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On Smart Gaze based Annotation of Histopathology Images for Training
of Deep Convolutional Neural Networks
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Abstract— Unavailability of large training datasets is a bottle-
neck that needs to be overcome to realize the true potential of deep
learning in histopathology applications. Although slide digitization
via whole slide imaging scanners has increased the speed of
data acquisition, labeling of virtual slides requires a substantial
time investment from pathologists. Eye gaze annotations have
the potential to speed up the slide labeling process. This work
explores the viability and timing comparisons of eye gaze label-
ing compared to conventional manual labeling for training object
detectors. Challenges associated with gaze based labeling and
methods to refine the coarse data annotations for subsequent
object detection are also discussed. Results demonstrate that gaze
tracking based labeling can save valuable pathologist time and
delivers good performance when employed for training a deep
object detector. Using the task of localization of Keratin Pearls in
cases of oral squamous cell carcinoma as a test case, we compare
the performance gap between deep object detectors trained using
hand-labelled and gaze-labelled data. On average, compared to
‘Bounding-box’ based hand-labeling, gaze-labeling required 57.6%

less time per label and compared to ‘Freehand’ labeling, gaze-
labeling required on average 85% less time per label.

Index Terms— Computational Pathology, Deep Learning,

Annotation burden, Gaze tracking, Novel data labeling

strategies.

I. INTRODUCTION

T
HE field of pathology has witnessed some exciting develop-

ments over the past decade. The emergence of Whole Slide

Imaging (WSI) Scanners has paved the way for a completely digital

workflow in both diagnostic and research laboratories. Simultane-

ously, in deep learning, the community now has a set of powerful

tools that can capitalise on the troves of digital WSI data being

generated by the scanners. However, a number of challenges still

need to be overcome in order to realise a truly digital, high-throughput
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pathology infrastructure. Deep learning algorithms are generally data

hungry and require large volumes of labelled data for training.

Unfortunately, manual annotation and labeling of high resolution

WSIs is a laborious process that demands investment of valuable

time and effort from specialist pathologists. A typical WSI consists

of tens of thousands of pixels at multiple magnification levels; studies

suggest that labeling a single WSI can (in extreme cases) take up to

360 minutes [1]. Consequently, smart labeling strategies, that can

reduce the amount of time and effort required for labeling of WSI

data, have the potential to enhance the performance of automated

pathology solutions.

This work examines the feasibility of using gaze tracking for

generation of large-scale, labelled training data from WSIs. More

specifically, we employ low-cost eye-tracking hardware to record the

gaze patterns of users as they explore a WSI on a desktop screen. We

ask users to search for Keratin Pearls (KPs) in WSIs and investigate

whether or not user gaze patterns can be used to train deep object

detectors to localise KPs in unlabelled test data. KP formation is one

of the characteristic diagnostic features for well-differentiated oral

squamous cell carcinoma. The pearls present as concentric masses

of pink-colored keratinocytes and keratin protein that are easy to

identify [2], [3]. Four examples of KPs are shown in Fig. 1. Only a

few existing studies (see section II) have examined the feasibility of

using gaze tracking for labeling of medical imaging data and most of

the reported results are preliminary. However, the following questions

still remain unanswered:

Q-1 Compared to hand labeling, how much (if any) labeling noise

is observed when gaze based labeling is employed?

Q-2 Are there any pre-processing techniques that can reduce or

eliminate label noise introduced by gaze based labeling?

Q-3 How much (if any) time saving can gaze based labeling deliver?

Q-4 Are there any limits on the size and shapes of objects/ features

that can be labelled using gaze tracking?

Q-5 Compared to training on hand labelled data, how much (if

any) performance degradation occurs in well-established deep

convolutional neural networks (CNNs) when they are trained

on gaze annotated data?

Our objective in this work is to use an evidence based approach

to answer the questions listed above. In order to obtain answers to

these questions we first developed a purpose-built software which

integrated our gaze tracking hardware with a WSI reader. Openslide

[4] was used to read WSIs in .svs format. Our software can keep

track of user gaze patterns across multiple magnification levels of

a WSI. This tool was then employed to generate gaze labelled data

using commercially available gaze tracking hardware. The resulting

labelled data was then used to train deep object detectors to localize

regions of interest (ROIs), and performance was compared with hand

labelled data. We also present results of experiments that compare the

amount of labeling time required by users when using conventional

hand-labeling and gaze based labeling.

A high-level overview of our gaze annotation pipeline is shown in

Fig. 2. Our primary objective is to evaluate whether keeping track

http://arxiv.org/abs/2202.02764v1
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Fig. 1. Examples of KPs of different shapes and sizes.

of the gaze patterns of pathologists can enable generation of useful

labels that can be employed to train machine learning algorithms to

detect ROIs in WSI data. To achieve this, a custom-built software was

employed to track the gaze of skilled pathologists as they searched

for target ROIs on WSIs on a computer screen. KP regions in 4

cases of oral squamous cell carcinoma (OSCC) were designated as

the target ROIs. Preliminary analysis of raw gaze maps indicated

that they contained large amounts of noise since pathologists were

not looking at the target ROIs at all times during the annotation

process. Then, Kernel Density Estimation (KDE) was employed to

detect actual ROIs and eliminate noisy labels (details in section III-B).

