close co-operation in traditional HLLPL compilers.

There is a difference of opinion among researchers as to what is the best way to
construct syntax analyzers [Aho 1985]. One point of view is that syntax analyzers
are best constructed as a set of recursive descent top-down procedures. It is
argued that this approach leads to the construction of more natural syntax
analyzers that are easier to understand. The other point of view is that syntax
analyzers are best constructed using a bottom-up approach. It is argued that such
syntax analyzers are often faster and can deal with more complex grammars. This
is a well known contentious area. It is difficult to show here which approach is
likely to be the more suitable for TWT construction. Therefore, this matter is

deferred and discussed in the next section.

Again, it is widely accepted that the construction of syntax analyzers can be
automated by the use of syntax analyzer generators. A great deal of research has
also been carried out in this area and several syntax analyzer generators already
exist (see the bibliography [Meijer 1982] and the review [Ganapthi 1986]). A

typical and well known example of such a system is Yacc [Johnson 1975]. This

18

Chapter 2

system is capable of constructing a syntax analyzer automatically from a formal
syntactic notation. This notation is based on a version of Backus Naur Form

(BNF) [Naur 1963].

For example, a typical Yacc specification may be as follows.

Stoken PROGRAM VAR BEGINS IF THEN ELSE FI END

$token ASSIGN SUM TERM COMPARISON COMMA SEMI_COLON DOT
$token IDENTIFIER VALUE OTHER_CHARACTER

%%
Compiler Program Var Statement End;
Program PROGRAM IDENTIFIER;
Var VAR Variables SEMI_COLON;
Variables IDENTIFIER | Variables COMMA IDENTIFIER;
Statement Compound | Assignment | It;
Compound BEGIN Statements ENDS;
Statements Statement | Statements SEMI_COLON Statement;
Assignment IDENTIFIER ASSIGN Expression;
Expression Term | Expression SUM Term;
Term Primary | Term TERM Primary;
Primary IDENTIFIER | VALUE;
If ¢ IF Boolean THEN Statement FI
| IF Boolean THEN Statement ELSE Statement FI;
Boolean : Expression COMPARISON Expression;
End DOT;
main ()

{ yyparse();

}

#include "lex.yy.c"

static yyerror(value)

register char valuel};
{ return;
Figure 2.3

19

Chapter2

This specification defines the context-free syntax of a simple programming

language for which a syntax analyzer is required. The specification can be
processed by Yacc to automatically give the source code for a bottom-up LALR(1)
syntax analyzer [Aho 1974] in the programming languages C or Ratfor. When
processing a specification Yacc produces a number of tables. These tables are
incorporated into a predefined skeleton syntax analyzer program and output by

system. Again, the code generated by Yacc can be compiled or incorporated into

other software systems.

Yacc is widely available and has been used in the construction of a number of
commercial compilers, for example it was used along with Lex in the construction
of the Portable C Compiler (PCC) [Johnson 1979]. The syntax analyzers
generated by Yacc usually operate at acceptable speeds. In another test conducted
by the author typical Yacc generated analyzers executed about 1,000 rules per
second on a machine rated at 0.6 MIPS. Again, hand crafted syntax analyzers can
operate at higher speeds but are often more complex and time consuming to

construct and inherently less reliable.

It would therefore seem that Yacc demonstrates a valid approach for automating
the construction of syntax analyzers for traditional HLPL compilers, and hence
that Lex and Yacc together provide a worthwhile tool for automating the
construction of the context-free part of a compiler's Analysis phase. Moreover,
some researchers have stated that they feel that TWT's have already reached their

goal in these areas and that little further research is required [Ganapathi 1986].

20

Chapter 2

Semantic Analysis

The third phase of most traditional HLPL compilers is semantic analysis. The

main purpose of this phase is to determine and check the static semantics of the
HLPL source code read by a compiler. The static semantics of source code relate
to the rules associated with the visibility and accessibility of program objects and

type compatibility. This phase will also deal with related elements of execution

semantics which can be handled at compile time, typically store allocation. Within
the semantic analysis phase certain other operations are also sometimes performed,
eg. global optimisation. It can be argued that the semantic analysis phase is one of

the most complex phases of a traditional compiler.

The automated construction of semantic analyzers has proved more difficult than
the automated construction of lexical and syntax analyzers [Ganapathi 1986]. The

researchers working in this area have used a number of differing approaches in

order to overcome the difficulties encountered in this domain. One of the two
most popular approaches taken has been to define semantic analysers using formal
mathematical notations. In particular, a great deal of research has been carried out
to evaluate the usefulness of Denotational Semantics (DSs) [Scott 1971] in this
area. It has been shown that it is possible using DSs to automate the construction
of semantic analyzers for a range of HLPL compilers [Paulson 1982]. However,
mathematical and DS specifications are considered complex and unnatural by
many computer scientists. Furthermore, in a number of experiments [Paulson

1982] the execution of compilers based on such notations has been shown to be

21

Chapter2

significantly slower than that of traditional hand crafted compilers. For these
Teasons many researchers [Ganapathi 1986] at present consider these notations

unsuitable for TWTs aimed at realistic rather than purely experimental

implementation,

The second and significantly more popular approach [Meijer 1982] taken has been
to increase the power of Syntax analyzer generators by using alternative more
powerful enrichments of CFGs, such as Van Wijngaarden (VW) grammars or
Attribute (or Affix) Grammars (AGs). The most popular of the available notations
has proved to be AGs. This is probably because AGs are a clean extensions of
Context Free Grammars (CFGs) and are readily machine executable [Watt 1980].
This is not the case with many of the alternative notations, for example with VW
grammars deciding which production rule to apply after a particular rule is in

general unsolvable [McGettrick 1980].

The origins of AGs date back to papers by Knuth [Knuth 1968] and Koster
[Koster 1971] who developed Attribute and Affix grammars independently at
around the same time. In simple terms AGs (see bibligraphy [Raiha 1980a]) can
be described as an augmented variant of CFGs, such as BNF. This augmentation
allows context sensitive information and conditions to be expressed and enforced,

as well as the normal context free specification.

The following example shows how AG rules can be used to specify some of the
context sensitive constraints of a simple assignment statement. It is hoped that this

example demonstrates the substantial additional expressiveness of AGs compared

22

with CFGs, and hence hints at their additional utility.

Assignment (iEnvironment,T(Typel=Type2)) =

Identifier(iEnvironment,TTypel), TEQUALS,

Expression(iEnvironment,TType2)

Identifier(iEnvironment,TEnVironment[Name].type) =

TIDENTIFIER(Twame) :

Figure 2.4

Attribute information is given in parentheses following relevant terminals and

non-terminals of the underlying CFG. Attribute variables are introduced and
constraints may be expressed by expressions over attributes. The symbols 'T" and

" suggest (imply) the direction of flow of information up or down a parse tree.

The rule 'Assignment’ specifies that an assignment statement consists of an
Identifier' followed by an 'EQUALS' terminal and an 'Expression’. When the
rule "Assignment' is called it is passed the attribute Environment', this is called an
inherited attribute. The 'Assignment’ rule then calls the rule 'Identifier’ passing
on the ‘Environment' attribute. This rule inputs an 'IDENTIFIER' terminal and
stores its associated value in the attribute 'Name', this is called a synthesized
attribute. The rule 'Identifier' then does a look-up in the table stored in the
Environment' attribute using the 'Name' attribute as a key. This look-up yields a
structure containing all the information known about the identifier specified. The
value of the field 'type' is then extracted from this structure and returned to the

calling rule ‘Assignment’. This value is then stored in the attribute "Typel'. The

23

Chapter 2

rule 'Assignment' then recognises the terminal 'EQUALS' and calls the rule
Expression'. The value returned from the rule 'Expression' is stored in the
attribute "Type2'. Finally, the attributes "Typel' and 'Type2' are compared to
check that their values are equivalent. If this comparison is successful then the
‘Assignment' rule exits, otherwise the ‘Assignment’ rule would fail and the calling
rule would (in a more complete example) cause the generation of an appropriate

EITOT report.

When constructing AG-based syntax analyser generators a range of differing
implementation techniques may be used [Aho 1985, Engelfret 1984]. The main
implementation options available are: to evaluate attributes during parsing; or to
construct a syntax tree, decorate it with attribute values and evaluate these
attributes at some later stage after parsing. These attribute evaluation schemes are
known as 'on-the-fly' and 'decorated parse tree evaluation', respectively, and may
be used in conjunction with either top-down or bottom-up syntax analyzer
construction. The relative advantages and disadvantages of the above attribute

evaluation schemes are discussed below.

The main advantages of ‘on-the-fly" attribute evaluation are that: this scheme is
usually highly run time efficient; requires minimal storage for attributes; and has
the ability to allow attributes to control the execution of the underlying syntax
analyzer. This latter feature is considered important by some researchers [Watt
1980] as it often removes the need for the multi-symbol look-ahead used in many
traditional parsers. It also allows grammars that are not necessarily LL(1) to be

correctly parsed by top-down syntax analysers [Watt 1980]. The main restriction

24

Chapter 2

of this approach is the requirement to evaluate attribute expressions during
parsing. This requirement forces left-to-right evaluation of attributes in top-down
Syntax analyzers and restricted use of inherited attributes in bottom-up syntax

analyzers.

An alternative to the scheme outlined above is to construct a complete (or partial)
attribute-decorated parse tree during syntax analysis. Then at appropriate later
times evaluate this tree. This alternative scheme removes the restrictions on
attribute evaluation necessary with the previous scheme for both top-down and
bottom-up syntax analyzers. A great deal of research has been carried out on
developing algorithms to evaluate such attributed trees [Meijer 1982]. In outline
the main algorithms that have been developed are as follows : a single left to right
evaluation pass; multiple left to right evaluation passes; alternating left to right and
right to left passes; and evaluation based on analysis of the initial AG. The main
restrictions of this approach are the efficiency of the attribute evaluation algorithms
and the requirement to store all (or significant parts) of the decorated parse tree
before attribute evaluation [Raiha 1980b] [Madsen 1983]. This latter requirement
is significant as it leads to the consumption of significant amounts of storage on
many micro and mini-computers and in certain cases even mainframe computers.
Further discussion on some of the more practical implementation considerations of

AGs is given in Chapter 5.

A number of TWTs based on the techniques outlined above have been developed,
for example CDL [Dehottay 1977], HLP [Raiha 1978] and NEATS [Jesperson

1978]. However, none of these tools have begun to gain the widespread

25

Chapter 2

acceptance of earlier CFG based TWTs, such as Yacc. In the author's opinion
this is for one or more of the following reasons: firstly, many of these systems
have seemed difficult to use; they have not been able to construct complete
compilation systems; they have only been able to produce compilers of inferior
quality to traditional compilers; or have offered only limited advantages over
traditional construction techniques. This opinion is supported in part by a number
of papers, for example DeRemer [DeRemer 1975] said of the CDL system: "CDL
falls short of the ideal because part of the language description, as written in CDL,
is a set of program fragments that describe what the translator being constructed is
to do, rather than what the language being described is to be". The HLP system is
acknowledged by Raiha [Raiha 1980b] to be too inefficient for production use.
Finally the NEATS system, as demonstrated in [Madsen 1983], showed little

support for code generation and optimisation.

It is therefore felt that there is need here for new and improved forms of TWTs. It
is believed that may of the difficulties discussed above could be overcome by
providing better "hooks" for syntax analysis, code generation and code
optimisation within the semantic analysis phase. Itis also felt that it is important
to make TWTs better oriented towards production use, both in terms of ease of
use and reasonable efficiency. Otherwise there is little hope that such tools will be
used in commercial compiler construction. The above objectives were some of the
early goals of the author's research and were considered during the design of the

new TWT demonstrated in this thesis.

26

Code Generation

The fourth phase of most traditional HLPL compilers is code generation. The
main purpose of this phase is to translate the source code read by a compiler into
appropriate machine code instructions. The machine code generated by the code
generation phase is then usually either passed to a following optional optimisation

phase or output to a file ready for linking, loading and execution.

Research aimed at automating the construction of code generators began in the
early part of the last decade. A number of systems were produced and called
Retargetable Code Generators (RCGs) (see the bibliography [Fisher 1981]). Most
of the these early systems were based on interpretive code generation techniques
and used macro-processors. The most common approach used was to translate
the source code being compiled into some Intermediate Representation (IR) and
then to macro-expand this IR into assembly code or machine code. An example of
one such early system is [Wilcox 1971]. However, these early systems were
slow and required relatively large quantities of processing time due to the macro

processing involved.

The interpretive code generation techniques used in early RCGs were gradually
replaced during the middle of the last decade by pattern-matching techniques. One
well known pattern-matching based system, developed around this time, was the
Portable C Compiler (PCC) [Johnson 1979]. The analysis component of this
compiler was constructed using Lex and Yacc. This component analysed C
source code and translated it into a number of small syntax trees. The synthesis

component of this compiler (based on a Template Matching (TM) code generation

27

Cha pter 2

system) then examined each of these small trees, a small sub-tree at a time. The
TM code generation System attempted to replace each sub-tree analysed with a
suitable equivalent machine code instruction. If no suitable replacement could be
found the nearest match was used and a further search was made for instructions
to plug the gap. Associated with every machine code instruction was a template

showing what type of sub-tree it could be used to replace, hence the name TM.

Around this time research on RCGs become somewhat more popular (see the
bibliography [Fisher 1981]) and a number of other RCG systems using were
developed based on heuristics, such as [Frazer 1977] and [Cattell 1978].
However, most of these early RCGs could not deal with the to the variable nature
of many commercial machine architectures [Ganapathi 1986]. Therefore, during
the early part of this decade attempts were made to improve these systems. One
such development was made by Graham et al [Graham 1980] who improved
pattern-matching code generation techniques by further automating them. The
system developed by Graham et al was based on a form of CFG bottom-up
parser. The system operated by parsing the IR passed to it from the analysis
phase of a compiler and generating target code fragments every time certain

predefined patterns were recognised.

An outline structure of Graham's system was as shown in Figure 2.5.

28

Chapter 2

Source Code
—>
Input Parser
(analysis)
Intermediate
* Representation (IR)
Output Parser
(synthesis
—>
Object Code
Figure 2.5

Source code is read by the analysis phase and translated into an IR. This IR is then
passed to the synthesis phase. The synthesis phase parses this IR and generates

target code machine code.

The techniques developed by Graham have been acknowledged as a major
advance by some authors and further developed [Horspool 1987] to deal with a
wider range of target machine architectures. However, a number of further
difficulties have been encountered with these techniques when dealing with certain
target machine features, such as non-orthogonal register sets, differing addressing
modes, register pairs and overlapping register sets [Ganapathi 1986]. In order to
overcome these problems a number of researchers have developed alternative
systems using differing algorithms and specification notations. Perhaps one of the
most interesting of these was developed by Ganapathi [Ganapathi 1980].
Ganapathi suggested the use of an AG based parser in place of the CFG parser

used in Graham's original system. This modification naturally extended the

29

Chapter 2

descriptive power of Ganapathi's RCG system while still retaining the elegance of
Graham's original system. This approach has in turn been further developed to by
Ganapathi and other researchers [Bird 1982] [Pleban 1984] to produce systems
capable of automatically producing code generators of production quality
[Ganapathi 1986]. An alternative related development was made by Madsen et al
[Madsen 1983] who produced a form of Extended Attribute Grammar [EAG].
Madsen et al then demonstrated how two EAGs could be used "back-to-back" to
produce a powerful specification language called an Extended Attribute Translation
Grammar [EATG]. This specification language was used in [Madsen 1983] to
specify the syntax analysis and semantic analysis phases (and also provide the

basis for the code generation phase) for a compiler of a small sub-set of Pascal.

The automated construction of RCGs is still a current research area. Recently, the
focus in this area has changed somewhat to include the automated construction of
code generators with built-in optimisers. This is because it was realised that
certain optimisations were best preformed during code generation. This area is

discussed in the following section.

Optimisation
A fifth optional phase in many traditional HLPL compilers is the optimisation
phase. The purpose of this phase is to improve the quality of the code emitted by
the code generator. Optimisation is usually divided into two categories, namely
local optimisations (which are concerned with replacing locally poor instruction

sequences with improved sequences) and global optimisations (which concern the

30

Chapter2

larger code structure of the source). Hence optimisation carried out in phase

following code generation will be concerned with local optimisation. Global

optimisation (if attempted) needs more information about the overall program
Structure and is thus typically carried out in additional phases between semantic
analysis and code generation. The optimized machine code, emitted from the final
stage of the optimisation phase, is usually output to file ready for linking, loading

and execution.

The automated construction of local and global optimizers received little attention
from researchers until the latter part of the last decade. Since then a number of
researchers have begun to work in this area and a selection of automated systems
have been constructed (see the bibliography [Fisher 1981] and the review
[Ganapathi 1986)). Unfortunately, many of the Systems developed have been
tightly coupled to particular RCGs and have therefore been of limited use outside
of these systems, for example [Keizer 1983]. The remaining more general
Systems have mainly focused on the automated construction of local optimizers

leaving the area of automated global optimizer construction largely neglected.

A pioneer in the general area of automated optimizer construction was C.W.
Frazer. In one of his early papers [Davidson 1980] he and a co-author
demonstrated an automated system for the construction of local peephole
optimizers. The system used machine instruction set specifications, based on ISP
[Bell 1971], to describe the function of assembly language instructions for a range
of target machines. Unfortunately, the initial implementation of this system was

restricted to the optimisation of assembly language programs and operated at a rate

31

Chapter 2

of between 1 and 10 instructions per second. The execution performance was
improved in subsequent versions of the system [Davidson 1984] (Further reading
[Kessler 1984b)). However, the scope of the System remained restricted to the
optimisation of assembly language programs and was not expanded to embrace the

optimisation of numerically represented machine code programs.

An alternative to the above system has been suggested in [Giegerich 1983]
(associated work [Kessler 1984a]). This alternative system attempts to

decompose complex instruction sequences into simpler ones.

However, in general there are a number of practical problems associated with
interfacing independent local and global optimizers with code generators. One
major problem is that many optimisations alter the register requirements of the
optimized code by either increasing or decreasing the number of registers required.
This makes it necessary to integrate such optimisations into the code generation

phase, as mentioned earlier.

An attempt to integrate the automated construction of code generators and local
optimizers was made in [Ganapathi 1985]. The system described in this paper
used AG specifications to define integrated code generator/optimizers. The results
obtained from this research were, in this author's opinion, encouraging.
However, it is acknowledged that further research 1s required to investigate the full
potential of AGs in this area. Furthermore, additional research is also required to
investigate the applicability of AGs in the automated construction of global

optimizers. This latter area is of great importance as certain global optimisations

32

Chapter 2

(such as optimal register allocation and code motion) are vital in high quality code
generation. However, these areas were beyond the scope of the author's current

work and may be suggested as topics for future research.

Linking and Loading

The final phase of most traditional HLPL compilers is code reformatting. The
main purpose of this phase is to reformat the code generated by a compiler into a
form acceptable to the local Operating System (OS). This phase is seldom an
independent compilation phase; it is more usually appended to the code generation
or optimisation phase. The reformatting performed by the code reformatting phase
is typically highly OS dependent but is important if a compiler is intending to use

local OS facilities, such as the linker and loader.

The majority of TWTs avoid OS interfacing difficulties by generating code in local
assembly language (eg. The Portable C Compiler (PCC) [Johnson 1979]). The
assembly code produced by these systems is then usually assembled, by the local
assembler, and linked and loaded before being executed. However, assemblers
are often slow and inevitably repeat work previously done by the compiler (eg.
lexical analysis). In addition to this, generating assembly language code can, in
some cases, be more difficult than generating the same code in pure binary.
Ideally, it would be desirable for a TWT to have a choice of interfacing either with
an assembler or directly to the native OS. Unfortunately, in practice this is

difficult achieve due to the high OS dependency of this area.

33

Chapter 2

There have been a number of attempts to overcome the difficulties outlined above
by constructing universal assemblers [Keizer 1983] and machine independent
linkers and loaders [Davidson 1982]. However, it has proved difficult to interface
these systems to a range of typical OS object libraries, due to the wide range of
formats used. Therefore, such systems have not been able to access native OS
Support routines and functions. Most OSs provide a large number of such
routines and functions many of which are of potential use to compilers. For
example these may include: access to standard mathematical and input/output
libraries; a convenient symbolic reference mechanism; standard means to establish
run-time debugging information. Thus, failure to be able to use these routines and
functions leads to a significant increase in the effort required by the compiler

writer.

The initial objective of the author's research was to construct a system capable of
resolving the above problem. However, it was soon realised that any system
capable of overcoming this problem was also likely be useful in other areas of
automated compiler construction. Thus, the initial aims of the author's research
were expanded to include the development of a new TWT suitable for the

construction of complete compilation systems.

Summary
We have seen in this chapter that existing TWTs are already capable of processing
formal lexical and syntax specifications and automatically producing acceptable

lexical and syntax analysers. It was noted that some researchers consider that

34

Chapter 2

research in these areas has now reached its goal [Ganapathi 1986]. We then
continued and examined recent research in the areas of automated semantic
analyser, code generator and code optimiser construction. It was seen that a
considerable amount of research had been carried out in these areas and that a
particular specification notation, namely AGs, had been used by a number of
researchers in all of these areas. The utility of AGs has also been demonstrated in
a number of other current research areas, such as natural language understanding
and the automated construction of context-sensitive language-based editors. The
latter is understood to be a particularly active research area at the present time (see
[Reps 1984] for an example of such work). On the basis of these observations the
author believes that AGs provide a suitable notation for the specification of all or
significant parts of complete compilation system:s. Finally, our examination of
recent research was completed by examining the problem of interfacing compilers

to operating systems. The significance of this area was noted.

The initial research carried out by the author indicated that it mi ght be possible to
construct a small but relatively powerful AG-based TWT suitable for the
specification of complete or significant parts of entire compilation systems (eg.
lexical analysis, syntax analysis, semantic analysis, code generation and local
optimisation). This had not been achieved when the author's research began in
1983 [Paulson 1982]. It was believed that the development of such a system
would be a major advance and might be suitable for the design and construction of
commercial compilers. It therefore seemed worthwhile to conduct an experiment
to evaluate the accuracy of this idea. Such an experiment has been carried out and

the system produced is described and evaluated in the following chapters.

35

Chapter 3

An Overview
of the

Aston Compiler Constructor

Int ion

The Aston Compiler Constructor (ACC) was the name given to an experimental
automated compiler construction tool developed at Aston University, England.
This system was developed to investigate the viability of constructing Translator
Writing Tools (TWTs) based solely on a Attribute Grammars (AGs) and capable

of addressing the issue of constructing complete compilers.

T n Compiler Con

The development of the ACC was carried out in two main stages. The first stage
of development was to design a new AG based specification language suitable for
specifying a wide range of compiler components. It was intended that this new
specification language would be clear, consistent, easy to use and support
modularisation. The new specification language designed during this stage of the
ACC project was later called the Compiler Construction Language (CCL). A

detailed description of this lan guage is given in Chapter 4 of this thesis.

A small example CCL specification is given in Figure 3.1.

37

TITLE Example

CONSTANTS
Messagel =
Message?2 =

INPUT TOKENS
Boolean =
Integer =
VOID =

OUTPUT TOKENS

Chapter 3

"\t : This is a boolean constant\n¥;
"\t : This is an integer constant\n";

"TRUE" | "FALSE";
INTEGER;
N0 ~>"\377";

Message = TEXT;
TYPES
Constant = UNION
{
boolean ¢ TEXT;
integer : INTEGER;
}:
VARIABLES
Boolean boolean;

Integer integer;

Constant constant;

RULES
start

= { input(Tconstant), output(iconstant Y o)

input (Tconstant)

= input_boolean(Tconstant)

input_integer(Tconstant)

input_boolean (Tboolean(boolean })

= TBoolean(Tboolean) ;

input integer(Tinteger(integer })

= TInteger(Tinteger)

output (iconstant)

= iBoolean(iconstant.boolean Y. iMessage(iMessagel) o

iInteger(iconstant.integer), iMessage(iMessageZ) ;

END

Figure 3.1

38

Chapter 3

The second stage of ACC development was to design and implement a system to

validate, translate and execute compiler specifications written in the CCL.

The overall structure of the final system produced was as follows.

Compiler
Specification

;

Loader
(Loader Phase)

I

Compiler
Source

p Object
Code (Execution Phase) cije;

Figure 3.2

The ACC Loader Phase translates compiler specifications, such as the example

CCL specification given above, into a representation suitable for execution. A

typical simple CCL specification may be translated as shown in Figure 3.3.

39

Chapter 3

Compiler
Specification

ﬁ/

Loader

A Ne——r N—

Input Lexical Pass1 Symbol Output
Input Phase Translation Phase Output Phase
Figure 3.3

The ACC Execution Phase accepts translated CCL specifications and executes

them. The execution of a simple CCL specification might be as shown in Figure

3.4, which follows.

40

Chapter 3

Input Phase Translation Phase Output Phase
Input Lexical Passl Symbol Output
—-——} Scanner Parser Reconstruct

v

N
New Lexical

Figure 3.4

A detailed description and discussion of the implementation of the ACC is given in
Chapter 5 of this thesis.

Note - in Figures 3.3 and 3.4 and subsequently,

denotes a file containing data to be referenced
or processed

N

(rectangular objects) denote processors.

41

Chapter 4

The

Compiler Construction Language

Intmgugg'gn

Chapter 4

The Aston Compiler Constructor (ACC) uses a special high level compiler

oriented notation called the Compiler Construction Language (CCL). A compiler

Or compiler component specification defined in the CCL can be processed by the

ACC to automatically produce a multi-phase table-driven compiler or compiler

component.

Translation Phase

Source Input
Code = Phase —» &

The overall structure of systems produced by the ACC is as follows.

Output
Phase

Figure 4.1

Object

> Code

The 'Input Phase' reads source code and prepares it for the 'Translation Phase'.

The "Translation Phase' consists of zero or more Attribute Grammar (AG) based

translators which translate this source code into some new form. The 'Output

Phase' reformats the output from the "Translation Phase' into some final target

representation called object code.

43

Chapter 4

The Compiler Con ion Lan

The Compiler Construction Language (CCL) was developed from an initial basis
provided by the draft British Standards Institute (BSI) meta-language proposed in
[Scowen 1982] and a Translator Writing Tool (TWT) specification language
proposed in [Madsen 1983].

A complete CCL specification thus consists of an underlying Context Free (CF)
specification expressed essentially in Scowen's style augmented by attribute
formulas which typically express the static semantics of and the translations to be
applied to the source language. For programming convenience and reliability
attribute values and variables are typed. Both compound and simple types are
supported. For convenience in constructing translators, direct means are supplied
for relating CF terminals and attribute values to both source and target language

symbols.

A CCL specification consists of a number of separate sections. The structure and
content of these sections is discussed in detail in under the following headings :
'Title', 'Constants’, Input Tokens', 'Output Tokens', 'Types', 'Variables' and
'Rules'. The formal specifications given under these headings are extracts from a
complete formal CCL specification given in Appendix 2. The attributed CF
specification itself appears in the 'Rules’ section of a CCL text. The remaining
sections provide the support structure for the typing of attributes and for defining

the input and output interfaces to be used.

44

Chapter 4

Title
A CCL specification begins with the "TITLE' section. This section is used to

name a CCL specification and is mandatory.

The 'TITLE' section is formally defined as follows.

Title = "TITLE"™, Identifier.
Identifier = ('A'12'|rar—5rg1),
(lAl_)'lelal_)'zl’ ‘0'—)'9‘1'_').
Figure 4.2

A typical CCL title may be as follows.
TITLE Pascal

The title given to a CCL specification is used as a prefix in the names of the

various files generated by the ACC.

nstan
The second section in a CCL specification is the ' CONSTANTS' section. This
section is used to define CCL compile-time constants and is optional. The
constants defined in the this section may be used throughout the remainder of the

CCL specification.

45

Chapter 4

The 'CONSTANTS' section, if present, is formally defined as follows.

Constants
Constant_Rules
Constant_Rule

Expression

Sets
Binary
Shift
Sum
Term
Power

Unary

Primary

Constant

Character

Hexadecimal

Octal
Real
String

Unsigned

Variable

Function

"CONSTANTS™, Constant_Rules.

= Constant_Rule, { Constant_Rule }.

= Identifier, w=r, Expression, w;m,
Sets, (("="'"¢"I">"l"2"'"("|"S"), Sets) .
Binary, { ("mm | nyun»). Binary }.
Shift, { (wg» I "f™), shift }.
Sum, { ("< onyyn), Sum }.
Term, { ("+m | »n_on), Term }.
Power, { (mxm | wu/u), Power }.
Unary, { m~w, Unary }.

{ mar o omon Primary.

Constant |
Variable |
[Function], m(», Expression,)n,

CharacterIHexadecimalIOctal!Real!StringlUnsigned.

"\NO'—>1\377",
("0" 19 AT IR gy gy

(10" "9 [TA S 1F gy pry
0r 7T, (101,
0TI, (10T gy i, h0isigr, (1014
P, N0 I\377r), e,
"0'—'9r, (10'—1gry,

Identifier |
Identifier, ".", variable |
Variable, [Expression """ |

"<<™, Variable, w>n |
<", Variable, ">>r,

"ABS"|"INTEGER"I"LENGTH"I"REAL"I"UNSIGNED”.

Figure 4.3

The CCL supports a wide range of constants, variables, operators and functions.

These are discussed in the text below, except CCL variables which are discussed

46

Chapter 4

in a later section.

The types of constants supported by the CCL are as follows.

ype Name Tvpe Example
CHARACTER Numeric at
HEXADECIMAL Numeric 0x12aF or 0X123C
INTEGER Numeric 123
OCTAL Numeric 0123
REAL Numeric 123.456
TEXT String "Any Text Sting™
UNSIGNED Numeric 123

Figure 4.4

Character or string constants may contain special character sequences, as follows.

Character Meaning
\b A back space character.
\f A form feed character.
\n A new line character.
\r A return character.
\t A tab character.
\Any other character The character.
\Octal number The character with this Octal character code.

Figure 4.5

The CCL supports a selection of operators to allow a wide range of calculations
and manipulations to be specified within CCL specifications. These operators are

divided in two main groups, namely binary operators and unary operators.

47

Chapter 4

The CCL binary operators available are as follows.

