Aston University

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policyand contact the serviceimmediately




ROLLING BEARING VIBRATIONS - THE EFFECTS

OF VARYING COMPLIANCE, MANUFACTURING

TOLERANCES AND WEAR
by

CURT STAFFAN SUNNERSJU

A Thesis Submitted in Fulfilment of the
Requirement for the degree of
Doctor of Philosophy
Faculty of Engineering

The University of Aston in Birmingham

26 LN

LAt B

LAY g MR

AUGUST 1976



SUMMARY

st e 3 e

In this study some common types of Rolling Bearing vibrations
afe analysed in depth both theoretically and experimentally. The study
is restricted to vibrations in the radial direction of bearings having
pure radial load and a positive radial clearance. The general
vibrational behaviour of such bearings has been investigated with
respect to the effects of varying compliance, manufacturing tolerances
and the interaction between the bearing and the machine structure into
which it is fitted. The equations of mction for a rotor supported by a
bearing’in which the stiffness varie: with cage position has been set up
and examples of solutions,obtained by digital simulation, is given. A
méthod to calculate amplitudes and frequencies of vibration compornents
due to out of roundness of the inner ring and varying roller diameters
has been developed. The results from these investigations have been
combined with a theory for bearing/machine frame interaction using
mechanical impedance technique, thereby facilitating prediction of the
vibrational behaviour of the whole set up. Finally, the cffects of
bearing fatigue and wear have been studied with particulaf emphasis on
the use of vibration analysis for condition monitoring purposes. A
number of monitoring methods have been tried and their effectiveness

discussed.

The experimental investigation was carried out using two purpose-
built rigs. For the purpose of analysis of the experimental measure-
ments a digital mini computer was adapted fer signal processing and a
suite of programs was written. The program package performs several
of the commonly used signal anzlysis processes and include all

necessary input and output functions.
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NOTATION

Area of contact ellipse

Minor axis of contact ellipse
Apparent mass

Major axis of contact ellipse
Ball passage

Approach of two elastic bodies
Cage diameter

Inner ring diameter

Outer ring diameter

Rolling element diameter
Dynamic stiffness

Elasticity modulus

Radial clearance

ZHmC

21rmi

21w
T

Roller passage frequency
Shear modulus

0il film thickness

Local stiffness

Eccentricity of contact zone

Roller length

Time lag in autocorrelation analysis

Rotor mass

Monitoring parameter
No. of rolling elements
No. of data points .

No. of samples



NOTATION.

SFREQ -

TL -

continued...

Osculation

Pressure function

Probability of correct operation
External force

MPARdamaged/MpAR

good
Horizontal reaction force
Vertical reaction force
Roller passage

Sampling frequency
Trigger level

2w/N

Speed of roller over plane (in Chapter 3)
Speed of cage

Speed of inner ring
Speed of cuter ring

Robustness of monitoring method

Mechanical Impedance

Inclination of track

Horizontal shaft centre displacement
Vertical shaft centre displacement
Lubricant viscosity

Poisson's ratio

Angular cage speed

Angular inner ring speed

Angular outer ring speed

£ M
;_rp/Z'h



CHAPTER 1

INTRODUCTION

In recent years there has been a growing interest in techniques for
condition monitoring of key components of mechanical systems. There
exists a number of methods, based on vibration analysis, by which the
condition of rolling element bearings can be monitored with scme success.
It was felt however, that in order to improve or replace existing
techniques and for the user to feel confidence in using such techniques,
there was a need for a more thorough understanding of the fundamental
mechanisms relating the state of wear of a bearing to the vibrations this
wear gives rise to. Having embarked upon such a line of study it soon
became obvious, that a reliable understanding of the way in which a sound
bearing excites vibrations was a necessity both for the understanding of
the wear-vibration relationships in a worn bearing and also to avoid
confusion between vibration components which occur naturally in a good
bearing and vibrations due to deterioration of a worn bearing. A literature
survey of papers concerned with various types of vibrations in rolling
bearings revealed that there exists gaps on several important points in
the kncwledge of such vibrations. The fact that comparably little research
effort has gone into this field (compare the very detailed investigation dene
on rolling bearing lubrication) is somewhat surprising,since the dynamic
behaviour of the bearing 1s of vital importance for the quiet running
properties of the bearing, and also for the accuracy with which a shaft or
spindle supported by rolling bearings will run.  There are even indications

that the length of operaticnal 1ife of the bearing can be considerably



affected by dynamic effects, which is a fact nét previously recognised.

A further reason to improve the knowledge of vibration generation of rolling
bearings is that if this process is well understood it provides a means
with which to study the operation of the assembled bearing, both from the
point of view of quality control and from the point of view of studying
the effects of various design parameters such as radial clearance, number
of rolling elements, cage pocket clearance and so on. Hence, the original
aim of improving monitoring techniques for rolling bearings has been
widened into a study of vibrations generated also in new bearings. This
is done partly as a necessary and logical extension of the original scope,
partly because of the interest in and importance of these phenomena in

their own rights.

In this study attention has been concentrated on radial vibrations of
bearings having radial loads. The bearing is assumed to be mounted in an
application where the outer ring is stationary and the inner ring supports
some sort of rotor or spindle, the movements of which near the bearing
are restricted only by the actions of the bearing investigated,see Fig.1l.1.
This is obviously not an exhaustive treatment, but the described application
is certainly a very common One, and one which allows analytical treatment.
To get an overall view of the various types of vibrations occurring 1in
rolling bearings, the types of vibrations can be divided into certain groups,
see Fig. 1.3. An attempt to distinguish and define the elements in the
process of vibration excitation and propagation is done in the block diagram
of Fig. 1.2. This diagram should not be taken too literally, the boxes
do not represent Transfer function in the strictly mathematical sense and

there might be equally correct alternative ways of setting up the diagram.



It does however highlight what elements in the vibratory process that
can be distinguished and which could be studied in more detail. The
various types of vibrations of Fig. 1.3 will be discussed below and
references to Fig. 1.2 will then be made and.the meaning and properties

of the block diagram discussed in mere detail.

The first distinction to make is between externally excited
vibrations and self excited vibrations, see Fig. 1.3. In the case of
externally excited vibrations the bearing is not the origin of the
exciting forces, wiich instead can come from for instance unbalance of
the rotor or time varying rotor load. The properties of the bearing

have an influence over what vibrations these external forces will excite
and in Fig. 1.2 the boxes A and B are the ones of importance for this
type of vibration. The way in which the external forces are transmitted
through the bearing (box A) 1is discussed in Chapter 6, while the
Mechanical Impedance of the bearing holder (box B) is investigated in

Chapter 8.

Self excited vibrations can be defined as 'Vibrations in which the
alternating force that sustains the motion is créated or controlled by the
motion itself; when the motion stops the alternating force disappears'
(den Hartog). The most fundamental type of self excited vibrations in
rolling bearings is the so called Varying Compliance (VC) vibrations which
arise due to the inherent properties of the bearing type and would occur
also in ideal bearings being geometricaily and elastically perfect. Ve
vibrations can crudely be said to arise because the stiffness of the bearing

ssembly varies according to the angular position of the cage. As will be



further explained in Chapter 2 the previous theory (Meldau) for VC

vibrations is valid only for static or very slowly rotating bearings,
i.e.vfor conditions where the rotor is always in static equilibrium.

It was previously assumed that for a bearing running at normal speeds,
the inertia of the rotor would only reduce the shaft movements compared
to the static case, but that it wquld otherwise behave in much the same
way as Meldau's theory predicts. As will be shown in Chapter 6, which
investigates box C in Fig. 1.2, the inclusion of inertia forces in the VC
vibration model gives an entirely different character to the solutions.
In Chapter 6 a computer program, DYNSIM, was written to simulate the
movements of a rotor supported by rolling bearings. The dynamic loads
prediéted can for normal operating conditions be of the same order as the
static weight of the rotor. It has been possible to substantiate the

theoretical model with several experimental rums.

An approximate model for VC vibrations can be set up if the.rollers
and raceways of the bearing are assumed to be absolutely rigid. Due to the
geometry of the bearing assembly,the centre of the shaft supported by a
bearing with positive clearance will move up and down relative to the outer
ring,as the rollers pass under the load. Since this theory does not |
include inertia forces and flexibility of the components,it is called a
Kinematic model. The Kinematic model for VC vibrations emerges as a
special case of the theory for vibrations in real bearings described below.
To summarise the three models for self excited vibrations in idealized
bearings ,one should note that the Kinematic model is valid only fox small
loads and low speeds (otherwise the assumption of zero elastic deflection

does not hold true), Meldau's theory is valid for all lcads but only low



speeds and the Dynamic model presented in Chapter 6 is valid for all loads

and speeds. Meldau's theory reveals characteristics that cannot be
explained by the Kinematic model and the Dynamic model reveals characteristics

which' cannot be explained by Meldau's theory.

The prime reason to develop the Kinematic theory was however not to
describe VC vibrations but for the purpose of analysing vibrations due to
form errors. In real bearings there inevitably exists form deviations from
the theoretical design and the vibrations due to these form deviations will
add to the previcusly described VC vibrations. The problem of calculating
what vibrations these form deviations give rise to becomes very complex if
the complete Dynamic model is used. It is for this reason that the
Kinematic model was developed. It corresponds to box D in Fig. 1.2 and
has successfully been applied to the vibration types within the dashed line
in Fig. 1.3. The Kinematic model works best for low speeds and loads and

where the displacement function of the rotor is smooth and continuous.

Unlike the Dynamic model and Meldau's model it always gives a statically

determinatesituation, i.e. only two rollers at a time carry the load.

Vibrations as a function of form deviations have been studied in a
number of papers, see Chapter 2, but the results of the investigation given
in Chapter 7 adds considerable new information to this subject. Only two
types of formerrors, which seem particularly important in practice, namely
waviness of inner ring and non uniform roller diameters; have been studied.
Most previous papers study bearings in rather arpificial situations like
"free' bearings having no bcaring hcuse and loaded only with a small, axial

load. In fact, no paper has been found that studies effects of form



deviations in radially loaded bearings and takes into account the important
effect of clearance. This effect is included in the Kinematic model
developed in Chapter 7 for vibrations due to inner ring out of roundness.
The idea of describing the out of roundness iA terms of a Fourier series
has been taken up from a previous paper, but by using digital technique to
analyse the form deviations, the accuracy has been greatly improved. In
earlier works it has in some cases been possible to discover a correlation
between inner ring waviness and bearing vibrations for the uncomplicated
case of lightly axially loaded bearings, but with the methods used in
Chapter 7 it has been possible to repeatedly predict the frequencies and
relative amplitudes of vibration components arising from inner ring waviness
for cases of realistic loads and speeds and for bearings with radial

clearance.

The effect of non-uniform roller diameters is a much simpler thecre-
tical problem than the  effect of inner ring waviness. It is studied in
Chapter 7 using a simplified, almost intuitive, Kinematic model. Several
previous papers have paid attention to the possibility that varying roller
diameters could cause vibrations. Some of these employ highly theoretical
methods where the effects of varying stiffness in different directions due
to varying roller diameters in pre-loaded bearings can be shown to excite
vibrations. It seems however that the most obvious way in which to
analyse this effect has been overlooked. It is shown in Chapter 7 how the
frequencics and relative amplitudes of these vibration components can be
accurately calculated if the size of the diameter differences and the

order in which the rollers are located in the cage is known.



In airborne noise from rotating bearings the rattle of the cage is

often a prominent part. The sounds emanate from transient loads between
the cage and individual rollers. Since these loads are directed
tangentially only a small part of them are propagated through the
structure in which the bearing is mounted. Because of its transient
nature and erratic occurrence this.phenomena is not well suited for

analytical treatment and is not investigated in this thesis.

In a new bearing all the previously described vibration types occur.
As the_bearing becomes worn during operation,the surfaces of its components
will deteriorate and the vibration characteristics of the bearing change.
If the relationships between surface damages and vibrations generated are
known,it is possible to determine the state of wear of the bearing by
measuring and analysing the vibrations excited during operation. Such
methods of inspection,which do not interfere with the normal operation of
- the bearing is of great interest in applications where sudden breakdowns
can be catastrophic such as bearings in aircraft engines, bearings in
navigational gyroscopes and so on. Also in applications where breakdowns‘
dc notput life at risk . the commercial gain of knowing beforehand when a
bearing is getting near the end of its life can be very considerable. The
obvicus example is continuously operating process plants where an unexpected
breakdown can mean days of lost production before a spare bearing has been
obtained and fitted. Prior knowledge of the state of the bearing would
allow for the replacement of the bearing to take place at some regular
shutdown for maintenance. One reason why monitoring of bearings is so

useful is that prediction of bearing life is difficult. Rolling bearings



have an extremely wide scatter of operational life - a factor of ten

between the best and worst 10% of a batch running under the same con-
ditions is normal. This means that for the designer to be reasonably
confident of trouble free operation of a set of bearings, he must over
dimension the bearings considerably. By choosing smaller bearings
combined with an adequate monitoring system, it might in many cases

be possible to obtain higher reliability to a lower total cost.

The same sort of general model applies, whether the surface
imperfections of a particular bearing are due to manufacturing errors,
or arise as an effect of wear. Thus, box D in fig. 1.2 governs the
vibration generztion also for vibrations due to wear. Chapter 9 is
devoted to such vibrations and condition monitoring methods based on
vibration analysis. Subsurface fatigue (flaking and pitting), as well
as deterioration due to abrasive wear, have been investigated. Worn
bearings have been obtained by running bearings under heavy load in a
purpose built wear rig (see Chapter 4). The bearing surfaces have been
inspected regularly during these runs, and when signs of wear have
occurred, the bearings have been mounted in a vibration test rig (see
Chapter 4) and run under various loads and speeds. It has been
possible to detect characteristic changes of the vibrations emitted,

which are correlated with the occurrence of damage to the components

of the bearings.

Just as wear causes vibrations, vibrations might cause wear. It
seems reasonable to assume that the oscillating forces between rings

and rollers significantly affect the rate of wear progression. There



is thus a feed back loop to box E, (fig.l1.2) determining the increase
of the parameter X, which represents the surface irregularities in
some suitable way. A systematic investigation of Box E would require
wearing out large series of bearings, and this is not a practical
proposition with the sort of facilities available.  Hence, box E has
not been included in the study of the wear-vibraticn properties of
bearings in this thesis. There are however practical experiences
that support the assumption of the type of model used. It is often
observed that wear in bearings, once started, progresses in an
accelerative way, and this is exactly the sort of result one would
expect in the presence of a feed back loop (increase of wear, causes

increase of vibration, causes increase of wear, and so on).

The mounting of bearings in a machine structure has a fundamental
effect on both the generation and propagation of vibrations (box B in
fig. 1.2). An approximate way of studying this problem is presented
in Chapter 8. The method is based on experimentally determined
functions of Mechanical Impedance of the bearing pedestal. These
functions have been obtained by use of transient excitation techniques.
Although this method of measuring impedance is not new, the occurrence
of commercially available digital recorders gives the method added

attraction as regards accuracy and speed.

The signal processing 1is obviousiy a crucial part of this work.
This has been done mainly with a digital mini computer adapted for signal
analysis. A program package for this purpose was written, and is

presented in Appendix TI. Some special aspects of signal processing



with digital techniques is discussed in Chapter 5, and the theoretical

background to Spectral Analysis is described in Appendix I.

Dimensions are in SI units throughout the thesis, unless other-

wise is explicitly stated.
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Fig 1.1 The type of rotor - bearing - pedestal arrangement

studied in this thesis.
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CHAPTER 2

SOME PREVIOUS STUDIES OF ROLLING BEARING VIBRATIONS

This review, which is not ciaimed to be exhaustive, means to show
how the knowledge of rqlling bearing vibrations has evolved up to the present
state of the art. In the same way as in the rest of the thesis, it will be
distinguished between vibrations in idealized kearing, vibrations in real
bearings and vibrations due to wear, the latter being essentially of interest

from the point of view of condition monitoring.

The most fundamental type of rolling bearing vibration is the Varying
Compliance vibration. It arises because the geometric and elastic
characteristics of the bearing assembly varies according to the cage position.
This effect was studied in a report by Perret published in 1950, see ref (19).
-Perret's investigation is purely theoretical and deals with a deep grocve ball
bearing having ten balls. To calculate the local deformations (as opposed
to bending of the rings) he makes use of the force-deformation relationships
given by the Hertzian theory, see Chapter 3. The Hertzian theory gives a
stiffness coefficient that depends on deformation, i.e. a non-linear force-
deformation relationship. An additional cause of non-linearity, which
remains also when the local stiffness coefficient is constant (as in roller
bearings), emerges if a complete bearing assembly with radial clearance is
considered, In such a bearing a varying number of rollers carry the load,
so that the assembly stiffness changes step wise when a rolling element

enters or leaves the load carrying zone. The assembly stiffness will be a



function of the local stiffness, the clearance, the ekternal load and the
angular position of the cage. Perret éalculated the displacement cf the
centre of the inner ring with a constant external load for cage positions
such that either a ball or a gap between two balls were directly under the
load 1line. The calculation showed that generally the position of the
inner ring centre would not be the same at these two cage positions. Thus,
as the bearing rotates the centre of the shaft will move up and down as the
balls pass under the load. The period of the movement will be 2m/N, where
N is the number of balls in the bearing. Perret found that at certain
combinations of load, clearance and N, the vertical movement could be made
zero. These combinations would then give a particularly steady and silent

running bearing.

Perret's approach is however incomplete in that he only studies the
bearing at the instants when the balls are arranged symmetrically around
the load line, i.e. with either a ball or a ball gap directly under the
load. In the intermediate cage positions however, the balls are non-
symmetrically arranged, which means that when loaded with a vertical load,
the centre of the inmer ring will undergo a horizontal as well as a vertical
displacement, Thus, generally the shaft centre will follow a closed trace
or locus in a plane perpendicular to the axis around which the shaft
rotates. A complete treatment of these shaft movements was given by
Meldau in 1951, see ref (20). The case where horizontal movements are
also considered is a great deal more complicated than the case treated by
Perret. Meldau has developed expressions for vertical and horizontal
displacements as functions of external load, radial clearance and local

stiffness for a bearing having ten rollers or ten balls. The operating



parameters are combined into one parameter, with which the resulting
displacements can be obtained as a function of cage position from a graph.
By reading this graph for consecutive values of cage positions ,the locus

of the shaft centre can be constructed. Examples of this is shown for a
number of parameter combinations both for ball and roller bearings. As
could be expected, it appears that in general the locii for roller bearings
have sharper corners and undergo more abrupt changes than in the case of
the ball bearings. The graph covers most normal operating conditions but

is valid only for bearings with ten rolling bodies.

Since both Perret and Meldau made their calculations on bearings
with ten balls, it is possible to compare their results. Perret claims
that for certain combinations of load and clearance no vertical movement
and a particularly silent and steady running bearing wouldresult. For
such a combination of load and clearance Meldau's method gives a similar
result, no vertical movement, but Perret's claim for particular steadiness
of running is not fulfilled because Meldau's graphs show that this
combination of parameters would instead give a large horizontal movement.
A study of Meldau's results shows that there exists no parameter
combinations giving zero both vertical and horizontal movements although,
there are combination giving zero vertical or zero horizontal movements.
Meldau underlines that his method applies only to static cases or cases
where the shaft rotates extremely slowly. Meldau's paper is an important

work and has become something of a classic in the study of rolling bearing

vibrations.



A special case of VC vibrations,which is easier to treat analytically

was investigated by Perret in 1952, see ref (21). In bearings having

large clearances, few rollers and moderate load,it will be quite comﬁon

that only two rollers at a time carry the lcad. This makes the system
statically determinate which simplifies the theory, and Perret gives a

more detailed account of the shaft movements for this case. A further
simplification of this statically éeterminate case was made by Barakov

and Shavrin in 1969, see ref(22). In this paper the rings and rollers

are assumed to be absolutely rigid so that no local deformations occur.

Due to the geometrical changes that occur when thie cage rotates, there

will still be a vertical and horizontal movement of the shaft centre at
roller‘passage (RP) frequency. Barakov and Shavrin also show how the
displacement functions can be expanded into Fourier series, thereby
demonstrating that vibrations can be expected, except for at RP frequency
also at harmonics thereof. Unfurtunately there appears to be an

arithmetic error in the calculation of the Fourier coefficients although

the main character of the solutions is correct. The approximation with rigid
components has been used in this thesis in Chapter 7 to study effects of
form errors of bearing components on vibrations, where a complete,statically
undeterminate model would have been too cumbersome to use. Tallian and
Gustafsson published a survey of research done on bearing vibrations in 1964,
ref (23), which to a large extent is based on a report by Gustafsson in 1963,
ref (24). This report is an ambitious investigation of the whole problem
of bearing noise and vibration, see also below. For the part that deals
with VC vibrations, Gustafsson has used a digital computer to calculate the
shaft movements according to Meldau's theory. Analogous to in Barakcv and

Shavrin's work, the Fourier coefficients are then calculated by computer.



It is claimed that the curves presented are valid for any number of roliing
bodies in the bearing. There is no detailed motivation of this in refs.
(23) or (24) and with reference to Meldau's paper it is difficult to see

how this could be the case.

Nene of the above mentioned references give any experimental verifi-
cation of VC vibrations. In a paper from 1962, ref.(25), Tamura and
Taniguchi have measured the position of a shaft supported by a ball bearing
for different cage positions and found movements that correspond to those
predicted by Meldau. With the shaft running at normal speed they also
found vibrations of the beafing fundament at ball passage frequency.
Unfortunately no line spectrum of the vibrations was presented so the

results are difficult to interpret.

Except for the radial VC vibrations a few other types of vibrations
can cccur in idealized bearings.  Tamura and Taniguchi have published a
series of papers,refs. (26) to (28), dealing with self -excited vibrations
in the axial direction of rotors supported by deep groove ball bearings.
These vibrations are said to be of particular importance in small

electrical machines. Gustafsson, ref.(24) has studied the flexural

-

vibrations of the outer ring of a bearing which is not clamped in a
bearing housing but where the outer ring is allowed to bend freely. It
is then assumed that the outer ring will deform into a polygon with a

number cf corners equal to the number of rolling bodies,and that this

polygen will rotate with the ball or roller set.



In previous sections attention was focussed on the vibrational

properties of idealized bearings. In a real bearing there will always
exist deviations from the theoretical design as regards dimensions and
surface properties. These inaccuracies are widely regarded as being of
major importance to the noise generation of rolling bearings. In the
context of bending vibrations of the outer ring the concept of "free™
bearings was mentioned in the previous paragraph. A lot of work done
on vibrations due to form deviations.have beendone on free bearings,
i.e. bearings mounted on a smooth running shaft with no real bearing
house and usually only with a very light axial load. This is probably
so because running bearings in this way is a much used means of quality
control within the industry, Originally the vibrations were checked by
hand or by listening to the bearing, later electronic instruments have
been introduced. This is an appealing form of quality control because
it is fast and cheap and it allows testing of the complete assembly.

The investigation of relationships between form errors and vibrations in
free bearings are therefore important from the manufacturers' point of
view, but for the bearing user it is more interesting to be able to
predict vibrational behaviour of a bearing which is properly mounted
(clamped or press fitted) and run with realistic load and speed. A
bearing which is noisy when run as a free bearing is likely to be noisy
also in a practical application, but generally one must conclude that
results from free bearing tests can not easily be applied to any other

running conditions in a detailed way.

An early experimental study of the correlation between vibrations

and bearing accuracy was done by Lchman in 1953, ref.(29). Contrary to



earlier standards for bearing noise and .accuracy, Lohman showed that for

free bearings the relative maximum displacement between inner and outer

rings is no itic: . -
g t a critical factor but that instead the high frequency movements

generated by waviness and imperfections of the bearing surfaces have a
direct effect on noise generation. Lohman also measured and analysed the

frequency composition of noise generated by bearings mounted in electrical

motors. He found that the frequency spectra were rather unstable and could
change considerably after a period of time. Attempts to reduce the noise

level by changing the clearance of the bearings were not successful, but by
stiffening the endplates of the motor, where the bearings were fitted, a
drastic reduction of noise was achieved. A further noise reduction

followed the fitting of the bearings into sleeves of hard rubber.

In free bearings large amplitudes of vibrations occur at the natural
frequency of the outer ring. Gustafsson in ref.(24) and Halm § Woithe in
ref. (30) have shown methods of calculating these natural frequencies.

It was also shdwn in both reports by use of spectrograms, that these
vibrations actually occur at the calculated frequencies. These natural
frequencies do however become irrelevant when the bearing is fitted in a
mechanical structure. Not only do the position of the resonances move
drastically, but Dowson in ref.4) shows that, when a bearing is press
fitted in a solid steel fundament, the only significant deformations

that occur, are the local ones.

Tallian § Gustafsson made a study of noise due tc waviness both for
free bearings and for bearings in electrical machines, see ref.(23) & (24).

They found that the characteristics of noise (measured with a microphone)



was fairly well correlated with that of vibrations of the bearing

housing (measured with an accelerometer). The prime source of
vibrations was found to be geometrical irregularities of the bearing
components. In order to measure and characterise the form deviations,
the inner ring was mounted on a smooth running spindle and a pickup was
made to slide against the ring as the spindle rotated at high speed.

The output of the pickup was fed through a filter having a few broad
bands, so that the frequency distribution of the waviness of the ring
could be studied. Sizeable waves of up to 100 cycles per circumference
were found, Bearings classified in this way were mounted in electrical
motors, and it was shown conclusively that the vibrations generated by
the motors were dependent on the accuracy of the bearing components. An
attempt to identify individual peaks in spectrograms from free bearings
does not appear to be successful. The two reports represent an ambitious
attempt to describe rolling bearing vibrations and gives valuable information
on how over all noise levels are related to bearing quality, but it does
not give any detailed insight into the mechanisms that relate form

deviations with vibrations.

According to ref.(23) the tightness of the fit of mounting of the
bearing does not have a great influence on vibration levels. In a more
detailed study of this effect by Kutchev § Pavlov in 1974, ref.(32), the
authors studied vibrations of bearings with adjustable fit mounted in
electrical motors. The results are not entirely consistent for all
motors tested, but generally the vibration level increased with increased
clearance. For bearings with negative clearance(preloaded bearings) the
vibrations increased with increasing preload. This latter effect was

explained by the increasing effect of out of roundness of the bores into



which the bearings are press fitted. Hence, minimum vibrations occurred

when the tightness of the fit was such that zero clearance of the bearing

was obtailned.

The correlation Tallian § Gustafsson found between form deviations
of components and ncise and vibrations of the bearing, is confirmed in a
paper by Lura & Walker in 1972, ref. (31). Lura § Walker demonstrated
that bearings with form deviations of few (5 - 11) cycles per circum-
ference produce a comparably high level of low frequency vibrations, while
bearings having ccarse surface finish produced higher levels of high
frequency vibrations, Lura & Walker also give descriptions of a number

of commercial bearing vibration testers.

A paper along the same lines was published by Scanlan in 1965, (ref.53).
This paper deals mainly with airborne noise from bearings and is chiefly
concerned with the experimental apparatus required for its measurement.
Scanlan points out that results from free bearing tests are not applicable
to mounted bearings. When used for quality control purposes, however,

free bearing tests are shown to be relevant and well repeatable.

A refinement of the methods of correlating vibrations and surface
irregularities of bearings was presented by Yhland in 1968, ref.(33).
Instead of feeding the output from the velocity pickup Gliding against
the inner ring track) to a few broad bands as was done by Tallian §
Gustafsson and Lura & Walker, he instead made a narrow band spectral ana-

lysis of the velocity signal. The peaks in the spectrogram represent the

Fourier coefficients that make up the velocity signal. This is an appealing



approach because it allows identification of the individual waves of the

track, and Yhland was able to show how a bearing with an inner ring track,
having a characteristic spectrogram, generated vibrations that had a
spectrogram, where these characteristics were apparent. This method

thus allows for a detailed correlation between the inner ring form
deviations and the vibrations genefated'in a free bearing. The fact

that a velocity pick up was used gives the form deviations the dimension
of velocity and the size of the amplitudes of the waves are thus dependant
on the speed with which the spindle was rotating. This is somewhat
unfortunate and it is felt that this kind of freak units with no direct
physical interpretation should be avoided. Further, the methed of
measurement is open to some criticism.  The pickup might lose contact
with the track on some points, and there is always a risk that the
measurements will be disturbed by resonances of the spindle or pickup.

The results show conclusively that the predicted vibrations occur,but the
accuracy of the method is poor and the measurements were done on a bearing

having artificially accentuated waviness.

Another investigation of vibrations due to inner ring waviness was
done by Halm § Woithe 1970, see ref. (30). It does not add any new
information in principal to previous results,but by analysing a large
number of bearings (50) it shows that the variation of vibration levels
are consistent with the variation of form errors of the individual bearings.
An investigation of the effect of clearance of free, radially loaded
bearings show a small but steady increase with clearance of vibration

levels for several bearing types and bearing individuals.



A different type of form errors, with an effeét on vibrations;is the
variation of roller or ball diameters. Yamamoto demonstrated in a paper
from 1959 ref. (1), that large vibrations were excited, when the cage
speed of the bearing coincided with the natural frequency of the rotor
supported by the bearing. The size of the vibrafions were dependant on
how much smaller one undersized ball was compared to the rest of the
ball set. The experiments were carried out with a vertical rotor,
so that the bearing was aXially loaded and all balls always in contact
with the races.  Another type of vibrations were found, where the non-
uniformity of rolling body diameters was assumed to create a radial
stiffness having an élliptic variation that rotated with cage speed.