The output of the KDE block were heatmaps indicating the gaze

patterns on the slide; these heatmaps were then converted into binary

masks via thresholding and employed as training labels for an object

detector. Three types of object detectors were tested in this study:

Faster R-CNN [5], YOLOv3 [6] and YOLOv5 [7]. For benchmarking,

pathologists were asked to label KP regions on the same WSI data

by hand, using a mouse and QuPath software [8]. The resulting hand

annotated label masks were employed to train the benchmark object

detectors. For testing and performance comparison, we compared the

predictions of Object Detector-1 (trained using gaze-labelled data)

and Object Detector-2 (trained using hand-labelled data) with the

ground-truth (hand annotated) labels corresponding to the unseen

test dataset. The amount of time required for annotation using both

techniques was also recorded. It is highlighted that KP detection

was selected as a use case primarily because, in general, KPs are

neither too large nor too small in size and thus are relatively easier

to detect. For this initial evaluation of gaze annotations we felt it was

appropriate to limit ourselves to a labeling task which was neither

too challenging nor too easy to perform. The main contributions of

this work are listed below:

• We present the first of its kind, in-depth analysis on the suit-

ability of using gaze based annotation of histopathology images

for training deep CNNs.

• A novel dataset of gaze labelled histopathology images

is released to the public for further experimentation and

analysis. All data and code used for experiments in this work

can be downloaded from the github repository available at:

https://github.com/SigmaLabResearch/Gaze-Enabled-Histopathology

• A custom-built software tool that can use commercially

available hardware to generate raw gaze maps on

WSIs is also being released to the public. There are

currently no open-source software tools that support gaze

tracking on WSI file formats. This tool can be used

to further enhance research in gaze based labeling of

histopathology images and is available for download at:

https://github.com/SigmaLabResearch/Visnotate.

• Results of a study comparing the amount of time saved by

employing gaze based labeling are also presented.

II. RELATED WORK

Existing literature on gaze tracking primarily consists of ap-

proaches that have examined its impact on radiology and other

(non-pathology) domains. For example, in [9] gaze tracking was

employed to label ROIs in radiology and skin lesion images. An

18.6% improvement in labeling speed was observed, compared to

conventional mouse-based hand labeling, in images with a high

object-background contrast. The resulting labelled data was employed

for segmentation of ROIs using a random walk based algorithm.

However, the algorithm’s performance was not quantified using any

metrics. Furthermore, this approach was somewhat constraining since

it required the labeling experts to deliberately shift focus from

candidate ROIs to background pixels to ensure appropriate training

for segmentation.

Gaze labeling of radiology data was also examined in [10] which

employed UNet for segmentation of radiology images. Gaze and hand

labelled images were observed to have an average Dice similarity

coefficient of 0.85 with each other. For label generation, radiologists

were required to explicitly move their eyes in a counterclockwise

trace around an ROI’s outer contour. Zoom/pan and window level

adjustments were prohibited during contour tracing. A detailed com-

parison between the amount of time consumed by each labeling

strategy was not provided. This approach also requires substantial

post-processing effort for manual deletion of all gaze points recorded

whilst the labeling expert is not looking at the target ROI, significantly

constraining its use in practical applications.

Gaze patterns of sonographers were combined with image feature

maps to measure abdominal circumference in ultrasound data in

[11]. Results demonstrated a marked improvement in performance

compared to using only feature maps. A similar approach was

presented in [12]; gaze patterns of radiologists were combined with

computer generated saliency maps to segment ROIs using a random

walk based segmentation algorithm.

Other similar approaches on non-radiology data were presented in

[13] and [14], though these did not include thorough comparison with

manual annotation in terms of labeling time. Another limitation of

[13] and [14] is that only a single object or ROI was assumed to be

present on screen at one time during labeling. In [13], an observer

was asked to fixate on a target and it was assumed that observers

were 100% compliant and did not look at non-target regions at any

time during recording. In [14], labeling noise was eliminated by

recording gaze patterns only when an observer was looking at an

ROI; observers had an On-Off switch to indicate when they were

looking at an ROI. However, in practice, it is possible for users to

forget to turn the switch on or off especially when burdened with

high workloads. Furthermore, the need for manual input is bound to

compromise on labeling speed.

None of the above studies have examined gaze based labeling

of WSI data. We believe this is primarily because WSIs are not

https://github.com/SigmaLabResearch/Gaze-Enabled-Histopathology
https://github.com/SigmaLabResearch/Visnotate
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Fig. 2. Gaze Annotation vs Hand Annotation Pipeline

viewable using conventional image viewing software and substantial

implementation effort is required to integrate WSI viewers with gaze

tracking hardware. However, there are a limited number of studies

that have investigated gaze patterns within the context of WSIs. In

[15], gaze patterns/eye movements were analysed to examine whether

or not they can characterise the expertise level of pathologists. An-

other similar study was presented in [16]. Both studies concluded that

the gaze of expert/fully-trained pathologists converged much more

quickly towards diagnostically relevant ROIs than junior or trainee

pathologists. PathEdEx, an online tool that records and automatically

groups the gaze patterns of pathologists was introduced in [17].

