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Summary

The modelling of mechanical structures using finite element analysis has
become an indispensable stage in the design of new components and
products. Once the theoretical design has been optimised a prototype may
be constructed and tested. What can the engineer do if the measured and
theoretically predicted vibration characteristics of the structure are
significantly different? This thesis considers the problems of changing the
parameters of the finite element model to improve the correlation between a
physical structure and its mathematical model.

Two new methods are introduced to perform the systematic parameter
updating. The first uses the measured modal model to derive the parameter
values with the minimum variance. The user must provide estimates for the
variance of the theoretical parameter values and the measured data.
Previous authors using similar methods have assumed that the estimated
parameters and measured modal properties are statistically independent.
This will generally be the case during the first iteration but will not be the case
subsequently.

The second method updates the parameters directly from the frequency
response functions. The order of the finite element model of the structure is
reduced as a function of the unknown parameters. A method related to a
weighted equation error algorithm is used to update the parameters. After
eac% iteration the weighting changes so that on convergence the output error

is minimised.

The suggested methods are extensively tested using simulated data. An H
frame is then used to demonstrate the algorithms on a physical structure.

Key Words:  Vibration; Parameter Updating; Modal Testing;
Finite Element; |
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1.1 Problem Overview

Industry is investing increasing resources into Mechanical Computer Aided
Engineering (MCAE). MCAE integrates computer based tools throughout the
Engineering Department, allowing companies to develop mechanical products
more cheaply and quicker than traditional methods. The aim is to use
computer analysis to reduce the quantity of physical testing to an absolute
minimum. This revolution has been aided by reducing hardware costs and the
increasing availability of high quality software. Although MCAE covers a wide
range of techniques, for example solid modelling, design visualisation, thermal
analysis, drafting and manufacturing analysis, this thesis will concentrate on
just two facets: Finite Element Analysis and Experimental Structural Testing
as they relate to dynamic analysis.

Finite element analysis is commonly used to predict a structure's static
strength and dynamic characteristics. These predicted characteristics are
optimised during the theoretical design cycle to produce a satisfactory
modelled structural response. A prototype is then produced. Experimental
structural testing yields the dynamic response of the prototype which may
then be compared to the predicted response. Should the responses agree
then the modelling phase in general and the finite element model in particular
are validated. What happens if the responses do not agree? Does it matter?
Whether it matters will be answered in each individual case by consideration
of the roles of the analytical and experimental phases. The finite element
model of the structure allows a wide range of different configurations to be
tried. These may be structural modifications. Or they may be complex loading
patterns which are difficult to reproduce in a controlled experiment. The
experimental mode! will be incomplete, for example no satisfactory transducer
exists to -measure the rotational degrees of freedom. Some structural
Mmodifications may be undertaken theoretically using the experimentally
derived response although it is more difficult than using an analytical model.
The experimental data does provide information on the idealisations made

13




during the finite element modelling (for example joints, bearings). Each case
must be considered individually based on what information the engineer
requires from the theoretical and experimental phases.

Suppose that the analytical and experimental responses do not agree. Often
the structure has detail that cannot be accounted for within a finite element
model without a vast increase in the number of degrees of freedom and
therefore computational time. For example a particular finite element may
have a small hole in it that is modelled by reducing the stiffness of the
element. Equally the experimental responses will contain errors arising from
the measurement process. The physical parameters of the modelled system
could be adjusted to increase the correlation between the theoretical model
and the actual structure. The result will be a more accurate simulation of the
static and dynamic characteristics of the structure. But which parameters
should be adjusted, how should they be adjusted and what criterion should be
used to gauge the success of these changes? The majority of research in this
area has used the correlation between the analytically derived and
experimentally measured modal models (natural frequencies and mode
shapes) as a measure of success. The natural frequencies are compared and
the mode shapes are correlated, for example by using the Modal Assurance
Criterion. The parameters of the analytical model are then updated often
using the Taylor series expansion of the eigensystem in terms of the
parameters. These methods assume that the natural frequencies and mode
shapes of the prototype structure may be extracted. In many cases this is
possible and given an accurate modal model these techniques can produce
good results. Commercial software packages are available to perform the
updating task systematically. In some instances the measured modal model!
is difficult to obtain accurately, especially where there are heavily damped or
closely coupled modes present. Some algorithms have difficulty with data
incorporating slight frequency shifts, for example due to the mass loading of a
roving accelerometer. There are also problems with the interpretation of
complex modes. In general, obtaining an accurate modal model requires a

14




great deal of care and engineering insight.

{

The main thrust of the research described in this thesis takes a different
approach and attempts to update the unknown physical parameters directly
from the frequency response function data. The problems associated with
identifying an experimental modal mode! will not then arise. Some papers have
appeared which update mass, damping and stiffness matrices from
frequency response data directly. These algorithms generally update
condensed theoretical models of the structure and require that the number of
degrees of freedom and the number of measurement locations are equal.
Most techniques cannot update the physical parameters of a finite element
models with many degrees of freedom. Those algorithms that may be
extended to a general finite element model would require an impractical
amount of computation time.

1.2  Thesis Outline

There are many techniques used to update the parameters of finite element
models. Theoretical finite element analysis and experimental structural
testing have already been mentioned and are fundamental to any updating
algorithm. The basic methods in theoretical and experimental vibration
analysis are reviewed in Chapter 2. Also reviewed in this chapter are the
methods to calculate eigensystem derivatives or sensitivities that are used in
many updating algorithms. Chapter 2 can also be considered as an
introduction to the notation used throughout the thesis. In particular damping
matrices are included to provide the most general case and the equations of
motion are written as a first order differential equation in terms of a state
vector. Chapter 3 provides a summary of the methods used for parameter
estimation or updating in structural dynamics.

The main thrust of this research is to investigate the possibility of updating
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the model parameters directly from the frequency response data without
computing the modal model. To produce a viable algorithm, the order of the
finite element model must be considerably reduced while still maintaining the
dependence of the modelled dynamic characteristics on the parameters of
interest. The area of model order reduction has been considered in vibration
analysis to enable modelled modal properties to be computed more quickly.
Chapter 4 considers these reduction algorithms together with algorithms
used in control engineering and assesses their applicability to the parameter
updating problem.

Chapter 5 outlines a new method, based on a previously published minimum
variance estimation algorithm, to update model parameters using the
measured modal model. Previous authors using this method have assumed
the estimated parameters and measured modal properties to be statistically
independent. This will generally be the case during the first iteration of an
updating scheme but will not be the case subsequently. The minimum
variance algorithm uses the full finite element model.

Chapter 6 applies modal truncation, the chosen method to reduce the
theoretical model order, to the general dynamic finite element model. An
example is given to demonstrate the effect of reducing the model order on the
frequency response functions.

Chapter 7 details the methods used to update the parameters of a structure
using the reduced order model of Chapter 6. To highlight some of the problems
and to introduce the updating algorithms, a simple one dof simulated example
is demonstrated first. The updating algorithms are then outlined for the
general multi dof system and evaluated using a simulated example.

Chapter 8 tries these new algorithms on an experimental structure, namely ‘
an H frame with bolted joints, and assesses the results.

16




Chapter 9 concludes the thesis by discussing the results in the context of

possible practical application and considers the potential for further work in
this area. |

1.3  So What's New

The question which arises with any thesis is ‘where is the original work?". This
section is designed to highlight those areas that are original. A number of
journal and conference papers have been written on the work contained in this
thesis and provides some justification of its originality.

Chapter 5 gives a corrected minimum variance estimator for updating
procedures using the modal model. The correction is important because this
technique, in its incorrect form neglecting the correlation between the
estimated parameters and measured modal properties, is one of the most
popular updating algorithms. Friswell (1989a) reports this work.

Previous methods for generating reduced order models of a finite element
model have not explicitly retained the unknown parameters. Chapter 6
considers this problem in detail and forms the major part of the paper by
Friswell (1990). The main thrust of the thesis is to couple the reduced order
models to a suitable parameter estimation algorithm. Previous authors have
updated condensed models of a structure. Chapter 7 considers this problem
using simulated data and a paper on this research has been published
(Friswell and Penny 1990c). Friswell (1989b) has also presented the state
estimation and equation error algorithm results alone. The extension of
Goyder's algorithm to a general multi degree of freedom method is also new.
The author's experience of the methods on a simple experimental structure is
outlined in Chapter 8 and was presented at IMAC 1990 (Friswell and Penny,
1990a). ' :
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2.1 Chapter Summary

This chapter briefly reviews the dynamic modelling and analysis of structures.
The treatment involves a rapid transit through some aspects of structural
analysis and assumes the reader is already familiar with the techniques
outlined. Since this chapter is not written for beginners in vibration analysis
many textbooks are referenced which may be used to review the subject in
more detail. The main purpose of this chapter is to introduce the notation
used in the thesis, which is by no means standard throughout the literature.

2.2 Finite Element Modelling of Structures

The finite element method will now be considered briefly. Richards (1977),
Irons and Shrive (1983), Meirovitch (1986), Przemieniecki (1968), Zienkiewicz
(1977) and Zienkiewicz and Taylor (1989) review the subject in detail. A linear
model is assumed throughout, that is the stress and strain in a system are
linearly related. The purpose of a finite element model of a continuum is to
replace the distributed or infinite dimensional system described by partial
differential equations with a finite dimensional mode! described by ordinary
differential equations. The modelling of a system using finite elements requires
three stages which will now be outlined.

Finite Element Mesh Generation. The finite element method requires simple
displacement models to be defined over a large number of small regions or
elements. Thus the first task is to generate the element mesh, or
equivalently to split the structure in regions of simple geometry. The form of
the elements depends on whether the structure can be modelled as an
assemblage of one dimensional or line elements, two dimensional elements
(plane stress or strain) or general three dimensional elements. Bodies with
axial symmetry can use ring type elements. Beam bending or beam extension
may be approximated by using line elements and these elements are used for
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the examples in this thesis. Thus beams are merely split into segments which
need not be of constant length. The quality of the results from a finite
element analysis is highly dependent on the form of the mesh that is used.

Displacement Model Selection. The unknown generalised coordinates for the
system ¢, , qz, .., g, usually correspond to the nodal displacements of the

discretised system. The assumed displacement within each element must be
written in terms of the generalised coordinates. Polynomial interpolating
functions are particularly convenient for this purpose. Often the same form of
the displacement model is used for all the elements in a mode! of a structure,
although this is not necessary. In practice the choice of functions for the
displacement model can be complex and sometimes requires the definition of
additional nodes, either external nodes on boundaries between elements or
internal nodes which are only associated with one element. The functions
must be compatible between elements so the displacement and enough of its
derivatives are continuous across element boundaries.

Equations of Motion Formulation. The formulation of the equations of motions
reduces to computing the system mass matrix M, , stiffness matrix K, and

generalised force vector Q. Note that n is the number of degrees of
freedom of the modelled structure. The equations of motion are then

M,q + K.q = Q (2.1)

where q is a vector of generalised coordinates. The required matrices and
generalised force are usually derived by adding together the kinetic energy,
the potential energy and the potential of thelapplied loads for all the individual
elements.

In subsequent sections and chapters the basic equation 2.1 may be written in

a slightly different form. The generalised co-ordinate vector q will often be
written and called a state vector x. The generalised force will usually consist
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of a low number of point loads generated by shakers. In this case Q will be
written as B, u where B, is a matrix allocating the shaker input to the

correct generalised co-ordinates (or states) and u is the input force
excitation. This terminology is more in line with control engineering literature.

Damping has not been mentioned throughout this resumé of finite element
analysis. In general damping is difficult to incorporate into a finite element
analysis and is rarely undertaken in practice. Damping arises from two main
sources. The material of which the structure is made may absorb energy and

so give rise to damping that is distributed throughout the structure. This type
of damping is sometimes modelled by adding a term C,, q into the equations

of motion, equation 2.1, and is then called viscous damping. Experience with
practical structures has shown that a more accurate model is given if the
matrix C, is frequency dependent. In the frequency domain the resulting

model, called hysteretic damping, has a complex stiffness matrix. This model
of the damping is really only valid for harmonic excitation. The alternative, and
often the dominant, form of damping comes from joints in the structure.
These are discrete energy absorbers but are usually highly nonlinear and are
difficult to model accurately. If the damping is low then a very rough
approximation, called proportional viscous damping, is that the damping is
given by

C, = aM, + BK, (2.2)

for some constants o and B . For proportional hysteretic damping the
imaginary part of the stiffness matrix is assumed to be of the same form as
equation 2.2 , where K, is the real part of the stiffness matrix. Proportional
damping is really only a convenient analytical fudge to include some damping
into @ model without a huge increase in computation, see section 2.4 .
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2.3 The Nature of Unknown Parameters

Itis very difficult to produce general guidelines on the choice of parameters to
update. Suppose a structure has been manufactured from a homogeneous,
isotropic material. Then the only possible unknown parameters are the
material properties and the structure geometry. Because the finite element
model cannot, in general, exactly reproduce the structure geometry there will
be, for a particular form of finite element mesh, a set of dimensions that
maximise the correlation of the model and structure characteristics. These
dimensions may be difficult to estimate theoretically. It is unnecessary and
unwise to try to identify the whole mass and stiffness matrices. Often it is
impractical to include every detail of a structure's geometry. For example, a
small hole may not be included. 'Average’ values for the mass and stiffness
coefficients are estimated for the element containing the hole.

A different form of the unknown parameters arises from applications involving
fault detection. Assuming an adequate model exists for the perfect structure
the task is to locate local faults, usually indicated by a local reduction in
stiffness. All the parameters may be updated simultaneously and areas of
large change highlighted. Alternatively sets of local parameters may be
updated sequentially and the best agreement between mode! and measured
characteristics chosen.

Finally proportional damping may be assumed with the constants of
proportionality identified from the experimental data. Whatever parameters
are chosen to be updated care must be taken that the parameter estimation
problem does not become ill-conditioned. The probability of this happening
increases as the number of unknown parameters increases. Physically
problems will occur if two distinct sets of parameters give rise to the same
change in measured characteristics. A simple method to overcome this
problem, used later in the thesis, is to choose the set of parameters closest
to the original estimates from the finite element analysis.
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2.4 Structural Vibration Analysis

The general linear equations of motion for structure, obtained by extending
equation 2.1 to include damping, are

Mg + Coq + K,q = Q = B, u (2.3)

where M, is the mass matrix, C,, is the viscous damping matrix and K, is

the stiffness matrix, which is complex if hysteretic damping is included. These
matrices are symmetric and positive semi-definite. q is the n dimensional
vector of generalised displacements. Q s the vector of generalised forces
which usually arises from predetermined shaker inputs or similar. Hence Q
may be written as B, u where B, is a matrix allocating the force input to

the relevant degrees of freedom and u is the input force vector which has
the same dimension as the number of force inputs. M, , C, and K, are

usually symmetric matrices.

Suppose the structure is undamped. Then the ith eigenvalue W (minus natural

frequency squared) and the corresponding eigenvector V, (mode shape) are

the solution of

Mopi+ Koy = 0 (2.4)

where W, and v, are both real ( i, is also negative or zero). If K and p,

are distinct then it may be shown that

T T
v, Myy, =0 v Kyy, =0 ' (2.5)

A transformation matrix obtained by placing these eigenvectors into its
columns will uncouple the equations of motion given by equation 2.3. If

23




proportional damping is assumed then this transformation matrix will also
uncouple the resulting equations of motion. This method will not be expanded
further as it is particular case of the general damping analysis which is used
to generate the algorithms in this thesis. Meirovitch (1986) and Ewins(1984)
give further details.

For general damping the analysis proceeds by changing the n second order
equations given by equation 2.3 into the -2n first order equations

Mx+Kx = Bu (2.6)

Usually not all the generalised displacements will be measured. Thus the
measured output vector y has dimension m and is given by

y = Cx (2.7)

for some matrix C. Note that the matrix C is NOT damping. The 2n

eigenvalues A, and right hand eigenvectors ¢. of equation 2.6 are the

solutions of

(Ma+K)o =0 (2.8)

Without hysteretic damping A, and ¢, occur in complex conjugate pairs. In
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any event the left and right hand eigenvectors are equal. If A; and A, are

distinct then it may be shown that

T T
o; M ¢ = 0 o Ko =0 : (2.9)

Since any multiple of the eigenvectors given by equation 2.8 is also an
eigenvector, the eigenvectors may be chosen so that

¢iT Mo =1 . (2.10)
Then ;
o Koy =-4 : (2.11)

The equations of motion equation 2.6 can now be transformed using the
transformation

X = ®z (2.12)
where @ = [¢,, 0, ,..,0, ]

Premultiplying the transformed equation by the transpose of @ gives the
uncoupled equations of motion

(2.13)

where A = -diag( Ay A, b Aoy )

On taking the Fourier Transform of equation 2.13 and after some
rearrangement the frequency response function (or receptance) defining the
input to output characteristics of the system may be obtained as
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Flo) - m(m) .y Censd 6 8 L e

Each receptance, linking a single input to a single output, is a complex

function of the frequency . Two methods of presentation are generally used

to plot graphs of the frequency response functions. The most popular, called
the Bode plot, requires two graphs: the modulus of the FRF vs frequency and
the phase of the FRF vs frequency. The modulus and/or frequency axes are
often logarithmic to allow for the wide range of values encountered in practice.
The second, called the Nyquist plot, shows the FRF on an Argand plane. The
frequency information, if required, must be marked on the plot at individual
points.

2.5 Computational Aspects of Structural Vibration

Some computational aspects of structural vibration will now be described.
Generally a finite element model is used to compute estimates of the
eigenvalues and eigenvectors of a structure. If required, these may then be
used to calculate the frequency response functions given by equation 2.14.
For the sensitivity analysis used by many model updating algorithms the
derivatives of the eigenvalues and eigenvectors with respect to physical
parameters are also required.
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25.1 Computing Eigenvalues and Eigenvectors

The system eigenvalues and eigenvectors are given by equation 2.8 with the
eigenvector normalisation given by equation 2.10. Essentially computing the
eigensystem is a numerical analysis problem that has received much
aftention over many years. For a model with a large number of degrees of
freedom not all the eigenvalues will be computed. In any case only the lower
eigenvalues are likely to be close to those of the actual system. Wilkinson
(1965), Jennings (1981) and Gourlay and Watson (1973) give more detail.

Transformation methods such as Givens, Householder, LR and QR methods
(Wilkinson, 1965) work well for most systems. All the eigenvalues and
eigenvectors are computed and so the amount of computation required for
these methods is proportional to n3, where n is the dimension of the matrices.
The other major problem with these methods is that they do not preserve the
sparseness that is inevitably present in the mass and stiffness matrices
(Jennings, 1981). Jacobi's method for real symmetric matrices (Wilkinson,
1965) is an older method that uses plane rotations to reduce the matrix to
diagonal form.

The alternative methods are based on iteration. Initial estimates for some of
the system eigenvalues and eigenvectors are updated using only
multiplication by the sparse matrices. Such methods include the power
method, simultaneous iteration and the Lanczos' method. Eigenvalues may
also be estimated using Sturm sequences with a bisection process (Jennings,
1981).

2.5.2 Computing Eigensystem Derivatives

The computation -of eigensystem derivatives has not received as much
prominence as eigensystem calculations and so will be summarised in more
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detail here. Probably the most straightforward method to calculate the
derivatives of the system eigenvalues and eigenvectors with respect to
parameters of the system model matrices is by perturbing the parameters
one at a time. The resulting perturbations of the eigensystem are then used
to numerically calculate the derivative. Of course a new eigensystem has to
be calculated for each parameter.

Fox and Kapoor [1968] outlined a method to compute the eigensystem
derivatives analytically. Consider the eigenproblem given by equation 2.8 and
assume that the eigenvalues and eigenvectors have been computed.