Also this type of vibration was found experimentally. In a subsequent
paper in 1974, ref.(34), Yamamoto and Ishido made a more detailed analysis
of how similar rotating anisotropies of stiffness and non-linearities due
to misalignments, can cause resonant effects. A paper by Tamura in 1968,
ref.(35), studies the effect of two undersized balls in a bearing.
Attention is concentrated mainly on axial vibrations which is somewhat

outside the scope of this thesis.

A number of ‘papers have been written on methods of early detection
of rolling bearing damage by vibration analysis.  The most elementary
method for such condition monitoring is by listening to the sound emitted
by the bearing in operation. The listener then uses a screw driver or
a stethoscope held against the bearing holder and tries to distinguish
characteristic sounds assoclated with damage. For instance, repeating
alling, high pitch noise and whining

hammering sounds indicate Sp

indicate poor lubrication and so on.



This type of subjective assessment has obvious disadvantages and
one has therefore tried to develop electronic systems for vibration
analysis., It should be pointed out that there are no standards for
assessing the efficiency of such monitoring methods, and they are therefore
difficult to compare. A method which goes some way towards such an

assessment is given in Chapter 9.

The simplest method of electronic vibration monitoring of bearings
is to measure ihe broadband RMS level or the peak to peak values of the
generated vibrations. Usually it is necessary to use some sort of
band pass filter to exclude vibrations not originating directly from the
bearings, such as vibrations due to unbalanceg. A description of
instruments for this purpose, together with some comments on their
application, is given by Furness in 1967, ref.(36). Such a method does
however often not have a sufficient selectivity and more sophisticated
methods of signal analysis have therefore been employed. These generally
fall into two categories: Frequency domain analysis and Time domain analysis.
The analysis is usually concerned with detecting discrete surface
irregularities such as cracks or fatigue flaking rather than abrasive
type of wear or smear of the surfaces. In three papers, Balderstone 1968,
ref.(37), Ballas 1969, ref.(38) and Yhland-Johansson 1970, ref.(39),
frequency analysis by narrow band filtering has been tried. The underlying
idea is that, as the rolling bodies roll over a surface defect, they will
create a periodically occurring transient vibration. In all papers it
has been demonstrated that defects of the bearing components give rise to
changes of thevspectrograms. Balderstone studies the changes occurring

at high frequency (up to 100 kHz) resonances of the bearing, where effects

of poor lubrication can also be detected.



The selective pow

er of the methods is however poor because the transient

i1s of very short duration and often near the level of random noise of the

bearing, so that the impact on the spectrograms is not as significant as

would be desired.

For this reason a number of time domain analysis techniques have
been developed. One such technique was described in 1962 by Tallian-
Gustafsson, ref. (40). It employs two parallel gates to which the
vibration signal is fed. The gates are synchronised, so that when one
is open the other is closed. Each gate is connected to a counter, that
counts all vibration peaks exceeding a threshold ievel. By adjusting
the léngth of time that the gates are open, one can tune the system to a
periodicity at which the traﬁsients can be expected to occur, i.e. for
outer ring defect, at ball passage frequency, for the inner ring, at
shaft frequency minus cage speed times the number of balls, and for
rolling bodies, at the rolling bodies' rotational frequency. If this is
done, one gate will count peaks from random noise only, while the other

will count peaks from the random noise plus peaks from the transients

originating from the defect. For a bearing with a defect the ratio
between the two counters will exceed one. It was demonstrated that very
small surface defects could be detected with this method. How efficient

the method would be in the presence of other noise sources is however
open to question. Further, the methods obviously involves the use of
very specialised equipment and rather complicated operation, and as far

as it has been possible to find out, the method has not reached much

practical application.



Another form of time domain analysis is described by Weichbrodt
ref. (41). It is known as summation analysis and has the ability of
detecting repeating events of the vibration signal, even if these are
hidden by other vibration components. In the same way as was the case
for the Tallian-Gustafsson method, it is tuned to certain frequencies at
which the transients are expected to occur. When the calculated length
of time between transients is set, a gate is opened, and a part of the
vibration signal is recorded. The gate is then closed and opened
again after the set time constant, and the new samples are added to the
previously recorded. This process is repeated a large number of times,
and in the sum thus stored, the vibration components occurring at the
set frequency will be accentuated, while all others will average out.
The method was tried on a bearing with cracks, mounted in a noisy machine,
and was found to have a good selectivity. A comparison done with a
straightforward spectral anal&sis by conventional narrow band filtering
confirms the conclusion, that such filtering is not an effective means
of monitoring. The main drawback of the method seems to be, that a
very exact knowledge of the period of the transients is required. This
will generally be very difficult to obtain, because even if the
dimensions of the bearing to be tested is known, the relative speeds of
the shaft, cage and rolling bodies calculated from these dimensions

will also be affected by slippage and elastic deformations of the

components.

Auto correlation analysis also falls in thg group of Time domain

analysis methods. It does not require any prior knowledge of periodicity



of the transients. A report published by Gershman & Povarkov in 1968,
ref. (42), describes the use of Auto correlation analysis for ball bearing

monitoring. Unfortunately the results show a low sensitivity to defects

of the tested bearings.

With the occurrence of commercially available real time Fourier
analysers the interest for monitoring in Frequency domain has been
revived. The extremely short processing time required (fractions of a
second) makes it practically possible to calculate a number of spectro-
grams and then add them together point by point. This has a similar
effect as Time domain Summation in that it supresses random noise, but
it does of course not require prior exact knowledge of cage speed,
roller speed and so on. The use of real time Fourier analysers for
crack detection in ball bearings has been described by Babkin-Anderson
1973, ref.(43) and Bannister-Donato 1971, ref(44). A considerable
improvement of signal to noise ratio compared to standard narrow band
filtering was achiecved in both these reports.  Although these spectro-
grams thus form a suitable basis for condition monitoring, the inter-

pretation of the spectrograms 1s 2 subject which deserves careful

consideration.

A method using measurements in the ultrasonic range seems to have
reached a state of commercial applicaticn.  The method, which is called
the Shock Pulse Method, is described by Botoe 1971, ref(45), and several

examples of 1its application by Howard in 1974, ref. (46). The basic

principle of the method is to excite the natural frequency of the

accelerometer used as vibration pick up by the transient pulse or shock



wave, generated when a rolling body rolls over a . bearing defect.

Since the shock wave is of short duration it contains high frequency
components winich could "ring" the single degree of freedom system, that

an accelerometer constitutes. The accelerometer thus functions not only
as a vibration sensor, but also as a filter and an amplifier. The maximum
amplitude of the accelerometer signal is then used as an indicator of the
severity of the defect. The natural frequency of the accelerometer used
is 38 KHz, so that the frequencies measured lies in the ultrasonic range.
The attraction of this lies in the fact that. high frequency vibrations
attenuate quickly, so that the noise from other bearings or machines does
not interfere with the vibrations from the tested bearing. On the other
hand, it seems likely that for the same reason, the way the accelerometer
is attached to the bearing house and the distance between bearing and
accelerometer might have a considerable influence on the readings. The
attraction of the method is that no sophisticated instrumentation is
required, but since it does not make use of the repetative nature of the
occurrence of the transients, it cannot be expected to have the same
discrimination power as the more elaborate mcthods previously described.
An extension of the same basic method was described by Broderick in 1972,
ref. (47), where a frequency analyser was used to determine the periodicity
of the shock pulse. From this information it is then possible to determine

if the damaged part is the inner or outer ring or a ball.



CHAPTER . 3

———

FUNDAMENTALS OF ROLLING BEARING OPERATION

Before concentrating on the special aspect of bearing operation with
which this thesis is concerned it is necessary to summarise some of the
established theories and results dealing with general mechanics of rolling
bearings. Particular emphasis is put on aspects which are important to

wear and vibration characteristics of the bearing.

Traditionally the magnitude of the local stresses arising due to the
external load has been considered as the main wear parameter, but recent
research has shown that the oilfilm thickness is also of vital importance.
From the vibration point of view, the relative velocities of the bearing-
components and the stiffness of the bearing assembly are crucial factors.
When it comes to effect on vibration of irregularities in the bearing
surfaces,the oilfilm thickness is again of importance together with size
and form of the contact zones. Methods of calculating these fundamental
parameters will be reviewed in this chapter and in Chapter 6, where some
special aspects of the stiffness of the bearing assembly will be studied
in detail. When using these equations one must bear in mind the often
far reaching approximations that have been made in the derivation of then
in order to simplify the highly complex mechanical. system that a real
bearing constitutes. As far as experimental results are concerned

accurate readings are made difficult by the very small dimensions of the



contact zones, displacements and o0ilfilm thicknesses.The resulting values
should therefore be looked upon as giving orders of magnitude and insight

into phenomena occurring in the bearing, rather than accurate quantities.,

3.1 BEARING TYPES AND BEARING COMPONENTS

A rolling bearing consists of outer and inner rings (races, tracks),
a set of rolling bodies and a cage (retainer) to hold the rolling bodies
in position and prevent them from sliding against each other. Rings and
rolling elements are made of steel alloys which have been hardened, ground
and poiished. The cage is usually made of some softer material like
bronze or mild steel to avoid wear on the rolling bodies. There are
basically three types of rolling elements : Spherical balls for ball
bearings, cylindrical rollers (usually crowned at the edges to avoid edge
pressure) for cylindrical roller bearings and needie roller bearings and
barrel-shaped rollers for self aligning roller bearings. The load
capacity of a bearing can be increased by using more than one row of
rolling bodies. Ball bearings are used as a general purpose bearing type
up to moderate loads. Roller bearings are preferred at higher loads and
when a particularly stiff bearing is needed like in machine tool spindles.,
Self aligning (spherical) roller bearings are not suitable for high
speeds but have the advantage of allowing a slight misalignment of the shaft,
This is made possible by giving the outer track the shape of a portion of
a sphere. The traces of the balls or rollers do therefore not have to be
parallel to the end surfaces of the outer track or, in other words, the

axis of symmetry of the outer and inner ring do not have to be absolutely

parallel.



The basic idea behind rolling bearings is to replace sliding contact
with rolling contact and thereby reduce friction and wear. The
difference of radius of the contacting bodies is much greater for a
rolling bearing than for a journal bearing. The load carrying areas are
therefore much smaller and consequently the stresses in the contact points
are much higher.  The high pressure together with the rolling motion also
means that the oilfilm separating the components of the bearing is very
thin. Both these factors are highly undesirable from the aspect of wear.
Therefore many bearing types are given a close conformity between.rolling
elements and tracks in a plane parallel to the bearing axis, thereby
increasing the area that carries the load. The degree of conformity is

called osculation and defined as (see Fig. 3.1.6.)
= ’ 3.1
0 Rr/Rt (3.1)

Bearings (a), (b) and (c¢) in Fig. 3.1 are high osculation bearings while

(d) is a low osculation bearing.

3.2 RELATIVE SPEED OF ROLLING BEARING COMPONENTS

In ordér to determine the relative angular speeds of the outer and
inner rings, the cage and the rolling elements of the bearing assembly,the
bearing is looked upon as if it operated in a similar way as an epicyclic
gear. This assumption presupposes dry contacts, stiff components and a
pure, rolling motion. Although these assumptions are neither consistent
with the presence of an 0ilfilm separating tracks and rollers, nor with
the deformations that occur in operation under heavy load, many authors
e.g. Yamamoto in ref (1) have shown that for bearings operating under

normal conditions a good working approximation 1s obtained through

this method.  Using the general formula relating the speeds



of sunwheel, planetwheels and planetwheel carrier ,

the relationships

between inner and outer ring speeds and cage speeds can be written as
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Define the cage diameter as
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The velocities are given by
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If the outer ring of the bearing is stationary (wo = 0), eq(3.3)

becomes
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If the axis of rotation of the roller or the ball is not parallel to

the axis of rotation of the inner race (inclination of o), .eg. (3.7) and(3.9)

take the form:
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The angular speed of the ball or roller is

<

T
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3.3 STRESS AND DEFORMATION IN ELASTIC CONTACTS

c
W = 2 = ce e sr e
D

The rigorous theory for describing states of stress and deformation

in the contacting points of a rolling bearing is a rather complicated

application of the theory of elasticity. Only main lines together with

results needed further on in this study will be given here.

Starting bty combining the two basic conditions of elasticity (Hooke's

Law) and continuity the 'General boundary problem of the theory of

elasticity" can be written, using vector netation, as

Au + grad divu = 0

1
1-2v

where U is the displacement vector. The solution to this equation has

the form

3= grad (¢ + T9)-4(1-v)¥

where ¢ and U are potential functions composed so that
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and r is the vector from origin.

From this general formulaticn, the

solution of a specific problem can be obtained by applying the
appropriate boundary conditions as regards displacements and stresses.
Thus, if a point load is applied perpendicular to the surface of a semi-

infinite half plane the displacement of the surface in a direction

parallel to the force becomes

2
us il%;& ....... (3.15)

where r is the distance from the point where the load is applied to the
point of displacement u. A point load is of course a mathematical
abstraction which does not occur in practice. Equation (3.15) can

however be modificd sc as to calculate displacements due to distributed

loads which is more interesting from a practical view-point. Rewrite (3.15)
in differential form with dQ = pdA (p is the pressure function) and

integrate over the contact zone

2
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For a uniform pressure function acting on a strip withwidth 2b, Eq.(3.16)

P € T £5)

gives the expression for the displacement u at a distance x from the strip to

b

: 2
u=P"P a-v7) S An(x-s)?ds + CONSt..vevuneernnnnn.. (3.17)
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Now, consider the general case of two elastic bodies
being pressed against each other, see Fig.(3.2).  The soluticn of this
problem is due to H Herz. The Hertzian theory applied to rolling bearings
is described in for instance ref.(2) and ref.(3). A small area of
contact will form over which the pressure is distributed. It follows

from the geometry of the bodies that the projection of the contact zone



will be elliptic and that the eccentricity of the ellipse (k = a/b) can be

determined from the curvature of bodies I and II. Define the function

F(r) known as curvature difference as

A mr )+ (x -1 )
F(r) = —1L 12 5 L (3.18)

where Ir is the curvature sum

fr=-t.o, ., 1, (5.19)
11 12 Trin Tiiz

It can however be shown that F(r) can also be calculated from the

following expression

Py = &&-Dp-or (3.20)

(k2-1)A

where I' and A are the elliptic integrals
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It is now possible to calculate values for F(r) both from eq.(3.18) and
eq. (3.20). For equal values of F(r) given by the two equations, k
corresponds to a certain curvature difference and thus, the eccentricity
of the contact zone can be obtained from the geometry of the mating
bodies, To calculate the deformation of the bodies (i.e. the distance
with which two from each other remote points in the two bodies will

approach each other) when the load is applied, an approximation essential

to the Hertzian theory is made. If the dimensions of the contact zone



is small compared to the radii of the mating bodies, and the contact zone
is near flat,then the two bodies can be looked upon as two semi-infinite
planes upon which forces are acting perpendicular to the surfaces. When
this approximation is justified eq. (3.16) may be applied to calculate the
deformation arising due to the pressure function which arises when bodies
I and II are pressed against each other. To carry out the integration
it is necessary to know the shapes and sizes of the contact area and the
pressure function. The shape of the contact zone is given by the
eccentricity of the contact ellipse, k, calculated from eq.(3.18) and

eq. (3.20). Further it can be shown that the only pressure-distribution

function to fulfill the boundary conditions has the form of a half

ellipsoid given by the following equation

3 X, 2 1

P -3 - D1 (3.21)
The integral of this function over the contact ellipse equals the

external load and since the eccentricity, k = a/b, is known, the values

of a and b can now be determined. All necessary information is thus

available to make use of eq.(3.16) to calculate the deformation due to

the pressure ellipsoid. The resulting expressions for a, b and d can

be written as

o 1-v?2 1-v? 1/3
3Q I 11
= a* ( [ + - ] ) N (3.22)
28 EI EII
1-v 1-v2. 1/3
- 3Q I 11 <
b = b* ( [ + ] ) ............... o (3.23)
22 EI EII
1-v2  1-v2 2/3
S%ro3Q 1 11 .
d = d* = Gy | E + £ 1) e (3.24)



where

_ .2k*A 1/3
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The dimensionless quantities a*, b* and d* can be found tabulated or plotted

as functions of F(r) in for instance ref.(2) or ref.(3). In the case where the

contacting bodies are made of steel eq.(3.22), (3.23) and (3.24) simplifies

“to
- Q
a = 0.101a* () ..o (3.28)
b = 0.101 b*(é%a ......................... (3.29)
-3 2 Y3
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with dimensions in mm and kg.

In a similar fashion but starting from eq. (3.17) corresponding
‘expressions can be derived for line contacts, which occur in cylindrical
foller bearings and heavily loaded spherical roller bearings. For two
rollers of‘equal lengthvzl, Harris in ref. (2) gives the following expressions

for the width of the contact strip and for the contact deformation using

Imperial dimensions

s eergt .

i b = 4./8 10 Q,Zr) [Imp'} .................. (0.31)
; 709

d= 7.36°10 78 [Imp] e e e s e e s e e e (3.32)

2



Dowson has shown in ref. (4) that

a good working approximation of the

total deflection for the case of a roller between two tracks of typical

dimensions are given by

: 2
2d = 17 5. 2(-V7)
TE

e
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Or for steel components and converted to SI units

. 2d = 9.37-10'54‘% M) ceevvennnneannenn. (3.34)

This equation conforms well with empirical results given in ref, (3).

In cases of close osculation it might be difficult to determine whether
point or line contact should be assumed. Ref.(3) gives as a rule of
thumb ,that if a value for the major axis, a, results from the calculation
using point contact assumption, such that 2a>% then line contact should be

assumed as the best approximation.

The Hertzian theory deals only with deformations and stresses on the
surface of the contacting bodies. It is known however,that the most common
cause of failure of rolling beariﬁgs is subsurface fatigue causing spalling.
It has also been shown by Palmgren and Lundberg in Ref.(5) that the maximum
shear stress arises beneath the surface. In this reference the maximum
shear stress is given as a function of the maximum pressure in the contact-
ellipse. Also the depth below the surface at which this shear stress arises

can be calculated For point contacts the maximum pressure occurs at

the geometrical centre of the contact ellipse and is given from eq. (3.21) to

p o= e, e e (3.35)
max 2mab

For line contact the maximum pressure becomes

po= 2 e i, (3.38)

max L
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For line contact the maximum shear stress will be

and occurs the distance z below the surface -
o

z = 0,5b

o errsecsens

The applicability of these results for point and

course dependant on how well the approximations of the

Q:'—BT cecceve s

load contact is of

theory conforms with

the real situation. The formulas (3.32) to (3.38) should only be used

where

1, All deformation occurs within the elastic range.

2. Only normal stresses are applied.

3. The contact surface is near flat.

4. The dimensions of the contact zone is small compared to the

radii of the mating bodies.

It is clear that in many practical cases none of these conditions are

completely satisfied. A small degree of plastic deformation often occurs,

traction will cause some shear forces and for close osculation type

bearings conditicns (3) and (4) will often be violated. However, many

experiments (see for instance Ref.(6) and Ref.(3)) have shown that good

working estimates of the dimensions of the contact zone, the pressure

function and the deformations can be obtained with these methods.  For

low to moderate loads in a bearing having a low value

of osculation the

conditions (1) to (4) are best fulfilled and consequently the best

'correspondence between theory and experiments are obtained in these cases.

. -ical < ; 1
This is demonstrated in Ref.(3) where theoretical and experimental results

are compared.



3.4 LUBRICATION OF ROLLER BEARINGS

In the previous sections of this chapter the rolling bearing has
been treated as consisting of elastic components in dry; rolling contact
with each other. The presence of lubricant is however of fundamental
importance for the operation of a bearing. It is not until relatively
recently that the mechanisms of this lubrication have been clearly
understood and much research work still remains to be done in this field.
Only some results of particular relevance to this thesis and some of the
main lines of the theory are given here. For a fuller presentation see
Ref. (7) which gives a comprehensive and authoritative review of theoretical

as well as experimental progress in this field up to 1965.

The purely elastic model, which neglects the effect of lubrication,
gives a relevant theory for one extreme case of rolling bearing operation,
namely bearings operating under heavy loads and low speeds. Under these
conditions the lubricant will be squeezed out of the contact zone and the.
Hertzian theory can be used to calculate deflection, pressure distribution
and so on. The other extreme is represented by a bearing operating at
very high speed and light load. In this case it is assumed that the
elastic deflections of the bearing components are insignificant and that
an 0ilfilm will form between rollers and tracks, The solution to this
problem was given as early as 1516 by Martin. Martin's solution is

founded on the Reynold equation which is a general formulation of the

problem of hydrodynamical lubrication. The Reynold equation is derived

directly from the two basic concepts of continuity and equilibrium of an

element of the fluid. Assuming that

1 Body and ineftia forces of the lubricant can be neglected.



2. All velocity gradients except across the oilfilm can be neglected.
3. The pressure, viscosity and density of the fluid are constant

across the oilfilm.

4, The lubricant behaves as a Newtonian fluid,

Further, restrict the boundary conditions tc the case where one body
moves over another stationary body in a translatory motion with the speed

V. The general form of the Reynold equation can then be written

3 h® 3p 3 6h® 3 3 s
3 T 50 "5 O 55 ) Tax OV e (3239)

Eq.(3.39) can bte further simplified by

5. Neglecting side leakage, and considering fluids which are

5. Isoviscous, and

7. Incompressible

as they pass through the lcad carrying zecne. After integration,

eq.(3.39) can be written

ap h-h

_ m
-a—x‘ ~12T]V(*}—1*§*“) R R (3.40)

where hm denotes the oilfilm thickness at the point of maximum pressure.
By applying the appropriate boundary conditions Martiﬁ could use this
version of Reynold's equation to solve the problem of a cylinder rolling
over a lubricated plane. To simplify the mathematics of the solution
Martin considered a''cylinder''with parabolic cross section instead of a
circular one. Because the width of the contact zone is very small
compared to the roller diameter this gives a very good approximation.
The results are given in the form of a set of dimensionless parameters
giving all forces acting on the two bodies. By re-arranging these

expressions the minimum 0i1film thickness as a function of external

force and speed can be obtained:



- . _nv
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The minimum 0ilfilm thickness for a typical roller bearing
arrangement operating under normal loads and speeds will, according to
eq.(3.41), have a value which is many times smaller than the surface
roughness.of the bearing components. This would indicate that no fully
developed 0ilfiim forms in roller bearings under operation. However,
from practical ekperience it was clear that there actually existed an
0i1film separating rollers and tracks and thereby avoiding metal to
metal contact. This conflict between theory and experience gave rise

to a re-examination of the assumptions made in Martin's theory.

The assumptions (1) to (7) are quite justifiable for lubrication
of journal bearings,but there is a significant difference in lubrication
of journal bearings and lubrication of roller bearings in that in the
latter case,the load is carried by a very small area of the oilfilm and
consequently the pressure in this area is correspondingly much higher.
Therefore, since the viscosity of oil is pressure dependant, the
viscosity of an oil element will change considerably as it passes
through the contact zone. Therefore assumption (6) is not valid for
roller/plane lubrication. In fact; for typical bearings and loads,
the pressure in the load zone is so high that the oil practically
solidifies. This points to the second alteration one has to make of
Martin's theory. Since the lubricant becomes so viscous that it

resembles a solid,it is also necessary to take into account the elastic

(3.41)

deformations of roller and plane. Consequently, this type of lubrication

is called Elasto Hydrodynamic (EHD) lubrication. An early attempt towa

rds



the EHD problem was made by Grubin and although his solution was really

no more than an inspired guess the results have later been shown to be
reasonably accurate and able to predict the special phenomena associated
with EHD lubrication. The EHD problem is constituted by three eguations,
one describing the pressure distribution of the lubricant, one giving
the resulting elastic deflections due to this pressure function and the
last giving the viscosity of the o0il as a function of the pressure.

These three equations are cbviously inter-related and must be solved
simultaneously. The equation governing the pressure build up is given

by eq.(3.39), which if side leakage and cempressibility is neglected is

written:
d h¥dp. _ dh .
I ('ﬁ- dX) = lzva—i‘ Ceresen Cereean Cheeesae (3.42)
The 0ilfilm thickness, including effects of elastic deformation of roller
and plane (see eq.(3.17)), is given by
2, 2 ,
= X . L . -
h = R TE J p(s)in(x-s)"ds + const....... e (3.43)
s
1
The viscosity dependancy of pressure can be approximated by
n = noeap ..... et err ettt . (3.44)

This system of equations fills the gap between the two extreme
cases of roller bearing operation and covers the conditions under which
most bearings would normally operate. No analytical solution to
eqs. (3.42), (3.43) and (3.44) exists at present, but Dowson and Higginson
in 1959 and 1960 have given numerical solutions for pressure distribution
and film profile, for some common cases which have been of great
importance in the understanding of the role of lubrication in roller

bearings. These results have been verified by later experimental



measurements using X-ray and other methods to determine the shape of the

0oil film.  The numerical method employed by Dowson and Higginson is
fairly complex using different methods to solve the set of equations for
different parts of the load zone. One striking feature of the solution

is the presence of a pressure peak in the outlet of the load zone. For

the purpose of this thesis knowledge of the entire pressure distribution

and film shape is not important. The minimum oilfilm thickness is
however of importance for the wear progressicn of the bearing and also
for its vibration characteristics. Dowson and Higginson give an
approximate formula for the minimum 0ilfilm thickness

o 1 660607 o]
min 013 Pl cee

where G is the shear modulus and V and W the dimensionless parameters

<
[t}

2 -
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=
1

= Q(I-v)/ER, ...

Minimum o0ilfilm thickness calculated by eq.(3.45) will, for cases
of normal operation of roller bearings, give a value for hmin that 1is
clearly greater than the surface roughness of the bearing components.
The EHD theory therefore conforms with practical experience in that it
predicts the existence of an uninterrupted oilfilm separating rollers
and tracks. For high speeds and light loads hmin calculated by EHD

3 / fh. iven in Martin's theory.
theory approaches the value o hmln g d Ty

(3.45)

(3.46)
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Fig 7,2 Two elastic bodies in contact. Hear the contact-

point each body is assumed to be defined by two, to each
other perpendicular, circle segments. Thus, near the contact-
point both bodies have elliptic cross sections ( the bodies
being assumed to be sliced in planes parallell to the contact

zone) .



CHAPTER 4

DESCRIPTION OF EXPERIMENTAL APPARATUS :

The complexity of the problems concerning rolling bearing vibrations
necessitates thorough experimental investigations before attempting to
formulate any theoretical theories, and subsequently, to verify such
theories and establish under which conditions they are valid. The
experimental investigation consists firstly of obtaining measurements from
bearings running under various operating parameters, and secondly, of
analysing these measurements. The signal processing part will be discussed
in Chapter 5 and Appendix IT.  This chapter is devoted to a description of

the two rigs that have been used in obtaining the measurements.

At the outset of this project it was felt that it was essential to
keep as many options as possible, concerning running conditions and bearing
types, open. Thus, it was necessary to design the bearing test rig such
that it allowed the bearings to be run with different loads and speeds and
having a variable stiffness of the bearing mounting. Further, for the
investigation of the effect of wear on vibration, it was necessary to be
able to wear out bearings, and during this process, measure the vibrations
at progressive stages of wear. The latter requirement means, that to
achieve significant wear during reasonable time, the bearing had to be

run with very heavy load. This requires a rugged construction of the rig



and its driving mechanisms. On the other hand, when the vibration

measurements were carried out, it was essential that no disturbing

vibrations from other bearings or drive components should occur. It
was concluded that these conflicting requireménts could not be met by
the same rig, and it was therefore decided to build two rigs, one designed

solely for vibration measurements, and one solely to wear out bearings.

4.1 BEARING WEAR RIG

It is essential that the wear occurring in the bearings should be of
a similar type as wear developing under normal operating conditions. This
excludes methods like mixing abrasives in the lubricant, running at an
elevated temperature and the like. Since it is necessary to in some way
achieve a high wear rate, the bearing is instead run under a load that is
considerably higher than it would normally be used for.  The lqads used
are however well below (about 30 - 40%) the loads at which plastic

3

deformation would occur. To further increase the wear rate, the
lubricants chosen wusually have a viscosity which is somewhat below the

manufacture rs' recemmen dation,

The design of the rig is shown in picture 4.1. The main shaft (1)
is supported by two double row self aligning roller bearings seated in
plummer-blocks (2).The estimated operational life of the main bearings is

such that about forty test bearings could be worn out before replacement

of the main bearings. Either one or two test bearings can be run at the
same time. The test bearings are positioned at the bearing seats (3) on
the shaft and held in position by lock nuts. In picture 4.1 a test

bearing is positioned at the right end of the shaft while the left end is



empty.  The shaft is subjected to high bending moments due to the heavy
loads} and calculations showed, that only by using high alloy steel with
particular strengthand toughness could the shaft be expected to survive.