Priority Operator ZIype Meaning
2 (Highest) ~ Numeric Exponential.
3 * / Numeric Multiplication and Division.
4q + - Numeric Addition and Subtraction.
5 << >> Numeric Logical Shifts.
6 & i Numeric Binary And and oOr.
7 Tables Table Union and Intersection.
8 = # Any Comparisons.
8 < < Numeric Comparisons.
8 (Lowest) > > Numeric Comparisons.
Figure 4.6

The CCL binary operators are divided into four main classes. These are arithmetic
operators, logical operators, table operators and relational operators. The
arithmetic operators are ALY ' and . These operators are used to
perform exponentials, multiplication, division, addition and subtraction
respectively. The logical operators are '<<', '>>', ‘&' and '|. These operators

are used to perform logical left and right shifts and binary AND and OR

operations. The table operators are 'U' and '~ These operators are used to join
and intersect tables (discussed later). Finally, the relational operators are '=', "2

‘<, '<Y 's" and '>'. These operators are used to set constraints on

sub-expressions within CCL rules.

In order to keep CCL specifications concise and readable the CCL relational

operators function in a way slightly different than might normally be expected.

48

Chapter 4

Consider the following CCL expression.

(Count+1>o<10)

When evaluating this expression the ACC would first evaluate the sub-expression
‘Count + I'. The value of this sub-expression would then be compared with 0
and 10. If the value of the sub-expression was in the range 1 to 9 then this value
would be returned as the result of the expression. However, should the value of
the sub-expression be outside the range 1 to 9 the expression would be deemed

invalid and would cause the CCL rule it was associated with to fail.

The CCL unary operators available are as follows.

Pricrity Operator ype Meaning
1 - Numeric Unary Minus
1 ! Numeric Bitwise Negation
Figure 4.7

These unary operators may be used to negate CCL expressions.

The CCL binary and unary operators shown above may be used in arbitrarily
complex numeric expressions. The CCL allows the numeric types within such
expressions to be combined as required, with any necessary type conversions

being performed automatically by the CCL processor.

49

Chapter 4

Consider the following expression.

(7.321 + ox4q * 8.76)

The hexadecimal value '0x4' in this expression would be automatically floated to

the real value '4.0' by the CCL processor before the "*' operation was carried out.

Finally, the CCL Supports a number of built-in functions defined as follows.

Name Function

ABS Return the absolute value of following expression.

INTEGER Truncate the value of the following expression to
integer.
LENGTH Return the length of following string.
REAL Float the value of the following expression to real.
UNSIGNED Truncate the value of the following expression to
unsigned.
Figure 4.8

These functions operate on the numeric expressions (contained within brackets

following them), except the function 'LENGTH' which operates on textual

values.

50

The following example shows a number of typical CCL constant expreséions.

CONSTANTS

Character A

Integer = -123;

Real = 123.456;

Hexadecimal = Ox1FF;

Octal = 0123;

Unsigned = 123;

Text = "A Text String™;

Case = fa' - 'A';

Size = Case * 3;

Truncate = INTEGER(Real / 5);
Figure 4.9

The CCL is case sensitive so that, for example, 'Integer' in the above example

does not clash with the reserved word TINTEGER'.

Input Tokens
The third section in a CCL specification is the INPUT TOKENS' section. This

section is used to define source language input terminals and is mandatory. The
input terminals defined in this section may be used as rule terminals, and may also
be used to specify CCL variable types, throughout the remainder of the CCL

specification.

51

The INPUT TOKENS' section is formally defined as follows.

Input Section = "INPUT", “TOKENS", Input_Rules.
Input_Rules Input Rule, { Input Rule }.

Input_Rule "yOoID", "=", Input_Token, ";" |
Identifier, "=, "CONSTANT", String, ";*
Identifier, "=", Input Token, ;" |
Identifier, "=", Input_Structure, ";".

Input_Structure “STRUCTURE"™, "({", Input_Clauses, "}".
Input_Clauses Input Clause, { Input_Clause }.

Input_Clause "voIip¥, ":"™, Input_Token, ";" |
"CONSTANT", ™:", String, ";" |
Identifier, ":", Input_Token, ";.
Input_Token Input_Choice | Simple_Type.
Input Choice Input Sequence, { "|", Input_Sequence }.
Input_ Sequence Input Primary, { *,", Input_ Primary }.
Input Primary "(", Input Choice, ™)™ | "[", Input_Choice, "] |

"{", Input Choice, "}", Iterations |
Input Terminal.

Iterations ["*", Expression, ["—", Expression]].

Input Terminal Range | String | "2".
Range lll"’l\ol_)l\3'77l’"l'l’ ll_)l‘!,llf",I\Ol_)!\3'7’7l,"lll.

Figure 4.10

The CCL allows input terminals to be defined using Regular Expressions (REs).

These REs consists of a number of RE operators and RE terminals.

The RE operators available in the CCL are as shown in Figure 4.11.

Priority Operators Meaning
(Highest) () Enclosed clauses are to ‘be grouped.

1
1 {] Enclosed clauses are optional.
1 { } Enclosed clauses are to be iterated.
2 , Sequence operator.
3 {Lowest) | Alternative operator.

Figure 4.11

The RE terminals available in the CCL are as follows.

Example Meaning
"A keyword or string" A textual string.
YAt 7! A character range.
? Any character.
Figure 4.12

A number of typical CCL input terminals are as follows.

INPUT TOKENS

Identifier = ("A'>'Z2"'), {'AT'Z7|'0''9 " _");
Term = ¥t ‘ "/";
Comma ="

Figure 4.13

The input terminal 'Identifier' above is defined as a letter followed by a number of
letters, digits or underscores. The input terminal "Term' is defined as either the
symbol '*' or '/'. Finally, the input terminal '‘Comma’ is defined as the single

character symbol ',

When a CCL rule including any of the above input terminals is applied, the text

matched by this terminal is be returned to the calling CCL rule. For example, a

53

CCL rule which applies the terminal 'Identifier' would automatically be returned

the name of the identifier matched. This name could then be validated and other
information (such as the identifier's type) could be located and extracted. This

feature is very useful when writing CCL specifications.

However, in some cases the text matched by an input terminal may not required by
the CCL rule which applies it. The terminal '‘Comma’ above, for example, always

matches the text ',’. This text is therefore of little interest.

We may redefine the input terminal '‘Comma’ as follows.

Comma = CONSTANT ™, ™;

This alternative specification of the input terminal 'Comma’ causes the text
matched by this terminal to be discarded. This feature is convenient when

defining programming language reserved words.

It is also sometimes necessary to completely ignore certain input terminals and not
pass them on for further processing, for example many programming languages
ignore comments and white space. Therefore, the CCL supports a special
keyword ('VOID') which may be used to cause the voiding (ie. discarding) of

certain input terminals or text.

The following example (Figure 4.14) shows how comments and white space may

54

be voided in a simple programming langauge.

VOID = nono "\t" | "\I'\",'
VvOID = n(u' (lAl__)lZlIlav_)lzlllol_)lgt)’ n)";

Figure 4.14

To aid the input and output of numeric values the CCL supports a number

predefined REs. These predefined REs are associated with the standard CCL

variable types (defined later).

The predefined REs supported by the CCL are as follows.

Type Definition

CHARACTER N0 '\377"

HEXADECIMAL ("OxX™{"0X™), {'O'—D'9'|'A''F'|ta'—>'f'"}
INTEGER T1'—1'9', {f0'—H'9'"}

OCTAL "o, {T0'T—17Y)

REAL lll__)lgl' {Yol-_)lgl)’ "."’ |Ol__)19I, (IOI__)'9')
UNSIGNED '1'—>'9Y, {('0'>'9'"}

SHORT FIXED 2 % sizeof (short unsigned) ***

FIXED ? * gizeof (unsigned)

LONG FIXED ? * sizeof(long unsigned) o

FLOAT ? * sizeof(float) ~*~

LONG FLOAT ? * sizeof(long float)

FILE (lAl__)lZl;lal__)lzl)’ {lAI__)lZIilal__)lzl)
TEXT (IA"_)‘ZIl'a"_)'Z'), {lAl__)Ilelal__)lZl)

unformatted numerics, and strings.

*** As defined locally in the C programming language

Figure 4.15

These predefined REs are divided into three main classes: formatted numerics,

The formatted numeric REs are

55

'CHARACTER', 'HEXADECIMAL', 'INTEGER', 'OCTAL', 'REAL" and

'UNSIGNED'. These predefined REs are used to input characters and character
formatted hexadecimal, integer, octal, real and unsigned numerics (character to
binary conversion being performed). The unformatted numeric REs are 'SHORT
FIXED', FIXED', LONG FIXED', 'FLOAT' and LONG FLOAT'. These
predefined REs are used to input integer and real numerics represented in local
binary format (here no conversion is required). Finally, the string REs are
'TEXT' and 'FILE'. The predefined RE 'TEXT' is used to input textual
alphabetic strings. However, the predefined RE 'FILE' is more unusual. When
the ACC applies this predefined RE (at execution time) it assumes that the text that
matches it denotes a valid host operating system file name. The ACC
automatically opens the named file as a new source file and reads its contents.
When the file is exhausted it is automatically closed and input continues from the

original source file.

The CCL predefined REs may be used as follows.

Integer = INTEGER;

Real = REAL;

Short = SHORT FIXED;
Figure 4.16

All input terminals that include predefined REs return a value to the CCL rule
which applies them. The value returned by a predefined RE is of the

corresponding CCL standard type. As an example the input terminal 'Integer

above would match any formatted integer string found within the source code

56

being read by the ACC (such as '123") and would return its binary numeric value

to the CCL rule which applied it.

Finally, the CCL also supports the definition of structured input terminals. These
terminals consist of a number of individual input terminal specifications joined
together in series. The 'CONSTANT' and 'VOID' keywords may be used to
replace field names within structured terminals. The effect of these keywords is

the same as defined earlier.

Consider the following structured input terminal specifications.

Include STRUCTURE
{
CONSTANT : "#include \'";
File Name : FILE;
CONSTANT : "\ '\n";
}i

Hexadecimal STRUCTURE
{
VOID D MOx™ | MOXM;
Value : HEXADECIMAL;

STRUCTURE

{
CONSTANT
Value
CONSTANT

Figure 4.17

The fields within a structured input terminal may be accessed individually within
CCL specifications (using the CCL '." operator discussed later). Thus, the field

"Value' in the structured input terminal 'String’ above may be accessed and

57

processed independently of the other fields in this structure. This feature can be
very helpful when writing CCL specifications as enables the processing of certain
classes of symbols to be specified in a way that is both clear and efficient. This is

demonstrated later in Chapters 6 and 7 of this thesis.

Output Tokens

The fourth section in a CCL specification is the 'OUTPUT TOKENS' section.
This section is used to define output terminals and is mandatory. The output
terminals defined in this section may be used as CCL variable types and rule

terminals throughout the remainder of the CCL specification.

The 'OUTPUT TOKENS' section is formally defined as follows.

Output_Section = "OUTPUT", "TOKENS", Output_Rules.
Output_Rules = Output Rule, { Output_ Rules }.

Output_Rule = Identifier, "=", "CONSTANT", String, ";"
Identifier, "=", Simple Type, ";" |
Identifier, "=", Output_Structure, ";".

Output_Structure = "STRUCTURE", "{", Output_Clauses, "}".
Output Clauses = Output_Clause, { Output_Clause }.

Output_Clause = MCONSTANT™, ":", String, ;" |
Identifier, ":", Simple Type, ";".

Figure 4.18

The 'OUTPUT TOKENS' section is defined, as far as is possible, to be consistent
with the INPUT TOKENS' section. However, we do need a number of minor

differences between the definitions of these two sections, as follows: Firstly, the

58

use of REs and the keyword 'VOID' are not permitted in the 'OUTPUT

TOKENS' section as these clauses are nonsensical when outputting information.
Secondly, the keywords 'CONSTANT' and 'FILE' are redefined to denote

constant text and files to be output by the ACC.

A number of typical CCL output terminals are as follows.

OUTPUT TOKENS

Value = INTEGER;
Header = CONSTANT ''*** Header ***\n';
Assembler = STRUCTURE
{
CONSTANT HE "y
Function : TEXT;
CONSTANT HERAAN ¥
Operand : INTEGER;
CONSTANT ¢ "\n";
}i
Figure 4.19

The output terminal 'Value' above can be used to output integers passed from
CCL rules in ASCII character format. (eg. '123"). The output terminal 'Header'
is a constant output terminal and can be used to output the constant text defined as
is required. Finally, the output terminal 'Assembler' is a structured output
terminal. This terminal may be used to output structured information from CCL

rules.

59

Types
The fifth section in a CCL specification is the "TYPES' section. This section is

used to define new variable types and is optional. The variable types defined in

this section may be used throughout the remainder of a CCL specification.

The "TYPES' section, if present, is formally defined as shown in Figure 4.20.

Types "TYPES™, Type Rules.
Type_Rules Type Rule, { Type_Rule }.

Type Rule Identifier, "=", Complex Type, ";"

’

Identifier, "=", Type Structure, ";".
Type_ Structure “STRUCTURE™, "{", Type Clauses, "}" |

“UNION", *"({", Type Clauses, "}" |

"TABLE™, "[", Complex Type, ™]™.

Type_Clauses Type Clause, { Type Clause }.

Type Clause Identifier, ™:", Complex_ Type, ™;".

Conplex Type Identifier | Simple Type.

Simple Type “"CHARACTER" | "INTEGER" | "HEXADECIMAL™ |
"OCTAL™ | "™REAL"™ | "“UNSIGNED" |
“SHORT", "FIXED"™ | "FIXED"™ | "LONG", “FIXED"™ |
"FLOAT'™ | "™LONG', "FLOAT" |
"TEXT™ | "FILE".

Figure 4.20

The CCL supports a number of standard types, as shown in Figure 4.21.

Iyoe Meaning
CHARACTER A single Character
HEXADECIMAL A hexadecimal number
INTEGER An integer number
OCTAL An octal number

REAL A real number
UNSIGNED An unsigned number

60

SHORT FIXED short fixed point number
FIXED fixed point number

LONG FIXED long fixed point number
FLOAT floating point number

LONG FLOAT long floating point number

TEXT textual string
FILE legal file name

Figure 4.21

These standard types above correspond to the predefined REs given in Figure

4,15. These types are divided into three main groups. The standard types

'CHARACTER', 'HEXADECIMAL', 'INTEGER', 'OCTAL', 'REAL' and
"UNSIGNED' may be used to define fixed-sized character, hexadecimal, integer,
octal, real and unsigned variables respectively. The standard types 'SHORT
FIXED', 'FIXED', 'LONG FIXED', FLOAT' and 'LONG FLOAT" offer a
range of fixed and floating point numeric precision and may be used as alternatives
to the standard types TNTEGER' and REAL'. However, it should be noted that
the input and output representations of these types are somewhat different (see
Figure 4.15). Finally, the string types "TEXT" and 'FILE' may be used to define

variables to contain textual strings and file names respectively.

The CCL, like many traditional high level programming languages, allows the
definition of arbitrarily complex data structures. These data structures may consist
of structures, unions and tables and are specified using the standard types given

above.

A CCL structure consists of a number of related data fields stored together as an

entity. Each field within a structure can be accessed and manipulated

61

independently of the all other fields within the same structure.

An example of a typical structure definition is as shown in Figure 4.22.

Structure = STRUCTURE
{
Fieldl
Field2
Fieldn
}:

: INTEGER;
: REAL;
: TEXT;

Figure 4.22

The fields within a structure are accessed using the CCL dot operator. The second

field in the above structure, for example, could be accessed as follows.

Structure.Field?

A CCL union is an exclusive union of a number of data fields where only one data

field may be defined at any time.

An example of a typical union definition is as shown in Figure 4.23.

Unicn = UNION

Fieldl
Field2
Fieldn

: INTEGER;
: REAL;
1 TEXT;

Figure 4.23

Again, the defined field within a union may be accessed using the CCL dot

operator, for example the first field may be accessed as follows.

Union.Fieldl

The CCL structure and union keywords define objects that are in many ways
analogous to the structures defined by the 'struct’ and 'union' keywords in the C
programming language. However, unlike the C programming language, the ACC
maintains a hidden discriminant for CCL unions indicating which alternative
within a union is currently defined. This discriminant can be used in conjunction

with the RE alternative operator '|' to control the execution of CCL specifications.

Consider the following CCL rule.

= a(dUnion.Fieldl) | B(dUnion.Field2) | c(dUnion.Fieldn);

This rule would call the rule 'A' if the alternative 'Union.Field1' is defined, rule
'B' if the alternative'Union.Field2' is defined or rule 'C' if the alternative

"Union.Fieldn' is defined.
Finally, a CCL table is a collection of keyed and unkeyed entries stored in a simple

hash table. Such tables may contain zero or more entries, each entry being stored

in sequential order of arrival.

63

A definition of typical CCL table is as follows.

Table = TABLE[Structure];

An entry in a CCL table may be accessed in a number ways. The first or last item

in a table may be accessed using the CCL sequence operators, as follows.

Selector Meaning

<< Table > Select the first entry in the table

< Table >> Select the last entry in the table
Figure 4.24

The CCL sequence operators cause the rule they are associated with to fail if the

table being accessed is empty.

Alternatively, a keyed entry in a table may be accessed by using the CCL table

selection operator.

A typical CCL table selection may be as follows.

Table[5]

This table selection clause causes the table entry with the numeric key 'S’ to be
selected and accessed. If no such keyed entry exists within the table, this selection
clause would again cause the CCL rule it was associated with to fail. The CCL

has no restrictions on the types of table keys that may be used to access table

64

entries and allows different types of table keys to be mixed within a single table.

A wide range of typical compiler data structures can be easily defined using CCL

structures, unions and tables. These data structures include symbol tables, stacks,

queues and simple look-up tables. The utility of each of the constructs outlined

above is demonstrated in the following specification of a small symbol table.

TYPES
Invariant = UNION

Character

Integer

Real

Unsigned
¥i

Variant STRUCTURE

{
Name
Size
Type

Symbol

Il
<
=4
=
o
=4

Constant
Variable

i

Symbol Table TABLE[Symbol];

Figure 4.25

Variables

: CHARACTER;

INTEGER;

¢ REAL;
: UNSIGNED;

: TEXT;

INTEGER;

: TEXT;

Invariant;

: Variant;

The sixth section in a CCL specification is the "VARIABLES' section. This

section is used to introduce variables for the following 'RULES' section(s) and is

optional. The variables defined in this section may be used throughout the

65

Chapter 4

remainder of the CCL specification.

The "VARIABLES' section, if present, is formally defined as follows.

Variables = "VARIABLES", Variable Rules.
Variable Rules = Variable Rule, { Variable_ Rule }.
Variable_ Rule = Complex_ Type, Variable Names, ";".
Variable Names = Variable Name, { ",", Variable Name }.
Variable Name = Identifier, ["=", Complex Value].
Complex Value = Expression |
“{", Complex_Value, { ",", Complex Value }, "}" |
Identifier, "{"™, Complex Value, "}" |
“{" [Table Value, { ",", Table Value }] "]".
Table Value = [Expression, "-"], Complex Value.
Figure 4.26

The CCL supports two main types of variables. These are initialized variables and

uninitialized variables.

An initialized variable can most simply be described as a global variable. The
contents of such variables do not need to be passed between CCL rules but may be
accessed directly by any rule within a CCL specification. These variables are ideal
for the storage of static or semi-static data structures and greatly reduce the

overhead of passing such data structures between CCL rules.

66

Chapterd

The following are typical specifications of initialized variables.

INTEGER High=10, Low=2;
TEXT Words= "*** Hello World **x*x¥.

Figure 4.27

The CCL also allows data structures to be initialized.

The data structure defined in Figure 4.25 could be initialized as follows.

Symbol Table New Table =
(

“Constant™ — Invariant{ Integer{ 4 } 1},
"Variable™ — Variant{ { "Variable™,1, "CHAR" } }
17

Figure 4.28

An uninitialized variable can most simply be described as a local variable. Such

variables are used to hold dynamic values as they are passed between CCL rules.

The following are typical specifications of uninitialized variables.

INTEGER First, Second;
REAL Total;

Figure 4.29

The primary function of CCL uninitialized variables is to permit the labelling of
dynamic values as they are passed between CCL rules. This improves the clarity

of CCL specifications and makes them easier to understand.

67

Chapter 4

Rules

The final section in a CCL specification is the 'RULES' section. This section is
used to define the CCL translation phases and may appear zero or more times. If
no rules section is used, the power of the system is reduced to a general lexical
processor. In any programming language translation application, one rules section

would be used for each translation pass required.

The 'RULES' section, if present, is formally defined as follows.

Rules "RULES™, AG_Rules.
AG Rules AG_Rule, { AG Rule }.

AG _Rule Rule Header, { "=", Rule_Body], ";".
Rule Header Identifier, [™ (", Rule_Parameters, ")"].

Rule Parameters Rule Parameter, { ", ", Rule Parameter }.
Rule Parameter "T", Complex_Value | "lT", Variable |

nlv, variable | v, n<w, variable, ">".

Rule_Body Rule Sequence, { "|", Rule_Sequence }.
Rule_Sequence Rule Primary, { ",'", Rule Primary }.
Rule_Primary (", Rule_Body, ™)™ | "[", Rule Body, "]}" |
"{", Rule Body, "}", Iterations |
Rule Terminal.

Rule Terminal Rule Warning | Rule_ Error |
Rule IO Terminal | Rule_Call.

Rule Warning "<<™, String, ">>", Rule_ Body.

Rule Error n¢<", Identifier, ","™, Identifier,
", ", String, ">>", Rule_Body.

Chapter 4

Rule IO Terminal = "T", Identifier, [™(%, "T",Variable, LD TN
"l", Identifier, [™(", "l",Complex_Value, Mol
Rule Call = Identifier, ["™(", Rule Operands, ")"].
Rule Operands = Rule Operand, { ",", Rule Operand }.
Rule Operand = "T“, Variable | "T", "<T Variable, "> |
"iT", Variable | "l", Complex Value.
Figure 4.30
Rule Structure

A CCL rule is defined in two main parts. The first part is a rule header and the
second part is an optional rule body. The rule header defines the name of the CCL
rule being defined and its parameters. These parameters allow information to be
passed in and out of the CCL rule to and from the calling rule. Each parameter in

a rule header is preceded by an arrow indicating the direction of information flow.
An arrow thus 'l' denotes information flowing into the rule (from its caller), an
arrow thus 'T" denotes information flowing out of the rule (to its caller), and two
arrows thus 'L1" denote information flowing in and out of the rule (frorm and to its
caller). These arrows in a rule header therefore denote read-only parameters,
write-only parameters and read/write parameters. Read-only and read/write
parameters are usually assigned to uninitialized variables. A write-only parameter
may consist of an arbitrarily complex expression, the result of which is passed

back to the calling rule.

69

The following is a typical CCL rule header.

Calculate iA,TiB,TA*B) = ...

This rule must be called with a read-only variable which is assigned to 'A" and a
read/write variable which is assigned to 'B'. The values of these variables may
used within CCL rule specified after the symbol '=". On completion of this rule

the value of 'A*B' is evaluated and the result returned to the calling rule.

The CCL also supports a special table construction parameter to allow the easy

construction of stacks and queues. This special parameter type is denoted thus

'\<Table Name>' and allows the addition of single or multiple, keyed or unkeyed

entries into CCL tables.

A queue or a stack, for example, could be formed using the following rules.

Add_Queue (lovalues) Queue (dovalues);

Queue (i(Qtable>) vee 7

it

Figure 4.31

When the rule 'Queue’ is called (due to the application of the rule call in the rule
'Add_Queue) the entries in the table ‘Qvalues’ would be appended to the entries
in the global table 'Qtable’. The entries added to the table 'Qtable’ may then be
accessed in either queue or stack order. To access the entries in queue order the

expression '<<Qtable>' would be used. This operator yields the value of and

70

Chapterd

removes a single entry from the front of the table 'Qtable’ each time it is applied.
To access the entries in stack order the expression '<Qtable>>" would be used.
This operator yields the value of and removes a single entry from the end of the

tabie '‘Qtable’ each time it is applied.

A CCL rule body is constructed using REs over (possibly attributed) grammar

symbols. These REs consist of RE operators and RE terminals.

It has long been accepted that REs are a significant enhancement to conventional
BNF-style Context Free Grammars (CFGs) in the areas of readability and
conciseness. DeRemer and Jillig [DeRemer 1984] showed how these advantages
could also be extended (in theory) to a class of AGs which had formerly been
restricted essentially to the basic BNF-style. The ACC was developed without
prior knowledge of this work and demonstrates practically how REs may be used

in AGs processed by 'on-the-fly' attribute evaluators.

The RE operators available in the CCL are as shown in Figure 4.32.

Priority Meaning
1 (Highest) Enclosed clauses are to be grouped
1 ! Enclosed clauses are optional
1 Enclosed clauses are to be iterated
2 Sequence operator
3 {Lowest) Alternative operator

Figure 4.32

The RE terminals available in the CCL are called 'Rule Terminals', Rule Calls',

and 'Rule Errors'. These terminals along with a number of associated topics are

71

T R i

i
s

discussed in the sub-sections below.

Rule Terminals
A CCL rule terminal is used to input or output information to or from a CCL rule.
All rule terminals must be defined in either the INPUT TOKENS' or 'OUTPUT

TOKENS' section of a CCL specification. A rule terminal is denoted within a

CCL rule by a leading 'T" or 'I' symbol followed by a input or output terminal
name. If the input or output terminal has an associated value, this value may be

input or output using a bracketed value clause.

A number of typical CCL rule terminals might be as shown in Figure 4.33.

Grammar Terminal Meaning

Tir Input (ie. recognise from the source
text) a terminal of type 'IF'.

TIDENTIFIER(Thame) Input a terminal of type 'IDENTIFIER®
and store its associated value in the
variable ‘'name’.

JHEADER Output a terminal of type 'HEADER'.
lcuBeD (la*axa) Output a terminal of type 'CUBED' with

its associated value of 'A*A*A'.

Figure 4.33

Rule Call
A CCL rule call is used to invoke other rules within the same CCL RULES'
section. A rule call consists of the name of the rule to be called followed by an

optional parameter list in brackets. In general a rule call parameter will be an

72

T I———
S e o

Chapter 4

expression composed from declared (attribute) variables, constant identifiers, and
appropriate operators and paretheses. The parameter types in a rule call must

match the corresponding parameter types in the rule header.

An example of a typical rule call may be as follows.

Add up(Ia,lB,Tc)
sum(dw, TIx, Tw+x)

sum(4a, B, Tc)y, ... ;

L4

Figure 4.34

The variables 'A’, 'B', 'C', '"W' and 'X' are all defined as integers. When the
rule 'Sum' is called the value of the variables 'A' and 'B' will be passed to this
rule and will be known locally as 'W' and 'X'. On completion of the rule 'Sum'
the values of the variables 'W' and X' would be added together and the result
returned to the variable ‘C'. The value of 'C' might be used in a subsequent part

of the rule 'Add Up', or returned via a parameter to the rule which called this rule.

Visibility within Regular Expression Form

The RE operators |, '[', 7" and '{', '} sometimes affect the visibility of values
returned by RE terminals. This is because the execution of an RE terminal
enclosed within any of these operators can not always be guaranteed. For this
reason, the variables returned by a RE terminal enclosed within any of these

operators are often considered undefined outside these of operators.

73

Consider the following REs.

Regular Expression Notes

TA(Ta) The variable 'a' is defined.

[Tac Ta) 3 The variable 'a' is undefined.

¢ Tac Tay The variable 'a' is undefined.

{t Tac Tay 3 * 3 The variable ‘'a' is defined.

¢ Ta¢ Ta,Te) 1 TBC To,Te) The variables 'a' and 'b' are

undefined. The variable ‘c' 1is
defined.

Figure 4.35

The CCL adopts the following rule : 'A variable is only considered visible outside
an optional or iterative RE if its definition within that particular RE can be
guaranteed’. Suprisingly, this feature turns out to be quite advantageous in
practice as it forces the author of a CCL specification to consider carefully the
processing of such clauses. Quite often these clauses are associated with special
cases within the syntax of a source language. Thus, careful consideration of these

cases helps to reduce the likelihood of subsequent errors.

Rule Errors

Finally, a CCL rule error is a special RE terminal used in the detection and
reporting of errors discovered during the execution of a CCL specification. There
are two types of rule error terminals. These are warning terminals and error
terminals. A warning terminal is used to trap minor faults detected during the
execution of a CCL specification. This is achieved by placing a warning node

before any clause in a CCL rule which may possibly fail, but where that failure is

74

Chapter 4

not necessarily fatal (eg. the use of a non-standard construction). Should the
clause fail the failure is trapped, a warning message printed, but no further action
is taken - from the point of view of the calling rule the rule in question will have
completed successfully. A warning node consists of a '<<' symbol followed by

some warning string and a '>>' symbol.

A typical warning terminal might be as follows.

= TvMove, TIDENTIFIER(Tname),
<<"To missing™>> TTO, TIDENTIFIER(Tname);

Figure 4.36

The warning terminal in the above example would trap the omission of the input

terminal "TO' and print a warning message.

An error terminal is used to trap more serious failures which require the resetting
of the ACC Execution system. Once again the error terminal is placed before any
clause that may fail in a serious manner. Should a failure be detected during the
execution of this clause the failure would be trapped and an error message printed.
The error terminal would then cause a number of input terminals to be skipped to
ensure correct recovery from the failure. The format of an error node is a '<<'
symbol followed by a recovery token name, a search limit token name, an error

string and a ">>' symbol.

75

Chapter 4

A typical error terminal might be as follows.

<<SEMI_COLON,DOT,"Invalid Statement™>>
{ Assignment { Ttype } | Compound | If);

Figure 4.37

The above error terminal would trap any faults discovered within the grouped
input terminals that follow it. Should this terminal be activated a number of input
tokens would be skipped until a token of type 'SEMI_COLON' was discovered.
However, the search for a token of this type will not proceed past a token of type
DOT'. If a token of type 'SEMI COLON' is found then the recovery is
considered successful and processing continues. If no token of type
'SEMI_COLON' can be found then the recovery is considered unsuccessful and

processing ceases.

n Example of mplete Rul i
RULES
Statement =
<<SEMI_COLON, DOT, "Invalid Statement”>>

(Assignment (Ttype) | Compound | If);

I

Assignment (T(typel = type2))
Identifier{ Ttypel Y, TASSIGN, Expression(Ttypez) ;

Expression{ T(typel = type2)) =
Identifier(Ttypel), Sum(ltypel,TtypeZ) ;

Sum { itype,Ttype) =
{ TSUM(Toperator }, Expression{ Ttype Y 1

Identifier(Tsymbolﬁtable[name).type) =
TIDENTIFIER(Tname);

76

C"l'l‘zipterrzj;- .

