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Non-linear solutions and their stability are presented for homogeneously heated fluids
bounded by rigid conducting and insulating plates. In particular, we sought roll-type so-
lutions emerging from the neutral stability curve for fluids with Prandtl numbers of 0.025,
0.25, 0.705 and 7. We determined the stability boundaries for the roll states in order to
identify possible bifurcation points for the secondary flow in the form of regions that are
equivalent to the Busse balloon. We also compared the stability exchange between ”up” and
”down” hexagons for a Prandtl number of 0.25 obtained from weakly non-linear analysis
in relation to the fully non-linear analysis, consistent with earlier studies. Our numerical
analysis showed that there are potential bistable regions for both hexagons and rolls, a result
that requires further investigations with a fully non-linear analysis.

I. INTRODUCTION

This work is concerned with convection and pattern formation generated by uniformly dis-
tributed internal heat sources in fluid layers that are bounded by rigid/insulating plates. It is
motivated partially by previous work [1–6], as well as by the fact that the problem has many
important environmental and industrial applications. Internally heated flows have received much
less attention than Rayleigh-Bénard convection although they are directly related to studies of the
earth’s mantle, where heat sources can result from the decay of radioactive materials. Geophysical
and planetary applications of volumetric heating also include the cases where heat is released by an
electric current in a conductive fluid, or caused by internal heating associated with solar radiation in
planetary atmospheres. Industrial applications of internally heated fluids include radioactive decay
in molten reactor cores, as well as exothermic and endothermic reactions in chemical reactors.

In addition, the present problem can be compared with Rayleigh-Bénard convection, where
fluid motions are driven by temperature differences across the fluid layer and not by homogeneous
heating. The heating of horizontal internally heated fluid layers gives rise to stable convective
structures [3, 7]. Typical structures observed in Rayleigh-Bénard convection [8] can take the form of
two-dimensional rolls - Busse oscillations [9–12]. Three dimensional structures appear as hexagons,
cross-rolls, bimodal cells and varicose type rolls [13–18]. In the case of internally heated convection
in a horizontal layer with asymmetric boundary conditions that is studied here, hexagonal and
spoke-like structures have been observed experimentally at and beyond the transition between
thermal conduction and convection [7, 19–21, 23].
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Tveitereid and Palm (T&P) [24] examined pattern transitions from laminar state of uniformly
distributed internal heat sources in a fluid layer bounded by two plates; a rigid conducting plate
above a rigid insulating plate where the two rigid boundaries are separated by a finite distance,
with the azimuthal and its perpendicular directions of infinite extent.

They [24] employed a numerical method based on Fourier analysis combined with a modified
Runge-Kutta method and found that hexagons can be stable for values up to 15 times the critical
Rayleigh number at infinite Prandtl number. The temperature equation decouples from the mo-
mentum equation rendering the problem much simpler to deal with, when the Prandtl number is
infinite. Weakly nonlinear analysis was also applied with the Boussinesq approximation [24], which
found that the only stable planform for small supercritical Rayleigh numbers are the hexagons. The
weakly nonlinear results were derived on the basis of the cubic order approximation and, therefore,
this analysis is only valid for heating close to the critical Rayleigh number.

T&P [24] further confirmed the existence of a small subcritical regime and found that at Prandtl
numbers less than 0.25, the stable planform takes the form of ”up-hexagons”. Thess and Bestehorn
[26] also reported a similar exchange between hexagon types in Bénard Marangoni convection,
where up-hexagons occur at Prandtl numbers greater than the critical value. Both studies report
rolls as the dominant planforms at such transition of Prandtl number [24, 26].

It should be noted here that T&P used a small number of modes in their simulations, compared
to today’s hardware capabilities, and while their simulations were initialised by different states,
they always ”resolved” to down hexagons. Their stability analysis concurs this statement (see
figure 1 of [24]), where they quote that all their solutions, and with increasing time, approach a
hexagon pattern with downward motion at the centre of each shell. Comparisons made against
experimental [23, 27] and theoretical studies [25, 28], though [24] support the above results and
are also supported by recent experimental studies [20–22, 29], as well as recently reported direct
numerical simulations [30], where a non-zero heat flux was applied to the lower boundary. However,
rolls were found to be unstable at high Prandtl numbers and for wavenumbers much larger than
the critical wavenumber associated in experiments under such internal heating conditions [7].

