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This thesis is concerned with exact solutions of
Einstein's field equations of general relativity, in particular, when
the source of the gravitational field is a perfect fluid with a purely
electric Weyl tensor.

General relativity, cosmology and computer algebra
are discussed briefly. A mathematical introduction to Riemannian
geometry and the tetrad formalism is then given. This is followed
by a review of some previous results and known solutions
concerning purely electric perfect fluids. In addition, some
orthonormal and null tetrad equations of the Ricci and Bianchi
identities are displayed in a form suitable for investigating these
space-times.

Conformally flat perfect fluids are characterised by the
vanishing of the Weyl tensor and form a sub-class of the purely
electric fields in which all solutions are known (Stephani 1967).
The number of Killing vectors in these space-times is investigated
and results presented for the non-expanding space-times. The
existence of stationary fields that may also admit 0, 1 or 3 space-
like Killing vectors is demonstrated.

Shear-free fluids in the class under consideration are
shown to be either non-expanding or irrotational (Collins 1984)
using both orthonormal and null tetrads. A discrepancy between
Collins (1984) and Wolf (1986) is resolved by explicitly solving
the field equations to prove that the only purely electric, shear-
free, geodesic but rotating perfect fluid is the Godel (1949)
solution.

The irrotational fluids with shear are then studied and
solutions due to Szafron (1977) and Allnutt (1982) are
characterised. The metric is simplified in several cases where new
solutions may be found. The geodesic space-times in this class and
all Bianchi type 1 perfect fluid metrics are shown to have a metric
expressible 1n a diagonal form. The position of spherically
symmetric and Bianchi type 1 space-times in relation to the
general case is also illustrated.
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CHAPTER 1

Introduction to General Relativity

§1.1 General Relativity, Cosmology and Exact Solutions

Created in 1915 by Albert Einstein, general relativity
has become an essential part of modern science. It came into being,
historically, as an extension of special relativity which was
prompted by the null results of the experiments to find an ether.
This lack of an ether is paralleled by one of the essential
differences between general relativity and Newtonian gravitation
theory. In the Newtonian case, space and time are an 'absolute'
Euclidean background to the physics of gravity and other processes.
In general relativity the geometry of space-time itself is gravity,
and the need for some absolute background is eliminated. The
four-dimensional nature of space-time 1is also inherited from
special relativity, but space-time is allowed to curve .in response. to
the matter producing a gravitational field. The mathematical
language of non-Euclidean space-time 1is Riemannian geometry
(Eisenhart 1949) and this is described in more detail in chapter
two.

Gravity is the weakest of the four fundamental forces.
However for large masses it dominates over short range nuclear
forces and so gravity is highly important in the formation and
evolution of large scale structure in the universe (MacCallum
1979). Modern cosmology takes as its starting point the big bang-
the primordial superdense state of the universe (see e.g. Narlikar
1986). However, general relativity is only valid at times greater
than the Planck time t= 10-43s. Prior to this, quantum effects are
expected to be important. A full quantum theory of gravity has yet
to be established. Current work aims to unify all four fundamental
forces wusing supersymmetry and some hope 1is placed on
superstring theory to achieve this (Bailin 1989). One of the basic
tenets of modern cosmology is the Copernican or Cosmological
principle. This states that man is in no special place in the universe




implying that all points are essentially equivalent. The relegation of
man to an 'average' part of the universe was only finally confirmed
observationally in the 1950's from 'a revised estimate of the
distance scale. This made it clear that the size of our ‘galaxy was
fairly typical and not significantly larger than every other
observed galaxy as had previously been thought. Despite this
rejection of man's centrality in the universe, anthropocentrism
lives on in efforts to explain the existence of intelligent life in a
universe which appears finely tuned to its needs (Barrow and
Tipler 1987).

Large-scale isotropy is observed in galaxies, quasars
and the microwave background and hence the cosmological
principle implies that the universe is isotropic at every point and
therefore homogeneous. This leads uniquely to the Robertson-
Walker model of the universe as a description of an homogeneous
expanding (or contracting) space-time (MacCallum 1979). This
space-time is an exact solution of Einstein's field equations of
general relativity, in that it satisfies the differential equations
describing the gravitation field of a homogeneous universe in
general relativity theory. A definition of an exact solution is not
trivial. A possible definition might be those solutions that contain
only analytic functions. However, these functions may possibly be
defined only in terms of differential equations originally, so to
what extent have the field equations been solved exactly? In their
book, Kramer et al (1980) define an exact solution as such if it
appears therein. The search for exact solutions is then the attempt
to solve, as far as possible, all differential equations arising from
the field equations in particular cases of the gravitational field.
Whether or not the resulting space-time is actually considered to
be an exact solution is then open to contention.

The Robertson-Walker solution is a very useful and
widely used solution in cosmology. However, in the absence of a
general solution to the field equations other solutions are required
to describe different gravitational fields. For example, the
gravitational field of stellar interiors or outside a massive object
such as a black hole. In fact, the first solution found, the
Schwarzschild solution, can describe the latter of these possibilities
as well as the field surrounding a star or planet. It can therefore be




used to calculate the motion of planets around the Sun and the
behaviour of satellites and clocks near the Earth. Consequently it
has been used as a basis for many of the experimental tests of
general relativity which are, -effectively, purely tests ‘of the
Schwarzschild metric.

§1.2 Experimental Tests of General Relativity

This thesis assumes the validity of general relativity as
a description of the gravitational field. The acceptance of general
relativity depends on its correspondence with experimental tests
compared with alternative gravity theories.

Originally, general relativity had few links with
observation: three 'classical tests' and relevance in cosmology. The
evidence from these tests is surprisingly meagre (Will 1984).
Mercury's perihelion shift is highly dependent on the internal
structure and oblateness of the Sun. The observations of the
deflection of starlight during solar eclipses are of low precision
(Will 1984). In addition, they are tests only of the vacuum field
equations and the Schwarzschild metric in particular. Any theory

. .. . GM
that agrees with general relativity to second order in 2r and obeys

the geodesic hypothesis is equally valid under these tests. The
third classical test, gravitational red-shift, is a test of the Einstein
equivalence principle and not of general relativity specifically.
However, astronomical discoveries such as pulsars, quasars and the
possible detection of black holes and gravitational lenses have
given added relevance to general relativity and has increased
theoretical and experimental investigations. Technological progress
has allowed new tests and more precise versions of the old tests.
Experiments with atomic clocks in space and observations in
astronomy, such as the binary pulsar, have been added to the
repertoire. A framework for analysing tests of gravitation has been
developed along with techniques for comparing the competing
gravitation theories with each other through the results of those
tests. In every case, general relativity has passed satisfactorily
against rival theories (Will 1984). A great deal of work relevant to




finding a new model of gravity is now being concentrated in
unified field theories. e

More recent tests of gravity have been concerned with
the inverse square law, i.e. in the Newtonian limit. Deviations from
this law have been reported including ‘both attractive and repulsive
corrections. The so-called 5th and 6th forces have been postulated
to account for these deviations. However, firm conclusions cannot
yet be drawn as there are conflicting results and in some cases the
results are highly dependent on an uncertain knowledge of the
internal structure of the Earth (Schwarzschild 1988).

§1.3 Computer Algebra

Several computer algebra systems are used in this
thesis and with computer algebra gaining some acceptance it is
worthwhile to consider it briefly here. Computer algebra is the
ability of computers to perform algebraic calculations. This includes
expansion of polynomials, differentiation and integration,
substitutions, power series, infinite precision arithmetic and matrix
calculations amongst others. In scientific applications computers
are commonly seen as "number crunchers”. In fact, they are
equally suited to algebra as they are to other forms of non-numeric
computation such as word processing.

The use of computer algebra has several advantages,
one of the most obvious being the elimination of some typical
human errors such as misplaced signs and factors of two. Of course
this can only occur in output assuming an error-free input.
Computer algebra can be used to eliminate the need to repeat
routine, similar, but lengthy calculations by hand. It can reduce the
time spent on problems with unwieldy algebraic expressions and
make projects, too large to attempt by hand, into practical
propositions.

In general relativity, computer algebra is used in the
first of these modes to calculate tensors from exact solutions with
SHEEP (Frick 1982). SHEEP can calculate useful tensors in general
relativity, such as those required for the field equations, from
various appropriate inputs. The program is distributed freely and
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the source code is documented and user extensible. STENSOR
(Hornfeldt 1985) is based on SHEEP and allows new tensors and
tensor relations to be defined and calculated. It can also perform
indicial tensor manipulation including covariant differentiation and
substitutions. It is not limited to relativity and has additional
features for supergravity calculations and is useful in any field
involving extensive tensor manipulations.

An example of a project made practical by computer
algebra is the equivalence problem (Aman and Karlhede 1980).
This concerns the need to determine whether two exact solutions
that appear in different forms are in fact the same solution
expressed in different coordinate systems. CLASSI (Aman 1983) is
also built on SHEEP and can perform the equivalence calculations
and determine invariant properties of solutions (Karlhede and
MacCallum 1982). Consequently, computer algebra has become
widely used in general relativity and several software systems
written by relativists are available to perform relevant
calculations.

In addition, software packages have been written for
general relativity using more general purpose computer algebra
systems (Czapor and McLenaghan 1986, Van den Bergh 1988).
There are many such general purpose systems available, for
example, REDUCE (Hearn 1983), one of the most widely used, has a
high level programming language as well as the ability to perform
interactive calculations. With increases in power and especially
memory, computer algebra systems are also becoming available for
microcomputers. A recent addition to the field is Mathematica
(Wayner 1989) which is available for Macintosh computers. It has
powerful graphics facilities and this may overcome the main
drawback of many of the widely used mainframe systems which
have limited graphics and one dimensional input of expressions.

11




CHAPTER 2

Mathematical Introduction

§2.1 The Field Equations of General Relativity

Einstein's field equations of general relativity are
expressed using the techniques and assumptions of Riemannian
geometry (see e.g. Eisenhart 1949). At each point xI in 4-
dimensional space-time there is a symmetric tensor 8ij of rank 4
and signature 2 that determines the space-time geometry at that
point. This is known as the metric tensor. The metric or line-
element is given by

ds?2 = gij dx! dxJ (2.1.1)

where here and henceforward the Einstein summation convention
is assumed over the range 1 to 4 for lower case Latin indices
and 1 to 3 for Greek indices. Einstein suggested that gj; should
depend on the nature and distribution of everything in the space-
time that can produce a gravitational field. It is therefore required
that g;; should be related to some tensor Tj;, known as the energy-
momentum tensor, that describes the matter at that point. In
order to determine g;; it should be possible to solve a set of
equations for gj;, once Tj; has been specified.

To derive these gravitational field equations the

following assumptions are made in the case of general relativity
(see e.g. Stephani 1982b):

1) The field equations should be tensor equations so
that they hold in all coordinate systems.

2) Like many other physical laws they should be
second order partial differential equations in the
functions to be determined (gij) and linear in the

highest derivatives.
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3) In some appropriate limit they should correspond
with Newtonian gravitational theory:

V2¢ = 4n Gp , (2.1.2)

where ¢ is the gravitational potential, G is Newton's
constant of gravitation and p the (Newtonian) mass
density.

4) The source of the gravitational field should be the
energy-momentum tensor.

5) If the space-time is flat, the energy-momentum
tensor should vanish.

We require a tensor G;; and using condition (4) write

ij

G =k T

J ij o (2.1.3)

where k is a constant that may be determined from condition (3)
once the form of Gj; has been established. From considerations of

angular momentum we find that the tensors are symmetric

T[ij] =0 > G[ij] =0. (2.1.4)

From energy-momentum conservation we obtain
Tij;j =0 = Gij;j =0. (2.1.5)

It can be shown that there is, in fact, only one possible form for

Gjj  which satisfies condition (2). This is defined by

G; = R R + Agij , (2.1.6)

ij ij - Egij
where A is an arbitrary constant known as the cosmological
constant and Rj; and R are the Ricci tensor and Ricci scalar defined

by
1

1 (2.1.7)

13




and Rjj; 1is the Riemann curvature tensor given by:

. i 1 i m i m 3
Finally, we can see that the tensor (2.1.6) is second order in
derivatives of the metric tensor from the definitions of the

Christoffel symbols
fo- Lo 1
i = 22! (8t B - Bjk1) - (2.1.9)

The following symmetries of the Riemann tensor may be deduced
from (2.1.8) and (2.1.9)

Ry = - Rjiki = - Rjik > Rjjui = Rgj (2.1.10)

and furthermore

1
Rigiki) =7 ( Rijk1 + Rikgj + Rygjx ) = 0. (2.1.11)

The Riemann tensor is derived in such a way that if it
vanishes, parallel transport is independent of path and the space-
time is said to be flat. In this case the Ricci tensor and Ricci scalar
clearly vanish, but Tij 1s non-zero, unless A = 0, which violates
requirement (5). The cosmological constant is sometimes assumed
to be non-zero although there is no accurate observational
evidence for any particular value. For example, the Einstein static
universe had a non-zero A, introduced before the Hubble
expansion of the universe was known. A non-zero A has been
useful in cosmology more recently, for example, in inflation theory
(Guth 1981).

It is worth noting that any g;; is a solution to the field
equations for some Tjj, since given g;;, Tjj can be calculated.

However, in general, this energy-momentum tensor will not be
physically reasonable.

14




In attempting to find more relevant solutions to
Einstein's field equations, (2.1.3) with Gij given by (2.1.6), Tj; is

assumed to take on a particular form depending on the nature of
the matter. For example, in a vacuum Tij vanishes. For tractability,

the anisotropic pressure and heat flux of a general fluid
approximation are assumed to be negligible and the energy-
momentum tensor is then that of a perfect fluid (Weinberg 1972).
This is given by

Tij = K0y Uj + Phij (2.1.12)

where u; is tangential to the world-lines determined by the

‘average velocity' of the matter and is normalised so that
ujui = -1 . (2.1.13)

The quantities | and p are the energy density and isotropic

pressure of the fluid as defined by an observer co-moving along
u,. A 3+1 splitting of space-time is determined by u; and the
tensor h;; defined by

hijj = gj + uj U (2.1.14)
which is used to project tensors into the rest space of an observer

moving with the fluid 4-velocity u; .

§2.2 Perfect Fluids

From now on this thesis is concerned with the study of
exact solutions of Einstein's field equations of general relativity. In
particular, the motion of matter under self-gravitation and
internal pressure forces is considered so that such solutions may
be considered as models of the gravitational field in stellar
interiors and as cosmological models. Henceforward the
simplifying assumptions mentioned above are assumed so we are
dealing with the energy-momentum tensor of a perfect fluid. The
field equations (2.1.6) imply that
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R; = %(u + 3p) Ui Uy + %(u - p) hy; (2.2.1)

where the cosmological constant has been absorbed into the
energy-momentum tensor by redefining | and p as

L= MWUflyid + A, P = Pfluid - A . (2.2.2)

The covariant derivative of the 4-velocity may be split up relative
to uj so that

1 .
Ujj = 0 + Ojj + 3—9 hij - Uiy, (2.2.3)
where  ®jj, 045, 6 and ili are respectively the rotation, shear,
expansion and acceleration of the flow. The labels given to each of
these ‘'kinematical' quantities are justified from consideration of
the relative motion of neighbouring particles in the fluid over

some small period of time (see e.g. Ellis 1971). The splitting arises
naturally by decomposing the components of the derivative of u;

orthogonal to u; into its antisymmetric part, symmetric trace-free

part and the trace. The quantities have the following symmetries:

Cij T O(ij) > @ij T Ofij]

. 2.2.4
o‘il = 0 ( )

with the definitions
0 = ui;i , {li = ui;jui ,
6 :

Cij = Uaj -3 hij - uGw)
(Dij = U[j;j] - {l[i ujj . (2.2.5)

Using (2.1.13) it is easily shown that the quantities are orthogonal
to the 4-velocity, i.e.

yul =wul = ojul =0 . (2.2.6)

16




In addition, we define the shear and rotation scalars as

02 = 5 Gij Gij s (1)2 = (l)ij (l)ij s (227)

where in each case the vanishing of either the scalar or the tensor
is sufficient to ensure the vanishing of the other. Finally, the
rotation vector is defined as

1 .
®; = 5 Mjjg W ook, (2.2.8)

where mjjx; is the completely anti-symmetric Levi-Cevita
permutation tensor.

A natural classification scheme for perfect fluids is
based on the vanishing of certain of the kinematic quantities.
Except in a very few special cases, further restrictions on the
space-time are necessary in order to solve the field equations.

At some stage in solving the field equations a
coordinate system is introduced. Commonly, this takes the form of
a co-moving coordinate system (i.e. the flow lines are given by
x® = constant) in which

ud = - 8y (2.2.9)

It is always possible to choose coordinates in this way (Eisenhart
1949). In general, u, has more than one non-zero component. The

line-element then takes the form (Triimper 1962)

ds2 = e2M Yop dx* dxB - V2 (dt + ag de‘)2
(2.2.10)

where M, V, YGB and a, are, in general, functions of all four

coordinates and det .’YaB} = 1. The kinematic quantities can be

calculated in this coordinate system to obtain the following non-
Zero components:

17




@gp = -V (a[oc,B] + afq aB])

GOLB = (ZV)'I 62M ’.YOLB
o _ 3M
Y
: .V,
i = V-1 (Vay) +-;,9‘— (2.2.11)

where a dot denotes differentiation with respect to time.
In general, if the vorticity vanishes, Frobenius'
theorem shows that

® =0 & uzupe =0
< locally 3 functions f, g:

u, = fg, (2.2.12)

Thus there exist, locally, 3-surfaces in space-time orthogonal to
the velocity vector field. Having chosen comoving coordinates as
in (2.2.9) the allowable coordinate freedom still allows us to

choose t = g so that u,= Vﬁz from the normalisation (2.1.13). In

this case ay, = 0 in (2.2.10). If, in addition, the acceleration

vanishes the fluid flow is said to be geodesic and it is possible to
set V=1 by rescaling the t coordinate. If the rotation is non-
vanishing but ¢ =6 =0 then for an observer co-moving with u;
the distances to neighbouring matter are constant and we have a
rigid rotation.