Differentiating equation 2.8 with respect to unknown parameter {6} gives

M IK d A,
Ay ——— + M — o, +
olef ' afeh,  afe),
(M xi+K)E_¢L - 0 2.15)
a{e

Premultiplying equation 2.15 by o7 gives, assuming the eigenvectors are

normalised as in equation 2.10,

d A, (DT Mo - d A, _
ofeh 7 ale)
T[ oM dK
- 0, A+ ——— |0 . (2.16)
(3<9}k a<e}k)

Equation 2.16 provides a very simple and convenient way of computing
eigenvalue derivatives. The derivatives of the eigenvectors are obtained by
realising that the eigenvectors form a basis for 2n dimensional Euclidian
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space. Thus any vector, including the eigenvector derivatives, may be written
as a linear combination of all the eigenvectors. Hence |

= > @i oy 2.17)

where the constants a;, are to be determined. If one or more eigenvalue is
repeated then a linearly independent set of eigenvectors may still be
generated. But the method is not able to calculate the derivatives of
eigenvectors associated with such eigenvalues. Premultiplying equation 2.15
by ¢,T, substituting the expression given in equation 2.17 gives, using

equations 2.9, 2.10 and 2.11,

.
Ay A AP

i

)q>i i=h . [2.18)
i

The term a; is found in a similar manner by differentiating equation 2.10
instead of equation 2.8 to give

28 5 = 0 (2.19)

Substituting the expression given by equation 2.17 into equation 2.19 yields,
on application of equations 2.9 and 2.10,

o . 2.20)

These expressions for the eigensystem derivatives are used in chapter 6 to
gain some insight into the quality of the proposed reduced order models.
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Another algebraic method for calculating the eigenvector derivatives is also
contained in the paper by Fox and Kapoor (1968). Assuming that the
derivative of the eigenvalue has been calculated from equation 2.16 then
equations 2.15 and 2.19 represent 2n+1 equations in the 2n unknown
elements of the eigenvectors derivative. These equations may be assembled
into matrix form and solved using a pseudo inverse technique. Note that
equation 2.15 cannot be used alone to compute the eigenvector derivative

since MA. +K s singular. For systems with many degrees of freedom

computing the pseudo inverse is a lengthy computation. The resulting 2n
dimensional matrix to be inverted will also be fully populated even though the
original eigensystem matrices are sparse and the inversion may be poorly
conditioned. Nelson (1976) produced an algorithm which solved the equations
more efficiently. The derivative of the i th eigenvector is written as

d o,

= Vi + Ci 0 (2.21)

for some vector Vi and constant c;. By fixing one element of the vector
Vi the other elements may be found from equation 2.15, whilst maintaining

any sparseness that is present. The element chosen must be such that the

corresponding element in ¢, is relatively large. The constant ¢, is then

computed using equation 2.19.

The alternative method is based on an iterative method, originally proposed
by Rudisill and Chu (1975). The original paper and others extending the
method considered the standard eigenproblem, that is, M is the identity
matrix and K is an arbitrary matrix. Applied to the vibration problem gives
the following iteration scheme, derived from equation 2.15,
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where the superscript h denotes the h th iterate, and the eigenvalue
derivative is given by equation 2.16. If the eigenvalues are arranged in
descending absolute value then this scheme only converges for i = 1, the
dominate eigenvalue (Andrew, 1978). For subdominant eigenvalues a
modification analogous to the standard deflation process for the classical
eigenproblem was suggested by Rudisill and Chu (1975) and Andrew (1978).
Tan (1987) and Tan and Andrew (1989) have produced algorithms that are
similar but have increased computational efficiency.

2.6  Experimental Vibration Analysis Theory

Experimental Vibration Analysis can cover a vast range of techniques, for
example identifying nonlinearities or the investigation of the dynamics of
rotating machines. In the context of this thesis the aim of any experiment is
to obtain a frequency response function (FRF) between predetermined force
input positions and response locations for a given structure. The modal
parameters, natural frequencies, damping coefficients and mode shapes, are
then computed from these FRFs, although some algorithms use the time
series data directly. Snoeys et al. (1987) review most techniques in
Experimental Modal Analysis and also give a detailed evaluation of the
methods against numerous cost and quality criteria. Ewins (1984) and
Allemang et al. (1987) give more comprehensive details.
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2.6.1 Excitation Methods

In order to obtain a system response the structure must be excited in some
way. Excitation methods may be broadly split into three types: harmonic,.
random and transient. One of the oldest and certainly the most simple
method is stepped sine testing. Here the structure is excited with a
sinusiodally varying force. Assuming the structure is linear the response will be
sinusoidal at the excitation frequency. This method is extended by using a
sinusoid whose frequency varies slowly, or swept sine excitation. Friswell and
Penny (1990Db) consider the possibility of using more than one sinusoid at a
time.

The other available techniques tend to use broadband excitation and Fourier
Transforms, implemented as the FFT, to obtain the FRFs. Either pseudo
random or random vibration can be applied to the structure. Since the
measurement time is finite the calculation of the Fourier Transforms have
problems with leakage (see section 2.6.2). Recently new broadband signals
have been successfully used that have reduced leakage properties and
improved signal to noise ratios, for example burst random (Olsen, 1983)
obtained by combining random and transient signals. - - -

Transient excitation is easily implemented using a force impact or a step
relaxation, for example a large weight may be released from a concrete
bridge. The Fourier Transform of an impulse applied to a structure generally
shows a fairly constant power level for all frequencies up to a cut off
frequency which is dependent on the physical parameters of the excitation
hardware.

Recently multipoint excitation methods have been developed (Allemang ef al.,
1983, and Zaveri, 1984). With these methods the FRFs are calculated for
multiple, simultaneous force inputs. The result should be more consistent
data sets and a more uniform distribution of energy throughout the structure.
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2.6.2 Digital Signal Processing

Generally the time signals generated by the force and response transducers
are sampled by an analogue to digital converter (ADC) and then processed
digitally either by a computer or microprocessor system. To prevent aliasing,
before the signal is sampled it must be filtered to remove frequencies above
half the sampling frequency. The effect of aliasing is to make high frequencies
in the signal appear as a contribution to a lower frequency component in the
sampled signal (Ewins, 1984).

The problems in signal processing occur with the broadband signals that
require processing using a Fourier Transform (strictly speaking a Discrete
Fourier Transform or DFT). The major source of error is called leakage.
Leakage arises because the signals are only sampled for a finite period of
time. The DFT algorithms then assume, in effect, that the signal is periodic
for times outside the time interval sampled. The solution is to make the signal
periodic in the sampling window, for example by using burst random excitation.
If this is not possible then the partial solution is to apply a window to the time
series data before the DFT is computed. Windows are functions that are zero
where the signal is non-zero at the ends of the sampling interval. The time
signal is weighted by the window and the window is designed to influence the
resulting DFT as little as possible. Leakage usually causes the damping in a
structure to be overestimated.

What processing is required to calculated the FRFs of a structure from the
time series data? The easiest method would be to take the DFT of both force
input and response and then their ratio, in the case of only one input, will be
the required FRF. Formally the FRFs may be computed using Auto and Cross
Spectral Densities. The Cross Spectral Density between time series u(t)

and y(t), Sy,(w), is defined as the Fourier Transform of the Cross

Correlation Function R,(t) given by
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Ru(®) = E[ y(t)u(t+r) ] (2.23)

where E[ ] denotes expected value. The Auto Spectral Densities, S, ()

and S,,(w), are defined as the Fourier Transforms of the corresponding

Autocorrelation Functions. It may be shown that the FRF between input u
and output y may be written in two ways, designated H1 and H2 as
follows

Syulw)

Hlw) - Szu(w)
o 2.24)

Syylo

Holw) = —————Sx(m)

These derivations of the FRF estimates are formally correct although more
efficient algorithms exist for their computation. The H1 estimate minimises
the effect of noise that occurs on the system output whereas the H2
estimate minimises the effect of noise that occurs on the system input.
Recently methods that take into account errors on both the system input
and output and minimise them in a total least squares sense, called the Hv
estimate, have been proposed (Vold et al., 1985).

2.6.3 Modal Model Extraction

In experimental vibration analysis the most important information is the
modal model, that is the natural frequencies, damping coefficients and mode
shapes. This information provides insight into the critical excitation
frequencies and usually the mechanisms that give rise to a particular mode of
vibration. Often the solution to rectify any inadequacies in the dynamic
response of a structure may be derived directly. For example an extra
stiffening bar may be used to increase a natural frequency out of a problem
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range. The experimental modal mode! has been used extensively to updéie
theoretical structural models, see Chapter 3.

Leuridan et al. (1988), Snoeys et al. (1987), Brown et al. (1979) and
Allemang et al. (1987) review parameter estimation methods in the context

of identifying a modal model. This section will only give a brief introduction to
the commonly used algorithms. Simple, single degree of freedom (SDOF)
methods, where each mode is assumed to be distinctly separated from the
others, sometimes provides meaningful results in elementary cases. Almost
all modern algorithms are muttiple degree of freedom (MDOF) methods which
are well suited to closely spaced modes (Brown et al., 1979). There are two
other classification criteria concerned with these estimation methods. First
the algorithm may be implemented using data in either the frequency or time
domain and this determines the type of model derived. Time domain
algorithms requiring impulse response functions have become more popular
since efficient and fast DFT algorithms have allowed the impulse response to
be calculated from the frequency response function. Second the algorithm
may or may not identify a single ‘optimal’ set of global parameters, which are
the parameters that do not vary with forcing or response location, for
example natural frequency and damping.

The simplest SDOF method is the Peak and Mode Picking Method and is
mainly used for lightly damped systems. The natural frequency is estimated
by the frequency at which the amplitude of the FRF is maximum. The damping
is estimated using the frequencies at which the ratio of the amplitude of the
FRF relative to the peak amplitude is 1 / V2 (the half power points). The
mode shape is estimated using the relative magnitude and phase of the FRFs
at resonance. If the damping is negligible then the value of the maximum
amplitude of the FRFs is very difficult to estimate.

The Circle Fit Method is another SDOF method that gives more accurate
estimates of the modal parameters. The method is based on the fact that
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for a simple one DOF system Nyquist plots of particular frequency response
functions (the receptance for hysteretic damping) are circles. The natural
frequency is estimated from the point of maximum sweep rate around the
circle. Damping is estimated using points on the circle at frequencies above
and below resonance. The modal constant is obtained from the diameter of
the circle. The effect of other modes may be evaluated from the position
offset of the circle. The modal properties may also be computed by fitting
straight lines to the inverse of the receptance (Dobson, 1987).

For lightly damped systems Ewins and Gleeson (1982) proposed a MDOF
Least Squares Frequency Domain Method that uses natural frequencies
obtained by peak picking. Assuming negligible damping the FRF is a linear
function of the modal constants. These constants may be found using
sufficient points from the full FRF, by including mass and stiffness residuals
to allow for modes outside of the measurement range. If required damping
can be estimated from the peak value of the FRF modulus and the relevant
modal constant.

The Least Squares Complex Exponential Method is a MDOF time domain
technique which produces global estimates of the natural frequencies and
damping coefficients. The method works by curve fitting to the experimental
impulse response. Because sampled data is used, the exponentials in the
theoretical impulse response function are replaced by a power series. The end
result is that an autoregressive (AR) model must be fitted to the
experimental data. Statistical analysis of the input data can provide an
insight into the order of the AR model, and hence the number of modes,
required. The poles, or natural frequency and damping coefficients, are then
computed from this autoregressive model. The extension of this method to
allow for multiple force inputs is relatively straightforward but important
enough to be given a separate name, the Polyreference Method.

The Ibrahim Time Domain Technique is similar to the Least Squares Complex
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Exponential Method but uses sampled data from free decay responses. The
method constructs a matrix whose eigenvalues and eigenvectors are related
to the measured system's natural frequencies, damping coefficients and
mode shapes.

The Orthogonal Polynomial Method is a global, frequency domain method
which can account for modes outside the measurement range explicitly by
including mass and stiffness residuals. The method assumes that the
system's frequency response function may be written as a ratio of two

polynomials in ( jw) . Orthogonal polynomials are usually used to produce a
well conditioned problem. After rearranging the equations the coefficients of

these polynomials may be found by a linear least squares algorithm. The
method may be extended to data from multiple input experiments.

The Time Domain Direct Parameter Identification Method is similar to the
Least Squares Complex Exponential Method but estimates the parameters
of an autoregressive moving average model (ARMA) rather than an
autoregressive model. If fact both the Least Squares Complex Exponential
Method and the lbrahim Time Domain Technique are special cases of these
direct parameter identification techniques. The method is described, along
with the corresponding Z-Transform, by Mickleborough and Pi (1989).

More recently the Eigensystem Realisation Algorithm has been suggested.
The method uses sampled time domain data to produce a representative
state space model of the measured system. The algorithm originated in
Control Theory and constructs the model via a block Hankel Matrix and
singular value decomposition. The method gives insight into to the model order
required from the singular values and the system's modal characteristics are
found from the state space model's eigensystem.
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2.7  Experimental Vibration Analysis in Practice

Section 2.6 outlined the theory of experimental vibration analysis. What
guidelines determine which method and equipment should be used for a given
experiment? In particular what method and equipment will be used for the
experimental work documented later in the thesis? This section tries to
address some general considerations. The description of the experimental
procedure adopted by the author is given in chapter 8. Ewins (1984) gives
more detail.

2.7.1 Choice of Method

The choice of method used to measure the frequency response functions of a
system is closely linked to the equipment available and the ultimate use of
the data. In principle any modal extraction routine may then be used,
although many of the global algorithms may have difficulties with inconsistent
measured data. These inconsistencies mainly occur when the response of the
system is measured using only one accelerometer that is repeatedly moved.
This causes slight changes in the mass and stiffness distribution of the
structure that produces changes in its natural frequencies. The solution is to
use many accelerometers and measure the response at all the required
points simultaneously.

The first decision to be taken is the choice of excitation type. Suppose that
only the natural frequencies of a structure were required. The impact
excitation using an instrumented hammer or similar would be ideal. The
method is quick to set up and can provide good estimates of natural
frequencies. Problems occur in ensuring that each impact is essentially the
same as previous ones, in avoiding multiple impacts or ‘hammer bounce' and
in not entering nonlinear regimes by overloading the structure. If spatial
information, such as mode shapes, is required then the decision is not so
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clear. Generally the processing involved in stepped sine testing is negligible and
so the length of a vibration test is independent of the number of
accelerometers. Broadband excitation signals require far more processing to
obtain the FRFs of a structure. With many accelerometer signals the
processing time may negate the speed advantage inherent in exciting the
structure at many frequencies simultaneously.

2.7.2 Equipment Used

The equipment used in a vibration test will ultimately depend on the excitation
signal type chosen. Also there is a trend towards measuring the response at
all locations required simultaneously. Thus computer workstations with
associated ADCs and DACs have become more popular. All the excitation
signal generation and signal processing functions, such as correlations and
FFTs, may be performed in software albeit at the expense of longer
computational times. The alternative is to have a dedicated analyser that
performs the signal generating and processing functions which is usually
interfaced to a controlling computer for further data analysis.

Transducers for measuring force and acceleration based on piezoelectric
material are readily available, are reliable and have good dynamic
characteristics. Transducers exist that measure displacement or velocity but
they tend to be more expensive and more difficult to operate. Electrodynamic
exciters that can convert excitation signals generated as voltages into a
force input to the structure are also readily available. Impact excitation may
be applied using a hammer that contains a force transducer just behind the
impact tip.

Before measurements are taken the transducers used should be calibrated.
Both force and acceleration transducers may be calibrated absolutely,
usually using an expensive and highly accurate standard transducer. If only
the frequency response function of a structure is required then the force
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transducer and accelerometer may be calibrated together very simply. A
Tigid' mass is suspended and then excited horizontally. The system is forced,
for example using an exciter, and the force input to the mass and its resulting
acceleration are measured using the transducers requiring calibration, see
figure 2.1. Any of the force excitation signals may be used. Assuming the
mass is rigid then the mass will satisfy Newton's second law of motion and
the frequency response function will be constant and equal to the inverse of
the mass of the moving part of the system. This mass can be measured
accurately and compared to the value obtained from the FRF to calibrate the
transducer pair.

A

Suspension

/ wires \

Exciter {1 Mass

NANMMNNNNRN

Push rod Accelerometer

Force Transducer

Figure 2.1 Calibration of Force / Acceleration Transducer Combination
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3.1 Chapter Summary

This chapter reviews existing methods used to estimate or update the
parameters of a finite element model. Methods to assess the agreement
between the experimental and theoretical model are outlined first. The
algorithms are then grouped and reviewed according to the type of
experimental data they use, for example time, frequency or modal domain
data. The methods using modal data, that is natural frequencies and mode
shapes, are further grouped into direct (or non iterative) and iterative
methods.

Although the application of system identification and parameter estimation
to structural dynamics problems is relatively new there is a huge number of
papers on the subject. With at least one major conference a year and three
or four journals mainly devoted to modal analysis the problem is becoming
even worse. Natke (1988) mentions this problem in his paper. Although the
number of papers is large most of the algorithms are based on a small
number of basic ideas. These ideas will be reviewed thoroughly in this chapter
but it is almost impossible and also undesirable to consider every paper
written on structural parameter estimation.

3.2 Correlation Between the Theoretical and Experimental Models

Model updating attempts to improve a finite element model by adjusting
parameters of the model. Thus a method is required to assess how good the
correlation is between the original model and the experimental results, and to
measure the subsequent improvement (hopefully!) in this correlation. Also in
methods using the experimental modal model the modes in the theoretical
model and experimental data must correspond. Thus, for example, the first
torsion mOde in the theoretical model must correspond to the first torsion
mode in the experimental data.

42



The simplest check is to compare the resonant frequencies predicted from
theory and experiment, provided the modes correspond. Two main methods
exist to check the consistency of the mode shape vectors: the Orthogonality
Check and the Modal Assurance Criterion (MAC).

The Orthogonality Check uses the fact that the eigenvectors of an
undamped, or proportionally damped, system are orthogonal when weighted
by either the mass or stiffness matrices. The condition that the system be
undamped or proportionally damped is not strictly necessary but implies that
the eigenvectors are real. The interpretation of complex mode shapes is not
straightforward and the visualisation of the motion of the system difficult.
The orthogonality checks may be extended to the general damping case
although they become more involved (see for example Heylen, 1987). The
basis of the Mass Orthogonality Check is to compute the matrix

o, M, O 3.1

where @ _ is a matrix containing the measured mode shapes and M, is

the theoretical mass matrix for the system. The corresponding Stiffness
Orthogonality Check uses the matrix

]
o K, O 3.2

where K, s the theoretical stiffness matrix for the system. The measured

modes shapes may be scaled so that the diagonal terms in matrix 3.1 are
unity. If the measured mode shapes correspond exactly to the theoretical
mode shapes then the off diagonal terms in this matrix are zero. Values
above 0.1 for these terms are generally regarded as showing an inadequate
correlation between theory and experiment. Similarly for the Stiffness
Orthogonality Check.

The basis of the Modal Assurance Criterion is that if two vectors are
describing the same mode shape then they should be proportional. A
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constant of proportionality, the Modal Scale Factor (MSF) may be calculated
together with a correlation coefficient, the Modal Assurance Criterion,

(Allemang and Brown, 1982). If a measured mode shape ¢, and an

analytical mode shape ¢, are given then the Modal Scale Factor and the

Modal Assurance Criterion are

MSF - 2" 'm 3.3

MAC = (3.4)

T T
0 Wo, 0n W o,

where W is a positive semi-definite weighting matrix. This weighting matrix
could be, for example, the analytical mass or stiffness matrix but for
simplicity is often chosen to be the identity matrix. Remember that the
eigenvectors of any model are only orthogonal when weighted by the
corresponding mass or stiffness matrices. Therefore even if the analytical
and experimental mode shapes were identical the off diagonal terms in the
MAC matrix would not necessarily be zero. The MAC values range from zero
indicating no correlation between the vectors, to unity which indicates that
the vectors are proportional.

