

Taylor & Francis

Profiling gene expression dynamics which underpin conventional testing to better inform pre-clinical evaluation of an age appropriate spironolactone formulation

harmaceutical Development and Technology PDT-2020-OR-0333.R1 riginal Research 6-Oct-2020 ussell, Craig ; Aston University, Life and Health Sciences
riginal Research 6-Oct-2020 ussell, Craig ; Aston University, Life and Health Sciences
6-Oct-2020 ussell, Craig ; Aston University, Life and Health Sciences
ussell, Craig ; Aston University, Life and Health Sciences
ussain, Majad; Pharmaspec LTD uen, David; University of Wolverhampton, School of Biology, Chemistry nd Forensic Science ahman, Ayesha ; University of Wolverhampton, School of Pharmacy Iohamed, Afzal ; Aston University, School of Life and Health Sciences
licroarray, Paediatrics, ABC transporters, SLC transporters, CYP nzymes, Carboxylesterase enzymes
nc al lol

SCHOLARONE[™] Manuscripts

3 4 5 6 7	
8 9 10 11 12 13 14 15 16 17 18 19	Ę
20 21 22 23 24 25 26 27 28 29 30 31	10
 32 33 34 35 36 37 38 39 40 41 42 	15
 43 44 45 46 47 48 49 50 51 52 53 	20
54 55 56 57 58 59 60	

Profiling gene expression dynamics underpinning conventional testing approaches to better inform pre-clinical evaluation of an age appropriate spironolactone formulation.

⁵ Craig Russell^a*, Majad Hussain^b, David Huen^{c1}, Ayesha S Rahman^{c2}, and Afzal

R Mohammed^a*

^a Aston School of Pharmacy, Aston University, Birmingham, UK. B4 7ET

^b Pharmaspec Ltd, Birmingham, B8 1BZ

10 ^{c1} School of Biology, Chemistry and Forensic Science, University of Wolverhampton, UK, WV1 1LY

^{c2} School of Pharmacy University of Wolverhampton, UK, WV1 1LY

* Corresponding Authors:

15 Afzal R Mohammed

Email: a.u.r.mohammed@aston.ac.uk

Phone: 0121 204 4183

Craig Russell

Email: c.russell6@aston.ac.uk

20 Phone: 0121 204 3077

25 Profiling gene expression dynamics underpinning conventional testing approaches to better inform pre-clinical evaluation of an age appropriate spironolactone formulation.

Abstract

There is a need to accelerate paediatric formulation evaluation and enhance quality of early stage data in drug development to alleviate the information pinch point present between formulation development and clinical evaluation. This present work reports application of DNA microarrays as a high throughput screening tool identifying markers for prediction of bioavailability and formulation driven physiological responses. With a focus on enhancing paediatric medicine provision an oral liquid spironolactone suspension was formulated addressing a paediatric target product profile. Caco-2 cells cultured on transwell inserts were implemented in transport assays in vitro and DNA microarrays were used to examine gene expression modulation. Wistar rats were used to derive in vivo bioavailability data. In vitro, genomic and in vivo data sets were concurrently evaluated linking drug transport and the genomic fingerprint generated by spironolactone formulation exposure. Significant changes in gene expression are reported for ABC transporters, SLC transporters, CYP enzymes and carboxylesterase enzymes resulting from as a result of formulation exposure. These include genes coding for ATP-binding cassette (ABC) transporters, Solute carrier (SLC) transporters, Cytochrome P450 (CYP) enzymes and carboxylesterase enzymes. -Genomic findings better inform pre-clinical understanding of pharmacokinetic and pharmacodynamic responses to spironolactone and its active metabolites than current in vitro drug transport assays alone.

Key Words: - Microarray, Paediatrics, ABC transporters, SLC transporters, CYP enzymes, carboxylesterase enzymes.

The lack of suitable formulations in the paediatric patient segment is attributed largely to the dynamic physiological state, which is both vastly different to that of adults and changes significantly with age. As a result, the needs of the paediatric patient segment vary greatly to the needs of adults and represent a far more sensitive challenge [1]. Dosage form, route of administration, overall dose of active pharmaceutical ingredient (API) and excipients need careful consideration when producing an age appropriate dosage form. To aid researchers in this area there are a number of regulations and items of legislation in both Europe and the United States of America designed to promote development in this area and deliver appropriate medicines for children. These include the Best Pharmaceuticals for Children Act (BPCA) and the Paediatric Equity Act (PREA) in the USA and EU paediatric Regulation; EC No. 1901/2006; EC No.1902/2006 in Europe [2,3]. The latter has been in place since 2007 and applies to both new and off-patent medicinal products. Currently, pharmaceutical companies seeking marketing authorisation in Europe for products which are covered by intellectual property (IP) rights are required to submit a Paediatric Investigation Plan (PIP) to the Paediatric committee (PDCO) of the European Medicines Evaluation Agency (EMA). The PIP outlines a research plan for investigations in children targeting generation of sufficient data to permit marketing authorisation. This includes pre-clinical studies, clinical studies and quality studies describing formulation development. This is optional for off-patent products, however engaging with the PIP process when reformulating off-patent medicines to provide age appropriate formulations permits applications for paediatric use marketing authorisation (PUMA) [3-5]. This carries with it the benefit of 10 years of data protection (eight years of data exclusivity and two further years of market protection).

75 Despite this incentive there has been poor success rates with only 4 PUMA's having been awarded since the inception of the scheme. This has been attributed to a number of factors, which hinder recruitment into clinical trials including current approaches to pre-clinical formulation evaluation [6].

Specifically, PIP research plans for investigations in children require data from pre-clinical
studies including the prediction of pharmacokinetic responses in vivo. Current practice for
the assessment of drug permeability includes human colon adenocarcinoma (Caco-2) cells
cultured on transwell inserts or equivalent as it delivers many elements of the in vivo
physiological equivalent such as microvilli, enzymatic activity and membrane transporter
networks [7-9]. The carrier transporters in the intestine have relatively promiscuous
specificity and are involved in the uptake and efflux of range of drug molecules. The genetic
basis of these biological components and the dynamic nature of such networks means that
microarray can be deployed for high throughput, cost effective screening to generate enriched
large-scale data sets describing the physiological system.

This genome wide expression evaluation allows for a broad, network view of how a given molecule can impact cellular pathways and their interaction [10-13]. This provides a far more complete picture of what is happening in any given system and when combined with open access databases such as the Koyoto Encyclopaedia of Genes and Genomes (KEGG or other equivalents), delivers a true and informative systems biology based approach [14].

The aim of the present work was to investigate the application of DNA microarrays to 95 identify markers suitable for the prediction of intestinal absorption and formulation effect to better inform drug development. This was investigated through the evaluation of an oral liquid spironolactone suspension which had been formulated in house to address the needs of the paediatric patient segment. Caco-2 cells cultured on transwell inserts were used for drug

Page 5 of 51

1 2 3 4 5	
6 7 8 9 10 11 12	
13 14 15 16 17 18	
19 20 21 22 23 24	
25 26 27 28 29 30	
31 32 33 34 35 36	
37 38 39 40 41 42	
43 44 45 46 47 48	
49 50 51 52 53 54	
55 56 57 58 59 60	

	transport assay to model intestinal permeability in vitro and DNA microarrays were
100	employed to examine gene expression changes occurring during drug transport. Wistar rats
	were used as a rodent model to derive in vivo bioavailability data for comparison. In vitro,
	genomic and in vivo data sets were evaluated to link drug transport and the gene expression
	changes generated by spironolactone as an approach to accelerate formulation evaluation and
	enhance the quality of early stage data generated in the drug development pipeline.
105	Spironolactone is a poorly soluble potassium sparing diuretic which acts as a receptor
	antagonist for the mineralocorticoid aldosterone. It is used clinically in adults for the
	treatment of a number of conditions including heart failure and hypertension [15]. However
	in paediatrics its licensed use is limited to the treatment of oedema in heart failure and in
	ascites, nephrotic syndrome and reduction of hypokalemia induced by diuretics or
110	amphotericin [16]. Administration is via the oral route with dose regimes ranging from 1-2
	mg/kg daily in 1 to 2 divided doses, up to a maximum of 7_mg/kg daily for neonates. 1-3
	mg/kg daily in 1 to 2 divided doses up to 9_mg/kg for children aged from 1 month to 11 years
	and 50-100_mg daily in 1 to 2 divided doses, up to a maximum of 9_mg/kg daily in children
	aged between 12 – 17 years [16]. Currently, 25, 50 and 100_mg branded (Aldactone®, Pfizer)
115	tablets and generic equivalents are the only licensed dosage forms. This limits use in
	paediatrics, particularly neonates as solid dosage forms are unsuitable for administration in
	neonates and young children and do not afford the dose flexibility required to effectively
	cover dose requirements in paediatric patients ranging from neonates through to teenagers.
	Spironolactone has a solubility of $22_{\mu}g/ml$ in water whereas the desired dosages for a liquid
120	spironolactone formulation are 10_mg/ml and 5_mg/ml. Therefore, to produce a clinically
l	relevant formulation, the solubility of spironolactone would need to be increased 227-fold.
	Additionally, Spironolactone has been shown to be degraded by cyclodextrins meaning that
	this common method of solubilising poorly soluble drugs cannot be used. As such and with

an onus on simplicity of formulation and limiting excipient use with paediatric application in mind, complex methods of solubilising the insoluble drug were rejected in favor of producing a suspension.

	The aim of the present work was to investigate the application of DNA microarrays to
	identify markers suitable for the prediction of intestinal absorption and formulation effect to
	better inform drug development. This was investigated through the evaluation of an oral
130	liquid spironolactone suspension which had been formulated in house to address the needs of
	the paediatric patient segment. Caco-2 cells cultured on transwell inserts were used for drug
	transport assay to modelevaluate intestinal permeability in vitro and DNA microarrays were
	employed to examine gene expression changes occurring during drug transport. Wistar rats
	were used as a rodent model to derive in vivo bioavailability data for comparison. In vitro,
135	genomic and in vivo data sets were evaluated to link drug transport and the gene expression
	changes generated by spironolactone as an approach to accelerate formulation evaluation and
	enhance the quality of early stage data generated in the drug development pipeline.
	2. Materials and Methods
140	2.1 Materials

2. Materials and Methods

2.1 Materials

Spironolactone was supplied by Discovery fine chemicals, UK. Xanatural, Pluronic F127, Sodium Metabisulphate, Sodium Benzoate and Xylitol were supplied by Sigma Aldrich U.K. with the exception of flavour concentrates which were samples provided by Azelis. Acetonitrile was supplied by Fisher Scientific U.K. Caco-2 cells (passage 45) were kind gift from Dr Andrew Collett and Dr Daniel Patten at the University of Huddersfield. Polycarbonate transwell permeability supports in 6 well format Permeability supports were purchased from Appleton Woods Ltd, U.K. and all tissue culture media components

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
13 14 15	
15	
16	
16 17	
18	
10	
19	
20	
21	
22	
21 22 23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47 48	
49	
50	
51	
52	
53	
54	
54 55	
56	
57	
58	
59	
60	

155

including DMEM, Glutamate, Penstrep, Non-essential amino acids, FBS and HBSS were supplied by Sigma Aldrich UK. RNeasy kits for RNA extraction were supplied by Qiagen,
U.K. One-colour microarray-based gene expression analysis low input quick amp labelling kit were purchased from Agilent Technologies. Agilent 4_x_44K whole genome arrays were used for microarray experimentation (Agilent Technologies, Santa Clara, CA)

2.2 Formulation development

An oral spironolactone suspension suitable for the paediatric patient segment was developed in house at dosages of 5_mg/ml and 10_mg/ml meeting the following target product profile (Table 1).

Table 1Target product profile for spironolactone suspension detailing targetcomponents for each quality attribute.

