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The analysis and prediction of the dynamic behaviour of structural
components plays an important role in modern engineering design. n
this work, the so-called "mixed" finite element models based on
Reissner's variational principle are applied to the solution of free
and forced vibration problems, for beam and nlate structures. The
mixed beam models are obtained by using elements of various shape
functions ranging from simple linear to complex cubic and gquadratic
functions. The elements were in general capable of predicting the
natural frequencies and dynamic responses with good accuracy.

An isoparametric quadrilateral element with 8-nodes was developed
for application to thin plate problems. The element has 32 degrees
of freedom (one deflection, two bending and one twisting moment per
node) which is suitable for discretization of plates with arbitrary
geometry. A linear isoparametric element and two non-conforming
displacement elements (4-node and 8-node quadrilateral) were extended
to the solution of dynamic problems. An auto-mesh gereration program
was used to facilitate the preparation of input data required by the
8-node quadrilateral elements of mixed and displacement type.

Numerical examples were solved using both the mixed beam and plate
elements for predicting a structure's natural frequencies and dynamic
response to a variety of forcing functions. The solutions were
compared with the available analytical and displacement model solutions.

The mixed elements developed have been found to have significant
advantages over the conventional displacement elements in the soiution
of plate type problems. A dramatic saving in computational time is
possible without any loss in solution accuracy. With beam type
problems, there appears to be no significant advantages in using
mixed models.
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NOTAT I ONS

The following is a list of the principal symbcls usea in
this thesis. Rectangular matrices are indicated by [ ] , and
column vectors by { }. Overbars denote specified zuanti<ies.

Dot over a symbol denotes derivative with respect to time.

a, b dimensions of a plate in x and y directions, respectively
A cross sectional area of a beam, plate middle plane area
Bn Jjump term

[8] operational matrix

¢ damping coefficient

[c] compliance matrix; damping matrix

D flexural rigidity of a plate

[0] elasticity matrix

d.o.f. degree of freedom
E elastic modulus

EY’ Fy dompcnents of body forces per unit volume
{F}nc ’ {F}C vectors of non-conservative and ccnservative

body forces respectively

Eo
X

[9]s[h] mixed element matrices
G shear modulus
h plate thickness

[6], [H] Overall mixed matrices

I second moment of inertia
[1] Identity matrix
[J] Jacobian matrix

1,J.K dummy subscripts

[K ] overall stiffness matrix
1 beam element length
L length of a beam



[]], [Lk] direction cosine transformation matrices

(L] strain-displacement matrix
1,m,n direction cosines

[m] element mass matrix

[M] overall mass matrix

M Bending moment in a beam

Mx’ ﬂy' Mxy Bending and twisting moments in a plate

{M} vector of nodal bending (and twisting) moments
for element (e)

n,s normal and tangential directions

Ny, Ny ..., Ng Interpolation functions

P distributed load on a beam or plate
P concentrated load

{plq distributed load intensities

{q} principal coordinates vector

Qx’ Qy, Qn shearing forces in a plate

{Q}e specific impressed forces
{r}e element consistent load vector
{R} overall load vector

S, Su, S0 General surface and surfaces where displacements
and stresses are prescribed respectively

t Time

T kinetic energy

{Ts Too Ty, TZ surface traction vector and components
To kinetic energy density

{u}, u,v,w displacement vector and components

{u} element nodal displacement vector

e
{U}, {u}o overall displacement vectors

(U} mode shape vectcr

U, U* potential energy and complementary potential 2rergy
v volume

Vn effective shearng force

XV



W transverse deflecticn

{w}e element nodal deflection vector
{W¥} overall deflection vector
XY ,2 cartesian coordinates
T.D.O.F. Total number of degrees of freedom in mixed

models (displacements and moments).

a,B angles, parameters

BX, BY rotations

s variational operator
{e} strain vector (includes both normal and shear strains)
4 modal damping ratio

A1s A2, ...Ag Lagrange multipliers

v poisson ratio
£ n natural coordinates
T potential energy functional

oo nE Reissner functional for static and dynamic analysis,
respectively

P mass per unit volume

w natural frequency

wp damped natural frequency

{o} stress vector (includes both normal and shear stresses)
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1. INTRODUCTION

The increased compiexity of engineering structures, and cemands
for increased precision in design oredictions nas drought abcut a need
for obtaining accurate and efficient models to represent the tenaviour
of the structure under various conditions of loading. Over *he past
two decades, the finite element technique has played an important role
as a means of obtaining adequate solutions to problems which are other-
wise intractable. In this work, the so-called "mixed formulation"
is employed to develop finite element models for beam and plate type
structures. Free and forced vibration problems are tackled and the
efficiency of these models are ascertained with reference to the

conventional displacement type formulation.

The finite element technique pioneered by Turner, Clough, Martin
and Topp (1) in 1956, rapidly became a very popular means for the
computer solution of complex problems, particularly in the field of
structural engineering. In this method, an actual continuum is
imagined divided into a series of elements which are connected at a
finite number of points known as nodal points. This reduces the
problem from one having an infinite number of degrees of freedom to
one with a finite number. The approach then involves the approxima-
tion of a variational expression (functional) in terms of nodal
variables of unknown magnitudes within each element. The extremi-
zation of the functional with respect to these unknowns yield the
element characteristic matrices. The procedure is repeated for each
element in turn and the overall structural properties are computed
by adding contributions from individual elements. Finally, standard
solution algorithms for discrete parameter systems are utilized to
determine the unknowns. .arious schemes nave been offered which use

either the displacements or the stresses or a combination of both as

S



the basic variables. Most practical elements are formulted by use of
assumed displacement fields and the potential energy principle. In
this method the displacements are chosen as the prime unknowns, with
the stresses being determined from the calculated displacement field.
The approximation involved is that the equilibrium equations are not
satisfied exactly, but only in an integral sense. The continuity of
displacements is required because of the method's dependence on the
potential energy theorem. Alternatively it is possible to proceed
with the stresses as the primary unknowns, an approach which is called
"the equilibrium method". In this method, the minimum complementary
energy principle is used. The assumed stress field is chosen so
as to satisfy the equilibrium conditions within and across the element
boundaries, and the compatibility conditions are satisfied in a 'mean’'.
A more general variational principle is that of Reissner (2), in which
the primary field variables, are both displacements and stresses.

The application of this principle results in finite element discret-
jsations with nodal displacement and stress variables: these are
classed as "mixed models". Since both compatibility and equilibrium
are violated, on a strictly point by point basis, no preference is
given to either displacement or stress fields. The mixed finite
element models have received wide spread applications in problems
dealing with bending components such as plates and shells. Mixed
formulation permits the relaxation of the interelement compatibility
conditions which are generally difficult to satisfy in problems deal-
ing with flexural components. This allows the use of low order shape

functions for displacements and moments which results in a decrease of

computational effort.

The mixed element was first introduced by Herrmann (3), used in
the solution of static plate bending problems and demonstrated the

specific features of the mixed formulation in the finite element
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method. Numerous other mixed plate elements have been presented,
(4), (5), (6). Of particular interest are the works by Mota Soares
(7), and Tsay and Reddy (8) who applied the isoparametric concept to
mixed element formulation for the solution of free vibration problems.

Excellent results were reported for this type of formulation.

In this thesis mixed models have been applied to beam and plate
type structures to take advantage of the superiority of the mixed element
over the displacement type element in this class of problems. The

following problems are investigated:

(i) Free vibration analysis (Mode shapes and frequencies).
(i1)  Forced vibration analysis (Time history response of

displacements and moments).

A generalized version of Reissner principle has been derived which

incorporates damping forces as non-conservative external forces.

The beam elements were examined by employing various interpola-
tions for deflection and moment fields. It has been shown in this work
that the element can favourably predict the natural modes and frequencies
of the free vibration problem. The elements have also been tested
in the forced vibration problems to determine the time history response
of displacements and moments. The results compare favourably with
known exact and displacement type element solutions. Only the two
beam elements with (parabolic-linear) and (linear-parabolic) inter-
polations for displacement and moment, failed to produce meaningful
results: in these elements the mixed matrix rank is of lower order
than required. Redundant zero energy modes are produced which cannot
be removed by application of kinematic boundary conditions. The

success of the linear isoparametric element in Reference (7) prompted
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the development of a new quadratic mixed element, to de usea in the
solution of thin plate problems. The element nas eigh%t nodes w~i<h
four degrees of freedom at each node. (One deflection ana *hree

moments) . The geometric, displacement and moment fielcs are assumed
to vary parabolically within each element. Two computer programs

were written which dealt with the free and forced vibration probiems
separately. The programs are capable of analvzing plates of variable
thickness, and various loading and support conditions. Furthermore

the plate may have orthotropic properties coinciding with the coordinate
axes. The element can be applied to plates of arbitrary plan form

with the proper transformation of the moments on the boundary. The
transient solutions are obtained by either direct integration cr modal

analysis techniques.

In order to obtain a basis for the comparison of results, the
following elements have also been applied and extended to the dynamic

Case.

(i) 4-node and 8-node non-conforming displacement type
elements, Ref. (9).

(1) Linear quadrilateral mixed element, (Ref. (7).

Using the developed quadratic element, some free vibration problems
are solved for plates with various edge conciticens. The results fTrom
these are then compared with the exact solution (10) and those obtained
using the elements named in (i) and (ii). Despite their simplicity,
mixed elements yield reasonable (good) accuracy for tne modal frequenc-
ies. It is also observed that, for a particular number 0T aegrees
of freedom the quadratic mixed element yields higher accuracy ir tne

prediction of modal frequenrcies.

SR [



The transient displacements and moments are obtained <or a

simply supported square plate under dynamic loading. The results are

presented graphically with the exact and other types of elements.

"e

advantages gained in using the mixed mocels over *he displacemenr: type

elements may be summed up as follows:

(1)

(11)

(1i1)

Mixed models calculate the transient displacements arc
moments with comparable degree of accuracy.

The eigen problem is condensed to yield a set of equations
in terms of nodal displacements only. The condensation of
moment degrees of freedom is an exact operation whereas

in displacement formulation some accuracy is lost in the
reduction of the eigen problem.

In engineering application, stress is often the quantity
which is of prime interest. With a mixed model, this
quantity is obtained directly through a simple matrix
transformation procedure. With a displacement model,
however, this quantity is obtained using a differentiation
process from an approximate displacement field . This
procedure is somewhat lengthy, time consuming and inherently
yields reduced accuracy compared with the displacements,
whereas the matrix multiplication required by mixed models
offer a faster and more efficient way for the calculation
of stresses. In forced vibration applications, where the
stress field is to be calculated at incrementals of time,

this effect is most noticable.



CHAPTER 2

VARIATIONAL METHODS
IN
STRUCTURAL MECHANICS




2.1 INTRODUCTION

The variational or energy method:have long deen used *c stucy ne
behaviour of elastic structures as an ai*ernative to the direc*
"vectorial" approach. Much of the interest and of the fascination
of variational principles lies in the fact *hat a set of equations
is replaced by the stationarity of a single functional in character-
izing the dynamics of a system. The variational orinciples of an
elasticity problem do, however, provide the governing equations of
the problem as the stationary conditions of a functional and, in that

sense, are equivalent to the governing equations. However, the

variational approach has several advantages:

(i) The functional subject to variation has usually a definite
physical meaning and is invariant under coordinate trans-
formation. Thus, the problem can be easily formulated
in any coordinate system.

(ii) When a problem of elasticity cannot be solved exactly,
variational method provides a convenient means for
obtaining approximate solutions. “The accuracy of the
solution is improved by increasing the number of degrees
of freedom.

(iii) A variational problem with subsidiary conditions may be
transformed into an equivalent problem that can be solved
more easily than the original. Transformation is achieved
by the Lagrange multiplier technique. Thus a family of

variational principles which are equivalent to each other
are derived.

'n this chapter, the basic equations which govern the distribution
of stress and deformation in elastic bodies are briefly presented.
Lagrange's principle will be introduced as the root of all modern
variational principles, “ram which the principle of minimum potert:al
energy and Hamilton's principle are derived. Cther variational
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principles such as minimum complementary potential energy may alsc

be derived in a similar manner (11).

Generalized principles including that of Reissner's are summar- sed
with reference to three dimensional dynamical problems. Some
approximate methods of analysis, applicable to problems involving
deformations and vibrations of elastic bodies are discussed. The

following notations are used:
(a) The matrix notation.

(b) The generally employed scalar notation.

(c) Cartesian coordinates (x,y,z) are used throughout.

2.2 BASIC RELATIONS

The formulation of the governing differential equations of
elasticity is well established (12), (13). Thus, suppose a body
deforms under the action of external and inertial forces, which are
in equilibrium in accordance with d'Alembert's principle, and each
point undergoes a small displacement represented by the components u,
v, w parallel to the directions of the coordinate axes, Figure (2.1).
The state of stress at a point of the body is defined by nine compon-

ents of stress, Figure (2.2).

& T T
x  Tyx  Tzx

'y Tzy (2.1)

J
£ z -

The governing equations may be summarizec as follows:



2.2.1 Equations of dynamic equilibrium

The equations of equilibrium of an elementary particle dxdydz

. p . 32 u
subject to body forces {F}, and undergoing accelerations s2{v} are:

t w
dg at,,, 9T 32
X . ° Xz p T u T T
+ ¢ +F =" — , Xy = 'yx
3x By 32 X Bt
at,, 90, 3T 32
i+_x+JZ+F =P ..._; .
3y dy 3z y 3y T @ Tay (2.2)
3T 3T, 90 2
X2, Y2, _Z4F =p3W |, ¢ =
X 3y BZ Z atz yz zy

2.2.2 Strain-displacement relations

The small displacement-strain relations are derived from

purely geometrical considerations and are given by:

_ E i
B -
Elx ax e} o] i
£ (o]} i o} i 4
]
y y
£ o] (o] S
o E [ v | =[L] tu (2.3)
Y = - )
Xy 3y, Oy
Y d 9
XZ - o] -
3, 3y | W
]
Uyl o 3 3
2 2

where [L] is a matrix of differential operators.

2.2.3 Compatibility conditions

The necessary and sufficient conditions that the six strain

components can be derived from three single-valued functions (equation

-



2.3) are called the compatibility conditions:

32¢ 52¢ 32y 52¢ 5 3
2] Y 3 ¢
’ . G . Loz B p X oa (e ¥R +‘Y2x AL
y X ’x’y vz %% x y ’2
32¢ 32e 32y 3¢ 3 v
oz z \ Y ."1
é’y + zz = _E z 2_..1/_ = ( JZ ZX - ny ) (2 )
Bz By By 2 BZBX By 3 y 25
3%e 3%¢ 32 2 3 3
2 X Yxz 9y 8 Yyz ax iy
+ 2 = =
T2 = ) - ( i )
3 3_2 a3 3 3 3 3
X z K"z x’y z X y z

2.2.4 Stress-strain relations

The stress-strain relations are given by the generalized

Hooke's law and can be represented in matrix form as:

{c} = [D] (¢}
and (2.5)

=1
(e} = [0] (o} = [C] {0}
where [C] is a matrix of material compliances, and

{o}" = [o, 9% °7 Txy Tyz z] (2.6)
{e} is given by (2.3). In the most general case, the matrix [C]
can contain up to twenty-one independent constants. Such a material
is said to be anisotropic. A material which has three planes of
elastic symmetry may be defined by nine independent constants. Such

a material is said to be orthotropic and if the three planes of

elastic symmetry coincide with x-y, x-z, y-z planes then:



E ‘\Jyx Vo . . . =
X E_Y EZ
Lo
o} [o]
Y Z
[cl- !
- EZ 9 0 ° (2.7)
-l 0 0
ny
1
Gyz
1
G'XZ
— -

For an isotropic material (which has complete elastic symmetry) only

two independent constants are required, then

1 v v 0 o o |
-V 1 =v o o o
[C]= l -y =y 1 o o o (2.8)
. 0 0 0 2(1+v)o o
0 0 o o0 2(1+)o
0 0 0 o0 0 2(1+)

where E is the Young's modulus for the material and v is its Poisson's

ratio.

2.2.5 Boundary conditions

The boundary of a solid, S, may be subjected either to
prescribed displacements or stresses. Equilibrium requirements must
be met in the interior (Eqn.2.2) and part of the surface boundary Sc

where tractions are prescribed , that is

Ty = Ix

= :
Ty Ty on So (2.9)
Tz = TZ
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where {T} denote prescribed values of tractions. ~he ccrocrents

of surface traction T, Fig. (2.3), are given oy:

T = o 7 =

by By 1 + Xy’ m+ <. N

T = g+ + = o
y yx' ' T O T Ty (a-1e)
TZ = 1 + Tyz‘m + %, n

1, m, n being the direction cosines of the unit vector normal to the
boundary. On the other hand, displacements are prescribed on part

Su of the boundary and the geometrical conditions given by:

U=U,v=Vv, w=W onS (2.11)

o



T
T b o]
gy xy
; yv

Flg 2.5 Boundary conditions.

= 2 -



2.3 CLASSICAL VARIATIONAL PRINCIPLES

The above summary has implied the use of “ewton's laws o7 motion
and geometry. The problem may be alternatively formulated from ar
integral point of view by means of d'Alembert's principle. Jsing
the concept of variations for the interpretation of problems in
mechanics. Lagrange (1736-1813) reformulated d'Alembert's principle
thus yielding "Lagrange's principle”. In its most general form, this

principle may be stated as:
[( {d Q}: - (@t dm) tour = o, (2.12)

where {Q}e are the impressed forces, m is the mass of the mechanical
system and {u} are its displacements. Lagrange's principle may be
considered as the starting point for developing the more general
variational principles which are freed from some or all restrictions.
Thus, combining (2.12) with the Lagrange relaxation principle, one
will be able to tackle any problem in mechanics in terms of a varia-
tional principle. Based on (2.12), some useful variational
principles have been developed (11) which deal with problems in

structural mechanics.