The resulting clusters, along with clinical notes added by expert

pathologists, were then employed for training of pathology students

and trainees. However, to the best of our knowledge, gaze patterns

have so far not been utilized for labeling of WSI data for training

deep neural networks.

In addition to investigating the performance of gaze labelled data

in a deep learning pipeline, we also examine the amount of time

required for labeling of WSI data via gaze based annotations and

compare it with the time taken using conventional handle labeling

tools. Various gaze based and hand labeling annotation strategies are

compared in [18]. However, the discussion is primarily based on non-

medical image applications. Given that WSIs contain a much larger

amount of visual information (across multiple magnification levels)
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Ref No. Domain Annotation Time Provided? Gaze Constrained? Approach AI Based Performance Evaluation?

Sadeghi [9] Radiology + Dermatology Yes Yes Gaze based labels only No

Stember [10] Radiology
Partial (Time consumed for hand

labeling not provided)
Yes Gaze based labels only Yes (UNet based segmentation)

Cai [11]

(SonoEyenet)
Ultasound No No

Gaze + Visual

Attention Models
Yes (CNN based detection)

Khosravan [12]

(Gaze2segment)
Radiology No No

Gaze + Visual

Attention Models

Yes (Random Walk

based segmentation)

Lejeune [13] Multiple No Yes Gaze based labels only

Yes (Semi-supervised classification

based on Expected Exponential Loss

function

Vilarino [14] Colonoscopy No Yes Gaze based labels only Yes (SVM based classification)

Brunye [15] WSI No No Gaze based labels only No

Krupinski [16] WSI
Yes (Fixation time presented,

study did not focus on annotation)
No Gaze based labels only No

Ersoy [17] WSI No No Gaze based labels only No

Our work WSI Yes No Gaze based labels only Yes (CNN based object detection)

TABLE I

SUMMARY OF RELATED WORK

than natural images, it is imperative to thoroughly analyse the amount

of time consumed for gaze based annotations of WSIs and compare

it with the time required for conventional WSI annotation tools.

III. GAZE BASED ANNOTATION

In order to track a pathologist’s gaze on screen we developed a

purpose-built tracking software to enable the gaze tracking hardware

to maintain a record of gaze patterns on WSIs, as the default

tracking software provided by the hardware manufacturer was not

compatible with WSI files. Raw gaze patterns contained noise and

some additional preprocessing steps were applied before using the

gaze-labeling data for training an object detector. The different

components of our gaze annotation pipeline are described in detail

below.

A. Experimental Setup

The experiments conducted for this study utilized a hardware

apparatus working in conjunction with a software for collection and

analysis of data. The individual components of our experimental setup

are described below.

1) Hardware Setup: For tracking of gaze patterns, we tested

two different hardware. The low cost and universal availability of

webcams makes webcam based gaze tracking [19] a very appealing

option from a scalability perspective. Unfortunately, the performance

of these was poor. This was observed across multiple webcams from

different manufacturers. Web-cam based solutions were found to be

widely inaccurate, were easily thrown off calibration by posture and

lighting changes at the user end and hence not suitable for prolonged

use in a single sitting. As reported in [20], we found that infrared

light based eye trackers present a variety of advantages such as more

robust detection of the pupils.

Our gaze detection hardware setup comprised a Gazepoint GP3

[21], a 26′′ HD display monitor and a 1.6 GHz, Intel Core-i5, 8th

Gen Desktop PC with 8GB RAM. The Gazepoint GP3 hardware

is a desktop infrared gaze tracker with 60 Hz sampling frequency.

The tracker was set up an arm’s length away from the user’s chair

which is the distance recommended by the manufacturer for accurate

calibration.

2) Software Setup: WSIs are stored in specialised formats which

are not supported by conventional image viewing software. Annota-

tion of WSI data typically requires access to either manufacturer

specific software or open source tools such as Qupath [8], Cytomine

[22] or Orbit [23]. However, all existing WSI viewers support

only hand based annotations and currently do not have any gaze

based annotation features. Consequently, we had to develop our own

purpose-built software for gaze based annotations of WSI data. This

required significant effort since we had to integrate the drivers of

the gaze annotation hardware with Openslide which was used for

reading the WSIs. Some of the main features of our gaze annotation

tool include: WSI compatibility; Gaze recording; Visualization of

gaze annotation; Noise mitigation via kernel density estimation;

Generation of heatmaps and binary labels; Export of gaze annotation

data to Qupath.

3) Dataset Description: The dataset employed for the experi-

ments in this work consisted of four Oral Squamous Cell Carcinoma

(OSCC) Hematoxylin & Eosin (H&E) stained slides. These slides

were digitized using an Aperio CS2 scanner. The generated WSIs

are in RGB color space with a resolution of 0.4952µm per pixel.

Data collection for this study was approved by Riphah International

University, Islamabad’s Institutional Review board on Oct 10, 2019.

Approval Number IIDC/IRC/2019/09/001. Data labeling and anno-

tations were done by two expert pathologists. For training of object

detection algorithms, we extracted 73 patches of resolution equal to

4000×4000 pixels with each patch containing at least one KP. Overall

there were a total of 280 instances of KPs in our dataset. 85% of the

dataset (containing 231 instances of KPs) was randomly selected for

training/validation. The remaning 15% (containing 52 instances of

KPs) was set aside for use as a hidden test set.