§2.3 The Ricci and Bianchi Identities

In this section the Ricci and Bianchi identities are
written in a way that allows any restrictions on the kinematics of

18




the fluid to be imposed directly. The resulting equations are
useful in deriving theorems on exact solutions and in finding
simplifications that may allow the field equations to be solved.
The Ricci identity for the fluid 4-velocity is

Uik - Uik = u Rl . (2.3.1)

Clearly the left hand side of this may be written in terms of the
kinematic quantities using (2.2.3).

The Riemann tensor may be written using the Weyl
tensor, defined by

[i
N

k]

R
— Rl]

Cijkl = Rijkl + 3

Sy Oy -2 8 (2.3.2)

The Weyl tensor has the same symmetry properties as the
Riemann tensor and in addition satisfies Clj;; = 0. In what follows

the Weyl tensor will be replaced by two symmetric trace-free
tensors, E;; and Hjj, the electric and magnetic parts of the Weyl
tensor relative to u; , so called by analogy with electromagnetism.

These are defined by

Ejj = Cigj uk ul (2.3.3)
1 Kyl
Hij = 5 Migmn CMjpudut (2.3.4)

The Weyl tensor is completely determined by E;;

ij and Hij and

can be expressed as

Cijkt = (Mijmn Nkigp *+ &ijmn &klgp) u™ ud ENP

- (Mijmn &kigp * 8ijmn Mklgp) U ud HNP (2.3.5)

where

19




8ijkl = 8ik &l - 8il 8k - | (2.3.6)

We now make use of the field equations (2.2.1) and
the splitting of the covariant derivative of the 4-velocity (2.2.3) to
write the Ricci identities in terms of the kinematical quantities. By
examining appropriate symmetries and contractions with u, the
Ricci identities (2.3.1) can be put in the following form (Ellis
1971):

-1 . 1

0 +-3—92 w4+ 2(02 - m2)+5(u +3p) =0, (2.3.7)
hikhil®y - hikh;lu 26310k +2 00 = 0 2.3.8
i N0k~ hifhju ey + 20507 +370w; =0, (2.3.8)

. . . . | 2
hikhjl(')'k]- hikhjlu (k:1) ~ llillj + ;W4 + OiIGI' +"‘90ij +

J J 3
1
7 hij(uky + 2(02 - 62) + Ejj =0, (2.3.9)
(D[ij;k] - ﬁ[i;kuj] - l.l[l(DJk] =0, (2.3.10)
‘ 2 . e
hy) ((Djk;k - Ojk;k + ‘é"G,j) + (W +0)uj=0, (2.3.11)

2 U(l (DJ) + hikhjl((i)(km;n + O'(km;n ) n l)pmnup = Hij ,

(2.3.12)

The Riemann tensor satisfies the Bianchi identities

. . 1 S
R [kl;m] = 0 CUkl;l = Rk[i;j] - '6‘" gk[l Ril (2.3.13)

ij

which imply the contracted Bianchi identities

20




1 | o
RU;j =5 Rii (2.3.14)

and hence Gl;; = 0 leading to the energy-momentum conservation

equations for a perfect fluid:

0+ (u + p) 0 =0 , (2.3.15)

h&; py + (u + p) u =0 . (2.3.16)

Applying the 3+1 splitting to the Bianchi identities
(2.3.7) we obtain the conservation equations above and the 16
equations:-

. , . 1 :
hiJEjk;lhkl + 3Hij(i)J + nijklmokalm = "?:'H’jhij (2.3.17)

hinjk;Ihkl +T]ijk1uj0'kmElm - 3Eij(’)j = (H + p) Wj
(2.3.18)
hikhjlékl + h“(inj)klmuanl;m + qu - 3E(ik0j)k + hijEkIle _
1
Ekgopk + 2HiMjkmuku™ = — (1L + p)Gj;

(2.3.19)

hikhlekl - hn(inj)k]mukEnl;m + Hije - 3H(ik6j)k + hinkIO'kl -
Hk(i )k —2E(i1nj)k1mukum =0 .
(2.3.20)

§2.4 The Tetrad Formalism

At each point in space-time we may set up a tetrad, i.e
a basis of four independent vectors, with contravariant

21




components e, where A=1 .. 4 identifies individual vectors of

the tetrad and is known as a tetrad index (see e.g. Ellis and
MacCallum 1969, Israel 1970). Associated with these vectors are
the covariant vectors defined by

J
CAi = 8ij €5 - (2.4.1)

.. : . A .
In addition, we define the dual basis vectors e; as the matrix

] i
inverse of ey SO that

(2.4.2)
and

4
E 1 A 1 '

A=1

where now and henceforward the summation convention is not
applied over repeated tetrad indices as the range of summation
varies according to context. Note that

i i ]
A ©Bi = €5 ©p &j (2.4.4)
and writing

i
EAR = €A ©Bi (2.4.5)

gives g p as the tetrad components of the metric tensor. We may

define the inverse of g, p

22




4 _
A
z gAC g = 8 (2.4.6)

Given a tensor we can project it into the tetrad frame to obtain its
tetrad components, for example

apn = a4 ey (2.4.7)

with an obvious generalisation to higher rank tensors where each
free tensor index is contracted with a tetrad vector. Clearly it is
possible to change freely from tensor to tetrad components and
vice-versa from (2.4.2) and (2.4.7). Also, it should be noted that
tetrad indices are raised and lowered with gAB and gA B

respectively in an analogous way to tensor indices with the metric
tensor  gjj.

We can also define a tetrad component of a covariant
derivative as follows

1
b-A = 0;i €p

for some arbitrary scalar ¢, this can be extended to higher order,
for example

i
PaA.B = PA;i e (2.4.8)

where Pp  are the tetrad components of some tensor Pj. Writing

Pp =P eJA on the right hand side of (2.4.8) and expanding gives

i
PAB = Piii €4 5 - O, Yeap PC (2.4.9)
C
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where
]
YABC = CAiij °g €C (2.4.10)

are known as the Ricci rotation coefficients. In this thesis the
tetrad will always be chosen so that gap is constant. The Ricci
rotation coefficients are then antisymmetric in the first two
indices:

YABC = _YBAC (2.4.11)
which can be verified by considering
i
EAB:C = (eAi CB};C =0 . (2.4.12)

Hence there are 24 independent rotation coefficients. We now
have a prescription for rewriting tensor equations 1in terms of
tetrad components. The covariant derivatives can be replaced by
the tetrad derivatives and terms involving the Ricci rotation
coefficients and the tetrad components. This is accomplished,
along with obtaining tetrad components of tensors, by contracting
all free tensor indices with a tetrad basis vector. This procedure
can be applied immediately to the field equations, Ricci identities
(2.3.1) and Bianchi identities (2.3.7). However, it will prove more
useful to take tetrad components of the equations derived in §2.3
in terms of the kinematic quantities. It is worth noting that the
tetrad approach decomposes the second order equations into first
order equations of first order objects, the rotation coefficients.

The remaining element in the use of tetrads in general
relativity is the choice of tetrad. For perfect fluids an orthonormal
tetrad of basis vectors is usually chosen so that

gap = diag (1,1, 1,-1) . (2.4.13)
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The tetrad is given by three space-like vectors ey , ey
and e, and a timelike vector e, usually chosen to be parallel to
the 4-velocity.

Finally the commutation relations of the tetrad vectors
are given by

[ey . egl= E(YBCA -YacB) € (2.4.14)

and these are calculated explicitly where needed 1in future
chapters.

An alternative to an orthonormal tetrad is a complex
null tetrad composed of two real null vectors k, and l; and two

complex conjugate null vectors my, and my. The vectors are

assumed to satisfy
ko112 = -1, m@m, = 1,

where all other contractions vanish. This i1s often called the
Newman-Penrose (1962) null tetrad and an example can be
related to an orthonormal tetrad as follows:

kiz%(eit+ein,
1i ::/l—:(eit- eizj ,
_ L + ie
e[
“r'n‘——l— (2.4.15)
_([ J 4.

The tetrad metric in this case is given by
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01 0 0
10 0 0

gap = 8P 00 0 -1
00

(2.4.16)

Since the basis is complex it is only necessary to write
down half the number of equations of the orthonormal case. To
ease in the legibility of these tetrad equations, the Ricci rotation
coefficients are replaced by twelve complex quantities known as
the Newman-Penrose spin coefficients:

1
Tarr=x Y314=p 5(7211+7341)=8,

Il

1

Yaiz= o Yaz=p 5 (Y212 + Y342) =7,
1

Y24a=21 M12=7 > (Y214 + V344) =00,

Yoa2=v Yoa1=m %—(Y213+ V343) =B .

(2.4.17)

By interchanging the indices 3 and 4 we obtain the
complex conjugates of the respective quantities. The tetrad

derivatives along 1, n, m and m are denoted by the operators D,

A, & and § respectively. The independent tetrad components of

the Weyl tensor are written as complex scalars (Kramer et al
1980) given by

Y0 = Cijg Kl mikk m!
w1 = Cljkl kl U kk ml >

1 - —
W = 5 Cyjig kK (kK 11 - mk ml) |

Y3 = Cijkl 1i ki 1k m! ,
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VY4 = Cjjiq 1! mJ 1k ml (2.4.18)

and the Ricci tensor is represented by complex scalars using
tetrad components of the trace-free Ricci tensor S;; defined by

Rgj;

Sij =Ry -

and by R itself. In this way we may produce spin coefficient
versions of relevant tensor equations (Newman and Penrose
(1962)). If the time-like tetrad vector of (2.4.15) is aligned with
the fluid 4-velocity the kinematic quantities can be expressed as
(Allnutt 1982):

. 1 — - 1 — _
uj ::/-—2—(5+e+y+y)vi+7§—(n - K+ -T )mj

1 _ _ _
+‘\/_—2‘(1E-K+D~T)mi , (2.4.19)

ojj = Al (Vivj - m(iFn_j)) + A2v(mj)

+X2v(imj) + A3mimj + A3—ITTIHJ , (2.4.20)
where
1
Vi=$(ki'1i) ,
~N2 _ _ _
Al="3"(+p-p-p+20+e)-2v+v)) , (2.4.21)
-1 . _
A2:7(1+n+2(a+[3)-1<—0) , (2.4.22)
1
A3 = ﬁ( G-A) , (2.4.23)
and
(l)ij :Blv[imj] +§_1v[iﬁ1—j] +B2m[laj] , (2424)
where
1 _ - -
Bi= 5‘(1+n-2(a+[3)-1<-1)) , (2.4.25)
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B2 =P -pru-i) (2.4.26)

and finally

1 _ _ _ _
O=——(e+e-vy—v-p-p+u+ . 2.4.27
\E( Y—Y-p-ptU+i) ( )

Although the relevant equations can appear very
different in the null and orthonormal tetrad formalisms the
approaches are essentially equivalent. Each method is suited to
particular problems in relativity depending on the nature of any
vector fields under consideration. For example, orthonormal
tetrads are commonly used to study perfect fluids (Ellis 1967) and
null tetrads for gravitational radiation and electromagnetism
(Newman and Penrose 1962). Null congruences are generally less
relevant to perfect fluid space-times where the energy-
momentum tensor defines a preferred time-like vector field. Null
vectors are relevant to the Petrov classification which can be
considered in terms of principal null directions (p.n.d's), nj
(Penrose 1960) defined by

l'l[m Cl]ﬂ([l no] nj nk =0 . (2428)

A fourth order equation can be derived for nj and the

multiplicities of the roots of this equation define the Petrov type
(Kramer et al 1980).

Type Multiplicities

I (1,1,1,1)
D (2,2)

11 2,1,1)
11 (3,1)

N (4)

0 0
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The Petrov types D, II, III, N and O have a repeated p.n.d and are

known as algebraically special. If the Newman-Penrose basis
vector ki is chosen to coincide with nj then it can be shown that

(Penrose 1960) W = 0. Similarly, if 1; is identified with a p.n.d

then it can be shown that ¥4 = 0. This can be extended so that
one can make use of the above characterisation of Petrov types to
choose the tetrad vectors such that in each case certain of the
Weyl scalars vanish. It is therefore easy to impose a specific
Petrov type on spin coefficient equations. In the remainder of this
thesis, fields with a purely electric Weyl tensor are considered
and their possible Petrov types are given in the next chapter.
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CHAPTER 3

Space-times with a Purely Electric Wevyl Tensor

§3.1 Introduction

In the previous two chapters the mathematical and
physical foundations of general relativity have been outlined. In
addition, some background in computer algebra and exact
solutions has been given as an introduction to the work presented
here. The rest of this thesis is concerned with finding new, and
classifying known, exact solutions. In particular, I will examine a
class of perfect fluids in general relativity characterised by the
vanishing of the magnetic part of the Weyl tensor- purely electric
fields. Although this is a severe restriction on the Weyl tensor, it
does not appear to be too restrictive on possible solutions as many
known solutions have this property. Spherically symmetric, LRS,
(Stewart and Ellis 1968) and static (Barnes 1972) perfect fluid
metrics for example, necessarily have H;; = 0. Space-times with
Ojj = 0;j =0 are also purely electric as can be seen from (2.3.12).
Only conformally flat fields also have a vanishing electric part of
the Weyl tensor, from (2.3.3). Purely electric fields therefore
contain, for example, the Robertson-Walker cosmologies.

Conformally flat perfect fluids are also shear-free and irrotational.
Putting Hj; = E;; =0 in (2.3.18) and (2.3.19) it follows that

(p’+p)(’0a:O >
(L +Pp)oap =0 .

Thus when p + p # O the shear and vorticity vanish. If ¢ + p =0
the space is an Einstein space and being conformally flat has
constant curvature (Eisenhart 1949). This result will be useful to
rule out such classes as they are well-known De Sitter space-times
or Minkowski flat space-time.
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Gij =

Several recently discovered perfect fluid solutions, found by a

The Godel solution (Godel 1949) is also purely electric

(Barnes 1984). This is a rotating shear-free metric ‘and shows that
Hij =0 = ;;=0 is not valid as claimed by Glass (1975).

variety of methods, are also purely electric, for example:

1) The Szekeres (1975) and Szafron (1977) solutions
derived by assuming a particular metric form with
only two metric functions to be determined.

2) The Allnutt (1982) type D solutions found by
imposing ad hoc restrictions on the Newman-Penrose
coefficients and by assuming the 4-velocity and
acceleration to be co-planar with the repeated
principal null directions of the Weyl tensor.

3) The Stephani (1982a) rotating, expanding and
shearing dust metric found by assuming a particularly
simple metric form with only one metric function.

4) The Wolf (1986) rotating, expanding and shearing
perfect fluid solution. This was found by assuming the
metric to admit a family of flat three-dimensional
slices and a tensor of exterior curvature covariantly
constant within the slices.

5) The Senovilla (1986) stationary axisymmetric
solution found by assuming the fluid 4-velocity to lie
in the plane spanned by the repeated p.n.d's of the
Weyl tensor in addition to the existence of a Killing
vector parallel to the fluid 4-velocity.

In all of the above cases the resulting solutions had a

purely electric Weyl tensor despite the fact that no restriction was
placed on the Weyl tensor initially (apart from cases (2) and (5)

where Petrov type D was assumed).

In this chapter the possible Petrov types of purely

electric fields will be derived. A suitable mathematical approach
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to purely electric perfect fluid fields using both the Newman-
Penrose formalism and the orthonormal tetrad formalism is then
given. The fields are sub-divided by placing restrictions on the
fluid 4-velocity. Space-times with either vanishing shear or
vanishing rotation are examined as those where both quantities
vanish have been analysed in a previous work (Barnes 1973). An
extension to a class of rotating, shearing metrics is suggested as
few such solutions are known. Ozsvath (1965) has found some
homogeneous examples without expansion. The known rotating
and expanding perfect fluids are necessarily shearing and hence
are fairly general solutions of the Einstein field equations for a
perfect fluid. A dust solution in this class is due to Stephani
(1982) but as far as the author is aware, only one solution is
known with shear, rotation, expansion and acceleration (Wolf
1986). These two solutions are both type D with a purely electric
Weyl tensor. Furthermore they do not have high symmetry and
may be relevant as inhomogeneous cosmologies. Homogeneous
solutions with rotation, expansion and shear have been found by
Demianski and Grishchuk (1972) and Rosquist (1983).

§3.2 Petrov_Types

The vanishing of the magnetic part of the Weyl tensor
simplifies the analysis of the Petrov type of the space-time and
rules out three of the possible types. We follow the approach
based on the symmetric tensor Qjj defined by (Kramer et al

1980):-

e B e = 7 kgl
QU—EU+1HU-—Cijk1u u (3.2.1)

where C: is the self-dual Weyl tensor

bcd

e Lo mn
Cijkl = Cikjl Tl NikmnC il .
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The Petrov classification is given by the normal form of Qj; and the
nature of its eigenvalues. This technique is consistent with the

principal null directions approach outlined in chapter 2. The
normal form of Qij for Petrov types 1, D and O is diagonal. For

Petrov types 1, D and O an orthonormal tetrad may be chosen so
that

Eij + iHij = 1 ell ejl + Kzelzejz + 7L36136J3 (3.2.2)

where for type 1 space-times the Aa 's are distinct, for type D two
of the Ao are equal and for type O all the Ao are zero. The tetrad

vectors are clearly eigenvectors. We set
}LAZOLA-i-iBA (323)

so that oo and B are the eigenvalues of E;; and Hjj respectively. If
the Weyl tensor is purely electric, then from the principal axes
theorem for a real symmetric tensor, Qj; may be diagonalised by a
tetrad rotation that keeps uj fixed. Similarly Qj; can be
diagonalised in the purely magnetic case or in fact whenever
there exist scalars a and b such that aE=bH and a and b are not
both zero. Consequently all such space-times, and all space-times
to be considered in this thesis, are of Petrov types 1, D or 0.