Compound =

TBEGINING, Statement, { TSEMI COLON, Statement }, TENDING;

If =
TIF, Boolean (Ttype Y,
TTHEN, Statement,
{ TELSE, Statement J,
Tr1;

Boolean{ T(typel = type2)) =

Expression(Ttypel), TBooLEAN(Tbool), Expression(Ttype2 ¥

Figure 4.38

This example specifies the context-sensitive syntax of a simple programming
language. The rule 'Statement' defines the programming language statements
available and would deal with any errors discovered during processing of this
specification. The rules 'Assignment’, 'Compound' and 'If' define the structure
of assignment statements, compound statements and an if-statements within this
simple language. The rules 'Expression’, 'Sum’, and Identifier' specify the
structure of numeric expressions used in assignment statements. Finally, the rule

"Boolean' defines the structure of boolean expressions used within if-statements.

Summary

In this chapter we have examined the design and structure of the CCL. We have
seen that the CCL is fundamentally based on attributes but nevertheless has been
designed using a Pascal and C style idiom. This idiom has been used in order to

give the CCL an easy to use and familiar style. We have also seen that the CCL

provides powerful interfacing facilities. It will be shown later that these facilities

77

'Chapfer‘ 4

allow the ACC to be interfaced to a wide range of operating systems, compilers

and other software components.

In the next chapter we shall examine the software components of the ACC and we
shall see how these components can be use to translate and execute CCL

specifications.

78

Chapter

The Implementation
of the

Aston Compiler Constructor

Chapter 5

Introduction
The implementation of the Aston Compiler Constructor (ACC) was carried out on
a High Level Hardware (HLH) Orion mini-computer running the Berkley UNIX
operating system. The source code of the ACC consists of around 10,000 lines of
code written in the C programming language and about a further 500 lines of code
written for Lex and Yacc. The ACC is portable across UNIX systems and in a
trial has been ported onto HLH Orion2, a Sun Systems SUN3 and a Digital
Equipement (DEC) Vax 11/750.

The ACC has been constructed using a simple two phase structure. The first
phase of the ACC is called the Loader Phase. This phase translates compiler
specifications into a representation suitable for subsequent execution. The second
phase of the ACC is called the Execution Phase. This phase accepts translated

compiler specifications and executes them, by interpretation.

The overall structure of an ACC-built compiler was shown in Figure 3.2 but is

repeated here for convenience (Figure 5.1).

80

Chapter §

Compiler
Specification

b

Loader
(Loader Phase)

v

S Compiler Obicct
ource > > ec
Code (Execution Phase) Cone

Figure 5.1

The implementation of the ACC Loader and Execution Phases is discussed in

detail in the following sections.

The Loader Phase

The ACC Loader Phase translates compiler specifications, written in the Compiler
Construction Language (CCL), into a representation suitable for execution, called
ACC Intermediate Execution Format (IEF). The ACC Loader Phase consists of a
single program called the LOADER.

der
The LOADER program reads CCL specifications via the standard C input channel

and translates them into ACC IEF.

81

Chapter5

A small CCL specification may be translated by the LOADER as follows.

Compiler
Specification

\;/

Loader

e N

Input Lexical Pass1 Symbol Output
Input Phase Translation Phase Output Phase
Figure 5.2

(Figure 3.3 repeated for convenience).

The ACC IEF generated by the LOADER is distributed between a number of files.
These files can be divided in two main groups, namely control files and
information files. The control files in the above example are 'Input’, 'Passl’ and
'Output’. These files contain information to control various components of the

ACC Execution Phase (discussed later). The information files in the above

82

Chapter»s '

example are Lexical' and 'Symbol'. These files contain information about CCL

constants and variables.

The LOADER checks the lexical, syntactic and static semantic structure of CCL
specifications before translating them into ACC IEF. The translation of each
section of a CCL specification has a number of particular features (See Chapter 4
for CCL sections). In order to highlight these features and explain the operation
of the LOADER we shall examine the translation of a small example CCL

specification.

The outline structure of this example is as follows.

Title

Constants

Input Tokens

Output Tokens

Types

Variables

Rules

Figure 5.3

83

-'C-i‘:haﬁter 5

We conduct this examination by examining small segments of the example,
corresponding to the CCL sections within the specification. We shall hence see

how the LOADER translates each particular CCL section into ACC IEF. A

complete listing of the example is given in Appendix 3.

Title
The first CCL section in the example specification is the "TITLE' section. This

section is used to name the specification, it is as follows.

TITLE Example

The title given to a specification is used by the LOADER to generate file names for

the ACC IEF files output by the program.

Constants
The second CCL section in the example is the 'CONSTANTS' section. This

section is used to allow the specification of CCL compile-time constants, as

follows.
CONSTANTS
LDA = 0x10;
ADA = 0x11;
SBA = 0x12;
STA = 0x13;

Figure 5.4

84

Chapter 5

The LOADER evaluates constant expressions and stores them within its internal
symbol table. The above constant expressions would be evaluated and stored in

the LOADER's internal symbol table as follows.

Symbol Hash
Table H1 H2 H3 H4
Symbol ' >< /
Information
Table
Key
H1 The hash value of 'LDA' The value of constant 'LDA'
H2 The hash value of 'ADA' The value of constant 'ADA'
H3 The hash value of 'SBA' The value of constant 'SBA'
H4 The hash value of 'STA' The value of constant 'STA'

Figure 5.5

All constants are stored in the LOADER's internal symbol table in ACC value

format. The structure of this format is as follows.

Value Type Value

Figure 5.6

Whenever a constant identifier is found within a CCL specification, the LOADER

replaces that identifier with the corresponding constant value.

85

Ch]aptér 5

The ACC currently imposes a number of restrictions on CCL constant
expressions. The main restriction at present is that the arithmetic range and
numeric representation of CCL expressions is tied to the arithmetic range and
numeric represention of the host computer system. This restriction leads to
increased complexity in CCL specifications of cross-compilers (where the target
machine has a different arithmetic range and numeric representation to the host

machine). Another current implementation restriction in the LOADER inhibits the

use of the CCL table ("' 'n") and relational ('=''#''>''2' '<' '<') operators in
constant expressions. This restriction was introduced simplify the original
implementation of the LOADER and is likely to be removed in future versions of

the program.

Input Tokens
The third CCL section in the example is the TNPUT TOKENS' section. This

section is used to allow the specification of ACC input terminals, as follows.

INPUT TOKENS

ASSIGN = CONSTANT ":=";

SUM = ngn | omen,

IDENTIFIER = ('A'—'2'), {'A'—'2'['0'—>'9'};
Figure 5.7

The LOADER translates the set of input terminal specifications into a Deterministic
Finite-state Automaton (DFA). A standard algorithm is used to perform this

function, see [Aho 1985]. The DFA produced by this algorithm is then stored in a

86

ChapterS ’

table, called the Input Terminal Table (ITT). The above input terminals would be .

translated into a DFA and stored in the LOADER's ITT as shown in Figure 5.8.

State
01 2 3 4 5
State Table | A \ A \
: >\ : Key
z \ Z End of Assign Token
o 0
Q \ : End of Sum Token
S 9
Q \ e
+ N \ End of Identifier Token
: N
= \ Error State
X
\
Next State v * \
Table 1 2 3 4 4 5
Figure 5.8

The ITT is output by the LOADER as the 'Input' control file. This control file is
used to control the ACC SCANNER execution component. The current
implemention of the ACC SCANNER carries out lexical analysis using a single
character lookahead. Hence, the specification of lexical tokens requiring a
multi-character lookahead is not (currently) supported by the ACC. The ACC
SCANNER, and also the ACC PARSER and the ACC RECONSTRUCT

execution components are described in the final three sections of this Chapter.

87

OQutput Tokens
The fourth CCL section in the example is the ‘'OUTPUT TOKENS' section. This

section is used to allow the specification of ACC output terminals, as shown in

Figure 5.9.

OUTPUT TOKENS

INSTRUCTION = STRUCTURE

{
operation : INTEGER;
CONSTANT HERAAN
operand : INTEGER;
CONSTANT : "\n";

}i

Figure 5.9

The LOADER uses the input terminals defined in the previous section along with
the output terminals defined in this section to produce a simple look-up table,
called the Output Terminal Table (OTT). The input terminals defined in Figure 5.7
and the output terminals defined above would be used by the LOADER to produce
the OTT shown in Figure 5.10.

88

NS,

Decoding Text |Text [Integer Integer
Table
Key

The Assign token The Instruction token

The Sum token The constant ":='

The Identifier token The constant \t'
The constant \n'

Figure 5.10

The OTT contains information about the structure of all CCL tokens. The "Token
Table' contains an entry for every ACC token defined within a CCL specification.
The 'Token Decoding Table' contains one or more entries giving information

about the type of each field within these tokens.

The OTT is output by the LOADER as the 'Output’ control file. This control file
is used by the ACC RECONSTRUCT execution component.

The LOADER also collects all constant CCL strings and enters them into a table,
called the Lexical Symbol Table (LST). The CCL sections translated up to this

point would be used by the LOADER to produce the LST shown in Figure 5.11.

89

Chapter5

Lexical

Hash Table

Lexical
Index Table Key

Lexical * __:. The constant "=
Text Table : = \t \n

The constant \t'

The constant \n'

Figure 5.11

The processing of the remainder of the CCL specification might also lead to the

addition of number of extra constant strings.

The LST is output by the LOADER as the 'Lexical' information file. This
information file is used by the ACC SCANNER and RECONSTRUCT execution

components.

Types
The fifth CCL section in the example is the "TYPES' section. This section is used

to allow the specification of CCL data structures; here, as follows.

TYPES
HASH TABLE = TABLE[INTEGER]};

The LOADER enters all type specifications into its internal symbol table (see

Figure 5.5) for use in the following CCL section.

90

'Chapter 5

The current implementation of the ACC supports the CCL standard types (see

Chapter 4) internally as follows.

Iype Size Representation

CHARACTER 8 bits Unsigned integer format.

HEXADECIMAL 32 bits Unsigned integer format.

INTEGER 32 bits Signed integer format.

OCTAL 32 bits Unsigned integer format.

REAL 64 bits Signed floating point format.

UNSIGNED 32 bits Unsigned integer format.

SHORT FIXED 16 bits Signed integer format.

FIXED 32 bits Signed integer format.

LONG FIXED 32 bits Signed integer format.

FLOAT 32 bits Signed floating point format.

LONG FLOAT 64 bits Signed floating point format.

TEXT 32 bits Unique pointer to text and size.

FILE 32 bits Unique pointer to name and size.
Figure 5.12

The ACC always performs calculations with enough precision to ensure that there

is no loss of numerical accuracy, as far as the host system permits.

The ACC prevents the specification of recursive types (eg. types which are

defined in terms of themselves). This was done in order to stop the specification

of infinite structures and tables, and consequent infinite storage requirements.

Consider, for example, the following structure specification.

Struct = STRUCTURE { Valuel : INTEGER; Value2 : Struct; };

This specification clearly leads to an object of type 'Struct’ requiring infinite store,

and is therefore not permitted within CCL specifications. However, the

91

'Chaﬁter’Si

specification of recursive types involving unions is somewhat different.

Consider, for example, the following union specification.

Type = UNION { Subtype : Sub Type; Pointer : Type; };

This specification defines a data structure which could be used within a compiler

specification to specify pointer variables.

The type of a C variable ‘char **x', for example, might be defined as follows.

Type tXx = Pointer{ Pointer{ "char™ } };

This latter form of recursive types is perfectly meaningful, requires finite store,
and is highly useful when writing compiler specifications. However, the current
ACC LOADER does not currently permit the specification of such data structures
(even though they are supported in the rest of the ACC system). Sadly, this
oversight reduces the descriptive power of the present ACC system. Hence, it has
been decided this problem requires to be fixed (with some urgency) ready for the

next release of the ACC.

Variables
The sixth CCL section in the example is the "VARIABLES' section. This section

is used to specify CCL variables, as shown in Figure 5.13.

92

 ' (ﬁh5i&§f5f;

VARIABLES
HASH_TABLE identifiers =
{
"AT - 0,
ngr > 1
s

instruction =
[
"Load" — LDA,

g — ADA,
o — SBA

1:
TEXT name, operator;

Figure 5.13

The LOADER enters all CCL variable specifications into a Variable Table (VT)
along with their associated initial values. The VT consists of five sub-tables
which hold constants, simple variables, CCL structures, CCL unions and CCL

tables respectively. The above variable specifications would be stored in the VT

as follows.
Key
The Identifier Variable
Constants
Table
) The Instruction Variable
Variables
Table
The Name Variable
Structures \ \
Table \ N
The Operator Variable
Unions \ Op
Table \
Tables \
Table | e | T2

Figure 5.14

93

The LOADER processes CCL variable specifications and allocates space for each

variable defined within the VT. Simple CCL variable specifications are allocated
entries in the 'Variables Table' alone, while complex data structures are allocated
space within the 'Variable Table', 'Structures Table', 'Unions Table' and "Tables
Table', as required. If a variable has an initial value this value is assigned to the

variable automatically by the LOADER.

The VT is output by the LOADER as the 'Symbol' information file. This

information file is used by the ACC PARSER execution component.

Rules

The final CCL section in the example is the 'RULES' section. This section is
used to specify the actions and manipulations to be carried out by the ACC
Execution Phase. These actions and manipulations implicitly include checking of
context free syntax and static semantics (eg. type checking). The RULES'
section from our example is given below in Figure 5.15.

RULES
Assignment =

TIDENTIFIER(Tname), TASSIGN, Expression,

Store{ lname)

Expression =
Operand (IrLoadn Y,
{ TSUM(Toperator }, Operand(loperator) }s

Operand (loperator) =
TIDENTIFIER(Tname),
iINSTRUCTION(i{indirect[operator],identifiers[name]))

94

Chapter5

Store (lname) =

LINsTRUCTION(L{STA, identifiers(namel));

Figure 5.1

The LOADER translates CCL rules into a tree structure and stores this structure in
a table, called the Tree Structure Table (TST). The above rules would be

translated by the LOADER as shown in Figure 5.16.

.)
o IDENTIFIER ~ ASSIGN

@ Rule head node
S Rule sequence node

@D Rule iteration node

Rule input terminal
IDENTIFIER INSTRUCT ION
Rule output terminal

O Rule call node

IDENTIFTER INSTRUCTION

Figure 5.16

95

Initially, the LOADER translates each CCL rule into a small sub-tree and stores
this sub-tree in the TST. When all of the rules within a CCL 'RULES' section
have been processed the LOADER joins these sub-trees together to form a
complete tree, as shown in the example above (rule calls are correlated with rule
definitions and all parameter correspondence is fully checked). The LOADER also
verifies that attributes are only referenced after they have been assigned a value

(except in a rule header where forward references may be made). In effect, we

ensvre that the CCL rules are L-attributed [Koskimies 1983]. This (along with
other minor checks) ensures that the CCL specification is suitable for top-down

parsing and 'on-the-fly' attribute evaluation (discussed later).

The entry and exit points of each CCL rule have small ACC IEF code fragments
associated with them. These code fragments are interpreted at execution time and
deal with any attribute processing specified within the CCL rule. The structure of

the instructions within these interpreted code fragments is as follows.

Function Operand
Figure 5.17

The functions available in the code fragment interpreter correspond to the CCL
operators and attribute manipulations supported by the ACC. These functions
include, for example: load an attribute; add two attributes; subtract two attributes;

and store an attribute.

96

Chapter 5 .

If the underlying Context Free Grammar (CFG) is LL(1), then it\ \is
straightforward that L-attributedness permits 'on-the-fly' evaluation. However,
strict LL(1)-ness is in practice a rather strong constraint to impose, and by
exploiting the fact that attribute evaluation will be done in parallel with parsing, it
is possible to work with less severe and more practically acceptable grammar
constraints. In particular, the LOADER does not prevent the specification of left
recursive rules (or other rules) which might potentially cause the ACC to enter a
non-terminating recursive cycle (discussed later). The reason for this is that such

constructs are often useful in CCL specifications and may be effectively controlled

by CCL attribute expressions. It is common practice, for example, for
programming language specifications to use features (eg. a rule for assignments
and a rule for procedure calls which both begin with the terminal ‘identifier’)
which are not directly compatible with top down LL(1) style parsing. It is much
more convenient if such rules can be directly transcribed into a (suitably attributed)
CCL form without the need for a preliminary grammar transformation exercise.
Left recursion is also useful in grammars controlling output operations such as
code generation, for example, where the length of the lists to be processed can be
known and supplied via inherited attributes. Thus, to forbid left recursive rules

within the CCL would have been unnecessarly restrictive.

The TST is output by the LOADER as the 'Pass1’ control file. This control file is
used to control the first pass of the ACC PARSER execution component. The
control files generated by subsequent CCL 'RULES' sections are named 'Pass2’,
"Pass3’, ..., Pass(n)' respectively. These control files are used to control

subsequent passes of the ACC PARSER execution component.

97

The Execution Phase
The ACC Execution Phase loads translated CCL specifications in ACC IEF format

and executes them. The ACC Execution Phase consists of three program
components, called SCANNER, PARSER and RECONSTRUCT. The execution
of a small CCL specification, such as the one discussed above, may typically be

organised as shown in Figure 3.4, repeated here for convenience (Figure 5.18).

Input Phase Translation Phase Output Phase

Input Lexical Passl Symbol Output

e 2 | e e 2 | B

—i Scanner > Parser P1 Reconstruct &

f

N
New Lexical

Figure 5.1

The component programs of the ACC Execution Phase may be executed
sequentially on uniprocessing operating systems, such as MS/DOS, or in parallel

on multiprocessing operating systems, such as UNIX. The operation of each of

98

Ch,a_p.t,,ef 5

these programs is discussed individually in the following sections.

Scanner
The SCANNER program reads source code via the standard C input channel,
translates it into ACC tokens and then outputs these tokens via the standard C

output channel.

The cutline execution structure of the SCANNER program is as follows.

Input Initial Lexical

Source

Code— Scanner L p-Tokens

N
New Lexical

Figure 5.19

Initially, the SCANNER loads the ITT and the LST contained within the 'Input’
control file and the 'Initial Lexical' information file respectively. The SCANNER
then reads source code via the standard C input channel and translates this source

code into ACC tokens using the ITT (see Figure 5.8). The ACC tokens generated

99

Chapter 5

by the SCANNER are output in the following format via the standard C output

channel.
Token Line Character | Token Token
Number | Number | Position Size Value(s)

Figure 5.20

The "Token Number' field identifies the token's type. The 'Line Number' and
'Character Position' fields contain the line number in the source file where the
token was discovered and the approximate character position within the source
line. These fields are used by the PARSER program when generating warning or
error messages. If the token has a number of associated values the "Token Size'
field contains a count of the following Token Value' fields, otherwise this field is

zero. The structure of each 'Token Value' field is as follows.

Value Type Value

Figure 5.21

The 'Value Type' field contains an flag indicating the type of value being stored
within the structure. The 'Value' field contains the actual value. All numeric
values are converted from character format into the corresponding local binary
format by the SCANNER. All textual values are entered into the LST (see Figure
5.11) and a pointer to the value is passed instead of the actual text. The updated
contents of the LST may be optionally stored and used in subsequent runs of the

SCANNER or RECONSTRUCT programs.

100

Chapter 5

All of the component programs of the ACC Execution Phase use the abowve token

structure when communicating with each other.

The current implementation of the SCANNER uses a single character look-ahead
when processing lexical symbols (as stated earlier). Although this is sufficient for
the specification of a large class of the lexical symbols used in modern High Level

Programming Languages (HLPLs) there are cases where it is not.
Consider the following Pascal declaration.

Typename = ARRAY{ 1..20] OF INTEGER;

It is not possible when using a single character lookahead to decide whether the
text '1." is an integer token '1' (followed by the token '..") or a real number token
(such as '1.0"). The flexibility of the ACC sometimes allows such problems to be
overcome, for example the above problem can be solved by defining the a
structured token as shown in Figure 5.22.

Real = STRUCTURE
{
Integer : INTEGER;
Point A AT
Fraction : INTEGER;
}i

Figure 5.22

This CCL token specification would match both real numbers (such as '1.2') and

array specifiers (such as '1..20").

101

Chapter § |

However, this solution is not really satisfactory as it increases the complexity of

CCL specifications. An improved solution would be to allow the SCANNER to

have a multi-character character look-ahead. This is currently under consideration

and might be implemented in later versions of the ACC.

Parser

The PARSER program reads tokens from the SCANNER (or a previous

PARSER) via the standard C input channel, manipulates these tokens, and outputs

a token stream (computed from the execution of a 'RULES' section) via the

standard C output channel.

The outline execution structure of the PARSER program is as follows.

Pass1 Initial Symbol

R

Tokens— g

Parser

= Tokens

N
New Symbol

Figure 5.23

102

Chapter 5

Initially, the PARSER program loads the TST and the VT contained in the Pass1’
control file and the Tnitial Symbol' information file respectively. The PARSER
then executes the syntax tree held within the TST (see Figure 5.16) using a
standard top down, left to right parsing algorithm. The method used is essentially
LL(1) parsing [Aho 1985] (as stated earlier) except that attribute values may be
used to control the parse at points where the underlying grammar is not LL(1)
[Watt 1980]. The input and output of ACC tokens is performed dynamically by
the PARSER as terminals are encountered during the processing of a CCL
specification (via the standard C input and output channels). The evaluation of
Attribute Expressions (AEs) (which are associated with the entry and exit points of
individual CCL rules) is also carried out dynamically. These AEs are evaluated by
interpreting the code fragments generated by the ACC LOADER on a small stack.
The interpreter uses the VT (see Figure 5.14) to access to CCL constants, CCL
variables, and for temporary storage space. When the PARSER terminates the
updated contents of the VT may be optionally stored for use by subsequent runs of

the program.

The top down, left to right parsing algorithm used by the PARSER was selected
because of its run time and storage efficiency coupled with the ability to allow the
use of a straightforward left to right attribute evaluation system. The simplicty of
the selected parsing and evaluation system is important as CCL rules sometimes
have side effects, such as the generation of code. A less straightforward scheme
(such as might have been needed by a bottom up syntax analyser) would have

made the execution of CCL specifications harder to follow and therefore more

103

difficult to write and understand.

The code fragment interpreter within the PARSER allows AEs containing the CCL
comparison, alternative, sequence and selection operators (see Chapter 4) to
control the execution of a CCL specification (as stated earlier). This is achieved
by causing individual rules within a CCL specification to fail if the conditions
imposed by these operators are not met at execution time. The main motivation for
this feature was the belief that this would simplify certain aspects of compiler
specifications (see Chapters 4 and 6) as well as extending the descriptive power of

the CCL (see Chapter 2 and [Watt 1980]).

Consider, for example, the following Context Free Syntax (CFES).

Statement = TIDENTIFIER, { Assign | Parameters):;
Assign = TassicN expression;
Parameters = [Parameter, { TCOMMA, Parameter }];

Figure 5.24

When executing the above CFS with a LL(1) based parser it cannot be decided
whether to apply the rule 'Assign' or 'Parameters' after the terminal
'IDENTIFIER' has been accepted in the rule 'Statement’. This kind of difficulty
can be overcome in the ACC by directing the ACC PARSER (with AEs) to the

rule which should be applied, as shown in Figure 5.25.

104

 Chapter5

Chapter 5

Statement { ienv Yy =
T1DENTIFIER(Tname),
(
Assign(ienv[name }.identifer) |

Parameters (lenv[name].function)

)i

Assign(lsymbol)y =
Tassicn expression;

Parameters(lsymbol)y =

{ Parameter, { TCOMMA, Parameter }];

Figure 5.25

Thus, if the attribute 'name’ is defined as an 'identifier' (in the attribute 'env') the
rule 'Assign’ is applied. Alternatively, if the attribute 'name' is defined as a
'function’ (in the attribute 'env’) the rule Parameters' is applied. In all other
cases the rule 'Statement’ will fail and return an error condition to the calling rule.

However, left to right attribute evaluation can sometimes be restrictive.

Consider, for example, the following Pascal declaration.

A,B,C,D,E : INTEGER;

A parser using a left to right attribute evaluation cannot collect any information
about the type of the variables 'A’, 'B', 'C', 'D' and 'E' (above) until the symbol
'INTEGER' was encountered. Thus, it would usually be necessary to collect
information about such variables and pass it forward through the syntax tree until
the type of the variables was encountered. Only then could complete entries for

these variables be made in a symbol table of a compiler.

105

Chapter 5

A parser using an alternative attribute evaluation scheme (such as an alternating left
to right, right to left attribute evaluator [Raiha 1983]) might seem more suitable for
compiling the above statement. Such an evaluator would, for example, allow the
type information in the previous example to be passed backwards to the variables
instead of vice versa. However, it is very difficult to implement such evaluation
schemes without the construction of an attributed syntax tree. This imposes a
considerable overhead at run time as it is usually necessary to represent all (or at
least a significant part) of such attributed trees in a computer's primary memory,
for reasons of efficiency (see Chapter 2). In addition to this, the use of this class
of attribute evaluation techniques often leads to a number of further difficulties. It
is possible, for example, to define attributes with circular dependencies (where
attribute A is defined in terms of attribute B and vice versa). Such Attribute
Grammars (AGs) are generally considered pathological and are therefore excluded
from use in practical systems. A number of tests for circularity are known [Meijer
1982] but most increase exponentially in complexity as the grammar size
increases. It was therefore decided that top-down, left to right parsing with
'on-the-fly' attribute evaluation would be the most suitable implementation scheme
for a tool like the ACC, which is essentially aimed at practical compiler

construction.

Reconstruct
The RECONSTRUCT program reads tokens from the PARSER (or the

SCANNER) via the standard C input channel, translates these tokens into a binary

106

Chapter 5

or textual object format, and then outputs this object format via the standard C

output channel.

The outline execution structure of the RECONSTRUCT program is as follows.

Output New Lexical

\f \;/ Object

Tokens—m— Reconstruct ———&(ode

Figure 5.26

Initially, the RECONSTRUCT program loads the OTT and the updated LST
contained in the 'Output’ control file and the 'New Lexical' information file
respectively. The RECONSTRUCT program then reads tokens via the standard C
input channel and translates these tokens back into a textual format using the OTT
(see Figure 5.10). All numeric values are translated directly into their target
character representation and output. The textual values are extracted from the

updated LST before being finally output as ASCII text.

Summary
In this chapter we have discussed the implementation of the ACC. It was seen (in
outline) how the ACC LOADER translates CCL specifications into an executable

ACCIEF. It was also seen how subsequent execution involves: analysing source

107

Chapter 5

text in accordance with CCL input token specifications; manipulations determined
by parsing and attribute evaluation in accordance with CCL rules sections; and the
production of output text as determined by CCL output specifications. In addition
to this, it was seen how parsing and attribute evaluation was achieved via a
single-pass top-down ‘on-the-fly' mechanism, rather than by building an explicit
syntax tree. This approach had certain limitations regarding the form of attributes
which can be handled, but this was more than offset by the resource economy of
our algorithm compared with tree building approaches. The constraints appear in

practice to be acceptable.

The practical application of attributes to the control of top-down parsing, and the
consequent benefit of not being restricted to LL(1) grammars, is an area that has
been little studied. The majority of earlier work has been concerned with
store-hungry bottom-up multi-pass methods. The general benefits of top-down
parsing are well-established. However, one important additional benefit (with
regard to AGs) is that top-down parsing allows an AG to be viewed as a
sequential program which is executing during parsing. This makes it much easier
for a compiler writer to understand the processing of AGs by such parsers and to

determine how and where semantic processing should be included.

In the next chapter we shall examine a larger CCL specification of a small but
complete compilation system, in order to further evaluate the practical value of the
ACC. We shall also see how this larger CCL specification could be executed

sequentially or in parallel under the UNIX operating system.

108

Chapter 6

A Demonstration
of the

Aston Compiler Constructor

Chapter 6

Introduction

We have examined many of the theoretical and implementation aspects of the
Aston Compiler Constructor (ACC) in the previous chapters. In this chapter we
shall attempt to assess the practical value of the ACC by examining a more
extensive Compiler Construction Language (CCL) specification. This
specification defines a compiler of a small programming language, called The

Small Language (TSL).

Th 11 Lan
The programming language TSL is modelled on a restricted subset of Pascal. The

Context Free Syntax (CFS) of TSL is defined in CCL as follows.

TITLE Example

INPUT TOKENS
PROGRAM = CONSTANT "PROGRAM";

VAR = CONSTANT "VAR";
BEGIN = CONSTANT "BEGIN";

IF = CONSTANT "IF";

THEN = CONSTANT "THEN";

ELSE = CONSTANT "ELSE";

FI = CONSTANT "FI";

ENDS = CONSTANT "END";

ASSIGN = CONSTANT ":=";

SUM = e omen;

TERM = e mymg

COMPARISON = "=" | Mgn | wgw | ngw | wym | ony,
COMMA = CONSTANT ",*;

SEMI_COLON = CONSTANT ";*;

DOT = CONSTANT ".";

IDENTIFIER = ('A'—'Z'), {'A'—'2' | '0'>191};
VALUE = INTEGER;

VOID =Tt | omanyg

110

Chapter 6

RULES
Compiler = Program, Var, Statement, End;
Program = TproGraM, TIDENTIFIER;
Var = TVvar, variables, TSEMI_COLON;
Variables = TipeENTIFIER, { Tcomva, TIDENTIFIER };
Statement = Compound | Assignment | If;
Compound = TBEGIN, Statement,
{ TSEMI_cOLON, statement }, TENDS;
Assignment = TIDENTIFIER, TASSIGN, Expression;
Expression = Term, { TSUM, Term };
Term = Terminal, { TTBRM, Terminal };
Terminal = TIDENTIFIER | TVALUE;
If = TIF, Boolean, TTHEN, Statement,
(TELSE, statement 1, TFI;
Boolean = Expression, TCOMPARISON, Expression;
End = Toor;
END

Figure 6.1

As is shown, the CCL CFS specification above uses a modified superset of
standard BNF [Naur 1960]. As noted earlier, the main modifications and
additions to standard BNF are the seperation of input terminals from the main
syntax specification and the inclusion of Regular Expression (RE) operators for
optional clauses (eg. '[' and ']') and iteration cluases (eg. '{' and '}"). The TSL
CFS specification above carries the same content as the Lex and Yacc
specifications given in Figures 2.2 and 2.3 taken together. The CCL specification
is only a little more compact, but has the advantages of greater clarity and
readability due to the use of a notation which is more powerful (eg. the operators

{} etc) and also more consistent.

111

A Target Machine Architecture

The Target Machine Architecture (TMA) to be considered in our assessment is

Chapter 6

based on a hypothetical stack based computer. This computer has a large byte

addressed main memory and a single general purpose data stack, which is used in

the evaluation of numeric expressions. The TMA supports a range of zero and

one address instructions all of which operate on 16 bit integer values. All

instruction addresses are assumed to be relative to the base of the machine's data

stack, except for the addresses of jump instructions which are assumed to be

relative to the start of the current machine code program.

The structure of machine code instructions in the TMA is as follows.