To further reduce the risk of fatigue, the shaft was given rounded transitions
between sections and a careful surface treatment. Another problem caused

by high loads was fretting corrosion. To overcome this problem, the seats

of the main bearings had to be chromium plated and eventually, the seats of
the test bearings, which were originally cylindrical, were changed to tapers.
The test bearings are held by a semi circular bearing house combined with

oil bath (4). Via two rods and a cross bar the bearing houses are connected
to a hydraulic cylinder (5) which supplies the load on the bearings. The
purpose of using a hydraulic system, instead of loading the bearings with
weights, was to eliminate the risk of exciting resonant frequencies of the
loading system. The high stiffness of the hydraulic system caused problems,
because the thermal expansion of the bearing, as it gets warmed up, gives &
steep rise in the load exerted on the bearing.  To reduce the stiffness/of
the loading system, a bundle of leaf springs were positioned above the cylinder
and a gas accumulator (6) was integrated in the system. The pressure in the
cylinders is supplied by the hand pump (7) and can be read on the gauges (8).
By use of the valves (9), the two cylinders can be operated independently of
each other. A shear coupling is inserted between the main shaft and the
drive shaft (10) in case a bearing should seize. The drive shaft is in

turn driven by an adjustable pulley arrangement, which allows for variations
of speed. The torque is supplied by a 3 phase induction motor. A hole is
drilled through the bearing house, to allow for a thermometer to be inscrted

close to the outer ring of the test bearing. A blower unit has been used

to regulate the temperature of the test bearings.



4.2 VIBRATION TEST RIG

The purpose of this rig is to run various types of bearings under
different load and speed conditions, and measure the vibrations these
bearings generate under operation.  Obviously it is of the greatest
impoftance, that the signal measured actually does originate from the
test bearing and not from other bearings or compénents of the rig. The
prime objective in the design of the rig has thus been, to minimize other
sources of vibrations in the rig and, to make the influence of the rig on
the vibrations measured as uncomplicated as possible.  The rotor, which
is supported at one end by the test bearing, has therefore been made so
that its centre of gravity is very close to the geometrical centre of the
test bearing. The rotor is supported in the opposite end by a self
aligning double row ball bearing., The load on (and therefore vibrations

from) this bearing is negligible, since the c.g. of the rotor coincides

with the geometrical centre of the test bearing.

Further, since the reaction force at the test bearing side of the
rotor goes through its c.g., this time varying force will be counteracted
by the rotors inertia only and not give rise to bending vibrations of the
rotor shaft. The rotor has therefore been considered as a rigid body
acting as a pure mass. Gyroscopic effects have been neglected, since the

speeds are relatively low and the displacement very small,

The test rig set up is shown in picture 4.2, and the three different
configurations possible shown in Fig. 4.3a, b and c.  The effective load
exerted on the test bearing is for configuration a: 12 kg, b: 85 kg and
c: 205 kg. It is obviously only in configurations b and c the c.g.

incid i ing cent t fo omfig ion ¢ he
coincides with the test bearing centre, but for configuration a, t



occurring forces are so small, that the rotor can still be considered

rigid. Changing the rig from one configuration to another can be done
in a matter of minutes. In configuration a, the three guard bearings (1)
encompass the rotor disc (2) to limit violent vibrations. To change

from 12 kg load to 85 kg load, the block (3) is slid away from the rotor
on the bed plate(4). The 85 kg disc (5), which has an accurately machined
seat, is bolted to the face of the 12 kg disc. When the block (3) 1s
slid back against the rotor, the three guard bearings fit into a groove

on the face of the disc (5). To increase the load to 205 kg, the tapered
ring (6) can be driven up on the taper of disc (5), thereby firmly attaching
it to the rotor. The short shaft (7), which carries the test bearing
(8), is exchangeable so that bearings with either cylindrical or tapered
bores may be fitted. The test bearing is secured in a bearing holder,
having a tight sliding fit, by a lock nut. The bearing holder is in turn
bolted to the tube (9). The two brackets (10) holding the tube, can be
s1id to different positions on the block, thereby making it possible to
vary the stiffness of the bearing mounting. Henceforth, bracket positions
as far apart as possible will be referred to as "hard' mounting, brackets
15 and 33 cm from the bearing, ''medium stiffness" mounting, and brackets
25 and 33 cm from the bearing, 'soft" mounting. A number of planes have
been machined on the bearing holder. On these planes, holes are drilled

and threaded to allow for mounting of accelerometers and attachment of

vibrator and load cells. The acceleration of the bearing holder is measured

with a piezo-electric accelerometer, having a natural frequency (unmounted)
of 39 KHz. The acceleration signal is fed to a normalising charge

amplifier, and the voltage output of this is fed to a recording device,

either a magnetic tape recorder or a digital recorder. In the latter

case, the signal is first fed through a low pass filter to make the signal



e

S e

comply with the Nyquist sampling criteria (see Chapter 5), The tape
recorder, which is of EM type, has a linear (within 0.5 dB) response
from‘DC to 20 KHz. The rotor is driven by an induction motor via a
magnetic clutch and a pulley arrangement. The magnetic clutch allows
for wide variations of the speed of the rotor shaft, and this speed is
accurately controlled by a feed back system. To measure the spe?d of
the rotor a tachometer wheel is mounted on the shaft, The tachometer

signal is fed to an electronic counter.
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FIG 42 VIBRATION TEST RIG
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CHAPTER 5

METHODS OF SIGNAL'PROCESSING

The time-history signal, representing vibrations generated by bearings
run in the test rig, is very complex and not much useful information can be
derived directly from it. Further analysis is therefore necessary and
serves to investigate specific aspects of the signal and thereby revealing
characteristics of the bearing's vibrational behaviour. The signal
processing might be carried out either with conventional analog methods
or by using digital techniques. Both methods have their own advantages,
analog equipment can be connected directly to the test rig and the results
obtained at the time the experiment is carried out. The analysis times

are however often long, narrow band spectral analysis over a wide frequency

range, is a matter of hours. Also, the accuracy of the results is better
when digital techniques are usec. This is particularly true of the accuracy
of the frequency axis in spectral analysis, and this is of great importance
when determining the origin of frequency components occurring close to

each other, which is often the case in roller bearing vibrations. Probably .
the most valuable advantage of digital techniques is however, the
flexibility of digital systems. Analog instruments will perform a certain
predetermined analysis, while when a digital computer is used for analysis,
modifications of and additions to the standard programmes can easily be
done. For the above mentioned reasons, it was decided that a digital mini
computer available in the department shouldbe adapted for signal processing

purposes for this project. The setting up of such a system is a considerable



task, but if a large amount of processing is to be carried out, the faster

processing timescompensate for this. During the evolution of the project, it

has also been found possible to use the digital signal processing system
for tasks not originally forseen, such as analysis of bearing component

shapes and analysis of computer simulated vibrations and forces.

Signal analysis by computer involves 1) making the data accessible
to the computer, 2) processing the data and 3) outputting the results in
a presentable form. Inputting of data is done either by sampling from
an analog signal or by reading the data punched on paper tape using an
optical reader. In the first case, the signal is normally recorded on
an FM magnetic tape recorder, while in the latter case the tape is punched
by a data logger or a punch connectedto ahigh speed digital recorder.
The outputting of results are done either with a digital plotter or by

printing on Teletype or fast character printer.

The suite of programs performing the analysis is called DAS, and 1is
described in Appendix II, where examples of runs are also given. The
available routines are:

1). Calculation of mean value, root mean square, variance and
standard deviation.

2). Probability density function.

3). Probability distribution function.

4). Auto-correlation function.

§). Calculation of Fourler coefficients (frequency analysis by Fast

Fourier transform).

6). Power spectral density.



Summing up the use of the routines it can be said that 1) to 3)
determine the amplitude distribution of the signal (if the signal is
Gaussian, Probability density and Probability distribution is fully
determined by the signals mean value and value for standard deviation)
while 4) is a time domain analysis capable of distinguishing between
random and periodic components. Processes 5) and 6) t?ansform the time
domain signal to frequency domain, thereby determining the frequency
distribution (and if so desired, the phase distribution) of the signal.
The frequency analysis functions are particularly useful, since they
often make it possible to associate certain vibration components with
events of the system generating the vibration. Since the purpose and
properties of these processes are generally well known, no detailed
discussion will be given here, except for where the use of digital analysis
requires special consideration. Details of the processes are given in

ref.(12) and Chapters 11, 21 and 22 of ref.(13).

The mathematical background to spectral analysis by Fourier

transformation is described in Appendix I. If an infinite number of samples
from an infinitely long signal are analysed, the transform gives a complete
description of the frequency contents of the signal. When carrying cut

the process in practice, this is obviously not possible, and the fact that
only a small part of the signal is analysed has some important implicationms.
Leaving apart the influence of random components for the moment, it is
assumed that the signal consists of periodic components. Using the
"normalized'" Fourier transform, see equation I.13, the line spectra
resulting from the analysis of the signal should then consist of discrete

lines with a height equal to the amplitude of the respective harmonic



components. The truncation of the signal makes the line spectra

degenerate into a series of peaks appearing at the frequencies of the lines.

The effect can be explained by studying the transformation of a pure sine

wave. As illustrated in Fig. 5.1, the analysis of only a part of the sine

wave is equivalent to multiplying the sine function with a square wave pulse,

i.e. instead of transforming

y = Asinwot .......... (5.1)
then function actually transformed is

y' = Asinwot-[U(t) - U(t—tO)] .......... (5.2)
where to is the total sampling time. The square wave pulse function is
called awindow function, denoted w(t). The Fourier transform of the product

of two time-varying functions is the convolution (''faltung") of the Fourier

transforms of the functions. Thus, if, (see Ref.(11)),

FT(A51nth) = Aﬁ(w—wo)
and

FT(w(t))= W(w)
then the Fourier transform of equation (5.2) is

co

y'= A S 8((w-w)- x) W(x)dx

-0

But from Chapter 4 of ref.(10), for any function I

[o0)

S §(a-t) I(t)dt = I(a)

- €O

And thus, equation (5.5) gives

1 = A°W -
Y AW (w wo)

----------

----------

----------

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)



The practical result of the analysis is thus, a function being proportional

to the amplitude of the sine wave and the Fourier transform of the window
function (in this case a square wave pulse), the latter being symmetrical
around w_ . The continuous curve of Fig. 5.2 will only result, if an
infinite number of samples are analysed during the period - If the
number of points is limited, which it of course always will be, the effective
output on the plotter will be the curve made up from discrete points of

Fig. 5.2, The above implies two problems, the occurrence of large side

lobes around the peak and the fact that there might not happen to be a

point at the top of the window, in which case the height of the peak will
be under-estimated. The spectrograms can however be improved by using
another‘window function than the straight forward square wave pulse. There
are a number of window functions described in the literature, the most
common being the Hanning window. The transform of the Hanning window
(defined under "window' in Appendix II) has a more favourable shape than
the transform of the pulse function. It has smaller side lobes and a
~broader, flatter peak, which makes the readings more stable, see the

schematic drawing in Fig. 5.2 and graphs 5 and 7 of Appendix II.

When running the FFT program of the DAS system, the two parameters NOS
(number of samples) and SFREQ (sampling frequency) have to be set. The
sampling frequency must be set according to the Nyquist sampling criteria,
stating that more than two samples per cycle of the highest frequency
component of the signal is rcquired.  To ensure that this criteria is
fulfilled it is necessary to pass the signal through a low pass filter
before feeding it to the A/D converter or digital recorder. If components

of higher frequency are present in the signal, the resulting peaks will



"fold" back into the Spectrogram and obscure the genuine peaks.  Hence, the
cut off frequency should always be set below half the sampling frequency. It
is advisable to cut off also the lower end of the signal with a high pass
filter so that a reasonable number of cycles (at least ten) are used to

calculate the lowest non-zero frequency component.

From the Nyquist sampling criteria it follows that the spectrogram
will cover the range zero to SFREQ/2. The Fourier coefficients making
up this range are the first NOS/2  points produced bty the FFT routine.
The remainder of the points are the mirror image of these points since
the coefficients are symmetrical. Thus the frequency increment between
each coefficient is (SFREQ/2)/(N0S/2), and this increment is the counterpart

to the filter bundwidth in an anolog filtering system.*

For signals having both random and periodic components, the randon
components can be suppressed by repetitive processing. The DAS package
allows for all routines to be repeated an unlimited number of times and
the average of the results taken. This technique proved particularly
useful for monitoring purpeses, where periodic components were buried

in random noise, but could be detected by repeated frequency analysis.

A technique for averaging out random noise in the time domain was
described in Chapter 2. The method is called Summation analysis and
requires detailed knowledge of the signal's characteristics beforehand.

An alternative way of noise reduction is by use of the Auto-correlation

* By bandwidth is then understood the effective frequency resolution rather

than the stringent definition referring to the half power points.



process. Since it has not been possible to find any comparisons between
the two methods' discrimination power, such an investigation was carried
out and is.presented in Appendix III. It is shown there, that Summation
analysis is generally a more efficient means of noise suppression than
Auto-correlation. For signals of the kinds considered here however,

the signal to noise ratio by Auto-correlation analysis has been
considered satisfactory and it has not been felt, that the expected
improvement when using Summation analysis would motivate the much more

cumbersome processing methods required.
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CHAPTER 6

VIBRATIONS GENERATED BY IDEALISED ROLLING BEARINGS

Rolling element bearings will generate vibrafions during operation
even if they are geometrically and elastically perfect. This is an
inherent feature of the bearing type and is due to the use of a finite
number of rolling elements to carry the external load. A study of a
realistic bearing arrangement shows that the number of rolling elements
under load varies with the cage position. This gives rise to a periodi-
cal variation of the total stiffness of the bearing assembly and
consequently generates vibrations. The number of rolling bodies under
load also depends on the vertical and horizontal position of the inner
ring relative to the outer ring, which is assumed to be stationary. The
bearing assembly thus constitutes a statically undeterminate system with
time varying and non-linear stiffness coefficients where vertical and
horizontal displacements are strongly coupled. The most convenient way
of tackling such a problem is to assume displacements and subsequently
calculate the arising reaction forces.  This force-deformation
relationship will be derived in Section 6.1. A derivation has previously
been presented by Meldau, see Chapter 2, but by using unit step functions
and writing the relationship in the form of a finite sum, it has in this

study been possible to obtain the result in closed form, which was not

the case in Meldau's work. To calculate the relative movements between

inner and outer rings, that results from the stiffness variation, Meldau

assuned constant external vertical load and zero external horizontal load.



This assumption is valid only for very slowly rotating bearings, as

Meldau also points out. In a bearing operating at normal speed, the
displacements generated by the bearing will cause the occurrence of
inertia forces proportional to the mass of the external load. For a

typical bearing assembly a cage speed of only four radians per second

(approximately 90 revs per minute shaft speed), gives an oscillating
force in the horizontal direction of about 40 N and in the vertical
direction of about 30 N for a 75 kg load. For higher speeds dynamic
forces of the same order of magnitude as the dead weight of the locad
occur. These dynamic effects have been analysed by including the
previously described stiffness function in the equations of motion of a

rotor supported on roller bearings.

6.1 THE FORCE-DEFORMATION RELATIONSHIP FOR ROLLER BEARING ASSEMBLIES

Consider the roller bearing in Fig. 6.1. The angular position of
the cage is defined by y and the gaps between the rollers by V(V = 2m/N,
where N is the number of rollers). The bearing has a radial clearance
of 2e so that when the inner and outer ringsare concentric, there is no
contact between the rollers and the outer ring. In Fig.6.2, circle I
represents the dashed circle (radius R) of Fig. 6.1 and circle II is the
track of the outer ring (radius R + e)., Now assume that the centre of the
inner ring is moved from O to O' along A as shown in Fig.6.2, This will
cause the two circles to interfere with each other over a part of the
circumference. Returning to Fig. 6.1, it becomes clear that this inter-
ference will cause an elastic (for small displacements) deformation of
the rollers and rings. Dowson has shown in reference (4), that for rings

mounted firmly against solid steel shaft and bearing house, the only



significant deformations are ti

¢ local deformations at the contact points

between rollers and rings. He also showed that the local stiffness is

near linear and can be well approximated with eq.(3.34). These
deformations will give rise to the reaction force of the bearing. The
zone over which the circles I and IT interfere will therefore be called
the load carrying zone. To calculate the reaction forces, it is
necessary to know the function §(v), or since v = ¢, (|A|<<|B|, |C|),the

function § (¢) as indicated in Fig. 6.2. The vectors A and C can be

written in parameter form

A= [AX;A ] = [5X;6y] = [Socosa;éoslna]

Y

C =[(R+e)cosd; (R+e)sin¢] ..., (6.1)
From Fig. 6.2

A+B=C L. (6.2)
so that

B=2C-A e .. (6.3)
and thus

|[E|=]C - A (6.4)

or in coordinate form

|B|= \QCX-AX)2 . (Cy—Ay)z .......... (6.4)

With the coordinates from eq.(6.1) substituted into eq.(6.4) the

length of vector B can be calculated,



—

|B] = [(Ree)cosp-6_cosa]® + [(Ree)sing-6 sina]” =

2 .2 ¥
=v/ (R+e) +60—260(R+e)(sinasin¢+cosacos¢) =

=y/[(R+e)~60(sinasin¢+cosacos¢)]2+éi[1—(sinasin¢ +

1

+ cosacos¢)2]

For a medium sized bearing with realistic load, the second term under
the root sign will be about a millionth of the first term. Thus eq.(6.5)

can be rewritten as
|B| = R+e—GOsinasin¢—60cosacos¢ .......... (6.6)
Substituting eq.(6.1) into eq. (6.6) gives

‘E‘ = R+e—6ysin¢-6xcos¢ .......... (6.7)

where 8 and 6 are the horizontal and vertical displacements respectively
X Y
of the inner ring centre. The expression for §($) now follows directly,

see Fig. 6.2,

S(9) = R~l§l = 6xcos¢+6ysin¢*e .......... (6.8)

I1f the local stiffness between two rings and one roller is called K,

the reaction force from oné roller in position ¢ see Fig.6.2, can be
written as

(o) = K*5(9) e (6.9)

or rewritten in component form,
(px(¢) —K!6(¢)[cos¢
1pv(¢) K[S(e)|sind e (6.10)

1]
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Obviously a roller can only support compression forces, so for

negative values of §(¢), PX and Py should equal zero. Therefore,
multiply the right membra of eq.(610) with U(¢($)), where U is the

Heaviside unit step function having the value one for positive arguments

and the value zero for negative arguments.

=K 8(¢) cosd-U[S(¢)]

P_(9) =
P.(¢) = -K&(¢)sing-U[S()] ...oe...s (6.11)
Now define
=¥+ G-DV (6.12)
and
Q=2P (6.13
Q= =Py

By combining equations (6.13), (6.11) and (6.12), the reaction forces
resulting from the displacement of the inner ring centre from C to O'

can now be calculated

e

N
Q, =K I 6(8,)cosdy UIS(4))]
k=1
< N ]
Q, =-K I 8(¢y)sing,-U[S(d)) PR (6.14)
y oy K k k

3

Substituting eq.(6.8) into eq.(6.14) gives the full expression

N
Qx(gx;ﬁy;w)z—4(kfl(6Xc05¢k+6y51n¢k—e)cos¢k~U[G(¢k)]

N
Q (8_;8 W=-K I

5 -~ +8 sing, ~e)sing¢, « U[S (9, )
y X7y K (6ycosty*bysindy kU1 (0)]

1 X



Note that for constant values of &
X

a . o
aﬁ Sy’ Qx and Qy will vary with ¢

and this is what is known as the varying compliance effect. Fig.6.3

shows the vertical reaction force as a function of 8 for cage positions
)"

of y = 0° and ¥ =15° for a bearing having 12 rollers. For both these

cage positions the rollers are symnmetrically arranged, which makes § = Q =
X X
= 0 for all values of Gy.

6.2 ROTOR SUPPORTED BY ROLLING BEARINGS

Having derived an expression for the force - deformation relationship

for the bearing assembly, it is now possible to proceed to considering a

rotor - bearing system. In the set up of Fig. 6.4, it is assumed that all
components except the bearing investigated, are absolutely rigid. The
left hand side of the rotor is supported by a self aligning bearing. If

the rotor is turned very slowly, no inertia forces occur, which makes QX = 0
and Qy = M-eg. Inserting these values in equation (6.15) and calculating

§ and 6§ as functions of Y, will give the static VC shaft locus. Even

at very low speeds however, the inertia forces have a significant effect.

To solve the then occuring dynamic VC vibration problem, the

equations of motion for the mass of the rotor for horizontal and vertical

movements are set up.

It

( .t
| M8

N QX(W;dxzﬁy)

MS
LY

t

Qy(w;éx;dy) - Meg L., (6.16)

For a rotor running at steady speed, ¥ = w t and equation (6.16) is rewritten

P v te8 S = 0
ME Qx(wct,Sx, y)

(
)\ . (6.17)
' . . Meg =0 . .... .
LM@Y - Qy(wct,éx,éyJ + Meg



Equation (6.17) forms a coupled system of secondary differential equations

with time varying coefficients and with terms that are only piecewise

analytic (differentiable).

It has not been possible to find a general analytical solution to
equation (6.17), but for two important special cases, such solutions can
easily be obtained. For high accﬁracy applications, roller bearings are
often preioaded, i.e. they have a negative radial clearance. I1f the pre-

load and the shaft movements occurring are such that

lel>V82+ 80 (6.18)

then all rollers will always be in contact with both races and, the term
?

U(S(¢)) of equation (6.15) is always one. Thus equation (6.15) becomes

P |
Qx =*Kk§1(éxcos¢k + 6y51n¢k-e)cos¢k
N
LQY =~KP§1(6xcos¢k + 6y51n¢k—e)51n¢k .......... (6.19)

Since the summation is carried out over the whole circumference of the

bearing, equation (6.19) reduces to

4 N ) N 1+code>k
-~ KF% & cos ¢, ==KZG_ - =
IR S
KN
_~6x >
< N N 1-cosZ2¢
inZe. =K T3 X
Qy :~Kk§16ys~n (;)1\ k:]_“/ 2 .......... (6'20)
\.1"
s =
y Z




Thus, for such a preloaded bearing,

. . . .
the stiffness is constant and time

invariant and no VC vibrations would be generated. Equation (6.20) also

s - - . .

shows that the stiffness does not increase with the preload, once the
condition (6.18) is fulfilled. One should therefore avoid excessive
preload since this cen cause problems of over-heating and increased friction,

while no increase of the assembly stiffness is gained.

In a similar way, the case for e = O can be analysed. From Fig.6.2
it is clear that if e = O the contact zone will cover exactly half the
circunference of the outer race for all (small) displacements. If the

bearing has an even number of rollers, then N/2 rollers will always be in

contact with both rings. Equation (6.15) becomes
?
/
N/2
QX ==K I (chos¢k + Gysl.n(bk)cosd)k =
k=1
N/2 sin2¢
N
=K I ¢ 00526 + 6 JE S %r
k=1 X X y 2 X
N/2 . .
Qy =K I (éxcos¢k + Gyslnrbk)sm(bk
k=1
N/2 sin2¢ .
k . 2 KN
= — § s =0 == ... cen (6.21)
=K kzl 6x T y n ¢k y 4

Hence . alsc in this case the force - deformation relationship is linear and
3

time invariant and no VC vibrations would be generated. The stiffness 1is

half that of the fully preloaded case.

For other than these two special cases, solutions to equation (6.17)

have been obtained by simulation on & digital computer. The simulation



has been carried out using a modelling packa

ge called SLANG, which has been

written for use on ICL computers by Hawker Siddeley Dynamics Limited, see

ref.(8) .  The integration routine is a third order Runge-Kutta and the
package is used in a similar way as an analog computer. Thus, Fig. 6.5

shows the analog circuit diagram using the notation below

X1 - éx
[ - :,

X, = Sy

=5 S (6.22)
.

Combiniﬁg equation (6.22) and equaticn (6.17) gives

. ?
175
T TM
<
X3 = X4
X = - gl - e e 6.23
X, g ( )

Using the values of Q‘ and Qy from equation (6. 15), equation (6.23)

has been represented in a computer program, DYNSIM, using the SLANG package.

6.3 COMPUTATIONAL CONSIDERATIONS

By use of digital simulation techniques, problems like scaling and

saturation of amplifiers, associated with analog simulation, are avoided.

When using digital simulation it 1is however necessary to specify the step

length of the simulation, i.e. the increment of the time variable between

each consecutive value of the simulated variables. For a non-linear



system of this type, the only way to de

termine a suitable step length is

by trial and error. If the step length is too long, the solution goes

unstable, while if it is too short, it is not possible to cover a sufficient

length of time in an economical way. For the range of loads which has been

investigated, (225kg - 25kg), step times between 0.5 and 0.1 milliseconds

have been used, the shorter step time for the lighter load.

A different kind of problem arises when it comes to choosing initial
values for a particular run. DYNSIM requires the initial position and
velocity of the shaft centre to be set before execution is started. If
these values are not chosen so that the rotor is in static and dynamic
equilibrium at the start of the run, a free vibration at the matural frequency
of the system will result. Since it is impossible to calculate correct
initial values, free vibrations will be superimposed on the VC vibrations.
This is a considerable prcblem because the free vibrations can often be of
greater magnitude than the VC vibrations, which are then obscured. Further,
the free vibrations will interact with the VC vibrations and change these
in an uncontrolled way.  The problem has been overcome by using a specific
stsart up procedure and by introducing damping in the system. The static
equilibrium position is calculated for a particular load and cage position
by use of equation (6.15). These values are used as starting values, and
the rotor speed is gradually increased from zero to the set speed, see Fig.

6.6, A damping term is included into equation (6.17), hence

( . =0
McSX + cxcx QX

J

¥ oL Cc6 -0 +Mg=0 BRI (6.23)
LM(Sy+ Oy Q



The purpose of the damping is to attenuate the £r

ee vibrations generated
during the start up (t<T§) before the variables are output (t>T ),
-~ Op

without significantly affecting the forced VC vibrations. To investigate
the effect on the steady state vibrations by démping, two trial runs were made.
All parameters were identical except for the damping which had the ratio

C =C ,/C

x,l/cx,Z 1 2. The solutions were virtually identical, which

y,2
demonstrates that the steady state vibrations are only marginally affected
by damping if the damping coefficients are carefully chosen. The setting
of the parameters Ts’ TOp and the damping coefficients are obviously crucial
to obtain meaningful solutions. Generélly TS has been Set at T/S,TOp at 0.9T
and CX and Cy to values giving a 20% reduction of energy per cycle of free
vibrations, a Q-factor of about 31. The setting of the damping requires
calculation of the natural frequency of the system, which has been

approximately calculated using the stiffness coefficients from Fig.6.3.

DYNSIM outputs the calculated sequence of values for Gx,Gy, Q, and Qy'
The output can be fed to a program calculating the maximum range of

displacements and forces, DXR = 6x,max - ax,min; DYR = 6y,max - 6y,min;

(R = - - QYR = - .. Alternatively,. the output
XR Qx,max Qx,min’ Q'R Qy,max Qy,mln
is punched on paper tape for further analysis. The analysis of the

punched tape is done on the Nova minicomputer with a programme called DSAN

(DynSim ANalysis). DSAN reads the papertape and stores the contents on a

disk file. Subsequently, DSAN plots Gx’ Gy’ Qx’and Qy as functions of time.

. . t the shaft locus and and
By calling polar plot,5x and dy are used to plo Q

Q  are used to plot the vector locus of the reaction forces. Finally, the

, , 1 : oY 1 v
displacements and forces are frequency analysed using a FFT routine.  Thus



each DYNSIM run produces 10 plots.

It has been possible to incorporate
several of the routines used for the DAS package (see Appendix IT) in

DSAN. The organisation of DYNSIM and DSAN is shown in fig. 6.7.

To produce a record over 150 msecs, the total simulation time will
be 600 msecs with Topset at 0.75T. Using a step length of 0.1 msecs, the
computation time required is about 2.5 minutes on the ICL 1904. When
the simulated record is output on papertape and analysed with DSAN a
complication arises, in that the ICL paper tape code is not directly
compatible with the code used by DGC. The necessary editing (exchange

of exponent symbol and line separator) is done automatically with the DGC

2

editor using a short macro routine which is set up for this purpose.

The editing of a record of 512 samples takes about 20 minutes of computing
time, but must due to shortage of core storage capacity be divided into
two batches making the effective time required about one hour. A further
problem with transferring large amounts of data from one computer to

another by use of paper tape is that with the very long tapes required,
mispunches and misreads often occur, which have to be traced and rectified.

For the above mentioned reasons, DYNSIM runs which are output on paper

tape have generally been limited to 550 lines. The actual DYNSIM program

is not reproduced here since it requires the use of a SLANG compiler,

which is only one of a number of simulation packages available. The

setting up of a program to simulate eq.(6.23) is however a fairly straight.

forward task - programmed in SLANG about 400 lines 1s required.

The previcusly derived analytical solutions, see eq.(6.20) and cq.

. ati NSTIM
(6.21) have been used toverify the correct operation of DYNSIM. An



example from a preloaded bearing is shown in fig.6.8. This bearing was

started under the static equilibrium position and given an initial

horizontal velocity. It thus performs harmonic oscillations in the

directions of both axis, but with a 90° phase lag. As is seen in fig.
6.8, the system behaves purely linear in spite of the fact that the cage
is running at 20 r/s. Because of the damping, the ellipse is degener-
ated into a spiral which approaches the static equilibrium position.

The amplitudes, frequency and damping measured from the graphs agree with

those calculated analytically. Several other trial runs have also been

made to ensure that the program works in a correct way.

6.4 Characteristics of VC Vibrations

In this section examples of DYNSIM runs with typical operating
parameters will be presented and some particular phenomena believed to be
typical for VC vibrations will be discussed.  The nature of the predicted
vibrations is verified by experimental results presented in this section

and in section 8.1.