§3.3 Purely Electric Space-times in the Newman-Penrose

Formalism

Carminati and Wainwright (1985) have studied purely
electric type D solutions using the Newman-Penrose formalism. In
order to simplify the Bianchi identities they imposed the
additional restriction that the 4-velocity lies in the 2-space
defined by the principal null directions of the Weyl tensor.
However it can be shown that all such solutions satisfy this
restriction (Barnes 1987). In fact, it will be shown below that u; is
necessarily aligned with a null tetrad determined by the Weyl
curvature even in the type 1 case.
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Equation (3.58) of Kramer et al (1980) is

1 +
Ecabcd =VoUabUcd + V1 (UabWed + WabUcd) + V2(VabUced +

UabVed + WabWed) + W3(VabWed + WabVed) + Y4VabVed

(3.3.1)
where the bivectors Uab , Vab and Wap are defined by
Uab = -lamb + lbma ,
Vab = kamp - kbmg ,
Wab =mgmp - mpm g - kalp + kplg , (3.3.2)

and V(o ... ¥4 are the Newman-Penrose components of the Weyl

tensor defined with respect to the complex null tetrad (2.4.15)
with e; identified with the fluid 4-velocity. A straightforward

calculation then shows that

Eab =

Re(V9) (e?el + eg g - 263 3 ) +o Re Vo + Vg) (eze —el 1 ) -

Im (Wo-Vyg) egaeg) + Re(V; = Vs3) egaeg) + Im(V; + V3) e;d g)
(3.3.3)

and

Hab =

Im(‘l’z)(e?el +62 2-——263 3)+ Im (W0+W4)(62 2—61 1) +

Re(Wp - V4) egaeg) + Im(V1 - V¥3) egaeg) — Re(V1 + V3) egaelé))

(3.3.4)
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The conditions for H,, = 0 are clearly

Vo=V  VYo=W, Vi=-14 (3.3.5)

whereas the conditions for {ei,ua] A=1,23 to be a Weyl principal

tetrad are
V1i=V3=0, Yp=Vg . (3.3.6)

For the terads we are considering both (3.3.5) and (3.3.6) hold and

hence all the W's are real, in fact we have
1 1
Vi=¥3=0, Vo=VYa=7(2-01), y2=-503.

(3.3.7)

For type D fields we have, by renumbering space-like tetrad
indices if necessary, a1 = o2. Hence Y = ¥4 =0 and 12 and k2
are principal null vectors. Consequently u, lies in the 2-space
defined by the repeated principal null directions of the Weyl
tensor so that

For type I fields k2 and 12 are not principal null vectors as
Vo=W¥420. However ua is co-planar with the null vectors k&
and 12 of the canonical null tetrad used by Aman and Karlhede
(1982) in their computer-aided classification of space-time
metrics. We can also see that this canonical null tetrad is simply
the null tetrad associated with the orthonormal tetrad of Weyl
principal vectors.

In addition to the alignment condition (3.3.8) and the
Weyl tensor being purely electric and of Petrov type D, the main
restrictions imposed by Carminati and Wainwright (1985) were
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1) The existence of an equation of state p =p(lL) such
that @ + p>0 and Idp/dul < 1.
2) The conditions C,pcq = 0 and 6 # 0 can be satisfied

as a special case. This requires there to be a non-static
Robertson-Walker space-time contained within the
class of solutions i.e. the space-times generalise the
Robertson-Walker models in some way and may be
relevant as cosmological models.

Using (3.3.8) it can be shown that (Wainwright 1977a):

Po1=P12=%02=0,
1
P00 =P22=2011=7(n+p), (3.3.9)

for the Newman-Penrose components of the trace-free part of the
Ricci tensor. The Bianchi identities subject to (3.3.7) and (3.3.8)
are given in Wainwright (1977a) and can be simplified by taking
suitable linear combinations. The Bianchi identities of Carminati
and Wainwright (1985) are then obtained by further assuming
Hi; =0 and p=p(u). They are:

c+i=0

o(3¥2 +4911)=0

P—p=H-H

(p-pX3V2+4911)=0
3X+Y)W2-4XP11=0

3Y V2 -8+ PB)P11 =0

45 P11 = 3(x -0)V2 + 272911

28 Vo =3t 3T+x-D)V)

8( P11 —3A) =2Z911
(D-A)YP11-3A)=-4(e+e+y+7)P11

2D = A} 3V —4P11 ) =9 +p+p+pu)¥V2 +8(+e+v+7)?P11
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3D+ AN P11 +A) =4 (p+p-—p-pu—e—e+y+y)P11

3D+MV2=9(p-wWV¥2 +2(u+p-p-p-2e—2e+2y+2Zy)P11
(3.3.10)

where

X=T+TW-XK -0V
Y=T+T+K+7P

Z=T-T+K-0

Using these equations, and the spin-coefficient form of the Ricci
identities and commutation relations (2.4.14) the only possible

equations of state were found to be p'(u):l and p'(u):O if the

solutions were not to admit at least three Killing vectors
(Carminati and Wainwright 1985). The non LRS solutions fall into
three classes depending on whether the scalar

2 2

vanishes or not. The three classes generalise the LRS solutions by
introducing anisotropies in the 2-space orthogonal to the repeated
p.n.d's of the Weyl tensor. Defining the following scalars

J1 =1,am? | J2 =o,pm3mbP | J3 = oamd | (3.3.11)
the non-vanishing of any of Ji1, J2, J3 is sufficient to ensure that
the space-time is not LRS. The following classification of the non
LRS solutions is then possible as in classes I and II J3=0 and in

classes I and III, J2=0.

I. K#0,= ® =0 and J120, J2=J3=0,
(@) p(L)=0 (b) static, 3 Killing vectors

I: 3¥2 +4011 =0, p'(L)=1,
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(a) J1#0, J2#0, J3=0; (b) J1=0, J2=13=0; (c) J1=0, J2=0, J3=0;

I: 3Y2 - 4911 =0, p'(n)=0,
(a) J1#0, J2=0, J3=0; (b) J1=0, J2=J3=0; (c) J1=0, J2=0, J3=0:;

The Newman-Penrose formalism has also been widely
used in the exact solution of the vacuum field equations. The
Goldberg-Sachs (1962) theorem states that for type D vacuum
solutions the repeated p.n.d's of the Weyl tensor are tangential to
geodesic shear-free null congruences. Consequently these space-
times are amenable to study using this method (Kinnersley 1969).

In the case of purely electric fields, the orthonormal
tetrad formalism has the advantage that the Weyl tensor defines a
canonical orthonormal tetrad in addition to the preferred time-
like vector field defined by the 4-velocity. However the Newman-
Penrose formalism has been wused to study perfect fluids,
particularly in the Einstein-Petrov problem of finding solutions of
a specific Petrov type. For example, Allnutt (1981) has found
Petrov type III perfect fluid solutions and type N solutions have
been given by Oleson (1971). Type II solutions have been
presented by Wainwright (1974), Bonnor and Davidson (1985)
and Martin-Pascual and Senovilla (1988), all of whom used the
Newman-Penrose formalism.

§3.4 Orthonormal Tetrad Equations

The use of orthonormal tetrads in the study of perfect
fluid space-times has the advantage that the energy-momentum
tensor naturally picks out a time-like vector. Thus the time-like
vector of an orthonormal tetrad can be chosen so that

=yl | (3.4.1)

This will always be the case in this thesis. Any tetrad freedom can
be used to associate the tetrad with the kinematic properties of
the fluid. It is therefore easy to impose kinematic restrictions on

38




the resulting equations. In the Newman-Penrose formalism the
relevant equations tend to be cumbersome as conditions such  as
vanishing shear are equivalent to the vanishing of the linear
combinations of spin coefficients given in chapter 2. The null
vectors do not determine a time-like vector, in general, unless an
alignment condition of the form (3.3.8) is imposed. Clearly this is
not a problem with solutions with a purely electric Weyl tensor as
they are necessarily aligned. In fact it appears that very few
known solutions do not have ua aligned in this way (Wainwright
1977a).

As most of the work in this thesis will be carried out
using orthonormal tetrads it will be useful to be able to compare
the results with the above classification of Carminati and
Wainwright (1985). Using the tetrad (2.4.15) and (3.3.11) we
obtain

JI=U.p+idey | J2=01-0p | J3= 01 +i0y . (3.4.2)

Furthermore as the non-vanishing of W + p is not used in this

work, most of the results will be valid for vacuum fields admitting
a hypersurface orthogonal time-like vector field with respect to
which Hij:O.

Choosing the tetrad to be an eigenframe of the Weyl
tensor, Ejj can be written in tetrad form from (3.2.2) as

3
Eijz ZaAeAieAj ) (3.4.3)
A=1

It will be seen that the Bianchi identitiy (2.3.18) indicates how the
kinematic quantities can be related to this tetrad. In the shear-

free case (2.3.18) becomes

. 1
Eiju)l:—:;(p + p)®; (3.4.4)
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and hence ®; is an eigenvector of Ejj. Collins (1984) has
investigated shear-free flows with Hijj=0 using this tetrad. Without

. . a
loss of generality we align €y along ®2 and hence write

a
0=0e; . (3.4.5)

If the space-time is irrotational but shearing then
equation (2.3.18) becomes

NijwokmEL, =0

and has a simple interpretation: it implies that the matrices o and

E commute. This is easily seen by contracting with the tetrad

a
vector e; obtaining

3

D oCI2E3) =0
C=1

since EA4=0A4=0. Here and below capital Latin indices take the

values 1,2,3 (except where otherwise stated) and refer to tetrad

. a _ . . a
components with respect to €. Similarly contracting with €, and

a
€5 one may deduce

3
C=1
& oE -Eo=0. (3.4.6)

40




; a
Thus there exists an orthonormal tetrad {eA,ua} which is

simultaneously an eigentetrad of the shear and of the Weyl
tensor. Using this tetrad we have

3
Cjj = EGAeAieAj , (3.4.7)
A=1

where G A are the eigenvalues of 0ij and the trace-free properties
of Eij and O'ij give

3 3
Daa = doa =0, (3.4.8)

The tetrad 1is uniquely determined if the o are
distinct or the oA are distinct or if (after suitable renumbering of
the tetrad wvectors) a1 = a2 # 03 and 61 = 03 # ¢c2. If
01 =02=#03and o] = 02 # 03, the tetrad is only determined

up to a rotation in the {x1, x2} plane.
~a a a .
¢ = elcosq> + 6231n¢ ,

~ S a. a
€ 2a= - e?smq) + €,C080 . (3.4.9)

This approach may be extended to the case with non-
zero shear and rotation. One possibility is to consider canonical
forms of the matrices ¢ and E and evaluate w,. However, for
simplicity, we assume that, as a generalisation of the above two
classes, ©jj and Eij commute. This clearly implies that ®g4 is an
eigenvector of Eij. Thus o©j;j and E;j can be expressed as in the
irrotational case above and ®a can be expressed as for the shear-
free case. We can now write the Ricci and Bianchi identities in
tetrad form using (3.4.3), (3.4.5) and (3.4.7). From (2.3.8) we have
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3
A Vanan Y >
2| 1448 - Tapaa + 2 Yaca(fpCa - VaCp) |+
=1

2
6A16B2(' W.4 - 0(CA - OB) -3_606)—8A18B3 CD’Y234 +

6A26B3 ® Y134 =0 . (3.4.10)

From (2.3.9) we have

(0 - 8)YaBa - Yana¥apa - Yanan - Vapaa -

3
2Y4C4(YBCA +YACg) =0 for A=B (3.4.11)
C=1

and using the Raychaudhuri equation (2.3.7) we obtain from
(2.3.9)

6.4 62 (u+3p)

2 24 57
OA.4+2/390A+0A+OLA+ 3 t79 + 6

3

2
Yira.a-Yana - D21Y4D4YDAA - 028518 - 02842859 =0

(3.4.12)

From (2.3.10) we obtain
o Y434 ——Ygll —’Ygzz)”(US =0 (3.4.13)

and
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3

1

> Tanan - Vapaa + 2Y4C4(YBCA -VaCp) |+
C=1

SA18B2(-0.4 - (V411 +Y420) ) - 571883 0 YVasq - Yous ) +
543082 (V143 -Vi34) =0 . (3.4.14)

From (2.3.11):-

3
OA-A+ Z(O’A -op)YApp - 2—-9333‘— -
D=1
SA1( 00+ 0Yp33 +20V404) - 8p0(0.; + © Vis3 + 20 Vy4q) -
5A30( Vi3 +Va31) = 0. (3.4.15)

From (2.3.12) we obtain

(0B -60).a + (0 -00)Yacc- (0a - 08)aRB + |
58382 (- ®.g + 0533 — 20 Vypq) - 8818020( Vo371 + V132)

+3g10c3(- 0. + © V33 -20Y414) =0,
(3.4.16)

(61-62)V123 - 03-0 D) V312 + (@3 + © Y322) =0,
(02- 01)Y123 +(02- 03)Y231 +(ws + Y311) =0,
(63-62)Y231 + (63-01) V312 + ©(2V434 = Y311 = V322)= 0

(3.4.17)
and from (2.3.17)
3
H.A
OlA-A T Z(OCA -ap)YapD - = =0 (3.4.18)
D=1
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From (2.3.19) we obtain

(a1 - 02)(Yios + C23) =0,

(02 -a3)Yps34=0 (3.4.19)

(a3 -a1)Y314=0 .

Note that the corresponding Ricci identity (3.4.11) is
complicated by the presence of terms involving the acceleration
and its derivatives. From (2.3.19) we also have

3
OA.4+ 004 + {(L+Dp)2-30a}04 + ZOLBGB =0,
B=1
(3.4.20)

(a1- 02) V123 = (@3- a1) V310 = (@2- 3) a3y, (3.4.21)

(0B - 0c).A + (0A - o)V acce - (oA - aB)Y AR +

+2(0g - 0c)Yaps = 0 . (3.4.22)

Clearly, we can easily specialise to the shear-free and
irrotational cases by putting ¢ = 0 and ® = 0 respectively. The
space-times with both w, =0 and G4, = 0 have been considered in
an earlier work (Barnes 1973). The type 1 solutions are static and
few exact solutions are known. The type D solutions were found
explicitly except for the cases with spherical or related symmetry
where one ordinary differential equation remains to be
integrated. The conformally flat fields (type O) are all known

explicitly (Stephani 1967). However, in the next chapter, Killing

vectors in conformally flat space-times will be considered. Ensuing
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chaPteTs will deal with the cases of shear-free rotation and
vanishing rotation using the derived tetrad equations.
Finally, the Jacobi identities are given by

[leaepl.ecl+[lep.ecl.epl+[[ec.eal,eg1=0

. . a
Contracting with €p we may write this in terms of Ricci rotation

coefficients as Jp[AB(C] = O, where

3

JpaBc="TpBAa.c-TpAB.C+ Z(YBEA -YaER)YpEC - YDCR)
E=1

(3.4.23)
The general Jacobi identities in terms of the Ricci rotation
coefficients were calculated using an STENSOR program (Hornfeldt

1986) and are given in the appendix. The identities are also given
subject to certain simplifications that will be used in chapter 6.
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CHAPTER 4

Killing Vectors in Conformally Flat Perfect Fluid Space-times

§4.1 Introduction

Analyses of isometry groups of space-times can often
be accomplished automatically with the computer program CLASSI
(Aman 1983). However, difficulties can arise due to the limited
power of SHEEP (Frick 1982) for performing automatic
simplifications. If the metric has, for example, a polynomial
denominator then this may lead to extremely large terms in the
fourth order expressions needed for classification, preventing the
completion of the program. Conformally flat space-times also form
one of the few known cases when third order derivatives are
needed in the classification algorithm (Bradley 1986).

A conformally flat space-time is defined by the
vanishing of the Weyl tensor or equivalently there is a coordinate
system in which the metric takes the form

gij = S2 M (4.1.1)

where 1 is the flat space-time metric and S is the conformal

factor. Killing vectors (KVs) in conformally flat space-times in
general have been considered by Levine (1936, 1939) before the
general solution for a perfect fluid was discovered. He derived
restrictions on the form of S for Killing vectors to exist. However,
the conformally flat solutions were discovered in a coordinate
system in which the metrics are not manifestly conformally flat
(Stephani 1967, Barnes 1973) and the coordinate transformations
required to put the metrics into the form (4.1.1) are not known.
Consequently a new analysis of Killing vectors in conformally flat
perfect fluid space-times 1S needed.

This chapter considers the number and nature of
Killing vectors admitted by conformally flat perfect fluid metrics.
The 6 spatial Killing vectors of the Robertson-Walker metric are
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intrinsic KVs of the conformally flat space-times that is  they
satisfy Killing's equations on a hypersurface. They also satsify 6 of
the 10 Killing's equations. Restrictions on- arbitrary functions
appearing in the conformally flat metrics are imposed in order to
find sub-classes of the general case in which these intrinsic KVs
become KVs of the full space-time. In the expanding case the only
possible KV apart from these 6 is either hypersurface orthogonal
or the metric is De Sitter space-time. In the non-expanding case
non-trivial tilted KVs are shown to exist without the requirement
of high symmetry. Thus a class of stationary conformally flat
perfect fluids is established. These are shown to admit O, 1 or 3
additional spatial Killing vectors. A theorem in the literature
(Collinson (1976), Garcia Diaz (1988)) claiming that the only
stationary axisymmetric conformally flat perfect fluid is the
interior Schwarzschild solution and its counterparts with
hyperbolic and planar symmetry is therefore shown to be false. A
counter-example is given in §4.6.