B. Noise Mitigation via Kernel Density Estimation

In our experiments, two pathologists were asked to search for ROIs

(KPs) on the WSI displayed on the screen in front of them. They

were asked to focus on each ROI they located for 1 to 2 seconds.

ROIs were identified using gaze intensity on the WSI. However,

identification using raw data resulted in false positives since there

were multiple instances of fixation on regions other than ROIs as well.

Therefore, kernel density estimation (KDE) was employed to cluster

(and threshold) gaze points belonging to true ROIs and differentiate

them from noise [24]. An example of this annotation process is
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(a) Locations of KPs/ROIs (b) Raw Gaze Points (c) Binary Map of ROIs obtained via KDE

Fig. 3. Identification of ROIs on WSI using gaze patterns followed by KDE. Size of the KDE kernel can be changed to reduce the number of false
patterns.

Fig. 4. 2D view of kernel density estimate of 5 gazepoints with binary
colour map obtained after 0,1 thresholding. Regions above the threshold
are considered part of an ROI. Threshold value and kernel size enable
us to vary the size of ROIs.

provided in Fig. 3. The baseline hand annotated WSI with ROIs

indicated by red ovals is shown in Fig. 3(a). The corresponding raw

gaze points recorded by the gaze tracking hardware are shown in

Fig. 3(b); this raw data contains multiple gaze points that lie outside

of the true ROIs. The binary mask obtained after application of the

KDE is shown in Fig. 3(c), it can be observed that KDE removes

noisy gaze points.

KDE was deemed suitable for our target ROIs since KPs tend to

have, more or less, circular or elliptical shapes and thus can be easily

captured by fitting 2D Gaussian kernels to the raw gaze points. When

two or more Gaussian kernels overlapped, their values were added

together resulting in an enhanced fixation intensity. In areas with a

high density of gaze points the magnitude of fixation intensity was

higher. The higher the magnitude, the more distinguished a fixation

region was in the resulting binary mask representation. The KDE

algorithm takes in to account two parameters: size (σ) and threshold

(τ ). The size (or standard deviation) of the Gaussian kernel controls

the expanse of the neighbourhood of points that form a cluster.

The threshold (τ ) was employed to discard small sized clusters; any

cluster (or part of a cluster) with gaze density below τ was discarded

and not included in the final label mask. A simple illustration of KDE

and the role of thresholding is provided in Fig. 4.

Parameters of the KDE algorithm (τ and σ) can be employed to

control the number of outliers and size of the ROIs. More specifically,

assigning a larger value to τ eliminates outliers/noisy gaze points.

The impact of threshold τ and kernel size σ is illustrated in Fig. 5.

Use of larger thresholds eliminates outliers/noisy gaze points but

may also result in missing small sized ROIs. The kernel size mainly

has an impact on the size of the ROI detected, larger values of σ

result in detection of large sized ROIs whereas smaller values are

preferable when the target ROIs are small sized. It can be observed

in Fig. 5 that larger values of σ are suitable for large ROIs but can

cause multiple, closely spaced, small ROIs to merge together into

a single ROI. By contrast, smaller σ values are suitable for small

ROIs but can split a single, large ROI into multiple smaller ROIs.

We mitigated this problem by employing smaller values of σ for

cases containing smaller ROIs and switching to larger values for cases

containing larger ROIs. For cases containing ROIs of different sizes,

we employed two different values of σ on gaze data (from a single

recording session) and then merged the two binary masks. More

details about the impact of different σ and τ values on the accuracy

of gaze-labels are provided in section IV where we present the mean

Intersection-Over-Union (mIOU) between the (ground-truth) Hand

generated masks and the (KDE-processed) Gaze generated masks as

a function of σ and τ .

1) Comparison of Hand and Gaze Generated Maps: To

evaluate the quality of the gaze based maps (generated by KDE),

we compared them to the hand labelled maps. More specifically,

we evaluated the mIOU between gaze labelled maps and their

corresponding (ground-truth) hand labelled maps for various values

of σ and τ . The IOU is a performance evaluation metric that is widely

employed in semantic segmentation tasks; it is defined in the context

of our application as,

IOU =
MH ∩MG

MH ∪MG
(1)

where MH and MG denote the (ground-truth) hand and the gaze

labelled masks, respectively. The mean and standard-deviation of the

IOU between MH and MG masks were used to examine the impact

of the KDE parameters (σ and τ ) on the quality of the gaze labelled

maps and identify the parameter values that result in gaze labelled

masks that have the highest overlap with the hand labelled masks. Due

to variations in sizes of ROIs in different images, the threshold τ was

adjusted based on the statistics of data within each image. Selection

of the threshold parameter for each image is described below.