Quality Attribute	Target
Route of Administration	Oral
Dosage form	Acceptable for patients aged from birth to
	< 18 years
Dose Range	1-2mg/kg daily in 1 to 2 divided doses, up
	to a maximum of 7mg/kg daily for neonates.
	1-3mg/kg daily in 1 to 2 divided doses up to
	9mg/kg for children aged from 1 month to
	11 years and 50-100mg daily in 1 to 2
	divided doses, up to a maximum of 9mg/kg
	daily in children aged from 12 – 17 years.
	Includes dose titration.

Pharmacokinetics	Immediate Release
Palatability	Neutral/Flavored/Sweetened preferred
Shelf life	Minimum of 12 Months
Container closure system	Multi-dose
Additional Information	All excipients must be acceptable for the
	paediatric patient population

2.3 Spironolactone HPLC Method

A Dionex GP50 gradient pump coupled to a Dionex UVD170U detector and a Dionex A550 auto sampler were combined with a Phenomenex Gemini 5_µm C18 reverse phase HPLC column (150 x 4.5_mm with 5_µm Particle Size). Mobile phase was acetonitrile and water (50:50) and the detection wavelength was set at 254_nm. The injection volume was 50_µl with a run time of 12 minutes and retention time of 8 minutes. Preparation of calibration standards involved production of six standards via serial dilution in mobile phase. Standards ranged from 0.0625 to 0.5_µg/ml and included a blank. Method validation was carried out following ICH Guidelines (Q2(R1)) [17].

170 2.4 Assessment of Absorption in Vitro

2.4.1 Culture of Caco-2 Cells for permeability assay

Caco-2 cells (passage 48) were seeded at a density of 1.3_x_105 cells/cm² onto polycarbonate transwell permeability supports in 6 well format. Cells were cultured in an incubator (Sanyo) at 37_°C in a humidified 5% CO₂/95% air atmosphere. Media was changed every 2-3 days over a three-week period. Trans-epithelial electronic resistance (TEER) measurements were taken following each media change and immediately before and after experiments using an

EVOM – Epithelial Voltohmmeter (World Precision Instruments Ltd). Monolayer integrity was confirmed with TEER values greater than $350_{-}\Omega \text{cm}^{2}$.

2.4.2 Trans-epithelial flux of spironolactone across Caco-2 monolayers

Culture media was removed, and the monolayers washed with HBSS (pH range 6.7 - 7.8)
before the monolayers were incubated at 37 °C for 30 minutes with 2.5 ml of HBSS
basolaterally and 1.5 ml apically. In each case, HBSS was then replaced in the apical
compartment with 1.5 ml of the optimised formulation to be tested. Experiments using cells
which were not exposed to the drug were used as controls. 200 µl samples were then taken
from the basolateral compartment at time points of 5, 10, 15, 20, 30, 60, 90, and 120 minutes.
200 µl of HBSS was added in each caseback into each well to maintain volume of solution in
the basolateral compartment. This was accounted for in calculations. Samples were analysed
via HPLC. Method validity has been confirmed in line with ICH M9 guidance and all
experiments were performed in triplicate. The level of transport is described as percentage of
drug arriving in the basolateral compartment, and from this, P_{app} was calculated.

Following the production of a transport/time graph Papp was calculated using the following equation [18];

$$P_{app} = \left(\frac{V_r}{AC_o}\right) \left(\frac{dC}{dt}\right)$$

Where;

 V_r – is the volume of the basolateral chamber (ml)

A – is the filter surface area available for transport (cm^2).

 C_0 – is the initial concentration of drug (mg/µl).

 $\frac{dC}{dt}$ - is the initial slope of the cumulative concentration (dC) of drug in the basolateral chamber (mg/µl) with time (dt) (s).

200 2.5 Genomic Evaluation

2.5.1 RNA Extraction

RNA extraction for Caco-2 was performed using an RNeasy kit (Qiagen) following manufacturers guidelines. The extracted RNA was then quantified using a Nanodrop ND-1000 UV-VIS spectrophotometer (Thermoscientific, Wilmington, DE).

205 2.5.2 Microarray Assay

The microarray assay was performed following the directions for Agilent Technologies' onecolour microarray-based gene expression analysis low input quick amp labelling kit. In short, 1.5_µl of 50_ng total RNA was mixed with 2_µl of spike mix (dilution 4). cDNA master mix (Agilent Technologies, Santa Clara, CA) was used to prepare cDNA for all samples ahead of labelling with cyanine 3-CTP (Cy3) in the labelling reaction. The labelled and amplified cRNA was then purified using RNeasy mini spin columns (Qiagen) and quantified using Nanodrop ND-1000 UV-VIS spectrophotometer (Thermoscientific, Wilmington, DE). cRNA yield and specific activity were calculated.

All samples were then hybridised using Agilent 4_x44K whole genome arrays for 17 hours at 65_°C in a hybridisation oven (Sheldon manufacturer, Corneilus, OR). Following the hybridisation stage slides were washed using the gene expression wash buffer kit (Agilent Technologies, Santa Clara, CA) and acetonitrile.

Slide scanning was carried out using an Agilent Scanner (Agilent Technologies, Santa Clara, CA) ran 20-bit scans at a resolution of 50_n.

2.5.3 Microarray Slide Scanning Validation TIFF Image analysis

Spot centroids located in the corner of each array were used to confirm quality and position.
Feature extraction software assessed the signal quality of the array determined by the normal distribution of the data. The Log values of the processed signal were confirmed to show good
linearity with the Log values of the corresponding concentrations of SpikeIns for all arrays used. Median value for the processed signal and the median value for the background subtracted signal (mean signal – BG) for the whole array produced in all cases a horizontal line with minimal variation. Multiple reference probes across the array confirm reproducibility across the length and breadth of the array where a low median coefficient of variation in the signal level from these probes confirmed. Following TIFF image verification following microarray scanning, data normalisation was performed prior to analysis.

2.5.4 Data Processing

Feature Extraction software (V10.7, Santa Clara, CA) was implemented to examine the quality of the 16-bit TIFF images obtained by microarray scanning. These images were assessed on grid alignment, signal quantification and overall slide quality.

2.5.5 Data Clustering and Filtering

Data clustering was performed using TMEV software (version TM4, WA, USA). The samples were clustered according to the similarities seen in the gene expression patterns using hierarchical clustering algorithm (HCA). The mean values for the level of gene expression was used to perform comparisons between data sets. For data reduction, TMEV was also used to perform principal component analysis (PCA) which was implemented to illustrate the main degree of variability in the multidimensional data set. Statistical analysis was carried out using significance analysis of microarrays (SAM) to identify statistically significant genes which demonstrated either a 2 fold up regulation in expression or a 2 fold

245 down regulation in gene expression. Delta values were selected so as that the median false discovery rate (FDR) was lower than 2%. These gene lists were then exported to EXCEL where the gene tables of SLC and ABC genes were prepared for data entry into KEGG http://www.genome.jp/kegg/. Pathway analysis was undertaken using KEGG Pathway and Orthology features.

2.6 Asses

2.6 Assessment of Absorption in Vivo.

All animal experiments complied with the ARRIVE guidelines and experimentation strictly adhered to the 1986 Scientific Procedures Act (UK). All protocols have been subject to ethical review and were carried out in a designated facility under the project license number PPL 30/2743. Male Wistar rats with a body weight of 250g -___ 300 g were used. Prepared formulations were loaded into a 1ml syringe and administered via oral gavage. Dosing was calculated depending upon the weight of each individual animal and formulations were diluted in H₂O, Spironolactone was dosed at 40 mg/kg and 20 mg/kg depending on formulation. Following dosing, an additional 1 ml of H₂O was administered to rinse in the formulations. Blood samples (45 µl) were taken via tail bleeds at 15 minutes, 30 minutes, 45 minutes and, 1-hour, 1.5-hour, 2-hour, 2.5-hour, 3-hour and 4 hour time points. Plasma was extracted from blood samples by centrifugation at 2800 x g for 10 minutes. The plasma samples were then diluted 1:5 in mobile phase and analysed using HPLC. Test/reverence ratios were calculated using data published for spironolactone bioequivalence studies to allow for comparison of mean plasma pharmacokinetic parameters without the need to use an intravenous reference standard.

3. Results and Discussion

3.1 Formulation development and characterisation

1 2		
3 4		The first stage of developing an age appropriate formulation of Spironolactone commenced
5 6		with scoping a target product profile comprising of small dose volume, long term stability,
7 8 9	270	flexibility for dose manipulation and an acceptable formulation presentation. Spironolactone
9 10 11		is most stable at pH_4.5 [19] and as such the formulation required pH control so as to
12 13	ļ	maintain optimum conditions for drug stability and maximize shelf life. Experimental
14 15		investigation into vehicle buffer production revealed that the ratio of 0.1_M citric acid to 0.1
16 17 18		M trisodium citrate resulted in solvent vehicle with pH 4.5. Following this, Xantural 180 and
18 19 20	275	Pluronic F127 were selected as viscosity modifier and surfactant respectively and
21 22		investigated across concentration ranges of 0-5%_w/v and 0-0.5%_w/v respectively in order to
23 24		develop a vehicle offering optimized physical stability to the formulation. Pluronic F127 is
25 26 27		known to undergo transition from a solution to a gel at the sol-gel transition temperature
27 28 29		which would be undesirable in this formulation. Although this normally occurs at
30 31	280	concentrations greater than 5%_w/v, the effect of Xanatural 180 on this is unknown. All
32 33		concentration of Pluronic and Xanatural were investigated at temperatures up to 55_°C. No
34 35 36		evidence of Sol-Gel was observed for any of the vehicle compositions tested. Evaluation of
37 38		formulation sedimentation in different concentrations of Pluronic and Xanatural showed that
39 40		inclusion of Pluronic was necessary however increasing the concentration above 1% to 2, 3, 4
41 42	285	or 5% had no impact on rate and volume of sedimentation. Conversely, increasing Xanatural
43 44 45		180 concentration up to 0.4% gradually reduced the amount of sedimentation until at 0.4%
45 46 47		w/v, whereby no sedimentation was noticed. Table 2 summarises the final spironolactone
48 49		suspension formulation components.
50 51		Suspension formulation components.
FO	- I	

Table 2 – Oral spironolactone suspension composition – Spironolactone formulations were produced at doses of 5mg/ml and 10mg/ml.

Spironolactone formulation components		
Spironolactone	API	

Xanatural 180	Viscosity Modifier
Pluronic F127	Surfactant
Sodium Metabisulphate	Antioxidant
Sodium Benzoate	Preservative
Xylitol	Sweetener
Strawberry Flavour	Flavouring agent

Formulations were assessed for stability at accelerated and long-term conditions for storage as set out in the ICH Harmonisation Guidelines (Q1A(R2)) [17]. Over the six month course of the stability testing in accelerated conditions with<u>at</u> 40_°C and 75% relative humidity, the drug content of the formulations remained above 95% of the starting dose indicating that the formulations displayed adequate stability in accordance with ICH guidelines and the pH remained constant for the duration of the stability testing (Figure 1). Similar results were seen for long term conditions, 25_°C and 60% relative humidity, the drug content of all of the formulations remained >95% of the starting dose and the pH remained constant for the duration (Figure 2). The results show formulations were physically and chemically stable over 12 months with drug content and pH within acceptable limits.