§4.2 Conformally Flat Perfect Fluid Space-times

All conformally flat perfect fluids in general relativity
are known (Stephani 1967). There are two metric forms
corresponding to zero and non-zero expansion of the fluid (Barnes
1973). In the following case, 6, the expansion, is non-zero and is a

function of time only. The metric is given by

ds2= P-2(dr2 + r2(d62 + sin20d¢2)) — V2dt2 (4.2.1)
where
) —3pP
P = a(t) + b(t)re-2r.c and V = (0P (4.2.2)

where c{, ¢, ¢3, a and bare five arbitrary functions of time. The

notation differs slightly from that of Barnes (1673). A dot denotes
differentiation w.r.t time, three dimensional vector notation has
been used for conciseness, and T, 9, and ¢, are related to x, y and z
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in the usual way. Note that 6 has been used both for the expansion
and as a coordinate but no confusion should arise. It is also worth
noting for future reference that the energy density, W, is given by

92
3(0 . (4.2.3)

KU =12(ab — ¢2) +

For 6 = 0 the metric is given by

ds2 = (1 + kr2/4)-2(dr2 + r2(d62 + sin26d¢2)) — V2di2,

(4.2.4)
where k=0, £1 and V is given by
_ (a+brZ +r.c)

V = (1 + kr2/4) (4.2.5)

The energy density W, and the pressure p are related by
_ _(ak + 4b)
h+tp=""v - (4.2.6)
If £t + p = O then the space is an Einstein space and being

conformally flat it must be of constant curvature i.e. it is a De
Sitter space-time (Eisenhart 1949) admitting 10 Killing vectors or
Minkowski flat space-time. As these space-times are well known
they will not be considered here and so henceforth we assume
uw+p = 0.

In both conformally flat metrics there are five
arbitrary functions of time. Several important space-times
including the Robertson-Walker and interior Schwarzschild
metrics are contained within this class of solutions. These solutions
admit 6 and 4 KVs respectively and so I investigate the conditions
the arbitrary metric functions must fulfil for KVs to exist.
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§4.3 Killing's Equations and Intrinsic Killine Vectors

Killing's equations arise from the vanishing of the Lie
derivative of the metric tensor gij

£x 81 = 8ij ) XX + XK gik + XK gii = 0 (4.3.1)
A solution X1 of this equation is known as a Killing vector and we
require the number of independent solutions to these equations
given the metric tensor of the conformally flat space-time.

We will now look at the 3+1 splitting of these
equations relative to u,. Equation (4.3.1) implies for i, j=1, 2, 3
(noting gq4=0)

Zop,a X* + Bapy XY + XVg 8oy + XY, 848 = 0 (4.3.2)

where here and henceforward Greek indices take the values 1, 2
and 3 only. The remaining equations are

8400 X0+ gaa.4 X4 +2X44 844 =0, (4.3.3)
XB,4 ggo + X 844 =0 . (4.3.4)

In the case when the KVs are tangential to the space-like
hypersurface i.e. X4=0 we obtain the simpler forms

gapy X'+ X' 8oy + XVp &yp =0, (4.3.5)
44,0 X* =0, (4.3.6)
XB,4 gpo =0 - (4.3.7)

Equation (4.3.6) clearly implies

V, X% =0, (4.3.8)

and from (4.3.7)
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XB4=0. (4.3.9)

as g, 1s non-singular. The 6 equations (4.3.5) are satisfied

identically by the spatial KVs of the Robertson-Walker metric.
Consider the three dimensional metric of constant curvature

ds2 = (dx2 + dy? + dz2)

kr2 ’
—2
(1+73)

(4.3.10)

where k=0, £1. These admit a six dimensional group of isometries
generated by (Maartens and Maharaj 1986)

X1 = (1- kr2/4+kx2/2)dx +kxy/2dy + kxz/207
X7 = kxyR20x + (1- kr2/4+ky2/2)dy + kyz/20,
X3 = kxz/20x + kyz/2dy + (1- kr2/4+kz2/2)d,

X4 = yaz - Zay
XS = Zax - Xaz
X6 =xdy - yOx . (4.3.11)

The X generate spatial translations (when k=0) and the Xg+3
generate spatial rotations, in the homogeneous hypersurface
t=constant.

Comparing the metric (4.3.10) with the non-expanding
conformally flat metric (4.2.4) it is clear that the non-expanding
conformally flat space-times admit a family of hypersurfaces
t=constant of constant curvature. The 6 spatial Killing vectors
satisfy (4.3.5) with ggp given by (4.3.10) and so will also satisfy it
for the conformally flat spatial metric. If the KVs X1 ... Xg also
satisfy (4.3.6) and (4.3.7) then they are Killing vectors of the full
space-time. However, this will not be true in general for the
conformally flat metric. We refer to X1 ... X6 as intrinsic Killing
vectors (Collins and Szafron 1977) of the conformally flat space-
time since they satisfy Killings equations in each spatial
hypersurface. In section 4.5(ii) it will be shown that the expanding
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metrics also admit 6 intrinsic KVs. In fact any linear combination
of the Killing vectors

6

X = EfA(t) XA, (4.3.12)
A=1

where fA are six arbitrary functions of time, clearly also satisfies
(4.3.5) and is thus also an intrinsic KV of the space-time. This
result will be useful in determining the number of spatial KVs
admitted by the conformally flat metric. Although this KV is not
the general solution of the i=a, j=p Killing equation (4.3.2) this
equation can always be replaced by (4.3.5) for the conformally flat
metrics. In the non-expanding case this is because ggp,4 =0 as
can be seen from the metric. In the expanding case it will be
shown that X4 =0 except in one special case. Consequently the
intrinsic Killing vectors satisfy 6 of Killing's equations.

We shall see what conditions need to be imposed on
the metric functions for 1 or more of these intrinsic KVs to become
KVs of the full space-time by solving the remaining equations
(4.3.3) and (4.3.4) or the simpler forms (4.3.6) and (4.3.7) for
purely spatial KVs (SKVs). Firstly it must be determined whether
these metrics admit Killing vectors which are neither tangential or
orthogonal to the space-like hypersurfaces t=constant. We refer to
such KVs as tilted KVs.

§4.4 Non-Trivial Tilted Killing Vectors

Any constant linear combination of Killing vectors is
also a Killing vector. In the expanding case the only tilted KVs are
such trivial combinations of KVs orthogonal and tangential to the
spatial hypersurfaces t=constant except in the De Sitter space-time
(L+ p = 0) as will be seen below. However in the non-expanding
case a non-trivial tilted KV is possible in more cases. In fact it will
be shown that the fA's are constant and given any set of constants
fA it is always possible to find metric functions a, b and ¢ such

that
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6
X=0t+ Y fA(t) XA (4.4.1)
A=1

is a Killing vector. In general this KV is not hypersurface

orthogonal and in a region surrounding the world-line r=0 it will
be time-like.

(1) 8 =6() 0

Since the energy density is a metric invariant its Lie
derivative vanishes along any Killing vector. Since W is a function

of time only, from (4.2.3), we obtain

d
£xpu=0 = d—fx4 =0, (4.4.2)

. . . H
and either X4 vanishes and there are no non-spatial KVs or -

In the latter case using the conservation equation

L+ (u+p)e =0 (4.4.3)

it follows that p+p=0 as 6 is non-zero. This is one of the well

known De Sitter space-times or, of course, Minkowski space-time
admitting 10 KVs and will not be considered further.

(i) 6 =0

Since gup,4 = 0 the spatial components of possible KVs
are given by (4.3.12) and only the 4 remaining equations (4.3.3)
and (4.3.4) need to be solved. The analysis uses the Lie derivative
of the pressure plus energy density given by (4.2.6)

(ak+4b)

v 0.

£x (L+p)=0 = (ak+db)y X4 - VX
(4.4.4)
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Now using the i=4 j=4 Killings equation (4.3.3) to eliminate V,;Xi
we obtain

(a k+4b)X4 + (ak+4b)X4,, =0 . (4.4.5)

Integrating the above gives

h(x®
X4:m(al£+4)b) (4.4.6)
where h(x®) is an arbitrary function of the spatial coordinates
only. This is the only allowable form (apart from zero) of the time
component of any Killing vector. We now determine h(x®) and the
spatial components of possible Killing vectors. The intrinsic Killing
vectors are independent of time so when the time derivative of
(4.3.12) is taken we obtain

6

XB,4 = Z fA(t) XPA (4.4.7)
A=1

From eqs. (4.3.4) and (4.4.7) we can deduce

6
(ak + 4b)2 FA(t) XA
A=1
h,o =

(a + br2+r.c)? (4.4.8)

Calculating h,aB and using the fact that partial derivatives
commute we can eliminate h from the above equation obtaining
three compatibility conditions. These conditions take the form of

polynomials in X, 'y and z with time-dependent coefficients.

Equating coefficients of the various powers of X,y and z in each of

the 3 equations gives

(ak + 4b)fA =0. (4.4.9)
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Assuming (ak + 4b) #0 (i.e. excluding the De Sitter cosmological
model) we have that the fA are constants. Hence XB,4=0 and
from (4.3.4) we obtain

X4,,=0 (4.4.10)

and therefore h(x®) = constant. Since any linear combination of
KVs is also a KV the constant h may be set to 1 without loss of
generality. Returning to equation (4.3.3) with these new conditions
yields an expression for V,,X@ equal to a second order polynomial.
V,o X% was expanded using a simple REDUCE (Hearn 1983)
program. On equating coefficients from the resulting expression
with the polynomial we obtain a system of differential equations.
The coordinate t may be rescaled such that ak + 4b = 1 and hence
from (4.4.6) and (4.3.12) we are considering KVs of the form
(4.4.1). For k # 0 we write the remaining equations in matrix form

as
(% 0 kf1 kfy kf3 £
d | ¢ -f1 0 -fg f5 c
d _ 1 4.
T C1 o e 0 -fa ) (4.4.11)
2 f3 -f5 f4 O
c3 €3
where
g = ak - 4b . (4.4.12)

If Kk = 0 we obtain a system of differential equations which can be

represented by

a +flc] +f2cp+13¢3=0 (4.4.13)

cl 0 -fg f5 cl 1 f1
d il | fe 0 -f4 ||c2 + 5|12 (4.4.14)
dt |3 fs f4 0 J\c3 f3
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The solutions to these matrix o.d.e's can be found from the
exponential matrix eAt . This may be calculated by finding B the
Jordan normal form of the matrices in (4.4.12) and (4.4.14) where

B = S-1AS and then evaluating SeBtS-1 which is now easy because
of the form of B.

When k = 1 the matrix in (4.4.12) is antisymmetric
and does not possess non-simple elementary divisors. The
eigenvalues are given by:

(If+FI£If-Fl}, (4.4.15)

1
7L=J_r2

where f=01,2,f3),E=({4,f5,f6) . (4.4.16)
Thus g(t) and ¢ are linear combinations of sin put, cos pt, sin vt and
cos vt with the eigenvalues labelled * ip and +iv where p and v are
real. In three special cases g(t) and ¢ are given by linear
combinations of

a)l , sin ut, cos ut ,when v=20,
b)1 , sin vt, cos vt , when p =0,
c) sin vt, cos vt , when p=v.

When k = -1 the eigenvalues of the matrix in (4.4.12) are
A=+ (IE-ifI £ 1E+if1) (4.4.17)

where Ifl denotes the real Euclidean 'morm’ of f. The eigenvalues
may be represented by *iu and + v . Thus g(t) and ¢ are linear
combinations of sin {t, cos ut, sinh vt and cosh vt . In two special
cases we have that g(t) and ¢ are given by linear combinations of
1, sin put, cos Ut, when v = 0 and by 1 , sinh vt , cosh vt , when p =
0. In the case f.F =0, Ifl =IEl we have o = v = 0 and the
matrix has a non-simple elementary divisor. The minimal

equation is then A3 =0 and the Jordan normal form of A is

therefore
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(4.4.18)

o oo O
(oo

0
0
1

0

O O - O

consequently the solutions for g(t) and ¢ involve linear

combinations of 1, t and t2. When k = 0 the eigenvalues of the
matrix in (4.4.14) are

A=x1lFl and A =0 . (4.4.19)
In this case ¢ is a linear combinations of 1, t, sin put and cos put and
a(t) is a linear combination of I, t, t2, sin pt and cos pt. In the case

E =0, c is just a linear combination of 1 and t but a(t) may also
include t2.

§4.5 Spatial Killing Vectors

(i) 8 =0

In the preceeding section the existence of a class of
stationary conformally flat perfect fluid metrics was
demonstrated. If a metric admits two such vectors of the form
(4.4.14) e.g.

6

X1= h] dt+ ZfA XA
A=1
6

X9 = ho dt + ZgA XA
A=1

where h] and h2 are constants, it is always possible to eliminate
the time component from one of the KVs by taking suitable linear
combinations. For KVs with no time component, spatial KVs

(SKVs), we need only consider equation (4.3.6) as (4.3.7) is
identically satisfied by the fact that the fA are constants. We can
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therefore take h =0

. in the equations of the preceeding section
which may then be written in a unified form as

¢c1c2c3 0 0 0 1)
0O 0 g -2¢p 2¢c1 O f3

0 g 0 2¢3 0 -2c1 ¢4 |=0- (4.5.1)
g 0.0 0 -2¢3 2c2 )fs
fe

These equations will now be examined by assuming
the rank of the four time dependent functions ci, ¢, c¢3, and g to

be of a certain order and then determining the number of
independent solutions for the fa in each case.

a) Rank zero: ¢j=0,g=0

This condition implies that the column matrix of the fA

is completely arbitrary and hence there are 6 independent
solutions for constant fA and therefore 6 independent spatial

Killing vectors i.e. X1...X6.

b) Rank one: ¢i=0, g#0
In this case we have
gf1 =0, gf2 =0, gf3 =0

and so the remaining f4, f5, f6 are arbitrary constants and 3 SKVs

exist. These are the generators of spatial rotations and hence the

metric is spherically symmetric.

¢) Rank one: ci#0,g= 0

Without loss of generality we assume c] 1S non-zero,

then ¢2 and c3 are related to it via
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€2 = Actl,c3 = Bej (4.5.2)
where A and B are constants.These conditions imply that the rank
of the matrix of coefficients of the fA is 3. Hence there are 3
independent solutions for these equations for which the fA are
constants and therefore the metric admits exactly 3 independent
SKVs. For example, 3 independent KVs are given by

X4+AX5+BXg , -AX1+X2 , -BX1+X3 . (4.5.3)

where A and B are arbitrary constants.

d) Rank one: ¢j=0,g=0

In this case we take g to be the independent function
and thus there exist constants A, B and C such that

cl1=Ag,c2=Bg,c3=Cg

The rank of these equations is again 3 and 3 independent SKVs
are given by

2CX2 +2BX3 + X4, 2CX1 - 2AX3 + X5,
-2BX1 + 2AX2 + X6 - (4.5.4)

where A , B and C are constants.

e) Rank two: cij#0,g=0

Without loss of generality we take c] and c2 to be the

independent functions

c3 = Ac] + Be2, (4.5.5)
where A and B are constants. Row 1 of the matrix is now

f3c3 = -fac2 - f1cl (4.5.6)
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and f3 cannot be zero or ¢i and c2 would be dependent.
Comparing (4.5.5) and (4.5.6)

f2 =-Af3 ,f] = -Bf3
and using the remaining rows fq = fs = fg = 0 for c1 and c2 to be
independent. Clearly there is only one independent solution and

hence one spatial Killing vector.

f) Rank two: ¢ij=0,g=#0

Without loss of generality we take c] and g to be the
independent functions,

c2 =Ag+ Bey,

c3 =Cg+ Dcy,
where A, B, C, and D are constants. Row 2 of the matrix is now I

fqcp = -f3 g/2 + f5¢1 ,

Now f4 cannot be zero or g and c1 would be dependent. Comparing
the two expressions for c¢2

f3 = -2Afq ,f5 = Bfg
similarly, using other rows
fr= -2Cf4 , f6 = Dfg, f1 = (-2AD +2BC)f4

and so there is only one independent solution and one SKV.

g) Rank > 3

There are no spatial KVs in this case and this can be

shown by considering two separate Cases. If ¢ = 0 the first row
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implies that either the ¢ are dependent and hence the rank must
be less than three or fy = 0. In the latter case the remaining rows
imply dependence of the ¢ and hence the rank must be less than
three for KVs to exist. If g is non-zero then without loss of
generality we take g, ¢ and ¢y to be independent. Then from row
two, 3, f4 and f5 must be zero in which case rows 3 and 4 imply
dependence between the three functions and we have a

contradiction. Hence no SKVs can exist when the rank is three or
greater.