In the preceding discussion two problems have been ignored. The major
problem is that the number of degrees of freedom in the theoretical and
experimental models are different. That is, the number of nodes in the finite
element model will in general be far greater than the number of measurement
locations. In any case no satisfactory transducer exists to measure the
rotational degrees of freedom. This problem is overcome by either the
extension of the measured mode shape vectors or the reduction of the finite
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element model to correspond with the measurement locations. Several
methods exist to extend the mode shape vector including geometric
interpolation, the modal scale factor principle, the modal co-ordinate method
and the static and dynamic equilibrium methods (Heylen, 1987). Model
reduction will be reviewed more fully in the Chapter 4. The most popular
methods in this particular application are static condensation techniques, for
example Guyan reduction. Since these reductions are usually only
approximate care must be exercised in the interpretation of the orthogonality
matrices (Chu et al., 1989). Of course the only reason that the difference in
the number of degrees of freedom is a problem is the use of analytical mass
and stiffness matrices in the orthogonality checks. Hence the popularity of
the unweighted Modal Assurance Criterion. A subsidiary problem is that the
finite element model may not contain nodes at the measurement locations.
The second problem is that the number of modes in the experimental and
analytical models may differ. This is not too great a problem since once the
modes are paired any modes left over are ignored.

To demonstrate the idea of Orthogonality Checks and the Modal Assurance
Criterion consider a theoretical system whose reduced mass and stiffness
matrices are

2 0 0 0 0
0 1 0 0 0
M= 0 0 1 0 0
0 0 0 2 0
00 0 0 3
(3.5
20 -5 -1 0 0
-5 15 -3 -4 0
K= -1 -3 5 -3 -1
0 -4 -3 40 -5
0 0 -1 -5 25
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All mass terms are in kilograms and all stiffness terms are in
Newtons/metre. Suppose that the ‘measured' mode shapes are in fact from
a simulated system with the same mass matrix but with the stiffness matrix

16
-5
-1

-5
15
-3
-4

0

-1 0
-3 -4
5 -3
-3 40
-1 -5

0
0
-1
-5
29

-

(3.6)

(Notice that only the first and fifth diagonal terms have changed). The
analytical natural frequencies are 1.75, 2.85, 3.01, 4.04 and 4.66 rad/s. The
'measured’ natural frequencies are 1.70, 2.73, 3.08, 4.01 and 4.66 rad/s,
which are close in magnitude to the analytical frequencies. Since the mass
matrix in the analytical and simulated systems are identical, the mass
orthogonality matrix 3.1 is the identity matrix. The stiffness orthogonality

matrix is

1.000
0.123

- 0.020
- 0.031

0.013

0.123
1.000
0.039

- 0.049

0.011

-0.020
0.039
1.000
0.007
0.016

- 0.031
- 0.049
0.007
1.000
-0.005

- 0.005

g

0.013
0.011
0.016

1.000

Although the (1,2) term is a little high overall the check is reasonably
satisfactory. Now consider the MAC matrix which is

MAC =
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0.993 0.071 0.032 0.001 0.013
0.036 0.107 0.769 0.005 0.010
0011 0.905 0.170 0.089 0.009
0.001  0.018 0.007 0.995 0.045
0.013 0.003 0.005 0.062 0.999




The first, fourth and fifth modes correlate well with MAC values above 0.99 .
The second and third mode have interchanged between the analytical and
experimental models. Also, because of their close natural frequencies, there is
some correlation between the second and third modes. This example shows
the danger of only using Orthogonality Checks which cannot highlight any
difference in the ordering of the modes between the analytical and
experimental data. The MAC will therefore be used when necessary in this
thesis.

3.3  Direct Model Updating using Modal Information

The methods that will be reviewed in this section update parameters using
non-iterative algorithms. The methods generally minimise parameter
deviations from analytical estimates under certain constraints. These
constraints may be the modal form of the equations of motion (equations 2.4
or 2.8), the orthogonality conditions (equations 2.9 to 2.11) or other
equations linear in the parameters, for example the total mass may be given.
The mass and stiffness matrices must be linear functions of the unknown
parameters. Then the constraint equations are also linear functions of the
unknown parameters. The main methods will be considered in 3 groups;
pseudo inverse, inverse orthogonality and Lagrange multiplier methods.

A number of authors have used various implementations of the pseudo
inverse method. The constraint equations are assembled into a set of linear
simultaneous equations. Thus

AO = b . 37

where A contains the coefficients of the unknown masses and stiffnesses.
For example, if the orthogonality conditions are used then A will have
elements incorporating products of the elements of the mode shape vectors.
b contains terms in the known masses and stiffnesses and the right hand
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sides of the orthogonality conditions. Different authors use different sets of
equations to generate equation 3.7. Berman and Flannelly (1971) used the
mass orthogonality and total mass only. Tlusty (1976) and Tlusty and Ismail
(1980) used all the equations available.

The method of solution of equation 3.7 depends on whether it is under or over
determined. Thus if there are too many equations there is no solution to the
problem. A pseudo inverse solution will produce a set of parameters that
satisfy the equations as close as possible in a least squares sense. If there
are too few equations there are an infinite number of sets of parameters
would reproduce the measured data. The parameter values closest to the
theoretical ones should be chosen by changing equation 3.7 to

A(6-6,) =b-Asp (3.8)

wrere ©, is the theoretical parameter estimates. The pseudo inverse

solution of equation 3.8 then gives the solution required. The parameters may
also be weighted to reflect confidence in the theoretical parameter values
(see for example Berman and Flannelly, 1971). Nalitolela et al. (1990)
considers adding mass or stiffness to a system to increase the number of
equations available.

The second group are inverse orthogonality methods, where only the
orthogonality conditions, equations 2.9 to 2.11, are used. Assuming that all

the modes are measured then @ , the matrix containing the eigenvectors, is

square and

B . T

. -1
M =& @ K=& A® (3.9)

where A is the diagonal matrix of eigenvalues. In general not all the
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eigenvectors are measured and so ® cannot be inverted. This difficulty is
overcome in one of three ways: reduce the mass and stiffness matrices to
the number of measured modes, use the flexibility matrix rather than the
stiffness matrix or increase the number of eigenvectors. The number of
elements in the mode shape vectors may be reduced to obtain a square

matrix @ that may be inverted although interpreting the resulting mass and

stiffness matrices would be very difficult. The flexibility matrix is given by the
inverse of the stiffness matrix, that is

K' = ® A @ (3.10)

The flexibility matrix may be constructed when with a low number of
measured modes but is singular and cannot be inverted to produce the
stiffness matrix. Gravitz (1958) and Ross (1971) considered this approach in
more detail. The final option is to define additional vectors to make the
eigenvector matrix square. These may be the high frequency eigenvectors
from the analytic model (Heylen, 1982) or they may be obtained from energy
considerations (Ross, 1971).

The final group of techniques are the Lagrange multiplier methods. These
techniques minimise the difference between the updated and analytical
parameter estimates with constraints based on equation 3.7. The
constraints are incorporated into the problem using the Lagrange multiplier
technique. For example, to obtain an updated stiffness matrix the following
matrix norm is minimised

g

a

) (3.11)

M,° (K- Kg) M

where M, and K, are the analytical mass and stiffness matrices (Baruch
and Bar ltzhack, 1978, Baruch, 1978 and 1979, Berman and Nagy, 1983).
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The constraints used by Berman and Nagy (1983) were the stiffness
orthogonality condition, the equations of motion and the symmetry of the
stiffness matrix. The mass orthogonality condition was used to optimise the
mass matrix prior to the optimisation of the stiffness matrix producing an
updated matrix M, . The updated stiffness matrix is

.
Ki = K + LA+A ) (3.12)

T T T
where A = 1/ MUCD(cb Kad>+A)(I) M, - K, 20 M,

Equation 3.12 is a sum of simple matrix products and the square root of the
mass matrix that appears in the function to be minimised, equation 3.11,
does not have to be computed. Caesar (1986) considers a range of objective
functions and constraints and compares them using a simulated example.
Brown (1988) uses these techniques to locate regions of modelling error.

The direct methods of parameter identification suffer from a number of
disadvantages. Apart from the pseudo inverse method, these techniques
derive condensed models which consist of full mass and stiffness matrices
whose elements have little physical significance. All the techniques produce a
model which exactly reproduces the mode shapes although in practice they
cannot be measured accurately. The advantage of these methods is their
relatively low computational requirement.

3.4 lterative Model Updating using Modal Information

The iterative methods are, in some ways, similar to the direct methods but
generate the equations in the parameters using a Taylor series expansion for
. the eigem/’alues and eigenvectors. For example, the first order Taylor series

expansion of the i th eigenvalue A, in the parameters is
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—r J{e
where 6, is the current estimate of the unknown parameters 6, {6} is the

k th element of 6 and 866 = 6 - 0, - Thus the first order Taylor series

produces equation that are linear in the unknown parameters. The methods
are iterative because the Taylor series expansion is only a linear

approximation because the terms of order &62 are ignored. Linear

approximations to the eigenvectors may be produced in a similar way. The
eigenvalue and eigenvector derivatives are calculated using the methods of
section 2.5.2.

The parameters to be updated can now be chosen arbitrarily, for example
submatrices of the mass and stiffness matrices, element mass and
stiffness matrices or even geometric parameters such as element
dimensions. Convergence of the iterative techniques depends on a large
number of factors but some general observations can be made. Convergence
may be difficult if the theoretical and experimental results differ widely, if the
measurements are inaccurate or if the selected parameters do not allow
adequate representation of modelling error. The convergence properties of the
methods may be improved by giving some weight to the original theoretical
parameter estimates.

The pseudo inverse technique may be applied to solve the equations produced
by the Taylor series expansion. The principles, including the treatment of
analytically derived parameter estimates, are much the same as for the
direct updating methods. The differences are the source of the equations and
the necessity to iterate. Chen and Garba (1980) consider this technique in

more detail.
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One of the most popular techniques is the statistical or minimum variance
method initially proposed by Collins et al. (1974). Essentially the method is
very similar to a weighted pseudo inverse technique where the weights are
related to the parameter and measurement noise variances and change at
each iteration. The derivation by Collins et al. (1974) that has been used by
many authors since (for example Robinson, 1982) overlooks the correlation
between the current parameter estimates and the measured quantities.
Chapter 5 gives the correct equations and considers the minimum variance
updating procedure in more detail.

Heylen (1987) introduced a combined method which used the equations
derived from mass and stiffness orthogonality and also equations from the
Taylor series. These equations are combined into one set and solved using a
pseudo inverse technique.

Recently Janter et al. (1988) developed the QA model updating approach.
The QA stands for quality (Q) and acceptance (A). The method attempts to
make the analytical frequencies converge to the experimental frequencies, to
have the experimental mode shapes satisfy the mass and stiffness
orthogonality checks (say the off diagonal terms less than 10% of the
diagonal terms) and to have the parameters remain inside a user defined
range. The solution strategies include linear, quadratic and nonlinear
programming approaches. Liefooghe et al. (1988) give case studies using this

method.

The iterative methods suffer from one major disadvantage. Each iteration of
these schemes requires the solution of at least one eigenvalue problem. This
difficulty is eased because a reasonable estimate for the new eigendata is
available from the previous iteration. The main advantage of the methods is
the ability to choose physically meaningful parameters to update thereby
helping the engineering design process (Wei et al., 1988).
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3.5  Frequency Domain Estimation Methods

This section reviews the techniques available to update the physical
parameters of a finite element model using frequency response function data.
Most of the methods optimise the equation error or the output error of the

structure and these will now be defined using the notation of Chapter 2. The
equation error is given by

N

2

k=1

2

(Me) j, + Klo)) Fufwy) - B

(3.14)

where Fp, is the measured frequency response function and w, are the

measurement frequencies. Equation 3.14 requires that the response is
measured at every degree of freedom of the theoretical model. Essentially
the equation error is a measure of the difference between the predicted and
actual force input into the structure. The output error is given by

ki] Flo] - Falo ]2 . (3.15)

Thus the output error is a measure of the difference between the predicted
and actual frequency response functions of the structure. The main
disadvantage of the output error approach is that the objective function is
always a nonlinear function in the parameters, thus significantly increasing
the computational burden and risking divergence of the parameter estimates.
Both the equation and output error formulations may also be arranged to use
acceleration and force data directly instead of the frequency response
functions. Weighting matrices may be included to reflect the relative
uncertainty of the forces or FRFs. A number of methods will now be outlined
which use a range of error criterion and optimisation techniques.

Mottershead et al. (1987 and 1988) minimise the equation error using a filter
based on the recursive algorithm of Detchmendy and Sridhar (1966). The
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method, which is very similar to a recursive least squares algorithm, was
demonstrated using a portal frame rig and seemed to work reasonably: well.
Mottershead et al. (1988) uses increased a priori information about the
structure and assumes that the mass matrix is positive definite.

Fritzen (1986) minimises the equation error using least squares and
instrumental variable algorithms. Fritzen considers the inaccuracy of the
parameters derived from a least squares solution of the equation error is due
to bias on the parameters due noise on the observations. The instrumental
variable method premultiplies the difference in the predicted and actual force
levels by a matrix that is uncorrelated with the measurement noise. This
matrix is generated from an additional auxiliary model of the structure which
produces an undisturbed output of the system. The resulting parameter
estimates are then unbiased and the method seems to work very well. The
computational load is certainly higher than the equation error method.
Mottershead (1988) applies an instrumental variable method using the filter
suggested by Detchmendy and Sridhar (1966).

The simplest method to optimise the output error is to use a nonlinear
optimisation algorithm such as Gauss-Newton or quasilinearization (Kalaba
and Spingarn, 1982 or Cottin et al., 1984). These methods give good results
in the presence of noise but have the disadvantages of the computational
burden and convergence problems. Mottershead and Stanway (1986)
performed the nonlinear optimisation using a variant of the filter suggested by
Detchmendy and Sridhar (1966). The example given in the paper certainly
required lengthy computations but no convergence problems seem to have

arisen.

Natke (1988) and Santos and Arruda (1990) use a Bayesian or statistical
approach applied to the system output error to update the parar_neters. This
method requires the calculation of the sensitivity of the FRFs to the unknown
parameters. Hart and Martinez (1982) updated the unknown parameters
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using an extended Kalman Filter. To obtain the parameters of a system with

a moderate number of DOF this method is likely to require a large amount of
computation.

3.6  Time Domain Estimation Methods

Although time domain methods have been used in structural testing to obtain
modal models, for example the Ibrahim Time Domain Technique, they have
not been used extensively for updating physical structural parameters. The
major reason is undoubtedly the extensive computational burden required to
update models with many DOF. Time domain methods are used, and
preferred to frequency domain methods, in control engineering where the
model orders are relatively small. It is unlikely that any of the techniques will
be used to update the parameters of a full order finite element models.
Reducing the model order by the techniques outlined in Chapter 6 may
produce workable aigorithms. Roemer and Mook (1990) used a method based
on the Eigensystem Realisation Algorithm to obtain condensed mass,
stiffness and damping matrices.

55



Chapter 4

Review and Analysis of Reduced Order Models

4.1
4.2
4.3
4.4
4.5
4.6

Chapter Summary

Philosophy of Order Reduction

Padé Approximation and Continued Fractions
Static and Dynamic Condensation

Modal Truncation

Balanced Realisations and Hankel Norms

56

57
57
58
59
61
61



41  Chapter Summary

This chapter reviews the techniques available to reduce the order of the

model of a structure and assesses their suitability to form part of an
updating algorithm.

4.2 Philosophy of Order Reduction

Finite element models of realistic structures are generally high order and
produce a correspondingly high number of natural frequencies, damping
coefficients and mode shapes. The natural frequency of most of these modes
will be outside of the frequency range of interest in practical applications. For
example, when measurements of the structure are taken using a
computerised data acquisition system the resulting frequency response
functions (inertance, mobility or receptance) have an upper limit on the usable
frequency range determined by the sampling rate through the Nyquist
Frequency. Thus it should be possible to reduce the number of degrees of
freedom in the theoretical model for little loss of accuracy over the measured
frequency range. This assumes sufficient degrees of freedom are included to
provide at least the same number of modes, within the frequency range, in
the reduced model as were in the original model. The accuracy of the response
function of the reduced order model within the frequency range of interest will
be improved by including a reasonable number of modes outside the measured
frequency range. In many practical applications this would produce enormous

savings.

Methods of order reduction have been used extensively in control and filter
applications to reduce the cost of designing or implementing a high order
controller or filter. The application to structural dynamics is slightly different
for two reasons: generally control engineers deal with transfer functions, that
is input/output relations, and the models used in control engineering are of
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lower order. One requirement for reduced order models for structural
dynamics is that the natural frequencies should be invariant. When the full
model is predicting the system natural frequencies adequately, the reduced
order model should also predict the lower natural frequencies adequately.

4.3 Pade Approximation and Continued Fractions

The oldest and least computationally demanding algorithms are based on
Padé approximations or continued fractions, for example Shamash (1975). In
the continued fraction method the transfer function is written as a sum and
product of continued fractions. This sum is then truncated to produce the
reduced order model. From the Routh stability criterion, if the high order
system is stable then so is the low order system. The Padé approximation
basically truncates the power series expansion of the transfer function in
terms of the Laplace variable s. Shamash (1975) combined the continued
fraction and Padé approximation methods to guarantee the stability of the
reduced order model. These methods are not suitable to reduce the order of
structural models for two reasons: they use the input/output transfer
functions not the model matrices and they alter the eigenvalues, or natural
frequencies, of the system. The eigenvalues can usually be measured quite
accurately and the continued fraction method will change the lower
eigenvalues by a small but significant amount. For example, consider a
system with the following transfer function

1
S4+0.133+1082+S+9

G(s) =

where s is the Laplace variable. The eigenvalues of this system are -0.0562
+0.998 ] and 0.0062 % 3.000 j. Applying the reduction technique outlined by
Shamash (1975) gives the reduced transfer function
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9.132+s+9

The eigenvalues of the reduced system are -0.0549 % 0.993, which are quite
close but not equal to the lower eigenvalues of the full order system.

4.4  Static and Dynamic Condensation

Static condensation, for example Guyan (1965) and Irons (1965), has been
used to reduce the order of static structural problems. Equations that do not
include an external force term are used to eliminate spatial variables.
Generally these methods must be handled with extreme care as important
natural frequencies may be changed considerably, or omitted altogether
(Thomas 1982). Static condensation is most effective when the coordinates
that are eliminated are associated with low mass or high stiffness (Urgueira
et al., 1990). Consider, for example, Guyan reduction. The state or

co-ordinate vector x is split into two parts: the master co-ordinates x; to
be retained and the slave co-ordinates x, to be eliminated. To use the

Guyan reduction method there must not be any force applied to the slave
co-ordinates. The undamped equations of motion are then

My My x1 . Ky Ko | [x4} _ [Fy @.1)
My My | X Ky Koz | %2 0
where the M; and K; are submatrices of the full order mass and stiffness
matrices and F, is the force applied to the master co-ordinates. The slave

co-ordinates are eliminated using the transformation T derived from the
static equations which is given by
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X | '
o= y Xy = Tx4 . (4.2)
X2 - Koz Ky o

Using this transformation the reduced mass and stiffness matrices Mz and

Kg are given, with reference to the master co-ordinates, by

TI My M T Ky K
Mo =T My o Ko = T n K |y 43
i [ M 2 Mzz] R Ko Ka2 4-3)

Consider the simple mass spring system shown in figure 4.1. The first three
eigenvalues, or natural frequencies squared, for this system are 58.1, 503.0
and 1290.8 (rad/s)2. Suppose we eliminate the displacement of the sixth
mass by Guyan reduction. The first three eigenvalues of the reduced model
are 59.1, 559.3 and 1535.8 (rad/s)2. Alternatively eliminating the
displacement of the fifth mass gives eigenvalues of 58.6, 510.0 and 1299.2
(rad/s)2. The result for the first eigenvalue is quite good but even so, because
natural frequencies can be measured very accurately, Guyan reduction is not
suitable as a method of order reduction. Also notice that the choice of
master and slave co-ordinates makes a considerable difference to the quality
of the eigenvalues of the reduced model.

m = 1kg k = 1000 N/m i=1,..,6

Figure 4.1 Simple Discrete Mass and Spring System
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Paz (1984) suggested a method of dynamic condensation that is really
limited to solving the theoretical eigenproblem. The technique is iterative and
reduces the full order mass and stiffness matrices to reduced matrices using
a transformation based on the latest frequency estimate.