The dynamic effects can be looked upon from two points of view: They

can be characterized either by the displacement of the shaft centre

relative to the bearing housing, or by the forces on the bearing pedestal

from rotor and bearing. The occurring reaction forces influence the

operatioﬁal life of the bearing and determine the level of noise and

vibrationsboenerated during operation, while the displacement character-
g _

istics are of prime importance in applications where accuracy and

steadiness of run is emphasized. Each DYNSIM run produces a sequence of

S, 68 ,0Q These sequencies can be analysed

and Q as functions of time.



in detail using DSAN, but it is practically possible to analyse only a

small number of runs in this way. As a measure of the overall severity

of vibrations two parameters are thervefore defined: Dynamic Force Parameter,
DFP = QYR/(Mg), and Dynamic Displacement Parémeter, DDP = DXR + DYR, with

QYR, DXR and BYR defined in section 6.3.

Values for DDP and DFP have been calculated for 40 realistic
combinations of load (25 - 225 kg) and speed (715 - 5710 RPM shaft speed).
The bezring simulated is a cylindrical roller bearing with twelve rollers,
a local stiffness of 107'106 N/m (calculated with eq. 3.34 for a roller
length of 10 mm) and with a radial clearance of e = 50 microns. The
results are plotted in fig. 6.9 and fig. 6.10 respectively. One point
to make about the DYNSIM runs is, that due to the highly nonlinear
character of the system, slight changes of running conditions might
cause drastic and abrupt changes of the solutions. Interpolation (and
of course, extrapolation) is therefore hazardous. Hence, although
the DDP and DFP surfaces are correct at the grid points, intermediate
values should be used with caution. It has been necessary to economize
with the number of grid points in order to keep cowputation time within

reasonable limits - to calculate a complete surface of 40 points takes

about one hour and forty minutes.

The main factors governing VC vibrations are speed, load and radial

clearance Vv(C vibration variations with these parameters are exemplified

with DSAN runs presented in figs. 6.11 to 6,25, Variation with speed

is shown in figs 6,11 to 6.15, where load and clearance are kept constant

(M = 75 kg; e = 50 microns) and the speed is varied between 0.6 and 35.0



cage revolutions per second (85 - 5000 RPM shaft speed). The shaft loci
are given in fig. 6.11 during 150 msecs. Note that in all loci plots,
the coordinate system is translated downwards a distance e in order to
obtain suitable scaling.  Fig. 6.12 gives vertical shaft displacement,
Gy(t), and fig. 6.14 gives vertical reaction force, Qy(t), both during
200 msecs. The spectral distribution of 6y and Qy are calculated by
Fourier Transform and presented in figs 6.13 and 6.15. Variations with
load are shown in figs. 6.16 to 6.20, where speed and clearance are kept
constant (fc = 8.0 Hz, corresponding to fs = 1145 RPM; e = 50 microns)
and the load varies between 25 and 225 kg. Finally, variations with
clearance is given in figs. 6.21 to 6.25, where load and speed are kept
constant (fC = 8.0 Hz; M = 125 kg), while e varies between 25 and 100
microns. Except for the loci plots, only vertical displacements and
forces have been analysed. The reason for this is, that the vertical
dynamic force is superimposed on the static load and it therefore seems
likely that vertical effects are more ¢ritical than horizontal ones,
although quite large movements occur in the horizontal direction.

The experimental study of VC vibrations of a real bearing is made

difficult by several factors.  The existence of form errors of the

bearing components causes vibrations, which have a magnitude comparable

to those of the VC vibrations. Further, VC vibrations will be greatly

affected by misalignment, unbalance and flexibility of rotor shaft and

- bearing pedestal. For these reasons it has mot been considered
o

realistic to aim at making quantitative comparisons between theoretical

and experimental results, but merely to demonstrate that the predicted

phenomena associated with VC vibrations actually occur in practice.



The experimental runs have been carr

ied out with the bearing vibration
test rig (see Chapter 4) using a cyliﬁdrical roller bearing type N206
having twelve rollers. The bearing was oil lubricated (Shell Carnea 31)
and was carefully aligned us;ng the method described in Chapter 9. - For
the runs referred to in Chapter 8, a single row, spherical roller bearing
type 20206 was used. The generated vibrations were picked up

by an accelerometer positiohed on the bearing housing right under the
bearing. The original vibrations from the bearing will obviously be
coloured by the dynamic properties of the bearing housing and fundament,
and due to the non-linearity of the system, there is no simple way of
compensating for this (see section 8.1). Nevertheless, characteristic

phenomena may still be recognised.

The DDP and DFP surfaces of figs. 6.9 and 6.10 show the overall
dynamic behaviour of the rotor - bearing system. Large movements occur
at low speed and heavy load. As is seen from fig. 6.16 these are mainly
horizontal movements with the shaft rocking back and forward in the
bearing. A ridge, most clearly seen in fig. 6.10, goes diagonally across
the surface, starting at 32 Hz, 25 kg and leading to 15 Hz, 175 kg. The
largest DFP value, 2.5, occurs at 33 Hz, 25 kg, i.e. at this point the
dynamic load is as high as 125% of the static load. The loci plotted

in fig. 6.11 represents running conditions along the 75 kg load line of

fig. 6.9. At 25.0 Hz it crosses the ridge and at this point very large

vibrations result. Due to the coupling between vertical and horizontal

movements large displacements in one direction will also generate large

displacements in the other direction. It is however clear that the locus

at this load - speed combination has a much larger vertical component than



was the case for the low speed - heavy load cases

An indication of

the underlying reason for the occurrence of large vibrations at certain
load - speed combinations can be obtained by studying the stationary
rotor - bearing assembly.  For many typicalgcombinations of load, speed
and clearance only one and two, or two and three rollers will be loaded
during one RP cycle. The stiffness of the bearing at the instants when
the rollers are symmetrically arranged around the load line can be
obtained from fig. 6.3. The stiffness at intermediate cage positions
will not deviate substantially from these values. The assembly stiff-
ness will remain constant over a certain range of displacements making
the system linear for longer or shorter periods cf the RP cycle. Fig.
6.26 shows the natural frequencies in vertical and horizontal directions
for the instants with one, two or three rollers symmetrically arranged
around the load line. Instead of scaling the abscissa axis in Hz, it
has been scaled in the cage speeds giving aRP frequency coinciding with
the natural frequency of the bearing, i.e. it gives the critical cage
speed for a certain load and certain number of rollers under load. It
is not possible to relate the stationary bearing and Lhe rotating bearing
to each other in a detailed, analytical way - with the rotor running and
the number of rollers under load constantly changing, the rotating system
uencies in the same way as a linear system does.

does not have natural freq

It is however a reasonable hypothesis to assume that the rotating system

will exhibit resonant like behaviour in the load - speed regions of the

stationary natural frequencies. By the term "resonant like" 1s then

simply meant that if the forcing frequency coincides with a natural

frequency of the system, large but unspecified vibrations will result.

The hypothesis was proved valid noth by the results of the DYNSIM runs



and from experimental runs. Comparing fig. 6.9 and 6.10 with fig. 6.26
it i? apparent that the diagonal ridge in fig. 6.10 coincides very well
with the resonant region for vertical motion in fig. 6.26. Also the
previously mentioned change from distinctively horizontal movements for
the low speed - heavy load cases to loci with a larger component of
vertical motion is consistent with the hypothesis. The points furthest
away from the resonant region of fig, 6.26 are in the top right corner

of the diagram. In fig. 6.9 and 6.10 it is also apparent that these
parts of the surface are the ones least affected by dynamic effects

(see also fig. 6.12 and 6.14). Running the bearing above the resonant region
resembles running a flexible shaft over-critically,thereby stabilizing it.
The DDP values approach zero for increasing speed, while the DFP values
approach a small but non zero constant value for high speed. These
characteristics are also analogous to the over-critically running

flexible shaft. In Chapter 8 it is shown that whether the resonance

is a property of the bearing itself or of the whole rotor - bearing -
fundament system is irrelevant. Fig. 8.2 and 8.3 show response curves
for cases where the bearing RP frequency is passing through a system

resonance. In both cases the natural frequency of the resonance was

measured on a stationary system.

- One might think that since the stiffness variation causing VC

vibrations is periodic, the resulting movements would also always be

periodic This is however not necessarily the case, because the system's

initial conditions (position and velocity of shaft centre) might well be

different at the start of each new cycle of stiffness variation.  The

set of starting values determine the character of the subscquent locus
~ [=4



cycle, and the way in which the starting values change from one cycle

to the next determines the type of solution obtained. Hence, for a
system where the initial conditions remain identical at the start of
each new cycle, the solutions will be periodic with loci having
essentially closed traces (6.11: 0.6, 2.7, 8.0 Hz; 6.16: 25, 75 kg;
6.21: 25 microns). As is seen in the loci plots, there also exists
solutions which do not produce closed traces, but behave in a more un-
predictable way. Although these solutions are non periodic, they have,
with two exceptions, stable characteristics in that they have a constant
RMS value and a constant and well defined spectral distribution if the
averaging time is chosen long enough. These solutions could therefore
be classed as non periodic, stationary. The manner in which the
starting values change could be either random (e.g. 6.11: 25 Hz and
6.21; 75 microns) or more systematic. One example of the latter case
is fig. 6.11: 15.0 Hz, where the shaft centre moves up and down along

a near vertical line. Superimposed on this motion is a slow horizontal
motion which makes the shaft wander slowly back and forward in the

horizontal direction.

Among the DYNSIM runs two cases were found, which did not stabilize

during the available simulation time, 6.16: 225 kg and 6.21: 100 microns.

In the latter case, the shaft centre performs near circular motions for

the first 25 cycles of the record and then whips out predominantly in

the horizontdl direction, see also fig. 6.24. No extensive analysis has

been made of these non stationary cases, since this would require very

long DYNSIM runs. Thus, the presented samples merely demonstrate the

existence of such phenomena. The loci plots are not an ideal way of



representing slow changes with tine

Instead a method which offers better

clarity has been employed. By use of a special plotting routine

(HELIPLOT) linked to the DSAN package, the locus of fig. 6.16: 225 kg, has

been expanded into a helical in fig. 6.31. ~As this figure shows, the

shaft swings back and forward in the horizontal direction with large and
smooth movements for the first half of the record, but after about 0.1 secs,
the motion becomes progressively more jerky with a diminishing amplitude.
The two apparently non stationary cases that were found, seem to be
examples where the initial conditions vary in a systematic way with cycle
times much longer than the RP time. | One way of explaining the phenomena
is to assume that the starting values change from one RP cycle to the next
in such a way that a positive increment of the starting values of one

cycle causes a positive increment of the subsequent starting values and
vice versa, The displacements build up until they are limited by non
linearities of the system, then the trend reverses and the amplitudes

start to decrease. Thus, the motion is characterized by beats having a
time period which is much longer than the RP cycle time.  The load -

speed combination of fig. 6.16: 225 kg, is near a resonance and expewriment-
ally, slow beats of the type predicted have also been found when running

a bearing with its RP frequency close to a system resonance, see the scope

photographs of fig. 8.3.

The spectrograms obtained from the DYNSIM runs are mainly of line

spectrum type, i.e. they have a well defined spectral content. The RP

frequency is the fundamental and normally, dominating peak, but harmonics

and also subharmonics occur. Fig. 6.27 shows an example from an

experimental run with a large fundamental and several diminishing harmonics.



For some running conditions,

a clean sinewave at RP frequency results, in
which case no harmonics occur, see the experimental run in fig. 6.29 and

the DYNSIM run in fig. 6.15: 35 Hz. Subharmonics seem to occur only for

solutions having large horizontal movements, as is seen when comparing
loci plots and spectrograms. This seems to be so irrespective of whether
the large horizontal movements arise due to resonant excitation (6.18 and
6.20: 175 kg with subharmonics at 1/3 RP frequency) or because of a
situation where a very light rotor bounces around on the rollers (6.18 and
6.20: 25 kg with subharmonics at 1/2 RP frequency). Fig. 6.30 shows an
example of such a light rotor having subharmonics at 1/2 RP frequency.
Figs. 8.4 to 8.7 show some cases of subharmonics arising at 1/5 RP
frequéncy when large vibrations are excited during the passage of a
system resonance. Due to resonances one of the first harmonics might have
a greater magnitude than the fundamental. An example from the

experimental runs is shown in fig. 6.28 and from the DYNSIM runs in fig.

6.20: 125 kg.

The subject of VC vibrations in the context of resonant excitation

will be further discussed in section 8.1.

6.5 Generalization of the equation for VC vibrations

Previously in this chapter only bearings with a linear force-

deformation relationship between rolling bodies and tracks have been

considered. This linearization is adequate for bearings having line

contact and also gives approximate solutions for other types of contacts

provided the displacements are small. Generally, however, the linear

relationship of eq. (6.9) does not hold true for any other type of



bearings than cylindrical roller bearings.  Rolling bearings like
spherical ball bearings, deep groove‘ball bearings, spherical roller

bearings and so on, have local stiffnesses that are functions of the

deformation. Hence, eq. (6.9) is modified to

P(¢) = k&"(¢)

For bearings having point contacts, the value for w is, according to

eq. (3.30), 3/2. As was pointed out in Chapter 3, the Hertzian theory
presupposes contact zones, which are small compared to the dimensions of
the mating bodies. This condition is fulfilled for low osculation type
bearings, but not for high osculation type bearings like deep groove ball
bearings and spherical roller bearings. For such contact conditions the
appropriate value for w is best obtained experimentally. Having obtained
a value for w, eq.(6.9) is replaced by eq.(6.24) and the derivation of the
force - displacement function for the bearing assembly is carried out in
the same way as for cylindrical roller bearings. The counterpart to

eq. (6.15) for cases of non linear local contact conditions then becomes

-X

y (6Xcos¢k + 6ysin¢k—e)wcos¢k U[6(¢k)]

Q, (6,36, 51)

1 ao b=

1

-K
k

i}

™M=

(8 cosd, + 6ysin¢k—e)wsin¢k U8 (9,)]

Qy(éx;éy;w) .

N

Equation (6.25) is then substituted in eq. (6.23) and solutions might be

determined by simulation with a nodified DYNSIM program. Also external

forces, eg. due to unbalance, can easily be included.




One point of fundamental difference between bearings with linear

contact characteristics and bearings with non linear contact character-

istics is that, for the cases where the former type does not generate

VC vibrations (either e = 0 or e larger than occurring displacements),

the latter type will still generate such vibrations. Hence by adjusting

the clearance of cylindrical roller bearings, VC vibrations might, at

least in theory,be eliminated, which is not the case for other types

of rolling bearings.

i
i
i
i
i
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CHAPTER 7

EFFECTS OF MANUFACTURING TOLERANCES ON BEARING'VIBRATIONS

In the previous chapter it was shown that vibrations in rolling

5 bearings are generally excited because of the variation of assembly.

! .

, stiffness that occurs as the cage rotates. This type of vibration is
|

inherent in the design of rolling element bearings and would occur also

‘ in a geometrically perfect bearing. The shapes of the components of a

real bearing however, will of course always deviate to some extent from

their theoretical design and the size of these deviations are determined

by the tolerances with which the bearing is manufactured. For bearings

of standard tolerances the vibrations generated by these form  errors

1

i.

! will often be of equally great importance as those generated by varying
!

assembly stiffness. The unsteady, rumbling noise that many bearings

generate while in operation 1is generally attributed to this source.

The purpose of this chapter is to show in some detail how the surface

irregularities are related to the vibration characteristics of the running

bearing. A complete theory describing the relative movement of innetr

becomes excessively complicated

and outer rings of the bearing arrangement

if it is to allow for flexibility between rollers and raceways except for
the case of the idealized bearing treated in Chapter 6. It has however
ve predictions of bearing

been found possible to obtain good qualitatid

vibration characteristics due to form  €rTOTS with a simplified theory



where rollers and raceways are assumed rigid.

The equations of motions

for the shaft centre then reduces to purely geometrical relationships and

this theory is therefore called Kinematic. The fact that zero elastic

deformation is assumed means that the bearing under consideration must

have a positive clearance and be only lightly-loaded. Only two rollers

are assumed to carry the load except for the moment when one roller leaves
the load carrying zone and a new roller enters it, i.e. for values of

Y =nV, n =.O,1,2,..., see Fig. 7.1, A Kinematic model clearly constitutes
a linear model, which means that effects of different form errors can be
treated separately and the results superimposed to obtain the total movement
of the shaft centre relative to the centre of the outer race and the

bearing housing.

7.1 TYPES OF FORM ERRORS

Deviations from the theoretical design occurs in all components of the

bearing and are of various types. For instance, the cross sections of the
inner and outer rings will not be perfectly circular. The same is true
of the contours of the rollers. Further, inaccuracies of the cage will

make the rollers unevenly spaced and will make the cage unbalanced and
finally, the diameters of the rollers will not be perfectly uniform. All
the mentioned form errors could generate vibrations, but in the author's
experience from this study of several common types and makes of bearings,
it seems that in practice two types of form errors can be singled out as

having particular effect on the bearing's vibration characteristics.

The roundness of the rollers is generally much better than the roundness

of the tracks. This is probably so because the rollers are made out of

solid, cast raw materials. Moreover, even if the rollers were non-circular
- )




or wavy to an extent where significant vibrations could be expected, the
relative phases of the waves on the roller surfaces would vary in a random
manner as new rollers enter and leave the load carrying zone. This means
that no sustained oscillating force of the type that could excite the
fundament or shaft could occur. Vibrations duc to out of roundness

of rollers are therefore insignificant compared to other vibrations of the
bearing and has not been found in aﬁy of the experimental runs. Different
experiences,although relating to ball bearings,were reported by Tallian and
Gustafsson in ref.(23),who claim that the surface quality of the balls has
a direct influence on the vibrations of the bearing. It seems however
likely that a set of balls with a poor surface quality will also have a less
uniform diameter and it is believed that it is this latter property of the
ball set that is the actual cause of the repérted correlation between high

vibration levels and poor ball surfaces.

The raceways are made out of cold drawn steel tube, which is cut and
centreless ground. Internal stresses originating from the drawing are
often present in the raw material and after subsequent heat treatment

these stresses will manifest themselves in the form of lobes or waves

around the circumference. Less than perfect grinding will give a similar
result, The amplitude of the waves. decrease quickly for wave numbers
above 10 to 15 cycles per circumference. In ref.(24) it is claimed that

waves up to approximately 100 cycles per circumference have been found,
but one must then remember the difference of measurement methods used.
In ref, (24) it is not the actual height of the waves that is measured,
but the speed with which the probe moves in the radial direction, a method

which emphasises the higher frequency components. The same ring generally




have several waves,

each with a different number of cycles around the
circumference so that the total shape of the ring is the superposition
of these waves, The magnitude of these form errors is sufficient to
generate significant vibrations from both outer and inner races. In an

axially loaded bearing all the rollers are always in contact with both

races. In such a case one would expect vibrations due to waviness from

both races, shown in ref. (23). In a radially loaded bearing with
stationary outer ring and having positive clearance however, often only two or

three rollers carry the load. This means that for waviness of the outer

ring to generate vibrations, the length of the waves must be rather short..
The actual wavelength is however such that no significant vibrations are
generated, although one would imagine that waviness of the outer race
affects the load distribution between the rollers. For the inner ring
the situation is different since the lobes there continuously roll over
the contact points with the rollers as the ring rotates.  Vibrations due

to inner ring waviness havealso been found in most experimental runs.

Unbalance of the cage would produce a rotating force of frequency
equal to the cage speed, see Chapter 3.  Components at this frequency
sometimes occur in the experimental runs, but are generally small, A
simple calculation shows that for the cage unbalance to give a vibration
level equal to that produced by a one micron, two lobe wave of the inner

ring,the unbalance must be about 40% of the total mass of the cage which

is clearly impossible. It is then more realistic to consider the effect

of varying roller diameters, which have a direct effect on the vertical

position of the shaft. The size of the variations are of the same order

as the out of roundness of the inner ring. Vibrations originating from

this effect have been found in experimental Tuns and are often of the same



A - 3 . .
order of magnitude as the vibrations originating from waviness of the

inner ring. As regards the variations of gaps between the rollers due
to imperfections of the cage, it can be shown that although these

variations are quite large they will have little effect on the movements

of the shaft.

The conclusion of the above discussion is that for radially loaded
bearings, attention should primarily be concentrated on vibrations due to
inner ring waviness and varying roller diameter. This conclusion is
also supported by practical experience from running bearings in the test
rig. Fig. 7.3 shows a series of spectrograms of a spherical, single row,
roller bearing, type 20206, running in the vibration test rig with the
12 kg rotor at speeds between S and 30 Hz (300 - 1800 RPM) and with the tube
brackets in the'medium' stiffness position. The vibrations are picked
up by an accelerometer positioned on the bearing holder, right under the
test bearing and areanalysed using the DAS system. Because of the
complexity of the signal it is inevitable that at any single shaft speed,
some vibration peaks will coincide. With a plot of the type of Fig. 7.3
however, it is possible to distinguish all important frequency components
at at least one shaft speed. The spectrograms are dominated by two
series of vibration harmonics, one with the shaft speed as the fundamental
and one with the cage speed as the fundamental. The frequency components
are notated with NS' for the N:th shaft harmonic and NC for the N:th
cage harmonic. It will be shown that the origin of these groups of
harmonics can be derived to waviness of inner track and non-uniform roller
The first shaft harmonic (the fundamental) 1is

diameter respectively.

however due to unbalance of the rotor and not normally an effect of the




bearing, unless the unbalance is due to the bearing bore not being

concentric, This can however not be distinguished from other types of

unbalance.  Except for the two main groups of harmonics there is also a
frequency component at roller passage frequency (RP) which; although
occurring at an integer multiple of cage speed is a VC type of vibration
and not due to non-uniformity of the roller diameters. There are also
two freQuency components marked 6S”-and 78" which are secondary peaks, a
form of nonsymmetrical side bands, to 6S' and 7S' and which are also an
effect of form deviations of the inner track. For other types of bearings
and operating conditions it might be necessary to include effects of
roller and outer ring waviness and these effects could be studied along the

same lines as will be used here.

7.2 VIBRATIONS DUE TO VARYING ROLLER DIAMETERS

To demonstrate experimentally form errors and vibrations originating
from form errors three bearingsof type 20206 will be studied in this chapter.
The three bearings are of similar design and tolerance class and are all
sold commercially by well known manufacturers of quality bearings. The

three bearings will be referred to as bearings A, B and C.

The rivets holding the two cage halves together were removed so that
the bearings could be dismantled.  The rollers were numbered with an
engraver pen and their diameters measured using a Watt vertical measuring
machine. The diameter differences are extremely small, often only
fractions of a micron, which makes it difficult to obtain repeatable

readings even with specialised measuring equipment. By measuring the

sets several times and taking the mean values it was however possible

to obtain reasonably consistent values for the diameters of the rollers.




The differences between the smallest and largest roller were for bearing

A:l.3 ﬁm, for.bearing B:0.5 pm and for bearing C:3.1 ﬁm. The standard
deviations (the RMS value for a series of samples having been made to

have a mean value of zero) of the roller diameter differences were for
bearing A:0.45, for bearing‘B:O.l and for bearing C:1.0.  Thus the
accuracy of the rollers is significantly pooter for bearing C than for
bearings A and B, which do not differ much between themselves, although

B is somewhat better than A. In fact, the differences of diameters
measured for bearing B is probably within or near the accuracy of the
measurement method. One would now expect that the size of the vibration
components related to the cage speed of the bearings would show some sort

of correlation with the amount of non-uniformity of roller diameters as
expressed by the standard deviations of the respective bearings. The

three bearings were run in the vibration test rig at 18 Hz (1080 RPM) speed,
loadéd by the 12 kg rotor and the spectrograms for these runs are shown in
Fig. 7.12. The amplitudesof the first six cage harmonics were measured

for the three bearings and their respective RMS values were calculated.
Hence, the RMS values associated with cage speed and ha?monics thereof were
for bearing A:2.2 10_3G,for bearing B:1.7 107°6 and for bearing C:2.4 107%.
These measurements show that the standard deviations of roller diemeter
differences are related to the RMS values of the vibrations of the running
bearing in such a way , that a high value of standard deviation will give
a high value of RMS vibration at the frequencies concerned.

The method of the previous paragraph 1s rather crude, and the result

is merely an indication of a correlation of some sort between roller

diameter accuracy and vibration at cage harmonics. It is however not

only the amount with which the roller diameters differ from each other




that matters,but also the order in which the rollers are positioned in

the roller set.  This will be shown in a more detailed analysis of this

relationship between roller properties and vibration characteristics below.
Consider again Fig. 7.1.  For a slowly rotating bearing where no elastic
deformations occur, the vertical position of the centre of the inner ring
relative to the centre of the outer ring will, at the instant when a

roller is right under the load line, be determined by the diameter of that
roller., Thus, during one cage revolution of a twelve roller bearing, the
position of the shaft centre will be known at twelve instants if the

roller diameters of the roller set is known. The roller diameters of
bearing C is represented by the twelve small circles in Fig. 7.4 a. For

the cage positicns where a roller is mnot directly under the load, fhe

shaft position is not known, but for the accuracy needed here it is sufficient
to assume that the vertical position is given by a smooth line drawn
through the known twelve points as shown in Fig. 7.4a. A series of
ordinates can mow be taken from the displacement function of Fig. 7.4a,

and since this function is periodic, with the cage speed as the fundamental,
the function can be expanded into a Fourier series, see Appendix I. The
calculation of the Fourier coefficients can be done by wusing for instance
the Runge or Fischer-Hinnen and Lewis's rules, see Chapter 38 of ref.(13).
Since a computer with a Fourier analysis program was available for the DAS
system, in this case, the ordinates were simply punched on paper tape

and read into the DAS system.  The Fourier coefficients, C., are given 1in
Fig. 7.5a. Neglecting phase difference between the components , the vertical

shaft displacement function can now be written as

y(t) =C;sinw t * C sin2u t + C,sindw t + ... vl (701)




remembering that the Kinematic model constitutes a linear model, each
compongnt gives rise to a shaft movement that is independent of the other
components, so that the vertical acceleration of the rotor due to component
i is

. 22 L,
yi(t) = -C; 1w sindo t ..ol i enaeneeee (7.2)

and the force exerted on the bearing holder due to the acceleration of

f(L) - C-i (I\ZNI'Si“i“) t (7.3)
2 e 5 s 8 s 8 1 6 s e A OB 00

This force will give rise to an oscillation of the bearing holder at
frequency i~wc , .the amplitude of which depends on the dymamic properties

of the set-up. Thus, the acceleration which is measured with

an accelerometer on the bearing holder, is for a certain frequency directly
proportional to the Fourier coeffi;ient of the roller diameter variation
function at that particular frequency. Note that the theory is restricted
to making comparisons (not calculating absolute values) between vibration
components of similar frequency. An extension of the theory will be made

in Chapter 8 which takes into account the Mechanical Impedance of the system.
The simplified derivation pre-supposes a non-flexible bearing holder tube,

but the conclusion of the theory, that the vibration levels are proportional

to their respective Fourier coefficients, is valid also for the case of

a flexible tube. The hypthotesis is tested by arranging the roller set of

the same bearing in two different sequences of rollers, thereby producing

different series of Fourier coefficient. In Fig. 7.4a the rollers have

been arranged to give a Strong 3 cycle component and in Fig. 7.4b the




rollers have been arranged to give a 6 cycle effect. The Fourier
coefficients of the displacement functions are shown in Fig. 7.5a and b
respectively. Spectrograms of the bearing run in the test rig are shown
in Fig. 7.6 for the two roller arrangements. According to the hypothesis
the amplitude of the cage harmonics should vary in proportion to the
magnitude of the Fourier coefficients. In the table below C; are the
Fourier coefficients as measured from Fig.7.5a and b and A, are the

vibration amplitudes as measured in Fig. 7.62 and b.

i = 1 2 3 4 5 6
Ci 3
s 0.095 1.1 4.0 0.53 0.75 0.64
i,6
Ay 3
= _ 1.4 4.7 2.2 - 0.70 0.56
i.6

The table above, together with direct comparison between Fig. 7.6 and
7.5 seems to confirm the theory. The first harmonic occurs at a low
frequency which gives too low a signal level to give measurable vibration
amplitudes. As would be expected the 3 cycle arrangement has a large

third harmonic vibration component and the six cycle arrangement has a

large 6 cycle harmonic. The only deviation from the theory is the fourth

harmonic but one must remember the measurement difficulties involved and

the simplified way of treating a very complex problem.  All in all, the

experiment seems to verify the theory and showsits practicality in being

able to predict the vibration characteristics as dependant on roller

accuracy of a standard tolerance bearing run under realistic conditlons.




It should be noted that the RMS values of the first six cage harmonics

for the 3 cycle arrangement is about 2.6 times that of the 6 cycle
arrangement.  When particularly quiet running bearings are needed,it might
thus be worthwhile to arrange the rollers in a way so as to give minimum
vibrations. This could well be a more economical way of improving the
running properties of the bearing than to improve the accuracy of the
rollers. The possibility of moving large frequency components,which excite
resonances of the set up, to other and less sensitive frequencies by

arranging the rollers in a different order, should also be noted.

7.3 MEASUREMENT AND ANALYSIS OF RACEWAY SHAPES

The form deviations of the inner ring arerelated to the bearings
vibration characteristics in a somewhat more complicated way than was the
case for the effect of non-uniformity of roller diameters. In this
section it will be described how the contours of the races can be measured
and analysed. The aim of the analyses is in principal the same as that
of thand, ref. (33, described in Chapter 2.  The method used here is however
different and the results are much more accurate and they are expressed in
the dimensions of length, contrary to Yhland's method which gives the

out of roundness in the dimension of velocity.