(i)8_=0(t) 20

The coordinate transformation

;ZX+F’ ;:y+‘6‘, Z2=z+ (4.5.7)

applied to the metric (4.3.10) yields the t=constant 3-space of the
expanding metric (4.2.1) up to a time-dependent conformal factor
and where k is given by

4b

k= a-c2/b

(4.5.8)

The transformations (4.5.7) are clearly not valid in the case b = 0.
However by performing the inversion T =7 on the expanding

metric it is possible to interchange a and b so the analysis is only
invalid in the case a = b = 0. In this case we can use a coordinate
translation followed by an inversion to set b = 0. A similar
procedure can be applied in the exceptional case a-¢c2/b=0
The conformal factor does not affect Killing's equations
in the hypersurface and so the expanding metric admits 6 intrinsic

KVs given by

2
2 2c¢.r. k cl 2¢c1x
k ¢ .1 2 }
X1 —(1 - Z(rz t327 b ) + (x2+ 17 B ))a’”
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in the coordinate system of (4.2.1), i.e. tildes have been dropped.
These are obtained by applying the inverse of the coordinate
transformation (4.5.7) to the Killing vectors of the metric (4.3.10).
The REDUCE program to evaluate V,qX® was modified to take into

account the transformed coordinate system, the non-constant k
and the different g44 in this metric. The number of terms in the

resulting expression can be reduced by writing

V, X% = {xo(W45 + 2W5iX{) - Waq - PW5¢, + 2xIWjg } X = 0

(4.5.10)

where wAB are Wronskians of the five metric functions ci, c2, c3,
4 and b labelled 1 - 5 respectively i.e. a is written temporarily as

c4 and b as c5. For example
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W34=£103-é3a

Equation (4.5.10) was expanded using a REDUCE program and on

equating coefficients of the various powers of x, y, and z the
following was obtained:-

wS51f1k + w522k + ws3f3k = 0 ,
-w54f1k + 4ws53f5 - 4ws2fg + 2w31f3k + 2w21f2k = 0,

-w5412k - 4ws53f4 + 4ws51fe - 2w21f1k + 2w32f3k = 0,
-w54f3k + 4ws2f4 - 4ws1f5 - 2w31f1k - 2w32f2k

I
e

-w54f1 + w43f5 - w4pfe - 2w31f3 - 2wp1f2 =0,
-w5412 - w43f4 + wa1fe - 2w32f3 + 2wp1f1 =0,
-w5413 + w42f4 - wa1f5 + 2w32f2 + 2w31f] =0,

4ws53f1 + 4w51f3 - w43f1k- wa1f3k + 4w32fg + 4w 1f4 =0 ,
4ws53f2 + 4ws2f3 - wa3fok- waof3k - 4w31fe + 4w21f5 =0,
4ws52f1 + 4w5112 - wq2f1k- wqa1f2k + 4w32f5 - 4w31f4 =0,

4ws1f1 - 4w52f2 - 4w53f3 - wqa1f1k + wq2f2k + wq3f3k +
8w31f5 - 8w21f6 =0,

-4ws1f1 + 4ws2f2 - 4ws53f3 + w41f1k - w4212k + wq3f3k -
8w32fq - 8w21fe =0,

4ws1f] - 4ws2f2 + 4ws53f3 + wa1fik + wa2f2k - w4313k -
8w32fgq + 8w31f5 =0,

wq41f1 + wq2fp + wa3fz =0. (4.5.11)

In addition the i=4 j=a Killing's equations provide further
equations since they do not imply as beforé t'hat .th.e fa are
constants. This is due to the fact that the 6 intrinsic K1111r.1g vectors
are not independent of time, as in the non-expanding case,

because the coordinate transformation (4.5.7) has introduced time

dependence. However from (4.3.9) the linear combination of KVs
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(4.3.12) must be independent of time. Consequently it does not

simply imply that the fA are constants. In fact we obtain from
(4.3.9)

k
f1(1+——(c1 C2 C3) 6 c2c3 N f3kclc3 c3 _¢c2

2b2 Sp2 ti5y -fep =ki,
keiea 2 2 kcoc
f et 3 .93 el
15p2 200+ - cey) + 137 5 - 4+ fop = k2

kcic3 kcocs o) ¢ c1
2b2 +H2 2b2 +f3(1+—(03 Cy- C1)+ f4b - 5F:k3 ,

f1

k
E(flcl +1f2¢2 +3¢3 ) =kqg ,
k

p2cl - fica) - 2f6 = ks,
k

pf1e3 - fic1) - 25 = ke ,

k ‘
E(f3C2 - f2¢c3 ) - 2f4 = k7 (4.5.12)

where k] ... k7 are constants. It has proven difficult, due to the
size of these equations, to extend the analysis of Killing vectors to

the expanding metrics.

§4.6 Examples of Stationary Non-Static Conformally Flat Perfect
Fluids

Using the preceding results it is simple to find
stationary conformally flat metrics which admit O, 1 or even 3
spatial Killing vectors. In the latter case if we choose f6 = 0 and

fA =0 otherwise, the metric admits the KV
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X= dut mXg. (4.6.1)

If the metric is to admit no SKVs then the rank of g(t) and ¢ must
be 3. In each of the three cases considered above it is possible to
find stationary metrics fulfilling this condition, for example

a) k = +1, the metric functions are given by
g =A,c]l = Bsin mt + Ccos mt, ¢2 = Csin mt - Bcos mt, ¢c3 = D
where A, B, C and D are arbitrary constants.
b) k = 0, the metric functions are given by
a=A, c] = Bsin mt + Ccos mt, ¢ = Csin mt - Bcos mt, ¢c3 =D

For stationary axisymmetric solutions we simply choose g(t) and ¢
to have rank two such that they also satisfy the conditions for a
tilted KV. If we put A=D=0 in the above case we obtain a metric
admitting two KVs given by

Y1=dt+ mX6,
Y2=X3. (4.6.2)

To find a stationary solution with three space-like vectors the
rank of the 4 metric functions g, ¢ must be one. However, when
the rank of the metric functions a, b, ¢ is one the KV is
hypersurface orthogonal and this is the case when k=1 or 0. When

k=-1 we choose
g = 2Aemt ¢1 =c2=0,¢3 = -Aemt
and the metric admits 4 KVs given by:

Yo=0dt+ mX3, Y] =X1+ X5,
Yo =X2 - X4, Y3 =X6. (4.6.3)

The vectors Y1, Y2, Y3 from a group of Bianchi type VIIq-_:o.
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§4.7 Bianchi Types of the 3-Parameter Groups

Since the Killing vectors of the conformally flat space-
time are linear combinations of the Robertson- Walker spatial KVs
we consider their commutation relations

[X4,X6] = X5
[X5,X4] =X¢g
[X6,X5] =X4

[X1,X4] = [X2,X5] = [X3,Xg] =

[X1,X5] = [X4,X2] =-X3
[X1,X6] = [X4,X3] =X2
[X3,X5] = [X6,X2] = X1

[X17X2] = —kX6
[X1,X3] =kX5
[X3,X2] = kX4

So for the Killing vectors of section 4.5 the Bianchi types can be
found by finding the commutators in terms of the above and
making appropriate changes of bases to get them into standard
forms as for example in Stephani (1982a) .

@) ci=0, g#0

The KVs already form a standard basis of a Bianchi

type IX algebra.
(i) ci# 0, g=0

Three Killing vectors are given by (4.5.3) and their

commutators are.

(Y2, Y3] - kY1
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[Y3,Y11=-(1+B2) Y, + ABY3

If we now transform these vectors according to Y1 =Y1, Y2 = Y2,

Y3 = Y3 +38Y2, and identify § = —AB we obtain
1 + A2

~ o~

[Y2,Y3] =- kY] ,
Y1.Y21=-(1+A2) ¥3 ,

S o (1 + A2 +B2) _
I.Y vY = -

3,Y1] T A2 Yy .

Now redefining the vectors according to \z(l =a¥1, §2 = BY2,

2{’3 = yﬁ;g, and suitably defining o, B and y as
a2=1+A2+B2 | B2=1+A2,
Y=- B
we obtain
[Y2,Y3] =kY1]
[Y1,Y2] =Y3

[Y3,Y1]=Y2

where tildes have been dropped. The Bianchi type of the group
depends on the sign of k as follows:

k>0 Bianchi type IX
k<0 Bianchi type VIII
k=0 Bianchi type VIlg=0

(iii) ci# 0, g #0

The three Killing vectors are given by (4.5.4) and by a

similar procedure to the above case we may deduce that
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IGl<1

Bianchi type IX

IGl =1 Bianchi type Vilg=0
IGl > 1 Bianchi type VIII
where
B 4BCk
1+4C2Kk24+4A2¢2

and 1+4A2k#0, BCk=0. In the special cases we have:

1+4A2k=0 Bianchi type VIII

k=0 Bianchi type IX

C=0
1+4A2k>0
1+4A2k>0
1+4A2k>0
1+4A2k<0

1+4A2k>0
1+4A2k>0
1+4A2k>0
1+4A2k<0

1+4B2k+4A2k>0 Type
1+4B2k+4A2k=0 Type
1+4B2k+4A2k<0 Type

Type

1+4C2k+4A2k>0 Type
1+4C2k+4A2k=0 Type
1+4C2k+4A2k<0 Type

Type

IX
Vilg=0
VIII
VIII

IX
Vg =0
VIII
VIII

Note that the three possible Bianchi types correspond to spherical,
hyperbolic and planar symmetry as do the three branches of the

interior Schwarzschild solution.

§4.8 Conclusion

The existence of a class of stationary conformally flat
perfect fluid space-times has been demonstrated including a sub-

class

that is stationary and axisymmetric. This contradicts a

theorem due to Collinson (1976) and Garcia Diaz (1988) who
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stated that the only

! Stationary axisymmetric conformally flat
perfect fluid space-time is the interior Schwarzschild solution and

its counterparts with planar and hyperbolic symmetry. Their work
relies on the assumption of a metric form which is not that of the
most general stationary axisymmetric space-time (Kramer et al
1980). Barnes (1973) suggests that the number of Killing vectors
is dependent on the rank of the 5 metric functions appearing in
g44. However we have found that the number of spatial Killing
vectors actually depends on the rank of the 4 functions ¢ and g.
The rank of these functions can differ from the rank of the by,
at most, one. The existence of a tilted KV is dependent on the form
of the metric. For this KV to be hypersurface orthogonal it may be
deduced from (4.3.2) - (4.3.4) that V must be separable in t which
is only possible when the rank of the 5 metric functions is one.
Hence a summary of the results:

Rank of a, b, ¢ Rank of ¢, g Number of KVs

1 0 7 or 10
1 or 2 1 3or4
2 or 3 2 1 or 2
>3 >3 0 orl

The results presented here seem to suggest a special role for the
function g. We may see this in the following example. If
p + L = constant g=# 0 the solution is the Einstein universe and

admits a 7 dimensional group. Using equation (4.2.6) we have

ak + 4b_
H+p="vyv ~

where C is an arbitrary constant. Writing V from the 6 =0 case

and equating coefficients gives
¢i=0,

a(k—C) + 4b = 0
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(ak + 4b)k - 4Cb = 0

This implies that
ak - 4b = g = 0.

This agrees with the analysis presented earlier and points out the
significance of g in one special case.

It would be interesting to extend the method
presented here to determine the number of Killing vectors in
other space-times with intrinsic Killing vectors for example
Szekeres' solutions (Szekeres 1975). These admit conformally flat
hypersurfaces and are intrinsically spherically symmetric (Berger
et al 1977). It has been shown that in general they admit no KVs
but have 4 or 5 arbitrary functions of a single variable (Bonnor et
al 1977). As with the conformally flat space-times they include
specialisations that admit KVs and so restrictions on these
functions could be examined and Killing's equations solved.
However the method presented above may be of limited use
because of the 3-parameter intrinsic symmetry.
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CHAPTER 5

Shear-Free Perfect Fluids with a Purely Electric Weyl Tensor

§5.1 Introduction

The assumption of vanishing shear has been used by
several authors as an aid in the investigation of exact solutions of
Einstein's field equations, see for example Ellis (1967), Barnes
(1973), Kramer et al (1980), White (1981). Some of the most well
known solutions such as the Robertson-Walker and interior
Schwarzschild solutions have this property. An interesting
conjecture arising from a consideration of the known solutions is
the following: .

For any shear-free perfect fluid in general relativity
obeying an equation of state p = p(u), such that p+ p=# 0, the
fluid 4-velocity is either irrotational or non-expanding.

The importance of this conjecture, were it to be valid
in general, is that it may highlight certain essential differences
between Newtonian and Einsteinian theory. This is because
Newtonian self gravitating shear-free fluids with both rotation
and expansion are known (Ellis 1971). The conjecture has not
been proven in general, although no counter-example has been
found and proofs in several special cases have been published.
Clearly it is valid in conformally flat perfect fluids as from section
3.1, o=w=0. It is also valid in the case of dust (Ellis 1967), spatial
homogeneity (King and Ellis 1973) and when the acceleration and
rotation vectors are parallel (White and Collins 1984). Recently,
the conjecture has been shown to be true for Petrov type N space-

times (Carminati 1987) and in the class to be considered here,

purely electric perfect fluids (Collins 1984) i.e.
Hij:Gij::Oand p=p(L) = 00 =0 . (5.1.1)

Collins went on to consider solutions with 6 =0 and

OFF + 0 as those with ®jj = 0 are contained within the class
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considered by Barnes (1973), (Collins and Wainwright 1983). The
rotating solutionsvwith an equation of state were found to be of
Petrov type D and could be sub-divided into two classes. Class I
space-times have an acceleration vector which is not aligned with
the plane spanned by the repeated principal null directions and
admit at least two Killing vectors. In class II space-times  the
acceleration lies in this plane and the fields are necessarily LRS.

Two further shear-free rotating space-times of note
are those of Kramer (1984) and Wahlquist (1968). These are
stationary (non-static) axisymmetric space-times without a higher
symmetry. Solutions of this kind may be relevant as stellar
models if a suitable equation of state is allowed and appropriate
boundary conditions satisfied. Few stationary axisymmetric
perfect fluid space-times are known and, as far as the author is
aware, none appear to meet the required conditions for a realistic
stellar model (Herlt 1988). The solutions of Kramer and Wahlquist
are type D with the 4-velocity not aligned to the plane spanned by
the repeated p.n.d's. Apart from some solutions found recently
(Martin Pascual and Senovilla 1988) these are the only solutions
known with this property. Senovilla (1986) has subsequently
found all stationary axisymmetric space-times with u, aligned and
in fact, these all have a purely electric Weyl tensor and belong to
class I of Collins (1984).

The 'most symmetric' member of this class of solutions
is the Godel (1949) solution which admits five Killing vectors and
is space-time homogeneous. Collins (1984) claimed that the only
geodesic and shear-free purely electric solution is the Gdédel
metric. However, Wolf (1986) has presented a solution which is
geodesic and shear-free with non-vanishing rotation and equation
of state p = u. He claims that the magnetic part of the Weyl tensor
vanishes and that it admits only two Killing vectors. The terms in
the metric are fairly lengthy and the solution is displayed in a
non-co-moving coordinate system. Killing's equations are rather
complicated and difficult to solve. Wolf used a computer program
(Wolf 1985) to simplify these differential equations.

In this chapter, I will resolve the apparent anomaly
over geodesic solutions in this class by solving the field equations

explicitly under the assumptions
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Hg=ﬁi=GU=O,wU¢O. (5.1.2)

It will be shown that the only solution in this class is
the Godel solution (1949).

Firstly, however, accelerating metrics in this class are
studied. Collins' theorem regarding the conjecture mentioned
above 1is confirmed using null and orthonormal tetrads. The
Bianchi identities (3.3.10) given by Carminati and Wainwright
(1985) are simplified and the similarity between the general
solution of Collins' class I and Senovilla's solutions is discussed. A
few simple results using the orthonormal tetrad formalism are
also presented.

§5.2 Applications of Null and Orthonormal Tetrads

A useful starting point for an analysis using null
tetrads is clearly the Bianchi identities (3.3.10). These equations
are equivalent to the general Bianchi identities for perfect fluid
subject to Hj; = 0 and p = p(y) from the discussion of chapter 3.
The kinematic restrictions of this chapter can now be applied in
order to simplify the identities in each of the three possible
classes considered by Carminati and Wainwright (1985). Class I is
necessarily irrotational and so we restrict ourselves to classes II
and III. In class III the following simplifications were found:

C=A=T+K=+V=0, (5.2.1)
p—p=p—H=a+p=0, (5.2.2)
3p+W+e+e+y+y=0 . (5.2.3)

Using the expressions for shear in the Newman-Penrose formalism
(2.4.20) - (2.4.23) we find that vanishing shear is equivalent to
Al = A2 = A3 =0 and hence we obtain

k:—{)_:»’CZTC. (524)
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From (2.4.24) - (2.4.26) clearly the rotation now vanishes and so
shear-free solutions of class III are necessarily irrotational. All
rotating non LRS solutions with Hj; = 04j= 0 and p=p(KL) must

therefore belong to class II. Under these assumptions, the Bianchi
identities for class II include:

3Yy +4911 =0 (5.2.5)
G=A=0+B=0 (5.2.6)
E+E=Y+Y , p=l , p+p+2(+€)=0 . (5.2.7)

It is now easy to see from (2.4.27) that the expansion vanishes
and Collins (1984) theorem has been confirmed. A further point of
interest is that the relations (5.2.5) - (5.2.7) were found by
Senovilla (1986) in his study of stationary axisymmetric space-
times. As mentioned earlier, the solutions were found to have a
purely electric Weyl tensor. Using the assumption of the two
Killing vectors he was able to derive additional relations to (5.2.5)
- (5.2.7) and solve the field equations. Collins (1984) has shown
that space-times with Hj; = 043 = 0 and p=p(lL) and with the
acceleration not aligned to the repeated p.n.d's admit a Gp of
Killing vectors with time-like orbits. The question remains as to
whether Senovilla's solutions complete this class.