This section describes in brief the classical variational
principles applicable to non-conservative systems. A knowledge of
this is necessary to enable the understanding of the work described

in the later sections.

- 13 -



2.3.1 Lagrange's principle for elastici<y -roblems

For problems in structural engineering, Lagrange's orincinle,
tquation (2.72) must be reformulated in terms of internal ind externa’
forces for an elastic, continuous body. Let '/ be the voiume of the

body. Then, set

(dQ}, = (Q}, & , dn= odv

where {Q}e are the specific impressed forces and : is the mass density
of the body. The impressed forces may be written as:

{Q}e = {Q} + {Q} (2.13)

ext int

where {Q}ext and {Q}int are the external and internal forces respect-

ively. Therefore, (2.12), changes into:

t t i i
f {Q}ext {su} dv +f {Q}int {6u} dv - /u{u} {su} dv = o (2.14)
v ) v

In (2.14) variations {6u}, the so-calied virtual distortions, must be
small and since the reactions have not been taken into account, they
must be restricted to such ones that satisfy the prescribed kinemat-
ical constraints imposed on the body at the points of application of

the reactions.

The external forces {Q}ext consist of {F}, (body forces per unit
volume), and (T}, (distributed surface tractions per unit surface).

Hence,

-

eayt i - : o P
jLLQ}ext {5u} dv = J((anu + Fyév Fz-w)dv



where U

conservative. Now, the surface S of the body consists of a part Sc
on which surface loads {T} = {T} are prescribed, and of a part Su on

which displacements {u} = {u} are prescribed. Then

f Tyteu) ds = fmt {6u} ds , (2.16)
S

S

g

Since {§u} =0 on Su' Therefore with (2.16) in (2.15), we have:

t _ t =.t _
ﬁQ}ext{au}dV -f {F}nc{éu}dv - f{T}nc {6u}dS - § Uext (2.17)
Vv v S

g
The integral involving the internal forces is given by:

f{Q}mt{Gu}dV = -/(cxﬁex+ cy65y+ )dv = -f{o}t{ﬁa} dv (2.18)
v

v _ V

where {o} and {e} denote the vectors of stress and strain components

respectively. Hooke's law, equation (2.5) is given by:

w}=[n]{u (&5
Thus

{0} {se} = {E}t[D] {6e}= 8§ [He}t[D] {E}] =4 Uo (2.19)

The quantity
= 3}t [0] {e}  (2.20)

is the potential (strain) energy density of the internal forces.

For isotropic elastic material, Equation (2.20) may be expanded as:

Ev

. E 2 G2 2
] = (2+Ey+c +i(y + v _YZ)

0 m XZ
(2.21)
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which may also be expressed in terms of displacement components (us v,

W) by using the strain-displacement relations (2.3), thus

" £ _a\y_z 3v, 2 3w, 2 E- 3 W, -
e (@ @)+ @) e & S

E BV . W 2. W L 3U\Z L 3U L 3V, 2
+ b A W . su EL )
=y (( =ty tete) ¢t Grhk ) (2.22)

Now using (2.19) in (2.18) yields:

t - |V = i
f{o}m {su}dV = -ﬁhodv - -5ondV = el (2.23)
v Vv

V

where Uint

Substituting (2.17) and (2.23), back into (2.14) yields:

is called the potential energy of the internal forces.

t z.t b
f{F}nc {6u} dv +f {T}nc{du}ds - duext'éuint'/p{”} {6uldV = o (2.24)
v S v

o]

This expression represents Lagrange's principle for the elastic
continuous body and is useful in applications to elasticity problems

in which external forces may not be derivable from potential functions.

2.3.2 Minimum potential energy principle

In this section minimum potential energy principle will be
derived from Lagrange's principle (Eqn. 2.24). The following

restrictive assumptions are made:

(i) The problem is a static one. Then,

u} =o0 (2.25)
(ii) The problem is a conservative one. In other words the
external forces possess a potential. Then,

- 16 -



t 2.t
f{F}nc{au} dv +f (T1, (eur ds = o (2.26)
v S

g

Under the above assumptions, Lagrange's principle (2.24) changes into:

= 6 (Ugyy * Uspe) = 0 (2.27)
Let
T = Uing * Vg = f UV - [ FE v - fhE W s
L v o (2.28)
be the total potential energy of the elastic body where now both {F}C

and {T}c are conservative forces, then

8 T = 0, LA minimum (2.29)
It can be proved that Uo is a positive definite quantity (12) . With
(2.29), one has obtained the minimum potential energy principle which
may be stated as follows:
For a kinematically admissible displacement field related
to a stress field satisfying the equilibrium conditions,
the total potential energy assumes a minimum value as

compared to values resulting from any other admissible
displacement field.

2.3.3 Hamilton's principle

Hamilton's principle may be derived from the general Lagrange's
principle. For an elastic body the principle is given by Equation
(2.24):

k1t (surav + [ Mt tourds - su L - U, - fo(urtiowrdv = 0
nc'®Y nc" ext int -
v So _ v (2.24)
As before it is required that {6u} be consistent with the prescribed
constraint conditions. Now however, the virtual distortion is

2 AT =



further restricted by demanding that the variations :<:u} ce zero at

all points in the body at two arbitrary instant of time t, and t-,
that is:

(su} (g} = 0 (2.30)
at tl at t2

Integrating (2.24) with respect to t results in

t

. ot _
f [ (F3 (ourdv +f (M1f csutas - su, ., - s, | dt
£, LY S
1 o]
t2
_ [ f o{u}Stsutdv [dt = 0 (2.31)
g, L7V
Now since
L2 t2 t2
f otuttisurdt = | pturtiou) —fp{a}t{sa} dt (2.32)
t t) Y

and since (2.30) shall hold true, (2.32) changes into:

t, ts
J D{U}t{éu}dt - 'J D{L.J}t{ﬁl]} dt (2.33)
t t

with the kinetic energy density defined as:

Tos 3e (D) (2.34)

then 6T, = ofittisi (2.35)

and consequently (2.31) becomes equal to

=18 =



t, : t,
t t
f f{F}ncféu}dV t/- {T}nc {6u} dsS - auint-wext dt +J §Tdt = 0
t1 V SG tl
(2.36)

where T is the kinetic energy of the system.

Equation (2.36) is a general statement of Hamilton's principle
for elasticity problems with non-conservative external forces. It

may be re-written as follows:

t2 t2
_ - o =.t
sj (T = Uypm Uyy) dt = IU; (F1E_suav +js' {T}nc{du}dS]dt £0
' o
t t)

(2.36a)

which means (T - Uint - Uext) 1s not even stationary. For many
mechanical systems, the dissipative forces can be idealised by simple

viscous damping forces {Fd} = -c{u}, then equation (2.36) reads as

follows:
t2 t2
.t
- - - = .36b
GS (T Uint Uext)dt J. J’c{u} {SuldV dt = 0 (2.36b)
tl tl vV

For conservative systems equation (2.26) holds and (2.36) changes into:

t2
- - = 2.37
GJ- (T Uext Uint) dt = 0 (2.37)
t
2
or simply: GJI (T - np) dt = 0 (2.38)
t,

where v = U + U is the total potential energy of the system.

P ext int

Equation (2.38) represents Hamilton's classical principle and may be

applied to an elastic body subjected to external conservative forces.
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2.4 MULTI-FIELD VARIATIONAL PRINCIPLZS - LAGRANGE'S 2E_2¥ATIC
PRINCIPLE

As mentioned earlier in section 2.1, variational princicles
may be used conveniently as a means of constructing approximate
solutions to boundary value problems in linear elasticity. The
crucial point in applying it is the selection of appropriate coord-
inate functions which should satisfy certain restrictive conditions.
The principle of minimum potential energy for instance requires that
the displacement field be a continuous function of position and also
satisfy the geometric boundary conditions of the problem under
investigation. In practice it is often desirable to relax these
requirements and thus widen the function space from which coordinate
functions are chosen for comparison. This may be achieved by
modifying the classical variational principles so that all continuity
and boundary conditions bemme natural ones. From the point of
view of mechanics it means applying Lagrange's relaxation principle.
In the next section, it will be shown how to modify the minimum
potential energy and thus obtain the generalized potential energy
principle. Lagrange's relaxation principle introduces new fields
in the modified variational statement and thus increases the number

of independent variables subject to variations.

2.4.1 The Generalization of Minimum Potential Energy Principle

In the development of the minimum potential energy principle,
the assumption is made that the strains are related to displacements

according to (2.3), i.e.

{e} - [L ]{u} = {0} in the region (2.3)

and that

= 20 =



fu} = {u;

0 on the boundary Su

(2.71)

Restrictions on the conditions of compatibility (2.

3) and zne
geometric boundary conditions (2.11) may be removed by means o7 the

Lagrange multiplier technique (see references (14) ,(15)). Thus the
functional in (2.28) is modified to yield:

_ _ t _ =.t
Ty -ﬁodv f{F}C {u}dv f{T}c {u}ds
Vv S
g
- -/.[(Ex'iy-)ll p PR ] (Y
V

wr
=
wur

9

o )As]d‘f (2.39)
- f[(u-ﬂ)l7+(v-;) Ag + (W - W) Ag]dS
SU

where X) to Aq are the corresponding multipliers.

The modified
principle is therefore stated as follows:

with no auxiliary constraint conditions.

Now it may be shown that the above principle provides, indeed,
the differential equation of the problem under consideration and in

addition-.all the boundary conditions, as natural conditions of the
variational principle (2.40).

The independent quantities subject to variations in the functiona
(2.39) are: six strain components, three displacements and nine
Lagrange multipliers i;,

..... Ag and (1-,Xz,xa). Performing the

variation with respect to these quantities, it is otserved that:
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au U _
[ga—;xi e b ayiz‘” o) - {F}t{éu}]d\f f (F1surds
S

ag
- f [(Ex - %) SApte .ot (v, - -a§ . %3) aks]dv (2.41)
v
P po
= (u=-1U) 8 7 + (V = V)SAg + (w - W) akg:lds
J L
su
(.
- _ 3(6u) : . a(aw) a(au
J L(GEX —%x—' b e S (aYXZ 5)\ ]
v
= [5UA7+5V Ag + &W lg]ds = 0
Jsu

Integrating by parts, where appropriate using Green's formula, and

rearranging the terms yields:

au ' aU
i 0
[( BTO - A1) Gex +oout (=— = 2g) BYXZ] dv

X % xz
- f (ah1 + 2;“ + 3’;6 +F ) &+ (..)8v + (L.0)8 w] dv
Vv (2.42)
+ f -( -T y)su + (T y)av (T = Tz)aw]ds -
S
+ f- (Tx - A7)8u + (...)8Vv + (...)dw] ds
Su'
- f (e, -g-;-')csxl oty - -g-‘i - -—)ax ] dv
"
- f [ (u=u)sxy + (...)6xg + (W - i)dxg]ds =0
.
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The conditions for wg

to be stationary are, then

{:-%2 = A -:—Yo”;zns in v (2.43)
Tx = A7 3 T& = g ; Tz = g ON Su (2.44)
3 My g

o - t ¢t Fx =0; etc inV (2.45)
T, = }x : Ty = Ty; 1'2=Tz on S_ (2.46)
G SRE ek mpum B g Mgy (2.47)
u = u; vV = v; W= W on S, (2.48)

These are the so-called Euler-Lagrange equations of the Principle

(2.40).

The last two equations give the constraints satisfaction and

from the others it is seen that the Lagrange multipliers may be

identified as follows:

Al
and

Ay =

Ag

(2.49)

(2.50)

with this identification the variational principle is known as the
Hu-Washizu principle and can be stated as a stationary requirement for

the function (2.5%1).

ot
"y - J‘uodv -f {F}g {u} Qv -j’{‘!'}g {u} ds -f{c}({e} - [Ltus) av
v v S v

g
- f Mt (tud - (@) ds (2.51)

Sy

The independent quantities subject to variation in the functional

(2.51) consist of the stresses (o} , strains {e} and displacements

- 9% =



{u} with no subsidiary conditions. On taking variations with respect
to these quantities, it is found that the stationary conditions are
given by Equation (2.43) through (2.48), with A's replaced by stresses
{o} and {T} as in Equations (2.49), (2.50) (see reference (14)).

2.4.2 E. Reissner's principle

For a linear elastic solid, the so-called complementary strain

%*
energy density (Uo) is defined as

U, = 3o*[C]o) (2.52)

thus it can be easily shown that

t *
U, = fo}{e} -, (2.53)

holds true.

Substituting from (2.53) into (2.51), the strain components can be
eliminated from the functional (2.51) to yield another principle known

as Reissner's Principle (2).

Then,
" : : t
mp= - av +f(c} [L]Cu} av -f{F}C (u} dv -J’{T}C (u} ds
v v v s,
- J' MY (tu) - (@) ds (2.54)
SU

where now only {o} and {u} are independent variables, with no subsid-

jary conditions. Carrying out the variations we get:

o Tk -



*

.
7o =J [{Ga} [L]w + " [LYeus - Mg {éc}]dv

v

. f FIt (5w v -f{'r}'c {6u} dS -f{mt (tu} - (G} ) ds
v S, S,

_ J’ (M tou ds (2.55)
Su

The second term on the right of the above equation may be recast as

follows (making use of the integral theorem of Gauss).

t
f {0} [LJ{6u} dv =ﬁfcx.1 HY\Y'm +-rxz.n):5u + (...)68V

Vv S=So"’5u

+

(sz.'l - Tyz.m + oz.n)dw]ds (2.56)

- Lo} at at 9T ot 90’
(X% ; XY . XZy Su+ (...)gv + X2 yz X GN]dV
'[i[ 3% 3y 57 (=% * =% * 57

substituting equation (2.56) into (2.55) yields:

SLE _f[(aax 431xy & 9t 5o +Fx)au + (...)8v + (...)éw]dv

X 3y 3z
v
i r[(-E‘-LJ—°-3L)M + +(_3U_:.-ﬂ-ﬂ)a ]dV (2.57)
JV g, 3X ) 9T, 9z 23X Txz '
.
. ut (M- (M) a -[{mt ({u} - {u} ) ds
o
SG SU

with{Su} and {60} as aribtrary independent quantities, the following
relations are obtained as Euler equations and natural boundary

conditions of the functional (2.54).
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(a) - The equations of equilibrium in V

(b) - The strain-displacement relations in V
() - The requirements that T = Tx, etc. on S_
(d) - The requirements that u = u, etc. onS_

2.4.3 Reissner's principle - extension to dynamical problems

Reissner's principle, equation (2.54), is applicable to static
problems in which all forces, internal and external ones are derivable
from a potential. In this section the principle is modified to the
case of dynamic problems with non-conservative damping forces. To

the author's knowledge this has not been attempted before.

Hamilton's principle, equation (2.36) may be modified in a
manner similar to section (2.4.1) for static problems. Thus the
dynamical version of Reissner's principle is obtained. Assuming
that all the external forces are conservative and derivable from

potential functions, the new Principle may be written as follows:

t2 t,
s . r " ¢ ;
8 J ™ dt = § [ ’ (-T0 - U0 + {0} [L]{u}) dav - V{F}C{u}dv
t) "t
( r
- | @ wes - | M @) ds]dt - 0 (2.58)
v J
3 Su
where
D . -
RO ORTT
may be referred to as Reissner's dynamical functional. Carrying out

the variations indicated in (2.58), we find that, as in the static
case, the stationary conditions are the differential equations cf
dynamic equilibrium, strain-displacement reiations and all mechanical

and geometrical boundary conditions. Reissner's principle is thus seen
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to give equal emphasis to the conditions of equilibrium and compatibil-
ity since both appear as Euler-Lagrange equations of the functional 1T
When damping forces are also included, Hamilton's principle equation
(2.36b) may be generalized by means of Lagrange multipliers, thus

generalized Reissner's principle is obtained which may be stated as

follows:
t2
* t t t
G[[.[v (-T, = Uy +{o)[LTtun)av fv{r}c{u}dv -j; (M u) ds
t g
t2
- [ M tw -{G})ds] dt +f fc{ﬁ}t{éu}dv dt =0 (2.59)
t, Vv
Sy
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2.5 APPROXIMATE METHODS

Problems of any complexity are governed by a set of simultarecus
differential equations stemming from Newton's laws of motion. “hese
equations can be regarded as the Euler-Lagrange equations of a
functional with one or several dependent variables. The principal
approach in approximate methods is to work with the functional for the
purpose of finding approximate solution to the corresponding
differential equations. In this connection, the variational methods
of Ritz (16), Galerkin (16) and Kantorovich (17) have been extensively
used, with the displacement finite element method becoming increasingly
applied in recent years. In the next section, Rayleigh-Ritz method
is outlined. The finite element method which may be interpreted as
a piece-wise Rayleigh-Ritz method will be described in detail in the

following chapters.

2.5.1 Rayleigh-Ritz method

The most notable approximate procedure is the Rayleigh-Ritz
method (16), which was originally developed for use with the potential
energy functional. In this method the structure's displacement field
is approximated by functions which contain a finite number of indepen-
dent coefficients. The assumed functions are chosen to satisfy the
kinematic boundary conditions, but they need not satisfy the mechan-
ical boundary conditions (ones involying forces anc moments).  The
following displacement field components are thus employed for express-

ing the total potential energy.

n -
uos 'O(X.y.:}+z a;  T1(x.y,2)

s

1 (2.60)
VT to(x,y,2) +Z b “i(x.¥,2)

i=1
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continued:

n
YE 0 (x,y,2) *Z i Yi(x,y,2) (2.52)
i=1
where 200 Y and % satisfy the kinematic Scundary conditions on Su
while the remaining functions are zero there.  The scheme for the
Ritz method is to choose the values of the unknown coefficients so as
to minimize the total potential energy. Thus substituting equation

(2.60) into the potential energy functional equation (2.28), and

performance of the integration results in Ty ST (ai,bi,ci) i=1,2,..n
then for a stationary nh, GTp = 0 which is equivalent to

am

L2 = 0

dai

am

= 0 (2.61)

3 b1 R

am

ity = D

3 C1

This process yields 3n simultaneous algebraic equations in the

undetermined coefficients ai. b.

i» G- For dynamical problems the

Rayleigh-Ritz procedure can be used in conjunction with Hamilton's
principle (¥6). Thus the equations of motion are obtained which

may be expressed in matrix notation as
[K :[ {a} + [M ] @ = (R (2.62)

where {a} and {R} are the generalized coordinates and generalized
forces respectively. The response is obtained by solving ecua<ion
(2.62), using an appropriate direct integration or mode superposition

method (see section 4.6).
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For free vibration {R} = 0 in (2.62) and, «ith harmonic motion:

(K] - [M]) (2} = <o} (2.63)

which may be solved by standard eigen value solution routines (18).