URL: http://mc.manuscriptcentral.com/lpdt; EMAIL: IPHD-peerreview@journals.tandf.co.uk

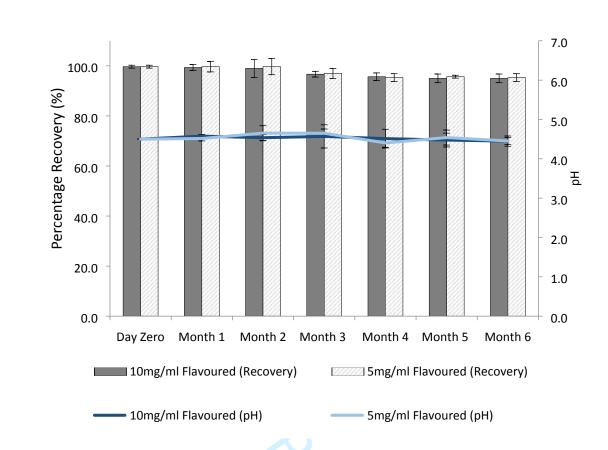


Figure 1 - Spironolactone Stability in Accelerated Conditions - Spironolactone recovery following HPLC for formulations in accelerated storage conditions is illustrated by the
vertical bars. The drug content of the formulations remained above 95% of the starting dose indicating that the formulations display adequate stability in accordance with ICH guidelines. Results are generated from triplicate repeats (n=3) and error bars indicate standard deviation (RSD). Spironolactone pH stability for formulations in accelerated storage conditions is represented by the horizontal lines. For the duration of testing the formulations proved stable
with little variation in pH seen for all samples. Results are generated from triplicate repeats (n=3) and error bars indicate repeats (n=3) and error bars indicate standard deviation

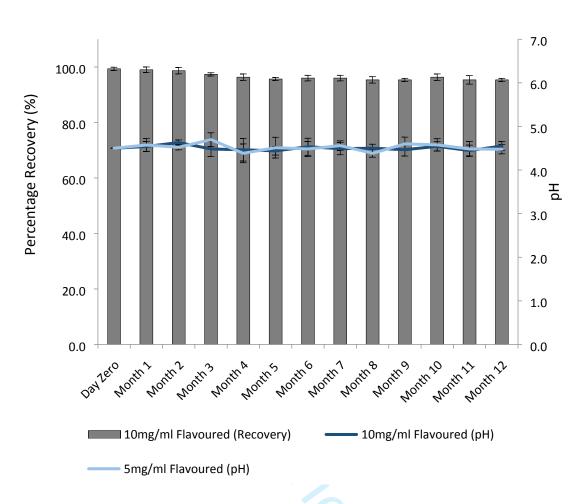


Figure 2 – Spironolactone Stability in Long Term Conditions - Spironolactone recovery following HPLC for formulations in long term storage conditions is illustrated by the vertical bars. The drug content of the formulations remained above 95% of the starting dose indicating that the formulations display adequate stability in accordance with ICH guidelines. Results are generated from triplicate repeats (n=3) and error bars indicate standard deviation (RSD). Spironolactone pH stability for formulations in long term storage conditions is represented by the horizontal lines. For the duration of testing the formulations proved stable with little variation in pH seen for all samples. Results are generated from triplicate repeats (n=3) and error bars indicate standard deviation.

3.2 Assessment of Absorption in Vitro

The next phase of investigation involved, in vitro formulation evaluation (10_mg/ml and 5 mg/ml) using Caco-2 cells for drug transport studies, followed by genome fingerprinting to evaluate dynamic gene expression responses to formulation exposure.

Page 17 of 51

Caco-2 cells were grown on transwell inserts for a minimum of 21 days to allow for full differentiation and monolayer integrity was confirmed through trans-epithelial electrical resistance (TEER). This was measured before, during and after permeability experiments. At appropriate time points during permeability experiments, samples were taken from the basolateral chamber and analysed via HPLC.

The results from transport vs time analysis wereas used to calculate apparent permeability, P_{app} , for both the formulations. The average log value in the current study was -5.81 (Figure 3). P_{app} , from previous investigations ranged from 5×10^{-8} to 5×10^{-5} [7,12]. The permeability coefficients for the spironolactone formulations are in keeping with these findings. The permeability coefficient or apparent permeability of a molecule (P_{app}) is considered to be a reliable indicator for the expected in vivo drug absorption (Fraction Absorbed (fa)). It is generally accepted that completely absorbed drugs have Papp >1x10⁻⁶ cm/s. (LogPapp >-6) whereas incompletely or poorly absorbed drugs have Papp <1x10⁻⁶ cm/s. (LogPapp <-6).

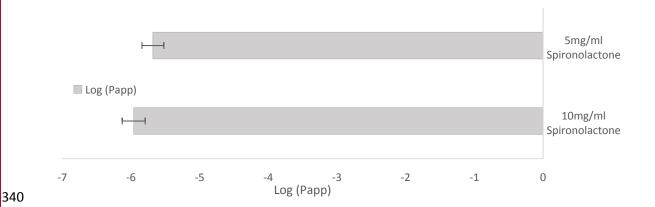


Figure 3 - Apparent permeability of spironolactone in oral liquid suspension formulations - Average Log P_{app} values calculated for spironolactone formulations range from -5.96 to -5.70 with an average of -5.81. Results are generated from triplicate repeats (n=3) and error bars indicate standard deviation (RSD).

3.3 Genomic Evaluation of Caco-2 cells following drug transport experiments

	Investigation into gene expression changes of Caco-2 cells during drug transport studies were
	intended to identify links between the predicted drug permeability and the expression of the
	genes which code for the intestinal transporters of spironolactone [20-22]. The aim was to
)	study the response of transporter super families such as_ABC and SLC, cytochrome P450
	(CYP) and carboxylesterase (CES) enzymes. Drug transport studies were carried out using
	transwell arrangements and the genetic profiles of the subsequently harvested Caco-2 cells
	were examined. Cells were harvested at 20 minutes and 60 minutes following initiation of the
	drug transport experiments. The expression patterns for Caco-2 cells in their basal state were
5	used as a control and compared to cells exposed to the spironolactone formulation.

Following successful RNA extraction, labelling and amplification, samples were hybridised onto microarrays and processed to identify gene expression changes. Data normalisation was undertaken before statistical analysis of findings was performed.

3.3.2 Hierarchical clustering algorithm (HCA)

360 HCA was used to cluster samples into groups based on the similarity in gene expression profiles. Control samples were compared to formulation samples at each time point (20, 60 min) (Figure 4). The HCA clusters showed that gene expression levels in Caco-2 cells which had undergone treatment with the drug formulations had been altered from that of the control samples where spironolactone formulation was absent. In addition to this, time was indicated as a factor in the magnitude of this change as greater difference was seen for cell samples taken at 60 minutes compared to 20 minutes.

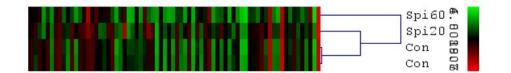


Figure 4 - Hierarchical clustering algorithm (HCA) – Gene expression data for control samples was compared to gene expression data for samples exposed to

formulations at each time point using HCA analysis. Clustering analysis groups similar data sets and as shown above, there is significant difference indicated between the control gene expression data and the expression data seen at each time point.

3.3.3 Principal Component Analysis (PCA)

Eigenvector decomposition (EVD) generated 4 principal components for PCA of samples relating to the spironolactone suspension of which 88.9899.99% of the variance was described in components 1 and 2 (Table 3). Components 3 and 4 were therefore discounted to focus data analysis.

380 Table 3 – Eigenvector decomposition (EVD) - EVD generated 4 principal components for

PCA of samples relating to the spironolactone suspension.

Eigen V	alues				
Principal Component 1	3.468	63.16%			
Principal Component 2	1.419	25.83%			
Principal Component 3	0.579	10.55%			
Principal Component 4	0.026	0.47%			
First 2 components: 88.989 %					
First 3 components: 99.534 %					

Following HCA, principal component analysis (PCA) plots were generated which showed that there was a clear difference in the gene expression levels between the control and treated samples; control samples clustered centrally compared to spironolactone formulation at time points 20 minutes and 60 minutes (Figure 5). This difference was seen along component one and two of the first and second PCA for the suspension. The differences between the time points indicated greater change in the expression levels after 60 minutes across the first component (X-axis) when compared to the change after 20 minutes. This further supports the trends identified by HCA analysis.

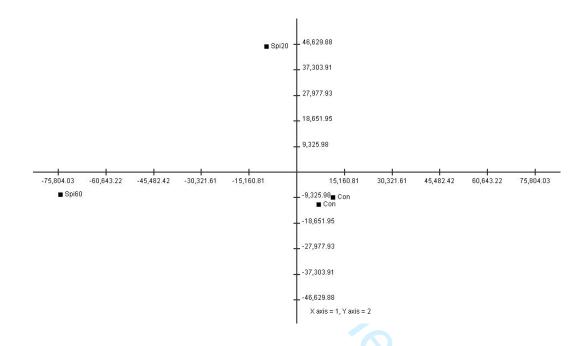


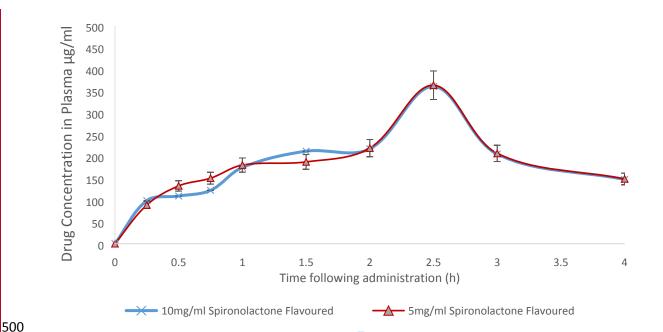
Figure 5 – First and Second PCA - There is a clear difference in the gene expression levels between the control samples and the formuation time points. This is seen along component one and two. The difference seen bewteen the time points shows a greater change in the gene expression after 60 minutes when compared to the change after 20 minutes.

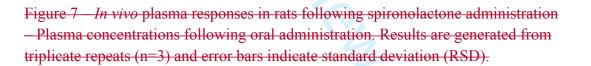
3.3.4 Significance Analysis of Microarrays (SAM)

With definitive differences confirmed for the sample profiles, SAM was carried out on the microarray data to identify specific genes which showed a significant change in their level of expression following transport experiments using spironolactone formulations. Genes with a fold difference >2 in the SLC, ABC, CYP and CES families were tabulated and positive or negative change in expression indicated. For the spironolactone suspensions, the significant gene expression information generated from the SAM analysis is presented in Figure 6. A total of 2576 significantly upregulated genes (positive change) and 1235 significantly

1 2		
2 3 4	405	downregulated genes (negative change) were identified at a FDR rate of 1.5 % and delta
5 6		value of 0.35.
7 8 9		SAM Cluster Information - Gene Expression
10 11		
12 13		
14 15		
16 17		
18 19		
20 21		
22 23		
24 25 26		
20 27 28		Figure 6 - SAM Cluster Information - Gene Expression - A total of 2576 upregulated (positively significant) genes and 1235 downregulated (negatively significant) genes
29 30	410	were identified, 37282 genes were not significant.
31 32		
33 34		L.
35 36		For the spironolactone suspensions there was significant effect on 9 genes in the ABC family,
37 38		71 genes in the SLC family, 51 genes in the CYP family and 5 genes in the CES with a fold
39 40		change >2. In each instance it was interesting to note that all of these genes were up
41 42	415	regulated. Following the production of the SLC, ABC and CYP gene tables the gene names
43 44		were entered into KEGG to identify the pathways affected by the changes in gene expression.
45 46		3.3.5 KEGG Pathway analysis
47 48 49		
49 50 51		The genes from the SLC, ABC, CYP and CES gene families for which a significant change in
52 53		gene expression was seen were listed and KEGG pathway identification performed to identify
55 54 55	420	the role of each (comprehensive gene lists exist as supplementary material). Where no
56 57		pathway information was available genes are omitted from the tables. Pathway information
58 59 60		was available for 91 of the 136 genes identified.