Therefore, the principal aim of this paper is to explore the linear stability of hexagons and rolls
from the region of the critical transition bifurcation number to approximately 10 times this value.
This is motivated by the desire to offer a complete stability boundary for each of the primary
states that bifurcate from the neutral curve. We have examined the stability characteristics of
such roll and hexagon patterned solutions for a variety of Prandtl numbers and against different
types of perturbations. In this sense our work complements and enhances the work of T&P [24],
which was either limited to weakly non-linear analysis or employed the large Prandtl number value
limit. In addition, we also offer an appendix, where the effect of the Prandtl number on the
stability of hexagons is evaluated via explicit calculations for a variety of Prandtl number values,
where we also established regions of stable rolls that could be related to the exchange of stability
between the ”up” and ”down” hexagon states. We also applied disturbances to the rolls in order to
establish an equivalent to Busse’s [9] balloon under the assumed conditions (i.e. internal heating
with conducting/insulating boundaries for Prandtl numbers up to 7). This allowed us to examine
the limits of stability of the rolls and hexagons at several Prandtl numbers and compare results
against the T&P [24] results. We also show numerically that our simulations are in complete
agreement with the recent work of Busse [10].

In Section II, we present the formulation for our problem along with the corresponding geometric
configuration. In Section III, we present the stability analysis of fully non-linear steady hexagon
and roll solutions for the Prandtl numbers of several fluids. Our conclusions are summarised in
section IV, while the appendix contains supplementary material.
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Fig. 1. Two-dimensional view of the geometrical configuration with the boundary conditions that are
applied to horizontal fluid layer between a conducting and an insulating boundaries. The dash-dotted curve
(T0(z)/Gr = −(z2 + 2z − 3)/2) and the dashed line (∂zT0(z)/Gr = −(1 + z)) indicate the basic (laminar)
temperature profile and its derivative over the layer depth. The dotted line indicates the basic (laminar)
velocity profile. î, ĵ, k̂ are the unit Cartesian vectors (̂j is perpendicular to the î, k̂ plane and is not depicted).

II. FORMULATION

In this study, we assume quiescent incompressible Newtonian fluids with thermal diffusivity
κ̃ and kinematic viscosity ν̃ confined between two parallel horizontal plates of infinite extent.
The coordinate system (x, y, z) comprises both horizontal and the normal the the wall directions,
respectively, with the origin positioned on the midplane of the layer. The plates are a distance L̃
apart with the upper plate is maintained at the reference temperature T̃ ˜L/2

= T̃r, while the lower

plate is an insulating surface with ∂z̃T̃− ˜L/2
= 0, as is also shown in Fig.1.

A. Governing Equations

The motion of the fluid is driven by its response to the internal heating, which gives rise to local
differences in the density due to thermal expansion. The local variations in the density are assumed
to be small enough for the Boussinesq approximation to be valid [8, 31, 32]. The fluid motion can
be modelled by the following governing equations for the velocity ũ and the temperature deviation
T̃ from the environment T̃r:

∇̃ · ũ = 0 , (1)

ρ̃(∂t̃ũ + (ũ · ∇̃)ũ) = −∇̃p̃+ µ̃∇̃2ũ− β̃ρ̃g̃
(
T̃ − T̃r

)
, (2)

∂t̃T̃ + (ũ · ∇̃)T̃ = κ̃∇̃2T̃ + q̃ , (3)

where (̃·) indicates a dimensional variable, with q̃ being the rate of internal heating supplied to the
layer. The parameters β̃, µ̃ and ρ̃ are the thermal expansion coefficient, the dynamic viscosity and
the density at the reference temperature T̃r. The kinematic viscosity is given by ν̃ = µ̃/ρ̃, while κ
is the thermal diffusivity of the fluid in the layer and g̃ is the uniform gravitational acceleration
with g = |g̃|.