Given a kernel size σ, KDE was applied to raw gaze data of

the slide image. Application of KDE resulted in a set of c clusters
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represented by

f
i
X,Y (x, y) where, i ∈ [1, . . . , c] (2)

Here, f iX,Y (x, y) denotes the probability density function of the i-th

cluster. The number of clusters, c, is automatically selected by KDE

and depends primarily on the kernel size (σ). As stated previously,

smaller values of σ result in a larger number of (small-sized) clusters

and vice versa. We then evaluated the sample mean of each individual

pdf in (2),

θ̄i =
1

bi

bi
∑

j=1

f
i,j
X,Y (x, y) (3)

where bi denotes the number of bins in f iX,Y (x, y). It is to be noted

here that θ̄i is the sample mean evaluated over the magnitude (z-axis)

of the cluster’s pdf; it should not be confused with the cluster’s mean

vector, µi
X,Y . Furthermore, f

i,j
X,Y (x, y) denotes the value of the j-th

bin of the pdf of the i-th cluster. In order to apply a single threshold

across the entire image, we again took the sample mean as below,

θ̄ =
1

c

c
∑

i=1

θ̄i · (4)

In order to be able to vary the threshold we employed a normalized

and scaled version of θ̄ as below,

τ = n×
θ̄

m
(5)

where n denotes the scaling factor and m denotes the maximum

value observed across all bins of all cluster pdfs

m = max
(

f
i,j
X,Y

(x, y)
)

∀ (i, j)· (6)

Detailed results on the mIOUs between MH and MG for different

values of the kernel size σ and scaling factor n are presented in

section IV. The highest mIOU value that we observed was 0.6714.

In this paper, we focus on the task of object detection. Good

performance of object detection would indicate that the KDE gaze

masks contain enough information to enable estimation of ROI size

and location within a slide image.

C. KP Detection

We used the binary masks obtained after application of KDE to

train object detectors for localization of KPs in WSI data. The binary

masks output from the KDE block are oval/circular in shape whereas

object detectors generally require square/rectangular shaped objects.

Therefore, the irregular shaped masks were converted into tightly

fitting bounding boxes before being input to the object detector

which was then trained with the input label masks using transfer

learning. Three popular object detection algorithms were employed in

our experiments: (1) Faster R-CNN with Inceptionv2 architecture (2)

YOLOv3 with DarkNet53 architecture (3) YOLOv5 with DarkNet53

architecture.

During training we trained two sets of the above listed object

detectors. Set-1, denoted by SG, trained using the Gaze generated

label masks, MG. Set-2, denoted by SH , trained using the (ground-

truth) hand labelled masks, MH . SH was trained for benchmarking

purposes. During testing, the prediction of each object detector was

compared with the ground-truth masks, MH , regardless of whether

the training labels came from MG or MH . The training protocols,

architecture, hyperparameters and configurations such as patch size,

number of iterations, learning rate, batch size, input image resolution

were identical for both object detector sets, SG and SH . The only

difference was in the labeling strategy employed for annotating the

training data. Both detector sets were evaluated on the same test set

Fig. 5. Impact of Thresholding and Kernel Size: Higher threshold
values reduce outliers or noisy data points. Large kernel sizes merge
closely spaced, small ROIs. Small kernel sizes can break large ROIs
into multiple smaller ROIs.

using the following metrics: Precision, Recall (Sensitivity), Mean Av-

erage Precision (mAP), Miss-Rate, False-Positives-Per-Image (FPPI)

and log-Average Miss Rate (LAMR). For thorough and unbiased

assessment, all metrics were evaluated at different values of overlap

between detected and ground truth bounding boxes. This overlap

is typically quantified via the intersection over union between the

detected and ground truth bounding boxes (IOUdt) [25] which is

defined as:

IOUdt =
area (BBdt ∩BBgt)

area (BBdt ∪BBgt)
(7)

where BBdt and BBgt denote the detected bounding box and the

ground truth bounding box respectively. A detection is considered

successful if the IOUdt exceeds a predefined overlap threshold

(OT ). In our experiments, OT was varied between 0.1 to 0.95.

WSIs have very high resolution and large size, making it difficult

for them to be processed as a whole by a neural network. Therefore,

we divided each WSI into a set of uniformly sized 4000 × 4000
patches before feeding them to a neural network for training/testing.

The resolution of each patch was left unchanged to minimise loss

of contextual information and retain morphological features. The

patch size was selected so that the patches remained large enough to

subsume large KPs and small enough to be digestible by the neural

network.

D. Comparison of labeling Time

The primary motivation for replacing hand annotations with gaze

based annotations is potential saving in time and effort required for

data labeling. Although it does seem obvious that gaze based annota-

tions save time, the vast majority of the existing studies on gaze based

annotations of biomedical data have not quantified the amount of time

that is saved in comparison to hand annotations. This information

should be available in order to make future improvements in gaze

based data annotation systems like ours. Some data is available for
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TABLE II

TIME TAKEN BY PATHOLOGIST A & B FOR EACH ANNOTATION METHOD

Freehand Bounding Box Gaze

Pathologist A B Avg. Time A B Avg. Time A B Avg. Time

Total Time (mm:ss) 11:32 15:24 13:28 04:50 04:41 04:46 01:49 02:13 02:01

Total Time in Seconds 692 924 808 290 281 285.5 109 133 121

Average Time/KP in Seconds 13.84 18.48 16.16 5.80 5.62 5.71 2.18 2.66 2.42

natural images; for example, according to [26], the median time

for drawing a bounding-box during a crowd-sourcing effort to label

ImageNet dataset was observed to be 26 seconds. For segmentation

the average labeling time for a single image was 15-60 minutes for

the MSRC dataset [27]. For gaze labeling, the average time for one

object per image (in the 2012 Pascal VOC challenge dataset) was

around 1 second [28]. Given the inherent differences between natural

and medical images, we believe it is important to quantify annotation

times for hand and gaze based labeling for medical images. Therefore,

we conducted a set of dedicated experiments in order to quantify the

amount of time consumed by each data labeling strategy. For gaze

annotations, we calculated the average amount of time consumed

for labeling the shape of a single ROI. For hand annotations, we

calculated the average time consumed for labeling a single ROI

using two distinct approaches: (1) Bounding-Box labeling, where the

objective was to put a bounding box around a target ROI (2) Freehand

labeling, where the objective was to draw a contour around an ROI.