4.5 Modal Truncation

Modal truncation, or reducing the model order by retaining only the modes
with the lowest natural frequencies, is slightly more complex and
computationally more demanding. The state vector is transformed using the
matrix consisting of an incomplete set of eigenvectors. The transformation
and resulting equations are very similar to equations 2.12 and 2.13 which
used the complete set of eigenvectors. Modal truncation has the advantage
that the lower natural frequencies remain unchanged and providing that
enough modes are included the reduced model can approximate the full model
sufficiently accurately. This method shows the most promise and is developed
further in Chapter 6.

Modal truncation has been refined to allow a choice of master and slave
co-ordinates and is called the System Equivalent Reduction Expansion
Process (SEREP) (O'Callahan et al., 1989). The method has been used for a
wide variety of tasks including forced response calculations, estimation of
rotational dofs (O'Callahan et al., 1986) and orthogonality checks between
theoretical and experimental models.

4.6 Balanced Realisations and Hankel Norms
There has been considerable interest recently on methods based on balanced

realisations and the Hankel singular values of a system. Moore (1981)
proposed the balanced realisation approach based on the transformation
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given by Laub (1980). Glover (1984) develops optimal Hankel-norm
approximations for multivariable systems. These methods of reduction are
inappropriate for the identification of structural parameters for three
reasons. First, the large dimension of a finite element mode! makes the
computation times involved prohibitive. Second, the methods do not allow for
unknown parameters. The linearisation of the equations and the solution of a
series of balanced realisations or Hankel-norm approximations could extend
the methods at the expense of additional computation. Finally the lower
eigenvalues of the system are not guaranteed to remain unchanged although
for structural models with light damping the lower eigenvalues effectively
remain unchanged. Thus for practical structural systems, providing there are
more degrees of freedom than identifiable modes, the reduced order model
would accurately reproduce the full model in the frequency range of interest.
As an example consider the application of Moore's algorithm (Moore, 1981)
to the six DOF mass and spring system of figure 4.1. Reducing the number of
DOF in the system to five gives values for the first three eigenvalues of 58.1,
503.0 and 1292.2 (rad/s)2. These values closely reproduce those from the
full order model, which are 58.1, 503.0 and 1290.8 (rad/s)2. Notice that the
lower eigenvalues are most accurate.
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5.1  Chapter Summary

This chapter outlines a corrected statistical updating method. Currently one
of the most popular updating methods uses a minimum variance updating
algorithm. Unfortunately these algorithms assume that the experimental
data and the current parameter estimates are statistically independent. This
will be the case for the first updating iteration but not subsequently. The
method given in this Chapter converges faster and to more correct results
than the incorrect minimum variance algorithm. Natural frequencies are
always measured more accurately than mode shape data, and they are also
more sensitive to parameter changes. Thus natural frequencies are more
useful inputs to parameter updating algorithms.

5.2  Updating Procedure

The method for updating an analytical or prior model of a structure using the
minimum variance unbiased estimator based on the incomplete
measurement of the modal model is now described. Much of the detailed
derivation of the expressions given in this section is outlined in Appendix E.
The notation is summarised in Appendix A and Chapter 2. Damping is
assumed to be negligible although the method is easily extended to the
general or proponior)al damping cases.

The real, symmetric mass and stiffness matrices M, and K, dependin a

predetermined way on the vector of the p parameters to be updated .
Thus

K=K, (6) M, =M, (6) . (5.1)

K, and M, are the analytical matrices which define the assumed

dependence of the mass and stiffness matrices on the chosen unknown
parameters 0. lf x is the displacement of the structure at the n
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co-ordinates defined by the analytical model then the equation for free
vibration is |

M6l x + K,8lx = 0 (5.2)

In general a model of the structure contains many more degrees of freedom
than measured points. If y is the vector of the m ( < n ) measurements
predicted by the theoretical model then

y = Cx (5.3

for some (m,n) matrix C. Note that the matrix C is NOT damping. Usually
the measurements will be taken at selected points of the structure relating
to nodes of the model. Then C will mainly consist of zeros with 1s where
necessary to pick out the required position.

Suppose that the first r natural frequencies and/or modes are measured.
Let p, and vy for i=1,..,r denote these measurements where p,

denotes minus natural frequency squared. These will correspond to the
analytically derived frequencies and modes which are given by

(Mol6 i +Kolo)) v = 0 (5.4)
Vi = C Vi (5.5)

The natural frequencies and modes can be assembled into a measurement
vector z where .

T T T
z = (u1,v,,u2,...,p,,v,) (5.6)

and similarly for the measured quantities

.
(5.7)

T T T
Iy = Ket » Yot s Mm2 v+ o5 Bme s Vior
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Although this suggests that the number of eigenvalues and mode shapes
must be equal this is not necessary and z may contain any information
available. Usually mode shape data is used only to relate theoretical modes
to the experimental modes using, for example, the Modal Assurance Criterion
(Section 3.1). Mode shape data may be included in statistical updating
algorithms although their influence will be small because of the high variances
assigned to them. If more than one experiment were undertaken two or more
measurements of the same quantity could be included. Whatever data is
contained in the vector z;, the information in z must correspond with it.

z and z,, will not be equal due to measurement noise, which in this case

includes errors which cannot be accounted for within the analytical model
given by equations (5.1), (5.2) and (5.3). Thus

2, =2 + € (5.8)

where & is the measurement noise with

Fle] = 0 Var(e) = E[eT €] = V, (5.9)

where E[ ] denotes the expected value. Let 8, be the original estimate of

the unknown mass and stiffness parameters, for example from a finite

element analysis. Assume that the mean and covariance of 0, are

E[6,] = © Var(8,) = Vg (5.10)

The object is to produce an iterative method to provide successive, improved

estimates 6, of the parameters 6. The method proposed linearises the

system about the current parameter estimate and updates the parameter
estimate using this approximation.
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Let the current estimate be 6, with corresponding modal properties at the

measurement locations Z; and variance Vj. If the difference between the

Current estimate and the actual parameters is small then truncating the
Taylor expansion for z after the first order term gives

z=z,-+Hj(9-9j) (5.11)
where [H] = E{Z—}‘ﬁ evaluatedat 6 =0, (5.12)
e ale) ‘

and z(6) is given by equations (5.4) - (5.6).
The form of H; will be discussed later.

Although the initial parameter estimate and the measurement error are
independent, subsequent parameter estimates are not since the
measurements would have been used in the updating process. This has been
overlooked in previous papers (for example Collins et al., 1974) resulting in an
unbiased but not minimum variance estimator.

Let E[ 6 e ] =D andassume D, =0 (5.13)

Thus D; is the correlation matrix between the jth parameter estimate and

the measurement noise. Suppose that the updated parameter estimate 6.,

using the prior estimate 6, is
0 =6 +T(z-7) (5.14)

j+

where T is a matrix to be determined. Then (see Appendix E for details)
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Ee,] = E[6] = 6 (5.15)

And the covariance of the new parameter estimate is (Appendix E), using
equation 5.14,

Vi = Vi + (D Vi JT 4 T (D] -HV)) +TV,T (518

where
V, = HV,H - HD - D H +V, . (5.17)

Minimising the covariance of the new parameter estimate Vj,; with respect
to T gives
T -1
T = (vH-p)v;

and thus the minimum variance unbiased estimator 6’.+1 is

| T -1
O, = 6+ (VjHj 'DI)VZi (zZm-2;) . (5.18)

The parameter estimate/measurement noise correlation matrix, D;, and the

covariance of the parameter estimate, V;, may be updated by (Appendix E)

Dy = Dy - (ViHI-Dj) Vi (WD

D~ V) (5.19)

Vie = Vi - (ViH-D)] vy (VjHjT‘Dj)T (5-20)

The iterations defined by equations (5.19) and (5.20) are initiated using the
estimated analytical parameter variance V, and the definition in equation

(5.13), Dy =0. Due to the large number of equations required to derive the

estimation procedure the actual algorithm is somewhat obscured. Figure 5.1
shows a flow chart of the steps defined by the above equations and forms
the basis of the algorithm used in the examples which follow. Note that if the
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( START )

Read in measured output and set noise variance

Set parameter variance to analytical estimate

-

Set parameter estimate to initial value

Initialize correlation matrix to zero

—B>

Compute output vector and sensitivity
matrix at current parameter estimate

Compute Vzj using equation (5.17)

Update parameter estimate using equation (5.18)

Update correlation and variance matrices
using equations (5.19) and (5.20)

Have
the parameters
converged

No

Figuré 5.1 Flow Chart Showing the Parameter Updating
Procedure
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variance of the measurement noise is assumed to be zero (that is no
measurement noise) then D;=0 for all j. If, in addition, the number of
parameters is less than the number of measurements then V,; will be

singular. Thus the algorithm breaks down and the parameters are likely to
diverge. In this case a pseudo inverse solution based on the sensitivity
equation 5.11 could be used.

Before discussing practical aspects of the method the relationship between
the minimum variance estimator and the least squares estimator will be
explored. Least squares estimators are derived by minimising a cost function
which is a weighted sum of square terms. Let the cost function to be
minimised be

T T
Jo) = eW.e + (6-0] Wy (6-80) (5.21)

where W, and Wy are weighting matrices. Then using equations (5.8) and

(5.11) to express the measurement noise in terms of the parameters to be

estimated and minimising J(6) produces (see Appendix E) the least squares

estimate 9j+1 as

-1

=0, + |H WeH + Wo| H W, (22 (5.22)

0 J

j+1

which is the minimum variance unbiased estimator providing the weighting
matrices vary with each iteration and are given by (see Appendix E)

We = Vy (5.23)
T T,,-1 T
We(Vi”j D)) = - WV (HD;-V] (5.24)

Notice that Wy requires the calculation of a psuedo inverse, the form of

70



which will depend on the number of parameters to be updated compared to
the number of measurements.

5.3  Practical Considerations

One of the major steps in the algorithm is the calculation of the sensitivity
matrices H; which are defined by equation (5.12). This computation involves

the evaluation of the derivative of the system eigenvalues and mode shapes
given by equations (5.4) and (5.5) with respect to the individual parameters
evaluated at the current parameter estimates. Many algorithms to
calculate these derivatives have been given in the literature and are reviewed
in Section 2.5.2. The derivative of the mode shape is related to the derivative
of the eigenvector by

—9—-"—*— = C —a—\-v-’- : (5.25)
o (6)s o {6}

If the measurement vector can be partitioned into independent sub vectors
then the proposed method may be applied-successively-to-each sub vector
starting with the latest parameter estimate and parameter variance. Thus
the order of the matrix inversion in equations (5.18) - (5.20) can be reduced.
Any potential savings in computer time will depend on the eigensystem
extraction algorithm used. For example, suppose three natural frequencies of
a system are measured. The unknown parameters are updated using the
first natural frequency alone. On convergence the second natural frequency is
used to update the parameters, and so on. Thus the eigensystem extraction
algorithm must compute a single eigenvalue / eigenvector pair efficiently. If
eigenvalues and mode shapes are measured repeatedly, it will always be
quicker to average the measured data prior to input into the updating

algorithm.
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5.4 ASimple Numerical Example

A two degree of freedom example will be used to demonstrate the proposed
method. Although very simple, this example highlights the problems in

neglecting the correlation between the estimated parameters and the
measurement noise.

3
5
77777

Ky Kz ks
B .
X Xy
m; 0 ki + Kk k
M - i K _ 1 2 2
n [ 0 m2 } n [ - k2 k2 + k3

Figure 5.2 Example Two dof System

Figure 5.2 shows the system and the form of the mass and stiffness
matrices. Assume that the values of the masses m; and m, are known

accurately and are 4 kg and 9 kg respectively. The prior estimates of k;, k;

and ks are

k, = 130N/m  k, = 50N/m k3 = 220 N/m
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giving eigenvalues of 26.3 s2 and 48.7 s-2. Assume these estimates are
independent with variances of 10 (N/m)2. Hence

10 0 0
Vo = | 010 0
0 0 10

Only the eigenvalues of the system are measured. The assumed eigenvalue
measurements are independent with values of 25 s2 and 50 s2. The
measurement noise variances for the two eigenvalues are assumed to be
equal but will be changed to demonstrate different features. The eigenvalues
are derived from a system with spring constant values of

ky = 120N/m  k, = 60N/M ks = 210 N/m

The estimated parameters are unlikely to converge to these parameters
even with no measurement noise because the measured eigenvalues can be
produced by an infinite number of alternative spring constant values.

The convergence criterion is taken to be the maximum absolute percentage
change in the individual parameters from one iteration to the next. The initial
value of the parameter estimate/measurement noise correlation Dy is zero
as the analytical parameter estimate and the measurement noise are
assumed to be independent.

It the measurement noise variance is taken to be 0.1 s4 then on
convergence ( using a convergence criterion of 103 % ) the parameter vector
and parameter covariance matrix (after 5 iterations) are

129.8 72 -39 -14
B = 53.8 Vg = -3.9 2.9 0.46
213.6 -1.4 046 5.7
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with an output of
7. - 25.7
5 7 | 499

The correlation matrix between the new parameter estimate and the
measurement vector is

0.109 0.128
Dy = | 0.205 -0.089
-0.027 0.473

The parameter variances have been reduced as would be expected with more
information available. The measured eigenvalues yield most information about
ko and least about k;. This may be seen from the relative reductions in the

parameter variances and the relative magnitudes of the parameter changes.
The off diagonal terms in the covariance matrix have become quite large and
show that the parameter estimates are no longer independent of each other.
This is expected as the individual parameter updates have used the same
measured information. The updated parameters have also become correlated
with the measurements. Figure 5.3 shows the values of the parameters after
each of the 5 iterations and indicates that almost all of the change in the
parameters occurs during the first iteration. Similar plots for the elements of
the parameter variance, parameter/measurement correlation and the
estimated output vector would indicate that all the visible change occurs in
the first iteration.

If the correlation between the parameter estimates and the measurement
noise is set to zero at each iteration to simulate previous author's methods,
for example Collins et al. (1972 and 1974) and Thomas et al. (1986), then
the results are very different. With the same noise variance and convergence
criterion as the previous example the estimated parameter vector and
parameter covariance matrix (after 85 iterations) are
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55.5 Vgs = | -3.9 23 14
206.5 2.5 14 11

128.1 6.8 3.9 2.5
Ogs =

with an output of
25.0
85 = | 50.0

The most important feature shown in this example is that the output vector
computed from the estimated parameters, or eigenvalues in this case,
converges to the measured output vector even in the presence of
measurement noise. This phenomenon also occurred in the papers by Collins
et al. (1972) and Thomas et al. (1986) and effectively the method is
assuming a zero measurement noise variance. The estimation algorithm
should weight the prior model and the measurement to obtain a compromise
model which will not reproduce the measured output unless there is no
measurement noise. Thus methods neglecting the correlation between the
parameters and the measurements ultimately converge to an incorrect
solution. Using these methods the first iteration gives the same result as the
method described in this chapter and produces a reasonable parameter
estimate in this example.

The large difference in the number of iterations required show that the rate of
convergence is very much slower when the correlation between the
parameter estimates and measurement noise is neglected. This is highlighted
in figure 5.4 by plotting the changes in the values of the parameters as the
iteration progresses. The rate of convergence is extremely slow compared to
that plotted in figure 5.3 derived by the algorithm described in this chapter.
Figure 5.5 shows the convergence of elements of the parameter variance.

Returning to the algorithm proposed in this chapter, the effect on the output
produced by the estimated model, due to the relative magnitudes of the prior
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parameter estimate variance and the measurement noise variance can
easily be demonstrated. Figure 5.6 shows the effect of measurement noise
variance on the two eigenvalues produced by the updated model after the
algorithm has converged. As may be expected as the noise variance reduces
the model output becomes closer to the measured output. Figure 5.7 shows
the effect of measurement noise on the updated parameter values after the
algorithm has converged as a percentage of the assumed analytically derived
values. As expected if the measurement noise variance is large then the
parameters do not change significantly from their initial values. Figure 5.8
shows the effect of measurement noise variance on the variance of the
parameters updated by the algorithm. Although the variance of the updated
parameters broadly reduces as the measurements become more accurate
some discontinuities are obvious in the plots. These discontinuities, also visible
in figures 5.6 and 5.7, show that the estimation process is non-linear. This
may be compared with the Newton-Raphson method for minimising a
non-linear function. For different initial values of the independent variables the
Newton-Raphson algorithm may converge to different local minima. Since the
decision to converge to one local minima or another occurs at a saddle point a
discontinuity will appear in a graph of initial value of the independent variable
against the minimum value of the function. The algorithm in this chapter is
slightly different because the initial parameter value is constant. Changing
the assumed measurement noise variance effectively alters the function to
be minimised. Although the updated parameter values and variances are
most sensitive to the non-linear nature of the algorithm, discontinuities can
just be seen in the plots of the output vector and the
parameter/measurement noise correlation, figures 5.6 and 5.9 respectively.

5.5  PinJointed Frame Example

The method will now be used to update the stiffness parameters of a pin
jointed frame. The ten degree of freedom frame arrangement is shown in
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figure 5.10 and consists of ten beams. Each beam has a mass of 1 kg per
metre length and the horizontal and vertical beams are 1 m long. The
stiffness of the equivalent unit length beams, or equivalently the product of
the Young's Modulus and cross-sectional area of the beam EA;, will be

updated. The effective stiffness of an actual beam is found by dividing this
parameter by the beam's length. Initially all these parameters are equal and
have a value of 3x107 N with a standard deviation of 1x106 N. Only the
first two natural frequencies and mode shapes are measured. The output
vector consists of the vertical displacements and so the measurement
vector has twelve elements. Numerically the output vector based on the
initial parameters and the assumed measurement vector are

r4)

(580.8,0.179,0.381,0.151,0.367,0.539,

1931.3,0.447,0.004,0.396,0.066,-0.578 )T

z, = (576.0,0.186,0.388,0.172,0.377,0.506,
1931.9,0.420,-0.006,0.387,0.072,-0.580)T
Thus the measured natural frequencies are 576.0 and 1931.9 rad/s. These

correspond to computed natural frequencies based on the initial parameters
of 580.8 and 1931.3 rad/s.

Suppose that the natural frequency and mode shape co-ordinate
measurements are independent with standard deviations of 2 and 0.02 rad/s
respectively. The measured output vector was obtained by adding noise with
the above standard deviations to the output of a simulated system using the
following parameter values

EA, = 3.04x107 N EA, = 2.98x107 N EA; = 2.96x107 N
EA, = 2.96x107 N EAs = 3.22x107 N EAg = 2.95x107 N
EA, = 2.88x107 N EAg = 2.91x107 N EAq = 3.07x107 N
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EAjy = 3.00x107 N

After the algorithm has converged the updated parameters are

EA; = 3.168x107 N EA, = 3.250x107 N EA; = 3.180x107 N
EA4 = 3.142x107 N EA; = 3.249x107 N EAg = 3.157x107 N
EA; = 3.119x107 N EAg = 3.135x107 N EAg = 3.194x107 N
EA, = 3.108x107 N
which produces an output of
zZ = (576.8,0.179,0.381,0.152,0.367,0.538,
1931.7,0.447,0.003,0.396,0.065,-0.578 )T

The natural frequencies of the system with the updated parameters are
close to measured values but the mode shape elements are very close to the
values obtained using the original analytical parameters. This is because the
frequencies are measured far more accurately than the mode shape
elements. This is reflected in the frequency and mode shape variances. Also
the natural frequencies are more sensitive than mode shapes to parameter
changes. Thus natural frequencies are always more useful in updating
algorithms than mode shapes. The measured mode shapes are in fact
compatible to the analytical modes based on the initial parameter values.
The Modal Assurance Criterion Matrix between the measured and analytical

mode shapes is

0.997 0.057 ]

MAC - [ 0.031  0.999

The Modal Assurance Criterion Matrix between the measured and updated
analytical mode shapes is also equal to this matrix to 3 decimal places. The
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increase in quality of the updated parameters may be seen from their
standard deviations which in this case are

10°x (0.883,0.533,0.561,0.987,0.984,0.952,
0.949,0.994,0.971,0.992) N

EA; and EA; have been obtained most accurately but the quality of the
other estimates has hardly improved. Physically EA, and EA; strongly
influence the first two modes which are shown in figure 5.11.
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6.1  Chapter Summary

This chapter outlines the theory behind modal truncation and its application
to struct_ura] models. This reduction technique will be required in Chapter 7 to
update parameters using FRF data. It is of little use in updating algorithms
which use modal data, that is natural frequencies and mode shapes (for
example Chapter 5). Modal truncation is a standard technique for systems
with known coefficients. This chapter extends the theory to allow for unknown
parameters so that the reduced order model may be used in the parameter
estimation routines in the following chapters. In principle the approach is
simple. The eigenvectors are expressed as a linear functions of the
parameters about a given initial parameter estimate by computing the
eigenvector derivatives. These functions may then be used in the same way
as eigenvectors in standard modal truncation to produce a model that is
correct to first order in the parameter variations. The main difficulty in this
approach is the calculation of the eigenvector derivatives. Much of this
chapter considers a transformation using just the values of the eigenvectors
at the initial parameter estimate, or zeroth order transformation. This
transformation can give very good results and is shown to be equivalent to a
first order transformation where the eigenvector derivatives have been
approximated, as would occur in practical situations. A section on
proportional viscous damping is included to highlight the computational
advantages for systems with this damping model.