In order to non-dimensionalise Eqs. (1-3) we use L, L2/ν̃ and qL2/(2κ̃Gr) as the dimensions
of the system with respect to length, time and temperature. The Grashof number Gr is a control
parameter for the ratio of buoyancy driven flow to inertially driven flow and it indicates the
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TABLE I. Truncation level dependence of the roll solutions from our simulations at αx = 1.315 for Pr = 0.025
at Ra = 1.01Rac, where the subscript c indicates critical value(s). Here we present the dependence of the

truncation on the real part of ûz(0, 1) and the `2norm =
√∑Nx

nx=−Nx

∑Nz

nz=0 ûj(nx, nz)× ûj(nx, ny, nz)∗,

which is a measure of the strength of the convective flow. The complex conjugate is denoted by ∗, while
the superscript R denotes the real part. The mean temperature of the fluid and its derivative are given
by < T (z) >=

∑Nz

nz=0 θ̂(nz)Unz (z), ∂z < T (z) >=
∑Nz

nz=0 θ̂(nz)∂zUnz (z) respectively, with the boundary
conditions for the basic temperature and its derivative given by T0(−1) = 2.00 and ∂zT0(1) = −2.00
respectively (see also Fig.1). The derivative of the mean temperature is calculated using Eq.9 and we
provide a sample of values of the mean temperature and its derivative.

Nx Ny Nz ûRz (0, 1, 0) `2norm < T (−1) > ∂z < T (1) >
10 6 5 -0.00146237 0.66589599 -0.00059418 0.00001043
10 6 7 -0.00147608 0.67277968 -0.00058739 -0.00000163
10a 6 9 -0.00146736 0.67180251 -0.00058705 0.00000014
10 6 11 -0.00146726 0.67176162 -0.00058699 0.00000000
10 6 13 -0.00146740 0.67177616 -0.00058699 0.00000000
10 6 15 -0.00146739 0.67177544 -0.00058700 0.00000000
4 4 15 -0.00142418 0.67027414 -0.00058463 0.00000000
6 4 15 -0.00146679 0.67174780 -0.00058696 0.00000000
6 6 15 -0.00146676 0.67174794 -0.00058696 0.00000000
8 6 15 -0.00146740 0.67177547 -0.00058700 0.00000000
8 8 15 -0.00146740 0.67177547 -0.00058700 0.00000000
10 8 15 -0.00146739 0.67177544 -0.00058700 0.00000000
10 10 15 -0.00146739 0.67177544 -0.00058700 0.00000000

a This truncation level was maintained for both the strongly nonlinear states and their stability analysis against
perturbations

heat required for the fluid state in the layer to be in the convection region. It is defined as

Gr =
(
g̃β̃q̃L̃5

)
/
(
2ν̃2κ̃

)
and is used to study convection beyond the critical (basic, laminar) state

aby also assuming no-slip boundary conditions for the velocity deviations from the basic fluid
state. The Prandtl number, Pr is defined by Pr = ν̃/κ̃ and the corresponding Rayleigh number by
Ra = PrGr . The dimensionless velocity ũ and temperature T̃ deviations from the pure conduction
state, are then governed by:

∇ · u = 0 , (4)

∂tu + (u ·∇)u = −∇p+∇2u− g

g
T , (5)

∂tT + (u ·∇)T =
1

Pr

(
∇2T + 2Gr

)
. (6)

In order to obtain the basic (purely conductive, laminar) temperature profile, we ignore the velocity
and temperature deviations perturbations in Eqs (5-6) and solve the resulting ordinary differential
equations subject to the boundary conditions of Fig.1. This gives Tr(z) = −Gr × (z2 + 2z − 3)/2,
ur(z) = 0, for the basic temperature and velocity profiles of Fig.1. More details of the generic
methodology can be found in [2, 3, 33] and more recently in [34].