The function of form deviation from perfect circle was obtained by
the use of a Taylor Hobson Tallyrond instrument, see picture 7.7.  The

object to be measured 1s attached to the table with a vice (1) and carefully

centred. A stylus (2) is brought into contact with the surface of the

raceway and when rotating the spindle (3) to which the stylus is attached,

the Stylus'will closely follow the shape of the surface under investigation.




The output from the instrument is a voltage proportional to the radial

displacement of the stylus and this is, after being amplified, fed to a
recording device. The most commonly used recorders are the polar plotter
(4) and the rectilinear plotter (5), examples of which are shown in Fig.7.8.
If a series of rectilinear plots are made across the raceway (i.e.the spindle
is moved a short distance in the vertical direction between each measurement )
a picture of the surface of the beéring track is obtained. The inner ring
surfaces of the three bearings A, B and C are shown in Fig. 7.9. The
magnification in vertical direction is 4000 and in horizontal direction 1.

As can be seen,the waves and ridges of the surfacesgo across the track

without much change. Thus,one trace in the middle of the surface is a

fairly fepresentative sample of the whole of the surface. Contrary to ;
what was the case for accuracy of the rollers, bearing C has a considerably ;
better accuracy of inner track than bearings A and B which are fairly
similar although bearing A has a higher proportion of short waves. Fig.7.12
shows spectrograms from the three bearings run in the test rig at 18 Hz
(1080 RPM) shaft speed with the 12 kg rotor. knowing that bearings A and B
have better rollers but less good inner rings than bearing C, one would
expect to have a higher proportion of vibration components at shaft
harmonics for A and B but less predominant vibrations at cage harmonics

comparcd with bearing C. This is also clearly shown in Fig. 7.12 and

it is quite easy to distinguish between the three bearings.

The type of plots of Fig. 7.9 give a general idea of the shape of the

tracks, but if a more detailed analysis is to be carried out,the output of

the Tallyrond can instead be fed to an A/D converter (6) connected to a

paper tape punch (7).  The form function can now be made available to a




digital computer and the DAS system has a program which reads this tapé.
The speeds of spindle rotation and sampling frequency are such that a

maximum of 200 samples can be obtained per revolution of the spindle, 1i.e.

per circumference of the ring. Thus, the samples are spaced with

3607200 = 1.8° between each sample. Fig. 7.10 shows the out of roundness
of the inner raceways of bearings A, B and C around one circumference
measured at the axial centre of the raceways. They are plotted using the
DAS system and 7.10 is the digital counterpart to the rectilinear plot

of Fig. 7.8. The form deviation function can be further analysed using
the standard DAS routines. To obtain a digital counterpart to Yhland's
lobe analyses, the FFT routine is used. Since the form function
repeats each time the spindle starts a new revolution, the function 1is
obviously periodic and the FFT routine will yield the Fourier coefficients
that make up the out of roundness function. The Fourier coefficients of
the three bearings are shown in Fig. 7.11 where the ordinates have been
multiplied with the Hanning Window function before being Fourier analysed.
The result of this analysis will be used in section 7.6, but first an

expression for the relative movements between outer and inner ring centres

will be derived.

7.4 POSITION OF SHAFT CENTRE AS A FUNCTION OF CAGE POSITION, INNER RING

"FORM DEVIATIONS AND CLEARANCE

Vibrations due to inner ring waviness have been investigated by

several authors as was described in Chapter 2. These investigations were

concerned with axially ]oaded bearings, mainly deep groove ball bearings.

For many practical applications however, knowledge of the vibration

characteristics of radially loaded bearings 1s more useful. In radially




loaded bearings with positive clearance, rollers continuously enter and

leave the load-carrying zone as the cage rotates and this complicates the

theory for vibration generation in such an application.

Consider Fig. 7.1. The X-Y coordinate system is fixed and positioned

in the centre of the outer ring. The X'-Y' system rotates with the inner

ring, the origin coinciding with the centre of the shaft. The angle ¢
defines the angular position of the shaft or the inner ring, and the shaft
movements are defined by the x-y coordinates of the origin of the X'-Y'
system. Now, assume that the shaft centre is moved along the circle
segment A from origin to (xl; yl) by shortening radius I fromR to Zl’

see Fig. 7.2a. Since A<<R, the circle segment can be approximated to a

straight line,which directly yields the following relationships,

B =R - Z1 .......................... (7.4)

Y = 90° -V i (7.5)

R P (7.6)
cosy

Substitute (7.4) and (7.5) into (7.6) which gives

R-Z

P 7.7
A=y e (7.7)

The new position of the shaft centre can be calculated from

X) = Asin (Y +Y)

Y, = SACOS (PHY)  eeeeesiieesiriiraeniaa (7.8)
However since V+y= 90° s e e ce s e e Ceres s (7.9)
and thus Yo+ oy = P+ 00% =V eiseraneiransoantanae (7.10)




Equation (7.8) can be rewritten as

P

R-Z
X, = 1
1 SIinV cos(y - V)
<
R»Z1
Yy Sy s s - V) (7.
N

Radius I is now kept constant and instead radius II is shortened to Z

2
which moves the shaft centre from (xl; yl) to (xo; yo)’ Fig. 7.2b.
The following relationships are obtained
C=R-2Z, e (7.12)
T = 90% -V e e (7.13)
C
= TSoT reeeesseseciiiai (7.14)
Substituting (7.12) and (7.13) into (7.14) gives
R—22
D = — Tereaset s taantanens (7.15)
sinV
The angle u is
U= 00° - 90° + Y = P ceeeiiiniiiaaaas (7.16)
E and F are the horizontal and vertical projections of D, thus
F = Dcosu
E = Dsinu = teessessicceisasaaans (7.17)
Substitute (7.15) and (7.16) into (7.17) giving
4 R__Zz
= . S
F sinV cosy
£
- R-Z,
E 2 G eeeeeeeeeieia, (7.18)
- sinV




The final position of the shaft is

And finally, substituting (7.11) and (7.18) into (7.19) the full

expression of the shaft centre position as a function of Z,,Z, and the

cage position becomes

, (R-Zl)cos(W~ V)—(R-Zz)cosw
x -

o sinV
-
(R-Zl)sin(w - V)—(R—Zz)sinw
Yo © SINV e (7.20)
"

Equation (7.20) is valid only for O < ¢ < V, because when y exceeds V,
the load of the shaft will shift to a new roller entering the load
zone from the left. An expression valid for all ¥ will be developed

later.

From Fig. 7.1 it is seen that

wvhere dev(6) is the deviation from perfect roundness of the inner ring

as shown in Fig. 7.10. It is assumed that the form function  of Fig.

7.10 starts from point J in Fig. 7.1 and the trace is made in anti-

clockwise direction. Subtracting  (7.21) from (7.23) and (7.22) from

(7.23) gives
(Rﬂzl =e - dev(6)
]

1}{—22 =6 - dev(B-V)  caiieeesiiiiiiianens (7.24)

Z. = T. + dr + dev(B) Lo (7.21)
1 1i,nom
= B+V) e 7.22)
9 Zy TS nom + dr + dev(B+V) ( )
R =T, e D I =R R (7.23)
\ i,nom A




Substituting (7.24) into (7.20) gives

P
< _(e-dev(8))cos (U-V) - (e-dev(0+V))cosy
o sinV
< | i
(e-dev(0))sin(Y-V) - (e-dev(B-V))siny (7.25)
yo - sin\[ 4 & % 4 8 3 50 B O O3 @ s @ .
.

Equation (7.25) is, being derived from equation (7.20), valid only for

0 <y <V, When this value is exceeded the process will repeat again,
but as a new rcller becomes loaded the argument of the dev(6)function will
suddenly increase with the value of V. By use of the Heaviside unit step
function U, having the value 1 for positive arguments and the value zero
for negative arguments, ©g.(7.25) can be rewritten as below in a form

which is valid for all positive values of .

p
x= 5‘1‘15\7 kEo [( e-dev(8+kV))cos (Y- (k+1)V) - (e-dev (6+
+ (k+1)V)) cos (Y-kV) F[UW-kV) U (Y- (k+1)V) ]
<
y= —i T [le-dev(8+kV))sin (Y- (k+1)V)- (e-dev (0+
o sinV K=o
+ (k+1)V))sin (W-kV)HUW-KkV)-U Y- (k+1)V) ] R REE (7.26)
.

From equation (7.26) the locus of the shaft centre can be calculated as a

function of the angular position of the cage, V¥, provided the out of

roundness function for the inner ring is known for all values of 6.




7.5 AN APPROXIMATE SOLUTION TO THE VC VIBRATION ‘PROBLEM

In Chapter 2 a paper by Barakov § Shavrin, ref(22), was reviewed,
which gave an expression showing how the inner ring centre would move up
and down as the rollers passed under the load. Note that this is a
purely kinematic effect, which does not involve elastic deformation of
rollers or rings and which could occur also in geometrically perfect
bearings. The solution to this problem (it can easily be shown that
Barakov's & Shavrin's solution is incorrect, although the main character
of their solution agrees with the expressions given below) can be obtained
from equation (7.26) simply by making dev(0) = C for all values of 8. The

Yo function of eq.(7.26) then reduces to

[sin (- (k+1)V)-sin (P-kV) ] [U(P-kV) U (- (k+DIVI] ... (7.27)
0

_ e
yo sinV K

™M 8

which simplifies to

o

€ 1 -kV) - S(K+L)V) ] veevieenan .
Yo = - e (B, oSOV DN U0 (e ) (7.28)

The value of the sum (including the sign) is plotted as a function of Y
(=wct)in Fig. 7.13 ., A comparison with Fig. 7.1 shows that it is at
the peaks of the Yo function that the load is shifted to a new roller
enteriﬁg the load carrying zone from the left.  The obtained expression
for shaft movement indicates the limitations of the Kinematic theory.

If y  is made a function of time by substituting w_tfor ¢, the function

can be derivated twice with respect to time.

derivation. it is obvious ghat the sharp cormers of the displacement function
: , S

give delta functions of infinite height in the acceleration function. To

accelerate the mass of the rotor very fast requires very large forces,

Without actually carrying out this



which is inconsistent with the assumptions of the Kinematic theory
3

namely, that no elastic deformations occur. Consequently, the Kinematic

theory works best for smooth, continuous displacement functions, and this
is soO glso when displacements arise due to form errors. Vibrations due

to varying roller diameters are generated by such a continuous displacement
function, and the accuracy of predictions of amplitudes for vibrations due
to this effect are also more accurate than predictions of vibrations due

to form errors of the inner race, which are generated by a discontinuous
function. For both cases however, the Kinematic model is a useful

approximation if its limitations are kept in mind.

The Yo function is obviously periodic with the RP frequency as its
fundamental. To show what vibration components the calculated shaft
movement gives rise to, the Fourier coefficients of the function Yo of
eq.(7.28) are calculated. Since the phase is unimportant it is permissible
to move the t=0 axis to the dashed line of Fig.7.13. For —V/ch<t<V/2mC

the time varying part of the Yo function then is
= e ens B 7.29
yo(t) coswct ( )

The general expression for the Fourier coefficients (see Appendix I) is

b+T

* -jnwt
;e ?
b

dt resea e (7.30

So with the expression for y and the applicable boundary conditions,



2
V/..(,uC

w
t .
= J cosw t-e MWL 44
-V/2w
c
o, V/ch
= S cosw t (cosnwt - jsinnwt)dt
-V/2w
c
o V/2wC
= 5 J [cos(wC + nw)t + cos(w_ - nw)t -
—V/ZwC
jsin(wC + nw)t + jsin&wc~nw)t]dt
i fﬁi : 51n(wc+nw)t 51n(wc—nm)t
2V w +nw w -nw
c c
cos(w +nw)t cos(w -nw)t
. — C - - C ]
I TG Fnw J W -1
c c
-V/ch
3 . 1 - /
: EE. ! 51n(wcinw)v/2wc . sm(wC nw)\/2wC ]
\ W _+Nnw W _-nw
c c

Since w is the angular speed of

Substitute eq. {7.32) into eq. (7.31) gives

the fundamental, it can be written as

(7.32)



W sin(wc+2nnwc/V) V/ch

c .
- _C S.SIn{w -2mnw /V) .
a > [ T . ( c C/ ) V/2wC
c c W _-2mw /V ]
c c
_ sin(V/2+mn) . sin(V/2-mm)
V+21mmn - V=21
_ sinV/2cosmm . sinV/2cosmm
V+21n V-2mm
- (_1)n sinV/2. V-gﬂn ; g+2nn
V -4m n
_2(-1)"sinv/2.V
- 2 22 a0 0 0 000 (7|33)

V -4t h

Eq. (7.28) can now be rewritten in analytical form as

27w
©o .
.__ & ’ 5 ejn 7 t
Yo TTCosVTZ - AT (7. 34)

Since the left membrum of eq.(7.34) is real, the coefficients a must be
such that no imaginary terms occur in the right membrum. This is so

only if a, =a_ (see eq. (7..33)), thus

1) 2w

= .- % vy a4  cosn <
Yo cosV/2 . n \%

1=-%

27w

c
\Y

[ee]
+ 2 1 ancosn

SETSN
cosV/2 0 n=1

:_...e [a+2

— acosnw t ]  iiiieenenn (7.35)
cosV/2 0 n P

i g

n=1
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The modulus of the Fourier coefficients are

a = 2sinV/2-V
T 7 T : e (7.36
n \ —4n2ﬂ2 )

‘ 2
But since V <<4n2ﬂ2for alln>20

~  2sinV/2.V
an WQT --------- ] (7'37)
2nm

As an example, the first five components of the expansion for a bearing

having twelve rolling elements (V = m/6) is given below

n = 0 1 2 3 4

0.9886 0.00687 0.00172 0.000763 0.000429

o
1

So, neglecting phase, the Fourier expansion of yo(t) for this particular

bearing is written

= - L6 .01374 t + 0.00344cos2w_t +
yo(t) 1.0353e(0.9886 + 0.0 coswrp P

0.00153cos3w t + 0.000858cosdw__t + ..... ) (7.38)
rp rp

To calculate the order of magnitude of these vibration components, a

bearing with 50 microns radial clearance is considered. The vibration

components given by eq.(7.38) then becomes: 0.71 microns amplitude at RP

frequency, 0.18 microns at the first harmonic, 0.08 microns at the second

harmonic and so on.

the displacements caused by inner ring waviness, See Fig.7.11, or varying

roller diameters, see Fig. 7.5. Consequently, the vibration component

occuring at RP frequency is of the same order of magnitude as those

generated by form errors, see Fig. 7.3.

The component at RP frequency is of the same order as

e

N
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The vibration line spectrum calculated with the approkimate

Kinematic model should be compared to the line spectrum calculated with
the DYNSIM program of Chapter 6. For many cases of small to moderate
speeds and loads the general charaqteristics agr2e, but effects like sub-
harmonics, resonance excitation, and beating are not predicted by the
Kinematic model.  The sharp corners of the displacement function of
Fig. 7.13,' will be rounded due to elastic deformation of rollers and
rings. This tends to attenuate higher harmonics and make Y, resemble

a sine wave with RP frequency. The more flexible the rolling bodies
are, the more pronounced will this smoothing of the displacement function
become. Thus, bearings with essentially point contact, like ball
bearings or lightly loaded spherical roller bearings, will have fewer
and smaller harmonics than bearings with line contact, like cylindrical
roller bearings. The validity of this statement is borne out by a
comparison between Figs. 6.27 and 7.3. The spectrogram of Fig. 6,27
originating from a cylindrical roller bearing, has several sizeable
harmonics, while virtually no harmonics occur in the spectrograms of

Fig., 7.3 from a spherical roller bearing.

7.6 VIBRATIONS DUE TO INNER RING WAVINESS

By use of eq.(7.26) the vertical and horizontal movements of the
inner ring centre of a bearing havingAa non-circular inner ring can be
calculated. Similarly to the case of vibrations due to clearance
described above, but contrary ‘to vibrations due to non-uniform roller
diameters, eq.(7.26) will have discontinuities.  The extent of these
discontinuities depend on the type of form deviation, so that for some

bearings eq.(7.26) will give very good predictions of the occurring
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vibration components, while for other bearings the predictions are less

accurate. As will be demonstrated however, the Kinematic model offers

a simple and reliable method for obtaining the characteristics of vibrations

associated with inner ring waviness.

As the mass of the rotor moves ~according to eq.(7.26), the inertia
forces associated with this movement will cause forced vibrations of the
bearing holder. Although eq.(7.26) gives a complete description of the
shaft centre movements as a function of ¥, it is not possible to see
from the expression directly what the characteristics of the generated
vibrations are. When the summation is carried ocut, some terms will
cancel out, while others will constitute the predominant vibrations.
What is important, from the vibration point of view, is not so much
instantaneous positions, as the components that persist during a length
of time. Fourier analysis has such an averaging effect 1if the

time during which the function is analysed, is made long enough.

To analyse the Yo function, a computer program, KINSIM (KINematic
SIMulation), was written. This program is not a simulation program in
the same sense as DYNSIM is, since eq.(7.26) 1s not a differential
equation, and all that needs doing 1is-to tabulate Yo for a series of ¥
values. KINSIM is linked to the DAS system via one of the dummy file

calls. When called, KINSIM will produce nsamples" taken from the

theoretical model of eq.(7.26) and write the ordinates on disk file ORDA,

from where it can subsequently be read and analysed by the DAS routines.

To produce the ordinates, values of the dev(6)function, see Fig.7.10,

must be fed into the progran. The most obvious way of doing this is to



simply read a sufficient number of the out of roundness ordinates into

KINSIM from the paper tape on which they are punched, see Section 7.3.

However, it proved difficult to achieve accurate results in this way,
the problem stemming from the digitization of the dev(0) function. As
the bearing rotates, one roller
one enters it. At these instants, the argument of dev(8 + kV) is
incremented by V., The argument is then by rounding matched to the sample
on the paper tape which is nearest to this argument.  This rounding can,

especially for high frequency waves, cause significant errors. Therefore

a different method was tried.

It was shown in Section 7.3 how the Fourier coefficients of the
dev(0) function could be calculated. By use of these coefficients
the dev(6) function can be expanded into a Fourier series, i.e. if phase
is neglected, written as

o0
dev(0) = ¢ + I c_sin(nd) e (.7.39)
o n
n=1
However, s is a calibration factor without any significance for

the raceway shape and similarly, c, is only a function of how well the

1

ring has been centered on the Tallyrond table and thus, the relevant part

of the expansion is

8

dev(B) = cnsin(ne) Ceeeneean (7.40)

8™

=2

As seen from Fig. 7.11 showing the Fourier coefficients of inner ring

waviness for the three bearings A, B and C, these tracks are well

defined by the first twelveFourier coefficients, The KINSIM program

leaves the load carrying zone, and the next
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allows for up to fifteen waves around the circumference to be specified.

In a bearing rotating at a steady speed the angles Y and 8 can be written

as functions of time

<D
i

d-y=(v -0t L (7.41)

Now, substituting eq. (7.40) and (7.41) into eq.(7.26) gives

/‘
l [o0] [o.0]
X, = o 5z [(e—cnsinn((ws-wc)t + kv))cos(wct~(k+1)v) -
k=0 n=2 :
. kV K
(e—cn51nn((ws-wc)t+(k+1)V)cos(th_kv)][U(t_ =) - Ut - ijéejb]
c c
£
1 v . .
Yo T STy r I [(e—cn51nn((ws—wc)t+kV))51n(th—(k+l)v)—
k=0 n=2
s i . i kv (k+1)V
(e cn51nn((ws wc)t+(k+l)V)51n(th kVvj[u(t - GEJ—U(t ———6;-J]
N
.......... (7.42)

If KINSIM instead is made to simulate eq.(7.42), all information of
the dev(6) function is contained in its first 10 to 15 Fourier coefficients,
C, This is nct only in a considerable data reduction (about 1800 data
points were required to read the dev(8)function directly) but it also does
away with the rounding problem previously described. As a demonstration
of the KINSIM program, the vertical shaft movements of a bearing with

eight lobes on the inner ring have been simulated and are shown in

fig., 7.14.




Rembering that the Kinematic model constitutes a linear system a

significant simplification can be made. The linearity implies that
shaff movements due to a number of superimposed waves of the track can be
calculated separately for each wave. Thus for L = 2 to 15,KINSIM was
run with values of c, as below,

J’l if n=L
C =

n
L 0 otherwise et (7.43)

The line spectra of these runs, for the first 15 components of the inner
ring form function, are all dominated by iwc peaks. A number of small
peaks also occur, but for the wave numbers investigated, the two pre-
dominant peaks contribute more than 99% of the total RMS value of the

Yo function. The Yo function averaged over a long period of time can

thus be written as
yo(t) = AsinZWflt + Bsin2ﬂf2t .......... (7.44)

neglecting phase.  The KINSIM runs are summarised in Fig. 7.15.As is shown

in this diagram, the wave having n cycles per circumference gives,

f1 = n‘fS

f

, = Inf - f ] e (7.45)

Tp

The coefficients A and B are obtained by multiplying the factors C1 and

C2 of fig. 7.15 (obtained for a wave with an amplitude of one micron) with
the coefficients < of fig. 7.11 representing the amplitude of the actual
wave., Thus, if the Fourier coefficients of the form function are known
these can be used in conjunction with the diagram of fig., 7.15 to calculate

the stationary part of the movements of inner ring centre relative to the

outer ring centre in a bearing having wavy inner race,



yo,n(t) = chI(n)sin(nws)t+ chZ(n)sinfnms—mrp[t

.......... (7.46)

Due to the linearity, equation (7.46) can be used to determine the

vibrations generated by waves having different values of n independantly.

Generally it is not practical to calculate the Fourier coefficients

of yo(t) analytically. For the special cases when the numbers of wave

cycles equals the number of rolling elements, n = N, however, an
analytical solution can easily be obtained and this can be used as a
corrolarium of the functioning of the KINSIM program. Thus substitute

n

1

12, e = O (the clearance does not significantly effect components due
to waviness) and V = 30° into equation (7.42),

1 o . o
= -~ L o - e a [* - O
y (t) TTE0T E [-1 51n(12(wS wc)t + 12k<30°) 51n(wct (k+1) 30°)

o) S
k=0

* lesin(12(wg-w )t + 12k 30° + 360°) -sin(w_t-k30°)] *

o °30° k+1) +30°
[tJ(t - Emﬁg_g S Ut - (k+1) ]
w w
C C
sinl2(w -w )t 0 .
= > < z [sin(wct - k*30°)
sin30° k=0
k +30° , (k+1) *30°
- sin(w t-(k+1) 30°)][(W(t - m ) - U(t - e ]
© c c
25inl2(w_-w )t *sinl5° e . .
= : > S z cos(wct - 30°°k -~ 15°)
sin 30° k=0
{ k 307 J (1 (k1) 30° . . 7.47
[wee - X295 _ye - S . (7.47)

c Cc



A comparison with equation (7.28) shows that except for the term

before the summation sign, eq.(7.28) and eq.(7147) are identéical. Thus,

by the use of the table of Fourier coefficients on page 100, equation (7.47)

can be written as

Yo (t) = 7.0353 sinl2(w_-w )t[0.9886 + 0.01374cosy

QLU

T

+ 0.00344cos 2w__+ 0.00153cos3w__ + ]
rp rp

.....

1.035 0.9886s1 2w - . i - *
1.0353 [0.9886sin(1 W, wrp)t + 0 0068751n(12mS wrp+wrp)t

+

0.0017251n(12ws—wrp;2wrp)t o 1 (7.48)

According to equation (7.48) a twelve cycle wave would give rise to
a predominant peak at frequency 2W(12ws—wrp) and symmetrical side bands
spaced with frp Hz from the main peak. The amplitudes of the side bands
decrease very rapidly, the central peak having an amplitude of 1.0235,
the first pair of sidebands having an amplitude of 0.0071, and thus
only the first two terms of equation (7.48) has to be chsidered. A
KINSIM run with the parameter for this case gives an identical result,
which is also shown in fig.7.15, where however only one of the side
bands are shown. For all other values of n, the side bands are non-
symmetrical, so that except for the central peak, only one side band is

large enough to have to be considered.

These results can now be applied to the three bearings A, B and C

previously considered. Their inner race way shapes with respective

Fourier coefficients are shown in figs.7.10 and 7.11 and the spectro-

grams from the bearings run at 18 Hz shaft speed with 12 kg rotor are



shown in fig. 7.12. By use of fig. 7.11 and 7.15 it is now possible to
determine at what frequencies and with what relative amplitudes, bearing
vibrétions are to be expected. Bearing A has large 6 and 7 lobe out of
roundness. Fig. 7.15 shows that these will cause vibration components
at 6 and 7 times shaft speed together with secondary peaks at frequencies
frp below these. Primary and sgcondary peaks should be of about the
same amplitude. These peaks are marked in fig. 7.12 with 6S', 78' and
75", The peak at 6S" coincides with the shaft fundamental and cannot

be seen in fig. 7.12, but fig. 7.3, which is a run with the same bearing,

shows such a peak at the higher speeds. The peaks 4S' and 5S' are small
as could be expected from fig. 7.11. For out of roundness with only 2

or 3 cycles there is a risk that the race way shapes are affected by the
mounting of the bearing in the test rig. This might explain the
surprising absence of a peak at 3S' for bearing C. Otherwise the theory
is valid and demonstrates the possibility of qualitative predictions of

. bearing vibrations due to inner ring out of roundness for typical
bearings run under realistic conditions. To determine absolute values
of frequency components the dynamics of rotcr and bearing housing must

also be considered. This will be discussed in section 8.2.
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Fig 7.3, Cambell type diagram for a single row, spherical roller
bearing (type 20206) run in the vibration test rig with M = 12 kg

and "medium stiffness' mounting.



b.

———niod i e

Fig. 7.4 . The rollers have been rearranged so as to give two different

sequences of diameter variations.
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Fig. 7.9. Inner race

surfaces of three 20206
type bearings. Vertical

magnification is 4000X.
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ROLLING BEARING INTERACTION WITH MACHINE STRUCTURES

In the two previous chapters the relative motion between inner and
outer rings of a roller bearing has been studied as an effect of varying
compliance and manufacturing tolerance. When a bearing is mounted in a
machine structure of some sort it will however form an integrated part of
this syétem, and the vibrations generated will depend not only on the
properties of the bearing, but also on the dynamic properties of the rotor
and fundament. It is important to realise that generally, the bearing is
such a highly non-linear system, that it does not as such have independant

vibration properties. This is the basic reason why the '"free bearing"

~experiments described in Chapter 2 are useful mainly from the point of

view of quality control, while the results do not say very much about how

the bearing would behave in a practical application. In this chapter methods

of treating a general rotor - bearing system will be briefly discussed,

with a more detailed discussion of how an approximate method can be used

to treat cases where it is permissible to assume an inflexible bearing.

8.1 FLEXIBLE BEARING AND STRUCTURE

In the general case clastic deformations will occur in rotor shaft,

bearing and fundament. The theory derived for self excited vibrations in
Chapter 6 assumes that the outer ring is held in a fixed position.  If the
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centre of the ring vibrates around its equilibrium, the restoring forces

Q, and Qy will depend not only on cage and shaft position, but also on

the position of the centre of the outer ring. Further, due to elastic

bending of the shaft, the position of the centre of the mass of the
rotor will not coincide with (or be proportional to) the position of the
centre of the inner ring. To simulate the beha&iour of the complete
system, these effects must be taken into account. Although no such

solution has been attempted, it will be shown very briefly along what

lines a solution could be obtained.

The rotor and the fundament are substituted with lumped parameter

systems consisting of masses, springs and dampers. For an approximate

solution over a limited frequency range it would probably suffice with two

degrees of frecedom for x and y directions respectively plus coupling.
The parameters of the lumped systems must then be assigned values so

that they get dynamic properties similar to those of the original system.

If the original systems are defined by their measured Mechanical Impedances,

this information can be used to determine the optimal combination of

parameters of the lumped system. An exhaustive account of digital

techniques for the identification of such parameters is given in Ref. (48].

Knowing these parameters, the whole dynamic system consisting of rotor
substitute, bearing model and fundament substitute can then be simulated
with a modified DYNSIM program, where the boundary conditions of the

bearing movements and forces are determined by the lumped systems.

Although this extention of DYNSIM would increase the number of degrees

of freedom from 2 to 6, the increase of computer time would be

small. since the linear, lumped systems are much easier to evaluate than
3
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the bearing system.

The setting up of such a system is a considerable

task and it was felt that at present other aspects of bearing vibrations

were of a higher priority,

Although the general problem of bearing - machine frame dynamics
has been left unsolved, it has been found possible to determine at what
shaft speed§ there is a risk of exciting resonance of a given set up.
The problem of resonance excitation by VC vibrations is a very complicated
one, and the following does not offer stringent theoretical explanations,
but is based mainiy on intuition and ekperiments. It was shown in
Chapter 6 that large vibrations resulted if the roller passage frequency
or any of its first few harmonics coincided with the natural frequency of
the bearing - rotor system. “Unlikewhich is the case in resonant
excitation of linear systems, the vibrations produced at resonance by
the bearing assembly, was a cluster of components at or near the resonance

or, the occurrence of subharmonics. Nevertheless, the essential point

of resonance excitation is that when the frequency of the exciting force
coincides with a natural frequency of the excited system, large vibrations

result, and this general effect is common to both linear systems and the

investigated bearing assembly system. In Chapter 6 the frequencies at

which large vibrations were excited coincided with the natural £

the stationary bearing. It is reasonable to expect a similar effect in

a system where the bearing is combined with flexible rotor and fundament.