Both the preceding hand annotation strategies were performed on

a desktop computer with a mouse using the QuPath software. The

pathologists did have prior experience of working with QuPath and

were familiar with its user interface.

Among these three strategies, freehand annotation consumes the

most time but also provides the most information since it captures

the exact shape and size of ROIs whereas bounding-box and gaze

annotations are quicker but provide a comparatively lower amount of

information since they capture only the approximate shape and size

of ROIs. The bounding box annotation includes the time taken for

drawing the bounding box itself and re-adjusting the anchor points

for a tightly fitting box around the ROI. The default settings of

Qupath were used for our experiments that require the user to re-

select the annotation tool after each ROI annotation. Hand annotation

measures both exact and approximate shape, whereas our current

gaze labeling strategy measures only approximate shape and size. For

gaze annotation, the annotators were instructed to fixate or hold their

gaze on a Keratin Pearl for what they felt was at least 2 seconds.

Annotators were allowed to practice holding their gaze for a few

seconds on our software on a few samples before commencing gaze

annotations.

IV. RESULTS AND DISCUSSION

The results of all the experiments described in section III are pre-

sented in chronological order below. This is followed by a discussion

of the salient results.

1) Hand and Gaze Map Comparison: The mIOUs between

MH and MG for different values of the kernel size, σ, and scaling

factor, n, are shown in Fig. 6. The mIOU is plotted as a function of

the scaling factor n instead of the normalized threshold τ because

τ depends on the statistics of the ROIs within an image and thus

can be different from one image to another, whereas n is same

across all images (for one setting) and therefore, more suitable for

comparison purposes. Fig. 6 also shows the standard deviation of

the IOU observed for each parameter setting. The highest value of

Fig. 6. mIOU as a function of Kernel Size and Scaling Factor

mIOU = 0.6714 is observed at σ = 400 and n = 5. In terms of

kernel size, it seems that smaller values (σ = 200 and σ = 400)

result in better mIOUs than larger values. This makes sense, since

larger values of σ tend to merge neighbouring clusters. In terms of the

scaling factor n, it seems that the highest mIOU values are observed

around values of n = 5 and n = 7. It is also noted that the standard

deviation of mIOU is higher at larger values of n. This is most likely

due to smaller clusters (or parts of clusters) being missed as n (or the

threshold τ ) is increased. The analysis presented in Fig. 6 indicates

that σ = 400 and n = 5 result in the best gaze masks.

2) KP Detection: The Precision versus Recall and the Miss-

Rate versus FPPI curves observed on the trained object detectors for

different values of OT are presented in Fig. 7. The set of benchmark

object detectors, SH , provide an estimate of the performance that can

be obtained on this problem via training using the conventional hand

labelled approach. Performance of all detectors may be improved

further by enhancing the size of the dataset and/or employing better

detection approaches. Another factor limiting performance may be

‘Border effects’ that arise when WSI images are split into smaller

image to make deep learning processing possible. Impact of border

effects may be mitigated by having overlap between the tiles with

an amount roughly corresponding to the diameter of a typical ROI

and then merging detection from the different tiles covering the

same region on the WSI. However, overlap based approaches will

require extra processing time, the amount of which will depend on

the diameter of the largest expected ROI. We have left these measures

for future work since maximizing the detection performance is not

the primary objective of this work. The plots in Fig. 7 demonstrate

that the performance of all detectors degrades with increasing values

of OT . In both SH and SG the YOLOv3 is the best detector. For

all gaze trained detectors, in SG, performance degrades substantially

at high values of OT . However, at low values of OT , YOLOv3 and

YOLOv5 in SG deliver performance similar to those observed by

their corresponding detectors in SH .
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Fig. 7. Precision versus Recall curves and Miss-Rate versus False-Positive-Per-Image (FPPI) curves, at different Overlap Threshold (OT) values,
for three different object detectors. Dashed lines correspond to object detectors trained using Gaze labelled data. In some cases the observed
curves are identical and thus appear as one since they are exactly aligned. For example, for the YOLOv3 hand detector the Precision-Recall curve
for OT = 0.1 is not visible because the curve for OT = 0.2 lies exactly on top of it.

A more fine-grained analysis of the impact of OT on detector

performance is presented in terms of mAP and LAMR in Fig. 8

and Fig. 9. YOLOv3 delivers the best performance for gaze and

hand labelled data in terms of both mAP and LAMR. In SG, YOLO

based object detectors deliver mAP greater than 50% for OT ≤ 0.4,

whereas the Faster R-CNN delivers a mAP greater than 50% for

OT < 0.2.