Following [24, 28], the critical Rayleigh number for the transition between laminar conduction
and steady convection is taken as Rac = 2772.27. The wavenumber of the state observed at
critical transition is αc = 2.63. We have confirmed the form of neutral stability boundary and the
critical values in [6]. In this work we concentrate on the stability of non-linear roll and hexagon
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solutions, selecting the values of Pr = 0.025, 0.25, 0.705, 7 for our numerical analysis. Since regular
wave-like motion is expected with the formation of primary rolls or hexagons, the steady flow and
temperature are expanded in the x, y plane by Nx and Ny modes using a double Fourier series.
In the z direction, we apply Nz modes of a Chebyshev expansion for the steady flow, while for
temperature we employ Nz modes of a Chebyshev polynomial expansion defined in terms of a
gradient in order to take into account the asymmetric boundary conditions. Thus we have

uj(x, y, z) =
Nx∑

nx=−Nx

Ny∑
ny=−Ny

Nz∑
nz=0

ûj(nx, ny, nz) (7)

×(1− z2)J(j)Tnz(z)eınxαxxeınyαyy,

θ(x, y, z) =
Nx∑

nx=−Nx

Ny∑
ny=−Ny

Nz∑
nz=0

θ̂(nx, ny, nz) (8)

×Unz(z)eınxαxxeınyαyy,

where Tnz(z) is the nz order Chebyshev polynomial and Unz(z) is the nz order shifted Chebyshev
polynomial, given by:

Unz (z) = Tnz (z) +

[
n2z − (nz − 2)2

]
Tnz−1 (z)−

[
n2z + (nz − 1)2

]
Tnz−2 (z)

(nz − 1)2 + (nz − 2)2
. (9)

Both ûj(nx, ny, nz) and θ̂(nx, ny, nz) are complex coefficients for the velocity and temperature
deviations taking into account the boundary conditions for the temperature (see Fig. 1). The
function J(j) takes the value 1 for j ∈ {x, y} and 2 for j = z. The non-slip boundary condition
for the velocity u is automatically satisfied by the factor (1 − z2)J(j) and its derivative. Taking
into account the imposed horizontal translation and wall-normal reflectional symmetries, as well
as the continuity equation, a Galerkin-type projection yields quadratic equations for the truncated
independent set of coefficients of the series. The Newton-Raphson method enables us to determine
the solutions of the equations for the rolls and hexagons, to a high degree of accuracy [2, 34].

B. Truncation

Here we present the dependence of the complex coefficients, mean temperature and its gradient
on the truncation level (see Tables II and I). For the complex coefficients, we just depict the
numerical values of the real part of ûz(0, 1) for rolls and of ûz(0, 1, 0) for hexagons at various
truncation levels, as well as, the strength of the secondary flow, expressed by `2norm (Tables II
and I). We also show the convergence in the mean convective temperature at the lower insulating
boundary and the gradient of the mean convective temperature at the upper conducting boundary.
In order to ensure high accuracy of our stability results, we chose Nx = 5, Ny = 0, Nz = 13 for the
rolls (Table II) and Nx = 10, Ny = 6, Nz = 9 for both types of hexagon (Table I) at Pr = 0.025
and Ra = 1.01Rac. These values were retained for the analysis of the rolls for all Prandtl numbers
considered here.

C. Stability

To find the secondary states that evolve from the primary rolls and the hexagons, we determine
the growth rate σ of infinitesimal disturbances. The growth rates are calculated by using the
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TABLE II. Truncation level dependence of the hexagon solutions at αx = 0.6575 and αy = 1.1388 for
Pr = 0.025 at Ra = 1.01Rac. Here we present the dependence of the truncation on the real part of

ûRz (0, 1, 0) and the value of `2norm =
√∑Nx

nx=−Nx

∑Ny

ny=−Ny

∑Nz

nz=0 ûj(nx, ny, nz)× ûj(nx, ny, nz)∗, see II,

where ∗ denotes complex conjugate, while the superscript R designates the real part. The mean temperature
and its derivative as defined as in Table II.