Function Addre_ss/Data
(Optional)
. - &
8 Bits 16 Bits
Figure 6.2
The machine code instructions available are as follows.
LD 0x00 24 Bits Overwrite Top Of Stack (TOS) with
contents of following address.,
ST 0x01 24 Bits Copy TOS to following address.
LDA 0x10 24 Bits Load TOS from following address.
ADA Ox11 24 Bits Add address to TOS.
SBA 0x12 24 Bits Subtract address from TOS.
MLA 0x13 24 Bits Multiply TOS by address.
DVA 0x14 24 Bits Divide TOS by address.

112

Chapter 6

STA 0x15 24 Bits Store TOS at following address.

LDC 0x20 24 Bits Load constant to TOS.

ADC 0x21 24 Bits Add constant to TOS.

SBC 0x22 24 Bits Subtract constant from TOS.

MLC 0x23 24 Bits Multiply TOS by constant.

DvVC 0x24 24 Bits Divide TOS by constant.

ASF 0x30 24 Bits Adjust stack front.

ADD 0x40 8 Bits Add the top two stack items.

SUB 0x41 8 Bits Subtract the top two stack items.

MUL 0x42 8 Bits Multiply the top two stack items.

DIV 0x43 8 Bits Divide the top two stack items.

HLT 0x50 8 Bits Halt execution.

JMP 0x60 24 Bits Jump to following address.

JEQ Ox61 24 Bits Jump to address if TOS zero.

JNE 0x62 24 Bits Jump to address if TOS not zero.

JLT 0x63 24 Bits Jump to address if TOS < zero.

JLE 0x64 24 Bits Jump to address if TOS £ zero.

JGR 0x65 24 Bits Jump to address if TOS > zero.

JGE 0x66 24 Bits Jump to address if TOS 2> zero.
Figure 6.3

The execution of TMA programs begins with the first machine code instruction of

a program and terminates with the execution of a 'HLT' instruction.

A Compiler ification

We shall now examine the implementation of a compiler capable of translating
TSL source programs into TMA machine code programs. We shall examine this
compiler in a number of segments, corresponding to CCL sections within the
specification (see Chapter 4 for CCL sections). A complete listing of the CCL

specification is given in Appendix 4.

113

Chapter 6

Title

The first CCL section in the TSL compiler specification is the "TITLE' section.

This section is required in order to name the specification, as follows.

TITLE Example

The title given to the specification is used to prefix in the file names of the ACC

IEF files produced by the ACC LOADER, hence enhancing the security and

flexibility of the system.

Input Tokens
The second CCL section in the TSL compiler specification is the 'INPUT
TOKENS' section. This section is required to define the mapping of the terminal

symbols of the TSL to appropriate input tokens, as follows.

INPUT TOKENS

PROGRAM = CONSTANT "PROGRAM";
VAR = CONSTANT "VAR";
BEGIN = CONSTANT "BEGIN";
IF = CONSTANT "IF";

THEN = CONSTANT "THEN";
ELSE = CONSTANT "ELSE";

FI = CONSTANT "FI";

ENDS = CONSTANT "END";
ASSIGN = CONSTANT ":=";

SUM = men ooy

TERM = x|y
COMPARISON = M=% | mgm | wgm | owgn | nyn | oaxn,
COMMA = CONSTANT ", *;
SEMI_COLON = CONSTANT *;";

DOT = CONSTANT ".";

114

Chapter 6

IDENTIFIER = ('A'—'2%), {'A'—='Z' | '0'='9");
VALUE = INTEGER;
VOID = ¥ | ll\t‘" I 'l\nlI;

Figure 6.4

The above example demonstrates, in principle, how the terminal symbols of
modern programming languages, such as Pascal and C, might be mappped to
appropriate ACC input tokens. However, input symbols for some older
programming languages, such as FORTRAN or COBOL, cannot be specified in
CCL as it is not possible for the ACC to divide the source text of these
programming langauges into separate symbols. Lex [Lesk 1976] is able to deal
with such features; however since most modern programming languages are (for
good reasons) designed to avoid such difficulties, it is not worthwhile (in a new
system) to include the substantial extra complications required to handle the more
obscure lexical features of these languages. It would be necessary for a compiler
writer to construct a source code preprocessor .in order to translate the source text

of such languages into a form suitable for the ACC SCANNER.

An interesting feature in the above example is the grouping of certain operators,
such as the operators '=', '#', '<', '<', '>'", '>' in the 'COMPARISON' token. It
will be seen later that the processing of all of these operators by the ACC is
~ essentially identical, eventhough each individual operator gives rise to the
generation of a different machine code jump instruction. it is also apparent that the
input token specifications above are no more than the lexical part of the context

free specification in Figure 6.1.

115

Chapter 6

Qutput Tokens
The third CCL section in the TSL compiler specification is the 'OUTPUT

TOKENS' section. This section is required in order to map the compiler's output

terminals to appropriate output tokens, as shown in Figure 6.5.

OUTPUT TOKENS

FILE_NAME = FILE;
CODE = STRUCTURE
{
function : TEXT;
CONSTANT O\t
operand : INTEGER;
CONSTANT : "\n";
}i
FINALL = CHARACTER;
FINAL2 = SHORT FIXED;

Figure 6.5

The output tokens specified above may be grouped into two pairs. The first pair
of tokens (ie. FILE_NAME and CODE) define the interface between the front end
of the compiler and the code optimisation and linking phases. The second pair of
tokens (ie. FINAL1 and FINAL2) define the binary machine code format and are
needed for the output of machine code instructions. The use of these terminals is

discussed more fully in a later section of this chapter.

The flexibility of the ACC's interfacing capabilities are demonstrated in Figures
6.4 and 6.5 above. It can be seen that the ACC permits a range of input and
output terminals to be specified (see Chapter 4) in a way that is both clear and

concise. This is possible due to the large selection of data types available in the

116

Chapter 6

ACC and the ability to structure input and output terminals. This generality makes
it possible to interface the ACC to a wide range of other software components, as
well as providing a convenient method of passing information between different

phases of ACC-built compilers.

Types
The fourth CCL section in the TSL compiler specification is the "TYPES' section.

This section is used to specify compiler data structures, as follows.

TYPES
HASH_TABLE = TABLE[INTEGER];
INSTRUCTION = TABLE[TEXT];
OPTIMISATION = TABLE{INSTRUCTION];

Figure 6.6

The ACC allows the specification of a considerable range of data structures (see
Chapter 4). However, the TSL compiler requires only a number of simple data
structures, because of the elementary nature of the source language. The purposes

of these data structures are clarified and discussed in the following section.

Variables

The fifth CCL section in the TSL compiler specification is the 'VARIABLES'
section, which naturally is used to specify compile-time variables. These variables
are used for a number of distinct purposes, for example: to hold the values

associated with particular tokens; to map source language operators to symbolic

117

Chapter 6

instructions; to contain symbolic instruction optimisation tables; and to contain

information to map symbolic instructions to binary function codes. The variables

needed in this compiler specification are as shown in Figure 6.7.

VARIABLES
/* Simple variables */
CODE code, codel, code?2;
INTEGER csize=0,dsize=0, label=0, new_label, operand, value;
TEXT function, name, operator;

/* The symbol table and forward jump resolution table */

HASH TABLE identifier = (], reference = [];
/* The operator to function mapping table */
INSTRUCTION instruction =
(
ll+7l _) IIADDII’ won _) IISUBH'
TE % T _) llMUL'l’ II/II _) "DIVII,
I - "JNE", gt — "JEQ",
1 < " _) T JGE I , Ils " _) i JGR 1t ,
'l>'l _) "JLE"’ ll_>_ll _) IIJLTH
1z
/* The function size look up table */
HASH_TABLE size =
(
"LD" - 3, "ST" > 3,
"LDAY — 3, “"ADA"™ — 3,
"SBA" — 3, "MLA" — 3,
"DVA" — 3, "STA" — 3,
"LDC" — 3, "ADC" — 3,
"SBC" — 3, "MLC" — 3,
"DVC" — 3,
TASET 3 3,
“"ADDY — 1, "sUBt —> 1,
"MUL" — 1, "DIVE — 1,
"HLT" — 1,
"JMP" — 3, "JEQ" — 3,

118

"JNE" — 3,
"JLE" — 3,
"JGE" — 3,

"LABEL" — O

1z

/* The peephole optimisation tables
/* (for redundant load removal and constant folding) */

OPTIMISATION foldl =
{
"STA" —
[“LDA"
1z
OPTIMISATION fold2
{

W

"LDA -
[
"ADD"
"SUB"
"MUL"
"DIV"
1.
"LDC" —
{
“ADD"
"SUB"
“MUL"
"DIV"

1z
OPTIMISATION fold3 =
(
"LDC" -3
[
"ADC"
"SBC®
1,
"ADC" —
[
"ADC"
"SBC"
1,
"SBC" —
[
"ADC"
"SBC™

119

-

e

Lyl

g]

“ADA",
"SBA",
"MLA™,
"DVA"

"ADCH .
“SBCY,
"MLCY,
n"pyCH

"1.DC™,
“IpDC"

“ADC! ,
"ADC™

WSRO ,
"SRC"

Chapter 6

"JLT" — 3,
"JGR" — 3,

*/

17

HASH_TABLE foldd =
[
"ADC" — 1,
"sBC" — -1
1;
/* Symbolic function to machine
HASH TABLE classl =
[
“LD"® — 0x0,
“"LDA"™ — 0x10,
"SBA'" — 0x12,
“pva" — 0x14,
"LDC" — 0x20,
"SBC" — 0x22,
"DVC" — 0x24,
“"ASEF'" — 0x30
1;
HASH TABLE class2 =
{
"ADD™ — 0x40,
"MUL™ — 0x42,
"HLT"™ — 0x50
1:
HASH_TABLE class3 =
{
"JIJMP" — 0x60,
"JINE"™ — 0x62,
"JLE®" — 0x64,
"JGE" — 0x66
1;
Figure 6.7

It can be seen that the CCL supports, in a natural fashion, the specification of
tables. The ability to tabularise compiler specifications (as demonstrated above
and also more extensively later in connection with the 'RULES' section) is an

important advantage. Such specifications are in practice usually clear, concise,

120

ngTH

TADAY
YMLA™
NSTAY

"ADCY
"MLC™

nSURY
npIyYy"

"JEQ“
wILTH
"JGR"

—

)

)

\J

\)

code mapping tables

0x1,

0x11,
0x13,
0x15,

0x21,
0x23,

0x41,
0x43,

0x61,
0x63,
0x65,

Chapter 6

*/

Chapter 6

easy to define, and modify.

The simple variables specified above are used as follows.

Variable = Function

code This variable is used to hold machine instructions
being output by out example compiler's front end.

codel & 2 These variables are used to hold the current machine
instructions Dbeing optimised by the peephole
optimiser.

csize This global variable contains the size of the current
code segment.

dsize This global variable contains a count of the data
variables defined.

label This global variable contains a the number of the next
available jump label.

new label This variable contains the number of the jump label

currently in use.
value This variable contains the value of any constants
within a numeric expressions.

function This wvariable contains the machine code function

mnemonic before it is finally translated into binary
and output.

name This variable contains the name of the current
variable identifier being processed within a numeric
expression.

operator This variable contains the current operator being

processed a within numeric expression.

Figure 6.8

The tables are used as shown in Figure 6.9.

121

Iables
identifier
reference

instruction

size

foldl,2,3 & 4

classl,2 & 3

Rules

Chapter 6

Function

This table contains the addresses of all the variables
defined within the source code being processed.

This table contains the addresses of the labels within
the machine code generated by our example compiler.

This table is used to translate programming language
operators into target machine instructions.

This table gives the size of each machine instruction
to allow an accurate label look-up table to be kept in
the variable ‘'reference’.

These tables contain all of the instruction reductions
recognised by the peephole optimiser.

These tables contain the numeric machine code
equivalent for each textual machine instruction used
within the compiler.

Figure 6.9

The final three CCL sections in the TSL compiler specification are 'RULES'

sections. These sections specify the Context Free Syntax (CFS) and static

semantics of the TSL, and define the translation of TSL source text to TMA

machine code. The first 'RULES' section (the "Translator’) specifies the CFS and

static semantics of the TSL and specifies the translation of TSL source code to

simple Mnemonic Instructions (MIs). The second 'RULES' section (the

'Optimiser') specifies a local optimiser for the MIs output by the Translator. The

final 'RULES' section (the 'Loader’) translates the MIs output by either the

Translator or the Optimiser into pure binary machine code for the TMA.

122

Chapter 6

The Translator

The Translator is the largest ' RULES' section in the TSL compiler specification

and is therefore discussed below in several parts. The specification of the

Translator begins as shown in Figure 6.10.

RULES
Compiler =
Program, Var, Statement, End;

Program =
TPROGRAM, TIDENTIFIER(Thame),
LFILE NAME (lname) ;

End =
Toort,
lcobe(LimmLT™, 0} §;

Figure 6.10

The rule 'Compiler' specifies the overall structure of TSL programs and references

the rules Program’, 'Var', 'Statement' and 'End'. The rule "Program’ defines the
name part of the a source program (the [PROGRAM and {IDENTIFIER(lname)

part) and (using the {FILE NAME(Iname) part) that the name identifier is to be

output to the next phase of the compiler. The rules 'Var' and 'Statement' will
process TSL variable specifications and statements and are discussed later. The
rule 'End’ will accept the input terminal 'DOT' (which appears at the end of a TSL

program) and generate a 'HLT' instruction.

The rule 'Var' references a number of further rules, as shown in Figure 6.11.

123

Chapter 6

Var =
TvaR, Variables, TSEMI COLON,
Code { i("ASF",dsize),Tcsize):

Variables =

Variable, { TCOMMA, Variable };
Variable =
<<COMMA, SEMI COLON, "Invalid variable identifier">>

Variable Name (Tdsize,T<identifier> Y ;

Variable Name (Tdsize+l,T[name — dsize]) =

TIDENTIFIER(Tname);

Code (icode,Tcsize+size[code.function]) =

iCODE(icode)y ;

Figure 6.11

The rule 'Var' references the rule 'Variables', which in turn references further
rules ("Variable' and 'Variable_Name') related to the processing of TSL variable
declarations. The variable names declared in the source text will be stored in the
global table ‘identifier'. The space required by these variables will be calculated
and stored in the global variable 'dsize'. Following this, the TSL compiler will
generate an 'ASF' (Adjust Stack Front) instruction to allocate storage on the

run-time data stack for source program variables.

The variable declarations allowed in the TSL are very limited and require only a
simple symbol table structure. However, a compiler for a commercial
programming language, such as Pascal or C, would require a much larger and
more complex symbol table structure. This can be dealt with quite easily by the
ACC but for the sake of reasonable brevity cannot be demonstrated here. An

example of a somewhat more realistic symbol table structure was given earlier in

Figure 4.24 in Chapter 4.

124

Chapter 6

The rule 'Statement' also references a number of further rules ('Compound,
‘Assignment’ and 'If') which deal with the translation of the corresponding TSL
statements. 'Statement’ and 'Compound' are as follows.

Statement =

<<SEMI_COLON,DOT, "Invalid statement™>>
(Compound | Assignment | If);

Compound =
TBEGIN, Statement, { TSEMI COLON, Statement), TENDS;

Figure 6.12

The translation of compound statements is straightforward and does not require
the generation of any MlIs, as shown above. However, the translation of
assignment statements and if-statements is more complex. The rule 'Assi gnment'
again references a number of further rules, as follows.
Assignment =
TIDENTIFIER(Tname),
<<SEMI_COLON, DOT, "Illegal assignment">>

(TASSIGN, Expression),

Code (i{"STA",identifier[name]},Tcsize)

Expression =
Term, { TSUM(Toperator), Term,
Code { i(instruction[operator],O},Tcsize Yy };
Term =
Terminal, { TTERM(Toperator), Terminal,

Code { i(instruction[operator},O},Tcsize)y}

12

125

Chapter 6

Terminal =
(TIDENTIFIER(IN name),
Code { l{"LDA",identifier[name]},Tcsize)y)
|
(TvaLue(Tvalue),

Code { l(”LDC",value},Tcsize Y)

Figure 6.13

The rule 'Assignment' references the rule 'Expression’, which deals with TSL
numeric expressions. This rule in turn references the rule "Term' which
references the rule "Terminal'. These rules deal with the translation of various
sections of TSL numeric expressions into MIs. Again, a greater range of
expressions would be permitted in a commercial programming language than the
simple numeric expressions dealt with here. However, in principal the translation
of such expressions could be achieved with by expanding the rules given here.
An experiment carried out by the author indicated that the translation of
expressions in the programming language Pascal could be defined in around 30

rules, varying somewhat according to the details of the target machine architecture.

Finally, the rule 'If references a number of further rules, as follows.

If =
TIF, <<SEMI~COLON,DOT,"Illegal if statement">>
(Boolean Tnew_label), TTHEN, Statement,
{ TELSE, Else Statement (lTnew_label)]

’

Assign_Label(lnew_label,Tnew_label,T<reference>))

’

Tr1;

Boolean (Tnewwlabel y =
Expression, TCOMPARISON(Toperator }, Expression,
Allocate’Label(Tnew_label,Tlabel Y,

Code(d{"suB", 0}, Tesize),

Code (l(instruction{operator],new_label},Tcsize) ;

126

Chapter 6

Allocate Label(Tlabel, Tlabel+2);

Else_Statement (iTnew_label) =
Code (i("JMP",new_label+l},Tcsize Y,

Assign_Label(¢new_label,Tnew_label,T<reference>).,
Statement;

Assign_Label (inew_label,Tnew_label+1,T[new_label — csizel]) =

iCODE(i("LABEL",new_label))

Figure 6.14

The rule 'If' references the rules 'Boolean’, 'Statement' (as defined earlier),

'Else_Statement' and 'Assign_Label'. The rule 'Boolean' references the rules
‘Expression' (as defined earlier) and 'Allocate Label'; also, it will insert a 'SUB'
(subtract) instruction into the generated code (to compare the two expressions
defined) followed by an appropriate conditional jump. The rule 'Allocate_Label'
1s used to provide a sequence of unique jump labels. The rule Else Statement'
will insert a 'JMP' (jump) instruction into the code and references the rules
'Assign_Label' and 'Statement'. Finally, the rule 'Assign_Label' will insert the

appropriate jump label into the code.

The code generation rules in the first section of TSL compiler above are clear and
simple, but are also very naive (causing the compiler to produce poor quality
code). However, this was intentional in order to demonstate that ACC-built
compilers (with an optional optimisation phase) can be used to produce low
quality code (quickly) for program development purposes and better quality code

(more slowly) for production programs (thus highlighting the flexibility of the
ACC).

127

Chapter 6

The Optimiser
The second 'RULES' section in the TSL compiler specification defines a peephole

optimiser designed to optimise the MIs generated by the previous section. This
optimiser may be optionally included in the execution of the final ACC-built

compiler. The specification of the Optimiser is as shown in Figure 6.15.

RULES
Optimiser =
Title, Optimisatiocn;

Title =
TFILE NAME (Tname), lFILE NAME(lname);

Optimisation =

TcopE (Teodei), optimise({Tcodel), lcobE(leodel):

r

Optimise (chodel)y =
{
Tcobe(Teode2),
(

Fold
(
ifoldl[codel.function]{codez.function],
i(codel.operand = code2.operand),
Tcodel
)
|
Fold
(
ifold2[codel.function][code2.function},
lcodel.operand,
Tcodel
)
|
Fold

lfold3(codel.function][code2.function],
lcodel.operand +

code2.operand * fold4[code2.function],
Tcodel

Output (icodel,lcodeZ,Tcodel,Tcsize)

128

Chapter 6

yi

Fold(ifunction,ioperand,T{function,operand});

Output { icodel,icode2,Tcode2,Tcsize+size[codel.function} y o=
[Label (icodel.functionz"LABEL",icodel.operand,T<reference>)1,
lcobE(lcodel) ;

Label { ifunction,ioperand,T[operand — csize]);

Figure 6.15

The rule 'Optimiser' references the rules 'Title' and 'Optimisation’. The rule
'Title' merely passes on the name of the current source program to the next phase
of compiler. The rule 'Optimisation' will obtain an MI and reference the rule
'Optimise’. The rule 'Optimise’ will obtain a second MI and perform references to
the rules 'Fold' or 'Output’, as required. Each reference to the rule 'Fold'
involves a table lookup to see if the current two instructions can be replaced by a
single more simple instruction. If this is possible the replacement instruction is
passed to the rule 'Fold'. This call makes use of the tables 'fold1', 'fold2' and
fold3' as defined in the 'VARIABLES' section (see Figure 6.7). The
optimisations that can be carried out are constant folding and redundant load
elimination. The rule 'Optimise' iterates until all of the current program is
processed. The rule Fold' returns any instruction replacement found. The rule
'Output’ references the rule 'Label' and outputs the oldest instruction (held in
codel) replacing it with the following instruction (held in code2). The rule 'Label'
is used to build a new table of labels against instructions; whilst not directly
relavant to optimisation, this is necessary here since optimisation in general will

have removed instructions and hence altered the label assignments.

129

Chapter 6

The Optimiser specified above is limited to two instruction peephole optimisations.
Again, there is no reason why the ACC can not be used to construct more
powerful local optimisers. However, it is hoped that the above example
demonstrates, in principle, the applicability of the ACC to the construction of local

optimisers.

The Loader

The final 'RULES' section in the TSL compiler specification translates the MIs
output by either the Translator or Optimiser into binary machine code for the
TMA, resolving all forward references. The specification of the Loader is as

follows.

RULES
Loader =
Title, Fixup;
Title =
TFILE_NAME (Thame), UFILE NAME(lname);
Fixup =

{
TcobE(Tcode),

[Final (icode.function,lcode.operand y]
}r

Final(ifunction,ioperand) =

(LF1INALL (lclassi[function]), LFINAL2(loperand)y |
({rINAL1(lclass2{function])) |

(lFINAL1(lclass3(function]), lrINAL2(lreference(operand]));

’

Figure 6.16

The 'Loader' references the rules 'Title' and 'Fixup'. The rule 'Title' passes on

130

Chapter 6

the name of the current source program to the output phase of the ACC (where it is
used to name the final object file). The rule Fixup' reads an MI and references
the rule 'Final' (the rule 'Fixup' iterates until the all of the current program is
processed). The rule 'Final' translates this instruction into TMA machine code
and outputs it. The operands of all jump instructions are determined using the

table ‘reference’, generated the earlier.

The Aston Compiler Con, r under

The TSL compiler can be executed on a range of operating systems and host
computers, due to the portability of the ACC. In this section we shall consider
how the TSL. compiler might be executed under the UNIX operating system on a

SUN3 minicomputer.

The first step is to translate the TSL compiler specification into ACC Intermediate
Execution Format (IEF). This translation can be carried out using the following

command.

LOADER 200 <TSL
This command would cause the ACC LOADER to allocate 200 units of internal
storage space and then translate the CCL specification in the file "TSL' into ACC

IEF. The outline operation of the ACC LOADER would in this case be as shown

in Figure 6.17.

131

Chapter 6

Compiler
Specification

ﬁ/

Loader
% ﬁ N
N Ne— 7 N N
Input Lexical Passl Pass2 Pass3 Symbol Output
Input Phase Translation Phase Output Phase
Figure 6.17

The ACC IEF files produced by the ACC LOADER (including the TSL compiler

title Example’ prefixed to the generic file names used above) are as follows.

File Name Contents
Example Input This is a control file and is used to control the
execution of the ACC SCANNER program.

This is an information file containing information
about all constant lexical strings defined within
the CCL specification.

Example lexical

Example_passl This i1s a control file generated from the first

'RULES' section within the cCCL specification.

This file is used to control the execution of the
first copy of the ACC PARSER program.

This is a control file generated from the second
'RULES' section within the cCCL

Example Pass2

specification.

132

Chapter 6

This file is used to control the execution of the
second copy of the ACC PARSER program.

Example pass3 This is a control file generated from the third
'RULES' section within the CCL specification.
This file is used to control the execution of the
third copy of the ACC PARSER program.

Example symbol This is an information file containing information
about all the constants and variables defined
within the CCL specification.

Example output This is a control file and is used to control the
execution of the ACC RECONSTRUCT program.

Figure 6.18

The TSL compiler is now ready for execution. However, this execution may be
carried out in a number of ways. The most straightforward method is to execute
each section of the TSL compiler sequentially, as follows.
SCANNER Example_ input Example_ lexical New lexical 500 <Source >Templ
PARSER Example passl Example_symbol New symbol 500 <Templ >Temp2

PARSER Example_pass3 New symbol NONE 500 <Temp2 >Temp3
RECONSTRUCT Example_output New_lexical <Temp3

Figure 6.19

These commands would be suitable for executing the TSL compiler (in this case
excluding the optimisation phase) on a small uni-processor system. However, the
components of the TSL compiler could also be executed in parallel (use is made of
the UNIX shell operator '' which indicates parallel execution of two or more
processes, linked by 'pipes'), as follows.

SCANNER Example input Example lexical New_lexical 500 <Source |\
PARSER Example passl Example_symbol New symbol 500 >Templ

PARSER Example_pass3 New_ symbol NONE 500 <Templ | \
RECONSTRUCT Example_output New lexical

Figure 6.20

133

Chapter 6

To exploit parallelism in the execution of the TSL compiler it is necessary to

partition the compiler into two stages of execution. Otherwise, it would not be

possible to resolve forward references. The first stage of execution reads the

source text, translates it into a stream of MIs, and collects information about

forward references. The outline operation of the this stage is as follows.

Input Lexical

Source

Code —® Scanner

New
Lexical

—& Parser

Pass1 Symbol

P Temporary

File

\r

New
Symbol

Figure 6.21

The first stage uses the control files Input' and 'Pass1' and the information files

'Lexical' and 'Symbol' in order to process the source text, and produces two new

files called New_lexical' and 'New_symbol' (these files are updated versions of

the files Lexical' and 'Symbol’).

The second stage of execution translates the MIs generated by the first stage into

machine code for the TMA and fixes up all forward references. The outline

Chapter 6

operation of the this stage is as shown in Figure 6.22.

New New
Pass3 Symbol Output [exical

Temporary

Parser —— Reconstruct —8 Code

Figure 6.22

The second stage uses the control files 'Pass3' and 'Output’ and the updated
information files 'New lexical' and 'New symbol'. Forward references can now

be resolved using the information collected by the first stage.

A Sample Compilation
We shall examine how the TSL compiler would translate a small example
program. We shall once again assume UNIX as the host operating system. The

example program we shall consider is as shown in Figure 6.23.

135

Chapter 6

PROGRAM EXAMPLE

VAR A, B;

BEGIN
A =1+ 7;
B := A+ 2;

IF B-4 = A+B-7 THEN

BEGIN
B := A/ 5;
A =B *B
END
ELSE
IF A#B THEN
BEGIN
A = 0y
B := 0
END
FI
FI;
A :=A+ B+ 10 - 3
END.

Figure 6.23

The commands we shall use to compile the example program (including this time
the optimisation phase) are as follows.
SCANNER Example_input Example_ lexical New_lexical 500 <Source | \

PARSER Example_passl Example symbol NONE 500 | \
PARSER Example pass2 Example symbol New symbol 500 >Templ

PARSER Example pass3 New symbol NONE 500 <Templ | \
RECONSTRUCT Example_output New_ lexical

Figure 6.24

Once again the execution of the TSL compiler will be carried out in two stages.

The outline operation of the first stage of execution is as shown in Figure 6.25.

136

Chapter 6

Input Lexical Pass1 Symbol Pass2 Symbol

P Temporary

¥ ¥ ¥ ¥ X

Code —¥ Scanner ——b Parser —B> Parser

—/ —
New New
Lexical Symbol

Figure 6.25

The ACC SCANNER would read the example program given in Figure 6.23 and
translate it into ACC tokens, passing these on to the first pass of the ACC
PARSER. This pass of the ACC PARSER would then translate these tokens into
Mls, as follows.

Function Operand Source Code
ASF 2 VAR A, B

LDC
LDC
ADD
STA

O O J P

LDA
LDC
ADD
STA

+ 2

H o N O
o)
I
o4

LDA
LDC
SUB
LDA
LDA
ADD

IF B-4 = A+B-7 THEN

o = O O B

137

Chapter 6

LDC 7
SUR 0
SUBR 0
JNE 0
LDA 0
LDC 5 B=A/S
DIV 0
STA 1
LDA 1
LDA 1 A =B * R
MUL 0
STA 0
JMP 1 ELSE
LABEL 0
LDA 0
LDA 1 IF A % B THEN
SUB 0 f
JEQ 2 ;
LDC 0 A =0
STA 0
LDC 0 B =0
STA 1
LABEL 2 FI
LABEL 1 FI
LDA 0
LDA 1
ADD 0
LDC 10 A=2A+B+ 10 - 3
ADD 0
LDC 3
SUB 0
STA 0
HLT 0
Figure 6.26

At a glance the above (naively generated) code will show its poor quality (eg. there
are many redundant 'LDA' (load) instructions). Thus, the second pass of the

ACC PARSER optimises these Mls, as shown in Figure 6.27.

138

Function
ASF

LDC
ADC
ST

ADC
ST

SBC
LDA
ADA
SBC
SUB

LDA
DVC
ST

MLA
STA

LABEL
LDA
SBA
JEQ

LDC
STA

LDC
STA

LABEL
LABEL
LDA
ADA
ADC
SBC

STA

HLT

O O NP O &

VAR A,B

A=1+7
{(Combined 'LDC 7' and
*STA O0' and 'LDA 0')

B =A+ 2
(Combined 'LDC 2' and
*STA 1' and ‘'LDA 1)

IF B-4 = A+B-7 THEN
(Combined 'LDC 4' and
and 'ADD', and ‘LDC 7!

B=A/5
(Combined 'LDC 5' and
'STA 1' and 'LDA 17")

A =B *B
(Combined 'LDA 1' and

ELSE

IF A # B THEN
(Combined 'LDA 1' and

A =0
B =20
FI
FI

A=A+ B+ 10 - 7
(Combined ‘'LDA 1*' and

and 'ADD', and ‘'LDC 3°'

Figure 6.27

139

Chapter 6

'ADD', and

*ADD', and

'SUB', 'LDA 1°*

and 'SUB')
[
;:
{

'DIV', and 3

"MUL*)

'SUBR*)

'aDD', 'LDC 10°

and 'SUB?')

Chapter 6

These optimised instructions would then be stored in a temporary file ready for the

second stage of compilation. It can be seen that although the TSL compiler's

optimisation phase has removed a number of inefficient instruction sequences, a

small number of further opportunities for optimisations have arisen. Most of these

inefficient instruction sequences could be removed by a second pass of the very

same optimiser, producing the following MIs.