The Rayleigh-Ritz method may also be applied with the Reissner's
functional. Now forces and displacements are independently represented
by shape functions satisfying the "forced" boundary conditions (16),
and the constants are found as before by rendering the functional

stationary.

2.5.2 The finite element method

The finite element method pioneered by Turner et al (1) and
Clough (19), is the most significant development in structural analysis
in recent years. With the development of powerful digital computers
the f.e.m. has gained considerable popularity and become a very
important tool in the analysis of structural problems and in the broad
field of continuum mechanics (20), (21). The basic concept of the
method, when applied to problems of structural analysis, is that a
continuum (structure) can be modelled analytically by its subdivision
into regions (the finite elements) in each of which the behaviour is
described by a separate set of assumed functions representing the
stresses or displacements in that region. Then it is possiblie by the
use of the appropriate energy functional and a procedure similar to the
Rayleigh-Ritz technique to derive an element matrix equation which may
have generalized displacements, stresses or both, at the nodal points,

as unknowns to be evaluated.

The Rayleigh-Ritz technique is applied to each elemen< in turn
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and the overall problem is examined by assembling all the incividual

element properties in a suitable manner.

Although the two procedures of Ritz and finite element are
theoretically identical, in practice, the finite element method has
most important advantages over a conventional Ritz analysis. A
particular difficulty associated with a conventional A1tz analysis
is the selection of appropriate Ritz functions. Inarder to solve
accurately for large displacement or stress gradients, many functions
may be needed. However, these functions also unnecessarily cover
the regions in which the displacements and stresses vary siowly and
where not many functions are required. Another difficulty arises
when the total region of interest is made up of subregions with
different kinds of strain. In such a case, the Ritz functions used
for one region are not appropriate for the other regions and special
displacement continuity conditions must be enforced. No such
difficulties arise in the finite element procedure and it may be
applied to represent highly irregular and complex structures and

loading conditions.

The so-called displacement finite element method, based on the
principle of minimum potential energy, is the most well known of all
and has been applied to static,dynamic, buckling and a whole range
of other problems (20), (21), (22), (23). The compatibility
conditions imposed on the assumed displacement field can be satis-
fied without major difficulties in C@ continuity problems; for
example, in plane stress and plane strain problems or the analysis
of three-dimensional solids. However, in the analysis of bending
problems, such as plate and shell analysis (C1 problems), continuity
of displacement first derivatives along inter-element boundaries is

difficult to maintain. Furthermore, considering complex analyses in
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anich completely different finite elements must te used <o ‘zealize
different regions of the structure, compatibility may be almost

impossible to maintain. Difficulties with inter-element compatib-
ility requirements render attractive alternative formulations based

on a mixed variational principle.

2.5.3 The mixed finite element method

The most general variational principle is that of Reissner,
in which the primary field variables are both displacements and
stresses. The application of this principle results in finite
element discretizations with nodal displacements and stress variables,
referred to as mixed models. By using the Reissner functional in
one of the several possible alternatives (22), (24), inter-element
continuity conditions may be conveniently relaxed allowing the use of
stress/displacement shape functions of lower order which ease the
computational effort. Another advantage of finite element mixed
models is that stresses and displacements are obtained with similar
degrees of accuracy, thus avoiding the decrease in accuracy character-
istic of the displacement method due to the process of differentiating
approximate displacements to obtain the strains (and hence the stresses)
once the displacement are evaluated. The mixed method was first

investigated by Herrmann (3) in the static plate bending analysis.



CHAPTER 3

DYNAMIC ANALYSIS

OF
ELASTIC BEAMS AND PLATES




3.1 INTRODUCTION

The prediction of dynamic behaviour of structural elements in
the form of beams and plates due to transient forces is a proclem of
practical importance, with applications in the design of vehicles,

aircraft, missiles, etc.

TIn the absence of continuously applied external forces, the
structure undergoes a motion due to inertia and elastic forces only.
Natural frequencies and modal shapes can be determined from a free
vibration analysis of the structure. Knowledge of the natural %requen~
cies helps the designer avoid the peak resonances which occcur in the
vicinity of the natural frequencies. More detailed knowledge of the
mode shapes may be used to estimate bending stresses excited in a
vibratory mode. The free vibration results only give information for
each mode independent of the rest. The more important class of
problems is when the structure experiences external dynamic loads.
Displacements and stresses developed under such circumstances are of

great importance to the structural analyst.

A recent survey by Leissa (25, 26) uncovers more than 200 refer-
ences which deal with problems involving the free, undamped vibration
of plates. Forced vibration problems, however, have not received as
much attention, largely due to the increased complexity of such
problems. For convenience for subsequent references the basic
equations governing the motions of elastic beams and plates are
reviewed. Hamilton's principle (2.36) and the Reissner functional
(2.54) will be specialized for plate problems. Finally, the

available classical methods of solving cynamic plate problems will ce

outlined.
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3.2 RESPONSE OF A 3EAM TO AN APPLIED FORCE

3.2.1. Equation of motion

In this section, the equations of motion for a straicht, non-
uniform beam, Fig. (3.1) are formulated. [t is assumed that vibration
occurs in one of the principal planes of the beam and the effects of

rotatory inertia and of transverse shear deformation are negligible.

The significant physical properties of the beam include the
flexural stiffness EI(x), and the mass per unit length -A{x). In
addition, the resistance to transverse velocity, c(x) is included to
represent the damping mechanisms in the beam. A distributed force
p(x) 1is applied on the beam, which is a function of time f(t) and acts
in the z direction. The equations of motion can readily be derived
by considering the equilibrium of forces acting on the differential
segment of the beam. Fig. (3.1b). Thus summing all the forces

acting vertically leads to the first dynamic-equilibrium relationship:

0 oog) f(1) + oA FE ol gt (3.1)

where w(x,t) is the deflection at any section x at time t and Q (x,% 1s

the shearing force.

The second equilibrium relationship is obtained by summing
moments about the centre line of the element (neglecting products o

small quantities), gives:

_Mu_tl " 3(x,%) (3.2)

=X

Differentiating Eqn. (3.2) with respect to x and substituting into
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p(x.t)

“x
o B(x), P AKX) E 3
& %
"l
(o)
p(x.t)
M+(3M/3x)dx

k \
!

pma?\'i/a t2 +c(x)aw/at

Q+(2Q/a x)dx

(b)

Fig 3.1 Beam subjected to dynamic loading.(a) beam properties
and coordinates.(b) forces octing on a diferenticl element.
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Equation (3.1) yields after rearrangements:

2 2
IMxt) 3_*'(*_;’&)_ - ox) H o= - p(x) f(t) (3.3)

X at

Finally, introducing the basic moment-curvature relationship of elemen-

2
tary beam theory (M = -EI%?% ) leads to the partial differential

equation of motion in terms of w and its derivatives only.

32 3y 32w - aw
= (ET rer i s oA(x)W + c(x) i = + p(x)f(t) (3.4)

Equation (3.4) is valid for both uniform and non-uniform beams.

3.2.2 Solution of the equations of motion

Free vibration - the general equation for transverse undamped
free vibration of a beam may be obtained from equation (3.4) with

p(mt):c(x)%‘g = 0, thus:

2 2
2.2_(51 SM Yy = wph 2N (3.5)
ax2 ax2 at?

For the free vibration, w(x,t) must be a harmonic function of time, i.e.

-~

wix,t) = w(x) Sin (wt + a) (3.6)

substituting (3.6) in (3.5) and assuming that EI(x) is constant we

have:
g:i _ oAw? ; = 0 (3.7)
dx* El

The general form of the solution for equation (3.7) becomes:
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W =o¢; Sinx x + C, Cosx x + C3 Sinhx x + C. Ccsh xA

where A = (Eé%i_)é (3.8)

Two conditions expressing the displacement, slope, moment, or shear force
will be defined at each end of the beam. These may be usec to

determine the four constants ¢; to c, (to within an arbitrary constant)
and will also provide an expression (called the frequency equation)

from which the frequency parameter A can be evaluated. The total
response is thus obtained by superimposing the individual mode shapes.

That is:

W) C Z Wi Sin (it + a) (3.9)

The natural frequencies and the mode shapes for the first few modes of

beams with different end conditions have been tabulated in Ref. (27).

The orthogonality conditions for uniform and non-uniform beams
with simple and general end conditions are derived in Ref. (28). The
following orthogonality relationships exist for a beam with the standard

(simply supported, clamped, free) end conditions:

L
f pA ';i (x) ';J(X) = 0 (a)
0
L 1 »
f W, (x) %2[51(@ G:J(XJ ]dx - 0 (b) (3.10)
0
L -~
J‘ Ql“(x) wj”(x) EI(x) dx =0 (c)
0]
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Also it can be shown that:

L L
- g2 [ d2w, 2 =z
I W, 2 | EI i ]dx = . _[ oA w; dx (3.11
o 1 a; a;z— 1 1 )
0
Response: A solution of equation (3.4) will be sought in the form

of an infinite series of the normal modes multiplied by the time-

dependent generalized coordinates. That is:
W (x,t) = Z &1.(x) 9; (t) €3.12)
i=1

substituting for w from (3.12) in (3.4), multiplying by W and inte-

grating with respect to x over the length of the beam,

L L
AW Z({& a.) dx +j{; dz Elzdz“‘i e | dx
ikt i% j a2 - i

1' 7 Ox?

0 0

L
c(x) QJZ(Qi 4;) dx =J' o () &j f(t) dx (3.13)
i 0

+
oY -

Applying orthogonality relations, equations (3.1C) and (3.11) together

with the assumption of proportional damping leads to:

G (1) + 265w g (1) +ug gp (8) = py(x) F(1) (3.19)
where i JJ; p(x) x;i(x) dx (3.16)
pi(x) ) J'L :A[»;i(x)]‘ dx
0

[f the variation of the applied force with time is given, tre

principal coordinates q;» may be determined from equation (3.1%),
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using Duhammel integral or other direct numerical integration methods.
The complete dynamic response is found by substituting in equation

(3.12).
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3.3 REISSNER PRINCIPLE APPLIED TO FLEXURAL MOTION OF BEAMS

To discuss the Reissner principle for the one dimensional technical
theory of beams, consider a beam of length L, subject to a uniform
transverse load p(x,t) per unit length, Fig. (3.1a). For this beam,
the stress field {o} is the moment M, the displacement field {u}
is the transverse displacement w, ana the strain field is the curvature
w" (ex = -zw"). Hence, the Reissner principle, Equation (2.59), can

be written as:

t, L L
a[[ -f (pA (%‘%)2 *;{T*' M%Zl‘-;-z) dx -[wt P(x,t) dx +g¥ﬁ];j]dt
t 0 0
t, L
+f [ f c(x) W oW dx] dt = 0 (3.16)
t) 0

where M represents the prescribed end moments. Taking variations
with respect to w and M, and equating to zero yields the stationary

condi tions for (3.16) as:

(i) The equilibrium equations (3.3)
2
(1) The moment-curvature relation (M =-EI g;g)

(i1ii) The appropriate Boundary Conditions on x = 0 and x = L.

In finite element applications, the variables M and w can be approximated
independently, but the latter would have to show continuous slope
according to standard Tntegrating' rules (20). It is possible to

relax this condition by integrating by parts of the term M %;; in

Eqn. (3.16). Thus Reissner's principle may be re-written as:
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t, L L
. ‘5 ME s t W - - :
c[[[(-oﬂkw -m+.4w)dx—fw p(x,t)dx+-§(_‘~*~M)|07;d:
t, 0 0 )
t, L
+f ]c(x) W 6w dxdt = 0 (3.17)
t; o

In the present work, equations (3.16) and (3.17), have been used
to develop several beam finite element models with different inter-
polation functions (see section 6.1 ). The behaviour of these elements
in free and forced vibration problems is studied and numerical

examples are presented in Chapter 8.
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3.4 BASIC EQUATIONS - THIN PLATE THEORY

A plate of uniform thickness (n) is considered (Figure 2.2),
such that its middle surface coincides with <ne x-y plane and tre
free surfaces of the plate are the planes z = = 3 h. 1f n is
small compared to other in plane dimensions, the following assump-

tions may be made with regard to small deflections of the plate.

(i) The direct stress in the transverse direction 2, is
considered negligible.

(ii) Membrane stresses in the middle plane of the plate are
neglected.

(iii) Plane sections that are initially normal to the middle
plane remain plane and nommal to it. This is equivalent
to neglecting the transverse shear effects (sz = Yyz
= 0).

(iv) Transverse displacement w of any point of the plate is

jdentical to that of the point (below or above it) in

the middle surface.

3.4.1 Plate displacement components

From the third and fourth assumptions, the plate displacement

field is given as

W (X,y,?..t) = W (X,¥:0,t) = W (x')’st)
. 3.18
us= -z ( )
. gl
v = Z 3)’
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Therefore the strain in a plane at a distance z from the middle

surface is given by the expression

- u L
[ = =
3v _ o, | 2
Y| = 3y = 3y?
Ly 3u av. 252
A 3y X X3y

- i e

ad %, = Ty W Yy O

3.4.2 Stress-strain relations

(b)

(3.19)

Wi th 9y = 0, the stress-strain relations for an orthotropic

plate with principal directions of orthotropy coinciding with the

x and y axes can be written in matrix notations as:

X _]/Ex :;!5
y I 1:
'Efx /Ey

- Xy 0 0

Assuming that the material is isotropic the equations become:

‘ax N 1 v
0 |= T2 v
0 0
. Sy L
Stresses L and ryz
{2:2):

o 43 =

0

0

]
/
Sxy

|'e:x ']

R

(3.20)

(3.21)

can only be evaluated from the equilibrium conditions



3.4.3

Relations between internal moments, stresses and <Zisplacemen:s

Integration of the direct stresses across the thickness o~

the plate yields stress resultants in the form of direc:

and twisting (Mxy) moments per unit length (Fig. 3.3).

M
- Xy~

y | zdz

e Txy-—

and the shear force intensities (Qx,Qy) are given by:

s

=h

/4

T
XZ

yz

My M)

(3.22)

(3.23)

Using equations (3.19) - (3.22), the following expression may be

derived for stress resultants (Mx’ M, Mxy) in terms of curvatures.

where D is the plate bending rigidity;

Y

1 v 0
v ] 0
1-v

L 0 0 o, a

32
X2
_ 3%
3y©
L _732N
IX3Y

(3.28)

Comparing equations (3.19) and (3.24), the following relation is

obtained

D ¥



X X
o ~ 122 M
Y = RS Y (3.25)
L Txy - Ty -

If a transformation of coordinates (n,s,2z) is required, simple

equilibrium considerations yields (see Fig. 3.4)

M [ sin2q cos2aq -sin2a [ M ]
X
M = cos 2a sinZq sin2a My (3.26)
s Mns‘ L -3sin2a  3sin2a cos2xd L Mxy—
and
- Qx
Q, = [com sma] (3.27)
QY

where a is the angle between outward normal n and the * x-axis.

3.4.4 Derivation of the governing differential equations

The governing differential equation of plate flexural motion
can be derived by examining, on a differential element, the equilib-
rium of forces with respect to the vertical direction Z and of moments
about the x and y axes, respectively. In addition to the applied
transverse force per unit area, p(Xx,y) f(t) there is an inertia
force (eh %%%) and a damping force (¢ %%) per unit area acting in

the z direction. (Fig. 3.5).
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pradi R M
ggix * ;;x - =0 (3.28)
;;5 * ;;X + p(x,y,t) = oh g;g + c(xsy) %%
Eliminating Qx and Qy from above equations yields
;;21 + 2 :i?;y + :;Ty + p(x,y) f(t) = :zh %%ﬁ +C %% (3.29)

Substituting from equation (3.24) into (3.29) gives the equilibrium

equation for an element of the plate in terms of W and its derivatives.

3W 34W 34w 32W W _
D[Bx” + 2 3x23y 2 * By“}‘- eh 3t< +C 3t p(x,y) f(t) (3.30)

which may also be written as:

(& w2 3 (2 g - B
D[EI (3x "W +3y (5 VN)] P(X,y,t) = -ch W - cW

Comparing this with the last relation in (3.28) results in

2
(7°H) (3.31)

(72W)

mlm w|a
< b4

For a dynamic problem W(x,y,t) must satisfy equation (3.30) together

with the boundary conditions.



3.4.5 Boundary Conditions

To solve the plate equation (3.30) one needs to satisfy the
boundary conditions for the given plate problem. Since equaticn (2.30)
is a 4th order differential equation no more than two, either geomet-
trical or mechanical boundary conditions can be imposed at a boundary.
The mechanical boundary conditions may consist of the normal moment Hn,
the twisting moment Mns and the normal shear force intensity Qn.

Since 3 conditions are too many for the thin plate theory, the twist-
ing moment MnS and the normal shear force intensity Qn must be

reduced into one quantity, the so-called normal effective shear force

intensity given by (29) as

v = Q. + ns (3.32)

the boundary conditions can thus be imposed as:

. - o oW . .
either Mn = Mn or = 18 prescribed
either Ny = Vn or W is prescribed
For a simply-supported boundary

32W 32W
= = i |2 0
M . [ mz TV 38z ]
W = 0
For a built in boundary
W
= ° 0
W = 0
and for a free boundary »
B - Tns
My F 0, Vn n t T3 0



Thickness h

Fig 3.2 Thin plaote subjected to distributed loading.