2 3 4		When considering permeability through the intestinal epithelial it is important to consider the
5		inherent properties which limit absorption. This includes the physiochemical makeup of the
7 8	425	cell membranes as well as the tight junctions between the cells which are tightly regulated
9 10 11		and highly selective. For instance, SLC9A3R1 is of interest when examining intestinal
12 13		permeability as it codes for SLC9A3 Regulator 1 (NHERF1). This protein interacts with
14 15		villin and actin which function as linkers between integral membrane and cytoskeletal
16 17 18		proteins involved with the formation and maintenance of tight junctions [23]. Tight junctions
19 20	430	exist between intestinal enterocytes and are one of the key limiters in modulating paracellular
21 22		intestinal permeability and maintaining membrane barrier function. Although spironolactone
23 24 25		is not reported to be absorbed paracellularly this may indicate that tight junctions were closed
25 26 27		in response to exposure to the spironolactone formulation. Evidence of cellular response to
28 29		formulation exposure can also be seen through expression changes in genes involved in
30 31 32	435	signalling pathways including SLC25A6, SLC3A2, SLC7A5, SLC27A1 and SLC2A2.
32 33 34		cGMP-PKG signalling has been shown previously to control dynamic responses of tight
35 36		junctions in the blood brain barrier (BBB) through voltage-dependent anion channel protein 1
37 38		which is coded for by SLC25A6 [24]. The tight junctions that form the paracellular barrier at
39 40 41		the BBB and intestinal enterocytes display remarkable molecular similarities [25].
42 43	440	Beyond the barrier function of the intestine, efflux transporters and enzymatic activity present
44 45		an additional barrier to drug absorption and their combined action can limit bioavailability
46 47 48		[26]. Spironolactone has been shown to interact with ABCB1, multidrug resistance protein 1
49 50		(MDR) or P-glycoprotein (P-gp) which is supported by findings of this study with a 8.75 fold
51 52		increase in expression levels [21]. However, this observation suggests spironolactone co-
53 54 55	445	administration requires clinical monitoring for drugs prone to efflux which may have
56 57		deleterious clinical impact on their bioavailability [21].
58 59		


2 3		~ · · · · · · · · · · · · · · · · · · ·
4 5		Spironolactone is rapidly metabolised following administration via carboxylesterases which
5 6 7		are known to be expressed in Caco-2 cells and their expression has been shown to be
7 8 9		upregulated in this investigation with carboxylesterase 1 (hCE-1) showing a 9.26 fold
10 11	450	increase in expression and carboxylesterase 2 (hCE-2) showing a 7.10 fold increase in
12 13		expression [27]. Carboxylesterase metabolism of spironolactone produces a number of active
14 15 16		metabolites including 7 α -thiomethylspironolactone (7 α -TMS), 6 β -hydroxy-7 α -
17 18		thiomethylspironolactone (6 β -OH-7 α -TMS), and canrenone. Of these, 7 α -TMS and 6 β -OH-
19 20		7α -TMS are known to be substrates for CYP3A4 and likely responsible for gene regulation
21 22	455	changes (CYP3A4 is upregulated 7.07 fold). CYP3A4 is the most prominent oxidative CYP
23 24 25		enzyme present in the human intestine and has been shown to significantly metabolise orally
25 26 27		administrated drugs and limit bioavailability [28].
28 29		With a focus on transport mediated absorption and intestinal permeability, there were a large
30 31		
32 33		proportion of upregulated genes from the SLC superfamily linked to absorption pathways.
34 35	460	SLC1A5, SLC3A2, SLC1A1, SLC3A1, SLC6A19 and SLC7A7 are all active in protein
36 37		absorption while SLC31A1, SLC11A2, SLC26A3, SLC5A6 and SLC6A19 are involved with
38 39		mineral absorption. SLC2A2 and SLC5A6 were similarly identified as being significantly
40 41		upregulated and these are functional in carbohydrate absorption and vitamin absorption
42 43 44		pathways respectively [14]. Upregulated SLC3A2 codes for the chaperone protein CD98
45 46	465	which can heterodimerize with a number of amino acid transporters including LAT1, LAT2,
47 48		y+LAT1, y+LAT2, and xCT and thereby influence a number of cellular functions including
49 50		transport mechanisms. Of the transporters listed, increases in expression levels were seen for
51 52 53		LAT1 (SLC7A5) and y+LAT1 (SLC7A7). CD98 dimerises with both, y+LAT1 (SLC7A7)
54 55		can be found in the basolateral border of enterocytes to transfer cationic and large neutral
56 57	470	amino acids from the cell to the extracellular space [29]. LAT1 (SLC7A5) dimerises with
58 59		CD98 to form a functional unit for both the uptake of large neutral amino acids and a number
60		


		of pharmaceutical drugs. Evidence generated by Amaral and Pinho suggests that tight binding
		of spironolactone to the cytosolic mineralocorticoid receptor in collecting duct principle cells
		drives transcriptional changes, these have been shown to modulate subsequent downstream
) 1	475	changes in LAT1, LAT2 and ASCT2 expression [30]. Our findings indicate that this same
2 3		pathway is also active in intestinal enterocytes and this argument is strengthened as the
4 5		cytosolic mineralocorticoid receptor (NR3C2) for which the expression profile was extracted
5 7		individually was found to be upregulated indicating both that it is present and that capacity
2 3 4 5 7 8 9 0		for activity is increased following exposure of Caco-2 cells to spironolactone formulations
1	480	[31].
2 3 4 5 5 7		Amino acid transporters have roles beyond drug transport and LAT1 is active in the
		mammalian target of rapamycin (mTOR) signalling pathway. This pathway is activated
8 9 0 1		during various cellular processes including tumor formation and angiogenesis, insulin
1 2 3		resistance, adipogenesis and T-lymphocyte activation and is deregulated in human diseases
4	485	such as cancer and type 2 diabetes [14,32]. It is not possible to be definitive given the scope
5 5 7		of this current study, however modulation of LAT1 gene expression as a result of
/ 8 9		spironolactone formulation exposure may provide early indication of long-term adverse
) 1		effects resulting from mTOR pathway activation. Evidence in support of this is strengthened
2 3 4 5 6		as SLC27A1 and SLC2A2 are seen to be upregulated and code for proteins involved in the
4 5	490	Insulin resistance pathway. Likewise, SLC2A2 and ABCC8 are both upregulated and linked
7		to Type II diabetes mellitus.
8 9		

3.4 Assessment of Absorption in Vivo.

In vivo drug absorption using rodent models is used routinely in a pre-clinical setting to provide the most representative model of pharmacokinetics and pharmacodynamics. Wistar rats were used in this investigation and spironolactone formulations were loaded into a 1ml

 syringe prior to administration via oral gavage. Dosing was calculated depending upon the weight of each individual animal and blood samples were taken via tail bleeds prior to HPLC analysis. The plasma concentration-time profile for the formulations for *in vivo* absorption is shown in figure 7.

The plasma concentration-time profile for all formulations was comparable and representative of expected results with T_{MAX} occurring 2.5hours after administration. From the plasma concentration-time profile, values for AUC, C_{MAX} and T_{MAX} were determined and are shown below in table 4. Values are in keeping with published bioequivalence studies examining spironolactone formulations [33]. AUC and C_{MAX} are within 5% of published values with test/reference (T/R) ratios ranging from 0.91-1.11 with a mean value of 1.02 while T_{MAX} was located centrally within 1.5_hours to 4.5_hours. It can therefore be deduced that the spironolactone formulations resulted in 80-90% *in vivo* absorption.

Table 4 – *In vivo* results for AUC, C_{MAX} and T_{MAX} – AUC was identified to be 992.80µg*h/mL and 988.97µg*h/mL for the 10mg/ml and 5mg/ml formulations respectively. C_{max} was shown to range from 363.24µg/ml to 375.37µg/ml and T_{MAX} was at 2.5hours for all formulations.

	AUC	C _{MAX}	T _{MAX}
-Formulation	(µg*h/mL)	<mark>(µg/ml)</mark>	(h)
Spironolactone Suspension (10mg/ml)	992.80	375.37	2.5
Spironolactone Suspension (5mg/ml)	988.97	363.2 4	2.5

Previously reported findings for spironolactone in animal models showed gastrointestinal absorption estimated to be 82% in rats, 62% in dogs and 103% in monkeys [34]. Our findings are in keeping with the values for reported rat models. In comparison, human absorption is estimated to be in the range of 70%-90% and a fed state is reported to enhance absorption [35]. Following a 100₋mg dose administered to human subjects, plasma half-life of spironolactone is reported to be 1–2 h with time to C_{MAX} being 2–3.2 h. Maximum blood concentration is reported as 92–148 ng/mL with area under the concentration–time (0–24 h) curve 1430–1541 ng/mL per h and elimination half-life of 18–20 h [36,37]. These values represent data as would be expected based on predictions using *in vitro* and *in vivo* findings of this current study.

4. Conclusions

The purpose of this study was to evaluate an oral liquid spironolactone formulation to address the current need for an age appropriate oral liquid formulation. Microarray technology has been implemented to profile genome dynamics as a response to formulation exposure and examine the findings in comparison with conventional *in vitro* and *in vivo* screening.

2 3 4 5 6 7 8 9	5
10 11 12 13 14 15 16 17 18 19	[
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	Ľ
 37 38 39 40 41 42 43 44 45 46 47 	[
48 49 50 51 52 53 54 55 56 57 58 59	5

60

Shelf life of 12 months has been confirmed with stability testing following ICH guidelines. *In vitro* drug transport studies returned a Log Papp value of -5.81 indicating good *in vivo*absorption. Microarray based gene expression changes provided comprehensive assessment
of drug-transporter/absorption interaction which in turn could be used as a high throughput
method to develop generic formulations and with refinement, predict indicative *in vivo*performance of alternative dosage forms. This strategy will allow screening of multiple
variations of formulations and provide sufficient confidence for subsequent pre-clinical and
clinical testing.

5. Conflict of interest

The authors declare no conflict of interest

6. Funding

545 The authors are grateful to Biotechnology and Biological Sciences Research Council for funding a CASE award in partnership with Pharmaspec Ltd (Ref number: BB/H016716/1).

7. Data Sharing

The authors confirm that the data supporting the findings of this study are available within

the article and its supplementary materials.

550 8. Acknowledgements

The authors also acknowledge the technical staff at Aston University and the support of

Genomics Lab University of Birmingham.

9. References

1.Batchelor HK, Fotaki N, Klein S. Paediatric oral biopharmaceutics: key considerations and
current challenges. Adv Drug Deliv Rev. 2014 Jun;73:102-26.555Current challenges. Adv Drug Deliv Rev. 2014 Jun;73:102-26.

- 2. Chin WW, Joos A. Moving toward a paradigm shift in the regulatory requirements for pediatric medicines. Eur J Pediatr. 2016 Dec;175(12):1881-1891.
- Agency EM. Report on the Survey of All Paediatric Uses of Medicinal Products in Europe 2010.