Function Operand Source Code

ASF 2 VAR A,B

LDC 8 A=1+7

ST 0 (Combined 'LDC 1' and 'ADC 7'")

ADC 2 B=A+ 2

ST 1

SBC 4

LDA 0

ADA 1 IF B-4 = A+B-7 THEN

SBC 7

SUB 0

JNE 0

LDA 0

DVC 5 B=A/5

ST 1

MLA 1 A =B *B

STA

JMP 1 ELSE

LABEL 0

LDA

SBA 1 IF A # B THEN

JEQ

LDC 0 A =0

STA 0 (A less simple minded optimiser may
combine 'STA 0' and following 'LDC O
to ST 0'.)

LDC 0 B =20

STA 1

140

e .57 ot i

Chapter 6

2 FI
LABEL 1 FI
LDA 0
ADA 1 A=A+B+ 10 - 3
ADC 7 (Combined 'ADC 10' and ‘'SBC 3')
STA 0
HLT 0

Figure 6.28

Examination shows that these optimisation passes have (in total) reduced the
number of instructions by around 30% and the total code size by around 25%

(compared with the original naive code shown in Figure 6.26).

The second stage of the TSL compiler translates the optimised MIs output from the

first stage into machine code for the TMA. The outline operation of this stage is as

follows.
New New
Pass3 Symbol Output 1 exjcal
Temporary q
File \"_/ \;/ \;/ \.‘v,/
Object
Parser ————’ Reconstruct '—_> Code
N

Figure 6.29

The machine code output from this stage (in hexadecimal) would be as shown in

Figure 6.30.

141

rarERT

R - W

20
01

21
01

22
10
11
22
41
62

10
24
01

13
15

60

10
12
61

20
15

20
15

10
11
21
15

50

00
00

00
00

00
00
00
00

00

00
00
00

00
00

00

00
00
00

00
00

00
00

00
00
00
00

08
00

02
01

04
00
01
07

31

00
05
01

01
00

46

00
01
46

00
00

00
01

00
01
07
00

IF B-4 = A+B-7 THEN

B=A/5
A =B *B
ELSE

IF A # B THEN

A=A+B+ 10 - 3

Figure 6.30

The compilation process is now entirely complete.

142

Chapter 6

Chapter 6

Summgry

We have seen in this chapter how the ACC can be used to construct a compiler for
a small example programming language. It is apparent that the ACC allows such
compilers to be specified in a way that is much clearer and much more concise
than traditional high level programming languages. It is also substantially shorter
and more self-documenting than a compiler would be obtained by employing Lex
and Yacc together with the augmentation that would be necessary to handle the

context sensitive aspects and the translation to machine code.

In the next chapter we shall examine how the ACC may be applied to the
specification of a commercial programming language, namely Pascal. The
specification discussed in this chapter is a partial implementation of the lexical,
syntactic, semantic and code generation (excluding optimisation) phases of an ISO

Pascal compiler.

143

[—

=
N 3

R

Chapter 7

A Pascal Specification

R W z

using the

Aston Compiler Constructor

Chapter 7

Introduction

In the previous chapter we saw how the Aston Compiler Constructor (ACC) could
be used to implement a complete compilation system for a small example
programming language. In this chapter we shall focus our attention on how the
ACC could be used to implement a typical commercial programming langauge. In
particular, we shall examine a Pascal translator defined in the Compiler
Construction Langauge (CCL) and given in Appendix 5 of this thesis. The
translator given is designed to process a substantial subset of the International
Standards Organisation (ISO) Pascal [BSI 1982] into a target language modelled

on P-code [Ammann 1981].

An Overview of the Translator

The translator specified in Appendix 5 accepts ISO Pascal (Level 0) with the
following main restrictions: that no input or output functions are provided; and that
functions and procedures may not be passed as formal arguments. The translator
generates P-code as described in [Ammann 1981] with the principal exception that
value parameters passed to functions and procedures are stacked before entry to
the routine (using an additional special instruction 'CPY"). The deviations from
the standard may be justified by observing that the translator discussed in this
chapter is based on a Pascal specification given in [Watt 1980]. This specification
was written prior to the official ISO Pascal standard and hence is in some places a
minor subset and in other places a minor superset of the ISO standard. The main
reason for using this particular Pascal specification was to allow the reader to

make direct comparisons between this specification and the CCL specification

145

Chapter 7

given here. In most cases the notation used in [Watt 1980] is a subset of the ACC
specification defined in CCL. Hence, it is possible for the reader to assess the
improvements offered by the ACC system, particularly in the areas of specification
conciseness and completeness. The main differences between the two notations
dissussed here are principally in the areas of input/output specification, code
generation and error processing. This is particularly noteworthy because the
specification given in [Watt 1980] was implemented using a multi-pass bottom-up
Attribute Grammar (AG) evaluator, where as the ACC notation is implemented

using a single-pass top-down AG evaluator.

Development Issues

While developing the Pascal specification given in this thesis a number of
implementation issues arose that appear worthy of disscussion here. The most
obvious of these issues concerns the CCL operator set. At the time when the CCL
was designed one of the main design aims was to develop a compiler specification
language that was both small and easy to learn, yet powerful enough to allow the
description of entire compilation systems. Although it is believed that this has
been largely achieved it now appears that it would have been advantageous to have
included a small number of extra operators within the original CCL operator set,
for example operators such as: exclusive union, exclusive or, alignment functions
and constant folding functions. Fortunately, the operation of many of these
operators (and functions) can already be specified by using sequences of the
existing CCL operators; however, this leads to more verbose and less efficient

compiler specifications. It is hoped that this deficiency of the ACC will soon be

146

Chapter 7

rectified by the addition a number of extra operators in a future version of the

system.

Another quite separate issue that arose recently concerning the debugging of
compiler specifications. Athough languages like CCL are somewhat more formal
than many traditional high level programming languages, it is still often difficult to
trace errors within compiler specifications. This problem was first noted quite
early on in the ACC project. However, only more recently has it been realised that
debugging tools for systems like ACC are also likly to be useful for teaching
students about the internal operation of compilers. With this in mind, a new
version of the ACC system has been provided with a number of special debugging

modes capable of displaying the internal state of the ACC system.

Finally, a further issue has been discovered in the implementation of the attribute
evaluator used in the ACC. The problem arises because of the top-down left to
right attribute evaluation scheme used by the system when processing CCL

specifications. Consider the following CCL rules.

Number (Tvalue Yy =
Boolean (Tvalue } | Integer(Tvalue) | Reall Tvalue)

i

Boolean { Tboolean(boolean_value))

TBOOLEAN(Tboolean_value Y !

il

Integer (Tinteger(integer_value) }

TINTEGER (Tintegerwvalue Y

Real (Treal(real_value))y =

TREAL(Treal_value) :

Figure 7.1

147

&

T

TR

Chapter 7

The current ACC attribute evaluator evaluates rules (such as 'Number') in a left to
right order. Unfortunately, in the case where the next symbol is '/REAL' this
causes the rules 'Boolean' and 'Integer’ to be evaluated needlessly. In this simple
case this inefficency is not really important, however in cases where a larger
number of rules would need to be evaluated the significance of this difficulty
increases. It is possible to rewrite such rules and overcome this problem, for
example by moving the terminals 'BOOLEAN’, 'INTEGER' and 'REAL' into the
rule '‘Number'. However, this makes such rules more opaque and hence reduces

the clarity of the specification, merely for the sake of efficiency.

One solution to this problem is to propagate information about the terminals in the
rules 'Boolean', 'Integer' and 'Real’ into the rule 'Number'. It is then possible
for the attribute evaluator to decide which rule to activate next (by simply
examining at the next input token). This method is analogous to the method used
for deciding between alternatives in recursive descent compilers, which must
proceed without any backtracking. However, this scheme does not resolve a
similar problem which arises for rules which involve only output terminals.
Fortunately, this is of no consequence as the selection of the next rule to activate in
such a case can usually be made at the base of an appropriate rule subtree (by
examining local attribute information). Therefore, it can be seen that our methods
allow the compiler writer to produce clearer compiler specifications for automated
compiler construction systems (like the ACC) while avoiding most implemention
penalties. The generality of our approach makes it applicable to many top-down

single pass attribute evaluators and therefore it is commended to the reader for

148

AR e

Chapter 7

application in this area.

With the exception of the infelicity outlined above, extensive testing of the ACC
has only shown a few other minor problems within the implementation of the
system itself. Mostly these are to do with algorithms that are somewhat more
store profligate that they need be. At the time of writing recent tuning of the lastest
ACC system has improved the execution performance of the system by about 25%
and store utilisation by about 50%. Furthermore, it is believed that additional

improvements are still available by careful optimisation of selected algorithmns.

A Brief Review

The Pascal specification discussed here was developed by the author over a period
of about 12 months during his spare time (equivalent to about 3 months full time
work). Although at first difficult, the development of the specification seemed to
become progressively easier as work continued. This extensive experiment
showed that although there are initial hurdles to overcome, CCL does indeed
support a most expressive, fluent and convenient programming style. The most
difficult parts of the specification were the implementation of the Pascal type
system and numeric expressions. As mentioned above, a number of difficulties
were encountered during the design and coding of the specification. However,
despite these it is felt that final result is a clear and concise specification of the
language, although it is acknowledged that modest extensions to the CCL could
improve this further. The size of the final specification was somewhat larger than

expected at around 2,000 lines. Nevertheless, this is still about 5-7 times smaller

149

o

Chapter 7

than an equivalent specification in a tradition high level programming language,

such as C or Pascal.

The complete Pascal compiler specification (which is given in Appendix 5) has
been input to and processed successfully by the ACC system, producing files
containing lexical, parsing and control information (as described in Chapter 5).
Taken together with the standard ACC compiler execution system, the outcome 1s
a complete compiler for the Pascal dialect described at the beginning of this

chapter.

The resulting compiler has been tested successfully on a variety of Pascal
programs. For illustration, a simple example of Pascal source and the P-code
generated is given in Appendix 6. It is apparent that the quality of code generated
is in its raw state quite poor. However, a simple optimiser (similar to the example
given in Chapter 6) could easily improve this considerably. Moreover, there is no
known fundamental reason why code generated by automated compiler
construction systems (like the ACC) need be inferior to the code generated by
traditional hand crafted compilers. Also, it is clear that compilers developed using
tools such as the ACC (and in particular the Pascal specification described here)
are more retargetable than traditional hand crafted compilers. The observation is
that the increased clarity, reduced size and tabular nature of specifications for

systems like the ACC naturally make compiler retargeting easier.

150

T —

m
—

T

Chapter 7

Summary

In conclusion, it has been shown in this chapter (and Appendix 5) that specifying
a compilation system for programming language such as Pascal is a soluble
problem for AG based systems such as the ACC. Furthermore, it has been noted
that the source of the resultant specification is likely to be (and in the case of
Pascal demonstrably is) significantly smaller and more manageable than the source
for a traditional hand crafted compiler. It is therefore believed that the ACC
demonstrates a basis for considerably improved alternatives to traditional compiler
construction techniques. The only aspect of compiler construction where this is
not likely to be the case is in the domain of compiler execution speed. This area is

examined in the following chapter.

151

SR —

Chapter 8

A Performance Evaluation
of the

Aston Compiler Constructor

Chapter 8

Introduction

We have seen that the Aston Compiler Constructor (ACC) is a Translator Writing
Tool (TWT) offering an automated alternative to traditional compiler construction
techniques, and that the ACC supports a special compiler oriented specification
language called as the Compiler Construction Language (CCL), which was
described in Chapter 4. It is apparent from the demonstrations of the ACC in
Chapters 6 and 7 that the ACC offers an alternative compiler construction
technique that is both easier to use and more rapid than traditional compiler
construction techniques. However, the ACC is based upon an interpretive
execution system whereas a traditional compiler written in a compiled high level
language will benefit from the superior execution speed of a 'native' machine
code. Therefore, in this chapter we shall examine the performance of an
ACC-built compiler and compare its performance with that of a traditional

compiler.

Performan il

An ACC performance test was carried out using the example compiler
specification described in Chapter 6. The performance of the ACC-built compiler
derived from this specification was analysed on a number of mini-computers. The
mini-computers used were a High Level Hardware (HLH) Orion (rated at 0.6
MIPS), a Sun Systems SUN3 (rated at 2.1 MIPS) and a HLH Orion2 (rated at 5.7

MIPS).

153

IN
LY
¢
i

Chapter 8

The measured performance of the ACC was as follows.

Lines Per Minute (LPM)

2,000 /

1 2 3 4

CPU Power measured in
Millions of Instructions
Per Second (MIPS)

Compilation Speed measured in

Figure 8.1

The performance of the ACC was discovered to be approximately proportional to
the power of the processor being used in the test. It was calculated that the ACC
was able to translate source code at speeds of around 700 LPM per 1 MIPS of
processing power available. Later investigation showed that the ACC was largely
processor intensive with about 80% of the processor's mill time being spent

equally on computation and inter-process communication.

A further performance evaluation test was carried out using two SUN3
mini-computers connected together with a high speed ethernet. This test was
conducted in order to assess what performance improvements might be gained by

using the ACC on multi-processor configurations. It was discovered that the

154

Chapter 8

dual-processor configuration used increased the performance of the ACC by about
20%. However, it was also discovered that 20% of the processing time taken was
consumed by the operating system preparing the compilation. Thus, the ACC
actually executed at about 40% faster on this dual-processor configuration than on

a similar uni-processor configuration.

The measured execution performance of the ACC was as follows.

8,000

Compilation Speed measured in
Lines Per Minute (LPM)
S
o
S
S

1 2 3 4

Number of Processors
(Rated at 2 MIPS)

Figure 8.2

These performance figures were considerably worse than expected due to

significant transmission delays caused by the buffering of inter-processor

messages by the host operating system. It is believed that a total improvement of
up to 60% could be expected with purpose-built multi-processor operating
systems and hardware. However, the enevitable serial nature of a number of

compilation operations, together with the consequent communication

155

e

~re

Chapter 8

requirements, place a limit on the benifit available from multi-processor execution.

Finally, in order to be able to fully appreciate the of the performance of the ACCit
is necessary to compare its performance with a traditional compiler. The compiler

chosen for this comparison was the Berkley Pascal compiler available under

Berkley UNIX 4.2.

The measured performance of this compiler was as follows.

8,000
6,000
4,000

2,000

Compilation Speed measured in
Lines Per Minute (LPM)

1 2 3 4

CPU Power measured in
Millions of Instructions
Per Second (MIPS)

Figure 8.3

(Note: 'Lines of source code' is obviously a rather nebulous measure. To

improve the comparability of the tests, the Pascal source was in principal identical

to the TSL source code, altering only that which was necessary to produce legal

Pascal code)

156

Chapter 8

Again, the performance of this compiler was discovered to be approximately
proportional to the power of the processor being used in the test. It was found
that this compiler was able to translate source code at speeds of around 2,300
LPM per 1 MIPS of processing power available, thus making it around 3 times
faster than the ACC.

Summary

In this chapter we have examined the performance of an ACC-built compiler and
have seen that although it is inferior to that of compilers constructed using
traditional compiler construction techniques, the difference in performance is only
a low order of magnitude. Already a number of improvements to the ACC are
underway in order to reduce this performance gap, for example measures to
achieve worthwhile improvements in the efficiency of the input and output token
translation operations appear to be available. Moreover, a number of simple
additions to the CCL (such as extra predefined operators) would increase its
specification power, leading to shorter, simpler and faster executing rules. Itis
believed that in the future that this performance differential can be narrowed to
around a factor of 1.5. Tt is further believed that increases in the processing power
of future computers and a move towards multi-processor architectures will make
systems like the ACC even more attractive, compared to traditional compiler
construction techniques. The continuing rise in the cost of human software
construction effort relative to hardware costs also increasingly favours ACC-type

tools.

157

Chapter 8

Finally, we shall now attempt to see what conclusions can be drawn from the

ACC project and discuss the future of automated compiler construction.

158

. £
T

Chapter 9

Conclusions

Chapter 9

Introduction

The early chapters of this thesis examined traditional compiler construction
techniques and revealed that many phases of traditional High Level Programming
Language (HLPL) compilers could be conveniently specified using a single
notation, namely Attribute Grammars (AGs). It was concluded that it was
worthwhile investigating whether a largely AG-based Translator Writing Tool
(TWT) could be constructed which would be capable of producing complete
compilation systems, so as to offer an improved automated alternative to
traditional compiler construction techniques. As described in Chapters 3,4 and 5

an experimental AG based TWT called the Aston Compiler Constructor (ACC)

~TEE e
IS

was developed. This new TWT was then used to construct a small but complete
compilation system (as described in Chapter 6) and a Pascal compilation system
(as described in Chapter 7). Finally, the performance of the compilation system
produced was tested, as documented in Chapter 8, and was shown to be

acceptable.

Below we review the results obtained from the experimental ACC system, and

draw a number of conclusions.

A Review of th n Compiler Constr

A large number of TWTs have been developed in the last three decades.
However, only a very few of these tools have even come near to supporting the
formal specification and construction of complete compilation systems. Thus the

ACC has a significantly greater sSCOpe of applicability than most TWTs (the best

160

Chapter 9

known of course being the Lex-Yacc combination). It also provides a worthwhile
qualitative enhancement on the few 'near-complete' systems (eg. [Keizer 1983]
and [Madsen 1983]) which all leave some greater or lesser external interfacing or
other coding effort to the user and inevitably lack the benefits of

self-containedness.

In a few cases, techniques developed in certain earlier TWTs are similar to those
used within the ACC. For example, the lexical processing carried out by the ACC
LOADER is similar to the processing carried out in Lex, the operators available in
the CCL are a modified superset of those suggested in [Madsen 1983], and the
AG parsing techniques used in the ACC PARSER are comparable to the parsing
technique used in [Koskimies 1983]. However, the ACC also includes a number
of specific features that are believed to be new and interesting. These include:
extended input and output facilities (incorporating input and output data
structuring); natural support for the separate specification and interfacing of
individual compiler phases (including the ability to specify systems ranging from
complete compilation systems to small compiler components); and the ability to
readily organise the execution of compiler phases in parallel (a feature that is
lightly to become especially significant with the anticipated increase of

multiprocessor architectures Over the next decade).

Any use of TWTs based on formal notations brings advantages in the areas of
self-documentation, clarity of specification, maintainability and reliablity. The
ACC lexical and syntax specification is entirely formal and thus enjoys such

advantages. Further, the ACC uses a more modern form of BNF, which is

161

Chapter 9

generally easier to use and understand than traditional BNF, employed (for
example) in Yacc. It hence enjoys greater advantages in clarity, etc, especially in

connection with syntax.

However, perhaps the main gain of the ACC is that (to a substantial degree) it
extends the above noted advantages to the whole of the compilation process. The
attribute-based method of specifying context-sensitive constraints and translation
operations allows these to be associated with the appropriate syntax rules in a
straightforward manner. These context-sensitive constraints and translation
operations are typically rather complex items and are thus broken down into small
components which are clearly tied to the syntactic items to which they relate. Itis
acknowledged that the CCL is indeed a programming system, rather than a fully
formal notation, and that its execution imposes some constraints on the attribute
processing which can be performed. Nevertheless, the notation used is
sufficiently close to the underlying formal system to give worthwhile gains in

expressivity, clarity, and reliability.

The compiler specification style supported by the ACC has two further features
which assist in promoting clarity and maintainability, namely support of tabular

presentation and modularisation.

Tabular presentation is particularly valuable in compiler construction, for example
due to the typical need to enumerate and organise the processing of collections of
items which may be large in number but are each relatively simple (eg. operation

codes and keywords). The TSL example of Chapter 6 also demonstrated the value

162

o

Chapter 9

of straightforward tabular presentation in organising and specifying peephole

optimisation.

Modularisation arises through the ability to include a number of RULES'
sections, where each section corresponds to a transformation of the program being
compiled from one representation to another (presumably closer to the intended
final form). Thus, the division of a compiler into a number of passes is readily
achieved. The CCL's token and type specification mechanisms allow the

construction of clear and straightforward pass interfaces.

It is hence believed that the ACC has been demonstrated to have several significant
advantages over both earlier TWTs and traditional HLPLs in the construction of
complete compilation systems. It is accepted that in the area of performance the
ACC is somewhat slower but in many cases this will be outweighed by the ACC's
advantages in the areas of speed of construction and reliability. The ACC is
already a well advanced practical system. We have noted that a small number of
improvements could further enhance its performance, and it seems a quite

reasonable hypothesis that this will result in a commercially viable tool.

In conclusion, this thesis has shown that by building on an appropriate formal
foundation, a truely practical tool has been obtained for the construction of
complete compilers, and thus we have thereby more closely tied together the
formal specification of programming languages and the software engineering

objectives of reliable and easily maintainable compiler construction.

163

iz
% i
i
4
¥

Appendix 1

The
Compiler Construction
Language

Quick Reference Manual

Appendix 1

Introduction

The design and application of the Compiler Construction Language (CCL) is
discussed in detail in the main text of this thess. The most important aspects of
CCL syntax are briefly reviewed in this appendix to form a 'stand-alone’ quick

reference guide to the language.

The Compiler Construction Language
A complete CCL specification is specified in terms of a number of individual CCL l
sections. These sections are : 'Title', 'Constants', 'Input Tokens', 'Output f

Tokens', 'Types', 'Variables' and 'Rules’.

Title
The first section of a CCL specification ‘s the 'TITLE' section. This section is

used to name a CCL specification and is formally defined as follows.

Title — wpITLE", Identifier.
Tdentifier = ('A'—-)'Z‘I'a'—-)'z'),
('Al_)lzl]lal__élzli lOl_)!g"l‘—_l).
Figure Al.1
Constants

The second section of a CCL specification is the 'CONSTANTS' section. This

section is used to define CCL compile-time constants and is optional, and formally

165

Appendix 1

defined as shown in Figure A1.2.

Constants
Constant Rules
Constant Rule

Expression

Sets
Binary
shift
sum
Term
Power

Unary

Primary

Constant

Character

Hexadecimal

Octal
Real
String

Unsigned

Variable

Function

"CONSTANTSY, Constant_ Rules.

= ConstantﬂRule, { Constant Rule }.

Identifier, "=", Expression, ";".

Sets, ((“="\"¢"]">"I"2"l"<"l"$")’ Sets }-
Binary, { ("m" | "U"), Binary }.

snift, { ("&™ | ™™), shift }.

Sum’ { (Pl l L) , Sum) .

Term, { (nyn | ot) , Term } .

Power, ((1ok It I n/u) , Power } .

Unary, { """, Unary }.

{ o | W), Primary.

Constant |
variable |

[Function], "{", Expression, "}".
P

CharacterlHexadecimal10ctallRealIStringtUnsigned.

N0 —\377".
(10" —19r 'Rt F rat e,
(10719 [TATFT [Tat >).
01>t 7t, (10PN
Lt_>1r, (101197}, ML, 1OI—Ter, {10TTEN
per . (1\0T—T\3777), M.

lol__>l9l’ (’O'—‘)'g'),

Identifier |
Identifier, ".", variable |
variable, "{" Expression |

ng¢gn, Variable, nyn |
ngn, Variable, >,

"ABS"i"INTEGER"\”LENGTH"I"REAL"I"UNSIGNED".

Figure Al.2

166

J—

T

Appendix 1

The CCL supports a variety numeric, character and string constants, as follows.

Type mne Type Exanmple
CHARACTER Numeric ral
HEXADECIMAL Numeric Ox1l2aF or 0X123C
INTEGER Numeric 123
OCTAL Numeric 0123
REAL Numeric 123.456
TEXT String "Any Text Sting™
UNSIGNED Numeric 123
Figure A1.3

Character or string constants may contain special character sequences, as follows.

Character Meaning
\b A back space character.
\f A form feed character.
\n A new line character.
\r A return character.
\t A tab character.
\Any other character The character.
\Octal number The character with this Octal character code.

Figure Al4d

The CCL supports a selection of binary operators, as follows.

2 (Highest) ~ Numeric Exponential.
3 * / Numeric Multiplication and Division.
4 + - Numeric Addition and Subtraction.
5 << >> Numeric Logical shifts.
6 & | Numeric Binary And and Or.
7 N Tables Join and Intersect tables.
8 = # Any Comparisons.
8 < < Numeric Comparisons. .
8 (Lowest) > Z Numeric Comparisons.
Figure A1.5

167

And unary operators, as shown in Figure AL.6.

Prior]

Appendix 1

Operator Tvpe Meaning
- Numeric Unary Minus
t Numeric Binary Not
Figure A1.6

Finally, a selection of built-in functions are supported, as follows.

Name Function

ABS Return the absolute value of following expression.
INTEGER Truncate the value of the following expression to

integer. \ y
LENGTH Return the length of following string. ?
REAL Float the value of the following expression to real.
UNSIGNED Truncate the value of the following expression €O

unsigned.

Figure AL7
Input Tokens

The third section of a CCL specification is the 'INPUT TOKENS' section. It is

used to specify input terminals and is formally defined as follows.

InputﬁSection = wINPUT", "TOKENS", Input_Rules.

Input Rules = Input_Rule, { Input_ Rule }.

Input_Rule = wyoIDd", "=", Input_Token, LEA
Identifier, "=", HCONSTANT™, string, ":"
Identifier, n=rr, Input_Token, e |
Identifier, n=t, Input_Structure, e

Input Structure - ngTRUCTURE"™, wir, Input_Clauses, myr,

Input Clauses = Input Clause, { Input_Clause }.

Input Clause = wyoID™, ":"s Input_Token, REA

a WCONSTANT®, ":", String, "i" |

Identifier, w.n Input_Token, LLERN

168

Appendix 1

Input Token = Input_Choice | Simple_Type.

Input~Choice = Input_Sequence, { n"|"_ Input Sequence }.

Input_ Sequence = Input Primary, { ",", Input Primary }.

Input Primary = m(v, Input Choice, ™)™ | "[", Input Choice, "1™ |
(", Input Choice, "}", Iterations |

Input_Terminal.

Iterations = [mxn Expression, ["2, Expression] .
Input_ Terminal = Range | String | "2%.
Range —= “'",l\ol__)l\3771,lllll' l|__>l|’"|‘l'!\OI__)1\377""|H'

Figure A1.8

The input terminals are specified in this section of a CCL specification and are

S—

defined using Regular Expressions (REs). These REs consists of RE operators

and RE terminals. The RE operators available are as follows.

pri . . [
1 {(Highest) () Enclosed clauses are to be grouped.
1 { 1 Enclosed clauses are optional.
1 { } Fnclosed clauses are to be iterated.
2 ’ Sequence operator.
3 (Lowest) | Alternative operator.
Figure A1.9

And the RE terminals, as follows.

Example Meaning

wp textual string™ Any textual string.

AT Any character range.
? Any character.

Figure A1.10

The 'CONSTANT' keyword may be used to cause the value associated with a

169

Appendix 1

particular token to be ignored and deleted. The 'VOID' keyword performs the

same function on entire tokens.

A number predefined REs are supported by the CCL, as follows.

T Definit]

CHARACTER T\O'—'\377"

HEXADECIMAL ("Ox™|"0X"), {10'—>191[A'—'F'['at—'f'}
INTEGER 1113197, {10'—>'9"}

OCTAL nor, {('0'—>'7'}

REAL lll_.,)lgv’ (lol_.élgl)’ II."’ 101_)195, {lOX__,)lgl)
UNSIGNED 1113397, {'0'—>>'9'}

SHORT FIXED 2 * sizeof (short unsigned) e

FIXED 2 % gsizeof (unsigned) ol

LONG FIXED 2 * sizeof (long unsigned) *HX

FLOAT » * sizeof (float) ~*7

LONG FLOAT 2 x sizeof (long float) *

F‘ILE (lAl_)llelal__)lzl), {IAI_"ZIlIaI_)Izl)
TEXT (IAI_)lZlilal__)lZ')’ (lAl_‘),Z“lal—)'Z'}

*** a5 defined locally in the C programming language

Figure Al1.11

All of these predefined REs return a value to the CCL rule which applies them.
Finally, the CCL supports the definition of structured input terminals. These are

specified using the 'STRUCTURE' keyword and allow structured information to

be easily input to and output from CCL specifications.

170

Appendix 1

Qutput Tokens
The fourth section of a CCL specification is the 'OUTPUT TOKENS' section. It

is used to define output terminals and is formally defined as follows.

Output_Section = "QUTPUT", “TOKENS", Output Rules.

Output_Rules = Output Rule, { Output_Rules }.

Output_Rule = Identifier, ™"=", "CONSTANT", String, ;"
Identifier, "=", Simple Type, ";" |
Identifier, "=", Output_Structure, ";".

Output_Structure = "STRUCTURE™, "{", Output_Clauses, "}".

Output_Clauses = Output_Clause, { Output_Clause }.

Output Clause = "CONSTANT", ":", String, ";" |
Identifier, ":", Simple Type, ";".

Figure A1.12

The 'OUTPUT TOKENS' section is defined to be consistent with the TNPUT
TOKENS' section, as far as is possible. However, REs and the 'CONSTANT

and 'VOID' keywords may not be used in the 'OUTPUT TOKENS' section.

Types
The fifth section of a CCL specification is the '"TYPES' section. This section is

used to define new variable types and 1s optional, it is formally defined as shown

in Figure A1.13.

171

Types
Type_Rules

Type Rule

Type Structure

Type*Clauses

"TYPES™,
Type Rule,

Identifier,
Identifier,

n"STRUCTURE",
"UNION™,
"TABLE",

Type Clause,

||{u
14

u[n
’

Appendix 1

Type Rules.
{ Type Rule }.

=", Complex Type, ";" |

, Type_Structure, ";™".
m{", Type Clauses, "}" |
Type_Clauses, "}" |

Complex Type, "I".

{ Type Clause }.

Type Clause = Identifier, ":", Complex Type, ";".

Complex Type = Identifier | Simple Type.

Simple Type = "CHARACTERY" | "INTEGER" | "HEXADECIMAL" |
"OCTAL"™ | "REAL"™ | "UNSIGNED" |
"SHORT'™, "FIXED™ | "FIXED"™ | "LONG", "FIXEDY
"FLOAT" | "LONG™, "FLOAT"
"TEXT™ | “FILE"™, "NAME".

Figure A1.13

The standard types available in the CCL are as follows.

Ivpe Meaning

CHARACTER A single Character
HEXADECIMAL A hexadecimal number
INTEGER An integer number

OCTAL An octal number

REAL A real number

UNSIGNED An unsigned number

SHORT FIXED A short fixed point number
FIXED A fixed point number

LONG FIXED A long fixed point number
FLOAT A floating point number
LONG FLOAT A long floating point number
TEXT A textual string

FILE A legal file name

Figure Al.14

The 'STRUCTURE', 'UNION' and '"TABLE' keywords may be used to defined

CCL structures, unions and tables. These data structures can be accessed using

172

Appendix 1

the CCL dot, sequence and selection operators, as follows.