Vv

Y

[P
™~

Fig 3.3 Stress components on a plate slement.
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Fig 3.4 Moments and shear notations.



p(xy.t)

l dy
x
/- g
/ L/{{ My + M, /3x)ax
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/ [~ S — Qx -0-(60‘ 3x)dx
Q iiao /3y)dy
/ 3y,
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VYV (onwew)

Fig 3.5 Forces and moments on an element of a plate
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3.5 HAMILTON'S PRINCIPLE - THIN PLATE THEORY

Hamilton's principle, equation (2.36) may be specialized fcr the
plate bending theory. Let the plate be subject to a distributed
lateral load p(x,y,t) per unit area of the middle surface in the
direction of the z-axis (Fig. 3.2). On the part of the side boundary
Sc. external forces are prescribed, defined per unit area of the side

boundary (Tx’ Ty, Tz).

geometrical boundary conditions are prescribed. Then, Hamilton's

On the remaining part of the boundary Su,

principle for the present problem can be written as follows:

t t2

2

j l:j {T}EC {su} dS +f p(x,y,t)&wdﬂdti-‘f (3T - sU) dt = 0
tl SG A tl

(3.33)

The kinetic energy (T) is given by

h
/2 2 W 2
T J’ J. (o W) dz dx dy = 3 Jﬂph &) dxdy (3.34)
AN, A

where the effects of rotary inertia are neglected

and the strain energy Ui becomes

nt
h
U= E /2 (fz + 2v e et el + Lind- , 72 )dzdxdy
-2 |-\J2) “X Xy Yy Xy
A, (2.35)

substituting from equation (3.19) and integrating with respect to z over

the plate thickness yields:

A (50 ey (3.36)



Using equations (2.10) and (3.18), the integral involving the boundary

tractions may be written as:

h/2
[(T‘x su + 'T'y sV + Tz éw) dS = - [[ [ (Ex 1+ ?xym)é (W,x)
=h
s |/

S
; (3.37)
/2
+ (TKY 1+ c?ym) § (N,y):' zdzds + [[ (?ZXI + ?yzrn) §W dzds
-h
s /2

g

Integrating over the thickness yields

f{T}t {6u} dS = -f[(ﬂx 1+ ny m)§ (W,x) + (F‘Xy 1+ Hym)é (W,y)

S S
a g

'(Qx 1+ Qym)a w] ds (3.38)
The quantities § (ax) and § ( ) can be expressed in terms of

W oW

8 (‘zﬁ and 6(3— Thus
W
(3= SR s (3.39)

oW
s (B = s Gm v 6 (5
Substituting from (3.39) into (3.38) yields:

/{f}t {(su} d5 = - [[nn s(W,n) - M (sW,s) - Q aw]ds (3.40)

S S

g ag

Substituting from (3.34), (3.36) and (3.40) into Equation 333), Hamilton's

principle is finally reduced to:
o B2 =



2

t
- a2u azw ) %W 32W
t A

1

t,

ff (X,¥5t) awdxdydt-l:/f Md Hn)+M 8 (Wss)
t t) Sc
+Q dw]ds dt = 0 (3.47)

With the geometrical boundary conditions satisfied a priori, the
above principle yields the equation of motion (3.30) and mechanical

boundary conditions on Sc.
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3.6 REISSNER'S PRINCIPLE APPLIED TO PLATE BENDING

3.5:] Introduction

Reissner's principle for static problems, equation (2.54) nas
been used to develop a system of two-dimensional equations for
transverse bending of plates (2). This system of equations is of such
a nature that three boundary conditions can and must be prescribed
along the edge of the plate. In this section, the dynamic Reissner
principle, Eqn. (2.58) will be specialised for an elastic plate where
the effects of transverse shear stresses w2 yz as well as rotary
inertia are included. This derivation is similar to the one used
in (2). The Principle will then be simplified to correspond to the

classical plate theory. The first derivation is referred to as

"moderately thick plate" theory.

3.6.2 Reissner's functional for plate bending

As before, a plate of thickness h is considered. The faces

:h/2 which are taken to be free from

fl

of the plate are the planes z

tangential traction but under normal pressure p(x,y,t). Thus

p(x,y,t) (3.42)

_ .h
Ty = Tyz =0 at z = = /2, (JZ]z : 'h/z

Tz) h/ =0
For an isotropic material which obeys Hooke's 1aw? “he variational

principle (2.58) may be written as follows:

w B



t2 /2
*
§ ,[ J J’ (=l =l +(a}t[L]{u}) dz dx dy-fp W dx dy
-h 0 (xsy,t)
h/2
- f f {T} {u} dz ds f f ({u} - {u}) dz ds {dt = 0
-h
sa /2
(3.43)

As in the classical theory of thin plates, it is assumed that the

bending stresses are distributed linearly over the plate thickness, i.e.

=3 "1 - oy
cx Mx
122
%y = 3 My (3.25)
T M
| A . ]

Expressions for the transverse shear stresses may be obtained by means
of the differential equations of equilibrium which satisfy the

conditions that the faces of the plate are free from shear stress,

then
T Q
XZ 2 X
- 2 0.3 0 (3.44)
Tyz 2h h2 y
and cz = 0
For the displacement field, it is assumed that
1A (3.45)
V=2 ay

W o= (Xy¥sZ,tE W (x,y,t) =N

where 8 anday are "average rotations" of the normal to the middle
X
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plane of the plate such that

h h

!2 /2
J. g U dz = Mx B J— 9 v dz = My:y (3.4€)
-h - h

/9 /2

and W is a mean transverse deflection with respect to the plate

thickness such that

h
S Txz N(x,y,z) z = QW (3.47)
“h

h h
/2 /2
Jﬂ Tx z dz = Mx 1+ Mxy'm’ -[ Ty 2 dz = Mxy.1 +M m
-h -h
/2 /2
h
and /2
i 3.48
[t g (3.49)
-h
/2

Introducting the above assumptions into the functional (3.43), and

integrating with respect to z we obtain:

- Bf



1( oh3 ,%8x.2 9B, 2 2 1% 2
6 f [ /'2’%‘%-2— [(?Arx) + (#) ]‘ Oh\'l - ---—3- + Hy - ZUMxMy)
A

t
2 12 98 38 38
+ 20049) M) - g (1+9) (02 +Q2) + z[mx-ﬁ- + Mywl+ My + 52
W
+Q (B + = )+Q (B +§;)]£dx®-JP(x,y)dedy
A

- f(ﬁn B, + ﬂns B + ﬁn W) ds -fl:M" (8, - En) + M (B - 55)

So Su
+Q (W- m)]ds ] dt = 0 (3.49)

The stationary conditions for the above functional are:

(i) The equations of equilibrium:

aM d

_:;z_+ 3_:,\”%1 - 0, - 9[%3 'éy (3.50)
;g-’i + ;31 + P(XoYst) = ph;l
(i) Stress-displacement relations:
M, = D (ash ua_:SY,.)
My = D (v-:BTx+ i;%}
My - Tah.zg (;;_x _:;x) (3.51)
o = (8, +5
q = 2?1 (By+§y“)



(i11) Boundary conditions

Geometrical boundary conditions are

8, = 8., as=és, W =WsoOns, (3.52)
and mechanical boundary conditions

M. =Rs M. =M. OT.=0. ons (3.53)

These are the Euler equations corresponding to § wg = 0 which
govern the behaviour of plates, including the effect of transverse

shear deformation and rotatory inertia.

For thin plates, the complementary strain energy due to the stresses

Usn Ty and Tz are assumed negligible, i.e.
2 2
B ) = 0 (3.54)
and the rotations are:
By = 73X By 3y
{3.55)
_ _ W < o - oW
Bp =" s 3s

in accordance with the classical assumptions as presented in section
(3.4). Using equations (3.54) and (3.55) in the expression for

Reissner's principle equation (3.49), we obtain:
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6 /2 g 4, i 2 3-W
+ -E-ET (.1x + My ZJMXMy + 2(1‘:) MY\}') - “xi_x:

L]
—
N‘D
0
—
[VE] EWE
=
— D

+M""2“+M32—“dxd-(x t) W dx d
y 3yZ Xy 3Xay Y PLXsYs x dy
A
i oW . m W = W _ 3W IW _ 3
¥ ./tMn n s s an) ds: = ](tMn (G- *Ms G5 %
S, B,
t2
+Q, (N-W))dsidt +jf cW sl dx dy dt = 0 (3.56)
t; A

In which the term due to damping is included according to section (2.4.3).

The quantities subject to variations in (3.56) are Mx’ My, Mxy’ W.
The Euler-Lagrange equations can be shown to be the equations of
equilibrium (3.29), and the curvature-moment relations (3.24). As

boundary conditions we will obtain:

(i) geometrical boundary conditions

W= W
on S (3.57)
Mo oA :
3n ~ 3n

(ii) mechanical boundary conditions

v. = ¥
o (3.58)

where Vn is the effective shear force intensity. Reissner's
principle, (3.56) may be transformed into simpler forms for use with

the finite element method (see section 4.3.2).
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3.7 METHODS FOR THE SOLUTION OF DYNAMIC PLATE PROBLEMS

3.7.1 Free vibration of thin rectanqular plates

The subsequent study of the forced motion of elastic plates
will require certain basic relations which are obtained from the
study of free vibrations with homogeneous boundary conditions. The
familiar equation of motion for free vibration of thin plates is
obtained by setting of p = 0 in equation (3.30), then

D (V" W (Xx,y,t)) + o-%%% = 0 (3.59)

where v4 = v2y2 is the biharmonic differential operator and the effect
of damping is neglected.
Assuming a harmonic motion, we may write

W (Xoyst) = W (Xsy) sin (wt) (3.60)

Here W (x,y) is the shape function describing the modes of vibration of
the middle plane of the plate and w is the natural frgquenqy of the

vibrations. Substitution of equation (3.60) into equation (3.59)

gives:
Tw = A*w (3.61)
where A* = 2%— e (3.62)

Equation (3.61) is an eigenvalue equation whose exact solution will
consist of infinite series of frequencies and associated normal modes
(eigenvalues and eigenvectors). We shall now briefly illustrate

exact and approximate methods to a few situations of the type that we
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will subsequently treat by finite elements.

a) Exact solution method

Exact solutions to the eigenvalue equation (3.61) exist <cr very
few cases where the shape and boundary conditions of the plate are
suitable. In the case of a rectangular plate with simply supported
edges (Fig. 3.6), Navier's method (29) is the classical method of

analysis. The shape functions Q( can be given by double trigo-

X5Y)
nometric series in the form of equation (3.63).

2 ; n
W(xy) = sinTZ2 sinph (3.63)

This function completely satisfies the conditions at the edges which

require that

. aaj
TR = 0 at x

0 and x

11
o1

0 andy =b (3.64)

]

at y

Substituting equation (3.63) into equation (3.61) yields:

D [ (‘? )L+ + g';';gizﬂz * (?)4} = ph w? (3.65)

Associating w, with the corresponding integers m and n, equation

(3.65) can be represented as:

2
2 2 .
B = (D ] 2559
solving for w . gives
4 - N 2 ’ri A
o = 2 [® 7 B (3.67,

« B =



won are the natural frequencies (eigenvalues) and the corresponding

natural modes (eigenfunctions) are:
¥ . MTX . N
Woo (Xoy) = Sin==  sin —El (3.63)

The free vibration of the plate is a superposition of all the modes with

proper amplitudes.

W(X,y,t) = E 2 , (sin 22 sin BgX) (A Sin e t+ B
m=1 n=1

Cos “mnt) (3.68)

where the double infinity of constants Amn and an are determined to

satisfy the initial conditions:

W(x,y,0) = o (xs¥)
(3.69)
AW (X,¥,0)
% = v (Xsy)
with ¢ and y as known functions ..  Now making use of the orthogonality
property of the eigenfunctions that is
¥ ¥ - . 3.70
f(wrs) (Wpq) dx dy = (85 ‘Spq) (3.70)
A

it may be shown that the unknowns Amn and an are determined from the

following relations
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_ o . M™X .. N-
B 2 s j v (x,y) Sin = Sin —-Dl dx zy

A 30
and ( )

4 _ . MTX e N-
an = = -[ ¢(x,y) Sin 935 Sin 251 dx dy
A

Thus the free vibration problem for a rectangular simply supported

plate is solved. Levy's type of solution can be applied to rectangular
plates which are simply supported along a pair of opposite edges (say

at x = 0 and at x = a) while the other edges (y = 0 and y = b) are
supported in an arbitrary manner (Fig. 3.7). The shape function W (Xs¥)
can take the form of equation (3.72) which satisfies the boundary

conditions on x = 0 and x = a
W (xy) = Yoo(y) Sin (=) (3.72)

Ymn(y) is yet to be determined and must satisfy appropriate boundary
conditions at y = 0 and y = b. Substituting'equation (3.72) into
equation (3.61), a fourth order ordinary differential equation in

Y(y) is obtained

v mZ‘I'T2 m mh‘-'fl‘ _phmz - 3 ?3
Y~ €73 Yon P T __D_mn) Yon = 0 (3.73)

The general solution of equaticn (3.73) is given in reference (30) as:
Y (y) = cle'“y + c;eay + c3 Cos 3y + c, Sin 3y (3.74)

where



/ /Qh m2'72

7 Nem Tyt T (@)
(3.75)
s =\ AR - B (b

The constants c,, ¢, c3 and ¢, can be eliminated by application of
boundary conditions at y = 0 and y = b to give the frequency equations
from which w is determined. Details will not be given here. The
equation has been solved for different plate ratios a/b and the
results for all possible combinations of clamped, free and simply-

supported conditions ony = 0 and y = b are given by Leissa (31).

(b) Approximate solution - Rayleigh-Ritz method

When the plate does not have two parallel edges simply supported,
no single expression of the form

-~

W(x,y) = X (x) Y (y)

satisfies the plate equation and all the boundary conditions. It

is therefore necessary to resort to various approximate methods

for this purpose, the method of Rayleigh and Ritz and the finite
element method have gained increased popularity in the solution of
plate problems with complex geometry, loading and boundary conditions.
The general method of Rayleigh and Ritz was described in section 2.5.1.

In the application to plates, the series approximation for W is taken
in the form
J

L. X ()Y () (3.76)
j=1



The functions Xi(x) and Yj(y) must be chosen to satis‘y any
geometric boundary conditions. Leissa (10) has used appropriate
beam modal functions for X(x) and Y(y) to determine natural frecuencies
for several modes for all combinations of clamped, simply suppor=ec
and free edges. Application of the finite element method <o olate

problems will be described in the following chapter.

3.7.2  Forced vibration analysis of thin plates

The equation of motion for the forced, damped vibration of a

plate is givenby equation (3.30).

2
DV“W + ph %‘%?_Jr ¢ & = p(xy) f(t) (3.30)

where p(x,y). is the applied force per unit surface area.

The solution of the above equation can be obtained by normal
mode superposition method using the normal modes ﬁ(x,y), of the
undamped system (32). Thus the exact and approximate methods of
determining natural frequencies and modes can be extended to the
determination of response. For a rectangular plate which is simply
supported on two parallel edges (x = 0 and x = a) the normal modes

are given by equation (3.72),

W(xy) = Yo(y) sin 2% (3.72)

It can be shown (28) that for any combination of homogeneous

boundary conditions ony =0 andy = b,

~1
~d
—

b
J Yon®) Yip) &y = 0 ien (3.
0
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Also the modal functions Ymn(y) must satisfy the differential

equation (3.73). We seek a solution for equation (3.30) in the
form
- . mmX
W (x,¥,t) Z ‘ Z Yon(¥) Sin X q(t) (3.78)
m n

where qmn(t), a principal coordinate, is a function of time.
Substituting for W from equation (3.78) in equation (3.30) and using
equation (3.73) yields:

:E : in Mox o . g 2 :
E oh Y Sin = An*toh 9mn temn Gun = P(Xsy) f(t)
m n
(3.79)

multiplying equation (3.79) by Yns(y) Sin 525 » integrating over the

area of the plate and using equation (3.77) and the orthogonal
property of functions Sin EEE, a set of uncoupled equations is

obtained: (damping is assumed proportional)

%n * 2 Emn “mn Omn * “’nzm Qo = Pon F(Y) (3.80)
Mell = 15250000
a b
Prn =f f p(xay) Y (y) Sin = dx dy (3.81)
0 0

The solution of equation (3.80) may be obtained using the Duhammel
integral (section 4.6) and then the complete dynamic response is

found by substituting in equation (3.78).

For the response analysis of a plate with general boundary

conditions, either The Rayleigh-Ritz (section 2.5.1) or finite element

methods (section 2.5.2) may be used.
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CHAPTER 4

APPLICATIONS OF REISSNER'S PRINCIPLE

IN
FINITE ELEMENT FORMULATION




4.1  INTRODUCTION

Prior to the work of Reissner "on a variational theorem <n
elasticity" published in 1950 (2), approximate solutions to elasticity
problems were obtained by means of the principle of stationary
potential energy and the principle of stationary complementary energy.
The principle of minimum potential energy is well adapted to elasticity
problems that are formulated in terms of displacements. In this
theorem, the stress-displacement relations (2.3) are used as equations
of constraint which define the components of stress in terms of
appropriate displacement derivatives. The corresponding variational
equations (Euler-Lagrange equations) are the equilibrium equations
in the interior and on the boundary SJ of the solid. The comple-
mentary energy principle is, on the other hand, suited to problems
that are formulated in terms of stresses. In this theorem, the
differential equations of equilibrium serve to restrict the class
of admissible stress variations and the variational equations are
equivalent to the system of stress-displacement relations. As a
result of the above constraint conditions introduced in the varia-
tional principles, the approximate solutions are such that part of
the complete system of differential equations is satisfied exactly
while the remaining equations are satisfied only approximately.
Reissner's principle may be derived from either the potential
energy or the complementary energy principle by introducing the
appropriate constraint conditions into the variational statement
through the Lagrange multiplier technique. The resulting variational
theorem simultaneously provides the differential equations of equil-
ibrium, the stress-displacement relations and the boundary conditions.
Thus approximate solutions can be obtained in such a manner that
there is no preferential treatment of either one of tre two kinds o-

differential equations which occur in practice. :n this section,
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the current finite element models are briefly reviewed. A new
version of Reissner principle is derived which is suitable for finite
element analyses of plate and shell type structures. Finally, the

essential steps in formulatiag the mixed element equations are

described.
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4.2 FINITE ELEMENT MODELS

Variational principles in structural mechanics have acquired a
significant practical importance as the basis for numerical methods
of analysis. When used in conjunction with finite element techniques,
variational principles exhibit comparative advantages pertaining to
algebraic simplicity of forming and solving the equations, number of
unknowns per nodal point, accuracy of the various types of unknowns,
convergence properties, etc. According to a study carried out by
Pian and Tong (24 ) the current finite element models may be divided

into four basic types: ras '

(1) Compatible models (compatibility satisfied, equilibrium
violated).