2			
3	560	4.	Kreeftmeijer-Vegter AR, de Boer A, van der Vlugt-Meijer RH, et al. The influence of the
4			European paediatric regulation on marketing authorisation of orphan drugs for children.
5			Orphanet J Rare Dis. 2014 Aug 5;9:120.
6		5.	Boráň T, Menezes-Ferreira M, Reischl I, et al. Clinical Development and Commercialization of
7		5.	Advanced Therapy Medicinal Products in the European Union: How Are the Product Pipeline
8 9	565		and Regulatory Framework Evolving? Hum Gene Ther Clin Dev. 2017 Sep;28(3):126-135.
9 10	202	6.	Walsh J. Reflection on the Pharmaceutical Formulation Challenges Associated with a
11		0.	-
12			Paediatric Investigation Plan for an Off-Patent Drug. AAPS PharmSciTech. 2017
13		-	Feb;18(2):250-256.
14		7.	Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent
15	570		drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys
16			Res Commun. 1991 Mar 29;175(3):880-5.
17		8.	Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical
18			predictions of drug transport. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):27-43.
19		9.	van Breemen RB, Li Y. Caco-2 cell permeability assays to measure drug absorption. Expert
20	575		Opin Drug Metab Toxicol. 2005 Aug;1(2):175-85.
21		10.	Meyer M, Schneckener S, Ludewig B, et al. Using expression data for quantification of active
22			processes in physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2012
23			May;40(5):892-901.
24 25		11.	Mohammed AR, ElShaer AM, Jones RJ, et al. Drug Bioavailability and Gene Profiling:
25 26	580		Challenges and Opportunities for Pharmaceutics and Personalised Medicine. Handbook of
20			Personalized Medicine: Advances in Nanotechnology, Drug Delivery and Therapy Panstan.
28			2011:141-190.
29		12.	Russell C, Begum S, Hussain Y, et al. Paediatric drug development of ramipril: reformulation,
30			in vitro and in vivo evaluation. J Drug Target. 2015;23(9):854-63.
31	585	13.	Russell C, Rahman A, Mohammed AR. Application of genomics, proteomics and
32	505	15.	metabolomics in drug discovery, development and clinic. Ther Deliv. 2013 Mar;4(3):395-413.
33		14.	Kanehisa M, Sato Y, Furumichi M, et al. New approach for understanding genome variations
34		14.	in KEGG. Nucleic Acids Res. 2019 Jan 8;47(D1):D590-d595.
35		1 -	
36	500	15.	Committee JF. BNF 79 (British National Formulary) March 2020. Pharmaceutical Press; 2020.
37	590	16.	Committee PF. British National Formulary for Children 2019-2020. Pharmaceutical Press;
38			2019.
39 40		17.	Guideline IHT, editor Validation of analytical procedures: text and methodology Q2 (R1).
40 41			International conference on harmonization, Geneva, Switzerland; 2005.
41		18.	Yang Y, Faustino PJ, Volpe DA, et al. Biopharmaceutics classification of selected beta-
43	595		blockers: solubility and permeability class membership. Mol Pharm. 2007 Jul-Aug;4(4):608-
44			14.
45		19.	Pramar Y, Gupta VD. Preformulation studies of spironolactone: effect of pH, two buffer
46			species, ionic strength, and temperature on stability. J Pharm Sci. 1991 Jun;80(6):551-3.
47		20.	Ieiri I, Takane H, Hirota T, et al. Genetic polymorphisms of drug transporters:
48	600		pharmacokinetic and pharmacodynamic consequences in pharmacotherapy. Expert Opin
49			Drug Metab Toxicol. 2006 Oct;2(5):651-74.
50		21.	Rigalli JP, Ruiz ML, Perdomo VG, et al. Pregnane X receptor mediates the induction of P-
51			glycoprotein by spironolactone in HepG2 cells. Toxicology. 2011 Jul 11;285(1-2):18-24.
52		22.	Ruiz ML, Villanueva SS, Luquita MG, et al. Induction of intestinal multidrug resistance-
53 54	605		associated protein 2 (Mrp2) by spironolactone in rats. Eur J Pharmacol. 2009 Nov 25;623(1-
54 55			3):103-6.
55 56		23.	Castellani S, Guerra L, Favia M, et al. NHERF1 and CFTR restore tight junction organisation
57			and function in cystic fibrosis airway epithelial cells: role of ezrin and the RhoA/ROCK
58			pathway. Lab Invest. 2012 Nov;92(11):1527-40.
59			
60			

 610 24. González-Mariscal L, Tapia R, Chamorro D. Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta. 2008 Mar;1778(3):729-56. 25. Daneman R, Rescigno M. The Gut Immune Barrier and the Blood-Brain Barrier: Are They So Different? Immunity. 2009 2009/11/20/;31(5):722-735. 26. Takano M, Yumoto R, Murakami T. Expression and function of efflux drug transporters in the intestine. Pharmacol Ther. 2006 Jan;109(1-2):137-61. 27. Testa B, Pedretti A, Vistoli G. Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discov Today. 2012 Jun;17(11-12):549-60. 28. Granvil CP, Yu AM, Elizondo G, et al. Expression of the human CYP3A4 gene in the small intestine of transgenic mice: in vitro metabolism and pharmacokinetics of midazolam. Drug Metab Dispos. 2003 May;31(5):548-58. 29. Kleemola M, Toivonen M, Mykkänen J, et al. Heterodimerization of y(+)LAT-1 and 4F2hc visualized by acceptor photobleaching FRET microscopy. Biochim Biophys Acta. 2007 Oct;1768(10):2345-54. 30. Amaral JS, Pinho MJ, Soares-da-Silva P. Genomic regulation of intestinal amino acid transporters by aldosterone. Mol Cell Biology. Front Cell Dev Biol. 2018;6:96. 32. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. 33. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61. 34. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55. 35. Marcon RA Leonold (A. Mineraleorticon/teceptor antagonistis and endothalial function
 bio 24. Bondlet: Michael P, Kapin K, Chang K
 Signaling pathways. Biochim Biophys Acta. 2008 Mar[1778(3):729-56. 25. Daneman R, Rescigno M. The Gut Immune Barrier and the Blood-Brain Barrier: Are They So Different? Immunity. 2009 2009/11/20/;31(5):722-735. 26. Takano M, Yumoto R, Murakami T. Expression and function of efflux drug transporters in the intestine. Pharmacol Ther. 2006 Jan;109(1-2):137-61. 27. Testa B, Pedretti A, Vistoli G. Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discov Today. 2012 Jun;17(11-12):549-60. 28. Granvil CP, Yu AM, Elizondo G, et al. Expression of the human CYP3A4 gene in the small intestine of transgenic mice: in vitro metabolism and pharmacokinetics of midazolam. Drug Metab Dispos. 2003 May;31(5):548-58. 29. Kleemola M, Toivonen M, Mykkänen J, et al. Heterodimerization of y(+)LAT-1 and 4F2hc visualized by acceptor photobleaching FRET microscopy. Biochim Biophys Acta. 2007 Oct;1768(10):2345-54. 30. Amaral JS, Pinho MJ, Soares-da-Silva P. Genomic regulation of intestinal amino acid transporters by aldosterone. Mol Cell Biochem. 2008 Jun;313(1-2):1-10. 31. Scalise M, Pochini L, Console L, et al. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol. 2018;6:96. 32. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. 630 33. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61. 34. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
 Different? Immunity. 2009 2009/11/20/;31(5):722-735. 26. Takano M, Yumoto R, Murakami T. Expression and function of efflux drug transporters in the intestine. Pharmacol Ther. 2006 Jan;109(1-2):137-61. 27. Testa B, Pedretti A, Vistoli G. Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discov Today. 2012 Jun;17(11-12):549-60. 28. Granvil CP, Yu AM, Elizondo G, et al. Expression of the human CYP3A4 gene in the small intestine of transgenic mice: in vitro metabolism and pharmacokinetics of midazolam. Drug Metab Dispos. 2003 May;31(5):548-58. 29. Kleemola M, Toivonen M, Mykkänen J, et al. Heterodimerization of y(+)LAT-1 and 4F2hc visualized by acceptor photobleaching FRET microscopy. Biochim Biophys Acta. 2007 Oct;1768(10):2345-54. 30. Amaral JS, Pinho MJ, Soares-da-Silva P. Genomic regulation of intestinal amino acid transporters by aldosterone. Mol Cell Biochem. 2008 Jun;313(1-2):1-10. 31. Scalise M, Pochini L, Console L, et al. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol. 2018;6:96. 32. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. 630 33. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61. 34. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
 Takano M, Yumoto R, Murakami T. Expression and function of efflux drug transporters in the intestine. Pharmacol Ther. 2006 Jan;109(1-2):137-61. Testa B, Pedretti A, Vistoli G. Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discov Today. 2012 Jun;17(11-12):549-60. Granvil CP, Yu AM, Elizondo G, et al. Expression of the human CYP3A4 gene in the small intestine of transgenic mice: in vitro metabolism and pharmacokinetics of midazolam. Drug Metab Dispos. 2003 May;31(5):548-58. Kleemola M, Toivonen M, Mykkänen J, et al. Heterodimerization of y(+)LAT-1 and 4F2hc visualized by acceptor photobleaching FRET microscopy. Biochim Biophys Acta. 2007 Oct;1768(10):2345-54. Amaral JS, Pinho MJ, Soares-da-Silva P. Genomic regulation of intestinal amino acid transporters by aldosterone. Mol Cell Biochem. 2008 Jun;313(1-2):1-10. Scalise M, Pochini L, Console L, et al. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol. 2018;6:96. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1386-918. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
 615 intestine. Pharmacol Ther. 2006 Jan;109(1-2):137-61. 27. Testa B, Pedretti A, Vistoli G. Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discov Today. 2012 Jun;17(11-12):549-60. 28. Granvil CP, Yu AM, Elizondo G, et al. Expression of the human CYP3A4 gene in the small intestine of transgenic mice: in vitro metabolism and pharmacokinetics of midazolam. Drug Metab Dispos. 2003 May;31(5):548-58. 29. Kleemola M, Toivonen M, Mykkänen J, et al. Heterodimerization of y(+)LAT-1 and 4F2hc visualized by acceptor photobleaching FRET microscopy. Biochim Biophys Acta. 2007 Oct;1768(10):2345-54. 30. Amaral JS, Pinho MJ, Soares-da-Silva P. Genomic regulation of intestinal amino acid transporters by aldosterone. Mol Cell Biochem. 2008 Jun;313(1-2):1-10. 31. Scalise M, Pochini L, Console L, et al. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol. 2018;6:96. 32. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1386-918. 630 33. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61. 34. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
 Testa B, Pedretti A, Vistoli G. Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discov Today. 2012 Jun;17(11-12):549-60. Granvil CP, Yu AM, Elizondo G, et al. Expression of the human CYP3A4 gene in the small intestine of transgenic mice: in vitro metabolism and pharmacokinetics of midazolam. Drug Metab Dispos. 2003 May;31(5):548-58. Kleemola M, Toivonen M, Mykkänen J, et al. Heterodimerization of y(+)LAT-1 and 4F2hc visualized by acceptor photobleaching FRET microscopy. Biochim Biophys Acta. 2007 Oct;1768(10):2345-54. Amaral JS, Pinho MJ, Soares-da-Silva P. Genomic regulation of intestinal amino acid transporters by aldosterone. Mol Cell Biochem. 2008 Jun;313(1-2):1-10. Scalise M, Pochini L, Console L, et al. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol. 2018;6:96. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
11xenobiotics. Drug Discov Today. 2012 Jun;17(11-12):549-60.1228.Granvil CP, Yu AM, Elizondo G, et al. Expression of the human CYP3A4 gene in the small intestine of transgenic mice: in vitro metabolism and pharmacokinetics of midazolam. Drug Metab Dispos. 2003 May;31(5):548-58.16620Metab Dispos. 2003 May;31(5):548-58.1629.Kleemola M, Toivonen M, Mykkänen J, et al. Heterodimerization of y(+)LAT-1 and 4F2hc visualized by acceptor photobleaching FRET microscopy. Biochim Biophys Acta. 2007 Oct;1768(10):2345-54.1930.Amaral JS, Pinho MJ, Soares-da-Silva P. Genomic regulation of intestinal amino acid transporters by aldosterone. Mol Cell Biochem. 2008 Jun;313(1-2):1-10.2131.Scalise M, Pochini L, Console L, et al. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol. 2018;6:96.2332.Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918.2663033.Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61.2934.Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
 28. Granvil CP, Yu AM, Elizondo G, et al. Expression of the human CYP3A4 gene in the small intestine of transgenic mice: in vitro metabolism and pharmacokinetics of midazolam. Drug Metab Dispos. 2003 May;31(5):548-58. 29. Kleemola M, Toivonen M, Mykkänen J, et al. Heterodimerization of y(+)LAT-1 and 4F2hc visualized by acceptor photobleaching FRET microscopy. Biochim Biophys Acta. 2007 Oct;1768(10):2345-54. 30. Amaral JS, Pinho MJ, Soares-da-Silva P. Genomic regulation of intestinal amino acid transporters by aldosterone. Mol Cell Biochem. 2008 Jun;313(1-2):1-10. 31. Scalise M, Pochini L, Console L, et al. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol. 2018;6:96. 32. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. 630 33. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61. 34. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
 intestine of transgenic mice: in vitro metabolism and pharmacokinetics of midazolam. Drug Metab Dispos. 2003 May;31(5):548-58. 29. Kleemola M, Toivonen M, Mykkänen J, et al. Heterodimerization of y(+)LAT-1 and 4F2hc visualized by acceptor photobleaching FRET microscopy. Biochim Biophys Acta. 2007 Oct;1768(10):2345-54. 30. Amaral JS, Pinho MJ, Soares-da-Silva P. Genomic regulation of intestinal amino acid transporters by aldosterone. Mol Cell Biochem. 2008 Jun;313(1-2):1-10. 31. Scalise M, Pochini L, Console L, et al. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol. 2018;6:96. 32. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. 630 33. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61. 34. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
 Metab Dispos. 2003 May;31(5):548-58. Kleemola M, Toivonen M, Mykkänen J, et al. Heterodimerization of y(+)LAT-1 and 4F2hc visualized by acceptor photobleaching FRET microscopy. Biochim Biophys Acta. 2007 Oct;1768(10):2345-54. Amaral JS, Pinho MJ, Soares-da-Silva P. Genomic regulation of intestinal amino acid transporters by aldosterone. Mol Cell Biochem. 2008 Jun;313(1-2):1-10. Scalise M, Pochini L, Console L, et al. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol. 2018;6:96. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
 Kleemola M, Toivonen M, Mykkänen J, et al. Heterodimerization of y(+)LAT-1 and 4F2hc visualized by acceptor photobleaching FRET microscopy. Biochim Biophys Acta. 2007 Oct;1768(10):2345-54. 30. Amaral JS, Pinho MJ, Soares-da-Silva P. Genomic regulation of intestinal amino acid transporters by aldosterone. Mol Cell Biochem. 2008 Jun;313(1-2):1-10. 31. Scalise M, Pochini L, Console L, et al. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol. 2018;6:96. 32. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. 630 33. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61. 34. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
 visualized by acceptor photobleaching FRET microscopy. Biochim Biophys Acta. 2007 Oct;1768(10):2345-54. 30. Amaral JS, Pinho MJ, Soares-da-Silva P. Genomic regulation of intestinal amino acid transporters by aldosterone. Mol Cell Biochem. 2008 Jun;313(1-2):1-10. Scalise M, Pochini L, Console L, et al. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol. 2018;6:96. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. 630 33. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61. 34. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
 Oct;1768(10):2345-54. 30. Amaral JS, Pinho MJ, Soares-da-Silva P. Genomic regulation of intestinal amino acid transporters by aldosterone. Mol Cell Biochem. 2008 Jun;313(1-2):1-10. 31. Scalise M, Pochini L, Console L, et al. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol. 2018;6:96. 32. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. 630 33. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61. 34. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
 30. Amaral JS, Pinho MJ, Soares-da-Silva P. Genomic regulation of intestinal amino acid transporters by aldosterone. Mol Cell Biochem. 2008 Jun;313(1-2):1-10. 31. Scalise M, Pochini L, Console L, et al. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol. 2018;6:96. 32. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. 630 33. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61. 34. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
 31. Scalise M, Pochini L, Console L, et al. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol. 2018;6:96. 32. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. 630 33. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61. 34. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
 From Function to Structure and Role in Cell Biology. Front Cell Dev Biol. 2018;6:96. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. G30 33. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61. 34. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
 32. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. 33. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61. 34. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
 24 32. Populo H, Lopes JM, Soares P. The mTOR signaling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. 26 630 33. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 28 Jun;54(6):455-61. 29 34. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
 25 26 27 28 29 34. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
 630 33. Li ZH, Deng Y, Cai HL, et al. Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther. 2016 Jun;54(6):455-61. 34. Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
28Jun;54(6):455-61.2934.Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
2934.Karim A, Kook C, Zitzewitz DJ, et al. Species differences in the metabolism and disposition of30spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
spironolactone. Drug Metab Dispos. 1976 Nov-Dec;4(6):547-55.
³³ Curl Opin investig Drugs. 2008 Sep.9(9).965-9.
36. Overdiek HW, Merkus FW. The metabolism and biopharmaceutics of spironolactone in man.
Rev Drug Metab Drug Interact. 1987;5(4):273-302. 36 37. van der Vorst MM, Kist JE, van der Heijden AJ, et al. Diuretics in pediatrics : current
 36 37. van der Vorst MM, Kist JE, van der Heijden AJ, et al. Diuretics in pediatrics : current 37 640 knowledge and future prospects. Paediatr Drugs. 2006;8(4):245-64.
37 040 Knowledge and ruture prospects. Faculati Drugs. 2000,8(4).243-04.
39
40
41
42
43 44
44
46
47
48
49
50 51
52
53
54
55
56
57 58
59
60