Nx Nz ûR1 (0, 1, 0) `2norm < T (−1) > ∂z < T (1) >
5 3 1.56308958 1.56741561 -0.00192686 0.00006023
5 5 1.28723257 1.29070183 -0.00148694 0.00001844
5 7 1.34214006 1.34589050 -0.00157063 -0.00000260
5 9 1.34086062 1.34460363 -0.00157139 0.00000022
5 11 1.34085653 1.34459959 -0.00157121 0.00000000
2 13 1.30731404 1.31102563 -0.00149331 0.00000000
4 13 1.34086190 1.34460500 -0.00157122 0.00000000
5a 13 1.34085732 1.34460038 -0.00157121 0.00000000
6 13 1.34085732 1.34460038 -0.00157121 0.00000000
5 15 1.34085728 1.34460035 -0.00157121 0.00000000

a This truncation level was maintained for both the strongly nonlinear states and their stability analysis against
perturbations

traditional linear stability theory based on modal analysis:

δuj(x, y, z, t) = eσt
∑

nx,ny ,nz

δûj(nx, ny, nz) (10)

×(1− z2)J(j)Tnz(z)eınx(αx+d)xeıny(αy+b)y,

δθ(x, y, z, t) = eσt
∑

nx,ny ,nz

δθ̂(nx, ny, nz) (11)

×Unz(z)eınx(αx+d)xeiny(αy+b)y,

where (d, b) are the Floquet multipliers, representing here the wavenumbers of the imposed distur-
bances on the flow states at hand. The Fourier series when substituted in the equations of motion
of the fluid flow leads to a generalized eigenvalue problem [2]. We solve this eigenvalue problem
and we designate a state as stable if for all real parts Re[σ] < 0 and, accordingly, unstable if for
any real part Re[σ] > 0, where σ represents a complex eigenvalue of the generalised eigenvalue
problem for the disturbances. We seek the maximum value of the real part (growth rate) of the
eigenvalues to determine disturbances that cause the secondary states to evolve from the primary
rolls. Several values of Ra were studied and the maximum real part of the most critical eigenvalue
(the one that initiates the transition of the flow to its secondary state) was evaluated. It is worth
mentioning here that in all cases examined,, the symmetry relations Re[σ(d, b)] = Re[σ(±d, b)] (b
fixed), Re[σ(d, b)] = Re[(σ)(d,±b)] (d fixed) and Re[σ(d, b)] = Re[σ(±d, b)], were always observed,
despite of the fact that the finite truncation levels given in Tables II–I were used. We varied (d, b)
in steps of 0.1 between 0 and 2.3αc when either d or b were fixed. When both d and b were varied,
we only examined (d, b) up to 0.7αc.
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III. RESULTS OF STABILITY CALCULATIONS

In this section, we provide stability results for primary rolls for fluids in an internally heated fluid
layer with Pr = 0.025, 0.25, 0.705, 7.0, as well as for hexagonal states at Pr = 0.025, 0.705, P r = 0.8.

A. Rolls at Pr=7

In Fig. 2, we present the results of our numerical analysis for the case Pr = 7. The stable
region is confined by the outer linear neutral curve (L), the cross-roll (CR), the Eckhaus (E), the
knot (K), the skewed-varicose (SV) and the zig-zag (ZZ) instability boundaries [15, 16, 18]. The
relevant values of (d, b) are clearly indicated in the figure. These boundary curves were evaluated
for a range of the Floquet parameters (d, b) as indicated in the figure. The boundaries of the
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8.0

10.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

R
a
/
R
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αx
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K: d = 0 b = 0.8

E: d = 0.015 b = 0

SV: d = 0.8 b = 0.9

CR: d = 0 b = 1.4

ZZ: d = 0 b = 0.2

E: d = 0.1 b = 0

L

HX: d = 1.14 b = 0.66

HX: d = 0.66 b = 1.14

Fig. 2. Stability plots for rolls at Pr = 7. The shaded region indicates where stable rolls exist. Thin black
curves indicate stability limits of the rolls with respect to arbitrary three dimensional perturbations. Thick
black lines indicate oscillating instabilities (except for the linear neutral, L, curve).