Operator Meaning
Variable.Name Select the field 'Name' in the structure or

union ‘'Variable'.

<< Symbols > Select the first entry in the table 'Symbols'.

< Symbels >> Select the last entry in the table *Symbols’.
Symbols [“A'"] Select the entry with the key "A"™ in the table
'Symbols'

Figure A1.15

Variables
The sixth section of a CCL specification is the 'VARIABLES' section. This
section is used to define new variables for the following "RULES' section(s) and

is optional, it is formally defined as follows.

Variables — "YARIABLES", Variable_ Rules.

Variable Rules = Variable_Rule, { Variable Rule }.
Variable Rule = Complex Type, Variable Names, ";".
Variable Names = Variable Name, { n n_ yariable Name }.
Variable_ Name -~ Tdentifier, ["=", Complex Value].
Complex_Value = Expression |

n¢n_ complex Value, { ",", Complex_Value }, "}" |
Tdentifier, "{", Complex_Value, o
win [Table Value, { ",", Table_Value } } "I".

Table Value = [Expression, "], Complex_Value.

Figure A1.16

The CCL supports two main types of variables. These are initialized variables and
uninitialized variables. An initialized variable can be most simply described as a

global variable. The contents of such variables do not need to be passed between

173

Appendix 1

CCL rules but may be accessed directly by any rule within a CCL specification.
These variables are ideal for the storage of static or semi-static data structures and
greatly reduce the overhead of passing such data structures between CCL rules.
An uninitialized variable can most simply be described as a local variable. Such

variables are used to hold dynamic values as they are passed between CCL rules.

Rules
The final section of a CCL specification is the 'RULES' section. This section is
used to define the CCL translation phases and may appear Z€ro or more times, it is

formally defined as follows.

Rules = "RULES", AG_Rules.
AGMRules = AG_Rule, { AG_Rule }.
AG Rule = Rule_Header, { "=", Rule Body 1, "t
Rule Header - Tdentifier, ["(", Rule_Parameters, LD TR I
Rule Parameters = Rule_Parameter, { ",", Rule Parameter }.
Rule_Parameter = "T", Complex_Value | "iT", Variable |

"i", variable | ”i", ngrn, Variable, ">".
Rule Body = Rule_Sequence, { "|", Rule_Sequence }.
Rule_Sequence = Rule Primary, { w n_ Rule Primary }.
Rule Primary = " (", Rule Body, ")" ["[", Rule Body, "]" |

w{", Rule Body, "1}", Iterations |
Rule Terminal.

Rule Terminal = Rule_Warning | Rule Error |
Rule IO Terminal { Rule_Call.

Rule Warning = n¢g™, String, ">>", Rule_ Body.

Rule Error = n¢<n, Identifier, n n_ Identifier,
w n_ String, n>>", Rule Body.

174

Appendix 1

Rule IO Terminal = “T", Identifier, [™(", "T“,Variable, mrg

"l", Identifier, ["(“, "i“,Complex_Value, "M,
Rule Call = Identifier, ["(", Rule Operands, "}" 1.
Rule_Operands = Rule_Operand, { ™,”, Rule Operand }.
Rule_Operand = "T“, Variable | "T", "<, Variable, ">" |

"lT", Variable | "l", Complex Value.

Figure A1.17

A CCL rule is specified in two main parts, a rule header and an optional rule body.
The rule header defines the CCL rule name and its parameters, if any. Each

parameter is preceded by an arrow indicating the direction of information flow.

The optional CCL rule body is specified using REs. These REs again consist of
RE operators and RE terminals. The RE operators available are as follows.
s ,

(Highest) () Enclosed clauses are to be grouped
[] Enclosed clauses are optional

1
1
1 { } Enclosed clauses are to be iterated
2 B Sequence operator

3

(Lowest) | Alternative operator

Figure Al.1

The RE terminals available are called rule terminals, rule calls and rule errors.

A CCL rule terminal is used to input or output information to or from a CCL rule.

A rule terminal is denoted within a CCL rule by a leading 'T" or 'l' symbol
followed by a input or output terminal name. If the input or output terminal has an

associated value, this value may be input or output using a bracketed value clause.

175

Appendix 1

associated value, this value may be input or output using a bracketed value clause.

A CCL rule call is used to invoke other rules within a CCL specification. A rule
call consists of the name of the rule to be called followed by an optional parameter
list in brackets. The parameter types in a rule call must match the corresponding
parameter types in the rule header. The RE operators ', '[', 1" and '{’, '}’
sometimes affect the visibility of values returned by RE terminals. The following
rule is adopted by the CCL : 'A variable is only considered visible outside an

optional or iterative RE if its definition within that RE can be guaranteed'.

Finally, a CCL rule error is a special RE terminal used to detect and trap errors
discovered during the execution of a CCL specification. There are two types of

rule error terminals, namely warning terminals and error terminals.

A warning node consists of a '<<’ symbol followed by some warning string and
a'>>' symbol. A warning terminal is used to deal with any minor faults detected

during the execution of a CCL rule.

An error node consists of a '<<' symbol followed by two token names, an error
string and a '>>' symbol. An error terminal is used to deal more serious faults

detected during the execution of a CCL rule.

176

Appendix 1

End
The 'END' keyword is used to mark the end of a CCL specification.

177

Appendix 2

A Formal Specification
for the

Compiler Construction Language

Appendix 2

In ion

The Compiler Construction Language (CCL) is the compiler specification
language processed the Aston Compiler Constructor (ACC). The formal CCL
syntax specification given in this appendix is defined using the draft British
Standards Institute (BSI) meta-language as proposed in [Scowen 1982]. An
extension to this meta-language has been used in the following specification to

simplify the definition of character ranges. For example, a range of characters,

say 'A' to 'Z/, is defined in the formal specification below as 'A'-'Z'.

The Formal Syntax Specification

Loader = Title, [Constants], Tokens, [Types 1.,
[Variables], { Rules }, End.

(* The Title Section *)
Title = "TITLE"™, Identifier.

Identifier = (*AT='2t|ta'>'zt),
{lAl_%lZlilal_%lzl‘lOI__)lglll |)'

(* The Constants Section *)
Constants = MCONSTANTS", Constant_Rules.

Constant Rules = Constant_Rule, { Constant_Rule }.
Constant Rule = Identifier, "=", Expression, ";".

(* The Expression Section *)
EXpression = Sets, { ("="t"¢"‘">"1”Z"!"<"|"S"), Sets }.
Sets = Binary, { (LT LU L LU Binary }.
Binary — shift, { ("&™ | "1™), Shift }.
Shift - sum, { ("<<topo"»>™), Sum).

Sum = Term, { ("+" jov=r), Term b
Term - power, { ("x* | /™), Power b
Power = Unary, { nan o Unary }.

Unary = [merno =T, Primary.

179

Primary

Constant

Character

Hexadecimal

Octal
Real
string

Unsigned

variable

Function
(*
Tokens
(*

Input_Section
Input_Rules

Input_ Rule

Input_Structure
Input_Clauses

Input Clause

Input_Token
Input_Choice

Input_Sequence
Input Primary

Iterations

Input_Terminal

Range

Appendix 2

Constant | Variable | [Function], "(*", Expression, ")".

Character |Hexadecimal |Octal|Real|String|Unsigned.

N0 —'\377".

(P01 91| 'ATTFr | Tar > E),
(101319 TAT IR [Tt)

10T —>T7r, {1017

IO|_)l91, (IOI_)IQI),".H, |O|_);9l, (IO'_)IQI)'

[RIN}
’

{x\ol_)x\377|),

101_)1911

Tary

(IO!_)IQI}.

Identifier |

Identifier, ".%,
Variable,
negn,
ngn,

Variable |
w{n Expression "]" |
">"]

nysw

Variable,
Variable,

"ABS"l"INTEGER"I"LENGTH"I"REAL"I“UNSIGNED".

The Tokens Section *)

Input_Section, Output_Section.

The Input Token Section *)

"INPUT™,
Input_Rule,

WTOKENS", Input Rules.
{ Input Rule }.

nyoID", "=", Input_Token, ";" |
Identifier, "=", "CONSTANT", string, ;" |
Tdentifier, "=", Input_Token, ";" |
Identifier, '"=", Input_Structure, A

“STRUCTURE™, Rt

Input _Clause,

e, Input_Clauses,
{ Input_Clause }.

wyoID", ":", Input_Token, i |
"CONSTANT™, ":', string, ;" |
Identifier, *:", Input Token, nen,

Input_Choice | Simple Type.

{ "|", Input_Sequence).
Input Primary, ¢y Input_Primary }.

w(w, Input Choice, ™" | m(", Input_Choice,
i, Input:choice, nin, Iterations |

Input_Terminal.

Input_Sequence,

u] oy

[wxw, Expression, { "—", Expression]).

Range | string | "?".

nan I\Ol_)'\377"

uyn’ xl_>lr’uvn’;\01_)1\377r'usu.

180

Appendix 2

(* The Output Token Section *)
oUtput_Section = "QUTPUT", "TOKENS", Output_ Rules.
Output_Rules = Output_ Rule, { Output Rules }.

Output Rule = Identifier, ™"=", "CONSTANT", String, *;"
Identifier, "=", Simple Type, ";" |
Identifier, "=", Output Structure, ™;".
Output Structure = "STRUCTURE™, "{", Output Clauses, ™}".
Output Clauses = Qutput Clause, { Output_Clause }.
Output_Clause = WCONSTANT®, ":", String, ";" |
Identifier, ™:", Simple_Type, ™;".

(* The Type Section *)
Types = "TYPES", Type_ Rules.

Type_Rules = Type_Rule, { Type_Rule).

Type Rule = Identifier, "=", Complex Type, ";" |
Identifier, "=", Type Structure, ";".

Type_ Structure = "STRUCTURE"™, "{", Type Clauses, e
"UNION®™, "({", Type_ Clauses,)
"TABLE", "[", Complex Type, win,

Type Clauses = Type Clause, { Type_Clause }.

Type Clause = Tdentifier, ":", Complex_Type, ";".

Complex_ Type = Identifier | Simple_Type.

Simple Type — n"CHARACTER" | "INTEGER™ | "HEXADECIMAL"
"OCTAL" | "“REAL™ | "UNSIGNED™ |
wWSHORTY, "FIXED™ | "FIXED" { "LONG", "FIXED" |
"FLOAT" | "LONG", "FLOAT™ |
"TEXT" | "FILE".

(* The Variable Section *)
Variables ~ "YARIABRLES", Variable Rules.

Variable Rules = Variable Rule, { Variable_Rule }.

Variable Rule = Complex_Type, Variable Names, ";"

Variable Names = Variable Name, { n w_ VYariable_ Name }.

Variable Name = Identifier, ["=", Complex_Value].

Complex Value = Expression |
win, complex_Value, f{ w,n, Complex_Value }, "}" i
Identifier, "{", Complex Value, o
LI Table Value, ¢, Table_Value 2 A R

Table Value { Expression, nytol, Complex_Value.

181

Appendix 2

(* The Rules Section *)
Rules = "RULES"™, AG_Rules.
AG_Rules = AG Rule, { AG Rule }.
AG Rule = Rule Header, ["=", Rule_Body], ";".
Rule Header = Identifier, ["(", Rule Parameters,)"].
Rule Parameters = Rule Parameter, { ™,", Rule Parameter }.
Rule Parameter = "T", Complex Value | "LT", Variable |

wln, variable | "lm, <", variable, '>m.

Rule Body = Rule Sequence, { "I, Rule Sequence }.
Rule Sequence = Rule_Primary, ¢, Rule_Primary Y.
Rule Primary = " (", Rule Body, ™)*" | "[", Rule Body, "]" |

n{", Rule Body, "}", Iterations |
Rule Terminal.

Rule Terminal = Rule Warning | Rule_ Error |
Rule IO Terminal | Rule_Call.

Rule Warning = mg<", String, ">>", Rule_Body.

Rule Error = ncg", Identifier, ™,", Identifier,
w uw_ string, '>>", Rule_Body.

Rule IO Terminal = wTn, Identifier, ["({(", nTr,variable, ™" J |
nn, Tdentifier, [™(", nlr, complex Value, ™)™ 1.

Rule Call = Identifier, ["(", Rule Operands, D A I
Rule Operands = Rule Operand, { ",", Rule Operand }.
Rule Operand = "T", Variable | "T", n¢n, Variable, ">" |
"iT”, Variable | "l", Complex Value.
{* The End Section *)
End - "END".

Lexical Covention

The CCL uses the following lexical conventions.

182

Appendix 2

Comments and White Space
Comments and white space within a CCL specification are ignored by the ACC.

They are defined as follows.

Comment - ll(*ll, (l\Ol_)I\B’]']l), n*)u.
White_Space = A AN L G s L
Figure A2.1
Resery: r

The CCL reserves a number of keywords for internal use. These keywords may

not be used as identifiers within CCL specifications. The reserved keywords are

as follows.
ARS AND CHARACTER
CONSTANT CONSTANTS END
FILE FIXED FLOAT
HEXADECIMAL IN INOUT
INPUT INTEGER JOIN
LENGTH LONG NOT
OCTAL OR OUTPUT
ouT OVERRIDE REAL
RULES SHORT STRUCTURE
TABLE TEXT TITLE
TOKENS TYPES UNION
UNSIGNED VARIABLES VOID

Figure A2.2

183

Appendix 2

Alternative Symbol
The CCL supports a range of alternative operator symbols. These symbols may

be used on ranges of computer hardware where the usual CCL operator symbols

are unavailable.

The alternative operator symbols are supported by the CCL are as follows.

Symbo e ives
~ * %
& AND
[OR
#* <>
> >=
< <=
~ NOT
— ->
U u
M n
{ (/
] /)
{ (:
) :)
T IN
T INOUT
d ouT

Figure A2.3

184

Appendix 3

A Simple
Compiler Construction Language

Specification

Appendix 3

Introduction

The example Compiler Construction Language (CCL) specification discussed in
Chapter 5 of this thesis is a formal specification of a simple assignment statement
and its compilation to a simple machine code. A complete listing of this

specification is given below.

The Simple Assisnment Specification

TITLE Example

CONSTANTS
LDA = 0x10;
ADA = 0x11;
SBA = 0x12;
STA = 0x13;

INPUT TOKENS

ASSIGN = CONSTANT ":=";
SUM = mgn T,
IDENTIFIER = (TA'—'Z'), {'A"D'Z'|'0''9"};

OUTPUT TOKENS

INSTRUCTION = STRUCTURE
{
operation : INTEGER;
CONSTANT SN o
operand : INTEGER;
CONSTANT : "\n';
i
TYPES
HASH TABLE = TABLE[INTEGER];
VARIABLES
HASH TABLE identifier =
[
nar o 1,
vBT o 2

]I

186

INTEGER
; TEXT
% RULES
! Assignment =

END

Expression =

Operand (Ini=ny,

Store(iname }

instruction =

[
“io=" — LDA,
"+ — ADA,
" — SBA
17
value;

name, operator;

TIDENTIFIER(Tname), TassicN,

Store(iname Y

{ TSUM(Toperator), Operand/(ioperator)y)i

Operand (ioperator y =
TIDENTIFIER(Tname),

iINSTRUCTION(i(STA,identifier[name]} y:

Expression,

’

JINsTRUCTION(i(instruction[operator],identifier[name]}) ;

7

187

Appendix 3

Appendix 4

A Larger
Compiler Construction Language

Specification

Appendix 4

In ion
The example Compiler Construction Language (CCL) specification discussed in
Chapter 6 of this thesis is a formal specification of compiler for a simple

programming language. A complete listing of this specification is given below.

A Small Programming Language
TITLE Example

/**/

/* x/
/* The specification of the compiler interface *x/
/% */

/**/

INPUT TOKENS

PROGRAM = CONSTANT "PROGRAM";

VAR = CONSTANT "VAR";

BEGIN = CONSTANT "BEGIN";

IF = CONSTANT "IF";

THEN = CONSTANT "THEN";

ELSE = CONSTANT "ELSE";

FI = CONSTANT "FI";

ENDS = CONSTANT "END";

ASSIGN = CONSTANT ":=";

SUM = gn oy

TERM L VA

COMPARTSON = "=r | ngm | nmgm | g | omen | 2ty
COMMA = CONSTANT ",";

SEMI_COLON = CONSTANT ";";

DOT = CONSTANT ™.";

IDENTIFIER = ('A'—'2'), {('A'='2' | 1012197}
VALUE = INTEGER;

VOID = oo pom\gt | "N

189

Appendix 4

/*****'k*‘k‘k***/

/*

*/
/* The specification of the Optimiser & Loader interface */
/* */

/**/

OQUTPUT TOKENS

FILE_NAME = FILE;
CODE = STRUCTURE
{
function . TEXT;
CONSTANT s UALT;
operand : INTEGER;
CONSTANT : "\n";
}i
FINAL1 = CHARACTER;
FINAL2 = SHORT FIXED;

/*****x**/

/* */
/* The specification of Compiler types */
/* */

/**’k*/

TYPES
HASH TABLE = TABLE[INTEGER];
INSTRUCTION = TABLE [TEXT];
OPTIMISATION = TABLE[INSTRUCTION];
/**‘k*******/
/% */
/* The specification of Complier variables & tables */
/* x/
/**‘k*/
VARIABLES
/* Simple variables */
CODE code, codel, code?;
INTEGER csize=0,dsize=0,label=0,new_label,operand,value;
TEXT function,name,operator;
/* The symbol table and forward jump resolution table */
HASH_TABLE identifier = [],reference = (1:
/* The operator to function mapping table */
INSTRUCTION instruction =
[
PRl —y "ADD", T —3 “SUB",
wknt —3y "MUL", nw/n — "DIVY,
war —y "JNE", ngn — "JEQ",
wen — "JGE", nwgn — "JGR™,
nyu —y "JLE", n>n — "JLT"

190

Appendix 4

/* The function size look up table

*/
HASH TABLE size =
{

"D - 3, ngmn - 3,

"LDA" — 3, T"ADAY — 3'

"SBA" — 3, "MLA" — 3,

Y“DVA" — 3, ngTAR —> 3,

“LpcY —> 3, "ADCH — 3,

"SBC" — 3, "MLCT 5 3,

"pvc" — 3,

"ASF" > 3,

"ADD" — 1, "SUR" — 1,

"MUL" — 1, DIV —> 1,

"HLT" — 1,

"JMP® — 3, "JEQ" — 3,

"JNEY — 3, "JLT" — 3,

"JLE" — 3, "JGR" — 3,

"JGE" — 3,

"LABEL" — O

17

/* The peephole optimisation tables */
/* (for redundant load removal and constant folding) */

OPTIMISATION foldl =
[
"STA" —
["LDA™ — "ST"]
17
OPTIMISATION fold2 =
[

"LDA" —
(
"ADD" — "ADA",
nSUB" — "SBA",
nMyL" — "MLA",
wpIV" — "DVA"
1,
“LDC" —

191

17
OPTIMISATION fold3 =
{
" LDCH

(

1.
nADCH
(

H"gRC™

17
HASH TABLE folda
[

[

HYADCH

ngRCY
1:

/* Symbolic function
HASH_'TABLE classl =
[
" LD T

wDAY
nSRAYM
nDVAY

npDCH
n"gRCH
npycH

"ASEY
17
HASH TABLE class2 =
[
"ADD™

"ADD" —
"SUB" —
"MUL" —
"DIV" —
N

"ADC" —
"SBCM —
>

"ADC" —
"SBC" —
>

“ADC" —
"SBC" —
-1,

- -1

to machine code

— 0x0,

— 0x10,
— 0x12,

— 0x14,

— 0x20,
— 0x22,

— 0x24,

— 0x30

— 0x40,

"ADC™,
"SBC™,
"MLC™,
"pyc™

“LDC™,
n1pCH

"ADC',
TYADCH

"SRBCH,
"GR!

192

ngmn

"ADAM
n“MLA™
ngTAY

“ADCH
nMLCH

ngURB"

mapping tables

— 0x1,

— 0x11,
— 0x13,

— 0x15,

— 0x21,

— 0x23,

— 0x41,

Appendix 4

*/

Appendix 4

"MUL" — 0x42, "DIV" — 0x43,

"HLT" — 0x50
1

HASH_TABLE class3 =
(
"JMPY — 0x60, "JEQ" — 0x61,
"JINE" — 0x62, "JLT" — 0x63,
"JLE™ — 0x64, "JGR" — 0x65,
"JGE™ — 0x66

1

/****'k***********‘k*******************'k***********************/

] * */
/* The specification of a simple compiler */
/* */

/********‘k‘k*****‘k******************‘k‘k***‘k******************k*/

RULES
Compller =
Program, Var, Statement, End;

Program =
TPROGRAM, TIDENTIFIER{ Tname),
lPILE NAME(name);

/*********************************‘k*****************‘k********/
/* * /
/* The specification of program variables *x/
/* */

/*********************************‘k**‘k****‘k*‘k*******‘k***‘k****/

Var =
TVAR, Variables, 1SEMI_COLON,
Code (i(”ASF”,dsize},Tcsize) ;

Variables =

Variable, { TcoMMa, vVariable };
Variable =

<<COMMA,SEMI*COLON,"Invalid variable identifier™>>

Variable Name (Tdsize,T<identifier>)y

Variable_ Name (Tdsize+1,T[name — dsize]) =

TIDENTIFIER(Tname);

Code (lcode,Tcsize+size{code.function})y =

lcope(lcode)

193

/**/

/* *

. 4 . /
/* The definition of program statements */
/* */

/**/
Statement =
<<SEMI_COLON, DOT, "Invalid statement">>

(Compound | Assignment | If);

Compound =
TBEGIN, Statement, { TSEMI COLON, Statement }, TENDS;

/******************‘k********'k********************‘k**‘k**‘k‘k****/

/* * /
/* The Assignment statement */
/* */

/**/

Assignment =
TIDENTIFIER(Tname),
<<SEMI_COLON,DOT,"Illegal assignment'>>
(TASSIGN, Expression),
Cede (i("STA",identifier[name]),Tcsize)

Expression =
Term, { TSUM(Toperator y, Term,

Code (l(instruction[operator],0},Tcsize Y)

Term ==
Primary, { TTERM(Toperator), Primary,

Code (i(instruction[operator},0},Tcsize Y)

Primary =
(TIDENTIFIER(IN name),
Code (i{"LDA",identifier[name]},Tcsize)y)
|
¢ TvaLue(Tvalue),
Code (i("LDC",value},Tcsize)y)2

/**/

/* x /
/* The If statement f/
/* */

*
/**************************‘k************************‘k******* /

If =
TIF, <<SEMI COLON,DOT,"Illeqal if statement®>>
(Boolean{ Tnew_label), TTHEN, Statement,

(TELSE, Else statement ({Tnew_label) I,

Assign_Label(lnew_label,Tnew_label,T<reference>)).

194

Appendix 4

Appendix 4

TFI;

Boolean (Tnew_label) =

Expression, TCOMPARISON(Toperator)}, Expression,

Allocate Label(Tlabel,Tlabel+2)y

Allocate Label(Tnew_label,Tlabel Y,
code (L{"suB™, 0}, Tecsize)

’

Code (i(instruction[operator],new_label),Tcsize)

’

Else_ Statement (iTnew_label)y =

Code (i("JMP",new_label+l),Tcsize),

Assign_Label (inew_label,Tnew_label,T(reference> Y,

Assign_Label (inew_label,Tnew_label+l,T[new_label — csize]) =

Statement;

lcobE (L {"LABEL",new label});

End

Toor,

RULES

lcope (d(maLT™, 0})

/**‘k*******‘k‘k‘k*/

/* */
/* The specification of a simple Optimiser */
/* */

/************************************‘k‘k‘k*****‘k**************‘k/

Optimiser =

Title, Optimisation;

Title =
TFILE NAME(Tname), (FILE_NAME(Iname);

Optimisation =

TcopE (Teodel), Optimise($Tcodel), lcopE(lcodel);

Optimise(dTecodel) =

{

Tcope(Tcode2),

(
Fold
(
ifoldl[codel.function][codeZ.function],

i(codel.operand = code2.operand),

Tcodel

195

Appendix 4

Fold
ifole{codel.function}[code2.function],

icodel.operand,

Tcodel

Fold
lfold3[codel.function][code2.function],

lcodel.operand + code2.operand * fold4[code2.function}],
Tcodel

Output (icodel,icodeZ,Tcodel,Tcsize)

}i

Feld(ifunction,ioperand,T{function,operand) y;

Output (lcodel,lcodeZ,TcodeZ,Tcsize+size[codel.function] y =
[Label{ lcodel.function="LABEL“,icodel.operand,T(reference))y 1,
lcopE (Lcodel);

Label (lfunction,loperand,T[operand — csize]);

/**/

/* */
/* The specification of a simple Loader */
/* */

/***************‘k**********‘k****************************-k**-k*/

RULES
Loader =
Title, Fixup:
Title =
TPI1E_NAME(Tname), (FILE NAME(lname);
Fixup =

{
Tcope (Tcode),

[Final (icode.function,icode.operand)]

}i

196

Appendix 4

Final(ifunction,ioperand) =
{ iFINALl(iclassl(function} Y, iFINALZ(ioperand Y)
(iFINALl(iclassZ[function] Yoy |

\L .
{ YFINALI1(iclass3[functlon] Y, iFINALZ(lreference[operand] Y)

r

END

197

Appendix 5

A
Specification of

Pascal

Appendix 5

In ion

This appendix contains a Compiler Construction Language (CCL) specification of
a translator which is capable of translating a large subset of the International
Standards Organisation (ISO) Pascal (Level 0) [BSI 1982] to P-code [Ammann

1981]. A discussion of this specification appears in Chapter 8 of this thesis.

A Specification for Pascal
TITLE Pascal

/***‘k‘k*‘k‘k/

/* */
/* Compiler constants */
/* */

/**/

CONSTANTS
BOOLEAN MIN = 0;
CHAR MIN = 0;
INTEGER MIN = -1000000;
REAL_MIN = -10000000;
BOOLEAN MAX = 1;
CHAR MAX = 255;
INTEGER MAX = 1000000;
REAL_MAX = 10000000;
BOOLEAN SIZE = 1;
CHAR SIZE =1;
INTEGER SIZE = 4;
REAL_SIZE = 4;
POINTER SIZE = 4;
SET SIZE = 4;
MAX_ARRAY — 100000; /* Trap things like 'ARRAY[INTEGER] OF' */

199

/**

Appendix 5

/* /
/* Pascal keywords :;
/* .

/**********************'k*************************************/

INPUT TOKENS

Program
Label
Const
Type
Array
Of
Packed
Record
Set

Var
Function
Procedure
Forward
Begin
Case
For

To
Downto
Goto

If

Then
Else
Repeat
Until
While
With

Do

End

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

CONSTANT
CONSTANT

CONSTANT
CONSTANT

CONSTANT
CONSTANT
CONSTANT

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

"PROGRAM" ;
"LABEL";
"CONST";
"TYPE";
"ARRAY";
"OF";
"PACKED";
"RECORD";
"SET";
"VAR";
"FUNCTION";
"PROCEDURE";
"FORWARD";
"BEGIN";
"CASE";
"FOR™;
"TO";
"DOWNTO";
"GOTO" ;
"I
"THEN";
"ELSE";
"REPEAT";
"UNTIL";
"WHILE";
"WITH";
"DO" ;
"END";

/**/

/*
/*
/*

Pascal symbols

*/
*/
*/

/*******************‘k**/

Bracketl
Bracket2
Bracket3
Bracket4

Colon
Comma

Dot
Dot_dot
Nil
Pointer
Semi_colon

CONSTANT
CONSTANT
CONSTANT
CONSTANT

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

UNIL™;
TEATE .
’

T,
o

200

Appendix §

Assign = CONSTANT ":=n;

Relation = M=o ngsm el | onyn | ng=w | fe>=n | "IN":
Sum = u4n | onow | "ORM; ’
Tern = ¥kt z n/n t "MOD" | npDIY™ I "AND",'

Not = CONSTANT "NOT";

/**/

/* */
/* Special symbols */
/* */
/**/
Character = STRUCTURE
{
CONSTANT HE R
value : CHARACTER;
CONSTANT AR
}i
Integer = INTEGER;
Real = REAL; /* Clash between '1.2' and '1..2' */
Identifier = ('A'>7'Z'['a'>'z'), {('A'TZ'|'a'—>'z' |09 | Y,
String = ll\l", (I\OI_)I&III(!_)1\377!}I u\!n;
vOID = ‘ n\nu | "\t";

/**/

/* */
/* P-code output symbols x/
/* */

/**‘k***‘k*********/

OUTPUT TOKENS

Constant = STRUCTURE
{
CONSTANT + "CONSTANT\t\t\t";
label : INTEGER;
CONSTANT ¢ "™\n";
}y:
Labell = STRUCTURE
{
CONSTANT . "LABEL\t\t\t";
label : INTEGER;
CONSTANT : "\n";

}i

201

Instruction0 = STRUCTURE
{
CONSTANT
function
CONSTANT
I

Instructionl = STRUCTURE

{
CONSTANT
function
CONSTANT
operandl
CONSTANT

)i

Instruction2 = STRUCTURE

{
CONSTANT
function
CONSTANT
operandl
CONSTANT
operand2
CONSTANT

}i

InstructionS = STRUCTURE

{
CONSTANT
function
CONSTANT
string
CONSTANT

}i

: "\t";
TEXT;
u\nu;

"\t;
TEXT;
HERAN AN ¥
REAL;

. "\I'l",’

AN ALY
: TEXT;
AN

REAL;
HERAN
: REAL;
¢ "\n";

. Iv\t"'.