Supplement - Fingerprinting genome dynamics for comparison with in vitro and in vivo formulation evaluation in the development of age appropriate dosage forms – Gene information tables

SLC transporter gene expression response following spironolactone formulation
exposure - Gene identification, expression fold change and pathway identification is
listed for all genes in the SLC transporter family for which a >2 fold change was seen
and pathway information was available.

SLC Transporters				
Transporter	Fold Change	+ve or -ve	KEGG Pathway Identification	
SLC17A9	6.4354215	+ve	Linked to Porokeratosis	
SLC1A5	13.079359	+ve	Protein digestion and absorption pathway, Central carbon metabolism in cancer pathway	
SLC25A1	10.693407	+ve	Linked to Congenital myasthenic syndrome, Linked to Combined D-2- and L-2- hydroxyglutaric aciduria	
SLC25A29	9.254947	+ve	Thermogenesis pathway	
SLC25A6	10.979601	+ve	Calcium signalling pathway, cGMP-PKG signalling pathway, Necroptosis pathway, Cellular senescence pathway, Parkinson disease pathway, Huntington disease pathway, Influenza A pathway, Human T-cell leukaemia virus 1 infection pathway	

2 3 4	SLC29A2	15.156823	+ve	Alcoholism pathway
5				Platinum drug resistance pathway, Mineral
6 7	SLC31A1	16.562778	+ve	Thannam drug fesistance pathway, whiterar
8				absorption pathway
9 10 11	SLC38A5	7.1403027	+ve	GABAergic synapse pathway
12 13	SLC39A5	7.296592	+ve	Linked to Myopia
14 15 16				mTOR signalling pathway, Ferroptosis
17 18	SLC3A2	14.07006	+ve	pathway, Protein digestion and absorption
19 20				pathway
21 22 23				Linked to Cerebral creatine deficiency
24 25	SLC6A8	16.636656	+ve	syndrome, Linked to X-linked creatine
26 27				deficiency syndrome
28 29				mTOR signalling pathway, Central carbon
30 31	SLC7A5	13.480293	+ve	metabolism in cancer pathway
32 33 34	SLC7A8	8.355325	+ve	Protein digestion and absorption pathway
35 36	SI C1142	21 (2154		Lysosome pathway, Ferroptosis pathway,
37 38	SLC11A2	31.62154	+ve	Mineral absorption pathway
39 40 41				Synaptic vesicle cycle pathway, Glutamatergic
42 43	SLC1A1	19.64092	+ve	synapse pathway, Protein digestion and
44 45				absorption pathway
46 47	SLC22A5	8.93393	+ve	Choline metabolism in cancer pathway
48 49				Proximal tubule bicarbonate reclamation
50 51 52	SLC25A10	17.145796	+ve	pathway
52 53 54				Linked to Citrullinemia, Linked to Primary
55 56	SLC25A13	9.850117	+ve	hyperammonemic disorders (Urea cycle
57 58 59				disorders)
60				

	SLC25A46	10.360896	+ve	Linked to Charcot-Marie-Tooth disease
	SLC26A3	9.05577		Pancreatic secretion pathway, Mineral
	SLC20A5	9.05577	+ve	absorption pathway
		12 4100 41		PPAR signalling pathway, Insulin resistance
	SLC27A1	13.418841	+ve	pathway
	SLC29A3	13.328121	+ve	Alcoholism pathway
				Insulin secretion pathway, Prolactin
				signalling pathway, Glucagon signalling
				pathway, Type II diabetes mellitus pathway,
				Insulin resistance pathway, Maturity onset
	SLC2A2	7.823031	+ve	diabetes of the young pathway, Carbohydrate
				digestion and absorption pathway, Central
				carbon metabolism in cancer pathway.
				Linked to Glycogen storage disease, Linked to
				Fanconi-Bickel syndrome
				Linked to Congenital disorders of
	SLC35A2	8.219815	+ve	glycosylation type II, Linked to Early infantile
				epileptic encephalopathy
				Linked to Leukocyte adhesion deficiency,
	SLC35C1	20.138887	+ve	Linked to Congenital disorders of
				glycosylation type II
		10 407154		Glutamatergic synapse pathway, GABAergic
	SLC38A1	18.407154	+ve	synapse pathway
		0.100.425		Linked to Ehlers-Danlos syndrome,
	SLC39A13	9.199426	+ve	spondylodysplastic type
-				

SLC39A14	24.078133	+ve	Ferroptosis pathway
SLC3A1	18.950901	+ve	Protein digestion and absorption pathway
SLC44A1	10.62931	+ve	Choline metabolism in cancer pathway
SLC44A2	13.139595	+ve	Choline metabolism in cancer pathway
	6 0051050		Transcriptional mis-regulation in cancer
SLC45A3	6.9271073	+ve	pathway, MicroRNAs in cancer pathway
SLC5A6	20.858412	+ve	Vitamin digestion and absorption pathway
			Protein digestion and absorption pathway,
		+ve	Mineral absorption pathway. Linked to
SLC6A19	6.3885436		Hartnup disorder, Linked to Iminoglycinuria
			Linked to Hyperglycinuria
			Synaptic vesicle cycle pathway, Serotonerg
SLC6A4	6.203496	+ve	synapse pathway. Linked to Obsessive-
			compulsive disorder
			Protein digestion and absorption pathway.
SLC7A7	11.712494	+ve	Linked to lysinuric protein intolerance, Link
			to secondary hyperammonemia
			Tight junction pathway, Parathyroid hormor
		+ve	synthesis secretion and action pathway,
SLC9A3R1			Pathogenic Escherichia coli infection pathwa
	6.900848		Human papillomavirus infection pathway
			Linked to Nephrolithiasis/osteoporosis,
			hypophosphatemic

ABC transporter gene expression response following spironolactone formulation exposure - Gene identification, expression fold change and pathway identification is listed for all genes in the ABC transporter family for which a >2 fold change was seen and pathway information was available.

ABC Transporters				
Transporter	Fold Change	+ve or -ve	KEGG Pathway Identification	
			Insulin secretion pathway, Type II diabetes	
			mellitus pathway. Linked to permanent	
ABCC8	7.0988774	+ve	neonatal diabetes mellitus, linked to transien	
			neonatal diabetes mellitus, Linked to familia	
			hyperinsulinemic hypoglycemia	
ABCF2	8.409261	+ve	Pathogenic Escherichia coli infection pathwa	
ABCB1	8.749464	+ve	ATP-binding cassette, subfamily B	
ADCDI			(MDR/TAP), member 1	
			Linked to hereditary stomatocytosis, linked to	
ABCB6	11.907367	+ve	microphthalmia, Linked to familial	
			pseudohyperkalemia	
ABCB7	7.421333	+ve	Linked to sideroblastic anaemia	
ABCC3	6.1075015		Antifolate resistance pathway, Bile secretion	
ADUUS	0.10/3013	+ve	pathway	
ABCC5	9.429524	+ve	Antifolate resistance pathway	
ABCD4	16.697014	+ve	Peroxisome pathway	

Cyto	15	2 3 4
form		5 6
identi		7 8
a >2 f		9 10 11
		12 13 14
Enzyn		15 16 17 18 19 20 21
CYP2E		22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 27
CYP2J		 37 38 39 40 41 42 43 44 45 46
CYP26		47 48 49
CYP3A		50 51 52 53
CYP11		54 55 56 57
		58 59 60

Cytochrome P450 Enzyme gene expression response following spironolactone formulation exposure - Gene identification, expression fold change and pathway identification is listed for all genes in the Cytochrome P450 Enzyme family for which a >2 fold change was seen and pathway information was available.