Eckhaus curves are presented, where the maximum growth rate was observed over a number of
values of the Floquet parameter d, keeping b = 0 [16, 18, 34]. The Eckhaus curve bounds the
area of the stable waves towards larger (1.36 and 1.46) and lower (1.18 and 1.26) wavenumbers
at 1.01Rac. We use a similar analysis to obtain the maximum growth rates for the cross-roll and
knot instabilities by varying b and keeping d = 0 [18]. In this case we select α = 1.1 and plot a
number of values of Ra between Rac and 4.04Rac to find peak values in the growth rates. This
gave two peaks, one for the cross-roll instability for b ≈ αc and the other for the knot instability
for b � αc, as indicated in Fig. 2. The zig-zag instability is also found by varying b and keeping
d = 0, but in this case we chose the first instability to cross the linear boundary at small values
of b. The limits and values of skewed varicose instabilities were found by varying both b and d,
while keeping Ra = 2.02Rac and α = 1.335 fixed [18]. We selected the disturbances, which gave
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the maximum growth rate and where b/d ≈ 1. As hexagons are known to be the preferred state
at the bifurcation point from the laminar state [24], we subsequently tested the stability of the
rolls against the hexagonal disturbances. Both combinations of (αc/2,

√
3αc/2) were applied to

(d, b). The hexagonal instability with (d, b)=(
√

3αc/2, αc/2)indicates that the rolls are stable once
Ra ≥ 1.25Rac, thus suggesting that the region inside the cross-roll instability loop is where stable
rolls are expected to occur. In the case of the hexagonal instability with (d, b)=(

√
3αc/2, αc/2),

oscillating instabilities occur, where a significant pair of conjugate complex eigenvalues emerge.

B. Rolls at Pr=0.705

In Fig. 3, the stability diagram is illustrated for the case of Pr = 0.705. The stable region is
enclosed by the linear neutral curve, the cross-roll, the Eckhaus, the knot, the skewed-varicose and
the zig-zag instability boundaries. In addition to these instabilities, we also present the stability
boundaries for the oscillatory (O) and oscillatory skewed varicose (OSV) instabilities [17]. The
relevant values of (d, b) are clearly indicated in the figure. For Pr = 7, the cross-roll and knot

0.0

2.0

4.0

6.0

8.0

10.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

R
a
/
R
a
c

αx

αc = 1.315

O: d = 0 b = 1.1

K: d = 0 b = 0.7

SV: d = 0.7 b = 0.6

HX: d = 1.14 b = 0.66

HX: d = 0.66 b = 1.14

CR: d = 0 b = 1.3

E: d = 0.2 b = 0

ZZ: d = 0 b = 0.1
L

Fig. 3. Stability plots for rolls at Pr = 0.705. The shaded region and the various stability boundary curves
shown here have the same meaning as in Fig. 2.

instability boundaries were selected from the growth rate maxima as b was varied. We identified
the boundary for the oscillatory instability by varying b with d = 0 and determined the maximum
growth rate of the disturbances complex conjugates eigenvalues [16, 18]. We found the boundaries of
the skewed varicose instability for Pr = 0.705 in the same way as for Pr = 7 by varying both b and
d, by also adjusting to Ra = 2.85Rac and α = 1.335 for the (d, b) indicated in Fig. 3 [18]. At this
value of Ra, we found that a conjugate pair of complex eigenvalues occur, suggesting the emergence
of oscillatory skewed varicose instabilities. Such instabilities occur in a small region on the skewed
varicose boundary in Fig.3 at about 3Rac. A second boundary of oscillatory skewed varicose
instabilities with the same (d, b) was observed above the boundary for such oscillatory instabilities.
Applying both combinations of the hexagonal type instabilities (d, b) = (αc/2,

√
3αc/2), we found
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two loops encircling the stable roll region bounded by the zig-zag, skewed varicose and oscillatory
instabilities. As for the case of Pr = 7, the hexagonal instability with (d, b)=(

√
3αc/2, αc/2)

suggests that the rolls are stable when Ra is greater than Rac (at Pr = 0.705, Ra = 1.17Rac).
The size of the stable region increases between 0.705 < Pr < 7.0 in a manner that is consistent
with [9, 15, 16]. Oscillating instabilities were found, where we observed a conjugate pair of complex
eigenvalues for both hexagonal instabilities, particularly in the region above (d, b)=(0, 1.1).