Using orthonormal tetrads we make use of the fact
that for vanishing shear the vorticity is an eigenvector of E;; when

a
Hjj vanishes. Without loss of generality we may align e; along

wa so that

0l = meg , (5.2.8)

From (3.4.3) and (3.4.4) we have

1
0y == 5 (e p) (5.2.9)
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and Collins' proof of (5.1.1) can be followed easily. Equation
(3.4.20) gives

and using this in the conservation equation (2.3.15) yields

and hence

pg4=0 . (5.2.12)

Now if p = p(n) “such that ap/au # 0 then clearly p 4 = 0. From

(2.3.16) the expansion vanishes providing [t + p # 0. The vanishing

of shear and expansion implies that

Y411 =Y422="433=0 . (5.2.13)

It then follows from (3.4.15) and (3.4.16) that
Y231="132=10 (5.2.14)

and hence from (3.4.21) either a1 = ap or Y123 = 0. In the latter

case the space-time may be of Petrov type 1. It is clear that no
type 1 geodesic solutions exist as (3.4.12) implies o] = ap . Collins

(1984) has shown that those space-times with — p=p(p) are all
type D. Using (3.4.15) and (3.4.16) we find

Y133 =7233=0 (5.2.15)

which corresponds to Collins' dp = d3 = 0. In the case when the

acceleration is not aligned with the repeated p.n.d's of the Weyl
tensor, Collins has shown that (in our notation) o] = op.If the
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acceleration is aligned with this plane then either a1 = a9,
P.1=P2=0 or a;j = a3 and p | =p3=0. The latter case is
impossible however as (3.4.12) then requires ® = 0. Hence all
solutions in this class with the acceleration aligned with the

repeated p.n.d's of the Weyl tensor or are geodesic, necessarily
have a1 = a9y .

Note that in all shear-free rotating purely electric
perfect fluids we have

Y434 =Y311="Y322 (5.2.16)

from (3.4.17). Apart from the conjecture (5.1.1) the results
derived above are not dependent on the existence of an equation
of state.

§5.3 The Godel Solution

The Godel (1949) solution 1is a space-time
homogeneous dust solution of Einstein's field equations. The line-
element can be given by (Reboucas and Tiomno 1983)

ds2 = D2(y)dx2 + dy2 +dz2 - (dt + H(y)dx)2 (5.3.1)

where
H=V2D=emy . (5.3.2)

where m i a constant and the fluid 4-velocity is given by

. :52 , (5.3.3)

By defining an obvious orthonormal tetrad it is straightforward to
derive the claimed properties: the solution is shear-free non-
expanding and geodesic, of Petrov type D with Hj; = 0. I will now
solve the field equations using the conditions (5.1.2) as

simplifying assumptions (the assumption of vanishing expansion
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1§ unnecessary provided that the rotation is taken to be non-zero
from the comments of § 5.2 )

Firstly, the pressure must be constant otherwise
o =0 (Ellis 1967). This is consistent with the dust solution of

Godel as we may introduce the A-term. As shown in Chapter 3
dust solutions with a cosmological constant are geometrically
equivalent to the cases with constant pressure and zero

cosmological constant. Clearly Y4A4 = 0 as the space-time 1is
geodesic. From Raychaudhuri's equation (2.3.7)

L+ 3p = 402 (5.3.4)

and from (3.4.12) with ¢ = 3
1
0oy +g(}l+3p):0 . (5.3.5)

Now we know o] = a2 =oa say and hence o3 = -2a and
comparing (5.3.4), (5.3.5) and (5.2.8) we obtain

L=p=w=3aq. (5.3.6)
Further Ricci rotation coefficients vanish: from (5.2.16) clearly

Y311 = Y322=0 (5.3.7)

and from (3.4.14), (3.4.10) and (3.4.21) we have

Y423 = Y413 =0 (5.3.8)
Y234 = Y134 =0 (5.3.9)
Y312 = Y231=0 . (5.3.10)

The Jacobi identities are now given by simplifying the general

identities given in the appendix yielding:
Yi24.3- Y123.4=0 (5.3.11)
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T121.4 - Ya12 Y122 = 0 (5.3.12)
Y122.4 - Yao1 Y121 =0 (5.3.13)
Y1213 =Y12203=0 . (5.3.14)

Equations (5.3.12) and (5.3.13) imply that

2 2
(YIZI. + Y122}4:0 . (5.3.15)

The non-vanishing commutation relations are

1 2 4
[e1 . e2]="Toa1 ¢, -Yi22 e, 20 . (53.16)
2
= 5.3.17
[el ,e4] (oeu , ( )
1
[e1 ,e4]:—(n eu . (5.3.18)

a .
It is clear that eq is hypersurface orthogonal and constant since

Y3AB = 0 where A and B range from 1 to 4, and thus we may

choose

e3 4= (0,0, 1, 0) (5.3.19)

a ;
and since the tetrad vector eq commutes with all other tetrad

vectors it is also a Killing vector of the space-time. Hence 833 = 1,

_ — = 11 tric functions are independent
g13_g23_g43 0 and all me P

a . .
of the coordinate x3 = z. This does not affect e, , since it commutes

with eg . and hence it is still possible to set

ey =(0,0,0,1) (5.3.20)
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and we shall choose x4 = t. Consequently (5.3.15) implies

2 2
Y121+ Ya=F2 (x y) (5.3.21)

where F(x,y) is an arbitrary function of x! = x and x2 = y. Thus
there exist functions 6(x, y, t) such that

Y121 = F coso , (5.3.22)
Y122 = F sing . (5.3.23)

Also from (5.3.12) and (5.3.13) we obtain

Yi21.44 + 02 Y121 =0
' 121 (5.3.24)

Y122.44 + 02 Y122 =0

Since ® is a constant (5.3.24) can be integrated and

. a
we may set 6 = ot + ¢(x, y). The covariant components of e; and

e; are labeled so that

¢| = (A, B,0,C),

e; ~ (D.E, 0, F) (5.3.25)

and using (5.3.16) it can be shown that
Ar=wD, Di=-0A . (5.3.26)

Similar relations exist for B and E, and C and F so that A=Agcoso1,
B = B cos 82 , C=Cp cos 83 where 6; = ot + ¢6j (x, y) and Ag, Bp,
and Cq are constants of integration. From (2.4.4) and (2.4.5) we

may calculate the contravariant metric:-

g44 = o2 -1, gll = Ap2, g22=B¢? ,
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gl?2 = AQ Bg cos (81 -89),
gld = Ap Co cos (81 -63),
g24 =By Co cos (8] - 63) . (5.3.27)

.. . a .
Clearly the metric is stationary and e, 1s parallel to a

Killing vector. We may use the remaining coordinate freedom

t=t+f(x,y), (5.3.28)
X=X(xy), (5.3.29)
V=&Y, (5.3.30)

to simplify the metric. Now g24 transforms as follows

dy dy
T2 =gl £ +gl4 ) +==( 22 5 + g24 ) (5.3.31
g 24 == 1+l ) esn (222 g+ 224 ) )
consequently, we may set "g'24 = 0 by an obvious choice of the

function f(x,y). Any 2-space can be put into diagonal form.
Consequently with the remaining coordinate freedom we may set
gl2 = 0 . However, such coordinate transformations (5.3.29 - 30)
will introduce cross terms such that g24 # 0, but a further
application of (5.3.28) can then be used to set g24 =0 as in
(5.3.31). We may now determine g and the metric can be put

into the following form

ds2 = A2(><,y)d><2 + dy2 +dz2 - (dt + C(x,y)dy)2

(5.3.32)
From the the field equations for this metric we obtain
A
Cyy Ay  Cux_Zx (5.3.33)
C A C A
y y
1 Cy?
= = 5.3.34
Ayy= 2 A ( )
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where here and henceforward a subscripted coordinate denotes
partial differentiation. Integrating (5.3.33) we obtain

Cy =kA (5.3.35)
where k is a constant and substituting for Cy in (5.3.34) we obtain

1
Ayy= 7k2 A . (5.3.36)

The curvature K of a two dimensional metric of the form

ds2 = (W dx)2 + (V dy)2 (5.3.37)
is given by (Ehlers 1961):

K:_ﬁ((v,xw-l),x + (WyV1y) (5.3.38)
and hence for thev {x,y} 2-space of (5.3.32) we obtain

K= —é—gy-. (5.3.39)

Hence the 2-space is of constant negative curvature from (5.3.36).
Consequently we may choose coordinates to put the two
dimensional metric into standard form so that

ky
V2 : (5.3.40)

Integrating (5.3.35) we obtain
C=V2 A +G(x) (5.3.41)

and the function of integration G can be removed by a simple

coordinate transformation.
The metric form derived above can be put into the

form of Gaodel's (5.3.1) and (5.3.2) with the transformation
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o X
2

k
where m= "E This completes the proof that the only shear-free,

rotating and geodesic, purely electric perfect fluid solution of the
Einstein field equations is the Godel metric.
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CHAPTER 6

Irrotational Perfect Fluids with a Purely Electric Weyl Tensor

§6.1 Introduction

Relatively few solutions to the field equations with
shear are known, especially those without symmetries which
could represent inhomogeneous cosmologies (Wainwright 1981).
Shear-free fluids have been studied by several authors and many
of the most well known solutions belong to this category (see for
e.g. Kramer et al 1980). The shear-free condition has proven
useful in finding and classifying solutions but appears to be too
restrictive in a cosmological context. For example, Collins (1986)
has shown that the only shear-free models with matter
reasonable on a global scale are the Robertson-Walker
cosmologies. The conjecture considered in chapter 5 may limit the
generality of shear-free solutions. Also, in the study of stellar
models, it appears extremely difficult to extract physical
information from the known shear-free spherically symmetric
solutions (Stephani 1983). The lack of such shearing solutions with
an equation of state has led to a search for new solutions in this
class (Van Den Bergh and Wils 1985). Bianchi type 1 space-times
are anisotropic and have shear and expansion. Consequently, they
have been widely used in cosmology (MacCallum 1985). However,
the wuniverse is inhomogeneous and although Friedmann
Robertson-Walker and Bianchi type 1 models tend to describe
general properties of the universe quite well, they are particularly
deficient in, for example, explaining galaxy formation and other
processes where inhomogeneity may be important.

Observational estimates of the shear (and rotation) of
the universe place very low upper limits on their magnitudes at
the present time and consequently the universe is Robertson-
Walker to a good approximation. This does not stop us from

situations where shear and rotation may be more
Chaotic cosmology (Misner 1969) postulated an early

considering
important.
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epoch of turbulence whereby viscous processes ‘damped' the
shear to produce a homogenous universe. This was an attempt to
explain how such a 'special' universe could have arisen withdut
assuming any particular initial conditions. This theory is now
generally thought to be untenable (Barrow and Matzner 1977).

More recently the initial conditions problem has been
addressed by inflation theory (Guth 1981) which postulates a
rapid exponential expansion very soon after the big bang. This
expansion smooths out any inhomogeneities. Quiescent cosmology
(Barrow 1978) has suggested that the universe is, in fact, evolving
away from this homogeneity and it has been postulated that the
gravitational 'clumping' taking place defines an arrow of time
(Penrose 1985).

Furthermore, the universe is known to have very large
scale structure in the form of clusters of superclusters of galaxies
separated by large voids. The dynamics of superclusters has been
considered and shear has been shown to have an important effect
on the formation of structures from collapsing objects (Hoffman
1986).

All these observational and theoretical reasons
coupled with the Jack of relevant solutions gives considerable
importance to the search for new inhomogenous cosmologies.

In this chapter it is assumed that uj is irrotational
(0;;=0) and that the Weyl tensor is purely electric (H;=0).

This work generalises earlier work of Barnes (1973)
on shear-free irrotational flows. These conditions imply H;j=0
(Trumper 1962) but the converse ®;=H;;=0 = ¢;;=0 is not valid.
Furthermore as the non-vanishing of L + p is not used in this
work, most of the results will be valid for vacuum fields admitting
a hypersurface orthogonal time-like vector field with respect to
which HijZO.

Firstly, Petrov type 1 space-times are considered using
the orthonormal tetrad formalism outlined in chapters 2 and 3.
For non-vanishing shear the metric is shown to take on a diagonal
form. Certain solutions are shown not to exist and some of the
problems in finding new solutions are demonstratf:d.

Petrov type D space-times are considered and sub-

divided into classes depending on whether or not the shear is
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degenerate. If the shear is degenerate in the same plane as the
Weyl tensor then the metric is shown to be diagonal. When the
shear is not degenerate in this plane the proof is only extended to
the case when the acceleration is aligned to the plane of the
repeated principal null directions of the Weyl tensor.

A characterisation of the Szafron (1977) solutions and
spherically symmetric space-times is given. The field-equations
for one sub-class are solved completely but the resulting solutions
have been previously found by Allnutt (1982) from a different set
of assumptions.

Although no new solutions are obtained, the metric is
simplified in two classes where, according to Carminati and
Wainwright (1985), and to the author's knowledge, no solutions
are known. It is hoped that further analysis may yield solutions in
these classes.

§6.2 Petrov_Type I Fields

Petrov type I fields are characterised as having
distinct eigenvalues which in our notation is O] # 02 # O3 # O 1.
Clearly not more than one of the eigenvalues may be zero because
of the vanishing trace of E;;. The Petrov classification is concerned
only with the eigenvalues of the Weyl tensor and so the shear
may or may not be degenerate. If the shear does have repeated
eigenvalues then, since no direction is singled out, without loss of
generality we may set G]= 02.

Few Petrov type I perfect fluid solutions are in fact
known. As far as the author is aware the only irrotational
solutions with non-zero shear and a purely electric Weyl tensor
that have been found are homogeneous Bianchi type 1 space-
times. An inhomogeneous Petrov type 1 space-time with shear
and an equation of state p = yu has been presented (Wainwright
and Goode 1980) but it appears that Hjj is non-zero. If we are to
find solutions with realistic equations of state then these will be
Petrov type [ as the possible equations of state for type D
solutions are limited to the cases of constant pressure and stiff

matter (Carminati and Wainwright 1985).
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For Petrov type I fields we have immediately = from
(3.4.18) that

YaB4=0. (6.2.1)

Hence the spatial triad is Fermi propagated along u;. If, say,

¥123=0 then from (3.4.20), Y312 = Y231 =0 and all the tetrad
vectors are hypersurface orthogonal in this case.

Conversely if Yj23 # 0, then Y312 # 0 and Y231 %0

and none of the 3 spatial vectors are hypersurface orthogonal.
However in this case we can show that the shear vanishes. It
follows from (3.4.20) and (3.4.16) that, for some scalar A:

(61 -02) _(02-03)_(03~01)_

= = = A, (6.2.2)
(x1 -0a2) (02 -0a3) (o3 -01)
from which we may deduce
OA = AOA . (6.2.3)

If we now take the directional derivative of equation (3.4.20)
along u? and use equation (3.4.19) and the Jacobi identities
{0123}, {0132} and {0231} to eliminate the derivatives QA .4 ,

Y123.4 etc we obtain, with the aid of (3.4.16) and (6.2.3)

2 2 22 2 2
Mo—ay) Y123 = A (oy-ag) Ta31 = a(og-a) V312
(6.2.4)
Thus if A is non-zero it follows immediately that
(11+(X2 = (12+(X3 = (X3+(11

which implies that 0L, = 0 which is a contradiction. Hence we have

proved that for Petrov Type I fields that either the Weyl principal
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vectors are hypersurface orthogonal or the fluid is shear-free. In

the latter case it follows that the space-time is static (Barnes
1972).

When the principal vectors are hypersurface
orthogonal, coordinates xA exist such that

A

CAT = X'

In this coordinate system we have a line-element of the form.
ds2 = A2dx2 + B2dy2 + C2dz2 - V2d¢2 (6.2.5)

where A, B, C, V are functions of the space-time variables and we
label x1=x, x2=y, x3=z, x4=t. We note the following relations found
from the definitions of chapter 2:

Uy = VSZ ,
e = VIV,  ug=0. (6.2.6)
An orthonormal tetrad for metric (6.2.5) is given by u, and
ela:AS;, eza:BSZ, e3a:C82
Calculating the Ricci rotation coefficients for this tetrad we obtain

gB.A
£B

V.A
Yana== > Yasp=

0 gA .4

5 _ (6.2.7)
gA

Yian =0a t3

where ga =+ gaa and A = B. Clearly Y4a4 correspond to the
acceleration and ’Y4AA determine the shear and expansion of the

flow. The vanishing of rotation is equivalent to YiaB =0 for

A # B.
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The tetrad equations (3.4.10) to (3.4.21) with ;=0 are
the equations to be considered. However without further
simplifications these appear intractable in fact it will prove
difficult to solve them even in sub-classes of the type D case.

Allowing one of the Weyl eigenvalues to vanish e.g.
03 =0 then ol1=- 2= o say and from (3.4.19) we obtain

a(01-062) + o3(L + p)/2=0 .

The case 63 =0 is unhelpful as the solutions are either shear-free

and hence static, or conformally flat. If we now assume C1= G2

then either the space-time is shear-free or an Einstein space.
However Brans (1975) has shown using the NP formalism that
there are no Petrov type I FEinstein spaces with the following
conditions imposed on the Weyl tensor:

Yo = Vg4, V1i=Vo=VY3=0.

From the tetrad (3.2.7) defined in chapter 3 it is clear that these
conditions are equivalent to o3 = 0. The only possible type 1

solution in this case is therefore static.
The remaining equation of (3.4.20) is

3003
o.4 + 00 + 5 =0

Note that there are only two independent equations (3.4.20)
because of the vanishing trace of the shear and Weyl tensors. This
equation may be integrated, furthermore (3.4.22) are also easily
integrated but this still appears to give a complicated metric form

even in the geodesic case.
If we now drop the assumption o3 =0 but keep

61 = 062 = O, say then we have 'Y411 = Y422 and from (3.4.16)

Y311 = Y322 and hence

B = A k(x)y) . (6.2.8)
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Using (3.4.15) and (3.4.16) we obtain

Y411 = fz) (6.2.9)
C2= 062 g2(z) (6.2.10)

where f, g, and k are arbitrary functions of their respective
variables.