(i1) Equilibrium models (equilibrium satisfied, compatibility
violated).

(iii) Hybrid models.

(iv) Mixed models (equilibrium violated, compatibility
violated).

The first class contains the compatible displacement model which
is derived from minimum potential energy principle. Based on an
assumed displacement field continuous over the entire solid, the
principle yields a system of equations with the nodal displacements
as unknowns. Although the potential energy principle is the pre-
dominant approach to the formulation of finite element equations, it
is not always the most convenient approach. In many practical
situations, it becomes extremely difficult to choose an-element
displacement field that will satisfy all the conditions of inter-
element displacement continuity. Plate and shell elements, for
example, require the continuity of both displacement and its

derivatives across the element boundaries. No simple displacement

o



functions are capable of satisfying <hese requirements. A moci<iec
potential energy functional may be derived for application to finite
element analysis. In the new formulation, the cisplacement “unc=ions
are chosen independently for each individual element while inter-
element compatibility conditions are accommodated by including
Lagrange multiplier terms in the functional. In application to
finite element analysis, equilibrating tractions are assumed along
the interelement boundaries in addition to the assumed continuous
displacement fields in each element. This method is thus called a
hybrid-displacement method (33). Both compatible and hybrid
displacement models produce better results for displacements than

stresses.

The second class contains the equilibrium model (34) which is
derived from the principle of minumum complementary energy and is
based on an assumed equilibrium stress field within and across the
element boundaries. It is customary to use stress functions as
primary field variables and the nodal values of such variables are
the unknowns of the final system of equations. A dual hybrid
method can be formulated, for which compatible displacement functions
are assumed along the interelement boundaries in addition to the
assumed equilibrating stress field in each element (35). According
to the above classification hybrid models fall into the third
category. The results from the equilibrium and hybrid-stress
models are, as one would expect, more in favour of stresses. Tne
fourth method, derived from the Reissner's principle, presented in
section (4.4.2) is called the mixed method (2), (36) with noda!
values of both displacements and stresses as unknowns. ‘n mixed
models, the field variables should only maintain a degree of contin-
uity such that the functional of the variational problem is Zefinec,
i.e. it must be finite. Mixed formula+ion, in general yieids a
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solution with balanced accuracy in displacements and stresses. It
will be seen in the following section that there exists a wide

degree of freedom in the application of Reissner's principle to the

finite element method.
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4.3 DISCRETIZED REISSNER FUNCTIONAL-INTERELEMENT CONTINUITY REQUIREMENTS

In the solution of boundary value problems by approximate
methods, the continuity requirements placed on the approximating functions
depend on the order of the governing differential equations and its
variational formulation. Reissner's principle leads directly to
mixed formats of the element force-displacement equations. Because
the Euler equations of this functional are the more basic equations of
elasticity, with lower order derivatives, the continuity requirements
on the assumed fields are of lower order than for the conventional
variational principles. In the finite element formulation, the
functional for the complete system is comprised of the sum of

functionals of (n) individual regions (elements) 3, such that
n

2
3=1

I 3=1,2...m (4.1)

T =

Thus approximating functions must be such that their derivatives

up to the highest order occurring in the corresponding Euler equations
are continuous within each discrete element. The admissibility on
the inter element boundary conditions may be broadened to the degree
that the assumed functions shall only possess continuous derivatives
in such a manner that the functional of the variational problem is
defined (24). The interelement boundary conditions may be further
relaxed by considering the displacement continuity or traction reci-
procity conditions* as conditions of constraint that can be included
in the variational statement by means of Lagrange multiplier terms
as additional variables along the element boundary. General

* That is {7} -{T}. on S_ where T} are the boundary tractions and
a, b denote the eleflents Q¢ the two sides of the boundary.



discussions of this topic have been made by Prager (37), Pian (24)

and by Nemat-Nasser (38).

In accordance with equation (4.1), Reissner's Principle (2.54) can

be written in a discretized form as

ey

* -
f[ -U, (o) + (o’f[L]{u} - f* {u}] v - [ F1t) ds
Vn

On

- / My -tar ) ds - 8, (4.2)

Sun

where {T} = [1]{c} represents boundary tractions. V,, indicates

the volume of the nth element. For the boundary of the nth element,
Scn is the portion over which the surface tractions {T} are
prescribed while over Sun the displacements {u} are prescribed.

The term Bn. arises from possible jump functions of the derivatives

of {u} across the interelement boundaries. For example if the
displacements {u} are continuous, Bn =0 and if {u} are not continuous
along Sn of the nth element while the surface tractions are in

equilibrium with the tractions of the adjacent element, then

n

B, = fm" {u} dS (4.3)

Sy

The independent variables subject to variations are still {o} and (u!}

with subsidiary conditions that {T} are in equilibrium along the inter-

element boundary, i.e.
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Ty = =T on S_ (2.4)
where (a) and (b) are the elements at the two sides of the bouncary.
When tractions are not in equilibrium at the two sides of the -cundary,
equation (4.4) must be introduced as a condition of constraint.

The corresponding Lagrange multipliers are the boundary displacements
{0} which are independent of the displacements {u}. Thus if along

Sn’ {u} are discontinuous and {T} are non-reciprocal, then

B = f Mty ds - fmt {0 ds (4.5)

5 S

The independent variables subject to variations are {-} and {u} in
each element, and {u} along the interelement boundaries. There are
still many more versions of the T based on the additional variables
introduced along the interelement boundaries. These functionals

have been studied by Pian and Tong (39).
The functional in Reissner's principle may be transformed to

a different form by integrating by parts the second term in the

volume integral of equation (4.2). Then

W 3

f[U; (@) = ([L]'{o} oy - (Fy* ]dv
Vn

(4.6)

= gL = / Mt e - f (MY (uy - @) d
Sg S,

n n



where now

i t .
B, = B, = -/~ {T}" {u} dS (4.7)

S, * Sjn + Sun

[L]’ is the differential operator obtained in the process of inte-
gration by parts. [t is seen that the new version of Reissner's
principle imposes some new continuity on the stresses, but relaxes
those on the displacements. This version of the Reissner functional
has practical importance in application to plate and shell type

structures.

4.3.1 Discretized Reissner's Principle - Beam Bending Problems

For application to beam bending problems, Reissner's Principle
in the form of equations (3.16) or (3.17) may be directly employed
to formulate the element relationships. The approximate shape
functions for the displacement w, and the bending moment Mx, mus t
satisfy the necessary interelement continuity conditions. This
follows from the requirement that the functional be defined (20).
Therefore, when using the variational principle (3.16), it is neces-
sary to ensure the continuity of w and its slope between elements
(C1 continuity). On the other hand, the variaticnal principle
(3.17) requires the shape functions to satisfy the displacement (w)
continuity only (CO continuity). Thus the latter formulation
permits the use of simpler shape functions. The beam element

formulation is described in section (6.2).

I
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4.3.2 Discretized Reissner's Principle - Plate 3ending Problems

For thin plates, the expression of -,, that is ecuivalent *c

-

equation (4.2), is

- 6 2 2 ;

- = - - - - Me

R Z j f [EhT_ (M + My &4, Wy = Bl 'KY)
n A

s M RVl S L N p 3
x Edi-z. y-a-yz ‘xy a_xay X y 5 (X:Y) N dx dy - -’n

A
n
s f (. W =M n.s- M, w.n) ds - f |:Qn (W-W) - Mns(wls-ﬂ.s)
So_ Sup
S MW - w-n)] ds l (4.8)

where Bn depends on the different continuity conditions along the
interelement boundaries. The following expression is used if all
displacement continuity requirements are to be relaxed along the

boundaries:

But when W is continuous and Mn are in equilibrium across the inter-

element boundary then

B = - S M W, ds (4.10)
N 'n



which accounts for the discontinuity of W,
n

A convenient version for finite element implementation of clate
bending problems is one which corresponds +to equation (4.6)

and (4.10), then

6
- M2 M2 - | Y 2
_I. ER3 [ x ¥ 2VM:( My + 2 1+) Mxy:| dx dy

I
v
w

(4.11)

Which only requires the continuity of W and bending moment components
across the element boundaries. Herrmann (3) was the first to use
the above principle in the development of a finite element mixed
model for static plate bending analysis. The dynamic version of
this principle may be simply obtained by including the inertia and
time varying forces in the functional. This will be the starting
point for the development of mixed dynamic plate elements in this

thesis.



4.4

4.4.1

FINITE ELEMENT FORMULATION

General Approach

The finite element method is formulated by approximating the

variables in the variational functional 1in terms of a finite number

of unknown parameters. The application of the variational principle

then leads to the final matrix equation to be solved. The procedure

consists of the following steps:

1)

Definition of the finite element mesh. Depending on the problem
at hand, the complete region (continuum) is subdivided into one,
two or three dimensional sub-regions (finite-elements). The
elements are separated by imaginary lines or surfaces inter-
connected at certain nodal points. For the two dimensional
continuum, the elements may be of triangular, rectangular or
general quadrilateral shapes. An improvement over the straight-
sided triangular and. rectangular elements are those with curved

sides which are more easily adaptable to any given geometry.

Mode1ling of unknown variables. The field variables in the
variational functional are represented by interpolating functions
and generalized displacements and/or stresses at a finite

number of nodal points of each element. In most cases, the
interpolating functions must be such that the continuity

requirements inside and across the element boundaries are

satisfied.

Formulating the element equations. On the basis of the assumed
functions of (2) above, the energy functional is expressed
in terms of element gereralized coordinates (displacements
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and/or stresses). The application of the variational princip’e
then leads to a set of matrix equaticns for individual elements.
The final matrix equations representing the structure as a

whole is then synthesizsed from element matrices.

4. Solution of the resulting system of equations. The overall
matrix equation of the structure is solved for the unknown
displacements and/or stresses, after imposing the appropriate
geometric and/or mechanical boundary conditions. The
solution of equations is a standard procedure in matrix
algebra. This as well as the generation of element character-
jstics and synthesis of system characteristics are performed

on a digital computer.

4.4.2 Derivation of the mixed element equations

If we choose to satisfy the displacement boundary conditions
with our field variables models the Reissner generalized principle
(equation 2.59) in matrix notation becomes:

t2

6 j [ J (- %o {ﬁ}t {u} - {0} 5 [D]“{:}+{:}t[L] fu} ) adv

ty v

s (4.12)
= j {F}E {u} dv - [{T}E {u} ds} dt + j Jc(ﬁ}t{éu} dvdt = 0
v S t, V

o

Let the displacement and stress fields within an element be represented

independently by:



{u} [&] (v} (a)
(4.13)

{a}

1]

(¥ ]{al (b)

where {u} and {o} are vectors that contain all possible displacement
and stress components, within the element, in the direction of the
coordinate axes. [¢] and [¥] are matrices of position which in
general are of different order, and {y} and {a} are the generalized
parameters. The nodal values of the displacements and stresses

will be

wy = [A]n, e = [Pl (4.14)

For a two dimensional element such as the one in figure (4.1),

the nodal displacements and stresses are:

{u}z = [ Upy Vs ewwne s Uy vq]
{c‘}t = | Ox Vo Tocig wwens 5 B oy Wie § F
e 1 717 Txyl Xu® Yy XY

From equations (4.13) and (4.14), the element displacement and stresses

will be:

{u}

]

[o (ATt =[N, ] e (a)

[v1lpT 1, =[N, | o1, (b)

(4.15)
{o}

If the interpolating functions [Nu ] and [Nc ] satisfy the interelement
continuity requirements, then equation (4.12) may be utilized to
derive the element matrices. Thus substituting the mixed variable

mode] equations (4.15) into equation (4.12), we get for an element:
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s j , j (-3otirg [NJIEDN @Y, - 3oy BN t[Dj'[Na]{c}e

ti Vn

+ todg VIO LLINJur,) av - j (FYU[ N Ju,

n

t2
+ S{T}t[Nu]{u}e ds_tdt + J j c{ﬁ}:[Nu]t[Nu]{au}e

S t, Vv

n

dv dt =0  (4.16)

Now taking variations with respect to the generalized

parameters {u]é and {c% yields:

t2

t . t t -
J [ (sud [m] (Ul - (8o}; [k, ] (o}, + (sodg [k, ] (i,
t

(4.17)
t2

+ toul [k I° (o}, - tourl {r}e] dt + J (sl [c] (il dt = 0

t)

collecting terms in {Gu}e and {Go}e and equating to zero yields:

t,
5 ut ([mla, + [k Jf tod +[c]tid, - (r}y) dt=0 (a)
t)

and (4.18)
t2
5 [{60}: (= [k, dlotg + [kou]{u}e)]dt =0 (b)
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therefore:

[mJtud, + [kau]t (o}, + [c]{ﬁ}e = (r},

and

[kqu{U}e
where

[k ]

(Kol

L=d

{r}

[koo] fo}, =10}

| ool 1e
Vn
f [N 350 LI, ] av

J' o[N,J°[ N, ] &V

J c[N,J°L N, ] av

J‘[Nu]t (F}, dv+ J [NE (T, ds (e)
v S

n

(a)

(b)

(c)

(d)

(4.19)

(4.20)

The mixed element matrices and load vector in equation (4.20) can be

assembled for the overall structure, in accordance with the rules of

assembly.

equations for the assembled structure are:

[MJtuy, +[K,, J° (o}, +[CHar, = (R)

[Kau] Uy, - [Koo]{a}0 = {o}

+ 83 =

(a)

(b)

Thus after introducing the boundary conditions the mixed

(4.21)



where {u}o and {cr}0 are the unknown stress and displacement vectors.
For the dynamic case we solve (4.21 b) for {c}O and substitute into

(4.21a), thus,

-1
od, = [K_] |:|<cm]{u}0 (4.22)
and
[M]{ii}o +[1<c”ﬂt [chjl[Kou]{u}o + [c]{m‘J = {R} (4.23)

or simply

[Mltus, + [y, + [y, = R
where

=1
[K] = [%ud" [ Keod %] - (8.20

is a full symmetric matrix. The solution of equation (4.23) yields
the time history of displacements. The stresses may be obtained by

substituting for the displacements into equation (4.22).

In the case of undamped free vibrations, [C ]Jand {R} are zero,

therefore, equations (4.21) becomes:

2 & A
-w M, +[k %6}, = 0} (a)

(4.25)

(K, Jtuty -[K,] to}, = (o} (b)
where it is assumed that [u}0 and {c}0 vary harmonically with time,

i.e.
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{u}

{ul, sin ot (a)
(4.26)
{o}, = {3}0 sin wt (b)
The eigenvalue equation may be obtained by solving (4.25 b) for (o}
and substituting into (4.25 a), thus:

[k Jtuy, -w2[M] (@), = (o} (4.27)
where

[K] = [Kau]t [Kocj [Kgu] (4-28)

conversely, it is possible to write the eigenvalue equation in terms
of stress vector {c}o. Solving (4.25 a) for {a}o and substituting

in (4.25 b) yields:

[K*]{S}o - w2 [K_] {S}o = {0} (4.29)

where

[k*] = [k JMT [k It (4.30)

This represents the eigenvalue equation in terms of stress {3}0.
Either equations (4.27) or (4.29) may be solved to yield the system

eigenvalues (w) and eigenvectors ({a}0 or {;}0}

It should be noted that the number of parameters in [G}o is in
general different from that in {3}0. (i.e. the number of displacement
degrees of freedom is different from the number of stress degrees of
freedom). This affects the rank of the matrices involved in
equations (4.28) and (4.30). If the number of parameters in (q}
exceeds that of (U} , matrix [K*] (Eqn. 4.30) will be deficient in

rank and the eigenvalue equation (4.29) yields extra very low or zero
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eigenvalues which have no physical significance. The converse is
also possible (i.e. when the number of parameters in {G}0 exceeds
that of {;}o. matrix [K] in (4.28) becomes deficient in rank). It

is therefore advisable to attempt the solution of the eigenvalue equa-
tion with smaller matrices. This ensures that only the true system

eigenvalues are obtained, thus overcoming the need to compute unwanted

zero eigenvalues.
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4.5  EVALUATION OF THE DAMPING MATRIX

4.5.1 Importance of Damping

Before discussing methods of solving the equations of
motion, it is worth considering the importance of the camping matrix.
Damping is the removal of energy from a vibratory system. The
energy lost is either transmitted away from the system by some
mechanism of radiation or dissipated within the system. Damping
is responsible for the eventual decay of free vibrations and is of
primary importance in controlling response amplitudes under conditions
of steady state resonance excitation. Most structures are lightly
damped (1% of the critical damping) and if they are subject to period-
jc force containing at least one frequency component coinciding with
a structural resonance then the damping will be important. However,
if the excitation is slightly off-resonance, then the response will
be controlled almost entirely by the distribution of mass and

stiffness properties.