6.2 Modal Truncation Applied to Structural Models
From Chapter 2 the linear model of a structure with n degrees of freedom

exhibiting viscous or hysteretic damping may be written as the following first
order differential equation in the unknown parameter vector 6,
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MCG)i+I<(G)x=Bu

6.1)
y=Cx

The notation is described fully in Chapter 2 and is also given in Appendix A.

Assume that a current estimate of the unknown parameters 0, is available

from a theoretical analysis or previous iterations of the estimation scheme.
Then equation 6.1 may be rewritten using a Taylor series expansion for the
'mass' and 'stiffness' matrices. In some instances the model may be
formulated so that this expansion is exact, for example if the unknown
parameters were the material damping and stiffness properties. Thus the
first equation of 6.1 becomes,

M0+591M1+,.+aepmp}i ‘ [K0+591K,+..+aepkp}x -

Bu + 0(662) (6.2)

where 86 = 6 -6, = (06,086,,..,80,)
Mo = M6,
Ko = K6,
- 9M (g for i=1,2,...,
M a{e%( e) or i p
K, = _f)__K__(ee) fori=1,2,..,p

a{6),

The eigenvalues and mass normalised eigenvectors at the current parameter
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estimate, oA, and o0, are
[Mo oA+ Ko] 00, = 0 fori=1,..,2n . (6.3)

The eigenvalues are arranged in ascending order of natural frequency and
since the 'mass' and ‘stiffness' matrices are symmetrical the left and right
eigenvectors are equal. The normalisation of the eigenvectors implies that

.
od; Mo 0, = 8, the Kronecker delta .

Let the reduced order model have r degrees of freedom. Generally the number
of degrees of freedom in the reduced model is much lower than that in the full
model, thatis r « n in general. Usually in modal truncation the full order state
is transformed to a reduced order state using a matrix consisting of the first
2r eigenvectors. The situation is more complex because the eigenvectors
depend on the unknown parameters. One solution is to write the eigenvectors

as a Taylor series in 66 which is then truncated to produce the required

transformation matrix. This approach will be adopted here with truncation
after the constant, or zeroth order term, and after the first order terms, thus

producing a zeroth and first order transformation. If ®(8) is the
transformation matrix which has dimension (2n,2r) then it may be written as

2
00) = Dy + 50,y + 56,D, +..+ 56, D, + o(ae) (6.4)
Where (DO = { 0¢1; 0¢2:"» 0¢2r]
. =_a__q3_(ee) fori=1,2,..,p .

Similarly the eigenvalues may be considered as a Taylor series in 66. Writing
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the negated eigenvalues on the diagonal of a matrix of dimension (2r,2r) gives

A(G) = Ay + 06,A, + 86,4, +..+06,A, + 0(562) (6.5)
where A, = - diag(ox1,0x2,..,oxz,)
Ai=—aé-—(ee) fori=1,2,..,p

The matrices A, and ®. may be determined in a number of ways although

evaluating the eigenvector sensitivity matrices is the most time consuming.
Section 6.3 addresses this problem in providing some understanding of the
nature of the approximation and Section 6.4 discusses the problems in
computing these matrices.

Having defined the transformation matrices the reduced order models may
now be determined. The zeroth order transformation is

X = QW (6.6)

where w is the reduced order state vector which has dimension 2r. Applying

this transformation to equation 6.2 and premultiplying by @,T produces the

reduced order equation

[lz,+ae1mz1+..+aepmzp}w R
2
[Ag+30,Ky i+, +30, KW = By + dse
6.7

Y. = Czw
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where M, - q’;Ma%
ST (Dl Ki @,
B, = @B
C, = Co,
l,, = the(2r,2r) identity matrix
Y. = theoutputfromthe reduced model .

The reduced model based on the first order transformation may be defined in
a similar way. If v is the reduced order state vector, which has dimension 2r,

then the transformation is

X = By +36,D;+ 86,0, +..+86,D| V. (6.8)

Applying this transformation to equation 6.2 and premultiplying by the matrix
inside the square brackets in equation 6.8 gives the reduced model equation

based on the first order transformation as

V o+ A0+86,A1+662A2+..+89p1\p} V=

2
BFO +561BF1+862 BFZ +..+ Sep Bpp}u + 0(86 )

(6.9)

ye = {CFO + 50,Cpy + 808,Crp ..+ 5echp} v
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where Br, = @ B

Ve the output from the reduced model.

This first order transformation has the advantage that it diagonalises the
system equations providing an easy inversion when the frequency response
function is required. The computational implications of both schemes are
discussed in section 6.4. In principle, though, we have two methods to

considerably reduce the order of the full model. The accuracy of these
schemes will now be discussed.

6.3  The Nature of the Approximation

Now that the transformations have been defined the nature of the
approximations of the reduced models to the full model may be investigated.
Of course the full model is still an approximation to the real structure due to
the inherent deficiencies in modelling a continuum with a discrete finite
element mesh. A further approximation may be caused by the mass,
damping and stiffness matrices not being linear functions of the parameters.

To see the specific effect of the unknown parameters the frequency response
function will be written as the sum of contributions from individual modes.
Standard modal truncation then truncates this series after the required
number of modes as shown in Chapter 4. Writing the eigenvector
transformation matrix as a function of the unknown parameters produces
the transformation

x = ©{8)z (6.10)
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where {0 - [¢1(9)  0200) 1, ¢2r(9)}

Z = the reduced order state vector.

Applying this to equation 6.1 produces the frequency response function for
the reduced system as

Flo) = ¢ dfe) [joly + A(e)].1 cp(e)T B (6.11)

where A(e)

dag| 2 0) , qf6) ... Ay, (0)]

and A(6) is the i th eigenvalue of the system. | is, of course, V -1.

The frequency response function may be written as the following series,

ol - & Colblofo) @

6.12)
2 0 o) {

which is the truncation of the full dimensional series. In this form the
approximations due to writing the transformation matrix as a zeroth or first
order series in the parameters may be related to the frequency response
function. For the first order approximation, defined by equations 6.8 and 6.9,
both the eigenvalues and eigenvectors in equation 6.12 are, as defined,

correct to first order in 6.

The situation for the zeroth order approximation is better than might be

expected. The eigenvalues are actually correct to first order in 56. At the

current estimated parameter values the zeroth and first order
transformations are equal. Hence the eigenvalues of the corresponding

reduced mddels given by A, will be equal. From Chapter 2 the eigenvalue
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sensitivity matrices A are

Al = - diag

(6.13)

8{9}i(ee) = - 0¢:[0}”kMi+Ki} o

The eigenvector of the zeroth order model at the current parameter estimate

corresponding to the eigenvalue oA, is a unit vector in the k th coordinate

direction. Call this vector u,. Then the eigenvalue derivatives for the zeroth

order model are

d A T Mo+ K.
a{'g}i (Ge) Uy { OXK zi z;} Uy | (6.14>

-U:(D;[o}»kMH-Ki](DOUk

Since @, uy = o0, equation 6.14 is equivalent to the expression for the

eigenvalue derivative given in equation 6.13. Thus the eigenvalues of the
reduced order model based on the zeroth order transformation are correct to

first order in the parameter variations.

The nature of thé approximation to the eigenvector sensitivity matrices @, is
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slightly more complex. From Chapter 2 these matrices may be written as

(6.15)
aq)h | _ 2n |
a{e}li (ee) - é idhk 0¢k )
where @p = — 0¢:[0}‘h M; + Ki} odn if k=h
M - orn

A = o¢rT1Mi o%n
;Lo o)

Equations 6.15 define the sensitivities used for the first order approximation
to the eigenvector given in equation 6.4. Note that the eigenvector
derivatives are a linear combination of all of the eigenvectors. The zeroth
order approximation actually truncates the series in equation 6.15 after 2r
terms. It has already been established that the eigenvalues resulting from

the zeroth and first order transformations are equal to first order in &6. By
analogy to equation 6.15 the eigenvector derivative obtained from the
reduced model based on the zeroth order transformation are

aUh
a6},

2r '
(Ge) = z iDhi Uk (6.16)
C k=1
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1 T T
where by, U @, [othi"'Ki}(Douh: i@ hk ifkzh

oy oy

ibhh =

Applying the transformation given in equation 6.6 gives, for the zeroth order
transformation

aq) 2r
~a—e~?(99) = g idnk O : (6.17)

What effect does this truncation have on the frequency response function

defined in equation 6.12? Ith « kthen | A, | « | &, |and so, from the definition

of the series coefficient in equation 6.15, ;ay is small. Thus in general the

derivatives of the eigenvectors with low natural frequency are more accurate
than those with higher natural frequency when the model based on the zeroth
order transformation is used. From the definition of the frequency response
function given by equation 6.12 the value of the eigenvector derivative has
most influence close to its corresponding natural frequency. Thus the reduced
order model based on the zeroth order transformation is most accurate at
low frequencies and least accurate at high frequencies. Usually enough
modes may be included to make this reduced order model sufficiently
accurate within the frequency range of interest.

6.4 Computational Aspects

Suppose a reduced order model were required for a given system and current
parameter estimate. To compute the first order transformation directly
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requires the calculation of the derivatives of the first 2r eigenvectors, or

equivalently the sensitivity matrices ®.. Methods to calculate these matrices

have been fully described in Chapter 2 but will be considered briefly here.

The sensitivity matrices may be evaluated from the series given in equation
6.15 although in theory all the eigenvectors of the system must first be
computed. In practice the series may be truncated so that all the
eigenvectors need not be computed. If 2r eigenvectors are used, Section 6.3
has shown that the zeroth and first order transformations will give the same
model. An alternative, given by Nelson (1976), involves computing the inverse
of @ matrix of dimension 2n, clearly a time consuming task.

lterative schemes, for example the algorithm described by Rudisill and Chu

(1975), may be used. The vector ¢ - algorithm described by Tan (1987) is a
more advanced iterative method which, with exact computation, gives the
exact solution in 4n-2 iterations, where n is the number of degrees of freedom
in the original model. It may be possible to calculate the eigenvector
derivatives numerically by changing the parameter value slightly and
computing the change in the eigenvectors. This requires computing a new set
of eigenvectors for every parameter. Both the iterative and the numerical
methods are best suited to small numbers of unknown parameters and to low
dimensional reduced order models.

Because of the high computational burden necessary to accurately compute
the eigenvector derivatives, the zeroth order transformation should be used
where possible. Should the estimation algorithm be more efficiently executed
with a diagonal mass and stiffness matrices then there are two choices.
Either the model resulting from the zeroth order transformation may be
diagonalised or the eigenvector derivatives may be formed using the first 2r

terms in the series defined by equation 6.15 .
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6.5

Numerical Example Assuming Proportional Viscous Damping

So far no assumptions have been made about the nature of the damping.
Proportional viscous damping assumes that the viscous damping matrix is

Ci®) = aM(®) + B K,6) (6.18)

for some constants o and B. It has been shown in Chapter 2 that with this
form of damping the eigenvectors of the undamped model are real and are
also the eigenvectors of the damped model. Thus all of the computation can
be conducted using real vectors and matrices. This, combined with the
matrices having dimension n rather than 2n, produces enormous savings in
computational time.

Consider a ten degree of freedom system whose damping matrix is
proportional to its mass matrix although the numerical value of the constant
has only been estimated. The mass matrix is assumed fixed and the
stiffness matrix is dependent on a second parameter. Force is applied at one
position and only one response is measured. The numerical values of the
relevant matrices are given in Appendix C. The reduced models are obtained

based on the parameter estimate 6, = (0.01,3.0). Figure 6.1 shows the

receptance of the system over a frequency range that includes three modes.
Also shown is the receptance of the system reduced to four degrees of
freedom with the same parameter values. The major discrepancies occur
where the magnitude of the response is small and where an experimental
receptance would be susceptible to noise. Although the approximation is very
accurate at the current estimated parameter values the reduced model
must retain adequate accuracy over a range of parameter values. Figure 6.2

shows the receptance of the full model for parameter values, 6, of (0.01,3.0)
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(0.02,4.0) and also the zeroth and first order reduced models evaluated at
the same parameter values. Even though the parameter change is large, and
could not be described as first order, the first mode is still modelled
accurately. The second and third modes are more inaccurate because of the
magnitude of their natural frequencies relative to those of the unmodelled
modes. The coefficients in the expansion for the FRF given by equation 6.12
depend on the reciprocal of the difference between the frequency of interest
and the eigenvalues. Since the reduced model consists of four modes the
difference between the fifth natural frequency and the frequency range of
interest is relatively small. This problem also causes large discrepancies in the
anti-resonance regions. For the zeroth order model the eigenvector
derivatives are obtained using only the first four modes of the system. This
causes the small difference between the zeroth and first order models in
figure 6.3.

Modal truncation seems an effective method to reduce the order of a model.
To reduce errors the natural frequency of the lowest neglected mode should
be considerably higher than the frequency range of interest. In this case the
extra complexity in calculating the eigenvector sensitivities to the parameter
variations does not yield a significantly better approximation.
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7.1 Chapter Summary

This chapter outlines some of the algorithms that can be used to update the
parameters of structural models directly from frequency data. The
algorithms are first demonstrated on a one degree of freedom system to
introduce the methods and highlight their advantages and shortcomings.
After outlining some of the problems associated with estimating parameters
in real systems the first of the practical algorithms are introduced. The main
thrust of this thesis is the use of reduced order models to help the parameter
estimation process. In section 7.4 the number of reduced degrees of freedom
is chosen so that the frequency response functions based on the state of the
modelled system may be estimated. Algorithms are then introduced which
use this frequency data to update the system parameters. A simulated
example is used to assess the quality of the proposed methods.

7.2 The One Degree of Freedom System

Although applications using one degree of freedom models are limited this
section serves two purposes. First, many of the features of the estimation
schemes and the difficulties they encounter may be understood more easily in
a simple system. Second, the modal properties of a multi degree of freedom
system may be identified using an iterative scheme where only one degree of
freedom is identified at a time (Goyder 1980). In a one degree of freedom
system the identification of modal properties is equivalent to the identification
of structural properties (mass, damping and stiffness). Only estimation
schemes which directly identify, or may be reformulated to identify, structural

parameters are considered.
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Let f(

. ®,3,,¢) be the computed frequency response function for the system;
which depends on the unknown constants a, b and ¢, given by |

flo,a,b,c) = s . (7.1)
a- o +bjw

Obviously a, b and ¢ can readily be associated with either the natural
frequency, damping ratio and modal participation factor or the mass,
damping coefficient and stiffness of a one degree of freedom system. The

value of the measured frequency response function, denoted f,,( & ) will only

be available at a finite number N of frequencies ® . The conventional least

squares, or output error, problem is to find the values of a, b and ¢ that
minimise

N
J(a,b,c) = Y| fn(oy) - f(wya,b,c) . (7.2)
k=1

From the definition of the computed frequency response function, equation
7.1, J(a,b,c) is a highly nonlinear function of the constants a and b and thus
requires some form of iterative method for its minimisation.

The first method to be tried was the Newton-Raphson algorithm which
effectively approximates equation 7.2 by a three term Taylor series.
Gaukroger et al. (1973) used such an algorithm to obtain the properties of up
to five modes simultaneously. This method will work well providing the initial
parameter estimates are sufficiently accurate. Suppose the measured
frequency response function is taken from a system with
(a,b,c) = (1.0,0.02,1.0) and no measurement noise. The frequency response

function is measured at 1024 equally spaced points between 0.75 rad/s and
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1.2§ radss. Assume the values of b and C are available and so the parameter
a is the only unknown parameter. This situation is not particularly realistic
but will serve as an illustration of the problems with this algorithm. Figure 7.1
shows the cost function J for parameter values between 0.85 and 1.1. For
much of the parameter range this graph is convex and will produce a
divergent estimation algorithm. For example, if the initial estimate of a is -
0.97, that is the natural frequency is estimated with a 1.5% error, then the
next estimate for a is 0.913. Figure 7.1 also shows the three term Taylor
series expansion about this point which graphically illustrates the problem. In
fact the algorithm tries to estimate the maximum of the cost function J, as
it will for any convex function.

Mottershead and Stanway (1986) outline an algorithm which overcomes
these problems using a recursive filter. Consider the measured frequency
response function given above and assume a, b and ¢ are to be updated. One
sweep through the frequency range with an initial parameter estimate of
(a,b,c) = (0.9,0.0,1.1) gives an updated parameter estimate correct to three
significant figures. This filter is highly nonlinear and uses large amounts of
computer time. One way of reducing the computational burden is to minimise
the equation error instead of the output error considered so far. Mottershead
et al. (1987) have implemented the recursive filter to minimise, in the one

dimensional case,

2
(7.3)

2
J(abc) = Z ,(a'®k+blﬂ)k fn( @) - €

k=1

This has transformed the nonlinear problem into a linear least squares
problem.The algorithm described by Mottershead et al. (1987) is very similar
to a recursive linear least squares algorithm and minimising equation 7.3
presents no problem. The minimisation of J given by equation 7.3 for the
current example gives a parameter estimate correct to the accuracy of the
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computer used. Note that no initial estimate of the parameters is required. In
the presence of measurement noise the parameter estimate from this
equation error method is biased, that is the mean of the parameter estimate
is not equal to the actual unknown parameter value (Fritzen 1986). A method
called the Instrumental Variable Method has been proposed to produce an
unbiased parameter estimate. The problem may be formulated in a number of

ways (for example see Fritzen, 1986 or Mottershead, 1988). The most
common way is to rewrite equation 7.1 as

2
(a—m +bjco) fm(®) - ¢ = Noise (7.4)

and then assemble the equations at all the measured frequencies as the
matrix equation

fn(@) jo,fn(0) -1

] ((of fm(mo\
2
(@) o, fn(e) -1 {

fm
} - < @2 fnl® } + Noise  (7.5)

a
or equivalently A, {b} = b,
c

Because the matrix A, and the vector b, are complex and the parameters
are real, the real and imaginary parts of the equations should be separated to
obtain

a a R
Re(Ac) | Jp\ = A by = b, = {‘e(:c)}. (7.6)
m(Ac) | | ¢ c m(Be)
The equation error, or least squares error, is obtained from equation 7.6 using
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the pseudo inverse of A, formally giving

{g} [ATA] AT 7.7)

c

To obtain the instrumental variable solution equation 7.6 is pfemultiplied by
the transpose of a matrix W, instead of A.. This matrix W, is chosen to be

statistically independent of the measurement noise. Usually W, is obtained

by replacing the measured FRF, f,, in the derivation of A,, equations 7.5 and

7.6, by the FRF calculated at the current parameter estimate. Then the
updated parameter estimate is given by

{ﬁ} - |w A,rwf b . (7.8)

c
Since the current parameter estimates are used to estimate the new
parameter values the procedure is iterative. Using the example frequency
response function with no measurement noise the correct parameters are
obtained, to three significant figures after one iteration.