We might attempt to make progress by assuming
vanishing acceleration. However it can easily be seen that there
exist no type 1 geodesic solutions with repeated shear eigenvalues
as (3.4.12) implies that the Weyl tensor is degenerate in the same
plane as the shear i.e. 61= 62 = 1= 02 etc. In the case of non-
degenerate shear further assumptions still need to be made to
simplify the metric but the absence of any 'special' directions
(apart from the 4-velocity) limits any possible simplifications.

§6.3 Petrov_Type D Fields

Although perfect fluid solutions are known for all the
Petrov types only.a very few are known that are not type D or O.
The type D solutions include a wide range of interesting space-
times, homogeneous and inhomogeneous cosmologies, rotating
stellar models (Wainwright 1977a), all solutions with spherical
symmetry and all LRS solutions (Kramer et al 1980).

All Petrov type D vacuum solutions have been found
explicitly (Kinnersley 1969), wusing the Newman-Penrose
formalism. The solutions satisfy the following conditions:

1) The metrics depend on arbitrary parameters and
not arbitrary functions.

2) The metrics admit at least two Killing vectors.

3) The repeated principal null directions of the Weyl
tensor are tangent to shear-free geodesics.
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The perfect fluid solutions, in general, satisfy none of
these restrictions as is obvious from the Szekeres solutions
(Szekeres 1975). Conditions (1) and (2) are clearly not satisfied
from the comments made in chapter 4 and (3) is not valid from
the results of Wainwright (1977b).

Wainwright (1977a) has classified the type D solutions
according to the alignment of the kinematic quantities with the
repeated p.n.d.'s of the Weyl tensor. As has already been shown,

all solutions with a purely electric Weyl tensor necessarily have
uy aligned and hence belong to Wainwright's class 1.

For type D fields we may assume without loss of
generality that o1= 2= & , say. In this case from (3.4.21) and
(3.4.19)

Y312 ="231 =Y314=Y234 =0 (6.3.1)

and from (3.4.17)

(61- 62)¥123 = 0. (6.3.2)
This leads us to consider the following two classes:

a) 01=02 b) 01# 02

In both cases from (3.4.22) we have 7311 :7322 .

§6.4 Petrov Type D Fields with 61=02

In this section we assume C]= G2 = O, say. The shear

has a repeated eigenvalue and is degenerate in the same plane as
the Weyl tensor. Under the available tetrad freedom (3.4.9) we
may rotate in the {x,y} plane. The Ricci rotation coefficients

transform according to

Y 105= Y13 + 0.3, ¥ 124=Vioa+ 0.4
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We may choose ¢ so that Y 123 =7 124 =0 , as the integrability
conditions of ¢.3 =- Y53 and 0.4 = - Yipq :

-0.43 + 0.34 - V4340.4 + Y4330.3 =0 ,

follow from the Jacobi identity {0132}. Hence the tetrad vectors
are hypersurface orthogonal and the metric tensor is diagonal.
This result was proven for the shear-free case by an alternative
method.

The results (6.2.8) - (6.2.10) for type 1 fields only
depend on the shear degeneracy and so are also valid here. We
may also integrate (3.4.22) to obtain

V2Co = h(zt) , (6.4.1)

where h is an arbitrary function of integration.

Further simplifications can be made to the metric
functions by, for example, assuming vanishing acceleration or
limiting the functional dependencies of the kinematic quantities.
This latter step can be carried out in an invariant fashion by
effectively assuming some alignment condition with the Weyl
tensor. Wainwright (1979) has given a classification of
inhomogeneous cosmologies using this approach.

(i) Geodesic solutions

Using (6.2.8) and (6.2.10) the metric takes the form

ds2 = A2(dx2 + kK2(x,y)dy2) + 6-2 g2(z,t)dz2 - d2  (6.4.2)

where V has been set equal to 1 by a suitable rescaling of the t
coordinate. Any 2-space is conformally flat (Eisenhart 1949) and
hence we may put the {x,y} two dimensional metric into explicitly
conformally flat form. By absorbing the conformal factor of this 2-
space into A we have a line element identical to that assumed by
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Szekeres (1975). Assuming this metric form a priori for
irrotational dust he was able to solve the field equations
completely. The metrics comprise two classes, 'quasi-spherical
collapsing space-times' and ‘inhomogeneous cosmologies' (Bonnor
et al 1977). They possess a number of interesting properties
notably conformally flat slices and a lack of Killing vectors. They
also contain the Robertson-Walker space-time as a limiting case as
well as the inhomogeneous cosmology of Kantowski and Sachs
(1966). It has also been shown that they generalise in a natural
way the LRS space-times (Wainwright 1977b). Szafron (1977) has
attempted to extend Szekeres work to geodesic perfect fluids.
However the system of field equations is indeterminate and
further ad hoc assumptions are needed to find new solutions.
Barnes (1974) found some members of this class in a study of
space-times of embedding class 1 before the dust solutions were
recognised as inhomogeneous cosmologies.

In the course of deriving the metric form (6.4.2) it has
been shown that the solutions considered by Szafron (1977) as
perfect fluid generalisations of Szekeres' dust solutions are
uniquely characterised by the conditions

1) The Weyl tensor is purely electric and of
Petrov type D.

2) The fluid flow is irrotational and geodesic.

3) The shear tensor has two equal (non-zero)
eigenvalues and its degenerate eigenblade
coincides with that of the Weyl tensor.

Szekeres' original solutions have a similar
characterisation as dust. It is also known that if the space-time is
not LRS and an equation of state of the form p = p(i) holds, then
p'(L)=0 and the pressure is equal to a constant (Carminati and
Wainwright 1985). Since this is equivalent to zero pressure with a
cosmological constant these solutions are just the generalisations
of Szekeres' with a non-vanishing cosmological constant. These
have been found explicitly (Barrow and Stein-Schabes 1984). The
results of this section and the notes from Carminati and
Wainwright (1985) in chapter 3 show that these solutions
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complete their class 1. Since classes 2 and 3 have a condition that
prevent there being any non-empty Robertson-Walker metrics as
a limiting case the following theorem is valid:

If the magnetic part of the Weyl tensor vanishes and
the fluid flow is irrotational with an equation of state of the form
p=p(K) then the only solutions with a non-empty Robertson-
Walker metric as a limiting case are the generalisations of
Szekeres solutions with cosmological constant or the metric is
static or LRS.

Note that in the space-times of this section the density
gradient does not, in general, lie in the plane spanned by the
repeated principal null directions (p.n.d's) of the Weyl tensor. If in
fact p=p(z,t), the density gradient is aligned with this plane and
these space-times are contained within the next section where
p=p(z,t).

(i1) Solutions with p=p(z.t)

The acceleration vector has a component in the z
direction only and is contained within the plane spanned by the
repeated p.n.d's and may be referred to as the aligned case. In
general, [L=[(z,t) and the energy density is also aligned with this

plane. It may straightforwardly be deduced from equations
(3.4.15), (3.4.16), (3.4.18) and (3.4.22) that C is also a function of z

and t only. Thus (3.4.16) then implies 'Y311 = f(z,t) , which may

be integrated along with (6.2.9) to give a metric of the form:
ds2 = A2(z,t)(dx2+ k2(x,y)dy2) + C2(z,t)dz2 - V2(z,t)dt2

(6.4.3)

and the field equations for this metric give

k
———EX = constant , (6.4.4)
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as all other terms are dependent on z and t only. The curvature K

of a 2-d metric is given by (5.3.38) and for the {x,y} space in
(6.4.3) we obtain

k
K=->=>. (6.4.5)

This implies that the curvature of the {x,y} two dimensional
metric is constant and hence the metric is necessarily that of
spherical or related symmetry. Compared to shear-free
spherically symmetric solutions, few shearing solutions are known
(Kramer et al 1980). This led Van den Bergh and Wils (1985) to
consider shearing solutions with an equation of state. They found
that many assumptions still reduced to Friedmann cosmologies
but three new solutions as well as a generalisation of Wesson's
stiff fluid solution were found (Wesson 1978). Another approach
to these space-times was taken by Hajj-Boutros (1985) who took
A to be separable in radial coordinate (z in the above notation)
and t, and C and V to be functions of z only. Finally it is noted that
the general exact solutions for static spherical symmetry have
been obtained (Berger et al 1987) in terms of one arbitrary
function of the radial coordinate. The result may possibly be
extended to non-static fields.

(iii) Solutions with p=p(x.,y.t)

In this case we assume that the acceleration vector is
orthogonal to the plane spanned by the repeated p.n.d's. It has
components in the x and y directions only and hence from the
conservation equations, we may deduce that the pressure p, the
energy density p and the volume expansion 6 are functions of x, vy
and t only. We may immediately integrate (3.4.15) and (3.4.18) to
give Adc=i(x,y, 1), & a= j(x, y, t)o where i and j are arbitrary
functions of integration. Then using this along with (6.2.8) -
(6.2.10) and (6.4.1) we may deduce that V2j = h / g. As the left
and right hand sides of this equation are functions of x, y & t and
z & t respectively, then each is a function I(t), say, of t only. After
a coordinate transformation to make the metric of the {x, y} space
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explicitly conformally flat and after a suitable renaming of the
function i(x, y, t), the metric may be written in the form:

ds2 = i2(x,y,00~2/3(dx2 + dy2) + g2(z,t)c2dz2 - V2(x,y,t)dt2 .

Now, using (6.2.9) for Y411, we may deduce, by repeatedly

differentiating w.r.t. z and using a 'separation of variables'
argument, that f,, = 0 thus

o = f(t) - 1/36(x,y,t) . (6.4.6)

A similar argument applied to Y433 shows that g(z,t)

is a separable function of z and t. Hence, by a suitable rescaling of
the z coordinate, we can make g a function of t only. The metric is
independent of z and hence admits the Killing vector d,. As far as

the author is aware no solutions are known in this class. A similar
classification to the above can be applied to the shear scalar o.

a) o=o0(z.t)

From (6.2.10) we obtain immediately that C = C(z,t)
and then from (3.4.18)

azg—+ f(z,t) (6.4.7)

since Yg33 = 0 for E = 1,2 and where f is an arbitrary function of

integration . We can also deduce that 6 = 68(z,t) so Y433 g = 0 and
from the Jacobi identities {0133} and {0233}

Yag4 Ya33 =0. (6.4.8)
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Clearly if Y4g4 = O the analysis is as above in the case p = p(z,

)

and the metric is spherically symmetric. If Y433 = 0 then o =

NP

and using this in (3.4.20) gives
306 0
a.4+T + (u+p)'1"‘2-:0

Using the conservation equations «.4 can be eliminated giving
pP-1=gz

where g is arbitrary. Taking tetrad derivatives of this equation
and using the remaining conservation equation we obtain

(2o + G(z,))V? = H(zt)

where G and H are arbitrary functions. From (6.4.1) VZa is a
function of z and t only so Y4g4 = O for E=1,2 and the metric is

again of the form (6.4.3) and therefore has spherical or related

symmetry.

(b) 6 = o(x,y.t)

0
From (6.2.9) we have ¢ =~ 3+ f(z,t) and using this in

(3.4.15) we obtain
30 Y311 +£3 =0

and using (6.2.10) this can be integrated to give
A = e(h(z ) +1x y )/ c? .

As far as the author is aware no solutions are known in this class.
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§6.5 Petrov Type D Fields with 01# 02

The shear may be degenerate in this case as we have
not ruled out the the possibility of 6 1= 63. However, without loss
of generality we consider the case ©1# G2.

We have from (6.3.2) that Y123 = 0, and for geodesic
flows (3.4.11) implies Y124 = O but it has not been possible to

prove this in the general case. Now (3.4.20) gives

L+ p=6a (6.5.1)
and so the only Einstein spaces in this class are conformally flat
and hence of constant curvature. This relationship has been found
using the Newman-Penrose formalism (Carminati and Wainwright
1985) and shows that no non-empty Robertson-Walker metrics

exist as a limiting case in this class of solutions. The conservation
equations become

p.-A = - 6« Y4A4 , (6.5.2)
.4 =- 606 . (6.5.3)

On subtracting the Jacobi identity {0131} from {0232} and
comparing with (3.4.16) we obtain

(6.5.4)

¥.3
Y434 =Y311 = V322 = -5

where £ = 01- 0p Using (6.5.1) ... (6.5.4) in (3.4.18) and (3.4.22)
yields

Y133 = Y233 =0, (6.5.5)

pA = A = 30.a = -60Y4A4 . (6.5.6)
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Hence we may write p = i + c(t). Writing (3.4.20) with A=3 gives
0.4 - (363 -6) =0 (6.5.7)

and using this and (6.5.3) in the derivative of (6.5.1) along u, we
obtain

p.y = 18003 , (6.5.8)

which allows us to derive

c.y=3aYy33 (6.5.9)

and hence if Y433 = 0 there is an equation of state p = p(n). Also,
using (3.4.12) with (6.5.1) and (6.5.5) we obtain

C 2 2
6= Va33-a+ Y33 -Vaza3- Yaza - (6.5.10)

The remaining equations are (3.4.10) - (3.4.12), the Jacobi
identities and the shear derivatives (3.4.15) and (3.4.16) which

yield

Y433.c = 0, (6.5.11)
20.3

633 + 303 311 - —5— =0, (6.5.12)
0.1

oy1 +02-01T122+5 =0, (6.5.13)
0.2

61p +(©01-02) T211+5 =0 . (6.5.14)
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If we now put (6.5.5) and (6.5.11) in the Jacobi identities {0133)
and {0233} we obtain

Yaga Ya33 = 0 E=12 . (6.5.15)

It will be seen that in fact, all solutions have 7433 = 0 and hence

have an equation of state p=p(i) from (6.5.9).

(i) Geodesic Solutions

From (3.4.11) we have immediately that Y124=0 and
the metric takes the diagonal form (6.2.5) with V=1. This
simplifies the above equations a great deal: firstly we note that p,
U and o are all functions of time only and using (6.5.7) and (6.5.8)

so are 03 and 6 consequently

Y433 =f(t) = C=C(1) D(2)

and the function D(z) can be removed by a coordinate
transformation. The shear propagation equation becomes

‘ T4
Ya11 + Va2 +=—=0. (6.5.16)

Using (6.5.11) and the fact that 63 and 6 are independent of x and
y we can rewrite (6.5.13) and (6.5.14) as

)

2Y211+— =0, (6.5.17)
)y
2.1

2Y122 e 0 . (6.5.18)

On integrating these equations we obtain
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ABY = f5 (x&) | (6.5.19)

A28 =1, (x1, x3, 1) | (6.5.20)
B2Y = f; (x2, x3, 1) , (6.5.21)

where fA, now and henceforth, are functions of integration. Noting
that A=A(x,y,t) and B=B(x,y,t) from (6.5.4) these equations imply
that the fA must be separable functions of their respective
coordinates. So B may be written as Af(t) with appropriate
coordinate rescaling and an obvious relabelling of A. Using the

definition of expansion 6 = 7411 + Y422 + Y433 we can now show

that A may be written as F(x,y)g(t) where f, g and F are functions
of their respective coordinates. The field equations Ggi1 = Gpp = 0,

where Gij is the Einstein tensor, imply F,x = F,y = 0 (or else
01 = 062) and so with suitable relabelling the metric takes the

form:
ds2 = A2(t) dx2 + B2(t)dy2 + C2(t) dz2 - dtZ2  (6.5.22)

Hence we have shown that the only solutions in this class are
Bianchi type 1 space-times.

In fact it is possible to integrate the field equations
completely for the Bianchi type 1 metrics in this class. The tetrad
components of the Einstein tensor can be calculated with SHEEP
and henceforward the computer output will be given:

-1 -1 -1 -1 -1 -1
G =BCBC +tACAC +tAB AB
00 T T TT TT
-1 -1 -1 -1
G =-CC BB -BCBZC
11 TT TT TT
-1 -1 -1 -1
G =-CC -AA -ACAC
22 TT TT T T
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-1 -1 -1 -1

G =-BB -AA -ABAB (6.5.23)
33 TT TT T T

Here and henceforward the partial derivative is
implied by a subscripted coordinate. The shear propagation
equations (3.4.11) will also be used and subtracting the A=2
equation from the A=1 and writing in terms of partial derivatives
gives:

=0 . (6.5.24)

Now G111 — Gpp gives

i 81

C{A B

and since 7411 # 7422 in this class then this implies CT =0 and

we may set C=1. Clearly Y433 is now zero and there 1s an
equation of state p = p. Bianchi type 1 models with this equation
of state have been studied by Jacobs (1969) who found all the
solutions. However, we will find those in this class.Now

Gyy - G33 = ABpT + ATBT = 0, (6.5.25)

which is easily integrated to give

ABT = constant . (6.5.26)

Using this to replace A in (6.5.24) gives the following third order

differential equation
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B
Byp| °T BT 0
- = ; 6.5.27
BTI‘ T R ( )

2
Br
The cases BT = 0 and BT = 0 need also be considered. In the

former case it is possible to set A = B = t and this is excluded from
this class. With BT = 0 we obtain an exact solution as we may set

B=1 and A=t. Clearly this is a vacuum solution as the field
equations (6.5.23) now imply T;=0

Equation (6.5.27) can be integrated to yield

Bt - kBl/d

where k and d are constants and this is integrated to give two
classes

Nd=1, B = ekt+t0
(6.5.28)

ii)d =1, B=( --5—) (kt + to) 9/(d-1)

In case i) we may set B:ekt by rescaling y. From (6.5.26) A:eikt

but the positive root is not a member of this class since
Y411 # Y422 The metric is therefore given by

ds? = e 2K 4?4 e2KU ay? 4 dz? - a?

In case ii) we may set B = (" | by suitable rescalings of t and vy,
where n is a constant, and using (6.5.26) we may set A:tl'n_
This is the Oleson-Tupper solution mentioned by Wainwright
(1977). Both solutions were found by Allnutt (1980).