The energy loss mechanisms in practical structures may be
basically divided into external and internal ones. The acoustic
radiation, fluid flow resistance and coloumb friction are some
examples of models of external energy dissipation sources. Internai
friction (damping) in mterials is caused by different physical
micromechanisms (40). In metals, for instance, these mechanisms
include thermoelasticity, grain boundary viscosity, eddy current
effects and to some extent electronic effects. For most ron-
metallic materials, little is known about such physical mechanisms.
However, for one important class of these, nameiy, polymers and
elastomers considerable infcrmation nas been obtained as <ne rheo-
logical behaviour of such materials may be adequately representec
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by simple mathematical models (41).

4.5.2 The element damping matrix

The finite element method can be used %o generate a damping
matrix for a structure where definite damping mechanisms can be
recognized. If damping is viscous then equation (4.20 d) yields

the so-called consistent damping matrix.

[c] = j ¢y [N, I°IN, T0V, (4.20 d)
Yn
Viscous damping coefficients (c) equivalent to a number of different
damping mechanisms can be determined by measuring the energy dissi-
pated per cycle (E) in a dashpot undergoing sinusoidal motion U, sinet.
The expression for E is (41)

(4.31)

m
n

mT™ w u

The overall damping matrix C 1is constructed from contributions of all

the elements. That is

[c ]= Z jcn[mu]"[uu] v (4.32)

n Vn

In practice, it is very difficult, if not impossible, to determine
for general finite element assemblage the element damping parameters,
in particular becﬁuse the damping properties are frequency dependent.
For this reason, matrix[c ]15 in general not assembled from element

damping matrices. Instead, direct methods are availalbe (42, 43)
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which incorporate the mass and stiffness matrices of the complete
assemblage together with experimental results on the amount of damping
in order to derive an orthogonal damping matrix for the overall
structure. A knowledge of modal damping ratios is thus a pre-
requisite. Some experimental techniques for identificationdf modal
parameters in lightly damped structures with uncoupled modes are
described in Reference (41). Wilson and Penzien (43) have pre-
sented a direct method for the numerical evaluation of an ortho-
gonal damping matrix. This method is applicable to lightly damped
structures where the effect of modal coupling can be ignored. The
final matrix is expressed as the sum of a series of matrices, each
of which produces damping in a particular mode. The procedure is

described in Appendix A.
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4.6  SOLUTION OF DYNAMIC EQUILIBRIUM ZJUATIONS

Having established the system characteristics matrices and

load vector, we can proceed with the solution of dynamic equations,

[M ]{ij} +[K ]{U} + [ C ]{L‘J} = (R(E)) (2.33)

{U} is the overal displacement vector and ‘R(t)} is the overall

load vector. The various forms of force inputs are shown ir figure
(4.2). The analysis of the response of any specified structural
system to a prescribed dynamic loading is defined as a deterministic
analysis. The non-deterministic analysis, on the other hand,
corresponds to the analysis of response to a random dynamic loading.

Only the deterministic analysis is considered here.

There are basically two methods of solving these equations:
direct step-by-step integration or the mode superposition method (44).
In the first method, the response is obtained at a series of
sequential time intervals whereas the mode superposition method
requires the application of a coordinate transformation prior to
the numerical integration. This causes the equations to become

uncoupled in the new coordinates.

The choice of which method depends on both the type of force
input and the required form of response. It has been found (45)
that direct step-by-step integration is most useful when only tre
initial transient response is required for a small number of loading
cases. The normal mode superposition is preferred when there are

many loading cases or when the steady state response is requirec.
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Fig 4.2 Charocteristics of typical dynamic loading.
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4.6.1 Direct integration method - Wilson 3 method

In this method, the equations in (4.33) are integrated using
a numerical step-by-step procedure. A polynomial is assumed to
represent the variation of displacements, velocities and accelera-
tion within each time interval 2t. In the solution process, it is
assumed that the displacement, velocity and acceleration vectors
at time 0, denoted by (U} , (U}, and{U}_, respectively are known.
The time span under consideration, T, is subdivided into n equal
time intervals At (i.e. At = %) and the integration scheme is
employed to establish an approximate solution at times 0, at, 2at,
sty B e Ay weaTs Algorithms are derived by assuming that the
solutions at time 0, at, 2at, ..., t are known and that the solution
at time t + At is required next. The calculations performed to
obtain the solution at time t + At are typical for calculating the
solution at time at later than considered so far, and thus establish
the general algorithm which can be used to calculate the solution
at all discrete time points. Some commonly used effective step-by-
step solution methods are presented in reference (44). An impor-
tant consideration is the choice of time interval, at, which is
somewhat arbitrary, but should be less than the time period of the
highest matural frequency to enable the complete transient response

to be determined. Thus

where T.. is the smallest period of the finite element assemblage

N
and N is the order of the finite element system.
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The Wilson & method

The step-by-step technique of Wilson 3 (44) is one of the most
popular techniques for the integration in time of the scuaion of

motion of linear structural systems.

One of themain features of the Wilson 6 method is that it
can be made unconditionally stable, i.e. however large the time step
length At used in the time integration, the predicted response
remains bounded. The cost of a direct integration analysis is
directly proportional to the number of time steps required for
solution. In the present work, the computing time and computer
storage are of primary concern. Thus an unconditional stable scheme
provides an attractive method of solution. The effect of time step
size, At on numerical stability and solution accuracy is demon-

strated in Chapter 8.

In Wilson 8 method, a linear variation of acceleration from time
t to time t + 6 At is assumed, where & > 1.0. For unconditional
stability, it is required that ¢ > 1.37 and usually 8 = 1.40 is
employed. The acceleration at any time in the interval (t,

t + 9 4at) is

. - ) . -(" .
Wy oo = W + 5 ( (Uiizat Ul (4.35)

where 0 ¢ t < 8 At
Integrating (4.35) yields:

(O, = O1, + W+ g (Wi, - W) (5:36)



and

) 4 - 1 - .
Whepe = Whe + O =+ 3 WUy 2+ e o (i, - Wy ) (4.37)

Using (4.36) and (4.37), we have, at time t + 6at

: _ oot .- .

Whireat = U + S5 (W, + WYy) (4.38)
- . eZ&tZ L2 .

Weyaae = W +oat (Oh, + S5 (qiy, 0o+ 2 4y (a.39)

from which we can solve for {U}t+eAt and {U}t+eat in terms of {U}t+eat

6 6

Whreat = g7agz ( Whepgae = Wi ) - o W, - 200y, (4.40)
and
J 3 ; sat o
Whveat = st ( WUlppgue =~ (W) -2 W01, - 5= W)y (4.41)

Now the equilibrium equations (4.33) are considered at time

t + eat, i.e.
(MHUR oag + [CTOR, o0e + [TV (ohs = IRY, s (4.42)
where
(Rby,ong = (RY +8 ((Rb, o - (R ) (4.43)

substituting (4.40) and (4.41) into (4.42), an equation is obtained
from which {U}t+eAt can be solved. Then substituting {U}t+eat’ into
(4.40) we obtain (U}, ., which is used in (4.35), (4.36) and (4.37),

all evaluated at t=4at to calculate (U}, ..» {U}t+at' and {Uy, ..
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The complete algorithm used in the integration is given in reference

(44).

4.6.2 Mode-superposition method - Duhammel integral

In this method, the response of the general system to ores-
cribed time-dependent forces is obtained as a sum of contributions
from individual modes. The system coordinates are transformed to a
new set of coordinates in order to obtain new system stiffness,
mass and damping matrices which have a smaller bandwidth than the
original system matrices. In systems with proportional damping
an effective transformation matrix is the modal matrix which contains

the eigenvectors of the free vibration equation, i.e.

W = [V (4.44)

If (4.44) is used to transform the variables (displacement, etc.) in
equation (4.33) from the original set {U} to a new set {q}, it can

be shown that the equations in terms of the transformed variables

are uncoupled. (Equation 4.45)

-Cir + 2 .:rwr E]‘_ + m}% ql" = H“} (445)

R {ﬂ}:f (R} r=1,2,...5N

(r)

Each equation can then be solved as a single degree of freedom problem.

The solution to equations (4.45) is obtained by evaluating the Duhamme’

integral which is given by

w 6



t T Spp(teT)

1
q. (t) = -
r (t) mrmDr 5 Rr (t) e sin wp,, (t 1) dr
0
T t (4.46)
§.(0) +4q,(0) to,
+ e [ 0, sin wp,. t + qr(o) cos uort]
where wp, = W, /1 - ;ri (4.47)

and q,.(0), q.(0) represent the initial modal displacement and velocity.
These can be obtained from the specified initial displacements {U}0
and velocity {ﬂ}o expressed in the original geometric coordinates
as follows for each modal component
0 M
q.(0) = —L——2  (a)

r
(4.48)

-~ t ™

. {U} MU}

qr(o) = _L-Iﬁ'——g
r

When the response for each mode qr(t) has been determined from equation
(4.46), the displacements expressed in original coordinates are

given by the normal coordinate transformation, equation (4.44).
In summary, the response analysis by mode superposition requires

(i) The solution of the eigenvalue and eigenvectors of the

problem in (4.27).
(i1i) The solution of the decoupled equilibrium equations in
(4.45).
(iii) The superposition of the response in each eigenvector

as given by (4.44).
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4.6.3 Comparison between mode superpesition ard direct inzegratior
methods

In the last two sections, the methods of direct integratior
and mode superposition were presented which can be used in the
solution of dynamic equilibrium equations of (4.33). The
solutions obtained using either procedures are identical, within the
numerical errors of the time integration scheme. It can therefore
be said, that the choice between mode superposition analysis and
direct integration is only one of numerical effectiveness. The
effectiveness of a mode superposition procedure depends on the number
of modes that must be included in the analysis. It has been shown by
experience that for many types of practical loading (e.g. earthquake),
only a fraction of the total number of decoupled equations need be
considered, in order to obtain a good approximation to the actual
response of the system. This means that only the first p equili-
brium equations in (4.45) need be used, and that only the lowest p
eigenvalues and the corresponding eigenvectors need be solved.

The summation in (4.44) is carried out in the first p modes (p<<N).

In general the finite element analysis approximates the lowest
exact frequency accurately, little or no accuracy can, however, be
expected in approximating the higher frequencies and mode shapes.
Thus, there is usually little justification for including the response
corresponding to higher modes in the analysis. If the lower modes
of a finite element system are predicted accurately, littie response
is calculated in the higher modes and the inclusion of the system

high-frequency response will not seriously affect the accuracy of

the solution.

From the above discussion it can be concluded that the Tode

= ap =



superposition procedure may be more advantageous to direct integra-
tion. Significant saving in computational time can be achieved by
calculating only the response for the lower modes. As the response
corresponding to higher modes is in most instances inaccurate, there
is no advantage in computing the higher modes of the system. A
direct integration method can also be used to integrate only the
first p equations in (4.45) and neglect the high frequency response
of the system. This may be achieved by using an unconditionally
stable scheme (Wilson & for example) and selecting an integration

time step at, which is much larger than the integration step used

with a conditionally stable scheme.

In the present work, computer subroutines for the direct inte-
gration and mode superposition methods are provided. The sub-
routines can be called in the main program routine to solve the

equilibrium equations.
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CHAPTER 5

SURVEY OF LITERATURE ON
PLATE ELEMENTS




5. SURVEY OF LITERATURE ON PLATE ELEMENTS

Much effort has been devoted to the develcpment of “inite elements
for the bending of plates. Most of this effort has been orien*ec
towards the classical poisson-Kirchhoff theory of bending, which
neglects the effect of the transverse shear deformation. The
Kirchhoff assumption reduces the number of independent variables in
the variational statement but introduces higher order derivatives in
the formulation of plate elements. The continuity requirements
imposed by this theory on "displacement" finite element models has
prevented the development of simple and natural elements. Because
of this an exceptionally wide variety of alternative formulation has
been proposed. A survey by Gallagher (46) shows the extensive
amount of literature on the subject. Some of the finite element
models which have been developed in the past for the analysis of
thin plates are quite briefly summarized, pointing out their advantages

and shortcomings.

In the application of the finite element method to thin plate
flexure, reliable and accurate formulations are available for assumed
displacement (compatible) models obtained by means of potential energy
principle. However, the construction of a fully compatible element
is rather complicated and involves nodal derivative degrees of
freedom of order greater than one. Thus the interelement compatibil-
ity inevitably leads to extensive algebraic operations in the formation
of the basic element stiffness coefficients and consequently to
large storage requirements and computational time. A number of
investigators have developed displacement compatible (conforming)
models for plate analysis. Bogner, Fox and Schmit (47)
developed rectangular elements with 16 degrees of freedom, i.e.
with W, W, » H,y, and H‘xy at each corner as generaiized coorcinates.
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In this case, the displacement W and the normal slope N,n a'l vary

as cubic functions along each edge, hence the interelement compaz:b-

ility is satisfied.

Butlin and Leckie (48), and Mason (49) also proposed some other
conforming rectangular elements. Later Cowper et al. (50)
presented a general triangular element suitable for plates with
arbitrary boundary shapes. The element has 18 degrees of freedom
with the transverse deflection and its first and second derivatives
appearing as generalized coordinates at each vertex. The element is
reported to be more accurate than the conforming triangular ones
previously developed by Bazeley et al. (51) and by Clough and Toucher
(52). But a higher order polynomial is used to represent the

displacement variation within the element.

There is a very serious drawback in using the conforming elements
for practical engineering purposes such as plates with varying
thickness, plates with stiffners and plates meeting at angles. The
difficulty arises since N’xy and other higher derivatives (strains)
appear as nodal degrees of freedom. At a node where there is a
change in section or a stiffener then it is wrong to require strain

continuity.

The difficulties associated with compatible displacement
functions have led to several attempts at ignoring the complete slope
continuity while still preserving the other necessary criteria for
solution convergence. Therefore non-conforming plate bending
elements may be formulated which require simpler displacement fielcs.
Since the "lower bound" solution characteristics of a rigorous
minimum potential energy principle is lost, tne convergence c¢f sucn

elements is not obvious and should be proved either by the

N



application of the patch test (20) or by comparison witn *he “ipi=s
difference algorithms. Successful application oF several non-
conforming elements have been reported by Bazelay et al. (31).
Henshell et al. (9), in particular, developed a family ¢f curvi-
linear plate bending elements with non-conformable shape functions,
for plate vibration and stability tests. Their basic element is a
quadrilateral with four nodes but the extensions to this element
provide for mid-side nodes making eight and twelve nodes in all

and enabling the element to have curved sides. The elements may
be used in very general folded plate structures. They concluded

that the 8-node element performance was superior to the other two.

By abandoning the Kirchhoff assumption, the interelement
compatibility requirement is no longer a serious problem. In the
principle of minimum potential energy for plate bending, the rota-
tion angles are used as independent variables in addition to normal
delfection (53). But it is known that the so-called thick plate
theory does not give reliable solutions for thin plate problems.
The difficulty lies on the existence of severe constraints because
of the condition of zero transverse shear strain. To capture the
behaviour of thin plate theory, Wempner et al. (54) introduced the
concept of "discrete Kirchhoff hypothesis" in which the constraint
of zero shear strains is imposed at a discrete number of points.
The method is effective, but the implementation tends to be somewhat
complicated. Some improvements over this have been proposed by
Fried (55). On the other hand, reduced integration by Zienkiewicz
et al. (56) and by Pawsey and Clough (57) utilizes a Tower orcer of
integration and has proved to be very successful in relaxation of

constraints on the transverse shear strains.
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These elements are based on the assumed-displacement method,
but have been shown to be equivalent to elements derived from a
mixed formulation (58). An accurate quadrilateral element for
thick and thin plates has been developed by Zienkiewicz et al. (56).
This element possesses eight node-four corner and four mid-side with
the basic three degrees of freedom per node. The transverse displace-
ment and rotation shape functions are selected from 'serendipity'
family (20). Two by two Gaussian quadrature is an essential

requirement for good performance of the element.

Difficulties in the establishment of admissible displacement
fields may be avoided by resorting to complementary or mixed
variational principles. Equilibrium elements are based on assumed
stress fields and the complementary energy principle. Forces, not
displacements,are the primary unknowns of the assembled structure.
Displacements are obtained by means of the stress-strain relations

and integration of the strain-displacement relations.

The solution for displacements depends on the chosen integration
path and in general is not a unique solution. Morely (59) has
developed triangular equilibrium elements using the unknown stress
resultants (values of stress function) as generalized coordinates.
Fraeijs de Veubeke and Sander (50) formulated an equilibrium model
which has generalized displacements as unknowns in the final matrix

equations.

The specific feature of the mixed model in finite element method
was first demonstrated by Herrmann (61), (3). He used the Reissner
principle to develop two triangular plate elements. The first
element is based on linear variation in W and in the three stress
couples, while the second is based on linear variation in W and
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constant moment distributions. The former has the corner values
of W, Mx, My, and Mxy as unknowns, hence it has twelve degrees c¢f

LV

freedom, the Tatter has the corner values of W and edge values 2¢
w,n as unknown, hence it has only six degrees of freedom.
Herrmann's second plate bending element was particularly
remarkable for its algebraic simplicity and gave fairly reasonable
results in the distribution of moments. The transverse displace-
ment was, however, predicted with less accuracy, leaving room for
some improvements. Based on a similar formulation, Visser (4)
developed a triangular plate element with six nodes based on a
parabolically varying lateral displacement distribution combined
with a linearly varying mement distribution, within each element.

The element has twelve degrees of freedom and is suitable for thin

plate problems only.

Tahiani (62) presented two mixed elements, by considering
linear distribution for the transverse displacement and moments,
and parabolic variations for the transverse displacement and moments
respectively. The concept of area-natural coordinates was used for
the first time in a mixed formulation and the shape functions were

formed in terms of these natural coordinates.

Mixed formulations for flat plates of rectangular shape were
made by Kikuchi and Ando (6). The transverse displacement is assumed
to vary linearly. Mx and My are assumed constant within the element
and they are expressed in terms of normal moments along the sides of
the rectangle. The element has eight degrees of freedom and is

compatible with Herrmann triangular element (3).