3) Labelling Time: Two pathologists were asked to label 50

medium size KPs using each of the annotation technique and the

time taken to label them all was measured using a stopwatch. We

then determined the average time to label a single KP. The results of

these experiments are presented in Table II and discussed in the next

section. Pathologist B consumed a larger amount of time for creating

freehand labels as compared to pathologist A. The annotation time

for both pathologists while generating bounding box based labels

was similar. For gaze based labels, pathologist A was again slightly

faster. The average of both annotators’ times (Table II) indicates that

bounding box annotations consumed approximately 65% less time

than freehand annotation. Gaze annotations were the fastest and took

less than half of the time consumed by bounding box annotations

and 85% less than the time for pixel wise annotations. With each

time saving annotation methodology, we trade-off granularity and

accuracy. Our goal was to examine the trade-off between granularity

and time saving in gaze based annotations; the results in this section

enable us to quantify this trade-off. We believe that labeling quality

can be improved by developing more advanced gaze based annotation

tools.

A. Discussion

The experiments conducted for this work revealed a number of key

insights about gaze based data annotation which we believe will be

useful for anyone planning to explore this area in more detail. We

now discuss our findings in the context of the questions posed in

section I.

Q-1: The gaze annotation process does contain a fair bit of noise

and comes with its own unique set of challenges and characteristics.

The first is that eye gaze can be unintentional and influenced by

the subconscious, making it more prone to errors and noise as
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Fig. 8. Mean average precision (mAP) of all detectors observed at
different overlap threshold settings.

compared to hand labeling where, gestures are deliberate and based

on conscious decisions to annotate. It is also difficult for a human

mind to stay focused on the task for long; so if the annotator zones

out while inadvertently looking at a particular region or becomes

distracted by something else on the screen, that region will get

annotated as an ROI. Conversely, the annotator might already be

looking at a candidate region while making the decision about its

status as an ROI or not. As gaze recording is a continuous process,

the area may get falsely annotated as an ROI. However, our results

demonstrate that even though false ROI labels do occur, this is not

a substantial problem. This is evident from the fact that YOLO

based object detectors in SG were able to achieve performance

that was close to the baseline detectors in SH (for OT ≤ 0.4)

despite there being no rigid constraints on the annotators during gaze

labeling. However, we still believe that improved software with user

interfaces (UIs) designed specifically for gaze based annotations are

required and have the potential to match the performance of hand

labeling. Integrating gaze labeling with other modalities such as voice

commands or keystrokes may also provide performance gains by

turning off gaze labeling when not required to avoid falsely labelled

ROIs.

Q-2: The performance of two out of the three detectors in SG

is close to the their corresponding detectors in SH at lower values

of OT indicating that gaze based training does provide useful

information. This seems to indicate that gaze based labeling even

with simple preprocessing techniques like KDE enables estimation

of location and (to some extent) size of objects. Furthermore, use

of more advanced preprocessing approaches may deliver further

improvements in performance.

Q-3: In terms of labeling time, it seems that gaze labeling does

indeed require less time as compared to conventional labeling tech-

niques. Again, further improvements in UIs and tracking hardware

are likely to yield further reduction in labeling time. We would like to

highlight that the labeling time in Table II currently does not include

the initial time consumed for tracker calibration which was required

only once at the beginning of a new labeling session and took around

5 to 10 seconds on average.

Q-4: In this work our focus was primarily on ROIs with simple

circular or oval shapes. Incorporating prior knowledge about the

shape of target ROIs does seem to allow us to get rough estimates of

the shape. For example, use of Gaussian kernels enabled us to model

the rough shapes of KPs. However, we did not investigate this aspect

in detail and our results at this stage are therefore, insufficient for us
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Fig. 9. log-average miss rate (LAMR) of different detectors observed at
different overlap threshold settings.

to be able to make concrete conclusions regarding shape estimation.

A limitation of our method is manual selection of the kernel size σ in

WSIs containing ROIs of drastically different sizes. As mentioned in

section III-B, when dealing with ROIs of different sizes, our current

approach employs two different values of σ on gaze data from a

single recording session and then merges the two binary masks.

Q-5: Three well-established object detectors were tested using

gaze and hand labelled data. Extensive performance evaluations were

conducted to assess the difference in performance. Our analysis

demonstrates that when trained using gaze labelled data, YOLO

based object detectors demonstrate performance that is similar to

that of hand labelled data at OT ≤ 0.4. The performance gap

becomes greater at higher values of OT . Conventional object de-

tection applications typically use OT = 0.5. However, conventional

object detection approaches such as pedestrian detection are required

to deal with challenges such as occlusion of target objects behind

other objects that occur when 3D scene information is projected into

a 2D image. The nature of WSI data is inherently different and

occlusion-free. Therefore, the use of high OT values may be too

restrictive in this scenario. Some sample results of the best performing

detector (YOLOv3) are shown in Fig. 10; it can be observed that in

practice, the gaze detector predictions are reasonably good. Finally,

it is highlighted that noticeably better performance of the YOLOv3

detectors on gaze labelled data compared to other detectors (YOLOv5

and Faster R-CNN) seems to indicate that detector choice can also

have an impact on performance on gaze data. Therefore, custom-built

detectors may allow further improvements in performance on gaze

labelled data.