The Mechanical Impedances for three configurations of the vibration test

. . i Section 8.3) and
rig have been measured with the rotor stationary (see )

roug "ig.8.1.A occurs at
are presented in Fig.8.1. The deepest trougn of Fig.8.1

80.5 Hz and in Fig. 8.1 B at 179.5 Hz. Thus two major natural frequencies

are for configuration A: 80.5 Hz and for configuration B: 179.5 Hz.

requencies of
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The effects on vibration levels when running the roller passage
frequency through these resonances have been investigated. In order to
suppress vibrations due to unbalance and form deviations, the acceler-
ation signal is for case A bandpass filtered between 50 and 100 Hz.

The RMS value of the filtered signal is plotted against shaft speed and
Rp frequency (for this bearing, RP = 12‘0.42°fs) in Fig. 8.2, which shows
a peak from 15.25 to 16.75 Hz shaft speed corresponding to 76.9 to 84.4 Hz
RP frequency. Comparing Fig. 8.1A and Fig. 8.2 it seems clear that the
resonance at 80.5 Hz is excited by the VC vibrations at roller passage
frequency, and that the natural frequency of the system is the same
whether the bearing is rotating or stafionary. The resonance for
configuration B has been investigated in morc detail. The RMS value of
the signal, filtered through 150 to 200 Hz, is plotted in Fig. 8.3. A
sequence of scope photographs were taken during the passage through the

resonance, and these are inserted in the diagram. The numbers I to VIII

refer to spectrograms calculated from the unfiltered signal, which are

presented in Figs. 8.4 - §.7. Fig. 8.1B indicates that the stationary

resonance occurs around 179.5 Hz but studying Fig. 8.4.1, it is apparent

that the region having resonant like behaviour occur between 150 to 185 Lz

for the rotating bearing, i.e. the natural frequency has shifted downwards

approximately 10%. The reason might be, that the build up of an oilfilm

(see Chapter 3) in the contact points between rollers and rings when the

bearing runs, might diminish the total stiffness of the assembly. The

3 i C F resonance excitation was
occurrence of subharmonics 1N the context of

predicted in Chapter 6. Such subharmonics have also been found when

running the RP frequency slightly above OF below the resonance. Spectro-




grams IV,VII and VIII in figs.8.5 and 8.7 v

espectively have fairly large

subharmonics at 1/5 of the RP frequency. The study of the subharmonics is

complicated by the fact that RP frequency of this type of bearing, very
nearly coincides with the fifth shaft harmonics, so that the subharmonics
occur at the same frequencies as the shaft harmonic . Siﬁce there is no
reason why the unbalance of the rotor or the waviness of the inner ring
should change during the coasting down through the resonance, one must
however conclude that the subharmonics are genuinely an effect of VC

vibrations, possibly in some way interacting with other phenomena.

A resonant effect of a different kind was discovered when running
the 12 kg rotor and a self aligning roller bearing with the tube brackets
in "soft' position. The vibration components concerned appear in the
region of the RP frequency, and the phenomena is therefore thought to be
a type of VC vibrations. The errall level of vibrations undergoes a
sudden jump to a much higher level for a very small increase of shaft
speed. When Thé speed 1s slowly and continuously reduced, a similar

jump back to a low level of vibrations occurrs with the jump in this

direction occurring at a lower speed.  Fig. 8.9 shows the drop 1n

vibration level as the rotor is allowed to coast through the jump. The

overall vibration level is plotte

and decrcasing speed. In Fig. 8.11 two spectrograms showing frequency

distribution just before and just after the jump is shown. It appears

that the system has two stable nodes of operation, the one resulting 1in

. . . e . T It seems that a certain surplus
a hipher vibration jevel than the other.

d versus speed in Fig.8.10 for increasing

SRR
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energy 1s needgd to make tﬁe system jump from the low vibration level
mode to the high vibration level mode; and this is the reason why the
system can Tun in either of the two modes for a small speed range,
according to Fig. 8.10, between 30.4 and30.9 Hz shaft speed.  This
type of phenomena has only been observed for very flexible mounting and
light rotor. The combination of light rotor and flexible mounting
allows for'large movements without excessive forces; and it is thought

that the jump phenomena only occurs when large displacements are possible.

8.2 RIGID BEARING AND FLEXIBLE FUNDAMENT.

The difficulty in treating the problem of a complete rotor -
bearing - fundament system lies in the non-linearity of the bearing. In
a system consisting only of linear components it is possible to analyse
the components separately and then combine the results to give the
characteristics of the complete system, sec Appendix I. 1f the stiffness
of the fundament is much less than the stiffness of the bearing, it 1s

permissible to neglect clastic deformations of the bearing, making the

bearing resemble a cam-drive acting on elastic components.  The relative

movements between inner and outer rings due to manufacturing tolerance

was calculated using a Kinematic model (assuming non-flexible bearing

components) in Chapter 7. The bearing can thus be integrated in the

test rig structure using the Kinematic model in combination with the

measured Mechanical Impedances of the fundament and the calculated

Mechanical Impedance of the rotor. Fig. 8.12 shows the approximated

model for a rigid bearing, acting as a displacement generator, positioned
: g .

between the rotor (which can be assumed to act as @ pure mass) and the

bearing house bolted to the flexible tube. NOW, let d, and d, be the




displacements of rotor and tube respectively, f

1 and f2 the forces excerted

on rotor and tube by the bearing and let DS_ be the Dynamic Stiffness of
: T
the rotor and DSt be the Dynamic Stiffness of the tube. Then letting

3 - 3 £ aal .
capital letters denote Fourier Transforms of respective variables

Fl(w) '

DN DS () (8.1)
szn

o - DS e (8.2)

Let the total displacement between inner and outer ring calculated

from the KINSIM medel be d,

dl(t) + dz(t) = d(t) e (8.3)

and since the bearing is assumed massless

£ = £, e (8.4)

Combining equation (8.4) with equations (8.1) and (8.2) gives

= DS (W) D(W) e 8.5
DSTGD) Dlab) DSt(w) Dz(w) (8.5)
According to equation (8.3);
dl(t) = d(t) - d2(t) .......... (8.6)
é which gives™
Dl®ﬂ = D(w) - DZ@Q .......... (8.7)°

Substituting equation (8.7) in equation (8.5) gives

DS. (w)
D, (W)= Béi’('ti)' D) - D@1 e (8.8)

RUIORS

FT[£(t)+g(t)] = F)+G(®)




Rearranging equation (8.8) gives

D, (W) DS, )
2 - D)  ceeniennnn 8.
DSr(w) + Dst(w) (8.9)

To demonstrate the characteristics of the system, assume for a moment

that the tube acts as a massless spring.  Then, according to Chapter 10

of Ref. (13)

- .o 2
DSr(w) = Zr(w)°jw = —0°M e (8.10)
and

DSt(w) = Zt(w)°jw =k esesasmees (8.11)
Substituting into equation (8.9) gives

2M
D, (W) = 1O . (8.12)
k-w M

Thus, for small values of w, the rotor will closely follow the

functicn d(t) while the tube will remain stationary. For large values of
w, the inertia of the rotoY prohibits movements of this, and the tube is

forced to follow the function d(t). For excitation at the natural

2 _ x/M), large vibrations are excited.

frequency of the system (wn

Since the measurements on the test rig are taken using accelerometers,

equation (8.9) 1is transformed to the appropriate dimension by replacing

Dl with A., D, with A2’ and the Dynamic stiffnesses with their corresponding
th A, Dy

) then becomes

Apparent Massecs. Equation (8.9

o AMr(w)
A, = = A(W)
AMr(w) + AMt(w)
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The rotor is still assumed to act as a pure mass, thus
~ s B

AM () =
L= (8.14)

Now consider the system of Fig. 8.13. When excited at point O, the
3
impedance of this system is the total driving point impedance of the
test rig. The total impedance for paraliel sub systems is the sum of the

sub system, see Appendix I,
MM @) = A )+ M) e (8.15)

Hence, the denumerator of equation (8.13) can be measured directly from

the rig, point O in Fig. 8.12, and inserted into the equation.

Methods of measuring this impedance are described in Section 8.3,

and plots of the Apparent Mass for three configurations are given in

Fig. 8.1. Tt is now possible to calculate quantitative values for

vibrations of the bearing housing due to form deviations of the bearing

components. The value for total displacement is given by coefficients of

Fig. 7.11 and 7.15.

(w) = c. ceanas . 8.16
DL(,L)) Ci Cl ( )
This displacement gives rise to the acceleration

AW = D' e (8.17)
So, substituting equations (8.17),(8-16):(8-15) and (8.14) into
equation (8.13) gives

A, (W) = 2 (8.18)

W) = T Gl e .
2 Mot il

‘where AM_ . is +aken from Fig.8.l.
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In the table below, the calculation of A, () has been carried out for

bearing A in Fig. 7.9-7.11, »un at 12 Hz shaft speed in configuration C

4

of Fig. 8.1.

i= 2 34 5 6 7
Ci = 0.26 0.9 0.25 0.15 0.45 0.6 (microns)
¢c,= 1 095 0.72 059 0.45 0.3
£1= 24 36 48 60 72 84 (Hz)
mi o= 2.8 122 87 61 4.6 2.2 (kg)
Ay= 3.9 43 2.3 25 11 28 (g+107°)

The calculated values are compared to the experimental values, see Fig.

o
.
[
=~
921
(@)
|

A =52 6.0 2.1 1.2 6.0 6.8 (g+107°)

In a similar way, the sixth and seventh secondary peaks can be calculated

(secondary peaks of lower order are suppressed by the low values of CZ)'

i = 6 7
c. = 0.45 0.6 (microns)
1
= 45 0.63
c, 0.4
f' = f1.f = 11.5 23%.5 (Hz)
rp
AM = 1.6 2.8 (kg)
tot 3
/—\2 = 0.8 3.6 (g=10 7)

The secondary peaks in Fig.

not possible to distinguish. In Fig. 7.3 however, the secondary peaks

appear clecarly end seem to be of the order of magnitude predicted

(compare with shaft harmonics).

8.15A coincide with other peaks and are

Calculation of vibration amplitudes due

——

T

G i

e

e e
D e

5 e

it




to varying roller diameters can be done in a similar fashion, using the

cy values of Fig. 7.5. For this case’C1 = 1, and £ = 0.42 fS. It was.
pointed out in Chapter 7 that the KINSIM model works best for small loads,
otherwise the assumption of zero elastic deflection does mot hold true.

The A2 values for the rotor run with 75kg and 225kg rotor on '‘medium"

stiff mounting were also calculated and measured aﬁd are together with

the previous results plotted in Fig.8.16, From this diagram it is apparent
that the approximate model works with satisfactory accuracy for small load,
but that the accuracy deteriorates for higher loads and stiffer mounting,and
in particular tends to overestimate the higher frequency components, which is

all consistent with the nature of the approximation.

An example of the different nature of linear and non-linear resonant
excitation is shown in Fig. 8. 8. It is apparent from the fig. that
a resonance exists around 145 Hz.  The eigth shaft harmonic at 18 Hz
shaft speed and the sixth chaft harmonic at 24 Hz shaft speed excites
this resonance. The mechanisms of vibration generation are for these
two components essentially linear (KINEMATIC model), and the effect of
excitation is a considerable increase of the amplitude of the component

at resonant frequency, while the rest of the plot remains unchanged.
At 30 Hz shaft speed, the RP frequency coincides with the natural frequency.

The amplitude of the RP component does not increase significantly compared

to the previous shaft speed, instead a cluster of smaller peaks occur

around the RP component.
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8.3 MEASUREMENT OF MECHANICAL INPEDANCE

The theoretical background to the use and measurement of Mechanical
Impedance is discussed in Appendix I.  Measurement of Mechanical Impedance &
pr its derivatives such as Dynamic Stiffness, Apparent Mass, Mobility,
Compliance) involves exciting the investigated system with a known input
force and measuring the resulting vibrational movement. If the system
is linear, its dynamic properties are then fully defined by the ratio
of tho Fourier Transform of the forcing function and the Fourler Transform

of the displacement-, velocity- or acceleration-function. The most

commonly used type of forcing function is a sine wave, because the ratio
between input RMS force and output RMS vibration directly yields the
modulus of the impedance without further processing.  Where disturbances

from the operation of the system occur, white noise force is sometimes
employed. When using sinewave excitation, the force is normally supplied

by an electro mechanical vibrator (although centrifugal and hydraulic

vibrators are also used), fed by a power amplifier and sine wave generator.

Both input and output signals have to be narrow band filtered, which is

easiest done with a heterodyne filter tuned by the forcing signal. All

in all, a considerable amount of sophisticated instrumentation is required

and the setting up of particularly the bulky and heavy vibrator can be

time consuming. A very quick and simple method of determining Mechanical

Impedance is by use of transient excitation.  The use of transient

excitation for measurement of impedance in difficult environmental

conditions was described 1in Ref.(49). In this paper, samples from force

and acceleration functions were taken manually using a storage oscillo-

scope, and these samples were then used to calculate the Fourier Transforms.
3
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This operation can be greatly simplified by using two parallel digital
reco?ders connected to a paper tape punch. The recorders, which are
triggered simultaneously, offers pretrigger facilities which are
essential for capturing transients.  Subsequent to each trigger, 1024
samples are taken from the signal (maximum sampling frequency is 200KHz)
and stored in a core memory.  The content of the core memory can then
be punched on paper tape and thereby be made available to a digital computer
for further processing. The set up for Mechanical Impedance testing by
transient excitation is shown in Fig. 8.14. The program carrying out
the Fourier Transformation is identical to that used in the DAS system
for processing of stationary signals, the only difference being that
the Hanning window is not used when analysing transients. After
dividing the forcing function transform with the acceleration function

trans form point by point, the ratio is multiplied with a cal. factor

and plotted on the digital plotter.

Fig. 8. 17A shows the transient forcing and acceleration functions

using the analog output of the digital recorders. The Fourier Transforms

of the two functions are shown in Fig. 8.17B and the resulting impedance

plot in Fig. 8.1.4A. As is seen in Fig. 8. 178 the signal to noise ratio

can sometimes be a problem for the transform of the forcing function.

This is so because the forcing function is of extremely short duration,

so that on average, over the whole record, there 1s VveTy little signal
on which to base the calculations of the transform. It is possible to

adjﬁst the shape of the transform of the forcing function by using

different methods of striking the load cell. Steel hammers with and

. ~ 1
without interfaces, wood blocks, copper hammers and rubber tubes have




been tried. By checking the sl

18pe and size of the force transform it

is then possible to make sure that a sufficient force level exists for

the frequency range investigated. For the low frequencies analysed here,

it was found that the rubber tube gave the best results.

A number of impedance plots were obtained, three of which are shown
in Fig. 8;1. All plots were very consistent as regards the position of
resonances and anti-resonances for all excitation techniques used. They
did however vary substantially between themselves as regards the signal to
noise ratio and the absolute values of apparent mass. It is felt that the
accuracy of Mechanical Impedance measurement by transient excitation is

somewhat inferior to that achieved with sine-sweep excitation.

To obtain accurate measurements with transient excitation, the choice
of correct means of excitation for a particular structure and frequency
range is critical. The number of samples used, also have an influence
on the accuracy of the result. It is felt that a more detailed
investigation of these aspects is necessary in order to make accurate

impedance measurements by transient excitation a matter of routine.
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" 'CHAPTER &

ROLLING BEARING VIBRATTONS DUE TO WEAR

The components of rolling bearings undergo progressive surface and
subsurface deterioration during operation.  After 2 sufficient length of
operating time, the accumulated damage renders the bearing incapable of
performing its intended function. Pearing failure could, depending upon
application, mean anything from actual breakdown with seizure té excessive
noise and loss of accuracy due to siight abrasive wear. Increasing wear
and fatigue will always be accompanied by some degree of change of the
vibration characteristics of the bearing. There are significant
differences in the progression of wear and fatigue, with the former
developing in & continuous fashion and the latter causing a series of
suddenly occurring depressions in the component surface (spalling). In
previous chapters vibration phenomena in new bearings have been studied.
Against this background knowledge, characteristic changes of bearing

vibrations accompanying the development of two common modes of surface

deterioration will be studied in this chapter, the practical objective
being to facilitate condition monitoring and prediction of impending

bearing failure by vibration analysis.

9.1 Failure modes of Rolling Bcarings
¢ modes OF PO S

PORUERSRESE S

A review of various types of rolling contact failure and thelr

o ) ) S . X N e . .
respective OT1gINS ;s given by rallian in ref. (51}, where Tolling bearing

failure modes are classified according to +he table below.
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Mode: Manifestation:

1 Wear type failure 1.1 Surface removal
1.1.1 Removal of loose particles (wear)
1.1.2 Chgmical or electrical surface removal
1.2 Cumulative material transfer between

surfaces (smearing)

2 Plastic flow 2.1 Loss of contact geometry due to cold flow

2.2 Destruction by material softening due to

unstable overheating

3 Contact fatigue 3,1 Spalling fatigue
3.2 Surface distress
4 Bulk failures 4.1 Overload cracking

4.2 Overheat cracking
4,3 Bulk fatigue
4.4 Fretting of fit surfaces

4.5 Permanent dimensional changes

Rolling bearings having 2 satisfactory lubrication, correct

temperature, a suitable load and contacts with pure rolling motion, will

after a sufficient length of operating time normally fail due to spalling.

fatigue (3.1). This is the classical mode of rolling contact fallure

and has been theoretically analysed in depth by Lundberg and Palmgren in

ref. (5) where it is shown that the bearing life, L, is given by

L= e/ e10° TR IS Y

. . s 0
where L is the number of revolutions after which there is a 90%
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probability that no damage has occurred, P is the external load ( or
equivalent load) and Q is a factor characteristic for each bearing type
and size called "Basic Dynamic Capacity". For a batch of bearings, L
is dispersed over a wide range. It is assumed that the dispersion of
life follows the dispersion of weak points of the material of the loaded
components. The factor L therefore follows the Weibull distribution

making

log(log(1/S) = e-log L + const e (902)

where S is the probability that no damage has occurred after L million
revolutions. The constant e is determined experimentally and is given
to 1.1 for ball bearings and 1.5 for roller bearings. AS indicated by
equation (3,38), the maximum shear stress arises some distance below
the surface. Consequently spalling fatigue is initiated subsurface,
normally starting at a stress concentration around a microscopic slag
inclusion. The crack propagates from the inclusion up to the surface
so that a small splinter of metal becomes loose and is removed from the
bearing. The effect of crack propagation time on failure distribution
has been studied by Tallian in ref. (52), the main conclusion of which
is that very heavily loaded bearings have 2 longer operational life
than is predicted by equation (9.1). The damage is characterised by

shallow, crater-like depressions with sharp edges and fracture type

surfaces.

Spalling fatigue causes damage at certain discrete points of the

component surfaces leaving the remaining surface intact, Other classes

of failure modes like 1.1.1, 1.2, 3.2 cause damages,which are evenly




|
|
|
:
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distributed over all loaded component surfaces, For these cases it 1is

not easy to determine what failure mode is involved by inspection of the
damage. Instead the conditions under which the bearing has been run
usually indicate the cause of failure. Hence, traction forces pre-

clude the occurrence of surface fatigue (3.2), which is therefore observed
only in beayingsvhaving a pﬁre rolling motion. Smearing (1.2) arises
mainly in high speed bearings where the rolling bodies are violently
accelerated as they enter the load carrying zone. Abrasive wear (1.1.1)
finally occur in bearings having a mixed sliding-rolling motion of the
contact points, i.e. bearings with close conformity between rolling

elements and tracks.

In this study attention has been concentrated on two predominant
failure modes, namely abrasive wear (1.1.1) and subsurface fatigue leading
to spalling (3.1). From the point of view of monitoring, type 1.1.1
also covers classes 1.1.2, 1.2, 2.2 and 3.2, which exhibit similar surface
changes. Other failure modes have been considered either rare or not

requiring any sophisticated methods of detection.

9.2 Spalling fatigue monitoring

To obtain examples of spalling fatigue, spherical ball bearings were

run under heavy load in the wear rig (see Chapter 4).  Due to their low

. . . -
value of osculation these bearings have a pure rolling motion, which

makes failure due to spalling fatigue probable. After 35 hours of

operation with 600 kg load, 1750 RPM and a temperature around 80°C, damage

of the outer ring at the point of maximum load occurred in the form of

a crater-like depression typical for spalling fatigue. Using the




genuinely fatigued bearing as an example, spalling fatigue was simulated
in new bearings by use of a spark erosion pen, which creates a similar
typé of depression with sharp edges. Comparisons between vibrations
generated by the genuinely fatigued bearing and the bearings with simulated

fatigue damage show similar vibration characteristics.

The fatigue crack is initiated subsurface and as long as the crack
has not reached the surface of the component, the operation of the bearing
is unaffected and the development of the damage cannot be monitored through
vibration analysis. When the crack reaches the surface, a small metal
chip is suddenly removed from the component and transient vibrations are
excitéd each time a rolling element passes over the damage. Fig. 9.2
shows the distribution of transients in time for bearings with damage of
outer ring, inner ring and rolling element.  Compare 9.2a with 9.4b and
9.2c with 9.1, 1 - 3 KHz. The transformation from time domain to
frequency domain of a comb of delta functions is another comb of delta
functions as illustrated in fig. 9.3. Also the cases with modulated
delta combs in fig. 9.2b and c will give delta combs in the frequency

domain.

An experiment concerning spalling fatigue detection was carried out
using a cylindrical roller bearing in which a fatigue type depression was

simulated on the outer race. The bearing was mounted in the vibration

test rig and run with 12 kg load at 10 Hz (600 RPM) shaft speed, By
loosening the bolts, which through the brackets clamp the tube, the tube
can be rotated 180°, so that the damage is either positioned right under

the load or at the top of the bearing out of the load zone.  Fig, 9.4
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shows the vibration signal picked up on the bearing Housing with the
damage in and outside the load zone, Hence, fig. 9.4a represents a

good bearing and fig. 9.4b a damaged bearing. The damaged bearing
clearly has a higher overall level of vibrations and the predicted series

of transients are clearly seen. The time between transients is 1/f
T

3

P
with f for this bearing 10-0.42 12 = 50.4 Hz (T__ = 1/f = 19.8 msecs).
rp p Ip

The frequency spectrum of fig. 9.4b is shown in fig. 9.5 where the series
of peaks spaced with frp is clearly seen between 250 and 700 Hz.  Low
frequency components have been filtered out to allow for a suitable

scaling,

For the set up described it is obviously very easy to diagnose fatigue
spalling, either directly from thé time signal or from its spectrum, In
a realistic monitoring situation the presence of noise from other vibration
sources of the machinery raises complications. Tﬂis effect was simulated
in the test rig by attaching an electro-mechanical vibrator to the bearing

housing. The direction of input force is shown in fig. 4.3a.  The

output of a white noise source is band filtered between 200 - 1000 Hz, fed
through a power amplifier and then drives the 250 W vibrator,  The RMS
value of the vibrations generated with the bearing running with the crack
under load was measured, the rig stopped and the power amplifier switched
on and adjusted so that the vibrations generated had an RMS level twice
that of the rig running without noise input. The rig was then started
again and the vibrations from both bearing and noise source recorded with
the crack in and out of the load zone. Fig: 9.6 shows the time signal
and loaded crack; where the previously obvious transients

for load free

are buried in random noise. It is thus impossible to distinguish




directly from the time history plots which is the good bearing and which
is the damaged bearing in the presence of a high level of external noise.
Broadband RMS measurements were taken from the good and damaged bearing.
The average RMS value for the good bearinngas 0.631 and for the damaged
bearing 0.755. The difference is consistent as will be demonstrated in
section 9.4, but small for practical monitoring purposes., Fig. 9.7a and
b shows the spectra from fig. 9.6a and b respectively. The spectra show
distinct differences between the good and the damaged bearing and 1t
would be possible to pick out the typical series of peaks at harmonics of
frp in fig. 9.7b. The presence of noise however makes the interpretation
of the spectrum more difficult and uncertain than was the case for the
undisturbed bearing of fig. 9.5b. The signal to noise ratio can however
be greatly improved by use of the averaging routine included in the DAS

package. Fig. 9.7c is the result of 10 times averaging and shows the

characteristic series of harmonics equally distinct as in fig., 9.5.

A problem when diagnosing spalling fatigue damage of the outer race
by spectral analysis is that harmonic; of frp occur due to VC also in
good bearings as was predicted by the DYNSIM runs and also shown
experimentally, sce fig. 6.27. There are however differences in the
amplitude distribution of these harmonics. While the components of VC
origin decreasc rather rapidly with the order of the harmonic, harmonics
due to fatigue damage have a constant or increasing amplitude with frequency.
The higher frequency contents of the transients is due to the sharp impact
that occur when a roller hits the edge of the spalling crater, This

conclusion is verified by spectrograms both from the genuinely fatigued

bearing and from several bearings with simulated fatigue damage.



In the context of vibration components at RP frequency and harmonics
thereof, a method of shaft-housing alignment, which has proved useful,
should be mentioned.  The Kinematic theory for VC vibrations showed that
the amplitude of components at RP frequency and harmonics thereof increase
in proportion to the radial cleafance, see equation (7.38). Misalignment
in the mounting of a bearing tends to close the radial clearance and also
means that the local stiffness is reduced since only the edges of the
rollers carry the load. Hence, shaft and housing should be adjusted so
as to give maximum levels of VC vibrations to ensure that the bearing is
running freely and with a proper load distribution.  This somewhat
paradoxical conclusion is supported by several alignments of the test rig
where a good agreement between the described method and direct measurement

of alignment was obtained.

Fatigue damage detection by auto correlation analysis has also been
tried. For increasing time lags, auto correlation analysis will average
out the random components of the signal while the harmonic components are
sustained. The process thus has an ability to distinguish between random
and harmonic components. As shown in fig. 9.3, the auto correlation of
a comb of delta spikes is a similar comb of delta spikes, but with reduced
level of random components if such were superimposed on the original comb,
Hence the auto correlation of the time signal of fig. 9.4b should have a
peak at l/fr = 19,8 msecs. Such a peak also clearly occurs in fig. 9.8.

The auto correlation functions of fig. 9.6a and b are shown in fig. 9.9%a

and b respectively. Obviously the auto correlation process like the

spectrum averaging has the ability of revealing repeating components

hidden in randem noise.




Attempts at further processing of the output of the FFT routine
using both further FFT processing and auto correlation analysis has been
tried, but found not to be able to further improve the clarity of the
results. The processing known as Summation analysis has not been
attempted since it requires an claborate triggering system giving a trig
pulse per cage revolution. Summation analysis and auto correlation

analysis have been further discussed in Appendix IIT.

Previousiy described diagnostic methods have made use of the
repetitive nature of the transients. Another approach is to study
only the high frequency components of the transients. Fig. 9.1 shows
scope traces from a bearing with spalling fatigue on onc roller, where
the signal has been filtered through a sequence of frequency intervals.
The first band, 1 - 3 KHz, shows regular series of peaks appearing each
time the damaged roller passes through the load zone, compare fig. 9.2.6

Above 10 KHz it is no longer possible to sec these regular series.

The §iMerwas then set at 25-50 kHz with the natural frequency of the
accelerometer being 38 kHz, compate the SPM method described in Chapter 2.
To investigate whether the number of peaks in this frequency region was
correlated to the existence of damage, 2 bearing with a fatigue damage
to the outer ring was fitted in the vibration test rig. A counter was
linked to the output of the filter and counted all peaks exceeding a
certain threshold level for periods of 60 secs. The rig was then run
with the damage under load and outside the load zone.  The ratio between

counts of damaged bearing and good bearing are given in the table below.




Table 9.2

run 1 2 3 4

count ratio 1.37 5.15 1.87 ) 2.43%

In all four runs, consistently higher counts thus results for the damagedl
bearing compared to the good bearing, although there are large fluctuations
of the count ratios. The number of counts seems a somewhat unstable
measure of the state of the bearing. Peak counts for a bearing with a
damage to the inner race was carried out with the same instrumentation.

In this case the counfer sampling was initiated by a trig pulse from the
rotor shaft and the sampling time was chosen so as to allow the shaft to
turn 60° during the time the gate was open. By moving the tooth on the
rotor shaft, which initiates sampling, it is possible to compare peak
counts with the crack in various positions of the bearing. The table

below shows counts with the crack moving through circle segments

positioned V degrees from the load line.

Table 9.3

V = 0 60 120 180 240 300

)

Counts 831 794 774 752 771 771

Also this experiment shows an increase of counts when the crack is in

the load zone, but the differences are small. In this case the shock
wave will have to travel through the rolling element and the oil film

interface before reaching the outer ring,which probably attenuates the

high frequency components studied.




9.3 Abrasive Year Monitoring

Due to their geometry spherical roller bearings have a mixed sliding
and rolling motion of the roller-race contacts. This type of bearing
is therefore prone to destruction through abrasive wear.  The spherical
roller bearing denoted A in Chaptey-? was run for 200 hours at 850 kg
load and 90°C lubricant temperature in the wear rig. The wear process
was speeded up by using a rather thin lubricant giving an oilfilm with
a thickness of about one third of what is recommended by the manufacturer.
The bearing was inspected every 50th hour and after 200 hours all load
carrying surfaces had become considerably worn. At this stage the
bearing was still fully functional in all respects. The impact of
abrasive wear on the inner track surface is apparent from a comparison
between fig. 7.10A showing the bearing when new and fig. 9.10a showing
the bearing after 200 hours of operation. The frequency contents of
respective race contours are given in fig. 7. 11A and 9.10b (note the
different frequency scales). Comparing first the size of the lobes 1t
is apparent that the amplitudes of this low frequency out of roundness

has diminished due to abrasive wear. The amplitude coefficients are

given in the table below.