- 1 -



Bron and Dhatt (63) made a detailed study of the inflience of
various types of mesh subdivision on the convergence croperties ¢f
the mixed elements in references (61), (62). They showed tha: cer-ain
types of subdivision for the mixed triangular elements ‘ead *o NTCng
solutions. In an attempt to overcome these shortcomings, 3ron arc
Dhatt (63) proposed general quadrilateral shape elements. The
elements were reported to give excellent precision for moments and

displacements.

Only a few investigations have been published on mixed models
in plate dynamics. Cook (5) developed a triangular thin plate
element which was tested in the solution of dynamic and buckling
probtems. The results, although converging to the correct answers
were disappointing due to the slow rate of convergence. Mota Soares
(7) developed an isoparametric linear element for moderately thick
plates and the results compared favourably with other mixed and
displacement models. Reddy and Tsay (8) formulated linear and
quadratic isoparametric elements for vibration of thin plates.

Each element has three degrees of freedom (the transverse displace-
ment and two normal moments) at each node. Despite the simplicity,

the elements yield gcod accuracy for frequencies.

This literature survey highlights the ability of mixed formula-
tion in generating simple and efficient plate finite elements.  The
works by Kikuchi and Ando (6) and by Reddy and Tsay (8) show that
in general, quadrilateral type elements are more accurate and
reliable than triangles. In particular the simple formulation of °
isoparametric elements prompted us to deveiop an eight node

quadrilateral element for the solution c? free and forced plate

vibration problems.
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CHAPTER 6

TREATMENT OF BSEAM & PLATE VIBRATION PROBLEMS
BY

MIXED FINITE ELEMENT METHOD




6.1  INTRODUCTION

The mixed beam elements properties are oriefly cescribed zn¢
the types of elements which have been developed for the solution
of free and forced vibration of beams are illustrated. Then free
and forced vibration problems of thin plates are treated by means
of mixed finite element technique. Reissner principle (4.11) is
used which does not require the continuity of slope across element
boundaries. Based on this theorem, an isoparametric guacri-
lateral element with 8-nodes is developed which is applicable to thin
plate theory only. The geometric, deflection and moment fields
are expressed as quadratic functions of position. Mixed element
matrices are evaluated by means of numerical integration in which
the Gauss quadrature rule is employed. Models based on this
element were used to calculate the natural frequencies and modes
of vibration, and the transient displacements and moments in plate

type structures.

Two computer programs are developed as described in Chapter 7,
which incorporate the 8-node quadrilateral element presented in this
section. Examples of results will be given in Chapter 8 to show the
order to accuracy which can be achieved compared with other types of

elements.
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6.2 DERIVATION CF THE MIXED BEAM ELEMENT PROPERTIES

Reissner's principle, equation (3.16) ‘or applicaticn *c cyramic
beam problems was developed in section (3.3). We also presentec
the modified version of this principle, equation (3.17). This
version imposes CO continuity requirements on the fields o7 bending
moment and deflection. These principles can be directly incorporated
in finite element formulation of beam bending problems. Several
such elements have been developed in this work which are shown in
Table (6.1), with the corresponding shape functions. The mixed
element matrices for one of these elements will be derived in here.

Other elements may be formulated in a similar manner.

6.2.1 Mixed finite element properties

Let us divide the beam into finite elements, for the eth

element: (from equation 3.17)

t, 1 1
MZ
(& E)e =4 J. [ S ( - oAw? - ?F? + M'w') dx - 5 Wt p(x,t) dx} dt
t 0 0
t2
+ S [ j c(x) w ow dx:| dt = 0O (6.1)
t) 0

A natural coordinate, £, is assumed within the element (Fig. 6.1) such

that



x = [3(1-6) 3 (+e)]01 (6.2)

where x;, X, are the nodal coordinates at node 1 and 2, and £ = -1,

£ = +]1 respectively at node 1 and node 2.

Solving equation (6.2) for £ and differentiating with respect

to x yields:

d _ d¢ d _ 2 d

® S & €T E (6.3)
hence dx = -% dg (6.4)

As an example, assume a parabolic variations for Mx and w within the

element, then,

W

Wos [3E (D) de () ()] m (6.5)
3
M

™M, = [2& (&-1) be (&+1) (1-£2) ] t:zg (6.6)
3

or (M., w) = [N:]({w}e, (M}®) where {w}® and (M} are nodal values
of deflection and bending moments respectively. Hence using

equation (6.3)

dM dM Ml‘

x _ 2 x _ 1 ) . 6.7
* T T ° 7T [ (2e-1) (2+1) 26]’% (6.7)
i.e. . s ] m

dx e
and
& < ﬁ‘% - [B]{w}e (6.8)
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Substituting relations (6.5) to (6.8) into the Reissner equation
(6.1) yields

t2

L] t -
§ j[ - 3 (W), [m]{w}e - 3 {M}: [gJiMy, + {M}:[h]{w}e

t
t;
- WS (r) ]dt + S WIS [clewl, dt = o (6.9)
t)
The corresponding matrices are then evaluated from:
1
[¢] - 5 N o IND § e qa)
-1
1
[n] - j (8]t [8] § < (b)
-1
. 1
[m ] = o A [N]t [N] Jz de (c) (6.10)

-—

[¢ ]- j c (NP [N] 5 a (d)

—

{r} [N]t p(x,t) Jz de (e)

1]
\-_--‘

Variations of Reissner's principle then yields the mixed governing

equations (4.19).

The behaviour of the beam elements in connection with free

~ 1nQ o



and forced vibration problems is investigated in Chapter 2.
w1 w3 w2
Mg M3 ¥ e
1 & o= - >
e \y Y i
1 =0 St
I
< >

Fig 6.1 Beam finite element(MBS)
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6.3 COMPUTER IMPLEMENTATION OF THE MIXED 3EAM ELEMENTS

The series of programs written for the study 7 beam elements
can be divided into two groups, on the basis of their “uncticns,
these being free vibration programs and response analysis programs.
The former produces the eigenvalues and eigenvectors o7 the undamped
free vibration problem. The second group of programs performs the
response analysis and outputs the time history plots cf the displace-

ments and bending moments.

An important consideration in using the one-dimensional beam
elements is the similarity between the calculation of different
elements. For this reason and because of the familiarity and ease
of formulation of one-dimensional elements, the related programs
are not described in detail. However, in Appendix C, the computer
listing for the forced vibration of element MBS (defined in Table
6.1) is provided. - It is believed that by showing the actual computer
implementation of this element, the implementing of other beam elements
is self explanatory. The input and 6utput (1/0) variables and the
flow of the program are documented within this listing. The package
of mixed beam elements includes the programs YREIS1 to VREIS8 for
elements MB1 to MBS which perform the free vibration tests and the

programs MBRSP1 to MBRSPS which perform the forced vibration tests

for elements MB1 to MBS.
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6.4 MIXED FINITE ELEMENT FORMULATION - THIN PLATES

Reissner's principle applied to thin plate vibration theory may
be derived from equation (2.59). Assuming that the prescribed

normal moments, twisting moment and transverse deflection are satis-

fied, that is:

and W = W on (su)e

We will obtain the following expression for Reissner's principle:

T2
smd). =6 -3 oh W2 dA - 3 mtp] o da
(6mp)e
* Ae e
t o WdA - M M ogs |at
+ {Q}" {W'} dA - p(X,y,t) s 5e
A A Se
t2
* j'( }' it sWdA) dt = 0 (6.12)
t)
in which

t
{M} = [Mx ﬂy MXY]
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W'} _ay]
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1
%12

and the homogeneous natural boundary conditions are:

(6.13)

-
1]

0 on (sc)

The surface integrals are evaluated over the entire area of the
element and the Tine integral is evaluated (in an anti-clockwise

direction) around each element boundary Sa

Now consider a general thin plate divided into an arbitrary grid
of finite elements (fig. 6.2). The transverse displacement W
and the moments {M} = [Mx M Mxy:]t may be independently assumed

b
within each element by:

W =[NN Wy, (2)
(6.14)

[NM [ {M} (b)

{M} J &

[N, ] and [NM] are the elemert displacement and bending moment shape
functions respectively. For the present formulaticn, the trial

functions should be at least linear in x and y. The element nodai

parameters are given by:
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where n and m depend on the order of shape functions (trial functions).
Note that independent approximations for the displacement and moments

are used. From equation (6.14), the slopes within the element are

given by:

W'} = [N'w}{hl}e (6.16)

and on the boundary s_,

R R T [EI LA ] o, (6.17)

Shear force intensities are derived by differentiating (6.14b), in

the interior.

(Q} = [”'w ]{M}e (6.18)

and on the boundary

= - M 6.19)
me =Lt ]mme = [ tes] ™ (
[L ] and [ LN] are the direction cosine matrices.

Upon substitution of the above derived equations into equation

(6.12), we obtain

- 116 -



t,

D, _ .t -
(67p) = & J’ (-3 g [m] tng - 3 ont (9],

t
" (6.20)

t t 5
+ {M}e [h] {N}e + {w}e {r}) dt + J {H}: [c] {aw}e dt =0
t)
where:

[9] = f[NM]“[DT ] da  (a)

Ae

[h] = f |_'N'M:|t [N'N]dA + f [Lns]t[Y]ds (b) (6.21)
A

e Sn

[n] - oh [N, 1% [NIA (o)

=

LTk [N da (d)

~—
(2]
—
"
%

p -

{r}

f[m“' p(xayst)  dhg  (e)

AE

[m] and [c] represent the consistent mass and damping matrices
and {r} is the vector of equivalent nodal forces for element (e).

In order to obtain a consistent set of nodal forces corresponding to

- 117 -



a general distributed load, the fcllowing assumptions may be ~ace.

p(x,y) = [ Np] {p}e (6.22)

in which [ Np] contains the assumed functions and {pj—e are the

nodal load intensities. Thus equation (6.21e) may Se re-wri<ten zs:

rt = ( S [Nw]t [Np] dA ) ip:, (6.23)

Ae

Variation of (wg)e with respect to {M}e and {N}e, in succession,

yields

-[g]{M}e +[h Wy, = o0
(6.24)

t - ~ s _
[0 ]F ooy« [c ], [m]on, = o

The above set of equations represent the mixed element matrices for
an arbitrary plate finite element. We now confine our attention to

the isoparametric quadrilateral element.
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Fig 6.2 Finite element idealisation of a plate.
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6.5 DERIVATION OF MIXED ELEMENT PROPERTIES - THIN PLATES

6.5.1 Element shape functions

The element under consideration is an isoparametric quadri-
lateral element of quadratic type (see Fig. 6.3). The element has
8 nodes with 32 degrees of freedom (one transverse deflection znd
two bending and one twisting moments per node). Isoparametric
elements have identical geometric transformation and displacement

assumptions which may be represented as:

X1 Y1
X2 ¥2
(x5y) = [N1s Ny ceees Ng] (40 (5 (0 1) (6.25)
X8 ys
W,
W
W= [Ny Ny ey Ng] 002 (6.26)
e
i.e. W = [NN] {N}e
and the bending moments are given by:
M B
M N, O 0 Ne 0 07! »n
X "
My = 0 N O0......0 NgOff:s (6.27)
I”xe i
M L0 0 N 0 0 Ng| Mes |
Xy M .
L Xys
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A curvilinear coordinate system (&,n) is defined within the
element in such a way that the corners of the element have coordinates
of +1 or -1.  The location of local node points for each element are
initially defined in terms of the cartesian coordinates (x,y). The

shape functions are:

Noo= 3 (T +egy) (1 +nng) (865 +nng = 1) (i =1,2,3,4)
No= 3(1-€2) (1+m;) (i=5,7) (6.28)
N-o= 3 (1-n%) (1+¢g) (i=6,8)

which are the same for all three types of parameters, (geometric,

displacement and moments).

6.5.2 Transformation

The evaluation of the element coefficients involves the
derivatives of the shape functions (which are defined in terms of ¢
and n) with respect to x and y and integration over the area of the
element. Integration is performed in the transformed coordinate
system and therefore various terms, such as the transformation
jacobian are included in the integration to give the correct

results for the original coordinate system (20).

From the chain rule of differentiation it can be shown that

aNi 3X 3y aNi [ aNi
K3 E3 3 ax an
- - [J ] (6.29)
aNi ax 3y aNi AN
an an an oy 9y
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where [ J ] is the Jacobian operator relating the curvilinear
coordinate derivatives to the local x,y coordinate derivatives.
The Jacobian operator can easily be found using (6.25). Inverting

(6.29) gives:

” < * %*
aNi 3_Nl _dn Jiz - aNi
X 13 T3t

-1
s [J ] = (6.30)

i ) * *
aNi AN L J2) Jaz 4 | aNi
3y an an

The inverse of [lJ ] exists provided that there is a one-to-one
correspondence between the natural, (&£,n) and local (x,y) coordinates.
An operating matrix B which includes all the shape function deriva-

tives may then be represented as:

"3N1 3N2 aN» 3N3- - &
=3X 3x 't X T Bii Bya  cesies By7 Bis
[B]= J | (6.31)
aN,; aN, 3N~ aNg
_Ty —5-&- loul"—alyli -a—y- —821 Bzz R 327 Bza-
in which

By = Jh (1-€) (2n +€) /4 + Jp (1-n) (26 +n)/4  (a)
Bp = Jn  (1-£) (20 -£) /4 + Jp (1+n) (26 - n)/4  (b) 62
By = i (1+€) (2n 4€) /8 + Jp (1+n) (26 + n)/4  (c)
By = Jy  (146) (20 -£) /4 + Jp (1-n) (26 - n)/4  (d)

etc.

Equations (6.28) and (6.32) can be used to evaluate the element matrices
in (6.21). The resulting integrals are too complicated to evaluate

- 122 -



explicitly and therefore numerical integration must be employed.

6.5.3 Slope matrices

Differentiating equation (6.26) with respect to x and y at

any point within the element gives:

oW _ 3N, 3N, aNg -
3 TOX  gg e X Wy
W, ;
1 = : ie. (W'} :[Nw] {W}-
oW 3Ny L 3Ng l.'fa
/!l LTy Ty T3y -

(6.33)

This relation can be evaluated by using the operating matrix B given

by equations (6.31) and (6.32). Then

aW

X By Bp ...... By Bgp Wy

- A2 (6.34)
oW :
- B B N B B w

on the element boundary s, equation (6.17) can be written for each

side as:

W
oW X
Cg [Lw]i ga_“% (6.35)

for 1 =1, 2, 3, 4. Where (i) is the element side and the correspon-

ding direction cosines matrix is given by:

[LN:L = (-sins: Coss) (6.36)
- 193 =



For each element side, 8 is the angle between the normal to the
boundary S, and the x-axis (Fig. 6.3). In general 8 is variable
along curved element boundaries and therefore should be calculated
numerically. A computer subroutine is written (section 7.7) which

calculates g at different integration points on the element

boundary.

Substituting from (6.34) into (6.35) yields:

Wy
By Brp ...... B, Bl "2
2 = [ sing Cose) :
- 8 Coss), : (6.37)
Ba By ...... B27 Bog||{ W~
Wg
i.e gg [ Y ]1 M}, fori=1,2, 3,4
where
[Y]1 = [Yl Yz e Y7 Ya]} (a)
in which (6.38)

Y1 = (- BnSing + By Cosg),, etc. (b)

6.5.4 Shear force intensity matrix

The shear force intensities Qx and Qy may be expressed in
terms of nodal bending moments. Differentiating the matrix

relation (6.27) within the element yields:

—
X1
1 ] ] I | -
) M : ; aNy iaﬂa! ’ Eane My,
1;: l_?: nnnnnnnn a'—i'l :—W M
; i : . | XY, (6.39)
& fa= S N Camrusm peost-=—r—| |
0 o 1 MNiy ANy i g1 3NgiaNg Mg
AN N T T I S
Meye
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substituting the components of the operating matrix B , (£.31) ‘n

the above matrix relation yields:

QX
} g [N'M] M (6.40)

¥ g N
where
sui 0 Bﬂ| ................. 5813'5 0 | Bx
1 e e 1 .____l____l _________________ l___l__ _ 1
[“m} - [Riespmiy S T
E,n 0 & Bop 4 Bl teeevnennenennnnns 0 1+ Bg' B
-:r")

6.5.5 Normal twisting moment along each element side

The normal twisting moment Mns in terms of the natural
coordinates £ and n and the nodal moments is given by equation (6.19).
The direction cosine matrix [ L] is taken from relation (3.26), and
is given by:

[L] = { - Cosg Sing ! Cosg Sing : Cos22 = Sin2s }i

(6.41)
f0r1‘]|233s4

The components of [ L] are evaluated numerically at each integration
point along the element boundaries. The twisting moment Mg can then

be represented as:
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L Na] : (6.42)

ie. M = [Lns] M With 2 orn =+
E,n

6.5.6 Mixed element matrices and load vector

Having established the Jacobian transformation in the matrice
[Nh ] and [N'M], we can proceed to the integration of equations
(6.21), As in the usual numerical integration method dxdy is
replaced by |J(E,n)| dg dn where

|J | = det (J) (6.43)

(£sn)

then for thin plates we have:

o] ]

S S [NM]t [D][NM] det o dg dn  (a)

S (6.44)

1 ]
N'H:'t [N‘N] det J dedn - S[Lns]t[Y:’ds (b)

<7 =] -1

["]

"
k’\‘
C—s
| Gtam |
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1 1

j oh [Nw]t[ﬂw] det J dgdn (c)

| p—
=
—_
n
_\

S I (6.44)
1 1

rt = J j["w]t P(Xsyst) det J  dedn (d)
S

The line integral in equation (6.44b) is to be evaluated along each

element side. Therefore, ds is replaced by:

ds = -g% de (a)  (n = const)
or : (6.45)
ds = %5- dn (b) (£ = const)
n
ds ds

3 and & My be determined from the following relations:

d dx. 2 2 d _ / dx, 2 dy. 2
./ @ @, LD 6

where the components ‘gé, etc. are evaluated using equation (6.25).