		Cytoch	rome P450 Enzymes
		+ve	
Enzyme	Fold Change	or -	KEGG Pathway Identification
		ve	
			Steroid hormone biosynthesis, Arachidonic acid
			metabolism, Linoleic acid metabolism, Metabolis
			of xenobiotics by cytochrome P450, Drug
CYP2E1	5.901765057	+ve	metabolism - cytochrome P450, Drug metabolism
			other enzymes, Metabolic pathways, Non-alcoho
			fatty liver disease (NAFLD), Chemical
			carcinogenesis
			Arachidonic acid metabolism, Linoleic acid
CVD010	5 7 40 10 12 22	+ve	metabolism, Metabolic pathways, Serotonergic
CYP2J2	5.749191333		synapse, Inflammatory mediator regulation of TF
			channels, Ovarian steroidogenesis
CYP26B1	4.599662301	+ve	Retinol metabolism, Metabolic pathways
	0.007/0701/		Steroid hormone biosynthesis, Retinol metabolish
CYP3A7	9.287605916	+ve	Metabolic pathways, Chemical carcinogenesis
	< 00 7 00000	+ve	Steroid hormone biosynthesis, Metabolic
CYP11B2	6.987923906		pathways, Aldosterone synthesis and secretion

	CYP4F3	4.781126103	+ve	Arachidonic acid metabolism, Metabolic pathways
	CYP4V2	6.479034553		Familial flecked retina syndrome, Bietti crystalline
	C1F4V2	0.479034333	+ve	corneoretinal dystrophy
				Arachidonic acid metabolism, Linoleic acid
	CYP2C8	5.342657131	+ve	metabolism, Retinol metabolism, Drug metabolism
	011200	5.542057151	TVC	- cytochrome P450, Metabolic pathways,
				Serotonergic synapse, Chemical carcinogenesis
				Steroid hormone biosynthesis, Caffeine
				metabolism, Tryptophan metabolism, Linoleic acid
				metabolism, Retinol metabolism, Metabolism of
	CYP1A2	6.028728553	+ve	xenobiotics by cytochrome P450, Drug metabolism
				- cytochrome P450, Metabolic pathways,
				Biosynthesis of secondary metabolites, Chemical
				carcinogenesis
	CYP51A1	6.701533528	+ve	Steroid biosynthesis, Metabolic pathways
				Steroid hormone biosynthesis, Tryptophan
	CYP1B1	5.581066368	+ve	metabolism, Metabolism of xenobiotics by
	CTT IDT	5.501000500	1.10	cytochrome P450, Ovarian steroidogenesis,
				Chemical carcinogenesis, MicroRNAs in cancer
				Primary bile acid biosynthesis, Metabolic
	CYP27A1	5.154637741	+ve	pathways, PPAR signalling pathway, Cholesterol
				metabolism
	CYP3A43	6.55835254	+ve	Chemical carcinogenesis
	CYP2R1	7.519928796	+ve	Steroid biosynthesis, Metabolic pathways
-				

			Steroid biosynthesis, Metabolic pathways,
	< 9920700<2		
CYP24A1	6.882079062	+ve	Parathyroid hormone synthesis, secretion and
			action, MicroRNAs in cancer
			Metabolism of xenobiotics by cytochrome P45
CVDDC	9 501 107761		Drug matcheliam autochrome D450 Endoori
CYP2D6	8.501487764	+ve	Drug metabolism - cytochrome P450, Endocri
			resistance, Serotonergic synapse
			Steroid hormone biosynthesis, Metabolic
CYP19A1	6.973407083	+ve	-
			pathways, Ovarian steroidogenesis
CYP4X1	5.080183496	+ve	Serotonergic synapse
CYP2U1	9.482126701	+ve	Arachidonic acid metabolism, Metabolic pathw
			Fatty acid degradation, Arachidonic acid
			metabolism, Retinol metabolism, Metabolic
			metabolishi, Ketihol metabolishi, Wetabolic
CYP4A11	5.901765057	+ve	pathways, PPAR signalling pathway, Vascula
			smooth muscle contraction, Inflammatory medi
			regulation of TRP channels
CYP4F8	6.61709587	+ve	Arachidonic acid metabolism, Metabolic pathw
			Standid hormone biogynthesis Dating matcheli
			Steroid hormone biosynthesis, Retinol metaboli
			Metabolism of xenobiotics by cytochrome P45
CYP3A5	5.635286563	+ve	Drug metabolism - cytochrome P450, Metabo
			pathways, Chemical carcinogenesis
			Arachidonic acid metabolism, Linoleic acid
			nadahalian Dara matahalian arta harma D
CYP2C19	6.42128861	+ve	metabolism, Drug metabolism - cytochrome P4
			Metabolic pathways, Serotonergic synapse,
			Chemical carcinogenesis

CYP11A1	10.81332671	+ve	Arachidonic acid metabolism, Linoleic acid metabolism, Drug metabolism - cytochrome P450, Metabolic pathways, Serotonergic synapse, Chemical carcinogenesis
CYP2F1	14.46130063	+ve	Steroid hormone biosynthesis, Metabolic pathways, Ovarian steroidogenesis, Aldosterone synthesis and secretion, Cortisol synthesis and secretion, Cushing syndrome Steroid hormone biosynthesis, Metabolic
CYP11B1	12.92451789	+ve	pathways, Cortisol synthesis and secretion,
CYP27B1	5.85475736	+ve	Cushing syndrome Steroid biosynthesis, Metabolic pathways, Parathyroid hormone synthesis, secretion and action, Tuberculosis
CYP17A1	7.235173816	+ve	Steroid hormone biosynthesis, Metabolic pathways, Ovarian steroidogenesis, Prolactin signalling pathway, Cortisol synthesis and secretion, Cushing syndrome
CYP2C9	5.755881365	+ve	Arachidonic acid metabolism, Linoleic acid metabolism, Retinol metabolism, Metabolism of xenobiotics by cytochrome P450, Drug metabolism - cytochrome P450, Metabolic pathways, Serotonergic synapse, Chemical carcinogenesis
CYP2S1	12.17852083	+ve	Retinol metabolism, Metabolism of xenobiotics by cytochrome P450, Metabolic pathways

2				
3				Steroid hormone biosynthesis, Tryptophan
5 6				metabolism, Retinol metabolism, Metabolism of
7 8	CYP1A1	11.13978829	+ve	xenobiotics by cytochrome P450, Metabolic
9 10 11				pathways, Ovarian steroidogenesis, Chemical
11 12 13				carcinogenesis
14 15				Arachidonic acid metabolism, Retinol metabolism,
16 17				Metabolism of xenobiotics by cytochrome P450,
18 19 20	CYP2B6	7.538801038	+ve	Drug metabolism - cytochrome P450, Metabolic
20 21 22				pathways
23 24	CYP46A1	6.36113458	+ve	Primary bile acid biosynthesis
25 26 27	CYP39A1	10.68083174	+ve	Primary bile acid biosynthesis
27 28 29				Primary bile acid biosynthesis, Steroid hormone
30 31				biosynthesis, Metabolic pathways, PPAR
32 33	CYP7A1	5.342657131	+ve	signalling pathway, Bile secretion, Cholesterol
34 35 36				metabolism
37 38				Primary bile acid biosynthesis, Steroid hormone
39 40	CYP7B1	9.51232016	+ve	biosynthesis
41 42				Steroid hormone biosynthesis, Metabolic
43 44 45				pathways, Aldosterone synthesis and secretion,
43 46 47	CYP21A2	9.560005811	+ve	Cortisol synthesis and secretion, Cushing
48 49				syndrome
50 51				syncholic
52 53	CYP4F2	9.09313066	+ve	Arachidonic acid metabolism, Metabolic pathways
54 55	CYP26A1	5.933585535	+ve	Retinol metabolism, Metabolic pathways
56 57	CYP2A6	6.028728553	+ve	Caffeine metabolism, Retinol metabolism,
58 59	C 1 1 2 1 10	5.626,20000		Metabolism of xenobiotics by cytochrome P450,
60				

			Drug metabolism - cytochrome P450, Drug
			metabolism - other enzymes, Metabolic pathways,
			Chemical carcinogenesis
			Steroid hormone biosynthesis, Linoleic acid
			metabolism, Retinol metabolism, Metabolism of
	7.074005720		xenobiotics by cytochrome P450, Drug metabolism
CYP3A4	7.074985738	+ve	- cytochrome P450, Drug metabolism - other
			enzymes, Metabolic pathways, Bile secretion,
			Chemical carcinogenesis
	5 742502511	N N	Retinol metabolism, Metabolic pathways,
CYP2C18	5.743592511	+ve	Serotonergic synapse, Chemical carcinogenesis
	5 10 (22 10 (0		Primary bile acid biosynthesis, Metabolic
CYP8B1	5.196221969	+ve	pathways, PPAR signaling pathway
	0.771007000		Metabolism of xenobiotics by cytochrome P450,
CYP2A13	8.771337202	+ve	Chemical carcinogenesis

Carboxylesterase enzyme gene expression response following spironolactone formulation exposure – Gene identification, expression fold change and pathway identification is listed for all genes in the Carboxylesterase enzyme family for which a >2 fold change was seen and pathway information was available.

Carboxylesterase Enzymes					
Enzyme	Fold Change	+ve or -ve	KEGG Pathway Identification		
CES1	9.266629724	+ve	Drug metabolism - other enzymes		
CES2	7.103678207	+ve	Drug metabolism - other enzymes		

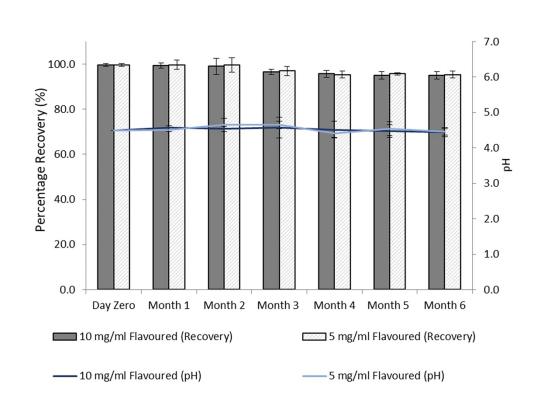


Figure 1 - Spironolactone Stability in Accelerated Conditions - Spironolactone recovery following HPLC for formulations in accelerated storage conditions is illustrated by the vertical bars. The drug content of the formulations remained above 95% of the starting dose indicating that the formulations display adequate stability in accordance with ICH guidelines. Results are generated from triplicate repeats (n=3) and error bars indicate standard deviation (RSD). Spironolactone pH stability for formulations in accelerated storage conditions is represented by the horizontal lines. For the duration of testing the formulations proved stable with little variation in pH seen for all samples. Results are generated from triplicate repeats (n=3) and error bars indicate standard deviation (RSD).