A method which tries to retain the computational advantages of the
equation error approach whilst minimising the output error has been described
by Goyder (1980). The latest estimate of the transfer function is used as a
weighting function and the object is to minimise

2

N 2 .
J(a,b,C) = Z kal 2 l (a'(l)k'i'bj())k fm ((Dk) -C (79)
k=1

where W, = 21 and a and b are the current
a-mg+bjwy

estimates of a and b.
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On convergence the values of the parameters also minimise the output error
given by equation 7.2. Using the example frequency response function after
one iteration the parameter estimate to three significant figures is given by
(1.00,0.0201,1.00), again very close to the actual parameters.

So far the methods have only been demonstrated on measurements taken
from a linear one degree of freedom system with no measurement noise. This
is unrealistic for three reasons: there will be other modes with low amplitudes
present, the system may be slightly nonlinear and the measurement noise is
not negligible. Secondary modes are a very real problem in the identification of
the modal properties of a system taken one mode at a time (Goyder 1980).
The main thrust of this chapter is the identification of parameters using the
whole frequency response function available. Even so the model mismatch
created because the theoretical model order and the actual model order are
different produces convergence problems for many algorithms. This problem is
considered in more detail later in the chapter. The system may be checked for
nonlinearities using the Hilbert Transform technique (Tomlinson 1987).
Otherwise the methods find the best linear model to fit the measured data.
The effect of measurement noise on the algorithms must be considered.

Suppose a zero mean, uniform distribution of random variables was used to
represent the measurement noise from the transducers and quantisation of
analogue data. Figure 7.2 shows the effect of superimposing noise with a
maximum peak to peak level of 10% (approximately 5.0 in absolute terms)
of the maximum response on the frequency response function. Plotting the
cost function against the value of the parameter a would give a graph very
similar to figure 7.1. The added noise has raised the minimum value from zero
to 0.217 x 104 kg-2 but has done nothing to the character of the cost
function plot. The Newton-Raphson algorithm will again only work with
-accurate initial parameter estimates. The convergence of the parameter
estimates obtained from the nonlinear recursive, equation error, instrumental
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variable and Goyder algorithms starting with an initial parameter estimate of
(0.9,0.0,1.1), are given in figure 7.3. Also shown in figure 7.3 is the reduction in
the output error cost function for the three algorithms. An iteration for the
recursive algorithm is taken to be one sweep through the parameters and the
equation error algorithm is not iterative. All the algorithms estimate the
natural frequency, or equivalently parameter a, accurately. The nonlinear
recursive algorithm estimates the modal participation factor and damping,
parameters b and ¢, most accurately and the equation error algorithm
estimates them least accurately. Although the parameters obtained by the
instrumental variable method are more accurate than those obtained by the
equation error method, their quality is much worst than the parameters
obtained from the nonlinear recursive and Goyder algorithms. Table 7.1
shows the absolute parameter values and percentage errors on convergence
for the four algorithms.

Parameter a a b b c c
value %error value %error value % error

Algorithm

Nonlinear 1.000  0.00 0.02001 0.06 0.999 0.10
Recursive -

Goyder 1.000 0.00 0.01994 0.31 0.997 0.30
Equation 1.000 0.04 0.01936 3.20 0.985 151
Error
Instrumental 1.000 0.00 0.01965 1.73 0.987 1.43
Variable

Table7.1 Parameter values after convergence - 10% noise
added
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The problems with the quality of the parameter estimates increase when the
noise does not have zero mean. Figure 7.4 shows the convergence of the
unknown parameters when the mean of the noise is 10% of its peak to peak
value. This example is not supposed to represent any particular physical
situation but is merely an example of a systematic error which could arise in
practice. The Goyder algorithm gives the best results although the nonlinear
recursive algorithm also gives good results. The errors in the estimates
obtained from the equation error and instrumental variable algorithms have
increased substantially and even the natural frequency estimation has
suffered. Once again the instrumental variable method is slightly better than
the equation error method. Table 7.2 shows the absolute parameter values
and percentage errors on convergence for the four algorithms. The large
errors in computing the parameters b and ¢ shows the difficulty in estimating
both the modal participation factor and damping coefficient. For the equation
error algorithm the ratio of parameter ¢ to parameter b, which is
approximately the maximum value of the frequency response function, is

Parameter a a b b c c
value %error value %error value %error
Algorithm
Nonlinear 1000 0.00 0.02015 075 1.005 0.53
Recursive
Goyder 1.000 0.00 0.01995 0.24 1.000 0.03
Eqbyation 0890 0.97 0.01808 9.60 0.925 7.55
rror
Instrumental 0989 1.07 0.02170 8.48 0.933 6.66
Variable

Table7.2 Parameter values after convergence - 10% noise
with bias added
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estimated with an error of only 2.27%. The natural frequency is estimated
only moderately accurately by the equation error and instrumental variable
algorithms and the modal participation factor and damping are poorly
estimated. Problems may have been expected since the noise, from a
uniform distribution, is added to the output equation and not the state
equation thus increasing the likelihood of biased estimates. Because the
improvement with the instrumental variable method over the equation error
method, compared to the Goyder method, is not very large the instrumental
variable method will not be considered further.

7.3  Parameter Estimation in Real Systems

The last section considered the estimation of the parameters of a one
dimensional system. Some of the problems in extending the methods to real
systems were briefly mentioned and will be enlarged upon now.

In general, real systems are not one dimensional. Most systems are
continuous structures and so in theory have infinite dimension. Over a finite
frequency range even a continuous structure will appear finite dimensional.
The actual dimension will depend on many variables, for example the
frequency range of interest, the values of the structure's natural frequencies
and the measurement noise from the instrumentation. It may even be
difficult to estimate the number of degrees of freedom required to model a
particular system. Repeated and close eigenvalues, that is natural
frequencies, make this task even more difficult. These problems may be
overcome by modelling the system with more degrees of freedom than are
strictly necessary. The methods of parameter estimation may be extended
to multiple degree of freedom systems. Except for Goyder's method, this is
straightforward. Goyder (1980) extended his method to multviple degree of
freedom systems by an iterative process considering one mode at a time.
Some of these extensions and other new methods are given in the following
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sections.

The major curse of increasing the dimension is the computational burden
imposed. This burden may be minimised by choosing the best estimation
algorithm, applying mode! order reduction outlined in Chapter 6 and optimising
the computing code. Even so increasing the modelled system dimension will
substantially increase the computing time required.

Measurements made on real systems are contaminated with noise. The
origin of the noise and its statistics are difficult to access. There may be
truncation errors in the analogue to digital converters or slight nonlinearities in
the transducer amplifiers. The accelerometers cannot measure the
acceleration at a point because they are of finite size, the shaker
attachment may cause local stiffening of the structure and so on. In general,
noise is one of two types which generally occur simultaneously. Either the
noise is random with zero mean and will cancel out if enough averages are
taken, or the ‘noise' is not random. Non random 'noise' could, perhaps more
correctly, be called modelling error or model mismatch. Any parameter
estimation algorithm should produce unbiased estimates of the parameters.
That is, if enough data is obtained there will be no error in the parameter
estimates due to the random noise. Additionally the algorithms should not be
sensitive to the non-random or structured noise. Thus the difference in
parameter estimates derived from two slightly different data sets should be
small. One particular type of structured noise or error is model mismatch.
Here the assumed model is structurally different from the system generating
the data. Perhaps the system is slightly nonlinear. The number of degrees of
freedom in the model might be different from that of the system. Or maybe a
parameter is not updated because its value is assumed to be known
accurately when in fact its value is wrong. Structured noise is the most
difficult to account for and so is considered in detail in this chapter.
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7.4 Systems with a Large Number of Measurements

7.4.1 State Estimator

This section outlines a method to determine the physical parameters of a
system when the number of measurements exceeds twice the number of
modes present in the frequency range of interest. Should the modes be real,
that is the system has proportional or negligible damping, then the number of
measurements only needs to exceed the number of real modes. Only the
general case will be considered in detail, the extension to problems with only
real modes being straightforward. Since estimating the number of modes
present in measured data can be difficult the method works best if there are
many more measurements than identifiable modes. The errors from the
model order reduction algorithms may then also be minimised. The practical
difficulty with equation error estimation algorithms is the requirement to
estimate the state vector. With a large number of measurements the
analytical model may be reduced to a model with r degrees of freedom such
that 2r <m, where m is the number of response measurements. Then the
state estimation problem becomes overdetermined and can be solved in the
least squares sense. The equation error algorithm may then be applied to the
reduced order mode! using this state estimate. Notice that the possibility
or < m is allowed and in some circumstances positively encouraged. If 2r = m
then the state and measurement vectors are of equal dimensions. In this
case state vector may be found, formally, by matrix inversion. In practical
problems this matrix inversion may be ill-conditioned. The condition of the
problem may be improved by using a reduced model with a lower order,
providing there are sufficient degrees of freedom to model all of the measured
modes. Remember from Section 6.3 that the accuracy of the zeroth order
reduction algorithm improves as order of the reduced model increases.

Mathematically the linearised equations of motion in the frequency domain
are, from equations 6.1 and 6.2,
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{[M0+591M1+..+59pMp] jo +

{K0+561K,+..+86pr] } X((o) = BU((;)) + 0(662)

(7.10)

Y{o] = CX(o

where X(w), Y(w) and U(w) are the transforms of the state, output and
input vectors respectively and the matrices are defined in Chapter 6.

3

Reducing this equation to one with r degrees of freedom using the zeroth order
transformation gives, by analogy with equation 6.7,

<[|2r+861MZ1+..+86pMZp} jo +

[AO+891K21+~+89pK29}}W(m) - BZU(LO) +o(662) (7.11)

Yz(“)) = CZ W((D)
where W(w) and Y,(w) are the transforms of the reduced order state and its

theoretical output and the matrices are again defined in Chapter 6.

The transform of the reduced state vector W(w) has to be estimated from

the measured output Yp(). Assuming that 2r < m and C, has rank equal to
or then the least squares estimate of the frequency response function based
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on the reduced state given by Wy (w), is

W, .
Fan(@) = 47(@) = (c;c,)'¢c) Fa(o) . (7.12)

m

What happens if the inversion of C,T C, is ill-conditioned? This matrix may be

written as

T T
C,C, = o, C'Co, . (7.13)

As @, is of rank 2r to obtain the inverse of C,T C, then C must be of at

least rank 2r. Hence r must be chosen so that 2r < rank( C ). Usually the
rank of C is the same as the dimension of the measurement vector. The
largest possible r should be tried initially so that the inaccuracies in the
analytical frequency response functions due to the reduction process are
minimised, as described in Section 6.3. The order of the reduced model is then
reduced until the matrix inversion is well conditioned. This is accomplished by
neglecting rows and columns of C,T C,. The elements of the matrix defined by

equation 7.13 may be written as
T T AT
( Cz c"z)ik = 0 cC Pk - (7.14)

Thus reducing the degrees of freedom of the reduced model by one involves
removing the last two rows and columns from C,7C,.

7.42 Equation Error Algorithm

Once the frequency responseé functions in terms of the reduced state vectors
have been estimated then the unknown parameters may be updated by

minimising the following cost function.
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2r q

J50) - 353

k=1 |=1 h=1 }

2

(7.15)

[D (©:80) Fan(oy) - Bz]m

where D (@, 56) =[|2,+59,M21+..+sepmzp]jmk+
[A0+801Kz1+..+86pK2p].

This effectively minimises the force or equation error for the system. Figure
7.5 shows the flow chart of the estimation algorithm. Equation 7.15
represents the simplest least squares estimation. As the simulated example
in section 7.4.4 will show, this type of equation error algorithm has serious
drawbacks. A slight extension to equation 7.15 is the weighted least squares
algorithm which involves minimising

where D(w,,86) is defined in equation 7.15 and W, is a weighting function

which may change throughout the frequency range of interest. For exampie

W, could be 1for ®, nearto resonances of the measured system and zero

elsewhere. Minimising equation 7.16 would then provide more weight to the
areas of the frequency response function close to resonance. Goyder's
method may be considered to be a particular case for this weighting function.

Equations 7.15 and 7.16 represent unconstrained least squares optimisation
problem which is easily solved. In practical problems it is desirable to set
constraints on the unknown physical parameters so that, for example, the
length of an element does not become negative. Adding a term to penalise
parameter deviations from the original analytic parameter values is the most

easily implemented, although indirect, method to introduce these constraints.

122



( START )

Fix initial no of dof for reduced model
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Reduce order of
reduced model
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Problem Well
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No

Obtain FRFs in terms of the reduced state vector

Update parameters by least squares

Figure 7.5 Flow Chart of Parameter Estimation Scheme
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Mathematically a term

.
J1(86) = (6,-6,+86) W, (86-0,+30) (7.17)
is added to equations 7.15 and 7.16, where 8, is the original analytically

derived parameter vector and W is a weighting matrix which is generally

diagonal but is certainly positive definite. The weighted least squares
algorithms given by equations 7.16 and 7.17 may be incorporated into the
estimation scheme whose flow chart is given in figure 7.5.

7.4.3 An Extension of Goyder's Method

Suppose that the state estimator given in section 7.4.1 has already been
used to obtain the frequency response function in terms of the reduced state

vector, Frn, (®). Then, based on these frequency response functions, an

output error algorithm would minimise

2

2r g
S (7.18)

1 h=1

[ Fan(0) - [0 (@5, 50)] ez]ih

N
J(80) =

k=11

where D(w,,80) is given in equation 7.15.

[ D(w,,80) ]! is @ highly nonlinear function of 36 and the direct minimisation

of equation 7.18 would be very computer intensive. Direct minimisation may
also give the problems experienced by the Newton Raphson technique in the
minimisation of the one dimensional system in section 7.2. Goyder [1980]
suggested a method for one dimensional systems, described in section 7.2, to

overcome these difficulties. This method may be extended to the current

problem by minimising
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)(60) = . | > HE(mk,ﬁe)]ihlz (7.19)

-1
where E(wy,86) = [Do(w,)] (D (0, 80) Fan(ay) - B,
D (w,,86) isgiven in equation 7.15 and

Do(oy) = 1o joy + A

Note that Dy(w,) is diagonal so that the inversion in equation 7.19 is

particularly simple. On convergence minimising equation 7.19 is the same as
minimising the output error based on the frequency response functions of the
estimated state vector. Convergence to an output error more closely
associated with the true output error is obtained by minimising

J (56) =§N: ¥ 3 ! [E(mk,BOHihl (7.20)

where E{o,,86) = cz[Do(mk)]"(D(mk,ae)FRm(mk)-Bz

and D(w,,56) and Do(c,) are defined in equations 7.15 and 7.19 respectively.

Minimising equation 7.20 will only result, on convergence, in minimising the
output error if C, is square. Often it is possible to meet this condition. The

rank of C, and the choice of the number of degrees of freedom in the

reduced model have been discussed in section 7.4.1. This method requires
that the number of degrees of freedom in the reduced model be as large as

possible so that
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c,(clc,) ¢!

z

is as close to the identity matrix as possible. In fact the above matrix will
have 2r unity eigenvalues and the remaining eigenvalues will be zero.

Weight may also be given to the initial analytically estimated parameters in a
similar way to the equation error method. In this case the term given in
equation 7.17 is added to the cost function given by equation 7.19 or 7.20.

7.4.4 Simulated Example ofa H Frame

The algorithms suggested in this section were tested using the undamped,
simulated free-free frequency response of a H frame. The dimensions of the H

0.4m

3 =
o F T
0.36 m 044 m

-

f Accelerometer positions and orientations

* Force input position and direction

Figure 7.6 Dimensions of the H Frame Used in the Simulated Example
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frame are shown in figure 7.6. Only motions in the plane of the frame are
modelled. Thus each node is modelled using three degrees of freedom (two
displacements and one rotation). Also shown in figure 7.6 are the
accelerometer positions and orientations for the ten transducers and the

position and direction of the single force input. Appendix D outlines the
derivation of the finite element model for this system.

Four cases will be used to demonstrate the algorithm. No random noise
has been added to the simulated data since it would present little trouble to
the least squares algorithms. Cases Il and IV demonstrate model
mismatch which is a more difficult error to deal with. In all cases the reduced
model order is nine. In cases | and Il the frame is both simulated and modelled
using 20 elements, which produces a 63 degree of freedom model. Each leg
consists of eight elements and the cross beam has four elements. For case |
there are three unknown parameters, the flexural rigidity of different groups of
elements, defined in table 7.3. In this case the mass and stiffness matrices
are linear functions of the unknown parameters. Case Il has the length of the
outer cross beam elements as an additional unknown parameter. The mass
and stiffiness matrices are highly nonlinear functions of this length. Case | is
designed to show purely the effect of the mode! order reduction process. With
no reduction the algorithm would produce the parameters in one iteration.
Case Il shows the effect of the mass and stiffness matrices being nonlinear
functions of the physical parameters. The first two cases do not include the
term, given in equation 7.17, to penalise deviations from the initial value of the
parameters. Cases Il and IV use a model with 40 elements, that is 123
degrees of freedom, to simulate the experimental data. The parameter
updating algorithm tries to fit the data to a 20 element, or 63 degree of
freedom, model. Thus the simulated data has errors with significant structure
when compared to the mode! used for updating. This is more representative of
the difficult errors encountered in fitting models to experimental data than
adding random noise to the simulated data of case I and Il. Cases'll and IV

update the same parameters as Cases | and Il respectively and these are
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given in table 7.3. Because of the model mismatch, the application of the

eguauf)n error algorithms in cases |1l and [V requires the addition of the term
given in equation 7.17 to limit the parameter deviations.

The simulated frequency response functions have a frequency range of 20 to
550 Hz in 0.5 Hz steps. Figure 7.7 shows the five elastic modes whose
frequencies lie within this range. The frequencies and mode shapes given in
figure 7.7 are those of the 123 degree of freedom simulation. Table 7.4
compares the computed natural frequencies for the first five elastic modes
from the 63 and the 123 degree of freedom simulations. These differences

Elastic Mode | Simulated Natural Frequency (Hz) Percentage
Number 123 dof Model 63 dof Model Difference
1 54.64 54.62 0.0478
2 118.67 118.28 0.3247
3 135.46 135.22 0.1763
4 188.71 188.50 0.1098
5 494.56 495.25 0.1394

Table7.4 Comparison of Natural Frequencies from the 63 dof and the
123 dof Simulations

in frequency and the similar small differences in frequency response functions
show that the difference in input data between cases | and Ill and cases |l
and IV is also small. Assuming the input data contains enough information
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Natural Frequency = 54.6 Hz

Natural Frequency = 118.7 Hz

Natural Frequency = 135.5 Hz

Natural Frequency = 188.7 Hz

Natural Frequency = 494.6 Hz

Figure 7.7 Simulated Data Mode Shapes
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about the parameters any parameter estimation algorithm would hopefully
produce ‘close' parameter estimates for cases | and Il and for cases |l and
IV. The definitions of the unknown parameters, their values for the simulated
data and their assumed analytically derived values for the four cases are

given in table 7.3.

Figure 7.8 shows a typical simulated frequency response function, derived
from the 123 degree of freedom model. Also shown is the corresponding
frequency response function based on the 63 degree of freedom analytical
model given by the parameter vector (4300,4300,4300,0.1), that is the
initial parameters for cases Il and IV. Table 7.5 compares the natural
frequencies of the 123 dof simulation and the natural frequencies of the 63

Elastic Mode Natural Frequency (Hz) Percentage
Number Simulated Analytically Difference
123 dof Model Derived Model

1 54.64 53.45 2.179

2 118.67 116.47 1.854

3 135.46 130.80 3.439

4 188.71 183.01 3.018

5 494.56 488.77 1.169

Table 7.5 Comparison of Natural Frequencies from the 123 dof Simulation
and the Initial Analytical Model
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dof model based on the above parameter values. Figure 7.8 and table 7.5

show that there is a small byt significant difference between the simulated
system and the assumed analytically derived model.