: TEXT;
SRR
TEXT;
"\nli;

Appendix 5

/**’k***********‘k‘k****/

/*

/* Structure of label entries

/*

*/
*/
*/

/**/

TYPES
LABEL = STRUCTURE
{
defined
label
}i
LABELS = TABLE [LABEL

17

TEXT;
INTEGER;

202

Appendix 5

* Kk X
/ ***/

/* x
/* Structure of the symbol table *;
/* */
/**/
KIND = UNION
{
procedure : PROCEDURE;
type : INTEGER;
value ¢ REAL;
variable : VARIABLE;
}i
TYPE = UNION
{
array : ARRAY;
ordinal : ORDINAL;
pointer : TEXT;
record : RECORD;
set ¢ SET;
}:
SYMBOL = STRUCTURE
{
kind : KIND;
type : TYPE;
)i
SYMBOLS = TABLE [SYMBOL];

/**/

ORDINAL = STRUCTURE
{
basic ¢ TEXT;
lower : INTEGER;
upper : INTEGER;
)i
STOREMAP = STRUCTURE
{
level : INTEGER;
size : INTEGER;

}i

/**/

ARRAY = STRUCTURE
{
packing : TEXT;
index : ORDINAL;
type : TYPE;
size : INTEGER;

203

Appendix 5

PROCEDURE = STRUCTURE
{
defined . TEXT;
label ¢ INTEGER;
parameters : SYMBOLS;
storemap : STOREMAP;
};
RECORD = STRUCTURE
{
packing : TEXT;
fields : SYMBOLS;
size : INTEGER;
)i
SET = STRUCTURE
{
packing : TEXT;
type : ORDINAL;
bi
VARIABLE = STRUCTURE
{
class : TEXT;
offset : INTEGER;
level : INTEGER;
name : TEXT;
size : INTEGER;
withoffset : INTEGER;

}:

/***************************************‘k****‘k***‘k*‘k‘k‘k*******/

/* */
/* Other type definitions */
/* */

/**/

It

REAL TABLE
REAL LOOKUP

TABLE [REAL 1;
TABLE [REAL_TABLE];

il

TEXT TABLE
TEXT_LOOKUP
TEXT SEARCH

TABLE [TEXT];
TABLE [TEXT TABLE };
TABLE [TEXT_LOOKUP];

il

204

Appendix §

/******'k‘***‘**/

/* */
/* Translator variables */
/* */

/*************‘k**/

VARIABLES

ARRAY array;

Character character;

INTEGER label, labell, label2;

INTEGER unique number = 1;

INTEGER value,valuel,value2;

INTEGER size,offset,max_offset,nextwoffset;

INTEGER lower,upper, setbits;

KIND kind;

LABEL locallabel;

LABELS labelenv, locallabels,nonlocallabels;

ORDINAL ordinal;

PROCEDURE procedure;

REAL_LOOKUP sign =
[
min 3 ["INTEGER" —> 1, "REAL" — 1],

"

1:

-" 3 ["INTEGER" — =1, "REAL" — -1]

REAL_TABLE caselist;
RECORD record;

STOREMAP storemap;
SYMBOL parameter, symbol;

SYMBOLS env,fields,locals,nonlocals,parameters,withenv;
SYMBOLS initial =
{
"BOOLEAN™ —%(type(BOOLEAN_SIZE),
Ordinal(("BOOLEAN",BOOLEAN_MIN,BOOLEAN_MAX))L
"CHAR" — {type(CHAR_SIZE),
ordinal(("CHAR",CHAR_MIN,CHAR_MAX})),

H"INTEGER" — (type(INTEGER_SIZE),
Ordinal(("INTEGER",INTEGER_MIN,INTEGER_MAX))),

205

17

/*

/* Real is counted as an ordinal in order to keep
/* things simple. Any attempt to use REAL as an

/* ordinal is trapped by the syntax
/*

"REAL" — {type(REAL SIZE),
ordinal({"REAL",REAL_MIN,REAL MAX}) },

"FALSE" — {value(0),

ordinal({"BOOLEAN",BOOLEAN_MIN,BOOLEAN MAX1}))},

"TRUE"™ — {value(l),

ordinal({"BOOLEAN",BOOLEAN_MIN,BOOLEAN_MAX))}

TEXT defined, enumname, packing, var;
TEXT name, operator,text,textl,text?2;

TEXT_TABLE ordinal type =

[

1z

"BOOLEAN" — "BOOLEAN™,
“"CHAR"™ — '"CHAR",

"INTEGER"™ — "INTEGER"
/* Enums need to be added to *x/
/* this list as they are declared */

TEXT TABLE load_constant =

{

1

"“BOOLEAN" — "LDCB",
"CHAR" — "LDCC",
"INTEGER" — "LDCI",
"REAL™ — "LDCR",
Y"NULLPOINTER"™ — "LDCA™

TEXT_TABLE load_value =

(

1

"BOOLEAN" — "INDB",
IICHAR" ._) IIINDC"’
YINTEGER" — "INDI",

"REAL" — "INDR"
/* Enums need to be added to */
/* this list as they are declared *x/

TEXT_TABLE pointers =

[

wi=" — "STOA",
n=1 — "EQUA",

we>r — YNEQA",

"NULLPOINTER" — "NULLPOINTER"

206

*/
x/
x/
*/
x/

Appendix 5

Appendix §

TEXT TABLE sets =
{

Mi=t — "STOS™,
n=" — "EQUS",
"<>" - "NEQS™,
">=" — "GEQS",
"<=" — VLEQS",
"M — MUNIT,
"= — “DIF",
TxM oy WINTH,

"NULLSET" — "NULLSET™®
1:
TEXT_TABLE strings = [/* Initially empty */ 1;:
TEXT_TABLE table;
TEXT_TABLE uniquename =
{
ML, G2, MS3N, MG, G5, TSE, ST, nS8, S, nS10n,
MS1LM, MS12M, MS13M, ME14T, MS15T, MS16M, ST, MS18M, "SI0, nS20m,
M2, S22, MS23M, 24, TS25", MS26M, 2T, MS28™, $29M, HS30m
/* And so on. This is soon to be replaced by a function */
1:

TEXT LOOKUP float =
{
"INTEGER" — { "REAL"™ — "FLO"],

YREAL" — ["INTEGER™ — "FLT"]
1z
TEXT LOOKUP unary =
[

ngn 3 ["INTEGER" — "NOP", "REAL" — "NOP"], /* No operation */
m-m 3 ["INTEGER" — "NGI","REAL" — "NGR"],

"NOT" — ["BOOLEAN" — "NOT"],

/* Enums need to be added to */

/* this list as they are declared */

“"DOWNTO"™ — ["INTEGER" — "DEC"],

nTo" — ["INTEGER" — "INC"]
1

TEXT SEARCH arithmetic =
|

Ti=t
(
"BOOLEAN" — ["BOOLEAN" — "STOB" 1,
"CHAR"™ — ["CHAR"™ — nsTOC™],
"INTEGER" — ["INTEGER" — "STOI" 1},

"REAL" — ["INTEGER" — ngTOR™, "REAL" — "STOR"™]

207

n=n
{
"BOOLEAN" —> ["BOOLEAN" — "EQUR"],
"CHAR"™ — ["CHAR" — "“EQUC"],
"INTEGER" — ["INTEGER" — "EQUI" |,
"REAL" — [“INTEGER" -> "EQUR", "REAL" —» "EQUR™
1,
"o 5
l
"BOOLEAN" -» ["BOOLEAN" — “NEQB"],
"CHAR"™ — ["CHAR" — "NEQC"],
"INTEGER" — ["INTEGER" — "NEQI"],
"REAL" — ["INTEGER" — "NEQR","REAL"™ —» "NEQR™
1,
et o
(
"BOOLEAN" — ["BOOLEAN" —» "LESB"],
“CHAR" — ["CHAR"™ — "LESC"],
"INTEGER" -3 ["INTEGER" — "LESI"],
"REAL" —> ["INTEGER" —> "LESR", "REAL" —» "LESR"
1,
=" 3
{
"BOOLEAN" — ["BOOLEAN" -> "LEQB"],
"CHAR"™ — ["CHAR" -3 "LEQC"],
"INTEGER" — ["INTEGER" -> "LEQI"],
"REAL" -3 ["INTEGER" — "LEQR", "REAL" — "LEQR"
1.
s
l
"BOOLEAN" —» ["BOOLEAN" — "GRTB"],
"CHAR" —> ["CHAR" —> "GRTIC"],
"INTEGER" —» ["INTEGER" — "GRTI"],
WREAL" -3 ["INTEGER" — "GRTR","REAL" — "GRTR"
1,
N =" —
[
"BOOLEAN" —> ["BOOLEAN" — "GEQB"],
WCHAR" — ["CHAR" — "GEQC™ 1,
WINTEGER" -3 ["INTEGER" —» "GEQT"],
WREAL" —> ["INTEGER™ —» "GEQR","REAL" — "GEQR®

208

Appendix §

17

TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE

|I+ll '%
[
"INTEGER"

"REAL" —

"INTEGER"
"REAL" —
1,

-

{

"ok

"INTEGER”
"REAL" —
1,
VAL
[
"INTEGER"
"REAL" —
1,
"AND"

{

-

"BOOLEAN"

I
mn OR "
[

-

"BOOLEAN"

1.

"DIV™
[

—

"INTEGER"

I,

"MOD™
[

-

"INTEGER"
]

/* Enums need to be added to

/* this list as

index, type, typel,
boolean_type = ordinal
ordinal({"CHAR",CHAR_MIN,CHAR_MAX)

char_type =

integer_type =
real_type =
null pointer =
null set =

VARIABLE variable;

ordinal
Ordinal({"REAL",REAL_MIN,REAL_MAX })

ordinal({"NULLPOINTER",0,0});
ordinal(("NULLSET",0,0});

Appendix §

—> ["INTEGER"™ — "ADI"],
["INTEGER" — "ADR","REAL" — "ADR"]
— ["INTEGER" — "SBI"],
["INTEGER" — "SBR","REAL" — "SBR"]
— ["INTEGER" — "MPI"],
["INTEGER" — "MPR™, "REAL" — "MPR"]
— ["INTEGER"™ — "DVI"],
["INTEGER"™ — "DVR", "REAL" — "DVR"]
— ["BOOLEAN" — "AND"]
— ["BOOLEAN" — "IOR"]
— ["INTEGER"™ — "DVI"]
— ["INTEGER" — "MOD™]

*/
they are declared */

type2;
({ "BOOLEAN™, BOOLEAN_MIN, BOOLEAN_MAX}) ;

({”INTEGER",INTEGER_MIN,INTEGER_MAX 1)

209

Appendix §

/**

/x .
/* Main program block */
/* */
/**/
RULES
Start =
Program,
<<Dot,Dot, "Malformed main block">>
(
iInstructionl(i{"UJP",O }),
Block (Yinitial,d(1,4(7,4¢0,0),40),
TDot
)
Program =

<<Semi_colon, Semi_colon, "Malformed PROGRAM header">>
{

TProgram, TIdentifier(Thame)y, /* ignore name */

Program_ parameters, TSemi_colon

):

Program parameters =
TBracketl, TBracketZ;

Block (inonlocals,lnonlocallabels,ilocals,lstoremap,ilabel)y =
Labelwdeclarations(i[],Tlocallabels)y,
Constant_declarations(lnonlocals,{Tiocals),
Type_declarations(inonlocals,lTlocals Y,

Variable declarations(lnonlocals,iTlocals,lstoremap),

Procedures_and_statements

(
inonlocals U locals, inonlocallabelsk)locallabels,

ilocallabels,lstoremap,llabel

).
dInstructiono(L{ "RTS™ });

210

Appendix 5§

/***********)\'**

/
/* */
/* Declare local labels */
/* * /

/**/

Label_declarations(llocallabels,Tlocallabels) =
[
TLabel,

<<Semi_colon, Semi_colon, "Malformed label list">>

(
Label list(lTlocallabels)

4

TSemi“colon
i

Label list(iTlocallabels) =
<<Semi_colon, Semi_colon, "Malformed label">>
Label declaration(T<locallabels>),
{
TComma,
<<Semi colon,Semi colon, "Malformed label™>>
Label declaration(T<locallabels>)
}i

Label_declaration(T[labell — { "UNDEFINED", label2 }])} =
TInteger(Tlabell), Unique_number(Tlabel2)

/* Allocate unique internal label numbers */
/* (This will soon be replaced by a function) */

Unique_ number (Tunique_number) =

Allocate_number (Tunique_number)i

Allocate_number(Tunique_number + 1)7

211

Appendix §

/**********i‘***/

/* * /
/* Declare local constants */
/%

x/

/**/

Constant_declarations(inonlocals,iTlocals) =
[
TConst,
<<sSemi_colon,Semi_colon, "Invalid constant expression®>>

Constant_list(lnonlocals,lTlocals)
1z

Constant list(ienv,iTlocals) =

Constant_declaration(lenv L)locals,iO,iinteger_type,T(locals>)

’

{ Constant declaration/(lenv &)locals,io,iinteger_type,T<locals>))i

Constant_declaration(ienv,lvalue,ltype,T{name — {value{value),type}]) =
TIdentifier(Thame),

<<"Missing '=' symbol">> Equals(Toperator),

<<Semi colon,Semi colon,"Invalid constant expression'>>

(
Signed constant (ienv,Tvalue,Ttype Yo

Constant or_ identifier(ienv,Tvalue,Ttype)
)y

TSemi_colon;

Equals(Toperator="=") =
TRelation(Toperator Y2

Signed_constant
(
ienv,
Tvalue(sign[operator}[type.ordinal.basic]*value,
Ttype
y =
TSum(Toperator),

Constant_or identifier(lenv,Tvalue,Ttype)i

Constant or_ identifier(ienv,Tvalue,Ttype y =
Constant identifier(ienv,Tvalue,Ttype)y

Unsigned_constant(Tvalue, Ttype):

Constant identifier(lenv,Tenv[name}.kind.value,Tenv[name].type)y =

Tidentifier(Thame)

212

Appendix 5.

S Sk Kk kS kK ok kK ok k kK ***

/ *

. ‘ *
/* Define unsigned constant values *;
/*

*/

Kk ok koK K K K Kk
/ ***/

Unsigned constant (Tvalue,Ttype) =
Character constant(Tvalue,Ttype |
Integer_constant(Tvalue,Ttype)
Nullpointer { Tvalue,Ttype)

Real constant(Tvalue,Ttype Yo

String constant (Tvalue,T<strings>,Ttype Y

Character_constant (Tcharacter.value,Tchar type) =

Tcharacter(Tcharacter)

Integer_constant (Tvalue,Tinteger_type) =

TInteger(Tvalue) ;

Nullpointer (TO,Tnull_pointer) =
TNil;

Real constant(Tvalue,Treal_type) =
TReal(Tvalue);

String constant

(
Tvalue, T[value — text],
Tarray(("PACKED",{"INTEGER",l,LENGTH(text)),
char‘type,LENGTH(text)*CHAR_SIZEH
)y =
Unigue_number (Tvalue), Tstring(Ttext);

/**‘k***/

/* x/
/* Declare new types */
/* */

/**‘k*‘k***‘k****‘k******/
Type declarations(lnonlocals,lTlocals)y =

[

Trype, ‘
<<Semi colon,Semi_colon,"Invalid type expression”>>

Type list(lnonlocals,iTlocals)

213

Appendix 5

Type list(lenv,iTlocals y =
Type declaration
(
lenv U locals, lINTEGER_SIZE, iinteger type
iTlocals, T<locals> -
),

Type declaration

(
lenv U locals, iINTEGER_SIZE, iinteger type,
iTlocals, T<locals>

)i

Type_declaration
(

lenv, lsize, itype,
iTlocals,
T[name — {type(size),type}]

y =

TIdentifier(Thame),

<<"Missing '=' symbol">> Equals(Toperator),

<<Semi_colon, Semi_colon,"Invalid type expression>>
Type (ienv,T<locals>,Tsize,Ttype),

TSemi_colon;

/*******************************<k***kk***********************/

/* */
/* Parse a complete Pascal type specification */
/* */

/************'k**********************‘k*k***k****‘k*k‘k‘k****k****/

Type (lenv,Tlocals,Tsize,Ttype) =
Packed type(lenv,Tlocals,Tsize,Ttype)
Ordinal type(ienv,Tlocals,Tsize,Ttype y o
Pointerﬂtype(Tlocals,TsiZe,Ttype) ;

Packed type(ienv,Tlocals,Tsize,Ttype) =
Packing ({runpackeD", Tpacking),

(
Array type(ienv,ipacking,Tlocals,Tsize,Ttype)

Record type lenv,lpacking,Tlocals,Tsize,Ttype)
Set type(ienv,lpacking,Tlocals,Tsize,Ttype)
)

Packing (lpacking,Tpacking) =
[Tracked(Tpacking y 17

214

array_type (lenv, lpacking, Tlocals, Tsize, Teype) =

* %k K Kk Kk Kk
/ **/
/*
*
/* A array t i)
Yy type declaration *
/* /

*/

* K kK ok ok %k
/ *****‘k***/

TArray,

Subscript list(lenv,lpacking,Tlocals,Tsize,Ttype)

Subscript list(lenv,lpacking,Tlocals,Tsize,Ttype) =

TBracket3,

Subscript_ element (ienv,ipacking,Tlocals,Tsize,Ttype)

’

Subscript_element

(
lenv, lpacking,
Tlocals, Tsize*(index.ordinal.upper—index.ordinal.lower),

Tarray((packing,index.ordinal,type,
size* (index.ordinal.upper-index.ordinal.lower)<MAX ARRAY})
) =

Ordinal type(ienv,Tlocals,Tsize/*Not needed*/,Tindex).

(
TComma,

Subscript element(lenv,lpacking,T<locals>,Tsize,Ttype)

TBracket4, TOf,
Type (lenv,T<locals>,Tsize,Ttype)
)

/***k‘k***********/

/* * /
/* A record type declaration */
/* * /

/**/

Record type

(
lenv,lpacking,
Tlocals,Tsize,Trecord((packing,fields,size})

)y =

TRecord,

<<End, Semi_colon,

Record_structure

Record structure(lenv,Tlocals,Tsize,Tfields).,

nMisplaced END in RECORD">> TEnd;

{ lenv,Tlocals,Toffset,Tfields)y =
Field 1list(ienv,iO,Tlocals,Toffset,Tfields),

[Variant_ 1list{ ienv,ioffset,Tlocals,Toffset,T<fields>) 13

215

Appendix 5

Field list(lenv,loffset,T1ocals, Toffset, Tfields)
Field

{

ienv, ioffset,

Tlocals, Toffset ,Tsize, Ttype, Tfields, T<fields>
),

Field

ienv, ioffset,

Tlocals, Toffset ,Tsize, Ttype, T<fields>, T<fields>

Field

ienv, ioffset,
Tlocals, Toffset + size, Tsize, Ttype, Tfields,

T[name — {variable({"FIELD"™,offset, 0, name,size,0}),type}]
) =
TIdentifier(Thame),

(
TComma,

Field(ienv,loffset,Tlocals,Toffset,Tsize,Ttype,Tfields,T(fields> }

TColon,
Field type(ienv,Tlocals,Tsize,Ttype,Tfields),

TSemi_colon

)

Field type(ienv,Tlocals,Tsize,Ttype,T[]) =
Type (ienv,Tlocals,Tsize,Ttype) ;

Variant list(ienv,ioffset,Tlocals,Tmax_offset,Tfields) =

TCase,
Variant tag{ lenv,loffset,Toffset,Ttype,Tfields),

Tos,
Variants(ienv,loffset,ltype,Tlocals,Tmax_offset,T<fields>);

216

Appendix 5

Variant_tag
(
ienv, ioffset,

Toffset + size, Ttype, T[)
) =

(TIdentifier(Thame)., Tcolon)

Unique name(Tname)
),
variant type(ienv,Ttext,Tsize,Ttype);

Unigque_ name { T<<uniquename>); /* Replaced soon by a function */

Variant_ type
(
lenv,
Tordinal_type[env([name] .type.ordinal.basic],
Tenv[name].kind.type, /* Test key is a type name */
Tenv[name].type
) =
Tidentifier(Thame) ;

Variants{ ienv,ioffset,itype,Tlocals,Tmax_offset,Tfields)y =
Variant (ienv,ioffset,itype,Tlocals,Tmax_offset,Tfields),

{
Variant (ienv,ioffset,itype,T<locals>,Tnext_offset,T<fields>),

Max_offset (imax_offset,inext_offset,Tmax_offset)
bi

Variant (ienv,ioffset,itype,Tlocals,Toffset,Tfields) =
Case_list(lenv, dtype, Tfields),
Tcolon, TBracketl,
Field list(ienv,ioffset,Tlocals,Toffset,Tfields),

TBracket2, TSemi_colon;

Case list({ ienv,itype,Tfields) =
TCase,
Case_item(ienv,itype,Ttext,Tfields),
{
TComma,
Case item(ienv,itype,Ttext,T<fields>)

}i

217

Case_item

(
lenv, itypel,
Ttypel.ordinal.basic = type2.ordinal.basic

Tlvalue — {type(0),pointer ("CASE")}]
)y =

Constantﬁor»identifier(ienv,Tvalue,Ttype2 Y

Max offset (imax_offset,ioffset,Tmaxwoffset) = /* Function soon */

[Max_offset(ioffset>max_offset,lmax_offset,Tmax offset) |];

;

/****************‘k****************************‘k****‘k*********/

/* */
/* A set type declaration */
/* */

/**/

Set_type

(
ienv, ipacking,
Tlocals,
TSET_SIZE >= (type.ordinal .upper-type.ordinal.lower)/8,

Tset((packing,{ordinalﬂtype[type.ordinal.basic],
type.ordinal.lower,type.ordinal.upper }})
y =

Tset, Tot,

Ordinal type(ienv,Tlocals,Tsize,Ttype Y

/***************************‘k********************************/

/* x/
/* Ordinal type declaration */
/* */

/**‘k*****‘k*****/

Ordinal type(ienv,Tlocals,Tsize,Ttype) =

Identifiermor_range(ienv,Tlocals,Tsize,Ttype y o

Enumeration list(Tlocals,Tsize,Ttype Yi

Identifier or range(lenv,T[],Tkind.type,Ttype y =
(
Identifier(lenv,Tkind,Ttype),

[Subrange lenv,ikind.value,ltype,Tkind,Ttype y)

(lenv,Tvalue,Ttype Y,

Constant_or_identifier
pe,Tkind,Ttype)

Subrange (ienv,lvalue,ity
);

218

/* Prevent tag reuse */

Appendix §

Identifier(lenv,Tenv[name].kind,Tenv{name]'type)

TIdentifier(Tname) :

’

Subrange
(
ienv, ivaluel, itypel,
Ttype (INTEGER SIZE),
Tordinal((ordinal_type[typel.ordinal.basic=type2.ordinal.basic],
valuel<=value2,value2 })
) =
TDot_dot, Constant_or identifier(ienv,TvalueZ,Ttypez)

Enumeration list
(
Tiocals, TINTEGER SIZE,
Tordinal((enumname,o,value—ln
) =
TBracketl,
Enum_name
(
Tenumname, T<arithmetic>, T<loadﬁvalue>,
T<ordinal_type>, T<unary>
),
Enumeration(io,ienumname,Tlocals,Tvalue),
{
TComma,
Enumeration{ ivalue,ienumname,T<locals>,Tvalue)
),
TBracketZ;

Enumeration
(
lvalue, ienumname,

Tiname — {value(value),ordinal({enumname,O,Value))}],

Tvalue+l
y =
TIdentifier(Thame);

219

Appendix §

Enum_name
(
Tenumname,

Tt

ot

— [enumname — [enumname — "EQUIM™] 1,
"<>"™ — [enumname — [enumname — "NEQI™ 11,
"< — [enumname — [enumname — “LEST" 11,
"<=" — [enumname - [enumname — "LEQI"]],
">" — [enumname — [enumname — "GRTI" }],

">=" — [enumname — [enumname — "GEQI"]]
1,
T[enumname — "INDI"],

T[enumname — enumname],
Tt
"DOWNTO" — [enumname — "DEC"],

“TO" — [enumname — "INC"]

) =
/* Get a unique name for this enum definition */
/* and add it to the ordinal types list */

Unique name (Tenumname) ;

/**************************************hﬂd******************/

/* x/
/* Pointer type declaration */
/* */

/**/

Pointer type(T[],TPOINTER_SIZE,Tpointer(name)) =

TPointer, Tidentifier(Thame);

/**/

/* */
/* Declare new variables */
/* */

/**/

Variable declarations{ inonlocals,iTlocals,istoremap }y =

[
TVar(Tvar),

<<Semi_colon,Semi_colon,
({ inonlocals,iTlocals,istoremap }

nTnvalid var declaration'>>

Variable list
1

Variable list(ienv,iTlocals,istoremap)y =
{ ienv) locals,iTlocals,LTstoremap),

Variable_declaration
(ienv) locals,iTlocals,iTstoremap Yy)

{ Variable_declaration

220

Appendix §

Variable_declaration(ienv,iTlocals,lTstoremap)

Variables (ienV,istoremap,lTlocals,Tstoremap,Tsize,Ttype T<locals>)

r

Variables
(
ienv, istoremap, iTlocals,
Tstoremap, Tsize, Ttype, T[}
) =
Varlable name (Tname,Tsize,Ttype).
<<Semi_colon,Semi_colon,"Invalid variable declaration®>>
Variable type
(

ienv, iname, istoremap, iTlocals,

Tstoremap, Tsize, Ttype, T<locals>

Variable_name (Tname,TINTEGER_SIZE,Tintegerﬁtype) =
TIdentifier(Tname);

Variable type
(
ienv, iname, istoremap, iTlocals,

T{storemap.level,storemap.size + size},
Tsize, Ttype,

T[name — {variable({
{"VAR",storemap.size,storemap‘level,name,size,0)),type)]

TComma,
Variable (ienv,lstoremap,iTlocals,Tstoremap,Tsize,Ttype,T<locals>)

TColon,

Type (lenv, T<locals>, Tsize, Teype),

TSemiﬂcolon

221

Appendix §

/**

/* /
* i 2

/ Declare functions and procedures and statements */

/*

*/

/**/

Procedures_and statements

(
lenv,ilabelenv,ilocallabels,
lstoremap,ilabel
) =
Procedure_declarations(lTenv,llabelenv,istoremap),

<<End, End, "Malformed block">>
(

drabe11(4{ label }),

Compound_block (lenv,llabelenv,iTlocallabels,lstoremap
).
Verify labels(llocallabels) ;

’

Procedure_declarations(iTenv,ilabelenv,lstoremap)y =

{ Procedure_declaration(lTenv,ilabelenv,lstoremap Y Y:

Procedurewdeclaration(iTenv,ilabelenv,lstoremap) =
{
Function{ iTenv,ilabelenv,istoremap)y

Procedure (lTenv,ilabelenv,lstoremap }
);

/***‘k**‘k*******/

/* */
/* Deal with function declarations */

*x/
/*

‘/**/

Function(iTenv,ilabelenv,istoremap) =

TFunction, Tidentifier(Thame),

<<Semi colon, Semi colon, "Malformed function header”>>

({

Predefined function(lenv,llabelenv,lTenv[name},T<env>)y o

Undefined function(iname,lenv,llabelenv,istoremap,T<env>)

) ;

222

Appendix 5

Predefined_ function/(lenv,llabelenv,lTsymbol Ty
Forward function

(
/* Check function correctly defined x/
isymbol.kind.procedure.defined,
lsymbol.type.ordinal.basic <> "vOID"™,

Tsymbol.kind.procedure.defined
).
<<End, End, "Malformed block">>
Block

(
lenv, llabelenv,
¢symbol.kind.procedure.parameters,
isymbol.kind.procedure.storemap,

lsymbol.kind.procedure.label
)i

Forward_ function(idefined,ltext,T"DEFINED" <> defined) =

<<"Semi colon missing™>> TSemi_colon;

Undefined function
(
lname, ienv, llabelenv, lstoremap,
T[name - (procedure({defined,label,parameters,storemap}),type)]
) =
Parameters
(
ienv, l{storemap.level+1,0), i[],
Tdefined, Tstoremap, Tparameters
)
TColon,
Result_type(ienv,T<parameters>,Tsize,Ttype Y,

TSemi_colon, Unique_ number (Tiabel),
<<Semi colon,Semi‘colon,"Malformed directive or block">>

(
Trorward(Tdefined)
Block { lenv,llabelenv,iparameters,lstoremap,ilabel }

).