V. CONCLUSIONS AND FUTURE WORK

We have presented the first of its kind work that thoroughly

investigates the performance of gaze based labeling of histopathology

WSI data. We have demonstrated that use of gaze based labeling is

sufficiently accurate to be able to train machine learning algorithms

for object detection and classification. However, gaze-labelled object

detection does have limitations which still need to be overcome. It

also does not convey accurate shape information as accurately as

‘Freehand’ hand labeling. We believe that labeling quality can be en-

hanced further by making software improvements to the gaze labeling

pipeline and/or employing better gaze tracking hardware. For the KP

segmentation problem exploiting prior knowledge of the ROI shape

seems appealing. A potential approach can be purpose-built deep

CNNs that search for oval/circular shaped ROIs. These improvements
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Fig. 10. Samples results of the YOLOv3 hand and gaze based detectors. Numerical values around a box indicate the IOU between a predicted
bounding box and its corresponding ground truth bounding box.

may allow extension to more challenging applications like semantic

segmentation. It would be interesting to see if performance gains can

be obtained by employing ensemble based approaches similar to the

ones proposed in [29]–[32]. However, we have left this for future

work since the focus of this work is to examine the performance

difference between hand and gaze based labeling and not performance

maximization. We have also shown that gaze recordings contain

a number of outliers as a natural consequence of the pathologist

searching or studying slides as they eye ball the WSI in search of

ROIs. A majority of these points can be filtered out using simple

pre-processing techniques.

We have also demonstrated that the time and effort required by

pathologists can be conserved using gaze annotations as an alternative

technique to conventional annotation strategies. Our current pipeline

requires manual selection of the threshold parameter. However, this

can be overcome by developing adaptive thresholding approaches and

we plan to tackle it as part of our future work. Even in its current

state, the burden of the manual data clean up and post-processing lies

with the data analysis team while saving the pathologists and domain

experts valuable time that may be utilized for tasks other than data

labeling.

Our work also required the development of a unique software

platform that can be interfaced with gaze tracking hardware for

annotation of WSI data. This tool has the potential to be expanded

to other biomedical image and video file formats for gaze recording

thus providing a platform for other eye gaze related research. Overall

we believe that gaze based labeling is currently in its infancy, it has

tremendous potential but requires development of dedicated labeling

software and UIs. As part of our future work, we will develop the

gaze based equivalent of tools such as the “Magic Wand” in QuPath,

that speed mouse based annotations of data. Another avenue worth

exploring is whether or not to include a visual feedback mechanism

for the pathologist? In our current setup when the pathologist focused

on an ROI, no feedback was provided about the density/magnitude of

gaze points on screen. Also, there was no feedback about whether or

not a candidate region was successfully tagged as an ROI. Keeping

gaze points invisible at the time of labeling was intentional since

it became a source of distraction. The downside of these invisible

data points was that it was somewhat challenging to get reassurance

on whether or not labeling had been stored correctly. Hence it

was possible for the pathologist to revisit a ROI and attempt to

label it again. Selecting the right type and amount of feedback is
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therefore an avenue that requires further investigation in the future.

Another interesting avenue of future research can be to conduct a

thorough comparison of our constraint-free approach with constrained

approaches such as [14] which require the use of an On-Off switch

by the Pathologist to trigger labeling of an ROI. Replacing the simple

On-Off switch with a mono-stable switch may eliminate the need for

the fixation time (required by our current setup) and the associated

uncertainty about whether it has lasted long enough to be reliably

registered. Also the false positive registrations may decrease with

such a design. However, the false negatives may increase in case the

Pathologist forgets to press the label trigger.

In summary, we conclude that gaze based labeling, with minimal

constraints, saves time and effort and is able to deliver labels that after

pre-processing and noise removal are good enough to train machine

learning algorithms on simple object detection and classification

tasks. However, there is significant margin for improvement and

performance is expected to improve with better tools and gaze

tracking hardware. We hope that the data and tools being released

with this work will pave the way for other researchers to delve deeper

into this challenging research problem.
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U. Yüksel, Ç. Kılıkçıer, Ş. Olut, G. B. Akar et al., “Comparison of semi-
automatic and deep learning-based automatic methods for liver segmen-
tation in living liver transplant donors,” Diagnostic and Interventional

Radiology, vol. 26, no. 1, p. 11, 2020.



This figure "Figure6.png" is available in "png"
 format from:

http://arxiv.org/ps/2202.02764v1

http://arxiv.org/ps/2202.02764v1




This figure "binarymask_highres.png" is available in "png"
 format from:

http://arxiv.org/ps/2202.02764v1

http://arxiv.org/ps/2202.02764v1

	I Introduction
	II Related Work
	III Gaze Based Annotation
	III-A Experimental Setup
	III-A.1 Hardware Setup
	III-A.2 Software Setup
	III-A.3 Dataset Description

	III-B Noise Mitigation via Kernel Density Estimation
	III-B.1 Comparison of Hand and Gaze Generated Maps

	III-C KP Detection
	III-D Comparison of labeling Time

	IV Results and Discussion
	IV-.1 Hand and Gaze Map Comparison
	IV-.2 KP Detection
	IV-.3 Labelling Time

	IV-A Discussion

	V Conclusions and Future Work
	References