C. Rolls at Pr=0.025

For the case of Pr = 0.025, the stability boundaries of the two dimensional roll structures are
shown in Fig.4. They consist of the Eckhaus, hexagonal, oscillatory and skewed-varicose instability
boundaries surrounding a small stable region just beyond the linear neutral curve.The change in
the size of the small stable region as Pr decreasing is again consistent with earlier studies reported
in [9, 15, 16]. Note that the hexagonal instability with (d, b)=(

√
3αc/2, αc/2) limits the region of

stable rolls in the same way as Pr = 0.705, 7. The relevant values of (d, b) are clearly indicated in
Fig. 4.

D. Rolls at Pr=0.25

Fig. 5 illustrates the stability diagram in the case of Pr = 0.25. We selected a Prandtl number
value of 0.25 to analyse the stability of the ”up” and ”down” hexagons, as well as the primary
rolls, in order to determine whether such instabilities exchange between the ”up” and ”down”
hexagon that was reported by Tveitereid and Palm is observed by using our fully non-linear code
[24]. We observe a small stable region just beyond the linear neutral curve that is surrounded by
Eckhaus, oscillatory, as well as both types of hexagonal stability boundaries.The extent to which
rolls remain stable is significantly shorter than for fluids at Pr = 0.705, 7, yet longer than those at
Pr = 0.025.The relevant values of (d, b) are clearly indicated in the figure.

E. Hexagonal states

The limits of stability of the rolls, ”up” and ”down’ hexagons in terms of Ra were established
via weakly non-linear analysis [24] as quadratic functions (Pn) of Pr, which have the form:

P0 = −14.71 + 3.687Pr−1

P1 = 8.639− 0.0284Pr−1 + 0.0373Pr−2

P2 = 10.40 + 0.4707Pr−1 + 0.2088Pr−2

P3 = P2 − P1

P4 = 0.25(P1 + P2)

P5 = 2P2 + P1

Ra(Pr)min(HX) = −P 2
0 /4P5

Ra(Pr)min(HX,RL) = P 2
0P1/P

2
3

Ra(Pr)min(RL) = P 2
0 (P1 + 4P4)/P

2
3
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Ra(Pr)min(HX) indicates the Ra value of the turning point in the subcritical branch of the
hexagons, whereas Ra(Pr)min(HX+RL) is the minimum limit for bistability of hexagons and rolls,,
whereas Ra(Pr)min(RL) is the minimum limit of stability for just rolls.

in Fig.6 we plot the stability curves for rolls and hexagons for Pr ≤ 0.8 . In this figure, we
observe three profiles that depict the quadratic nature in the stability limits of both types of
hexagons and of the primary rolls obtained by weakly non-linear analysis, [24]. These profiles
indicate that there is a loss of stability for both ”up” and ”down” hexagons (see also Fig.7 for
contour plots of these types of hexagons, illustrating up-welling, Fig. 7A, and down-welling Fig.
7B in the centre) at Prc = 0.2506, where at this point primary rolls become the stable planform.
For Pr << Prc, ”up” hexagons were found to be stable, while for Pr >> Prc, the stable planform
is that of ”down” hexagons (see Appendix). .eps .eps In addition to the profiles of Ra as a
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O: d = 0 b = 1.2

L

flushleft

Fig. 4. Stability plots for rolls at Pr = 0.025. The shaded region and the various types of stability curves
shown have the same meaning as in Fig. 2.

function of Pr in Fig. 6 [24], we examine the stability of hexagons and rolls obtained from a fully
non-linear analysis conducted here for Pr = 0.025, 0.25, 0.705.We summarize the data obtained for
the rolls in the earlier subsections by indicating the minimum and maximum eigenvalue growth
rate points of the stable region associated with the corresponding critical wavenumber. Finally, we
observe the consequences of the change in stability of the different planforms on the variation of
the mean convective temperature at the lower insulating boundary as heating is applied. We find,
as expected, that at lower Prandtl numbers (i.e. Pr ≤ 0.25), the hydrodynamic effects influence
the change in the convective temperature. This is indicated by the hexagon states displaying a
significantly lower convective temperature than the rolls at an equivalent Ra. This effect decreases
with increasing Prandtl number; for example, at Pr = 0.705, the mean convective temperatures
arising from the hexagonal states are only slightly less than those for the rolls, while at Pr = 7.0,
the hexagonal states have a higher mean convective temperature than the rolls.
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TABLE III. Properties defining the roll instabilities, for αc = 1.315.