Table 9.4

o et b e S

i= 2 3 4 5 6 7

0.6 0.9 0.25 0.15 0.45 0.6

c., new bearing
4

0.52 0.85 0.21 0.04 0.19 0.42

1

¢, ,worn bearing

This secms to be a logical result of the highest points of the race
being the ones most gseverely worm, thereby evening out the lobes of the

race.
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Subsequent to inspection and measurement of the bearing components,
the bearing was assembled and mounted in the vibration test rig, The
effect of decreasing lobe sizes with wear does come through in the
spectrograms from the rig runs, but is not drastic enough to form a
basis for condition monitoring.‘ Comparing the high frequency components
of the surface spectrograms, it is apparent that these increase strongly
with wear. Without making a detailed theoretical analysis as was done
in Chapter 7 for the effects of low frequency out of roundness, one
would expect an increased proportion of high frequency vibrations
generated for the worn bearing compared to the new bearing, The
existence of such an effect has also been established in the region 2.5-
5.0 KHz shown in fig. 9.11 (M = 12 kg, fS = 12 Hz) and fig. 9.12

(M = 85 kg, fs = 24 Hz). Fig. 9.11 shows an increase of the overall
vibration level with wear and the occurrence of frequencies above 2.5 KHz.
In fig. 9.12 the overall level is not higher for the worn bearing, but
the level of vibrations above 2.5 KHz has increased significantly. The
level of high frequency vibrations in the context of abrasive wear is
probably affected by things like the minimum o0il film thickness and the
size of the contact zone, but these effects have not been investigated
in detail. For all trial runs with rotor weights 12, 85 and 205 kg

and rotor speeds from 8 to 24 Hz, there is an appreciable increase of
high frequency vibrations with wear. The difficulty of detecting wear

condition by straightforward broad band RMS measurement is illustrated

in the table below.




9

Table

e T S

.5

Broadband RMS levels (G):
M=85;f =12.  M=85;f =24  M=12;f =12 M=205;f =12
S s s s

New bearing 0.18 0.48 0.12 0.083

Worn bearing 0.26 0.43 0.19 0.26

For the second example of table 9.5, the RMS value is actually lower
for the worn bearing than for the new one. It is not surprising that
this might occur since the low frequency vibrations due to lobes of the
race give a significant contribution to the overall RMS level, and as was

previously demonstrated, the abrasive wear tends to smooth out these

lobes. Fig .9.12 shows a decrease with wear of components in
the region 1.0 - 1.5 KHz.  This is probably due to increased damping in
the roller-race interface due to the roughening of the surfaces. If

the knowledge of frequency distribution gained from the spectrograms is
utilized and only the rcgion most affected by track roughness is

studied, a much improved reliability of RMS monitoring is gained.
Table 9.6

RMS of bandpass filtered (2.5 - 5.0 KHz) signal (G):

M=85:f =12 M=85;f =24 M=12;f =12 M=205;f =12
’Ts S S s

New bearing 0.029 0.099 0.012 0.039

Worn bearing 0.083 0.29 0.073 0.099

The example shows the danger of over simplified monitoring approaches

and demonstrates the advantages that can be won by studying the vibratory
ing system to the specific monitoring

process and tailoring the monitor

ituation.

9]
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As has been mentioned previously, the auto correlation process has
the ability of distinguishing between random and harmonic components of
a signal. Usually this property is used to 1lift up and allow study of
harmonic comporients buried in a noisy background, but it can also be
used to study the nature of the random components. The way in which
the random influence on the auto correlation function is attenuated with
time lag is significative of the nature of the random components. The
auté correlation function for band limited white noise is given by

51n(2ﬂfCT)

SO O ——
c(v) 0 ZﬂfCT

D (9.3)

where fc is the cut off frequency of the white noise. Hence, the higher

the value for f is, the faster does the auto correlation function go to
c

zero, e.g. the auto correlation of unlimited white noise is a delta spike

at T = 0. For signals consisting of both random and harmonic components,

the auto correlation function will stabilize around the harmonic

components more quickly if the random component has a high proportion

of high frequency vibrations. This phenomena is illustrated in fig.9.13,

where the auto correlation from the worn bearing with high frequency

noise (compare fig. 9,12) has stabilized at a time lag of about 15 msecs,

while the new bearing stabilizes at about 35 msecs. Similar results

were obtained for different loads and speeds of the bearing. This way

of using auto correlation processing thus appears to be a practical way

of monitoring developing abrasive wear.
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9.4 Basic Monitoring Theory

The efficiency of a certain monitoring system is a concept worth a
somewhat more detailed discussion, Clearly the user of such a system
wants his system to trigger (give indication of malfunctioning) when,
and only when, a fault in the monitored machinery has occurred,  This
means that the method of monitoring must be selective in its operation
so as not to trigger for vibrations normally excited, or for vibrations,
even if these are large, which are not associated with faults of the
monitored systen.

s

Comparing the spectrograms of good and fatigued bearings in fig.9.7a

and c, it is immediately apparent which is the good and which is the
damaged bearing. This is so for many methods of monitoring - the general
character of the analysis makes it possible for an interpreter who knows
what he is looking for to immediately tell whether the monitored
machinery is faulty or not. Nevertheless, in many situations it is
advantageous or even necessary to specify exactly which quantities

are considered significant for the purpose of monitoring. This 1is

obviously a necessity when the output of the monitoring system is inter-

preted by means of sutomatic data processing, but is useful also in other

cases, because it allows for more systematic methods of monitoring to be

used Thus. for each monitoring situation a monitoring parameter,
sed. ,

MPAR, should be determined and a rationally chosen trig level (TL)

established, for which the machinery is considered faulty if MPAR>TL,

This section is devoted to a discussion of these two monitoring parameters.

R

R i
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section 9.2 and 9.3, the choice of

Going back to the demonstrated examples of bearing monitoring in

MPAR is obvious for many cases,

1/ - 4/ of table 9.7, while for other cases, 5/ - 6/ of table 9.7, more

consideration is required.

Table 9.2;

1. Diagnosis of spalling fatigue
MPAR = RMS value.

2. Diagnosis of spalling fatigue
MPAR = height of the peak at t

3. Diagnosis of fatigue spalling

by broad band RMS measurement,

by auto correlation analysis,

ime lag = 1/frp’ (see fig. 9.9).

by counting high frequency transients,

MPAR = number of counts during a specified length of time.

4, Diagnosis of abrasive wear by
measurements, MPAR = measured
S. Diagnosis of spalling fatigue
peaks at RP frequency and its
function of VC vibrations than
not be included in MPAR.

harmonics of RP frequency are

of fatigue spalling of the out
mean value of the height of RP
6. Diagnosis of abrasive wear by
the feature characteristic for
zation of the auto correlation

required for stable auto cOrre

broadband and highpass RMS

RMS value,

by averaged frequency analysis. The
First few harmonics are more a

of damage. Thesec should therefore

Judging from fig. 9,7c, the 5th - 15th

strongly affected by the occurrence

er race. Hence, choosc MPAR = the
harmonics 5 - 15.

auto correlation analysis. Since
abrasive wear 1s a quick stabili-

function, set MPAR = the time lag

]ation function.

o R
T el




As a measure of the efficiency of the various monitoring methods
exemplified, the ratio of MPAR for a damaged bearing and MPAR for a

good bearing might be used,
q = MPARd/MPARg (9.8

The q value is not representative for the monitoring method in a
general sense, but only applies to the particular monitoring situation,
The q values for the monitoring examples 1/ - 6/ of table 9.7 have been

measured to,

Table 9.8
Example no. q value Comments
1/ 1.20 Based on the mean value of 10 pairs
of RMS readings.
2/ 2.85 Measured directly from fig. 9.%9a and b,
3/ 2.70 Mean value of the ratios of table 9.2.
4/ broadband 1.41 Mean values from tables 9.5 and 9.6
bandpass 3.6
5/ 2.30 " Obtained from direct measurement of the
peaks of fig. 9.7a and c..
6/ 2.33 Direct measurements from fig. 9.13a

and b.

The q value is a simple and useful parameter describing the

efficiency of a monitoring method applied to a specific monitoring

situation. It is however a rather blunt instrument since it does not

give any detailed information about the distribution of MPAR for good

and damaged bearings. Further it does not determine an optimeal trig

level. A more sopaisticated approach, although still very basic, 1is

discussed below.




In a monitoring situation the monitored machinery is either fault
free or faulty and the monitor is either triggered or not-triggered.

llence, four events are possible
Table 9.9

System: Monitor indication:
Fault free Triggered (Pl)

Not triggered (Pz)
Faulty Triggoerod (P3)

Not triggered (Pd)

The probability of getting trigger indication if the bearing is fault

free is P] and so on. Clearly an efficient monitoring system will

trigger for faulty but not for fault free bearings. The probability

of correct operation (PCO) is thus, the probability of not getting trigger

indication for good bearing oT, if the bearing is faulty, to get trigger

indication. For the sake of simplicity assume that the probabilities

for the bearing to be faulty or fault free are equal. The expression

for PCO then becomes

- ) - -
PCO = (P, + P.)/2 (1 + Pg L (9.5)
For all TL, P3 2,P1 for any meaningful monitoring system, Hence the

m value is 1.0. ~For a given

minimum value og PCO 1is 0.5 and the maximu

monitoring situation the probabilities Pl and Pq will be functions of

the chosen value for TL.  As is shown in fig. 9.14a, for a TL value

below the normal vibration level of the bearing the monitor will always

trigger (pl = p3 = 1), while for a value of TL chosen too high, the
monitor will never trigger (Pl = p3 = 0). Somewhere inbetween is the




TL value giving optimal performance. The functions for Pl(TL) and
pS(TL) can only be constructed from empirical data. Pl and P3 are
plotted for two of the previously discussed monitoring methods

(1/ and 2/ of Table 9.7) in fig. 9.14a and fig. 9.15a, The diagram

in fig. 9.14a is based on 10 separate pairs of RMS readings from the
time signals of fig. 9.6a and b and fig. 9.15 is based on five pairs of
auto correlograms from the same signals. The resulting PCO profiles
are plotted in figs. 9.14b and 9.15b.  The abscissa axis of the
probability diagrams are scaled in absolute units (RMS G and G2), while
the abscissa axis of the PCO diagrams have their zero point at the mean

value of the MPAR readings and is scaled in percentage of this mean

value. The PCO diagrams show immediately what the maximum PCO values
are and at what TL values they are obtained. With RMS monitoring
PCOmax - 1 for TL = 0.690 and with auto correlation monitoring

PCOmaX = 0.98 for TL = 0.107. 1t would however be unrealistic to usec

the value of PCO X as the only measure of monitoring efficiency, because
ma

this presupposes that the P, and P functions are completely known. In

practice these functions are only known with a limited accuracy and

might not take into account all possible events of the system. This 1s

particularly sO for a new monitoring situation when the operating

experience is small. Another important requirement is thus that the

monitoring system is stable, 1.€. that TL can be chosen with a wide

enough error margin (W), compare the previously discussed q value of

table 9.8. As shown in fig. 9.14b and 9.15b 90% confidence of correct
or TL levels within *3.6% of the optimal value

Fw Autocorre (alion Mo fering

Tor _fHutolorve tai%s
of the optimal TL valuel  For the

operation is obtained f

for RMS monitoring and within #19.5%

‘ . . . 2 avi P 1 A . 3
specific monitoring situation investigated having & high degree of noise




interference, the straightforward RMS method is hardly realistic because
of its low W value. The auto correlation method on the other hand
gives a good separation between readings from the good and damaged
bearing with W = 39%. In many monitoring situations it is not equally
damaging to get a false alarm as it is to miss an impending failure.

Such comsiderations can be accounted for by a direct study of the Pl and

P3 functions of figs.9.14a and 9.15a.

The method described is useful in highlighting the fundamental
principals and objectives in the workings of a general monitoring system.
In a practical application the usefulness of the method is entirely
dependant on how well the Pl and P3 functions are known, These functions
chould include all the dispersion of the MPAR value that occurs in
practice for various reasons (including human error) when using a specific
monitoring system in a specific situation., Such information is best
obtained by analysing historical data of monitor indications and failures
from a system in practical use. Thus the method is practically useful
only when a sufficient record of operating experience is available. In
such a situation the operator of a monitoring system could benefit from

reviewing the chosen trigger levels and general characteristics of his

system according to the methods described.
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APPENDIX 1

THE MATHEMATICAL BASIS FOR SPECTRAL ANALYSIS

Fourier Transformation is used widely in this thesis for Spectral
Analysis and Mechanical Impedance calculation purposes.  Though a lot
has been written on these subjects, no reference has been found that
treats them in one concept and in a way that is suitable for practical
engineering application. The fundamental concepts and relationships

will therefore be discussed briefly in this Appendix.

1. INTEGRAL TR&NSFORMS

The theory of Integral Transforms is founded on the works of Fourier,
Laplace and Cauchy. It is however not until relatively recently that they
have reached widespread use among engineers and then in particular for the
purpose of operational calculus. The discovery of their potential in this
context is due mainly to Heaviside who showed how transforms could be used

to reduce several types of differential equations 1o equations which allowed

algebraic manipulations. A readily understood review of the most commonly

used Integral Transforms can be found in Chapter 3 of Ref.(9).

An Integral Transform has the general form

o

F(s) =/ K(s,x)F(X)AX «vvnemmerrmerets

IS

3 - Y 1
where F(s) is the transform of f(x) and K(s,x) 18 called the "kernel'

(core). of the transform. Tt is thus clear that the characteristics of

. . 1imi inteeration
the transform is determined by the kernel, K, and the limits of integ s

2 and b.
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TwWO 1mportant and closely related transforms are Laplace Transforns

av\dFourier Transforms with
i

and & 7 ey D

paplace Transform

s compleX

Fourier'lransform

T real

The Fourier Transform is often 1ooked upon as & special case of the Laplace

Transform. The usefulness

extent in the simple form into which 1ts derivatives are ¢ransformed

(n) n n n
(L(Ef (x))= s F(s) - T s
j=1
1t is the

initial values.
to solve differential equat

nowever, the Fourier Trans

its use that the rest of this Appendix will deal.

2. EQQPIER SERIEiﬂAND TﬂgﬂfOURIER l§IE§E§L
The use of Fourier geries to exXpress almnos
functions 1is & well known technique.

form of Fourier geries does, although

the trigonometric form,

and convenient bhut it also

Series and the FourieT Transform.
for a function to be expand

periodic (£(t) = £(t+T)) and 1t must beé sin

number of maxima

although & finite punbeT of de

Dirichlet conditions and obviously

= ® respectively oT

F(s) =/

F(x)

form 1s used and 1t is with this Transform and

offer not only the advan

and minima
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kernels € and € ) and limits a: = 0; b=9
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of the Laplace Transform lies tO a great
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refore used as a standard operational method

jons. For the purpose of Spectral Analysis
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fundamentally not different from

tage of being more compact

cle ship between Fourie¥

Certain conditions must be fulfilled

able Into a FourieTr Series. 1t must be

gle valued, have a finite
and have only finite discontinuities,
ced. These are the

almost any periodic function that occurs

1.2.




in practice will fulfil these conditions. If the conditions are fulfilled
it can be shown that a sum of a series of harmonics (with the fundamental
frequency equal to 1/T) exists and converges towards f(t) as the number of

harmonics approaches infinity. Hence,
f(t) = 2 A €T (I.4)

Where the Fourier coefficients, an, are given by

27
= . u

n du v i e (1.5)

1 T -]
a =5 S flu)e J
0
For derivations see for instance Appendix C of Ref. (10). If there is a

discontinuity in f(t) the expansion will take a value at this point which

is the mean value of the values at both sides of the discontinuity.

Due to the periodicity the limits of integration of Equation (I.5) may be

changed to -T/2 to T/2, thus

2m

T/2 . =, u
a = %~ J f(u)enjn T du veeiii e (1.6)
I 12
Combine (I.4) and (I.6) gives
n=e /2 " %Tl(t-u)
f(0)= I & J  fue du...... (1.7)
fn=-o -T/2
Substitute As = %— which gives
n=w T/2 A e
f(t) =  As S f(u)ezmnéb(t Wy, .. (1.8)
n=-o  _T/2




It can then be shown (see Appendix C, Ref.(10)) that if T increases towards

infinity, Equation (I.8) will pass over into

© o A N
f(t) = S ds S fu)er™st-uly
= [ chist ds [ f(u)e—Zanu du ..... N ¢ X))

Equation (I.9) is known as the Fourier Integral and it gives an expression
for f(t) by extending the Fourier Series representation to a case where the
period of the function £(t) becomes infinity long, i.e. f(t) becomes non-

periodic.

3. FOURTER TRANSFORMS

By substituting w = 27s and t = u, equation (1.9) is rewritten-

oo oo

£(t) = égf S e foree) oWt g Co e (1.10)

where the last integral is known as the forward Fourier Transform of f

or

(o0}

F(w) = 5%— Jf) e a0 o (I.11)
-~ 00
To obtain the inverse Fourier Transform of F(w), insert equation (I.11)

into the Fourier Integral formula (I.10)

[es}

£(t) = [ F(we

- 00

e (I.12)

The two equations (I.11) and (I.12) are known as a Fourier Transform pair.

1 . o . .
Whether the constant of 5 1S positioned in front of the forward or inverse
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Trans form does not make any difference in principal (Ref.(11l) puts the
constant in front of the inverse transform),but the form used here high-
lights the similarities with the Fourier coefficients and the physicel

interpretation of the Fourier Transform.

The Fourier Transform (I.11) of nonperiodic functions and the Fourier
coefficients from Equation (I.4) of periodic functions makes up the
frequency domain representation discussed in Chapter 5 for their respective
classes of functions, However, as hus been indicated in the derivation
of the Fourier Integral, the Fourier Transform is a generalisation of the
Fourier coefficients to functions of infinite period and thus Fourier
series expansion is a subset of Fourier lntegral representation. Therefore
although F(w) is a continuous function in the general case of a nonperiodic
function, for a periodic function the Transform will-degenerate into
discrete delta functions, which occur at the same frequencies in the
spectrogram as the harmonics of the Fourier Series. Further, the areas
under the delta functions are equal to the modulus of the corresponding
Fourier coefficients. Hence the Fourier Transform transforms all functions
that fulfil the Dirichlet conditions from time domain to frequency domain
or, by using the inverse Transform, from frequency domain to time domain.
The presence of peaks of infinite height in the spectrogram of a periodic,
stationary function is however inconvenient. To overcome this problem
one must start by considering the function that is to be transferred.
Functions, or signals, that have finite energy contents (basically
transients) will produce a Fourier Transform, the modulus of which 1is
finite for all frequencies. Other signals, like periodic signals or
stationary random signals, have a total energy content which increases

with time but has a finite energy transfer rate (energy transferred per

1.5




unit of time) or in other words, they are finite power signals, For
this class of functions the Fourier Transform version below gives finite

values also for signals with periodic components

1 T/2 ot
F) = Lim =— / f(t)e Mt ........... (1.13
2T
T -T/2

F(w) is a continuous function which correspends to the sequence of

coefficients of Equation (I.5). If £(t) is purely harmonic, then
2T
F(w) = a ; w=nr o
. . 21
Fl) =05 w#n S (1.14)

The Transforms can in practice be obtained
1. From published tables (Ref.(11) has a rather large table)
provided f(t) has a common, analytical expression, or
2. By evaluating the integrals of Equation (I.11) if f(t) ;
has an analytical expression (residual calculus is often used), or .
. !
3. If £(t) does not have an'analytical expression or if this is too

complicated to be evaluated the integral can be calculated by use

of numerical methods.

In the first two cases an analytical expression of the Transform is

obtained while in the third case the result will be in the form of a table

of figures. If the Transform is used in a physical application the
phenomena will be more easily understood and the influence of the para-
meters will be made clear if F(w) has an analytical form. This is however

not always possible. If, for instance, f(t) is a measured signal of some

kind then numerical mcthods will have to be employed to evaluate the transform.
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4. FAST FOURTIER TRANSFORM

Assume that f(t) is a signal the value of which is known only at

discrete, equally spaced points, t = KrAt; K= 1,2,..... N. This is the

il
—
v
[\
-

situation that arises in practise when samples are taken of a signal by
scanning it with a Digital Event Recorder or the A/D converter of a
computer. Providing At is chosen according to certain rules (see
Chapter 5) an estimate of a_ can then be calculated. The discrete

analogue to Equation (II1.5) is thus

N .
a = . 1 f(KAt) e PTInKAL o L (1.15)

Consider the equality of (1.14). For a nonpériodic signal the
factor T does not exist. However by making T very large, the increments
of w = n z;-will become very small and the resulting sequence of
ag> @ By onann A sevnas a, will be so closely spaced that they will form
an adequate estimate of F(w). The choice of T in this case is not bound
to a fundamental frequency of the signal as is the case in normal Fourier
Series expansion, but is only chosen to give a sufficiently closely
spaced cstimate. Thus, Equation (I.15) can be used as a numerical method
of calculating F(w) in Equation (I.13). If T is large then P (in the
sequence above) will also have to be large to cover a sufficient frequenéy
range. This method is therefore practical only when a high speed digital
computer 1is used. However, the evaluation of the sum will be very time-
consuming if P is large, since it involves calculation of trigonometric
functions, which is a slow process on computers. This originally
prohibited extensive use of digital computers for Frequency Analysis.
Around 1965 however, Cooley and Tukey published an algorithm for calcu-

lation of the Fourier Series coefficients using a method that is much
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more efficient in terms of computer time than the straightforward
evaluation of Equation (I.15). There have since been a number of
routines designed on similar basic principles but with different
characteristics as regards speed, storage requirement and so on. All
FFT routines are based on a technique of dividing the sum of Equation

(I.15) into a number of sums, each being summed over one of the compoesite

factors of N, These sums can then be used in an iterative way to build
up all coefficients a . The theory behind this is complicated and will
not be described here. For a detailed account sce Chapter 9 of Ref. (12).

If the condition N = Zk, where k is an integer, is put on the number of
samples, the FFT routine becomes particularly efficient and many FFT
routines work only with values of N that fulfil this condition. For

such a routine the speed of the FFT computation compared with the straight-

forward summation analysis is at least as good as given below,

(FFT speed) - N
(summation technique speed) 4-k

For N = 1024 the speed ratio becomes 25.6

5, SPECTRAL ANALYSIS BY FOURIER TRANSFORM

In practical analysis of signals associated with vibrations, it is
often important to determine the frequency distribution of the signal.
For virtually all signals that occur in practice, be they transient,
periodic, almost periodic, random, stationary, nonstationary or a mixture
of functions belonging to these classes, the Fourier Transform of the
signal will yield a function which describes the average frequency

composition of the part of the signal that is transformed, Usually the

relative phase between the harmonic components are not important for the




interpretation of the Frequency Spectrum and therefore only the modulus
of the Fourier Transform is studied. From Equation (1.4) it is
apparent that the modulus of the coefficients a_ are in a physical sense
the amplitudes of the sinewaves that together form the signal f(t).
Bearing in mind that the sequence dgy Ays By, ay approaches F(w),the
ability of the Fourier Transform to resolve the frequency composition

of f(t) becomes evident, Obviously the process of Fourier Analysis
much resembles analog, narrowband filtering and it is also, together with
other digital filtering methods, sometimes referred to as synthetic
filtering. Since Fourier Analysis yields a set of discrete points to
form the Frequency Spectrum it resembles an analog, narrowband filter

bank rather than the usual analog, narrowband sweep.

6. MECHANICAL IMPEDANCE

Fourier Transforms are used in a context seemingly quite different

from Spectral Analysis, namely when used to describe the dynamic character-

istics of a mechanical system in terms of the system's Mechanical Impedance.

The Mechanical Impedance method provides a black box model for a mechanical
system, The Transfer Function of the box relates input force to output
displacement, velocity or acceleration, Impedance is defined as the ratio
between input force and output Véiot{ty.in.frequency domain. The inverse of
Impedance is called Mobility or Admittance while the ratio between force

and acceleration is called Apparent Mass.,

The Mechanical Impedance function can be based either on theoretical
calculations or on experimental measurements. One of the attractions of
the method lies in the fact that a complicated system can be divided into

clements, the Impedances of which can be obtained independently through
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theoretical calculations or experimental measurements, whichever is the

most suitable for that particular element, and then combined to give the
total Impedance of the system. The total Impedance for a series of

sub Impedances 1is

Z

1
X |7 .17
tot 1 Zi (1 )

and for parallel sub Impedances

= e 1.18
%ot : Z (1.18)

Chapter 10 of Ref.(lB)'has an extensive table of Impedances for many

common combinations of masses, springs and dampers.

If a reliable, theoretical model exists for the system, the Mechanical
Impedance can be derived from the ordinary, differential equations of
motion of the system. For instance for the single degree of freedom

system defined by the equation of motion below

mx + cx + kx = £(t) ............ A ¢ R
the Impedance is obtained by first Laplace Transforming it, assuming

zero 1nitial displacement and velocity,
mszX(S) +scX(s) + kX(s) = F(8) ..vvunuu... (1.20)

Where F(s) is the Laplace Transform of the forcing function and X(s) is

the Laplace Transform of the displacement function. Rewrite (I1.20) as
2
X(s) [ms™ + ¢cs + k] = F(s) ..., e (1.21)

By differentiating the displacement function the velocity function is

obtained

V(S) = SvX(S) e (1.22)
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Substitute V(s) into (I.21)

V(s)[m52 + ¢cs + k] = s¢F(s) (i, (1.23)

For Mechanical Impedance application purposes, only the oscillatory case
is of interest, thus, substitute s = Jw in Equation (I.23) which makes

the Laplace Transform pass over into a Fourier Transform (see Section I.1).
2 . ' .
V) [-mw” + cjw + k] =juF ..o (1.24)

The Mechanical Impedance is defined as

1

(w)
oy e e (125)

Z(w) =
there F(w) is the Fourier Transform of the input forcing function and
V(w) is the Fourier Transform of the output velocity function. By

comparing Equation (I.24) and Equation (I.25) it becomes clear that for

this single degree of frecdom system the Impedance becomes

—mwz + cjw + k
Jjw

7 ‘w) =

or

Z (W) =c+J(mw - k/w) ................. 1. (1.27)

For complicated mechanical systems it is often not practical to

try to establish a mathematical model in this fashion. The shapes of

the components of the structure might be too complicated, the boundary
conditions not well defined and so on. The accuracy of the results
will then be poor in relation to the effort required to obtain them.
There are however well established methods to measure the Impedance
experimentally. It will now be shown how the Impedance can be calcu-

lated from the response of the system when excited by a known forcing

function, The forcing function f(t) is an arbitrary function that ?

complies with the Dirichlet conditions. Divide f(t) into very narrow



segments with a width At and height f(1). Now define h(t-T) as the
response of the system at time t after it has been excited by a delta
function at time T. The delta function is a mathematical abstraction
which has the value zero for t # T and infinity for t = T and the area
between §(t-1) and the time axis is one. If the system is instead
excited by one of the segments of f(t) the system response will be
approximately h(t-1)f (1) AT. The smaller At is, the more accurate is
this approximation. If the system is linear the law of superposition
holds true and the response at time t of all the segments can be obtained
by adding the momentary values of their respective impulse responses up.
By letting AT approach zero the sum passes over into an integral and the

well known Convolution Integral is obtained.

t
X(t) = J h(t-T)*f(D)AT o'ttt (1.28)
0

A more complete derivation can be found in for instance Ref.(14) or
Ref. (15). From Equation (1.28) the input-output relationship for the
system in frequency domain can easily be obtained. The Fourier Transform

of the Convolution Integral namely takes on a particularly simple form

and can be found in any Fourier Transform table,

t
FT(x(t)) = FT(/ h(t-1)+f(r)dr)
o}
becones
X)) = Hw)*Flw) ..., e (I.29)

where X(w), F(w) and H(w) are the Fourier Transforms of x(t), f(t) and
h(t) respectively. By differentiating both membra of Equation (I.29) and
replacing jeweX(w) by V(w) Equation (I.29) can be written as

F(w) i :
D = JY e I.
) T (I.30)




By comparison with Equation (I.25) it is evident that‘the Impedance
of a linear system can be calculated from the Fourier Transform of the
impulse response of the system. In practice it is seldom possible to
create a shockpulse that is short and high enough to resemble a delta
function but H(w) can then instead be obtained from the input and output
signals by use of Equation (I.29). If the Impedance function of a
system is known, the output from the system when excited by a known

forcing function can be obtained from Equation (I1.30).

To further clarify the physical interpretation of the Transfer
Function H(w), assume that the forcing function is a sinewave function,
f(t) = A(wo)sinwot. If the system is linear it will have a particular

solution represcnting steady state response B(wo)vsin(wot - ). These

functions, Fourier Transformed and put into Equation (I.29), gives

B(wo)[6(w—wo)—6(w+wo)]°e Jwd H(%)°A(wo)hﬁw~wo)~6(w+wo)] ..... (1.31)
or
Hw) = B0l o e (1.32)
A(wo)
The modulus of H(w) is
[H(wo)[ = B J/AWM)) e (1.33)

which is simply the ratio between the amplitudes of the input and output

signals, i.e. the magnification of the system. The argument of H(w) is

arg(H(w)) = ¢ oo i (1.34)

which is the phase difference between input and output signal or, the

phase shift of the system.