How do the algorithms given earlier cope with this simulated example? There
are essentially four algorithms that will be tested. The first, called the
Equation Error Algorithm, minimises the ordinary least square equation error
given by equation 7.15. In cases lll and IV the additional term to weight the
initial analytical parameters given in equation 7.17 is used. The value of the
weighting matrix Wy is, for case IV,

Wo = 10 dag| 0.1° 0.1 0.1% 43002 (7.21)

where the terms are simply related to the magnitude of the elements of the
parameter vector. For case lll, where there are three unknown parameters,
only the top left (3,3) submatrix of equation 7.21 is used. The second
method, called the Weighted Equation Error Algorithm, is similar to the
Equation Error Algorithm but includes a frequency dependent weighting
function, given in equation 7.16. For this simulated example this weighting
function is one for frequencies within 15 Hz of the simulated natural
frequencies, and zero otherwise. Cases Il and IV again need the additional
term given by equation 7.17. The value of the weighting matrix is the same as
given in equation 7.21 multiplied by the ratio of the number of frequency points

used.

The third method, called the Extended Goyder Algorithm, minimises the cost
function given by equation 7.19. A fourth method, called the Weighted
Extended Goyder Algorithm, is obtained by minimising equation 7.20. This
" method is not considered further as in this particular example the results are
50 close to the Extended Goyder Algorithm that the plots of parameter

convergence cannot be distinguished.

133



Consider case | first. Here the mass and stiffness matrices are linear
functions of the unknown parameters and the structure of the updated
analytical model and the model used to obtain the simulated data are the
same. Figure 7.9 shows the convergence of the parameters using the
Equation Error and Weighted Equation Error Algorithms, which yield results
that produce indistinguishable plots. The parameters converge rapidly, after
one or two iterations, and the updated parameters are correct to four
significant figures after three iterations. Figure 7.10 shows the convergence
of the parameters using the Extended Goyder Method, convergence to four

significant figures occurring after two iterations. All the algorithms perform
well.

Case li shows the effect of nonlinearities in the updating procedure. The mass
and stiffness matrices are highly nonlinear functions of a fourth parameter,
an element length, that is introduced. There is still no model structure
mismatch so this is a purely nonlinear optimisation problem. Figure 7.11 shows
the convergence of the parameter estimates for the first 24 iterations using
the Equation Error and Weighted Equation Error Algorithms. Convergence is
very slow although eventually the algorithms produce the correct parameter
values. Figure 7.12 shows the convergence of the parameter estimates for
the Extended Goyder Method. Convergence is now rapid and the result is
correct to four significant figures after three iterations.

Case lll is the first of the more realistic, and interesting, simulations. Here
model mismatch means that there are no correct parameters for the
algorithms to converge to. The quality of the algorithms has to gauged from
the 'closeness' of the FRFs of the updated mode! and the simulated data. An
alternative is to compare the natural frequencies of the updated model and
the simulated system. Figure 7.13 shows the convergence of the parameter
estimates using the Equation Error Algorithm. Convergence is rapid in this

case. and also for case IV, because of the weighting term required to limit the

deviations from the initial analytical estimates. The Weighted Equation Error
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Algorithm is similar. Figure 7.14 shows the reduction in cost function for the
parameter convergence shown in figure 7.13. Everything looks fine until the
frequency response functions for the updated mode! are compared to those
of the simulated data. Figure 7.15 compares typical FRFs and should be
compared to figure 7.8. Table 7.6 compares the natural frequencies of the
simulated data and the updated model. It is quite obvious that the updated
model is worst. The updated natural frequencies are further away from the
simulated values than the initial natural frequencies. How is this reconciled
with the supposed improvement shown by the reduction in cost function in
figure 7.14? The problem is that equation error, not output error, is being
minimised. Thus the weight that would naturally apply to resonances in an
output error minimisation, because of the increased amplitude, is not present.
One possible method to overcome this drawback is to only include frequency
values close to the resonances, that is use the Weighted Equation Error
Algorithm. Figure 7.16 shows the convergence of the parameter estimates
using this algorithm. Table 7.6 shows that the resulting natural frequencies
are even worst that those estimated by the Equation Error Algorithm. Figure
7.17 shows the convergence of the parameter estimates using the Extended
Goyder Method. Convergence is reasonably rapid, although slow compared to
cases | and ll. Table 7.6 shows that the updated model accurately
reproduces the natural frequencies of the simulated data.

Case |V is similar to case Il expect that now the mass and stiffness
matrices are nonlinear functions of a fourth parameter. Figures 7.18 and 7.19
show the convergence of the parameter estimates using the Equation Error
and Weighted Equation Error Algorithms respectively. The natural frequencies
of the updated models and the simulated data are compared in table 7.7,
showing that again the algorithms performance is abysmal. The reasons are
the same as for case lll. Figure 7.20 shows the convergence of the
parameter estimates using the Extended Goyder Algorithm. Table 7.7 shows
that the natural frequencies of the simulated data are accurately
reproduced. Studying figure 7.20 shows that the convergence of the
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parameters is quite slow. Figure 7.21 shows the convergence of the natural
frequencies of the updated model and shows that some of these frequencies
converge extremely rapidly whilst others only converge sluggishly.
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8.1  Chapter Summary

This chapter describes the experimental work performed to demonstrate the
algorithms derived in this thesis. The actual hardware and choice of
techniques to derive FRFs and the modal model are, in many ways, arbitrary.
Different methods and excitation signals may produce slightly different
results. All the algorithms in this thesis attempt to find the best physical
parameters to reproduce the measured data, allowing for the weighting of the
initial analytical parameters. The basic principle that the better the measured
data the more accurate the updated parameters therefore applies. Chapter

2 gives more detail on experimental techniques and the general methods
used.

The experiments described in this chapter were performed on a H frame
structure similar to the one used in the simulated exercise of Section 7.4.4.
The algorithms used to update the parameters are the extension to Goyder's
method (described in Section 7.4.3) and the corrected minimum variance
algorithm (described in Chapter 5).

8.2 Measurement Hardware and Software

The experiments were performed using stepped sine excitation. The excitation
signals were generated and the signals correlated to produce the FRF
coefficients by a Solartron 1170 two channel Frequency Response Analyser.
Although this analyser automates the frequency sweep through the required
range it does not record the FRF coefficients automatically. Therefore the
analyser is controlled by an 1BM PC/AT via a GPIB interface. An 'in house'
computer program allows the analyser to be set up from the computer,
performs the experiment and regords the FRF data on disc. For further
analysis using the extension to Goyder's method the data was transferred to

the University VAX Cluster using the Kermit file transfer protocol. To apply
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the corrected minimum variance algorithm a modal model had to be
generated which was obtained using the SMS STAR software package. The
modal model was then transferred to the VAX Cluster. The structure is
excited using a Derritron 100W shaker and associated amplifier. Briiel and

Kjaer force transducer (type 8200), accelerometer (type 4333) and signal
conditioning amplifiers (type 2626) were used.

The calibration of the transducers was performed using the method of section
2.7.2. In this case calibration of the transducers could be viewed as verifying
the calibration constants quoted by the manufacturers. Figures 8.1 and 8.2
shows the inertance for the calibration tests before and after the
experimental results were taken. Taking the average values of the FRFs
produces measured masses of 9.30 kg and 8.99 kg from the dynamic tests
which compare favourably with the static mass measurement of 9.36 kg.
Although the difference may seem high, the discrepancy is, in fact, less than
3.6%. Notice that the FRFs are not constant although, referring to the scale,
the change is relatively small. In fact the system does contain resonances at
low frequencies due to the elastic supports of the mass and the pendulum
action of the mass. The FRFs in figures 8.1 and 8.2 show the high frequency
properties of these resonances. Taking the asymptotic value of the FRFs at
high frequencies give measured masses of 9.54 kg and 9.30 kg. This
produces a difference compared to the static mass measurement of 1.9%.
Because the calibration results were so close to those expected the
calibration constants quoted by Briiel and Kjaer were used throughout the

experiment.

8.3 The Tested Structure

Figure 8.3 shows the structure used to demonstrate the algorithms derived in
this thesis. The frame is made of aluminium alloy and has a rectangular cross
section measuring 50 x 25 mm. Each joint is made using two bolts. Also
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Fugu.re 8.4 shows a typical measured transfer receptance and also shows the
equivalent theoretical response function as initially modelled. The measured
response seems to have extra resonances, particular at approximately 460
Hz and in the range 50 to 70 Hz. These modes arise due to interactions of
th? frame with the mounting arrangement. Using the Modal Assurance
Criterion they do not correlate well with the theoretical modes and will not be
considered further. The five main resonances may be easily identified in the
test data and related to the corresponding theoretical modes, shown in figure

7.7. This correspondence will be checked in section 8.5 using the Modal
Assurance Criterion.

The choice of parameters to update is a difficult one. In order to demonstrate
the algorithm presented in this paper six parameters are updated. These are
described in table 8.1 along with the estimated analytical values but are in no
way an optimal parameter set. The parameters consist of three flexural
rigidities, an element length and two parameters to model proportional
damping. |

Parameter Estimated Value
Number Description in Initial Model
1 Flexural rigidity of elements 4560
away from joints
2 Flexural rigidity of elements 4560
on legs next to joints
3 Flexural rigidity of elements 4560
on cross beam next to joints
4 Length of cross beam 0.1
elements next to joint
5 Multiplier of the mass matrix 0
for o ortional damping
6 F lier of the stiffness matrix 0
for proportlonal damping

Table81 Description and Initial Values for the Unknown
Parameters
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8.4 Parameter Updating Directly from the FRFs

The parameters of the structure were first estimated from the FRF data
using the extension to Goyder's method derived in section 7.4.3. This example
is similar to the simulated one given in section 7.4.4 but where the simulated
data has been replaced by experimental data. The FRF measurements were

first converted from inertances to receptances by dividing by minus frequency
squared.

Figures 8.5 and 8.6 show the convergence of the updated parameters. Figure
8.7 shows the value of the cost function given by equation 7.14. Note that
there is no weight given to the initial parameter estimates as described by
equation 7.12. Initially there is a large reduction in cost. Subsequent changes
in the cost are small and the parameters converge very slowly. This slow
convergence occurs because similar modelled receptances may be obtained
from many different parameter values. The natural frequencies of the
updated model are plotted in figure 8.8 and show that three frequencies
converge reasonable quickly. The last natural frequency is not reproduced
accurately. This is mainly because the resonance associated with this
natural frequency has a low magnitude because the exciter location chosen
means that the mode is poorly excited. The fit to the fifth mode would be
improved by altering the force input location or by using multi-input forces.

Figures 8.9 and 8.10 show the convergence of the six parameters with a
weighting matrix given by

W, = 10°° dag|0.1%,0,0,4560°,0,0
This weighting matrix implies that parameters 1 and 4 have been analytically
estimated most accurately. As expected the parameters now convergence
ore quickly. Parameters 1 and 4 change very little from their

much m .
the frequency response function

analytically derived values. Figure 8.11 shows
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for the analytical model using the updated parameters with the lowest cost
value. The first four resonances have been accurately fitted. The high
frequency part of the response and the anti-resonances are a poor fit to the
experimental data, again because the magnitude of the responses is small in
these areas. Anti-resonances will also be difficult to match because they
depend critically on the position of the transducers. The high frequency
response of the structure may be given increased weight, if desired, by using
mobility or inertance in the updating procedures rather than receptance.

Table 8.2 gives the natural frequencies of the experimental structure, the
initial model and the updated models. As stated earlier the first four
frequencies are successfully updated.

Natural Frequencies (Hz)

Experi- Initial Updated Updated
mental Model Model, Not  Model,
Weighted ~ Weighted
1 52.6 54.3 51.2 50.0
2 106.7 118.6 106.3 108.5
3 135.7 131.9 135.5 135.4
4 187.7 184.7 183.0 187.7
5 492.4 496.5 358.5 497.9

Table 8.2 Natural Frequencies from Experiment, Initial Model and
Updated Model
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8.5  Parameter Updating from the Modal Model

The first stage in updating the parameters of a finite element model using the
modal model is to generate the natural frequencies, damping ratios and mode
shapes for the structure. The FRFs used in the last section, obtained from
stepped sine excitation, form the basic data from which to compute the
modal model. The five main resonances in the data may be identified visually.
Using the SMS STAR computer package with the Global Polynomial or
Rational Fraction Least Squares curve fitting algorithm (see the Orthogonal
Polynomial Method, Section 2.6.3) gives the frequencies and damping ratios
shown in table 8.3. Consider the same theoretical model and unknown
parameters as in Section 8.4 but with an initial parameter vector of

(4560 , 4560 , 4560,0.105,0,0) .

Mode Number Natural Frequency (Hz) Damping Ratio (%)
1 52.6 1.78
2 106.7 0.40
3 135.7 0.36
4 187.7 0.21
5 492.4 0.16

Table 8.3 Measured Natural Frequencies and Damping Ratios
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The modal Assurance Criterion (MAC) between the measured mode shapes
and those of the initial analytical model is

0.970 0.000 0.007 0.005 0.020 |
0.014 0.986 0.000 0.006 0.000
MAC = | 0.014 0002 0.995 0.025 0.009 8.1)

0.009 0017 0.000 0.922 0.001
0.022 0.000 0.002 0.000 0.989

The elements across the diagonal are all above 0.9 and this confirms that

the five identified modes correspond with the five lowest frequency analytical
mode shapes.

Because the damping is difficult to model only the natural frequencies will be
used to update the parameters. Thus only the first four parameters of table
8.1 will be used as the final two parameters relate to proportional damping.
Suppose that the measurement and initial parameter variances are given by

Vo

l

diag ( 100,900, 900, 0.0001 )
(8.2)

V., = diag(0.25,0.25,0.25,0.25,0.25 )

In this case (case ), using the algorithm derived in Chapter 5, the
parameters rapidly converge, as shown in figure 8.12, and the final analytical
frequencies are given in table 8.4. Because the noise variance was assumed
to be high the natural frequencies of the updated model reflect the measured
frequencies only moderately accurately. The MAC matrix between the
experimental and updated mode shapes is approximately the same as 8.1.
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Natural Frequencies (Hz)

Experi-  Initial Updated Updated Updated
mental Model Model, M%del, Mgd?alfa

Case | Case ll Case lll

1 52.6 54.3 53.5 52.3 52.3

2 106.7 118.6 112.9 106.7 106.7
3 135.7 131.9 135.4 135.5 135.5
4 187.7 184.7 188.0 187.8 187.8

5 492.4 496.5 492.3 4924 492.4

Table 8.4 Natural Frequencies from Experiment, Initial Model and
Model Updated using Modal Data

Suppose we assume that the frequencies were measured exactly. In theory
this would imply that the measurement noise variance was zero. From

Chapter 5 this would imply that D; = 0 for all j. Because only four
parameters are to be updated and there are five measured frequencies, Vy;
is singular. Therefore the algorithm cannot be used to estimate the
parameters with zero measurement noise, or V. = 0. As a compromise

assume (case ll) that the measurement noise is given by
V, = diag( 108, 10%,10%, 106 , 106 )

and the initial parameter variance is given by 8.2. Figure 8.13 shows the
convergence of the parameters in this case and table 8.4 shows the natural
frequencies on convergence. Al the natural frequencies accurately reflect the
measured quantities. With only four parameters and five frequencies it would
be very fortuitous for all five natural frequencies to be reproduced exactly,
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even 'with N0 measurement noise. Again the MAC matrix between the
experimental and updated mode shapes is approximately the same as 8.1.

As a final example (case I1l), assume that the measurement noise and the
initial parameter variances are given by 8.2, but assume that the updated
parameters and measurement noise are uncorrelated. Thus D; is zero for all

j- This simulates the minimum variance method used by all previous authors.
Figure 8.14 shows the convergence of the parameters in this case and table
8.4 shows the natural frequencies on apparent convergence. All the natural
frequencies accurately reflect the measured quantities. Again, with only four
parameters and five frequencies it would be very fortuitous for all five natural
frequencies to be reproduced exactly. Effectively this method assumes zero
measurement noise. The major difference between these results and those of
case Il is that when the correlation between the updated parameters and
measurement noise is ignored, convergence is much slower. This experimental
example confirms the simulated results of Chapter 5. The MAC matrix
between the experimental and updated mode shapes is approximately the
same as 8.1. One problem is the numerical stability of the algorithm with
D; = 0 foraljIn figure 8.14 the rapid parameter change after about 40
iterations gives some indication of the sensitivity of the updating procedure to
the parameter values. Although the algorithm seems to converge after this
rapid change, in fact the parameter values start to diverge, and even become
negative, after about 55 iterations. The reason the algorithm diverges is
essentially the same as the reason why zero measurement noise could not be

used in case Il.
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Chapter 9

Discussion
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This thesis has presented two new methods that may be used to update the
unknown parameters of a finite element model. The properties of these
methods and their application have been discussed in the relevant chapters.
This chapter provides a summary of these properties in the context of
practical model updating. Some suggestions for further work are given at the
end. The first method updates the unknown parameters from the measured
modal model by computing the parameter estimate that has minimum
variance (Chapter 5). The second method updates the unknown parameters
from the measured FRFs essentially using a weighted equation error approach
applied to a reduced order model of the system (Section 7.4.3). These
updating algorithms have been tested and compared to other existing
algorithms using simulated and experimental data. The algorithms worked
well in these examples but it must be realised that no algorithm is a panacea.
The application of any parameter updating procedure requires a great deal of
engineering insight and the idea of a ‘black box' identification scheme, if it is
possible or indeed even desirable, is a long way off.

Probably the most difficult decision is the choice of parameters to update.
This must be determined for each structure individually and the parameters
updated should be those with the greatest a priori uncertainty. Updating
physical parameters helps the analyst to decide on the quality of the
theoretical parameter estimates and also helps the interpretation of the
resulting updated parameters. The alternative to updating physical
parameters is to update the elements or submatrices of the mass, damping
and stiffness matrices. Updating matrix elements involves a large number of
measurements and/or the use of a condensed theoretical model. Although
this may produce a good correlation between the measured and the updated
theoretical results, interpreting and using the subsequent model is far more
difficult. This thesis has been more concerned with the methods of updating
parameters and has not considered the choice of parameters to update in
any depth. Obviously the quality of the updated parameters will depend

critically on this choice.
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Wh{it are the advantages and disadvantages of the updating methods
outlined? The minimum variance method, using the modal model, is a
corrected version of a popular algorithm. Previous algorithms have ignored the
correlation between the parameter estimates and the measurement noise.
This oversight produces an algorithm which, given sufficient unknown
parameters, always reproduces the measured quantities. Thus, these
previous algorithms essentially assumed that the measurement noise was
zero and so could be regarded as a pseudo inverse method with a particular
weighting for the initial parameters. The new method, described in Chapter 5,
converges much faster, and to more correct solutions than the previous
methods. The amount of extra computation required is small. If the
measurement noise variance is zero then all the algorithms will have problems
fitting data to a model with fewer unknown parameters than measurements.
Even with non-zero measurement noise variance the algorithms used
previously will fail. These problems arise because the algorithms try to
reproduce the measured quantities exactly but have too few parameters
available to do so. The algorithm described in this thesis should find immediate
application as an improved, direct replacement for the incorrect minimum
variance updating algorithm.

The future of the updating algorithm using the FRFs directly is not so certain.
The philosophy of using data that has undergone the least preprocessing, and
io use as much data as possible to update the parameters is attractive.
Where the modal model is difficult to extract, because of high damping or
closely coupled modes, the method should be useful. Indeed the modal mode!
could be obtained subsequently from the updated finite element model. If the
modal model can be extracted satisfactorily then the ability to check the
adequacy of the modes before model updating has advantages. The most
promising method, based on an extension of Goyder's algorithm, worked
reasonably well although it has problems fitting modes which have a low
magnitude. This situation arose in the examples used in this thesis because

169




the excitation location was such that one mode was hardly excited. The
problem could possibly be solved by using more than one excitation location in
order to excite all modes adequately. Incorporating such excitation forces
would be relatively easy since the theory of Chapters 6 and 7 already allows
»for multiple excitation points. The equation error and instrumental variable
methods performed poorly. These methods minimise the errors in the
equations of motion and give insufficient weight to the frequencies around
resonance where the data is most accurate. Nonlinear curve fitting
algorithms were not considered in depth as the computational burden is too
great.