It would be interesting to see what restrictions Hjj = 0

is on the general Bianchi type 1 metric

ds2 = - d® + gop(® dx* dxP (6.5.29)
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In fact it will be shown that all Bianchi type 1 metrics necessarily
have a purely electric Weyl tensor and hence perfect fluid Bianchi
type 1 space-times have a diagonal metric form. The metric

(6.5.29) has ;= ujj = 0 and hence the identity (2.3.12) becomes
Hij = hikhjlo-(km;n M )pmntP . (6.5.30)

Now from the definitions of the kinematical quantities we have

1
Uj;j = Gij +'3‘9hij

and from the metric form (6.5.29)

4 gij-4

ui;j: -F ij = _”2_

Since u, is hypersurface orthogonal then p = 4 in (6.5.30) and in
fact it can be proved that Gjj;o, = O using

1 k k
Cijia = 2 &ij40 ~ I Yia Okj - I jo Oki

The only non-zero Christoffel symbols are I’ 4a;3 and T 0‘54, but
ci4=0and g 44 = 0 and so immediately o;;., = 0. Hence Hjj =0
and all Bianchi type 1 perfect fluids can be put into the diagonal
metric form (6.5.22).

(i1) Solutions with p=p(z.t)

Equation (3.4.11) again gives ’Y124= 0 and therefore

the metric is diagonal. Since ’Y414 = ’Y424 = 0 the acceleration is
aligned with the repeated p.n.d's and in a similar fashion as to the
geodesic case we may deduce that V, C, U, p, &, c, and 0 are

functions of z and t only. Hence (6.5.16) - (6.5.18) are again
applicable and can be integrated, furthermore we have

102




1311 = f4(z,) (6.5.31)

and from the definition of 8

Y411+ Ya22 = fs(2) . (6.5.32)
The metric then takes the form

ds?2 = A2(z) D2(x,y) (F2()dx2 + G2(t)dy2) + C2(z,1)dz2 - A2(z)dt2
(6.5.33)

As the metric is diagonal so is Tj; and the off-diagonal terms of the
Einstein tensor Gpg = 0 give

D,]_ = D52 = C,4A,3 = 0

Now if A,3= 0 then Y434 = 0 and we are in the geodesic case and

so we have Y433 = 0 and the metric can be put into the following

form
ds2 = A2(z) (F(t)dx2 + G(t)dy2 - dt2) + dz2 (6.5.34)

The tetrad components of Gj; for this metric are:-

-1 2 2 2-1-1

G =-2AA -AA)+ABGBG
00 77 Z TT

-1 2 2 2 -1
G =2A A +A(A)-AGG
11 77 y4 TT

-1 202 -2 -1
G =2A A +A(A)-ABB
22 77 Z TT
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22 -2 -1 -1 -1 -2 -1-1
G =3A(A)-AGG -ABB -ABGBG
33 Z TT TT T T

We also have

Azz-CAZO, (6535)
from (6.5.10) and p=p+6c. Now G11 - G2 gives

Gt BTT

G B =0 (6.5.36)

and from 2 x G33 - G11 - G22 = 0 we obtain the following two
relations

A2 - cA2 =x |, (6.5.37)

BTT GTT 2B{Gp
B~ G ' BG

= 4k . (6.5.38)

Equation (6.5.37) is, in fact, a first integral of (6.5.35). Making the
coordinate transformation Z = A(z) produces the same metric form
as obtained by Allnutt (1980). In fact, all solutions to the above
equations have previously been given by him and were derived
by placing certain ad hoc assumptions on the Newman-Penrose

spin coefficients.

If k = 0 the equation for B and G are the same as in the
geodesic case and the metrics correspond to Allnutts la(i) and
la(ii).

For k # 0 the remaining four solutions are obtained.
Putting b = logB and g = logG, (6.5.37) and (6.5.38) become

yry2=k , (6.5.39)

(g-b) =ae? | (6.5.40)
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where y = b + g and a is constant. Equation (6.5.39) can be
integtrated to vyield

}"2:k+de'2y

The solutions to these equations correspond to Allnutts' as follows:

a)K<0 d=0, 2b(i)
b)K>0 d<0, 2b(ii) € = 1
¢)K<0 d>0, 2b(ii) € = -1
k>0  d>0, 2b(iii)

It can be shown that all the above solutions (including the
geodesic ones) have non-degenerate shear. If the shear is to have
a repeated eigenvalue then either GT=0 or BT=0. An inspection of
the metrics shows that the only possibility is the Oleson-Tupper
solution with n=0 (or n=1). However this is the vacuum solution
derived earlier. The following theorem is therefore valid:

The Allnutt (1980, pp39-44) solutions are all solutions
to Einstein's field equations for perfect fluid subject to the

following restrictions:

1) The Weyl tensor is purely electric and of

Petrov type D.
2) The fluid flow is irrotational with a non-

degenerate shear tensor.
3) The acceleration vector lies in the plane,
spanned by the repeated p.n.d's of the Weyl

fensor.

(iii) Solutions with p=p(x.y)

For this case in general Y124 # 0 but for simplicity we

only consider solutions with Y124 = 0 in this section. From (6.5.4)

and (6.5.15) we have
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Y434 =Y311="Y322 = Y433 = 0 (6.5.41)

and hence the equation of state is p=p from (6.5.9) and (6.5.11).

Since p.4 = 0 we must have 63=0 from (6.5.8) and so =0 and we
have

Y411 + Yaa =0 (6.5.42)

As 0 = 0(x,y) and integrating (6.5.6) yields V2o = f(t) we may set
V=V(x,y) by a coordinate transformation. Equations (6.5.16) and

(6.5.17) are also applicable here and integrating (6.5.42) we
obtain a metric of the form

k2 X,
ds? = A2(x,y,t)dx2 +K2((x—;)t) dy? + dz2 - V2(x,y)dt2

(6.5.43)

f(x,t)
h A=——".
WATE %6 (y,0

As with the case p=p(x,y) and 01=07 the author is unaware of any
solutions with p, and py non-zero. These metrics belong to case

II(a) of Carminati and Wainwright (1985) for which no solutions
have yet been found.

$6.6 Concluding Remarks

It has been shown elsewhere that the assumption of a
purely electric Weyl tensor means that the 4-velocity is
necessarily aligned with a null tetrad determined by the Weyl
tensor. The consequent characterisation of type 1 space-times
may lead to simpler forms for the Newman-Penrose Bianchi
identities. Further work on these fields with an equation of state
is desirable in light of the results of Carminati and Wainwright
(1985) for type D fields. It would also be useful to see if a proof of
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hypersurface orthogonality of the tetrad vectors could be found in
the two remaining special cases: the type 1 static fields and the
type D fields with non-degenerate shear with the acceleration
vector not coplanar with the principal null vectors.

For type D fields, the 4-velocity lies in the 2-space
defined by the repeated principal null directions of the Weyl
tensor. With the additional assumption of vanishing vorticity the
shear tensor and Weyl tensor commute and this leads to a natural
choice of tetrad which is simultaneously an eigentetrad of the
shear and of the Weyl tensor. In all but one class all vectors in the
eigentetrad are hypersurface orthogonal and the metric takes on a
particular diagonal form. In what may be termed the ‘aligned'
case, when the acceleration vector also lies in the 2-space spanned
by the repeated principal null directions of the Weyl tensor we
have shown that all solutions are, in principle, known unless they
have at least three Killing vectors. Consequently the search for
new inhomogeneous cosmological models in the class considered
here must be restricted to the case where the acceleration does
not lie in this plane or to the type 1 solutions.

Where simplified metric forms have been presented in
this chapter the field equations have been calculated using SHEEP.
Unfortuneately no significant progress in integrating them has yet
been achieved.
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Appendix

The Jacobi Identities

The Jacobi identities are calculated in terms of Ricci rotation
coefficients using (3.4.23). An STENSOR program to do this for
orthonormal tetrads is given below. For ease of legibility and
comparison with the text, the output from the program has been
transferred to a word processor and the symbol V, used in the program

to refer to the Ricci rotation cefficients, has been replaced by Y.

(PDEF VMI A23)

<V ABC>+<V CAB>$

(DECLT (V A12))

(TCOMP VMI)

(LOAD CORD)

(SYMBOLIC V)

(TCOMP VMI)

(MAKE VMI)

(RPL GDD)-1$0$0$0$1$0$0$1$0$1%
(PDEF JAC A12)

<VADB Co+<V DB A ,C>+<VMI %E A B><VMID E C>$
(TCOMP JAC)

(FUNS (V ALL))

(DC MINUS EFUN (SXP) -1)

(MAKE JAC)

(PDEF JACID)

<JAC (A (B (CD>$

(DECLT (JACID (A 1 TO 3)))
(TCOMP JACID)

(WMAKE JACID)
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1) General Jacobi identies (Orthonormal tetrad)

iacom =Y - Y - +Y Y Y Y Y+¥Y ¥

0120 010,2 012,0 020,1 021,0 010 121 011 012 011 021

S AN O G A A A T S A G G A A
012 022 013 032 013230 020 122 021 022 023 031 023 130

S O A At R B ¢
030 132 030 231 031 230 032 130

jacm =Y - Y - %Y +Y -YVY Y- Y +V YV -
0121 0112 0121 120,1 121,0 010 012 010 120 011 020

Y Y- Y Y+ Y Y sy Y Y-rT v+ 7T v
012 122 013 132 013 231 022 121 031 123 031 132 032 131

A T i G O ¢
120 122 123 130 130 231 131 230

acp =Y - Y - Y + Y - ¥YY+XY ¥+ -
0122 0212 0221 1202 1220 010022 011 122 020 021

Y Y Y Y- Y Y Y- YT Y e YT
020 120 021 121 023 132 023 231 031232 032123 032 231

LYY -Y Y sy T-T
120 121 123 230 130 232 132 230

JACID —Y-Y-Y+Y+Y-Y-YY+

0123 031,2 032,1 130,2 132,0 230,1 231,0 010 032

Y Y LY Y Y Y e Y Y Y Y e Y YT
010 230 011 132 Ol1 231 020 031 020 130 022 132 022 231

Y Y -0 Y - Y Y+YY-Y Y+ Y Y +Y T +
031 121 031 233 032 122 032 133 033 132 033 231 121 130

121




S S SR (R G A
122 230 130 233 133 230

jacm =Y oY oY o+ Y Y Y-Y¥Y Y +Y Y -
0130  010,3 013,0 030,1 0310 010 131 011 013 011 031

S A S G B A N 0 S (s S e A A A
012 023 012230 013 033 020 123 020 231 021 032 021 230

+Y Y- T« -7
023 120 030 133 031 033 032 120

jacm =Y -°Y Y +°%Y - Y Y -¥YY+Y UV -
0131  011,3 013,1 130,01 131,0 010013 010 130 011 030

A A A A A A A A B
012 123 012231 013 133 021 123 021 132 023 121 033 131

A T A B
120 132 120 231 121 230 130 133

jacoh =Y oY =Y o+ Y - +Y - T -
0132 0213 0231 1203 123,0 230,01 231,0 010 023

-YY+YY+YY+YY—YY+YY~Y Y
010 230 011 123 011 231 021 030 021 131 021 232 022 123

Y v +Y Y -9 vy .oy Y +Y Y +Y Y +Y Y
022 231 023 122 023 133 030 120 033 123 033 231 120 131

A A A L
120 232 122230 133 230

iaco =Y - Y -7 A A A N A
0133 031,3 033,1 130,3 133,0 010 033 011 133 021 233

LY Y.y Yy ¥ v v Yy v v -7
003 132 023 231 030 031 030130 031131 032123 032 231

122



YO+ Y+ Y Y +Y Y
120 233 123 230 130 131 132 230

saco =Y =Y - Y + Y +« Y Y -Y Y +Y Y +
0230  020,3 023,0 030,22 032,0 010123 010 132 012 031

T R SR A S (R A A SR A e A G G
012 130 013 021 013 120 020 232 021 130 022 023 022 032

A A A Y A e
023 033 030 233 031 120 032 033

iacm =Y - Y «Y -Y -Y +°%Y +°%Y YV -
0231 0123 0132 1203 123,0 1302 1320 011 123

Y Y+Y Y «sYyYYyr-ry-vrv-riy.
011 132 012 030 012 131 012232 013 020 013 121 013 233

A A A S S A A G G A L
020 130 022 123 022 132 030 120 033 123 033 132 120 131

Y Y v v -ry
120 232 121 130 130 233

jaco =Y =Y -7 o+ Y + Y Y «Y Y YT -

0232 0223 0232 2302 2320 012 123 012 231 013 122

Y v oYY +Y vy .Yy Y «Y Y - Y +Y Y +
020 023 020 230 021 123 021 132 022 030 023 233 033 232

LY Yy ¥y v v oA
120 132 120 231 122130 230 233

acm =Y -Y -7 2 A A O G ¢ Y -
0233 0323 0332 2303 2330 012 133 013 132 013 231

123




S L A A A A A A A O 2 A R A
020 033 022233 030 032 030 230 031 123 031 132 032 232

+ Y Y -Y Y+ Y Y Y
120 133 123 130 130 231 230 232

jaco = -+ Y - oY+« Y Y-
1230 0123 0132 021,3 0231 031,2 032,1 010 023

Y Y +Y Y« Y +¥YY -vYvY -v Ay +¥Y VY +
010 032 012 030 012 131 012 232 013 020 013 121 013 233

O A A A O O 2 A A A A B
020 031 021 030 021 131 021 232 023 122 023 133 031 121

Y Y o+ Y Y+ 7
031 233 032 122 032 133

jaco =Y -Y - Y +%Y +7 Y -Y Y +Y Y +
1231 1213 1231 1312 1321 011023 011 032 012 031

P A A A O A O L T R O
012 130 013 021 013 120 021 130 031 120 121 232 122 123

A A A
122 132 123 133 131233 132133

awcp =Y - Y -7 +¥ Y Y «Y Y-
1232 1223 123,2 231,2 232,11 012 023 012 230 013 022

A A L AN A Y +¥ Y Y ¥ -
021 032 021230 022 031 023 120 032120 121123 121 231

Yy oy vy y«-v ¥ 1A
122 131 123233 133232 231233

jacp =Y - Y -7 L A A Y +Y Y -
1233 1323 1332 2313 2331 012 033 013 032 013 230
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YT 7YY T VY Y Y eYY LYY
021 033 023 031 023 130 031 230 032 130 121 133 122 233

Y+ Y Y Y Y eYy
131 132 131 231 132232 231 232

2) Jacobi Identities for Irrotational Fields with a
Purely Electric Weyl Tensor

For all the cases considered in chapter six, the tetrad is a shear
eigenframe and the vector e3 is Fermi-propagated along u2 which is

irrotational. The minimal set of restrictions on the Ricci rotation
coefficients 1s thus

Y4AB = Y314 =Y234= 0, where A#B.

We may apply these restrictions to the general Jacobi identities given

above with the following STENSOR program. Note that there is an error “;
in (A5) given in Barnes and Rowlingson (1989) which should be \
Jacidpp31 below. 1

% Specialisations of the rotation coefficients for irrotational purely electric
% fields

(SETNSUB 6 ESUL (DIFF 1))
V(0,1,2)$0%
v(0,2,1)$0$
V(0,2,3)$0$
V(0,3,2)$0%
V(0,1,3)$0$
v(0,3,1)$0$

(SETNSUB 2 (DIFF 1))
V(1,3,0)$0%
V(2,3,0)$0%
(ON ESUBS)

(WLSIMP JACID)

125



jaco =Y - Y oYY oY Y .Y v + Y Y
0120 010,2 020,1 010 121 020 122 030 132 030 231

aco =Y -7 + Y oY Y+ Y Y+ Y Y -YY
0121 011,2 120,1 121,0 010 120 011 020 022 121 120 122

iacbo =-Y -Y +Y -Y Y +Y Y -¥Y Y -«
0122 022,1 1202 1220 010 022 011 122 020 120
+Y Y
120 121

iaco =Y - %Y +°%Y Y -Y Y +Y Y -¥ Y
0123 132,0 2310 011 132 011 231 022 132 022 231

Y Y +Y Y
033 132 033 231

jacm =Y -Y -Yy°Y -Y Y-¥v°YvY-VvA
0130 0103 030,1 010 131 020 123 020 231 030 133

JACID Y o+ Y +Y Y +Y Y-¥Yv-vu
0131 011,3 131,0 011 030 033 131 120 132 120 231

1

JACID Yo o+ Y Y + Y Y+Y Y-vro-
0132 1203 123,0 231,0 011123 011231 022123

I

A T T B B (R S O
022 231 030 120 033 123 033 231 120 131 120 232

acp =Y o+ Y Y Y +7 Y Y Y
0133 033.1 133,0 010033 011 133 120 233

Ve R 2N A S SR St S A Yy
0230 0203 0302 010123 010132 020232 03023

LYY oYY Y+7 T+

_ ] + Y
JACID VoA 011 132 022 123 022 132

0231 1203 123,0 1320 011 123
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A A O AT G A
030 120 033 123 033 132 120 131 120 232

iaco =Y + Y + Y Y +Y Y Y Y +YV Y
0232 022,3 2320 022 030 033 232 120 132 120 231

jacp =-Y + Y - Y +YV Y +Y Y
0233 0332 2330 020033 022233 120 133

JACID =0
1230

iaco =Y -Y - Y +°Y -¥YY-¥YvV VA
1231 1213 1231 1312 132,01 121232 122123 122132

Y Y -v Y+
123 133 131 233 132 133

iaco =Y -°Y - Y + 79 + Y Y +Y Y 7T
1232 1223 1232 2312 232,01 121123 121231 122131

A A A
123 233 133 232 231 233

jaco =Y Y Y o+ 7 LYY sy Y YT
1233 132,3 1332 2313 233,1 121 133 122233 131 132

XYY Y YTy
131 231 132 232 231 232
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