127x95mm (600 x 600 DPI)

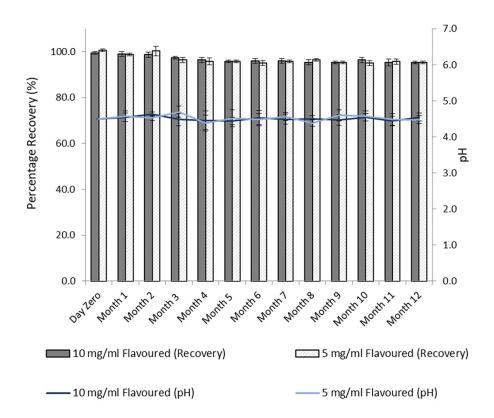
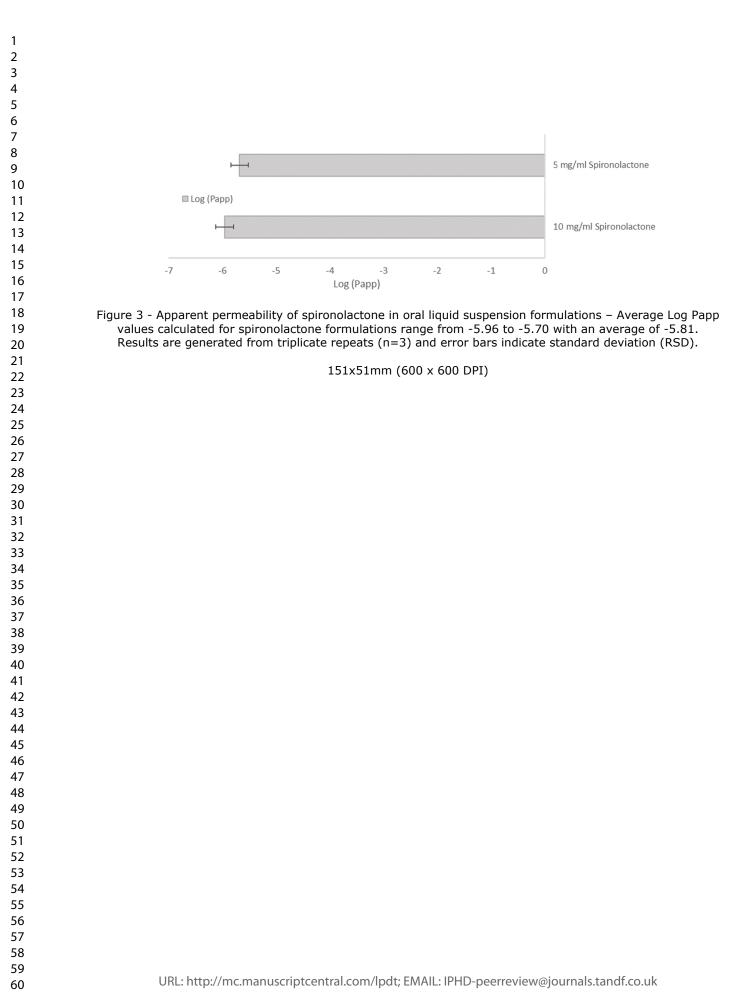
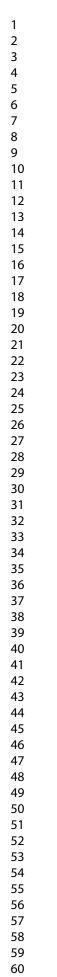




Figure 2 – Spironolactone Stability in Long Term Conditions - Spironolactone recovery following HPLC for formulations in long term storage conditions is illustrated by the vertical bars. The drug content of the formulations remained above 95% of the starting dose indicating that the formulations display adequate stability in accordance with ICH guidelines. Results are generated from triplicate repeats (n=3) and error bars indicate standard deviation (RSD). Spironolactone pH stability for formulations in long term storage conditions is represented by the horizontal lines. For the duration of testing the formulations proved stable with little variation in pH seen for all samples. Results are generated from triplicate repeats (n=3) and error bars indicate standard deviation (RSD).

126x100mm (600 x 600 DPI)

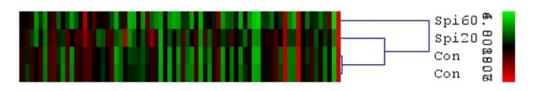
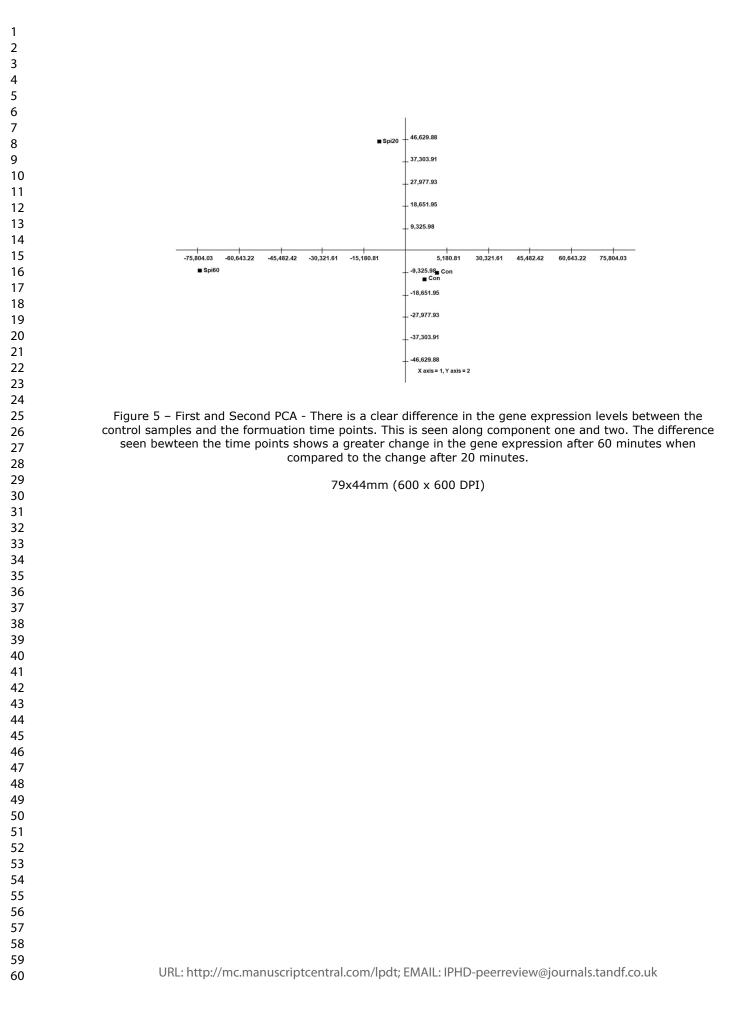
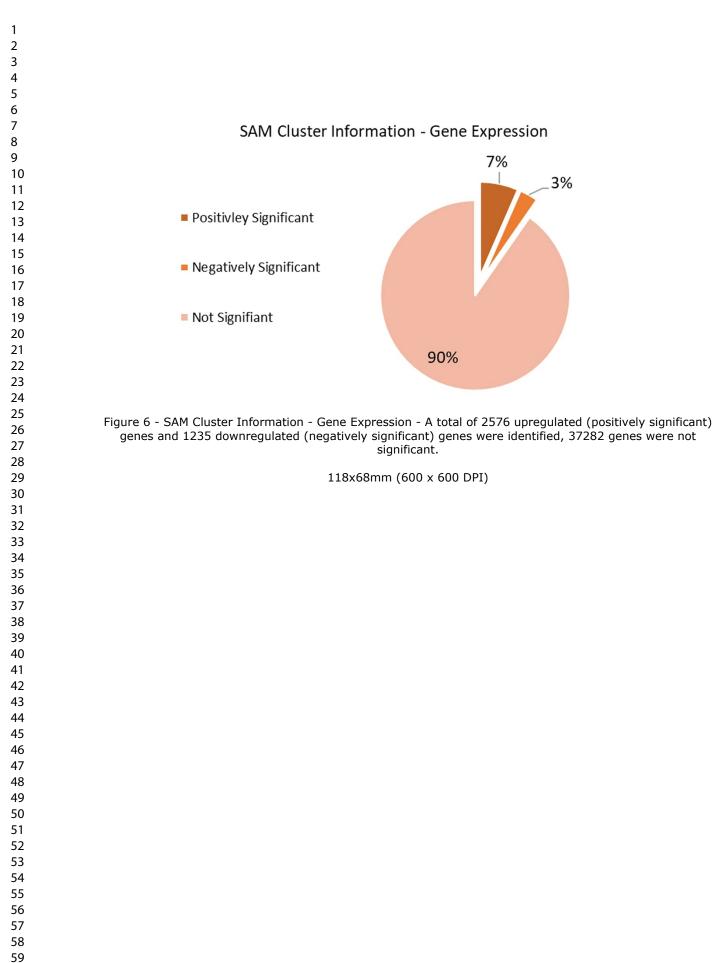




Figure 4 - Hierarchical clustering algorithm (HCA) – Gene expression data for control samples was compared to gene expression data for samples exposed to formulations at each time point using HCA analysis. Clustering analysis groups similar data sets and as shown above, there is significant difference indicated between the control gene expression data and the expression data seen at each time point.

158x23mm (600 x 600 DPI)

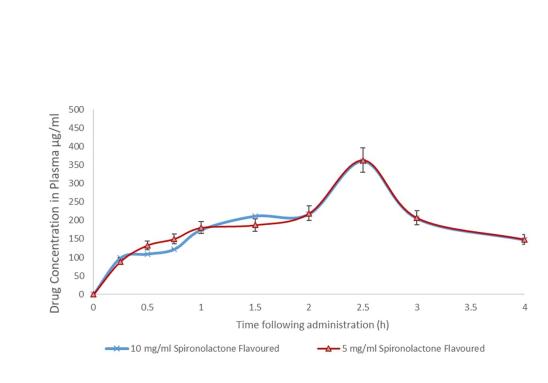


Figure 7 – In vivo plasma responses in rats following spironolactone administration – Plasma concentrations following oral administration. Results are generated from triplicate repeats (n=3) and error bars indicate standard deviation (RSD).

137x74mm (600 x 600 DPI)

URL: http://mc.manuscriptcentral.com/lpdt; EMAIL: IPHD-peerreview@journals.tandf.co.uk

Quality Attribute	Target
Route of Administration	Oral
Dosage form	Acceptable for patients aged from birth to
	<18 years
Dose Range	1-2_mg/kg daily in 1 to 2 divided doses, up
C C	to a maximum of 7_mg/kg daily for
	neonates. 1-3 mg/kg daily in 1 to 2 divided
	doses up to 9 mg/kg for children aged from
	1 month to 11 years and 50-100 mg daily in
	1 to 2 divided doses, up to a maximum of 9
	mg/kg daily in children aged from $12 - 17$
	years. Includes dose titration.
Pharmacokinetics	Immediate Release
Palatability	Neutral/Flavored/Sweetened preferred
Shelf life	Minimum of 12 Months
Container closure system	Multi-dose
Additional Information	All excipients must be acceptable for the
	nadiatria nationt nonulation
	paediatric patient population
	PP-1-2-

Table 1 – Target product profile for spironolactone suspension detailing target components for each quality attribute.

Table 2 – Oral spironolactone suspension composition – Spironolactone formulations were produced at doses of 5_mg/ml and 10_mg/ml.

Spironolactone form	ulation components
Spironolactone	API
Xanatural 180	Viscosity Modifier
Pluronic F127	Surfactant
Sodium Metabisulphate	Antioxidant
Sodium Benzoate	Preservative
Xylitol	Sweetener
Strawberry Flavour	Flavouring agent

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
∠ I 22
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
50

1

Table 3 – Eigenvector decomposition (EVD) - EVD generated 4 principal components for PCA of samples relating to the spironolactone suspension.

Eigen V	alues	
Principal Component 1	3.468	63.16%
Principal Component 2	1.419	25.83%
Principal Component 3	0.579	10.55%
Principal Component 4	0.026	0.47%

First 2 components: 88.989 %

First 3 components: 99.534 %

Table 4 – In vivo results for AUC, C_{MAX} and T_{MAX} – AUC was identified to be 992.80_µg*h/mL and 988.97 μg*h/mL for the 10 mg/ml and 5 mg/ml formulations respectively. C_{max} was shown to range from 363.24_µg/ml to 375.37_µg/ml and T_{MAX} was at 2.5_hours for all formulations.

Formulation	AUC	C _{MAX}	T _{MA}
Formulation	(µg*h/mL)	(µg/ml)	(h)
Spironolactone Suspension (10_mg/ml)	992.80	375.37	2.5
Spironolactone Suspension (5_mg/ml)	988.97	363.24	2.5