As an intermediate step in the calculation of the unknown parameters
directly from the FRFs, a reduced order model was produced (Chapter 6). This
reduced model is unusual in that some dependence on the unknown
parameters is retained. Alternative parameter estimation algorithms, gither
time or frequency domain, may be able to use this form of the theoretical
model to advantage.

The scope for further work in the updating of the parameters of finite element
models is large. The following are six suggestions arising naturally from this
thesis. They are certainly not exhaustive and range from mere developments

to further research projects.

»  Test the performance of the minimum variance updating algorithm on
more realistic and complex examples.

+  Try the extended Goyder method on a structure using FRFs obtained
from more than one excitation location. Establish guidelines to
determine when the modes of a system have been sufficiently excited.
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Test the performance of the extended Goyder method on large scale

structures and structures with highly damped or closely coupled
modes.

Consider the use of other time and frequency parameter updating
methods using the reduced order mode! of Chapter 6.

Design and build an 'environment' for implementing parameter updating
algorithms. A commercial package is available which uses an incorrect
minimum variance updating procedure and provides links to a finite
element program. A research tool along similar lines but with the
capability to change updating algorithms at will would be very useful.

Determine guidelines to decide which parameters of a finite element
mode! to update, to decide on the most suitable updating algorithm
and to assess the quality of the updated parameters. Trying to reduce
the operator interaction in this way could make use of expert system
technology.
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Appendix A Notation

Parameter in the one dimensional example. Equivalent to

natural frequency squared, or stiffness / mass
Current estimate of parameter a

Coefficients used to calculate eigenvector derivatives. Defined
by equations 2.18 and 2.20

Cross sectional area of beam in one dimensional beam examples
Coefficient matrix used in updating algorithms, Section 3.3
Coefficient matrix with complex elements used in updating
algorithms in Section 7.2

Coefficient matrix with real elements used in updating algorithms
in Section 7.2

Coefficients used to calculate eigenvector derivatives for the
reduced model using the zeroth order transformation

Parameter in the one dimensional example. Equivalent to natural
frequency times damping coefficient, or damping / mass

Vector used in updating algorithms, Section 3.3

Vector with complex elements used in updating algorithms in

Section 7.2
Vector with real elements used in updating algorithms in

Section 7.2
Current estimate of parameter b

Matrix allocating the force input to the state vector in the full

order model

Coefficient of 86; in the expansion of the matrix allocating the

force input to the state vector in the reduped order model
resulting from first order transformation
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Constant term in the expansion of the matrix allocating the

force input to the state vector in the reduced order model
resulting from first order transformation

Matrix allocating the force input to the correct generalised
coordinates

Matrix allocating the force input to the state vector in the

reduced order model resulting from zeroth order transformation
Parameter in the one dimensional example. Equivalent to the
modal constant

Constant used in calculating eigenvector derivatives

Matrix finking the output vector to the state vector of the full
order model. Note NOT damping

Coefficient of 36; in the expansion of the matrix linking the

output vector to the state vector in the reduced order model
resulting from first order transformation
Constant term in the expansion of the matrix linking the output

vector o the state vector in the reduced order model resulting
from first order transformation

The usual (n,n) damping matrix which is dependent on the

parameter 6
Matrix linking the output vector to the state vector inthe

reduced order model resulting from zeroth order transformation

The usual (n,n) viscous damping matrix which is dependent on the

parameter vector 6

Dynamic matrix defined in equation 7.15
Correlation between measurement noise and jth parameter

estimate, Chapter 5
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= Dloy0) = Iy jo, + A,
Young's modulus
Expected value

One dimensional theoretical frequency response function
One dimensional measured frequency response function
General theoretical frequency response function
General measured frequency response function

The theoretical frequency response function based on the
reduced order state vector

The estimated measured frequency response function based on

the reduced order state vector
Force corresponding to the master dofs in condensation

techniques, Section 4.4

Example transfer function in reduced order model example,
Section 4.3

Sensitivity matrix of the measured quantities with respect to the

unknown parameters. Defined in equation 5.12 and Section 5.3
Identity matrix of dimension k

V(1)

Cost function for the one dimensional example in section 6.2
General cost function

Addition to cost function to weight original analytically derived
parameter vector
The parameter dependent extended stiffness matrix

Analytiéal stiffness matrix
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Coefficient of 86; in the expansion of the extended stiffness
matrix in the reduced order model resulting from first order
transformation

Coefficient of 86; in the expansion of the extended stiffness

matrix in the full order model
The usual (n,n) stiffness matrix which is dependent on the

parameter 6
Reduced stiffness matrix, Section 4.4

Updated stiffness matrix

Coefficient of 86; in the expansion of the extended stiffness

matrix in the reduced order model resulting from zeroth order
transformation
The extended stiffness matrix evaluated at the parameter value

0 =8,
Submatrices of the stiffness matrix. Used in the condensation

techniques Section 4.4

Dimension of output vector
mass / unit length of beam in simple examples

The parameter dependent extended mass matrix

Analytical mass matrix

Coefficient of 38; in the expansion of the extended mass

matrix in the reduced order model resulting from first order
transformation

Coefficient of 86; in the expansion of the extended mass matrix

in the full order mode!
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The usual (n,n) mass matrix which is dependent on the

parameter 6
Reduced mass matrix, Section 4.4
Updated mass matrix

Coefficient of 36, in the expansion of the extended mass matrix

in the reduced order model resulting from zeroth order
transformation

The extended mass matrix evaluated at the parameter value
0 =9,
Submatrices of the mass matrix. Used in the condensation

techniques Section 4.4

Number of degrees of freedom in the full mode!

Number of frequencies at which the FRF is measured
Number of unknown parameters

Number of force inputs

= (Qy,92,..,0:)"- Generalised co-ordinate vector in finite

element analysis

Generalised force vector in finite element analysis

Number of degrees of freedom in the reduced model. Also number
of measured modes in Chapter 5

Reduced transfer function in Section 4.3

Cross Correlation Function between y and u

Auto Correlation Function of y

Laplace Transform variable

Cross Spectral Density between'y and u

Auto Spectral Density of y
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Transformation matrix, used in the condensation techniques

Section 4.4. Also matrix used to update the parameters in
Chapter 5

Input or force vector

Fourier Transform of input vector

Fourier Transform of measured input vector
Unit vector in the k th coordinate direction

Reduced order state vector resulting from first order
transformation

Theoretical mode shape vector

Measured mode shape vector

Vector used in calculating eigenvector derivatives
Variance of the jth parameter estimate, Chapter 5
Variance between the measurement vector and its current
theoretical estimate, Chapter 5

Variance of the initial parameter estimate, Chapter 5
Variance of the measurement noise, Chapter 5

Reduced order state vector resulting from zeroth order
transformation
Value of weighting function for one dimensional Goyder algorithm

example, defined in equation 7.9
Also weight function for general equation error algorithm

(equation 7.16)

Fourier Transform of reduced order state vector resulting from
zeroth order transformation

Estimated Fourier Transform of reduced order state vector
resulting from zeroth order transformation based on measured

data

191




Matrix used in the Instrumental Variable Method, Section 7.2
Matrix giving weight to the measurement noise in the least
squares estimator, Chapter 5

Weighting matrix to limit deviation from initial parameters,

equation 6.12. Also matrix giving weight to the initial parameter
values in the least squares estimator, Chapter 5
State vector in full order model

Partition of the state vector x in the condensation techniques
of Section 4.4

Fourier Transform of the state vector of the full order model
Output vector
Output vector for the reduced order model resulting from first

order transformation
Output vector for the reduced order model resulting from zeroth

order transformation

Fourier Transform of output vector
Measured Fourier Transform corresponding to the output vector

Fourier Transform of output vectorbased on the reduced order

model
Transformed state vector. Also theoretical vector corresponding

to measured quantities in Chapter 5.
Measurement vector in Chapter 5.

jth estimate of the measurement vector in Chapter 5.

Multiple of mass matrix in definition of proportional viscous
damping matrix
Multiple of stiffness matrix in definition of proportional viscous

damping matrix
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30

= (0-6,) = (36,,86,,..,86,), variation of the
parameters from the current estimate

Measurement noise vector

Matrix of the first 2r eigenvectors as a function of the unknown
parameters

Matrix of the first 2r eigenvectors evaluated at the current

parameter estimate
Matrix coefficent of 86, in the Taylor series expansion of @ (6)
Typical analytical eigenvector

Typical measured eigenvector

Eigenvector corresponding to oA, at the current parameter

estimate

eigenvector corresponding to the i th eigenvalue of the full model

as a function of the unknown parameters

i th eigenvalue of the full model at the current parameter

estimate in ascending order of natural frequency

i th eigenvalue of the full model as a function of the unknown

parameters in ascending order of natural frequency

Matrix consisting of 2r negative eigenvalues of the full model

along the diagonal as a function of the unknown parameters
= - diag( A,(8),A,6) .., Ay (6) )

Matrix consisting of 2r eigenvalues of the full model along the

diagonal, evaluated at the current parameter estimate
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Vi

Glossary

ADC
ARMA
DAC
dof
FRF
MAC
mdof
MSF
sdof
SEREP

Matrix coefficent of 36, in the Taylor series expansion of A (6)

Minus the ith natural frequency squared

Minus the ith measured natural frequency squared
Vector of the unknown parameters

Original analytical estimate of the parameter vector
Current estimate of the parameter vector
j th estimate of the parameter vector, Chapter 5

Initial analytical estimate of the parameter vector, Chapter 5
Frequency of sinusoidal excitation and response

k th measured frequency value

i th real eigenvector (proportional damping)

Analogue to Digital Converter

Auto Regressive Moving Average

Digital to Analogue Converter

Degrees of freedom

Frequency response function

Modal Assurance Criterion

multi degree of freedom

Modal Scale Factor

single degree of freedom |
System Equivalent Reduction Expansion Process
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AppendixB  Pin Jointed Frame Example

This appendix derives the finite element model of a pin jointed frame used as a
numerical example in section 5.5. The structure is shown in figure 5.10. As a
consequence of the pin jointed assumption, the beams do not bend so that
only the extension of the beams is considered. Each beam is assumed to be
homogeneous, and of constant cross sectional area. Since the model is only
really interested in the equivalent stiffness of the beams these restrictions
could be relaxed. The model consists of ten elements, which are the individual
beams. The equivalent stiffness of the beams are related to the cross
sectional area A and length |; of the beams by

k = —— (A1)

The model consists of three types of elements, or beams: horizontal beams,
vertical beams and sloping beams. The element mass and stiffness matrices
of these elements, obtained by small displacement theory, will now be given.
All the stifiness matrices are based on the expression for strain energy in a
beam, which is
, 2

StrainEnergy = 5 Kef € (A2)

where e is the extension in the beam and ke is the effective spring

constant for the beam. The mass matrix is obtained by assuming a constant
mass per unit length along the beam and a linear displacement model

between the two ends.

Horizontal beams. Figure A defines the local co-ordinates for the horizontal -
beam elements. The mass and stiffness matrices, Mi and Ki, based on a

co-ordinate vector of (Uy, V¢, Uz, V2 )T are given by
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T
3

where m; is the mass per unit length of the ith element.

Figure A1 Local Co-ordinates for a Typical Horizontal Beam Element

Figure A2 Local Co-ordinates for a Typical Vertical Beam Element

Vertical beams. Figure A2 defines the local co-ordinates for the horizontal

beam elements. The mass and stiffness matrices, M and Ki, basedona

co-ordinate vector of (U Ly Uz, Vo )T are given by
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Sloping beams. Figure A3 defines the local co-ordinates for the beam
elements which slope at approximately 45 degrees. The mass and stiffness
matrices, Mi and Ki, based on a co-ordinate vector of (u;, vy, Uy, Vo) T
are given by

i mili
M= =

(AS)

O -~ O

0
2
0
1

OO —
[ 1
ek bk ok A
[ ]
—r ek ek A
' t
— ek ek —A
[ 1

Figure A3 Local Co-ordinates for a Typical Sloping Beam Element

Given these mass and stiffness matrices for the individual elemgnts tlhe
complete mass and stifness matrices may be obtaivne.d by inspection using
the structure defined by figure 5.10. The" local co-ordinates are gquat.ed to
the global, or generalised, co-ordinates to place the elemen.t matrices in the
correct submatrices of the system mass and stiffness matrices.
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Appendix C  Model Order Reduction Example

This appendix gives the mass and stiffness matrices used as an example of
model order reduction in Chapter 6. Although these matrices do not represent

any particular structure they are closely related to model of the pin jointed
frame outlined in Appendix B.

The mass matrix is assumed known and given by

——\
OO MO MNOMNO W

—
NMOMONMONO WO

COOWOMNONO ™
O WOMNOOO pOMN
—
COONODODOWOO
OOMNOOOWOOO

OO WOMNON O O
WOMNODOO EpONO
OO OMNODOOOMN
—t\
OOMNODXDOOONMNDO

—
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The stiffness matrix is a function of 0, and s given by

o™

a»)

r

1
OO OO OODOODO OO

COCOO0OODODOOO OO
00001000300
OO0 ODOOOOO
0300030000
OO ODODOOOO OO
COO0OMO OO MOO
n..nu.nu.n..onu.nunU.nvnannU
0300030000

3030000000

}

As indicated in Chapter 6 the damping matrix is given by

M, .

i

0

n

C
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AppendixD H Frame Example

This appendix derives the finite element model of the H frame shown in figure
7.6. This structure was used as a simulated example in Chapter 7 and an
experimental example in Chapter 8. The model is two dimensional only and
consists of beam elements. These beams may bend perpendicular to the axis
of the beam or extend along this axis. The displacement models for the
elements are the most simple, that is a linear model for bar extension and a

Figure A4 Local Co-ordinates for a Typical Beam Element for the H Frame

cubic model for beam bending. Each element is assumed to have a constant
cross sectional area and to be homogeneous. Figure A4 shows the locgl
coordinates for a typical element. The mass and stiffness matrices for this

' T
element in terms of the local co-ordinate vector Uy, Vy,fy, Uz, Ve, T2)

are given by
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T
420
0 54 13, 0 156 -22I
0 13 -3F 0 -221, 4F
Al 0 0 -AF 0 0 —
0 121, 6L} 0 -121, 61}
o E 0 6l 4I,F 0 -6I,l 2I,F
2 -AL 0 0 AP 0 0
0 -121, -6I;k 0 121; -6I}
0 6L 2Lk 0 -6L,l 4Lk

where m; is the mass per unit length, | is the length, A; is the cross

sectional area and I is the second moment of area, all for the i th element.

E is the Young's modulus for the elements.

The H frame is modelled by a finite element model with either 20 or 40
elements. This corresponds to 21 or 41 nodes respectively. Since the motion
of the frame is considered in the vertical plane only, each node has 3 degrees
of freedom. Thus the dimension of the displacement vector for the 20 and 40
element models are 63 and 123 respectively. Table Al shows these
dimenéions and also the number of elements in the individual beams.
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Total Noof NoElementsin  No Elementsin  No of Nodes  DOF
Elements  Long Beams Cross Beams

20 8 4 o1 53

40 16 8 41 123

Table A1 Details of the Two Finite Element Models of the H Frame

The element mass and stiffness matrices are positioned in the system
matrices using the compatibility conditions between the generalised
co-ordinates and the local co-ordinates. The unknown parameters are either

bending stiffnesses (flexural rigidities) or element lengths, given by EI; or I in

the above expressions. The initial values of the flexural rigidities are
estimated from the theoretical values for a rectangular cross section beam.
The different values for parameters 2 and 3 in the 63 dof and the 123 dof
simulations (see table 7.3) should be noted. The elements for the 63 dof
simulation cover two elements of the 123 dof simulation. Thus when the
values of flexural rigidity in two adjacent elements in the 123 dof simulation
are different, the value of flexural rigidity for the combined element in the 63

dof simulation must be an average value.

This model of the H frame is & gross simplification. For example, the joints are

umed to be perfectly rigid, when in fact they are bolted and so will have
nce is made for elemental shear. Given th_e

it reproduces the experimental dynamics

ass
complex dynamics. No allowa

simple nature of the model
remarkably well.
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Appendix E  Derivation of Equations in Chapter 5

Chapter 5 derived an algorithm to update the parameters of a finite element
model using a minimum variance estimator. This appendix contains the
derivation of some of the equations used in Chapter 5. The equation numbers
in brackets at the end of the following equations refer to the basic equations
and properties (from Chapter 5) used to obtain the given expression.

Equation 5.15. This equation is derived by writing the expected value of the
parameter estimate at the j+1 th iteration in terms of the previous
parameter estimate and the measurement noise. Thus

El em] = | 6, +T(2y-2 )] (Equation 5.14)
= | e]] + T E[z,-7] (T constant)
=E[6]+TEz-7+ e ] (Equation 5.8)

=E[g]+T HE6-6]1+T E[e] (Equation5.11)

=0 (Equations 5.9 & 5.10)

Equation 5.16. The covariance of the new parameter estimate is obtained by
writing the parameter estimate at the j+1 th iteration in terms of the

previous parameter estimate. Hence
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]

since

E[(zm-

L()ei” -6 6y, - 9”

E.(}Gj -0+ T (zm-z,.)) (ej -0+ T (zm-zj))T]
(Equation 5.14)
E{(‘ei - 6 ) (91- 6 ” + E“E)j- 0 ) (zm-zj)T}TT

. E[ (2n°2) ;- © )T] FTE| (202 (202) | T

v+ [0 ViR T e T (0] Hyy) + TV,

;) (8- e)T}

E:(zm-z)ﬂej- B)T +(z-zj)(91- O)Tq

T T T
El e Cej-e) -H](ej-e)(ei-e) _

(Equations 5.8 & 5.11)

E[ (6, eH - HjE[(ei- o) (6;- e” (Equation 5.9)
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and where (equation 5.17)

V,

il

E[(zm- Zi) (Zn- zj)T]

- E|{(2n-2) # (2 2) (20 2) + (2- )] |

- |[ - orol) < - oo |
(Equations 5.8 & 5.11)
H E[(ej-e) (ej-e)T]Hf- H E[(6)-0)¢]

: E[((Gj-e)e)T]HjT rEle ¢

WV, H - HD - D/H + V.. (Equalions5.95.13)

Equation 5.19. The correlation matrix D; may be updated by

Diyy = E| 8 8}

= E- 6,€+ T (Zn- Z;) e} (Equation 5.14)

o, + T E[(zwz)e + (2210l

. |
D + T Ele € - Hi(ei-e)e} (Equations 5.8 & 5.11)

=D - T (lHjDi - VE} (Equations 5.9 & 5.13)

_ D - (ij,T-Dj)V;}(H;D;- Ve)
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Equation 5.22. The expression for the next parameter estimate is derived

fro.m minimising the cost function given in equation 5.21 with respect to 0.
Using equations 5.8 and 5.11 | Ji

T
€ = I,-2

(Zn-2) - (2-7)

(zn-27) - Hi(6-8))
and so

J(0) = Ce~ej)T[wa£Hj+we} (-8 - (e-ei)THjT W, (2n-2)
- (zm-zj)T WEHj(G-Gi) + (zm-zi)T W (zn- 7))

Hence the least squares estimate is (equation 5.22)

-1

T T
o = 0 +|H WH+Wo| H W(zn2)

Equations 5.23 and 5.24. By comparing equations 5.18 and 5.22 the two
estimates of the parameters are equal if

-1

H WoH, + W) Hi W, = (V4 -0y V34

Since W, and V; are both square matrices and have the same dimension

(equation 5.23) let p

Then the solution of the above equation for We is obtained by rearranging
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the above equation. A pseudo inverse is required to obtain the expressions for

Wy, the form of which will depend on the number of measurements and
parameters. Thus

A
T - T T .
BV H e Wo| H = (v -D) (Equation 5.23)

T

H = (W V5 He W) (Vi D)) (Rearranging)

We VH D) = H - W ViH (V-]

i

- - HIVS (HD,-V,) (Equation 5.17)

which is equation 5.24.
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