It is now possible to get a more intuitive idea of how the knowledge
of the Impedance of a system makes it possible to calculate the output
signal if the input signal is known, or vice versa, by use of Fourier
Transforms of these signals., Each point (mo; F(wo)) of the Transform
of, say, the output signal, represents a siﬁewave component of this
signal, with amplitude Iv(wo)[and phase lag arg(v(mo)). According to
the previous paragraph, the response at this particular frequency is

created by an input signal, which has the shape of a sinewave with

amplitude [F(wo) l: IV(wO) ° ZQ»O)] and a phase lag érg(F(mo)) = arg(V(wo))
+ arg(Zﬁno)). By allowing W, to assume all values in the frequency range
of interest, the input function is determined. Hence, when Fourier

Analysis is used to obtain the Impedance of a system, its function is, as

- was the case of Spectral Analysis, to determine the frequency distribution

of the signals involved.




APPENDIX 11

A SYSTEM FOR DIGITAL ANALYSIS QOF SIGNALS (DAS).

DAS consists of a suite of programs designed for general purpose
signal processing on a high speed, digita1 minicomputer. The system
performs many of the commonly used vibration analysing procedures
(previously discussed in Chapter 5 and Appendix I) and it includes, apart
from the actual processing algorithms, also all necessary input, output
and preprocessing routines. Flexibility and versatility of the system
together with ease of operation have been regarded as firét priorities
but it has also been possible to achieve gcod efficiency as regards

speed and storage capacity.

1. DESCRIPTION OF HARDWARE

The computer used for this work is a so called minicomputer, Data
General's Nova 1200, which is shown with its peripherals in picture I1I.1
and the whole hardware arrangement on a block diagram in Fig. I11.2. It
is equipped with 24K core memory in its central processor (point 1 in pic-
ture II.1) and with a 256K disk (2) and twin magnetic tape cassettes (3)
as backing up storage capacity. The computer runs under a Disk Operating
System (DOS 05) and the operator controls it from a Teletype (4) keyboard.
The machine has a 10 bit A/D converter (5) and an eight channel multi-
plexer (5). For the use of the DAS program package, only one of the
available éight channels is used (channel No. O, point 9). The A/D
converter works with an accuracy of within 0.5%. The peaks of the analog

input signal should be in the range * 5 Volts (peak) but it has an overload
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protection up to 10 Volts RMS. In principal the analog signal could

come directly from the vibration pick up and the system could be run on
line, but for practical reasons the vibration signal is instead recorded

on a FM tape recorder (6) and later played gack into the A/D converter.

To comply with the rules given in Chapter 5, concerning sampling frequency
versus frequency contents of the signal, the analog signal is passed
through an adjustable bandpass filter (7). The filtered signal is
monitored on an oscilloscope (8). The rate at which samples are taken
from the input is determined by an external triggering device 9), a
tunable "flip-flop", which produces a square-wave signal of about 6.5 Volts
(peak). The frequency of the trigger signal can be adjusted with a
potentiometer to the desired sémpling frequency while being monitored by
the counter (10) connected to the count/trig socket. If the data is
already digitized and punched on papertape it can be loaded into the system
with the fast, optical reader (11). Plotting facilities are provided by
the digital plotter, Houston incremental 8" x 11", (12), and for printouts
the fast character printef (13) is used. Further information on machine

and peripherals is given in Ref. (16).

2. ORGANTSATION AND OPERATION OF THE SOFTWAVE

The program package consists of a set of 16 complete (''main')
programs, stored on disk in relocatable, binary form, i.e. they can be
transferred directly into the central processor without previous compiling
and linking. The source programs are written in DGC Fortran IV, see
Ref. (18). The DAS system works in an interactive way, making it possible
for the operator to control the processing by giving instructions on the

Teletype keyboard. The programs can be divided into two categories:
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Administrative programs and dataprocessing programs. The administrative
programs (DAS, PLOTL) set labels and parameters necessary for the
operation of the dataprocessing programs. They do not handle any data
and the corespace thus made available is instead used for program
instructions. The dataprocessing programs "(SAMPLE, PTAPE, CAS, WINDOW,
MRVS, PROBDENS, PROBDISTR, AUTOCORR, FFT, PSD, PLOT2, DFPO, ORDAPLOT,
AVERAGER) generally have rather few program instructions in order to
leave spaée for sufficient amount of data. The requirements for storage

space for data can be quite large even for rather modest amounts of

ordinates. For instance, suppose that 1024 ordinates are read into a
program.  These 1024 datapoints might produce 1024 y-axis coordinates
and 1024 x-axis coordinates, in all 3072 (3K) datapoints. If the data-

points are declared as real numbers each data occupies 2 words, i.e. the
total space requirement is 6144 words (6K). If the data is compliex
(which is the case for the FFT routine) each rcal, complex datapoint
occupies 4 words meking the total storage requirement 4K + 4K In
addition the FFT routine needs 4:NCS K space for intermediate data, in
all 12K of the storage space is occupied by data. Since the total
available memory space is about 23.5K (the DOS 05 system occupies about
0.5K) it is obvious that the dataprocessing programs have to be short

and efficient.

There 1s only space enough in the central processor for one program
at a time. Therefore the whole set of program is stored on disk and

programs loaded into core when required. When the system is activated DAS

1s read into core and started. The program presently in core in relocatable

ferm constitutes the '"core image'. DAS then lists the routines with

code numbers to be used by the operator when calling a routine.

(O3]
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When the operator has given instructions on the Teletype, DAS will call
up and activate the wanted routine or routines in sequence. This
"calling up" is done in the following manner: The program in the central
processor (DAS), is deleted, the wanted program is loaded into core from
its diskfile and executed, the core image is again deleted and DAS is
again read into core and started at the point where the program swap was
initiated. DAS then either calls up a new program, thus going through

a sequence of programs, or returns control to the operator at the Tele-
type keyboard. This technique of swapping programs between core and
disk is known as overlaying, see Ref. (1%). There arce in principal

two ways of storing intermediate data during an overlay. For small
amounts of data the common block in core is used and is therefore left
intact when the rest of the core image is deleted. For bulk storage

of data,diskfiles are used. Though they have much longer access time,
they have a greater capacity than the common block in core. Thus, the
ordinates read from A/D converter or papertape, are stored on diskfile
ORDA, the calculated x-axis and y-axis coordinates are stored on disk-
files XAX and YAX and during the averaging process diskfile RYAX is used.
All data diskfiles are written in binary code to shorten the access time.
As will be described in the next section under GRAPHPLOT, the common block

is used to store labels and operating parameters during program swaps.

3, THE PROGRAM UNITS

A sample program is included at the end of this Appendix. Under-

lined figures are specified by the operator. Questions from the computer

are answered with 1 for Yes and O for No. The arrangement of software

is shown in Fig. (I1.3).
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Main Program:

DAS is a fairly large program (about 20K) which administers the
system without itself handling any data. It supplies the other programs
with instructions and enables the operator to use the system in an inter-
active way and with a minimum of operating instructions to be typed on
the Teletype.

Input Routines:

1. SAMPLE

5000

H

S
max

functions: ORDA(J) = ADC(J)- CF

This program handles the A/D conversion, i.e. it digitizes the analcg
inputvsignal into a sequence of samples. The sampling frequency is set
on the external triggering oscillator and is also specified on the Teletype
for scaling purposcs. Note that if the magnetic tape is speeded up or
slowed down,the sampling frequency specified on the Teletype should be
(the actual sampling frequency): (recording speed)/(playback spced).
The calfactor transfers the readings from the A/D converter into suitable
units. When NOS, CALFACT and SFREQ are specified the computer responds
by printing PAUSE and the execution is halted. The operator can now
start the tape-recorder and check on the monitoring oscilloscope that the
recording is free from "drop outs' and other disturbances. When the
carriage return key on the Teletype is pressed, an assembler subroutine
activates the A/D converter and for each pulse from the external trigger
one sample is taken from the analog input and transferred into core.
When the specified number of samples (NOS) have been read, each sample
is multiplied with the calibration factor whercafter the scquence of

samples is written on diskfile ORDA.
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2. PIAPE

NOSmax = 5000

function: ORDA(J) = PTAPE(J)+«CF

Data already digitized and stored on papertape can be loaded into
the éomputer using this routine. The data should be punched on the tape
in ASCII code and in the following sequence: Intégers, carriage return,
line feed, integers, carriage return, line feed, and so on. A parity
check on mispunching is automatically done and if an error is detected

the execution of the program is halted.

Preprocessing Routines:

3. CAS

function: CRDA{J) = (ORDA(J)-MEAN)/RANGE

The contents of diskfile ORDA is read into core and the file is
deleted. The original ordinates are then normalised (centered and
scaled) and the normaliscd ordinates are written back on diskfile ORDA.

RANGE should be specified as the upper limit of the data.minus the lower

limit of the data.

4, WINDOW
NODS = 1024
max
function: ORDA(J)=(1+SIN(J*2¢ 1/NODS-m/2)) ORDA (J)
With this program the ordinates on diskfile ORDA are read into core
and multiplied with the Hanning window function described in Chapter 5.
The original content of the diskfile is deleted and the new ordinates

are written back on ORDA.
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Processing Routines:

Before using any processing routines (except MRVS) the ordinates must be

centered and scaled by the use of CAS.

S. MRVS
NOS . NOS 2
function:MEAN = ‘{é‘g L ORDA(J) vAR = 3 [(ORDA(J)-MCAN)
YR J=1 J=1 NOS
NOS 21
RMS =\/ & ORDA(J) SDEV = v VAR
J=1 ~ NOS

This routine reads the contents of diskfile ORDA and calculates the mean
value, the root mean square, the variance and the standard-deviation of
the ordinates. The result is printed on the Teletype. Note that this

program should normally be used before using CAS or WINDOW.

6. PROBDENS

function: YAX(J)=(number of ordinates falling between

XAX(J) and XAX(J+1)» 200

The probability Density function is calculated using this routine.
The range of data (specified in CAS) is divided into 64 intervals and
the number of ordinates falling within each interval makes, after being
divided by NOS and multiplied with 100, up the y-coordinates of the
histogram. The corresponding x-axis coordinates are also calculated
and the coordinates of the two axis are then written separately on

the two diskfiles XAX and YAX.
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7. PROBDISTR

.

function: YAX(J)

it

J
S OYAX(K): J =
=1

K
The Probability Distribution Function is the cumulative histogram
of the Probability Density Function and is thus calculated using ‘the
contents of diskfile YAX created by PROBDENS. Hence, before calling
PROBDISTR, PROBDENS must have been.executed as the preceding program.

PROBDISTR then reads diskfile YAX, calculates the cumulative values

and writes them back on YAX.

8. AUTOCORR

NODSmax = 3000
1 NODS -LAG

— Z ORDA (L) - ORDA (L+J)
NCDS-LAG L=1

function: YAX(J) =
When the operator has specified NODS and LAG (expressed in number
or ordinates) the contents of ORDA are read into core, the Autoccrrelation
function is calculated and written on YAX and the corresponding x-coordinates

calculated and written on XAX. The computation is rather time consuming

so LAG and NODS should not be chosen unnecessarily large.

9.  FET

NODS = 1024
o
1 MO £321TK /NODS

function: C{J) = — ORDA(K) e
NODS ko

YAX(J) = 2+]c()|

This program calculates the Fourier coefficients of the ordinates.
Forward or inverse transform can be chosen by the operator. If the signal
is a non transient the ordinates should first be weighted using the window

o

routine. The first NODS ordinates are read into core from ORDA and their
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complex Fourier Transform is calculated. The transformation is carried
out by a Fourier Transform subroutine described by M. Uhrich in Ref. (50)
This routine is unusually compact but is not very fast, 1024 ordinates
take about 90 seconds to transform. The output of the subroutine
consists of complex numbers but for most vibration analysis work the
phase is not interesting and therefore the modulus of the transform is
calculated and written on diskfile YAX and corresponding x-axis co-
ordinates on XAX, Note that the program works only if NODS =2N with

Nel,2,.....10.

10, Psh

Function: YAX(J) = YAX(J)?/2

The Power Spectral Density function is calculated using the results
from the FFT routine. Hence PSD can only be called immediately after

FFT.

Output Routines:

11. GRAPHPLOT
When GRAPHPLOT is called, PLOT1 is first read into core and started. :

The operator can then specify a graph number which will be drawn on the *

graph, thus helping to identify the plot with the computer printout.

When the carriage return key is pressed the plotter will start working

and the operator should before doing this have positioned the pen at the

top left corner of the graph-sheet. PLOT1 will then draw and tick the

axis and write the proper labels. The information required to do this

is given from previous stages of the processing as the sequence of

programs is gone through. For instance when a Fourier Analysis 1is

carried out the following sequence is gone through: When SAMPLE is
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called the label "A/D-CONV" is set and the value assigned to SFREQ is
used for scaling of the x-axis. The setting of RANGE in CAS gives the
correct scaling of the y-axis whereas when FFT is called the label

"MOD OF FFT' and the axis labels "frequency (Hz)' and "acceleration (g)"
is set and the positioning of the axis on the graph sheet is determined.
Hence when the chosen sequence of programs is gone through all infor-
mation thdt is required for the plotting will be available for PLOT1 in
the commonblock, When labels and axis are drawn the pen is positioned
at the origin, PLOT1 is deleted and PLOT2 is read into core. The pen
position is defined as zero-zero and YAX and ¥AX are read into core,

scaled and plotted. A new graph sheet is then put into position.

12.  ORDAPLOT

NODS £ NOS

This program is used to plot the first NODS ordinates of diskfile
ORDA, The ordinates are read into core and written back on diskfile

YAX and the corresponding x-axis coordinates are created”and written

on XAX., PLOT1 and PLOT2 are then called in sequence.

13, DFPO
To obtain more accurate outputs than are possible on a graphplot
the program DFPO (diskfile printout) can be used. ORDA, XAX and YAX

are read into core and printed. Note that the autocorrelation y-axis

values will be biased with +(RANGE)2/4.

11.10




Auxillary Routines:

14. REPETITION (included in DAS but calling the separate program AVERAGER)

For averaging purposes some of the program sequences can be repeated
automatically and the average of the results iaken. The following
sequencies can be repeated 1in this way by use of REPETITION: 1/SAMPLE,
CAS, WINDOW, FFT, AVERAGER; 2/SAMPLE, CAS, PROBDENS, AVERAGER; 3/SAMPLE,
CAS, AUTOCORR, AVERAGER. To set the parameters required for these functions
(NOS, RANGE, NODS and so on) the operator first goes through the wanted
sequence in the usual way and sets the parameters. These are then stored
in the commonblock and can be used when needed during thg repetition of
the program. The number of repetitions and the sequencc wanted is set by
the operator in REPETITION. When the secquence is gone through, AVERAGER
is called up and adds the coordinates in YAX to the coordinates in RYAX,
the latter being set at zero when the first sequence is started. When
the sequence is gone through the specified number of times each y-axis
coordinate in RYAX is divided by the number of repetitions and written
back to YAX thus making them available for the output routines. No
separate sequences are available for obtaining averaged results from
PROBDISTR and PSD but since these functions use the output of PROBDENS
and FFT such results can also be obtained by calling respective programs

up after the repetitions have been gone through.

15,16,17/DUMMY1, DUMMY2, DUMMY3

These dummy file names makes it possible to link additional routines
to the system simply by transferring them to diskfiles with the names
TOTHER,SV; ITOTHER.SV; ITTOTHER.SY; respectively. The program must be
written in Fortran or Assembler language énd must be complete (main)
programs, compiled and 1linked. They must have a commonblock identical

with the other programs in the system.




18. STOP
When the operator wishes to leave DAS and return control to the

computer's normal operating system this function is used.

Examples of printouts from DAS runs are given on pages II.13 -

I1.18 with the associated graphé on pages IT1.19 - I1.27.
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T T
>
192

|

DIGITAL ANALYSIS OQF SIGNALS
INPUT

READ A/D-CENVERTER (1)

READ PAPERTAPE (2)
PREPROCESSING:
CENTER AND SCALE
WINDOW ()
PROCESSING:
MRVS (5)
PROBABILITY
PROBABILITY
AUTBCORRELATION FUNCTION (8)

FOURIER TRANSFORMATION (9)

PGWER SPECTRAL DENSITY FUNCTIOGN (10)
PUTPUT::

GRAPHPLOT (11D

PLET BRDINATES (12)

PRINT (13)

AUXTLLARY:

REPETITIVE PROCESSING (14)

DUMMY 1 15

DUMMY2 (16)

DUMMY3 17)

STer 189

DATA (33

DENSITY FUNCTION (6)

ROUTINE N@=1

SAMPLE |
CALFACTOR=0.00957
NGS=3500

SAMPLING FREG=10000
PAUSE ‘
STeP

RBUTINE NO=9S
MRVS

MEAN=
STepr

0.0016 kMS= 0.7084 VAKR=

ROUTINE N@=3
CENTER AND SCALE

RANGE=S
STaer

- 11,13 =

DISTRIBUTION FUNCTIGON (7)

0.5019

COMMENTDS

The letter "R" implies

that the .computer is

operating under its

normal operating system.
To activate the DAS-

system, type DAS

Listing of

available routines

Chose routine

Input signal is ;
a sine wave of 1

units amplitude

at 250 Hz frequency

- SDEV= 0.7084

Setl y-axis scale



ROUTINE NO=12

ORDAPLOT -
NG . OF DATAPQINTS=2000
STGP

GRAPH PLOT
GRAPH N@=1
SToP
STOP

ROUTINE NO=E

AUTOCORR
LAG~RANGE=200

NG .OF DATAPOINTS=1000
STOP

"REUTINE NO=11

GRAPH PLOT
GRAPH NO=2
STOP
STOP

ROUTINE N@=6
PROBDENS

STGP

ROUTINE ND=1)
GRAPH PLOT
GRAPH N@=3
ST@P

SToP

RBUTINE NO=7
PROBDISTR
sTeP

ROUTINE NO=11
GRAPH PLOT
GRAPH N@=4

STaP
STOP

COWNENTS ;

The x-axis scale is
calculated from sampling
frequency and number of

data points

Note that autccorr(O):

=VAR=0,5

-

For PROBDENS and
PROBDISTR the

previous y-axis scale
Tiow becomes.the X--8x18

scale




ROUTINE N@=1

SAMPLE
CALFACTOR=0,.00957
NBS$S=1024

SAMPLING FREQ=1000
PAUSE

STgP

ROUTINE N@=3

CENTER AND SCALE
RANGE=S '
STOP

ROUTINE NO=9

CFFT
FORWARD?=1 “"
INVERSE?=0

STOP

ROUTINE NE=11
GRAPH PLOT
GRAPH NB=S5
STEP

STOP

ROUTINE N@=4
HANNING WINDQOW

Nge OF DATAP@INTSZngﬁ
SToP

RBUTINE N@=12

@RDAPLGT
No. OF DATAPBINTS=1024
STGP

GRAPH PLOT
GRAPH NB=6
STOP
STQP

ROUTINE N@=9

FET A
NUMBER 0F DATAPCINTS=1024
FORWARD? =1 T
INVERSE?=0

STef -

COMMENT ;

—

Teke & new scries

of samples

FET without previous
hanning. Note the broad

base of the peak at 150 Hgz

Shows the effect of

the window function




ROUTINE NO=11
GRAPH PLOT
GRAPH N@=7
STeP

STOP

ROUTINE NO=1

SAMPLE
CALFACTAR=0.00957
N S=512 o
SAMPLING FREQ=1000
PAUSE T
STor

RBUTINE NDO=3

CENTER AND SCALE
RANGE=2. 5

STOP

RGUTINE N@=4

HANNING WINDGW

N@. GF DATAPEINTS=512

STeP

RBUTINE NO=9

FFT

NUMBER GF DATAPZINTS=512

FORWARD?=1
INVERSE?=0
STOP

ROUTINE N@=11
GRAPH PLOT
GRAPH N@=8
STeP

STQP

ROUTINE N@=}0
P.SeDe

STHP

RGUTINE N@=11
GRAPH PLOT

GRAPH No=4%

D

COLMENTS ¢

Compare with graph5

Take a new sample

with only 512 points

This smaller sample
gives a broader peak -
i.e. poorer freguency

resolution

The height of the peak
al 150 Hz represents
the Mean Square (VAR) value
¢f the component at thin

Trequency




RBUTINE N@=1

SAMPLE
CALFACTOR=0.00957
NOS=1024

SAMPLING FREQ=1000
PAUSE

sTeP

ROGUTINE NO=3
CENTER AND SCALE

RANGE=S |
sTep

ROUTINE NO=4

HANNING WINDOW

NG, OF DATAPOINTS=1024

sTepP

RGUTINE NO=9

FFT

NUMBER OF DATAPGINTS=1024

FORWARD?= 1
INVERSE?=0_
STOP
ROUTINE NO=14

AVERAGING ROUTINE

NUMBER 0F REPFETITIONS=2

FFT?7=1

SAMPLE
CALFACTQR=0.00957
- PAUSE -
STGP

CENTER AND SCALE
SToP .

HANNING WINDQ@W
ST@eP

FFT
STOP

AVERAGING SUB
STOP

SAMPLE
CALFACTBR=0.0
PAUSE

STEP

CENTER AND SCALE
STEP

HANNING WINDOW
STOP

FFT-
STOP

COMMIENTS

Before calling "Repetetive
Processing”, call the required
sequence of routines to set

operaling paramelers

Since the cal.factor is set
to zero in the second loop,

the average amplitude of the

N

unit

w

signal is O.




ROUTINE N@=13 ’ T

PR,

COMRMISIYY

DISKFILE PRINTOUT

URDA X AX Y AX
0.00000 0.97656 0.00006
0.00000 1.95312 0.00010
0.00000 £2.92968 0.00004
0.00000 3.90625  0,0000¢4
0.00000 4.38281 n
0.00000 §.350°"
0.00000 oD
0.0 000058
169500 0.00087
~ouuD 138.67100 000119
0.00000 13964800 0.00178
0.00000 140. 62500 0.00102
0.00000 141.60100 0.00072
0.00000 142.57800 0.00116
0.00000 143.5%400 0.002717
0.00000 14453100 0.00422 4
0.00000  145.50700 0.00788 As shown by the printout,
0.00000 146 48400 022464
0.00000 14746000 050318 the actual frequency of the
0.00000 {48 .43700 0.27997
0.00000 149¢41400 0.00910 analysed signal is 147.5 Hz
000000 15035000 0.0038Y
0.00000 15136700 0-00317
0.00000 152.34300 0.00214
0.00000 153.32000 0.00110
0.00000 154.29600 0.00127
0.00000 155.27300 0.00126
0.00000 15625000 0.00039
0.,00000 157.22600 0.00005 {
0.00000 15620300 0.00034 |
0.00000 15917900 0.000¢" i
0.00000 160.15600 n
0.00000 16113200 g
0.00000 160 -~y %
OeOUkJ()(\ ueDOOl’d ;
o - , Ty 0.00026 ) |
7609300 0.00024 ;
-wu0 497.07000 0.00014 §
0.00000 498 . 04600 0.00035 g
0.00000 499 . 02300 0.00023 i
0.00000 500.00000 0.00039
0.00000 '
000000
0.00000
0.00000
0.00000
0. 00000
0.00000
0.00000
0.nN""
The "R" implies that
control is now returned to
ROUTINE NQ=18 the computer's normal
ST@GP -
R

operating system
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Analog

input signal

Fig. II.2 Hardware Layout.

Scope Counter
Adjustable A/D Adjustable
L:P. Converter Flip-flop
Filter
Casette
Disc \
Central
Processing
/ Unit
Teletype
Fast Digital
Fast er
St pap Fast paper Character Plotter
tape tape Printer
Reader Punch
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APPERDIX 111

AUTOCORRELATION AND SUMMATION ANALYSIS -

A COMPARISON OF NOISE SUPPRESSION POWER

Consider a time varying function given by
Z(t) = A=X(t) + Besinwt et (111.1)

where X(t) is white noise with an upper cut off frequency fc. When
the function Z(t) is processcd by Autocorrelation or Summation analysis,
the resulting function will generally consist of a harmonic term, H,

and a random term, R, Hence

Autocorr [Z(t)] = C(T,t) = Hl(T) + Rl(T) ..... (11I1.2)
and

Sum [Z(t)] = S(T,T1) = HZ(T) + RZ(T) .......... (I11.3)

where T is the averaging time of the processing. For both types of
analysis, the R terms will approach zero as T goes to infinity.

Since there is no practical problem in choosing the value for T freely,
T (or for the discrete version, L) is henceforth assumed to be

sufficiently large, Thus,

lim C(T,T1) = Hl(T) = %;-coswr e (I11.4)
T » o
T large
and
lim S(T,T) = HZ(T) = BsinwT ..., (I11.5)

T -




In practical analysis however, T will always have a finite value and
the way in which R approaches zero 1is therefore determinative for the
efficiency of the respective methods. Therefore define the signal to

noise ratio of the Autocorrelation function and Summation function for

Z(t) aé

_VaI*[Hl] _
Q.(T) = e e e (111.6)
Var [Rl]
and
Var [Hz]
Q. (T) = L e (I111.7)
Var [RZ]
respectively. For digital analysis the 7(t) function is assumed to be
sampled at N equidistant points during time T. N is thus the discrete

counterpart to T. We now want to compare the values of QC and Qg for the

averaging time To (or number of samples NO).

Autocorrelation

From equation (111.4),
B4 4
Var*[Hl(T)] =g Var[coswt] = B /8 ...0.... (117.8)
From equation (I17.2)

Rl(T) = C(TO,T) - Hl(T) R (1171.9)

To calculate the Rl term, first set up the expression for the C term,

.i‘

The variance of a function 1s the mean square value of the function

provided the function has first been made to have a zero mean value.
; . 2 i
Var[A-f(t)] = A «var[f(t)]

111.2




T
)
C(r ,t)* = EL' S [AX(t) + Besinwt]e[AX(t + T)
o 0 o .
A2 Yo
+ Besinw(t + 1)]dt = T S oX(t)«X(t + T1)dt
o o
T
AB © .
o [ J X(t)ssinw(t + 1)dt + X(t + 1) sinuwt )
) )
B "o
t g J sinwtesinw(t + t)dt  L...o.e.. (I11.10)
o o

The last term of equation (I1I1I.10) is equal to H R. is thus the

1" 1
first two terms of equation (III.10). The variance of these terms are
calculated separately.

2 To

Var| ﬁlw JOX(t)+X(t + 1)at] =
(o] (o]

T
4 1 2
A'Var]| T JOX(t)X(r + T)dt] ..., U (I11.11)
o o

The expression within the brackets is simply the autocorrelation
of white noise. According to Chapter 6 of ref. (12), the variance
of the estimate of the value for autocorrelation at lag T for white

noise band limited to fc is

T
*  Autocorr[f(t)] = C(TO,T) = %4 fo f(t)-f(t + Tdt
o ©

The discrete counterpart 1s

N ™Mz

C(N,L) = —i; X(k)*X(k + L)

k=1

IT1.3

.
o




, ‘ o 2 2
\ar[C(TO,T)] = E?:T;»[C (0) + CT(T)]  vevvvnnn (I11.12)

With T chosen sufficiently large, equation (III.12) simplifies to

2
_c@© _ _1
Var[C(TO)] = SETCCSETS et (111.13)
co c o
Hence the variance of the first term is
A4
Varl = m’* .......... (III.14)
co
The second term of equation (III.10) is then considered,
T
2.2 1 ° .
Var2 = A"B Var[ﬁr~f X(t)*Sinw(t + T)dt +
o 0
T
1 ° ‘
* o J X(t + T)Sinwtdt] ...l (111.15)
o o '

The two integrals of this expression are the mean value of the
respective products after the integration signs. According to
Chapter 6 of ref.(12) the variance of the estimate of the mean value

of a band limited white noise signal is

Var[x(t)] = 1/2£ T i (I11.16)

The X(t) term in equation (III.15) are weighted with on the
average 1/Y¥2 during one cycle of the sine function. Hence the

variance of each of the two terms of equation (III.15) is 1/4fCTo and

Var. = APBZ/2€T i (I11.17)
2 c o

111.4




Thus

7 = =
\ar[Rl] Varl + Var2

22 (A%« Bz)/zcho .......... (I11.18)

Combining equations (II7.8) and (ITI.18) then gives the signal to

noise ratio for autocorrelation analysis,

Bhe 7
Q - cC O
c T T (I11.19)

2
4% (4% + 89

Summation¥®

From equation (III.5)

Var([i,] = B2/2 i (I11.20)

From equation (III.3)

RZ(T) = S(TO,T) - H2(T) .......... (I11.21)

From equation (III.21) it is clear that R2 is the estimate of the

mean value of X(t). By use of equation (III.16) the variance of the

R2 tem then becomes

2
Var[Rz] = A /ZfCTO .......... (111.22)

* In Summation analysis sampling sequences are initiated at the same

points of the period of H The samples are stored and the process

5
repeated a number of times. Subsequently corresponding points of

each sequence arc added together thereby averaging out random components.

ITI.5




Equations (I11.20) and (II1.22) then give the signal to noise ratio

for Summation analysis

2. 2
Qg = B7L_T /A

ST BULT /AT . (III1.23)

The relative efficiency of the two methods as regards noise
suppression power then becomes

Q 1 I11.24
T T e (I11.24)

Hence the value for QC/QS depends on the proportions of random amn
deterministic components of the time signal. For only a small
contribution of noise the ratio is about 1/4. For equal prcportions
the ratio is 1/8 and for very high noise levels, Summation analysis

has a much higher efficiency than Autocorrelation analysis.

-

I11.6