TSemi”colon;

Result type(lenv,Tlocals,Tsize,Ttype) =
Ordinal type(lenv,Tlocals,Tsize,Ttype y o
Pointer typel Tlocals,Tsize,Ttype '

223

Appendix 5

* % x
/ ****************x***/

/* /

*
/* Deal with procedure declarations */
/* x/

/**/

Procedure { iTenv,ilabelenv,lstoremap)y =

TProcedure, TIdentifier(Tname)

,
<<Semi_colon, Semi_colon, "Malformed procedure header">>

(
Predefinedwprocedure(ienv,ilabelenv,iTenv[name],T<env>)

Undefined procedure (iname,lenv,ilabelenv,istoremap,T<env>)
)i

Predefined_procedure (ienv,ilabelenv,iTsymbol,T[]) =
Forward_ function

(
/* Check procedure is correctly defined */

isymbol.kind.procedure.defined,
lsymbol.type.ordinal.basic = "yoID",
Tsymbol.kind.procedure.defined

) r

<<Semi colon, Semi colon,"Malformed block">>
Block B

(
lenv, llabelenv,
lsymbol.kind.procedure.parameters,
lsymbol.kind.procedure.storemap,
isymbol.kind.procedure.label

)i

Undefined_procedure
{
iname, lenv, l1abelenv, istoremap,

T{name - (procedure({defined,label,parameters,storemap)),

ordinal ({"vOID",0,0})}]
y =
Parameters

(
lenv,l{storemap.level+l,0},l[],

Tdefined,Tstoremap,Tparameters

).
Tsemi colon, Unique_number(Tiabel), .
<<Semi colon,Semi_colon,"Malformed directive oIr

(

block™>>

MForward(ldefined) |

v ilabelenv,iparameters,lstoremap,ilabel)

Block (len

) 4
TSemi_colon;

224

Appendix §

* %
/* ***/

/-k

*/
/* Process function and procedure parameters */
/* */

/***‘k***‘k**********/

Parameters

(
ienv, istoremap, lparameters,

T"DEFINED", Tstoremap, Tparameters
y =

TBracketl,

<<Bracket2,Semi_colon, "Malformed parameter list">>
(

Parameter_ list(ienv,i"VALUB",lTstoremap,T<parameters>)Y,
{

TC omma,

Parameter_list(ienv,i"VALUE",lTstoremap,T<parameters>)

),
TBracket?
17

Parameter_list(ienv,ivar,iTstoremap,Tparameters y =

[TVar(Tvar y 1, /* No function or procedure arguments as */
Parameter /* these are not supported by P-Code *x/
(
ienv,ivar,i[],istoremap,

Tsize,Ttype,Tstoremap,Tparameters

225

Appendix 5§

Parameter
(
lenv, ivar, iparameters, istoremap,
Tsize, Ttype,
T(storemap.level,storemap.size+size},

T[name - {variable((var,storemap.size,storemap.level,
name, size,0}),type}]
) =
Tidentifier(Thame),
(
TComma,

Parameter

(
ienv,ivar,i[],istoremap,

Tsize,Ttype,Tstoremap,T<parameters>

TColon,

Parameter_type(ienv,Tsize,Ttype)
Y

Parameter type(lenv,Tenv{name].kind.type,Tenv[name].type } =

TIdentifier(Thame)

/**************************************‘k*********************/

/* */
/* Read and process Pascal statements */
/% */

/***************************‘k*-k‘k***‘k*‘k*****‘k*****‘k***********/

Compound_block (ienv,ilabelenv,iTlocallabels,lstoremap) =
TBegin,
Statements (ienv,ilabelenv,iTlocallabels,istoremap),
<<End, End, "Misplaced END">> TEnd;

Statements (ienv,ilabelenv,iTlocallabels,istoremap)y =
Labelled statement lenv,ilabelenv,lTlocallabels,istoremap Y,
{

TSemi_colon,
Labelled statement { ienv,Llabelenv,iTlocallabels,istoremap)

}:

226

Appendix 5§

Labelled statement (ienv,ilabelenv,iTlocallabels,lstoremap) =
{
TInteger(Tlabel)

’

<<Semi_colon, Semi_colon, "Malformed label">>

(
TColon,

Statement label (iTlocallabels[label])

1,

Statement (ienv,ilabelenv,iTlocallabels,lstoremap) ;

Statement label(iTlocallabel y =
Output_statement label
(

llocallabel.defined = "UNDEFINED",
llocallabel.label,

Tlocallabel.defined
);

Output_statement_ label (ltext,l1abel, T*DEFINED") =
lrabe11(l{lave1));

Statement { ienv,ilabelenv,iTlocallabels,istoremap) =
Assignment or_procedure(lenv Yo
Case (ienv,ilabelenv,iTlocallabels,istoremap)y
Compound~block(ienv,¢labelenv,lTlocallabels,lstoremap) |
For (lenv,ilabelenv,iTlocallabels,istoremap)
If(lenv,llabelenv,lTlocallabels,istoremap)y
Goto(liavelenv) |
Repeat (lenv,ilabelenv,iTlocallabels,istoremap)y
While(lenv,llabelenv,iTlocallabels,lstoremap)
With (ienv,llabelenv,iTlocallabels,istoremap ¥

X * Kk X %
/***************'k***********************************x**** r/

Assignment or_procedure(lenv) =
Identifier(ienv,Tkind,Ttype). o
<<Semi colon, Semi colon, "Malformed assignment or function >>

(
call function /* defined later */

(
lenv, lkind.procedure,

itype.ordinal.basic="VOID"

Assignment (ienv,ikind,ltype)

227

Appendix 5

Assignment (¢env,¢kind,itype1 y =

Assignment variable(ienv,ikind.variable iTtypel)
TAssign, Expression{ ienv,TtypeZ)
store(Jtypel, ltype2);:

’

Assignment_variable/(ienv,ivariable,iTtype } =
(
Load ordinal(ivariable,itype.ordinal.basic)|

Load_complex (ienv,ivariable,thype)
yi

/******************************‘k************‘k**‘k**‘k‘k*‘k*‘k*‘k‘k**/

Case(ienv,ilabelenv,lTlocallabels,lstoremap) =
TCase,

<<End, End, "Malformed CASE statement*>>
(

Expression(ienv,Ttype), TOf,
Case_block
(
ienv,ilabelenv,itype.ordinal,
iTlocallabels,istoremap
).
TEnd
)

Case”block(ienv,ilabelenv,iordinal,lTlocallabels,lstoremap) =
Unique_number(Tlabell Y, Uniqueﬂnumber(TlabelZ).,
dInstructionl(i("XJP",labell)),

Complex_case_list

(
ienv, ilabelenv, ilabelz, iTordinal,

iTlocallabels, ¢storemap, Tcaselist

).
/* Output case jump table x/

lrabel1 ¢ d{lavell}),
lconstant (i(ordinal.lower}), lconstant (l{ordinal.upper}),

{ dInstructionl(i{”UJP",<caselist>>) Yy).

lLabel1 ({{label2});

228

Appendix 5

Complex case list
(_
lenv, ilabelenv, llabelz, lTordinal,
lTlocallabels, lstoremap, Tcaselist
) =
New label(Tlabell),
Complex case_item
(
lenv, liabelenv, liabel1, liabeiz,
lTordinal, lTlocallabels,
istoremap, Tcaselist
)

Complex case_item
(
lenv, liabelenv, liabell, llavelz,
iTordinal, iTlocallabels,

istoremap, T<caselist>

)i

Case_item
(
lenv, llabelenv, llabell, liabelz,
lTordinal, lTlocallabels,

lstoremap, Tcaselist
) =
Case_label
(
lenv, d1avell, lordinal,
Tordinal.lower,Ttext,Tcaselist

),

TComma,
Case_ label
(
lenv,ilabell,lordinal,
Tordinal.lower,Ttext,T(caselist>

b,
TColon,
Statement {(lenv,ilabelenv,lTlocallabels,lstoremap y,

linstructionl (L{"vJgp", label2})i

229

Appendix §

Case_label
(

lenv, ilabell, lordinal,

Tvalue = ordinal.lower+l <= ordinal.upper

Tordinal.basic = type.ordinal.basic,

Tlvalue — labell]
) =

Constant or identifier(lenv,Tvalue,Ttype)

/****************************‘k***‘k*********‘k*‘k‘k**********‘k‘k‘k*/

For (ienv,ilabelenv,iTlocallabels,istoremap)
TFor,

<<Semi_colon,Semi_colon,"Malformed FOR statement'>>

(

For_assignment (lenv,Tkind,Ttype),

For compare (ienv,ikind,itype,Toperator,Tlabell,TlabelZ),
TDo,

Statement (ienv,llabelenv,iTlocallabels,lstoremap)y,

For endloop(lenv,ikind,ltype,loperator,llabell,ilabel2)

For assignment (ienv,Tkind,Ttypel) =
Identifier(lenv,Tkind,Ttypel Y,
TAssign, Expression(lenv,TtypeZ),
Store(itypel,itypeZ)

For_ compare (lenv,lkind,itypel,Toperator,Tlabell,TlabelZ) =
New label(Tlabell), Unique_number(Tlabel2),
iIn;tructionZ(i("LOD”,kind.variable.level,kind.variable.offset)),
(
Tro(Toperator),
Expression(lenv,Ttype2),
Relation l"<",ltype1,¢type2,Ttype)

Toownto (Toperator),

Expression({ lenv,TtypeZ),
Relation(l">",ltype1,ltype2,Ttype)
),
lInstructionl (${"FJp", label2})/

230

Appendix 5

For_endloop(ienv,ikind,ltype,ioperator,ilabell,ilabelz)
lInstructionZ
{

Ly

unary[operator][type.ordinal.basic],
kind.variable.level,
kind.variable.offset

),
lInstruction1({("uJp", 1abell})
lrabe11 (d{1abel2});

’

New label(Tlavel) =
Unique_ number (Tlabel),
lrabel1 (d{label});

/**/

If¢(ienv,ilabelenv,iTlocallabels,lstoremap) =

TIf, Unique number (T1abel),
<<Semi_colon,Semi_colon,"Malformed IF statement™>>
(
Condition{ lenv,llabel,Ttext)y,
TThen,
Statement (lenv,llabelenv,lTlocallabels,istoremap),

[TElse, <<Semi_colon,Semi_colon,"Malformed ELSE part">>

(
Else labelling(ilabel,Tlabel),

Statement (ienv,ilabelenv,iTlocallabels,istoremap)

)Y,
lLabe11(d(label}):

Condition{ ienv,llabel,Ttype.ordinal.basic="BOOLEAN") =

Expression(lenv,Ttype),
dInstructionl(l(”FJP",label))2

Else labelling(l1abell, Tlabel2) =
Unique number { T1abel2),
dinstructionl(("Fap~, label2}), ‘

Liabell (d{labell});

**********‘k**‘k******************‘k******xx*/

/******************

Goto (dlabelenv) =

TGoto, Tinteger!(Tlabel).

(i{"UJP",labelenv{label].label)):

linstructionl

E 231

Appendix §

Repeat (lenV,llabelenV,iTlocallabels,istoremap) =

TRepeat, New_ label (Tlabel}

<<Semi_colon, Semi_colon, "Malformed REPEAT statement">>
(

Statements (ienv,ilabelenv,iTlocallabels,istoremap)

TUntil, Condition(ienv,ilabel,Ttext)
):

While(ienv,ilabelenv,iTlocallabels,istoremap) =
TWhile, Unique number (Tlabell), New label(Tlabel2),

<<Semi_colon, Semi_colon, "Malformed WHILE statement">>
(
Condition (ienv,ilabell,Ttext), TDo,
Statement (lenv,ilabelenv,iTlocallabels,lstoremap)
),
linstruction1(d{"ugp",1avei2)),

lrabe11(d(labe11});

/***************‘k**’k***/

With{ lenv,llabelenv,lTlocallabels,lstoremap y =
Twith,
<<Semi_colon,5emi_colon,"Malformed WITH statement™>>
(
With_variable(ienv,istoremap,Tenv,Tstoremap.size),
{
TComma,
With_variable(ienv,istoremap,Tenv,Tstoremap.size)

b,
TDo,
Statement (lenv,llabelenv,lTlocallabels,lstoremap)

)7

With variable
(
ienv, istoremap,
Tenv U withenv, Tstoremap.siz
) =
Variable (ienv,Ttype Y,
lInstruction2(i("STR
i<type.record.fields>>,istorema

pe.record.fields>>,istore

e + POINTER_SIZE

A",storemap.level,storemap.size)),

With item(p.size,Twithenv),
1 1tem

) (et map.size,T<withenv> Yy)s

{ With_item <ty

232

e

Appendix 5

Variable(ienv,Ttype) =
Identifier(lenv,Tkind,Ttype),
(
Load ordinal(ikind.variable,¢type.ordinal.basic Yo

Load complex (lenv,lkind.variable,¢Ttype)
)i

With item
(
isymbol,
lsymbol.kind.variable.withoffset,

T[symbol.kind.variable.name — symbol]
):

/**‘k***/

/* */
/* Verify that all labels defined in the header */
/* have been set */
/* */

/**/

Verify labels(llocallabels) =
{ Verify label(le<locallabels>) }:

Verify label(liccaliabel) =
<<"Warning label defined but not set">>
Defined label(d1locallabel .defined="DEFINED");

Defined label(ltext)

/***************************"k"k*****'k*********************‘k*‘k*/

/* x/
/* Parse a Pascal expression */
/* x/

/**/

Expression lenv,Ttypel)y =
Unary_ sign(ienv,Ttypel),

{

Trelation | Toperator),
Unary_sign(lenv,Ttype2).
Relation(ioperator,ltypel,itype2,Ttypelj

)i

233

Unary_sign(»Lenv,Ttype y =
(

Tsum(Toperator)

’

Unary_sign(lenv,Ttype)
Unary (l«operator,l«type)

’

Sum { lenv,Ttype)

Sum (lenv,Ttypel) =
Term(lenv,Ttypel),
{
TSum(Toperator Y.
Term (J/env,TtypeZ),

Binary(ioperator,iTtypel,ltypeZ)
}i

Term (lenv,Ttypel) =
Factor(lenv,Ttypel),
{
TTerm(Toperator),
Factor (lenv,TtypeZ),

Binary(loperator,iTtypel,»Ltype2)
}7

Factor(lenv,Ttype) =
(
TNot,
Factor (lenv, Ttype),
Unary (i"NOT",itype)
)

Terminal (lenv,Ttype):

Terminal (lenv,Ttype) =
Constant (Ttype y o
Variable_or_function(lenv,Ttype y
Set(lenv,Ttype y o

TBracketl, Expression(l«env,Ttype), TBracket2:;

. 234

Appendix §

*******************************X*******************X********
/

/* /
/* Load a constant */
/* */

*/

/***********************
kK Kk k kK ok k ok Kk k %
%k 3k %k % K Kk Kk kK K K % k % Kk *
‘k*‘k‘k**/

Constant (Ttype) =
Unsigned constant (Tvalue,Ttype)

,

Load constant value(Lvalue,ltype Y

Load_constant_value(Lvalue,itype) =
lInstructionl(l(load_constant[type.ordinal.basic],value}) o

lInstructionS(L("LDCA",strings[value}})

/**/

/* x/
/* Load a constant, variable or function */
/* */

/**/

Variable or function({ lenv,Ttype) =
Identifier(Lenv,Tkind,Ttype),

(
Load_constant_value(Lkind.value,ltype)i

Load variable_value({ Lenv,ikind.variable,thype)
Call function(Lenv,Lkind.procedure,ltype.ordinal.basic<>"VOID")
)i

Load_variable_value(Lenv,ivariable,thype)y =

(
Load_ordinal(lvariable,ltype.ordinal.basic y |

Load_complex(lenv,lvariable,iTtype)

).
[
lInstructionl(l(load_value[type.ordinal.basic],0) yo

dInstructionl(l("INDS"<>type.set.type.basic,O})
1;

Load_ordinal(Lvariable,itext)

dInstruction2($("LDA",variable.level,variable.offset)) ;

Load complex (Lenv,Lvariable,$Ttype) =

Load_base(lvariable),

{
TBracket3, Load_array(ienv,iTtype Y. TBracket4d |

record,TtYPe)|

Load_record(itype.
pointer].type,TtYPe)

Load_pointer(lenvitype.

235

Appendix §

Load _base(lvariable)y =

lInstruction2(l("LDA",variable.level,variable

iInstructionl(l(“LDCI",variable.offset})
linstructiono(Lmap1ny) |

.Wwithoffset>0}),

’

iInstructlon2(l("LDA",variable.level,variable.offset)):

Load array { ienv,iTtype) =

Load subscript (ienv,itype.array,Ttype)
{

14

TComma,

Load subscript(lenv,ltype.array,Ttype)
Yi

Load_subscript (lenv,larray,Tarray.type) =
Ordinal expression(ienv,iarray.index,Ttext),

iInstructionl(l{"IXA“,array.size))

r

Ordinal expression(lenv,lordinal,Tordinal.basic=type.ordinal.basic)y =

Expression ienv,Ttype) ;

Load_record(lrecord,Trecord.fields{name}.type y =
TDot, TIdentifier(Thame y, /* No checking of variant fields yet */
<<Semi*colon,Semi_colon,"Undefined field identifier™>>

Load_recordﬂitem(drecord.fieldsiname] .kind.variable };

Load_record_item({ lvariable) =

iInstructionl(i{“IXA",variable.offset) y:

Load_pointer (itype,Ttype)y =
Tpointer, dInstructionl(i("INDA",O))

Call function(lenv,lprocedure,ltext) =
dInstructiono(l("MST"}),
Load actual parameters(lenv,lprocedure.parameters),

iInstructionl(l{”CUP”,procedure.label})

Load_actual_parameters(lenv,lparameters)y =

[
TBracketl,
Load parameter(lenv,l<<parameters>), N

{

TComma,

Load parameter(lenv,l<<parameters>)
b,

TBracket?2

1

236

Appendix 5

Load parameter (lenv,lparameter)y =
<<Bracket2,Semi colo

(n,"Malformed parameter list"s>>

Value parameter

(

lenv,

lparameter.kind.variable.class="VALUE",
lparameter.type
) !
Var_ parameter
(
lenv,
lparameter.kind.variable.class=”VAR",

iparameter.type

Value_parameter(ienv,ltext,ltype)y =
Copy_expression(ienv,itype Y

Copy_expression(lenv,itypel) =
Expression(ienv,TtypeZ),
Copy (itypel,itypeZ)i

Var_ parameter (ienv,itext,itype) =

Parameter_variable(ienv,itype ys

Parameter_variable(ienv,itype) =
Identifier(ienv,Tkind,Ttype),

(
Load ordinal({ lkind.variable,ltype.ordinal.basic)

Load complex(lenv,lkind.variable,thype)
)

X X * kK
/***x***x*** /

*
/* . *;
/* Fvaluate a set expression ' i
/* (P Code only supports constant set expresslons) Y
/* *‘*********************/
/************************************* *

Set (lenv,Ttype) =
TBracket3,
Set elements{ lenv,iorinUll_set’Ttype).

TBracket4;

237

Appendix §

Set _elements (ienv,isetbits,itypel,Tset(("PACKED"

[<<Bracketd, Semi_colon,"Malformed set"s>
(

+typel.ordinal})) =

Ordinal type(lenv,Tlocals,Tsize,Ttypel),
Set bits
(
Isetbits, lmnorning",
itypel.ordinal.lower < typel.ordinal.upper >= 0,
itypel.ordinal.upper < SET_SIZE*8,
Tsetbits
).

TComma,

Ordinal type(lenv,Tlocals,Tsize,TtypeZ),
Set_bits
(
lsetbits,

ltypel.ordinal.basic = type2.ordinal.basic,
itypez.ordinal.lower < type2.ordinal.upper >= 0,
ltype2.ordinal.upper < SET_SIZE*S,

Tsetbits

i
iInstructionl(i("LDCS",setbits})i

Set_bits
(
isetbits, ltext, llower, lupper,

T((l << (upper-lower+1))-1) << lower | setbits
)i

238

Appendix 5

/**********************
Kok ok ok ok % K ok %k ok ok &

Sk ok %k %k k ok %

/*)
. *

/* Code generation rules for expressions */
/* /
*/

* % %k Kk k *
/ ** */

Store (itypel,$type2 } =
Arthmetic
(
\LII :=II,
thypel.ordinal.basic,

! type2.ordinal.basic
)
Set _or_pointer
(
Lugan,
itypel.pointer,
itypez.pointer,
ipointers
)
Set_or_pointer
(
Loson,
itypel.set.type.basic,
itype2.set.type.basic,
isets
)
Strings
(
-
itypel.array.packing=type2.array.packing="PACKING",
itypel.array.index.basic=type2.array.index.basic="INTEGERW
itypel.array.index.lower=type2.array.index.lower,

itypel.array.index.upper=type2.array.index.upper,
l.basic=type2.array.type.ordinal.basic=

ltypel.array.type.ordina
"CHAR"

239

Appendix 5

Relation(ioperator,ltypelritypeleboolean type
Arthmetic -

(

ioperator,
thypel.ordinal.basic,

itype2.ordinal.basic
)
Set_or_pointer

(
loperator,
itypel.pointer,
ltype2.pointer,

ipointers
)
Set_or_pointer
(
loperator,
ltypel.set.type.basic,
ltype2.set.type.basic,
lsets
)|
Strings
(
loperator,
ltypel.array.packing=type2.array.packing="PACKING",
itypel.array.index.basic=type2.array.index.basic=“INTEGER",
itypel.array.index.lower=type2.array.index.lower,
ltypel.array.index.upper=type2.array.index.upper,
ltypel.array.type.ordinal.basic=type2.array.type.ordinal.basic=
"CHAR™
)i

Binary (ioperator,thypel,ltype2) =
Arthmetic
(

loperator,
iTtypel.ordinal.basic,
ltype2.ordinal.basic

)|

Set or_ pointer

_() .
loperator,
itypel.set.type.basic,
itype2.set.type.basic,

lsets

240

Appendix §

Unary (ioperator,itype)y =

J,InstructionO(i{unary[operator} [type.ordinal.basic])) ;

Copy (J,typel, ltypeZ) =
No_copy (thypel .ordinal.basic=type2 .ordinal.basic) |
No_copy (J,typel .pointer=type2 .pointer) |
No_copy { thypel -set.type.basic=type2.set.type.basic) o
Copy_complex (thypel, ~Ltype2 |

’

Arthmetic{ ioperator,iTtextl,lteth y =

[Float { {float[textl] [text2], Ttextl)]

’

lInstructionO(l{arithmetic [operator] [textl] [text2]});

Float { {text, T"REAL") =

linstructiono l{text)) /* Float ordinal value if required */

Set_or_pointer(loperator,ltextl,ltextz,ltable) =
/* Below we examine sets and pointers for null values */
/* if so it matches and set or pointer as neccessary */

{ Null(Jtableftext1l],Ttext2) | Null(ltable[text2], Ttextl)],
Null (dtexti=text2, Ttext),
J,InstructionO(l(table[operator]) V;

Null (Jdtext,Ttext);

Strings (l«operator, ~Ltext, ltext, i«lower, lupper, ~Ltext) =

iInstructionl (i{pointers [operator], upper-lower});

No_copy(ltext Y

Copy_complex(itypel,ltypez) =
/* CPY replaces a pointer at TOS with its value */
linstructionl(l("CPY",typel.array.size=type2.array.size)) o

lInstructionl(l«("CPY",typel.record.size=type2.record.size))y

END

241

Appendix 6

A Small

Pascal Example

Appendix 6

Introduction

This appendix contains a small example Pascal program along with object code
generated by Aston Compiler Constructor (ACC). The object code was produced

by executing the Compiler Construction Language (CCL) specification for Pascal

given in Appendix 5.

The Example Pascal Program

PROGRAM Difference_of two_Squares();

TYPE
Squares_Data = RECORD
Min : INTEGER;
Max : INTEGER;

END;

VAR
Initial : Squares_Data;
Result : INTEGER;

PROCEDURE Squares(Value : Squares_Data, VAR Result : INTEGER);

BEGIN

Result := (Value.Min * Value.Min) - (value.Max * Value.Max)
END;
BEGIN

Initial.Min := 127

i

Initial.Max := 24;

Squares (Initial,Result)
END.

243

Th

LABEL

LABEL

UJlPp

LDA
LDA
IXA
INDI
LDA
IXA
INDI
MPI
LDA
IXA
INDI
LDA
IXA
INDI
MPI
SBI
STOI
RTS

LDA
IXA
1DCI
STOI
LDA
IXA
LDCI
STOI
MST
LDA
CPY
LDA
CUP
RTS

Appendix6

0 /* Jump to main block */
2
8 /* Procedure Squares */
0
0
0
0
0
0
0
4
0
0
4
0
0
0 /* main block */
0
12
0
4
24
/* Mark stack ready for call */
0
8
8
2

244

References

In ion

The articles and papers cited within this thesis are listed in this Appendix i
endix in

alphabetical order of author and ascending year of publication

References
[Aho 1974]

[Aho 1985]

[Ammann 1981]

[Bell 1971]

[BSI 1982]

References

Aho, A.V., Johnson, S.C.

'LR parsing', Computing surveys, Volume 6, Number 2,

Pages 99-124, New York, U.S.A.

Aho, A.V., Sethi, R., Ullman, J.D.
'Compilers, principles, techniques and tools'.

Addison-Wesley, Reading, U.S.A.

Ammann, U., Jacobi, C., Jensen, K., Nageli, H., Nori, K.
'‘Pascal - The langauge and its implementation’ (Chapter 9).

John Wiley and Sons, Chichester, U.X.

Bell, C.G,, Newell, A.

'Computer structures readings and examples'.

McGraw-Hill, New York, U.S.A.

British Standards Institute (BS 6192).
'Specification for computer prOgramming language Pascal’.

2, Park Street, London, U.K.

246

[Brooker 1962]

[Bird 1982]

[Brown 1979]

[Cattell 1978]

References

Brooker, R.A., Morris, D.

A general translation program for phrase structured

languages', Journal of the ACM, Volume 9, Number 1
Pages 1-10, New York, U.S.A.

Bird, P.

'An implementation of a code generator specification
language for table driven code generators', Proceedings of
the SIGPLAN symposium on compiler construction,

Boston, Pages 44-55, New York, U.S.A.

Brown, P.J.
'"Writing interactive compilers and interpreters'.

John Wiley and Sons, Chichester, UK.

Cattell, R.G.G.
'Formatization and automatic derivation of code generators,
Ph.D thesis, Department of computer science, Carnegie-

Mellon University, Pittsburgh, U.S.A.

247

[Davidson 1980]

[Davidson 1982]

[Davidson 1984]

[Dehottay 1977]

[DeRemer 1975]

Davidson, J.W., Frazer, C.W

The design and application of a retargetable .
optimizer', ACM transactions on programm‘iﬁgf?‘lérfgﬁ’aées
and systems, Volume 2, Number 2, Pages 191-202, New
York, U.S.A.

Davidson, J.W., Fraser, C.W.

'A machine independent linker', Software practice and

experience, Volume 12, Pages 351-366, Chichester, U.K.

Davidson, J.W., Frazer, C.W.
'Automatic generation of peephole optimisations', SIGPLAN

notices, Volume 19, Number 1, Pages 111-116, New York,

U.S.A.

Dehottay, J.P., Feuerhahn, H., Koster, C.H.A., Stahl, H.

'Syntaktische beschreibung von CDL2', Technishe,

Universitaet Berlin, Fachbereich 20, Forschungsgruppe

softwaretechnik, Germany.

DeRemer, F.L.

'On compiler structure and translator writing tools’,

Proceedings of the gth Hawail international conference on

system sciences, University of Hawaii, U.S.A.

248

[DeRemer 1984]

[Engelfret 1984]

[Frazer 1977]

[Fisher 1981]

[Ganapathi 1980]

References

DeRemer, F.L.

Regular right-part attribute grammars’, SIGPLAN notices

Volume 19, Number 6, Pages 171-178, New York. US.A.

Engelfret, J.
'Attribute evaluation methods' in

"Methods and tools for compiler construction’, [Ed. Lohro],

Cambridge University Press, Cambridge, U.X.

Frazer, CW.
'Automatic generation of code generators', Ph.D Thesis,

Department of computer science, Yale University, U.S.A.

Fisher, C.N,, Ganapathi, M.
"Bibliography on automated retargetable code generation’,

SIGPLAN notices, Volume 16, Number 10, Pages 9-12,

New York, U.S.A.

Ganapathi, M.

'Retargetable code generation using attribute grammars..

Ph.D. dissertation, Technical report number 406, University

of Winsconsin, Madison, U.S.A.

249

[Ganapathi 1985]

[Ganapathi 1986]

[Giegerich 1983}

[Graham 1980}

[Horspool 1987]

Ganapathi, M.

N :
fix grammar driven code generation', ACM transactions
on programming languages and systems, Volume 7 Number

4, Pages 560-599, New York, U.S.A.

Ganapathi, M., Hennessy, J.

\ . .
Advances in compiler technology', Annual reviews in

computer science, Number 1, Pages 83-106, New York,

U.S.A.

Giegerich, R.

'A formal framework for the derivation of machine specific
optimizers', ACM fransactions on programming languages
and systems, Volume 5, Number 3, Pages 478-498, New

York, U.S.A.

Graham, S.L.

"Table driven code generation’, IEEE computer, Volume 13,

Number 8, Pages 25-33, Encino, U.S.A.

Horspool, R.N.

‘An alternative 0 the Graham-Grandville code generation

method', IEEE computer, Volume 20, Number 5, Pages

33-39, Encino, U.S.A.

250

[Jespersen 1978]

[Johnson 1975]

[Johnson 1979]

[Keizer 1983]

[Kessler 1984a]

Jespersen, J.P., Madsen, O.L., Riis. H

'New extended attribute system (NEATS)', DAIMI ’Aﬁh

University, Denmark.

Johnson, S.C.

"YACC - Yet Another Compiler Compiler', Computer

science technical report number 32, Bell laboratories, Murray

hill, New Jersey, U.S.A.

Johnson, S.C.
'A tour through the Portable C Compiler' (in the UNIX

programmers manual), Bell laboratories, Murray hill, New

Jersey, U.S.A.

Keizer, E.G., Staveren, H.V., Stevenson, J.W.,,
Tanenbaum, A.M.
'A practical tool kit for making portable compilers’,

Communications of the ACM, Volume 26, Number 9, Pages

654-660, New York, U.S.A.

Kessler, P.

. o .
'Automated discovery of machine specific cod

o oo
improvements', Ph.D thesis, University of California

Berkeley, U.S.A.

251

[Kessler 1984b]

[Knuth 1968]

[Koskimies 1983]

[Koster 1971}

[Lesk 1976}

References

Kessler, R.

Peep - An architectural description driven peephole
optimizer', SIGPLAN notices, Volume 19, Number 1
Pages 106-110, New York, U.S.A.

Knuth, D.E.

'Semantics of context free languages', Mathematical systems

theory, Volume 12, Pages 127-145, New York, U.S.A.

Koskimies, K.
"Extensions of one pass attribute grammars', Report
A-1983-4, December 1983, Helsinki University, Department

of computer science, Finland.

Koster, CH.A.

'Affix grammars' in

'ALGOL68 implementation‘, [Ed. Peck],
North Holland, Amsterdam, The Netherlands.

Lesk, M.E.

'LEX - A lexical analyser generator', Computer science

technical report number 39, Bell laboratories, Murray hill,

New Jersey, U.S.A.

252

[Madsen 1983]

[McGettrick 1980]

[Meijer 1982]

[Naur 1963]

[Paulson 1982]

References

Madsen, O.L., Watt, D.A.

Extended attﬁbute grammars', Computer Journal, Volume

26, Number 2, Pages 142-153, London, U.X

McGettrick, A.D.
"The definition of programming languages', Page 191,

Cambridge University Press, Cambridge, U.K.

Meijer, H., Nijholt, A.
TWT's since 1970 : A selective bibliography’, Faculty of

science, Department of informatics, Nijmegen University,

The Netherlands.

Naur, P.
'Revised report on the algorithmic language ALGOL 60,
Communications of the ACM, Volume 16, Number 1, Pages

1-17, New York, U.S.A.

Paulson, L.

I i i or', Conference
'A semantics directed compiler generator,

Record of the 9th ACM symposium on the principles of

York,
programming languages. Pages 224-233, New YOF

U.S.A.

253

[Pleban 1984]

[Raiha 1978]

[Raiha 1980a]

[Raiha 1980b]

[Reps 1987]

References

Pleban, U.

'Compiler prototyping using formal semantics', Proceedings
of the SIGPLAN symposium on compiler construction,

Boston, Pages 84-105, New York, U.S.A.

Raiha, J.K., Saarinen, M., Soininen, E., Tienari, M.
'The compiler writing system HLP', Report A-1978-2,
Department of computer science, University of Helsinki

U.S.A.

Raiha, J.K.
'Bibliography on attribute grammars’, SIGPLAN notices,

Volume 15, Number 3, Pages 35-44, New York, U.S.A.

Raiha, J.K.
'Experiences with the compiler writing system HLP', in
'Semantics directed compiler generation', [ed. Jones],

Springcr-Verlag, The Netherlands.

Reps, T Teitelbaum, T.

'Language processing in program editors', IEEE compufer,

Volume 20, Number 11, Pages 29-40, Encino, US.A.

254

[Scott 1971]

[Scowen 1982]

[Watt 1980]

[Wilcox 1971}

References

Scott, D.S., Strachey, C.

Towards the mathematical semantics of a computer
languages', Proceedings of the symposium on computer

automation, Pages 19-46, New York, U.S.A.

Scowen, R.S.

'A standard syntactic meta-language', SIGPLAN notices,

Volume 17, Number 3, Pages 68-73, New York, U.SA.

Watt, D.A.
'Rule splitting and attribute directed parsing’, in
'Semantics directed compiler generation', [ed. Jones],

Springer-Verlag, The Netherlands.

Wilcox, T.R.
'Generating machine code for high level programming

languages', Ph.D Thesis, Cornell University, Ithaca, New

York, U.S.A.

255