Instability Abbreviation b d Im(σ)
Cross-Roll CR > αc 0 0
Eckhaus E 0 << αc 0

Hexagonal HX αc
2

√
3αc
2 0√

3αc
2

αc
2 0

Knot K < αc 0 0
Oscillatory O < αc 0 Pair
Skewed-Varicose SV < αc < αc 0
Zig-Zag ZZ << αc 0 0

IV. SUMMARY AND DISCUSSION

In this work, we presented a stability analysis of the flow in a horizontal layer, which is driven
by uniform heating. We performed linear stability analysis and obtained neutral curves for various
values of the Pr number. Non-linear results for equilibrium states were also obtained with the
aid of a Newton-Raphson iterative method. We showed that the equilibrium states bifurcate both
subcritically and supercritically depending on their relevant wavenumber and Prandtl number
allocation.

We subsequently studied the stability of non-linear equilibrium states by employing standard
linear stability theory. We superimposed the general type of three-dimensional disturbances on
the equilibrium roll states. The stability ranges were found to be bounded by the E, CR, HX, K,
O, SV and ZZ instability boundaries (Table III). Oscillating forms of the E, HX, K, SV and ZZ
instabilities were also found. It ws confirmed as is well known, that the Eckhaus curve bounded
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Fig. 6. The change in the stability of subcritical hexagons and rolls as a function of Prandtl number.
Black curves correspond to the limits predicted by [24]. Grey curves and dotted lines summarise current
calculations for the rolls.

A B

0 2 4 6 8 10

x (-)

0

1

2

3

4

5

6

7

8

9

10

y
(-

)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

x (-)

0

1

2

3

4

5

6

7

8

9

10

y
(-

)

0

0.2

0.4

0.6

0.8

1

Fig. 7. Contour plots of the temperature perturbation of stable ”up” (Pr = 0.025) and ”down” (Pr = 0.705)
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the range of stable secondary flow towards larger and smaller wavenumbers. It was found that,
in general, the values of d that determined the sideband stability region varied in the regime
0.1 ≤ d ≤ 0.2 as indicated in the figures depicting the stability regions, for all Pr values that we
examined. The stability boundary of the secondary flow towards larger values of Ra was established
via an oscillatory/monotonic bifurcation curve, indicating that the secondary flow is either time
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Fig. 8. Variation of mean temperature due to convection at the insulating surface (< T (−1) >) with
heating applied (Ra/Rac) for rolls and hexagons for Pr = 0.025, 0.25, 0.705, 7.0. Note that ”up” and ”down’
hexagons are indicated with HXU and HXD.

varying (oscillatory) or stationary, depending on the nature of the perturbations introduced. This
indicates that for these cases of Pr, the solutions are nonlinear states that effect heat transport
via oscillatory waves.

We found regions of steady rolls for Pr = (0.025, 0.25, 0.705, 7) that are consistent with earlier
theoretical analyses investigating roll structures in the Rayleigh Bénard problem [9, 15, 16]. It is
expected that in the regions where we find that the rolls are stable for all Pr considered, there
could be a bistability or competition between the roll and hexagon states [10]. Further research on
the stability of the hexagons and the potential bistability with rolls is on-going. It is important to
note that, as far as the authors are aware, no experimental studies have been performed that seek
steady rolls in the regions in question. Carrigan [7] provided the only known study where attempts
were made to find steady rolls at Ra = 18Rac, Pr =∞ and α > αc.
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Appendix A: SUPPLEMENT

In this Appendix data are presented, by plotting the amplitudes for hexagonal and roll states as
the conductive laminar fluid state bifurcates to convective fluid states. These figures (Figs.A.1-A.8)
support Fig.6 of the main paper. The meaning of the various curves for the hexagons and rolls is
as follows: Thick lines – ”down” hexagons; Long dashed lines – ”up” hexagons; Short dashed lines
– Rolls.
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