If the element edge is a straight line of length L then

is = 5% (6.47)

If the load p(x,y,t) is not constant over the area of the plate,

then it is assumed that within an element, the distribution is given
by:
plxayat) = [ N] Pl (6.22)
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The interpolation function [Np] = [NN] and {p}z =

[pl. P2s ey P7 p{] is a vector with nodal pressures. Substituting
from (6.22) in (6.44d) yields:

1 1
{r} = J J’[Nw]t[ Np] (P}, det J de dn (6.48)
=

Now the components of the element mixed matrices and load vector

can be given as:

Iu o G2y, L7 9w T
"""" iy e S
i e L . i
: S A
[9] = : S : P (6.49)
i E L
[ ] ] ] ]
------- s SRS SO RS-
981 | 08 1evevennnnns : Qg7 I Qg

A typical submatrix (gij) linking nodes i and j is given by the

expression
1 1 Ni Ci Nj E Ni Ciz N_ E Ni Ci3 Nj
““““““““ 1""““““"1"'!";‘“'6“"""
= N, Cxn N, N, Cp N, | s N
[g”] j J i ji i i
_____________ 1"'"""""'i""'_""-"
det J dg dn (6.50)

for 1,d = 1,2,3,4,5,6,7, 8

and,
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Ay (P12 §eeeeennn. thiz | hy
RO SN S SR IO S
] 1 1 f !
I 1 ] I i
[v]-] | -
L | : (6.51)
R T bommmnbeee
hﬁl ',hap_ : ......... :ha7 : hag
where
1 B,. - [
1 [ 8y By Ml N Y7
Br. Bs. - e
b S S 2§ B2; det J dg&dn j Liz Ny YJ. e
iJ
‘T '] n Bz Blj+ 811 BzJ._ =7 |__L]_3 N'l Y.J"
fori, d = 1,2, ..., 8 (6.52)

in which the line integral should be evaluated over the four sides of

the element. The mass matrix is given by:

1 1 B N]_ Nl Nz ........... Nl Ng-
2 :
1 N, :
[m]= _[ j A D T : | det J dgdr (6.53)
------- ‘2
-1 -1 Symm 'Na _

where - is the mass of the plate per unitvclomeand h is the thickness.

The load vector for p = constant is:
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{r}

t
]

Sty

e

p det J de dn (6.54)

rs Ng

However, if p is not constant then it is assumed that p varies para-

bolically within an element with [ Np] = [Nw]we have

1 1
roo= J. J. ( :E: Ny N; p;) det d de dn (6.55)
E T

for 1. = T4 @5 i 8
We will now outline the Gaussian numerical integration procedure

which will be used in the evluation of various matrices involved.

6.5.7. Approximate integration of element matrices.
Gauss - quadrature rule

Exact integration of the matrices in eugations (6.44) to
(6.55) is not generally possible because the composite function which
forms the integrand cannot be expressed as a polynomial. This is
due to the jacchian matrix determinant det J , which is used in the
transformation between the global coordinate system and the natural
coordinate system and is usually a variable functien. It is therefore
necessary to resort to numerical integration procedures to evaluate
the matrix coefficients. In particular, Gaussian integration techni-

ques have been adopted because of their convenience and accuracy.



Consider, for example the numerical integration cf

I = j f (g) dg -l g+ (6.56)

Using Gaussian integration, the function f(£) is evaluated at severa]
sampling points with coordinates & = a; within the region of inte-
gration. Each value f(ai) is multiplied by the appropriate "weight"
Ni and added. Thus, the integration becomes a summation of products,

i.e.

[ = Z f(e) W, (6.57)

where n is the number of points taken. The Gauss method locates the
sampling points so that for a given number of them, greatest accuracy
is obtained. Table (6.2) gives the appropriate Gauss quadrature
coefficients for the first three orders (44). It should be noted
that an n-point Gauss rule integrates a function of order (2n-1) or

Tess, exactly.

In two dimensions the function f in the intagrand is a function

of two variables, i.e.

+1 +1

I = j J f(z,n) dg dn (6.58)

-1 -1

a product Gauss rule may be used. Therefore, the summation becomes:
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rxz E Wi s A
i J

g,::—;) (6.59)

The 3 x 3 point Gauss quadrature is used for the evaluation of

the area integrals in equation (6.59).

is shown in figure (6.3).

The location of these pcints

TABLE 6.2 Gauss quadrature points
No. of Associated
points Locations (51’”1) Weights, Ni
1 0.0000000 2
2 +0.5773502691 1
3 +.774596669 5/9
0.0000000 8/9

=i }32 =



£ -—1

¢ Node

£ , 7 Curvilineor coordinates

« Posftion of intagration poirts

n
y
N A
n =1
7 3
6
>
b *
§ =1 - _———
= 5 —
1 &
.
5 2 i
n =1
Parent element Cartealan map

Fig 6.3 Isoparometric quadrotic piate element.
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6.6 ASSEMBLY OF THE OVERALL MATRICES AND LOAD VECTORS

In the preceding section the Reissner principle was applied to a
single element and the individual element characteristics were estab-
lished. The element matrices in equation (6.24) can be assembled in
the usual manner, (64) to obtain the global matrices. Let the global

deflections and moments be represented by:

* * * * t
W) [ Wiy W oy vunen W ]

{M*}

]
—
—

=
*
—
—
-
| TR |
=
*
| —)
e ]
-
—
=
*
e |
=
el
ot

and n representing the number of nodes. Equation (6.24) for the

overall structure may now be written as:

-[6 1M +[HIWY = (0
(6.60)

[HIE ) + [C]®Y «[MIG} = (R

where the overaTll partitioned matrices can be represented as follows:

[¢] XN: [ee] (a)

= |

[" ] - 2 [ He ] i8] (6.61)

m
=

m

=
[c]e’ [l'l'l]e (C)

| — |
(]
—_
| p—
=
| — ]
n

e

=

(R} = }E: {r'}e (d) N = number of elements
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[Ge]’ [He], etc. have the same dimensions of [G],[ii}, ... but the
only non-zero locations are those due to the coefficients of (9]

[h], etc. for the eth element, globally located.
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6.7 BOUNDARY CONDITICNS

Before proceeding to solve the problem, we must impose the
kinematic (or essential) boundary conditions of equation (£.11) on
the global system of equations. The constrained nodal deflections
and/or moments are eliminated to yield non-singular matrices (by
deleting the corresponding rows and columns). At boundary nodes
where the constrained moments do not coincide with the x-y global
axes, there will have to be a change of coordinates to normal and
tangential components. The relation between the unknown moments for

a typical boundary node (i) (Fig. 6.4) is given by:

L - Sin2g Cos 28 -2 Sing Cossq M,
My - Cos?8 Sin2g 2 SingCosB My (3.26)
Mns CosgSing CosgSing Cos<g-Sin-8 Mxy

ey =[15] 0,

where the primed notation indicates the nodal components in the new
normal axes. [ 11] is the simple point transformation matrix and

8 is the angle between the normal of the true boundary at the ith
node and the x-axis. Following a procedure similar to the one des-
cribed by Mota Soares (7), the mixed-matrix governing equation is
tranformed to the new set of coordinates,at element level, before the

assembly process. Thus for an individual element we have:

] [e]lw] @
: n ] : K:t [ r1] (b)

where the matrix.[LK] is (24 x 24) and has tne following typical fcrm:

L ] |
[Te]
L_-I\
"

-
-~

s (6.62)

1"
—

- 13 -



=] -

in which I is the identity matrix of the same order as

prescribed values are summarized in the following table.

TABLE 6.3
|

Nodal variables - Thin Plates
Boundary
conditions W Ms Mn Mns
Simply-supported 0 0
Clamped 0
Free 0
Symmetrique 0

(6.63)

The

For the rest of this chapter we will assume that all the boundary

conditions have been applied and the mixed matrices correspond to free

nodal deflections and moments.



Plate boundary

Y

Filg 6.4 Typical boundary node.
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6.8 MATRIX CONDENSATION OF THE MIXED GOVERNING EQUATICNS

The mixed matrix equations (6.60) should be trnaformed into an
appropriate form prior to the solution procedure. In static anaiysis
(7), the effect of inertia and damping is neglected and the following

equation is obtained

-[e] ([H] | [ (0}
-------- demmmmnen) beee = ————- (6.64)
: *
[HI® ) o ! (R}
For an effective solution the nodal freedoms are rearranged and
equation (6.64) is re-written as:
[K } (6) - (R (6.65)
in which
t %* * * * *
{§}° = [ (W%, Mx, Mo, ME ) o (W5, MG, MO, Myl e o (W5l MG Mw)nﬁ]
(6766)
{F}t = [ (Rl: Os 03 0)9 (RZS 0, 09 0)! ¢o0y (RTI’ O’ O' 0)] (6‘6?)

the mixed matrix [K ] is banded and non-positive definite. To avoid
the zeros in the diag onal element, the Gauss elimination method,
reference (65), with row interchanges is used in the solution of the
equations. However, since the symmetry of the overall matrix is lost
throughout the numerical process, it is required that the complete

band form of the matrix [K ] to be stored as a two-dimensionai array.

In dynamic problems, the matrix condensation & carr‘ed out as

follows:
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The first equation in equation (6.60) is solved for {“*. +g

give:

e = [6] [H] W) (6.68)

and the result is substituted in the second of equation (6.60), thus:

[K*] W)+ [c] W1+ [M] W+ = (Rpgy) (6.69)

where
-1

[K*] = [H]t[ G-] [H] (6.70)

is a real symmetric positive definite matrix. t should.be noticed
that the reduction of degrees of freedom (equation 6.68) to (6.70), is
an exact operation and that the moments are calculated (equation 6.68)
by a matrix transformation of the displacements. The solution of
equation (6.69) is performed by one of the direct integration or mode

superposition methods described in section (4.6).

For free harmonic vibrations (neglecting damping) equations (6.60)

become:

-[G]{ﬁ*} : [H] W = {0) (a)
(6.71)

[ H]t[r'&*} - wZ[M] W*) = {0y (b)

which can be easily transformed into the standard eigenvalue problems

(see section 4.4.2). In terms of (W*}, the eigenvalue problem becomes:

[K* ] R [M :'{ﬂ*} - {0} (6.72)

and in terms of {ﬁ*} eigenvectors, we will obtain the followirg

equation:

= 14N <



[H] [ M]ﬂl[ H]t M} - QZ[G ] M*} = {0} (6.73)

The natural frequencies (w) and the mode shapes ( {Q*} or {ﬁ*} )
are determined by solving the comesponding eigenvalue problem. A

standard subroutine is used which is described in Ref. (66).
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CHAPTER 7

COMPUTER ALGORITHMS
AND

PROGRAM STRUCTURE |




7.1 INTRODUCTION

Three finite element programs have been written which use *he

8-node plate isoparametric element described in Chapter 6.

These programs are:

(1) RFPLTI For free vibration of thin plates.

(2) RFPLT2 For forced vibration of plates using the
mode superposition method.

(3) RFPLT3 For forced vibration of plates using the

direct integration method.

The memorycapacity of the computer on which these programs have
been implemented is 182 K. Due to a memory capacity constraint,
the treatment of plate problems, using these programs is limited to
systems having no more than (10-20) non-constrained nodes. This
machine can be configured to have a maximum memory of .ZM bytes.
This would enable the maximum number of non-constrained nodes to be

increased to (30-60) nodes.

The flowcharts for the three programs RFPLT1, RFPLT2 and RFPLT3
are presented in sections (7.3) to (7.14).  The routines for the
generation of element characteristics matrices are common to all three

programs. These are presented in sections (7.7) to (7.10).



7.2 CLASSIFICATIONS OF THE SECTIONS OF THE PROGRAM

The program may be classified into the following main sections:

(1) Specification of the structural idealisation.

Data is input to the program in the following form:

(a) Nodal coordinates and element topology - This data
is prepared using a semi-automatic mesh generation program
(Ref. (67)) where the structure is divided into a few large
zones and the fineness of element subdivision within each
is specified. The initial data is input in the normal way

and the subdivision proceeds automatically.

(b) Material properties

(¢) The boundary conditions

(d) The loading to which the structure is subjected

(e) Modal damping ratios, initial conditions, time

varying forces, and time integration constants.

Data in parts a, b and c are common to all three programs dealt with
in this section. This data is prepared by the mesh generation
program and is input into the main program via data files (see
Appendix B). Data in parts d and e are input at the keyboard by

the operator in response to the appropriate programmed input prompts.

(i1) Evaluation of element characteristics.
The numerically integrated, mixed matrices [9], [h] and [m]

are formed for each element in turn with reference to the global coordin-

ate system (x,y). The load vector {r} due to a distributed load,



matrix relation (6.48) is also evaluated numerically.

(1ii1) Assembly of the element matrices.
The element matrices are assembled into the overall structural

matrices. The equivalent stiffness matrix is tren calculatea, frem

equation (6.70).

(iv) Satution of the eigenvalue-eigenvector problem.
The standard procedures Trans and Eigen in reference (66)

yield the eigenvalues and eigenvectors which may be used for:

(a) Free vibration analysis
(b) Forced vibration analysis by mode superposition method.
(c) Construction of a complete damping matrix in the

forced vibration analysis by direct integration method.

(v) Steady state and transient response solutions.
Either a mode superposition (Duhammel integration) or a
direct integration (Wilson 2) method is used to calculate the

response of the plate subjected to time varying forces.

(vi) Output - The free vibration results are output as a table
consisting of numbers for frequencies and mode shapes. The response
output from programs RFPLT2 and RFPLT3 include time history plots

for displacements and bending moments.
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7.3 SUBPROGRAM Feinpt

This subprogram reads the input data file, generated cy a pre-

program for mesh generation.

following order:

(a)

(b)

elements is

Control data

The variables are read in, in the

Kb 2= Number of
NT = = Number of
N D= Number of
Cw : = Number of
Cx : = Number of
Cy 2= Number of
Cxy = Number of
Nmat : = Number of
Nskew: = Number of

direction

Geometrical data

jobs
elements
nodes
nodes with
nodes with
nodes with
nodes with
materials

nodes with

constrained deflections
constrained Mx
constrained My

constrained M
Xy

specified local coordinate

The subdivision of the structure into quadrilateral

defined by two sets of information:

(i) Nodal data - specifies the position of each node

(1)

x-coordinate of node !

y-coordinate of node I

(ii) Element data - each element is identified by the

nodal connection array and a material prcperty set

number. The nodal connections are represented by

the array N (I,d), for I =1, 2, ..., N1 ard ¢ =



(c) Specified boundary conditions

Any one or more degrees of freedom (W, Mx, My, Mxy) may
be specified as zero at a nodal point. Data for this section is read

in the following order:

(i)  Sequence of node numbers with specified W
(i1) Sequence of node numbers with specified Mx
(ii1) Sequence of node numbers with specified Hy

(iv)  Sequence of node numbers with specified Mxy

By using the information in part (c), an array Ndc (I,J), for I =
1,2, ...., Nand J = 1, 2, 3, 4 1is constructed which specifies the
free and restrained nodal degrees of freedom (moments, deflections).
This array is used in the assembly process where the rows and columns
corresponding to constrained degrees of freedom are determined and
thus deleted. Figure (7.1) represents the nodal constraint
array (Ndc(*)).-for a quarter of a simply-supported plate. One
element idealisation is used and zeros indicate the constrained

degrees of freedom.

Node
Number Mx My Mxy . y
A ¢
1 0 0 1 0
2 0 2 3 0
3 0 4 0 0
4 7 3 (3
4 5 0 6 0 -
5 7 8 0 1
8¢ b 8
6 9 0 0 0 s
7 10 11 0 2
= >
8 12 13 0 3 ! s? 2 x

Fig. (7.1) Nodal connection array for a quarter of a SSSS plate.
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Sequence of nodes with constrained W, 1s 2% 35 4 8
Sequence of nodes with constrained MX, 1: 2; 3
Sequence of nodes with constrained My, 1, 4, 6

Sequence of nodes with constrained Mxy, 35 8 8 1,8



7.4  SUBPROGRAM Cmatrx

This subprogram reads the material properties of the structure
from the input data file. The properties are specified for eacn se:
of elements of different materials. Each set is identified with a

material property set number (Mat). Data is read in the following

order:
(i) Th (Mat) = Group material thickness
(i1) D (Mat) = Group material density
(i11) Ex, Vyy* ny, Ey, Vyx : = Group material constants

7.5 SUBPROGRAM Excitn

This subprogram permits the user to define the force function from

the keyboard.
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7.6 SUBPROGRAM Rspipt

This subprogram is used to input the data reguired for thre

response calculations.

at the keyboard.

Time

Delta

Data at this stage is input by the operatcr

The input variables are:

Time required for the response calculations

The value of theta in Wilson integration
scheme

Time incremental

Integration constants used in Wilson @
method

Vector of initial displacements

Vector of initial velocities

Number of damped modes

Array of damping ratios

Node number to calculate displacements for
Node number to calculate the moments for

Code 1 - for Mx’ 2 - for My, 3 - for Mxy

Subprograms Excitn and Rspipt are called in by programs RFPLT2 and RFPLT3.
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7.7  SUBPROGRAM Qaux

Description:  This subprogram is called in to perform *ne

following operations:

(a)

(b)

(c)

Calculates the shape functions Nl(: h)? e Ns(: n)

at the Gauss point within an element.

Calculates the Jacobian J, its determinant and the
inverse of the Jacobian, equation (6.30) at the Gauss
point.

aN, 3Ng

Calculates shape function derivatives ET e

Calculates the angle 8 in equation (6.41), and ds in
equation (6.45) along each element side by calling four

subroutines Side 1, Side 2, Side 3 and Side 4 respectively.

The subprogram Qaux can be considered as a standard routine,

which with Tittle change, may be used in developing of other two dimen-

sional isoparametric elements.

Variables list:

L1s Lo Natural coordinates of the sampling point
(&50mp)

STL*) Shape function array

Pm(*) Shape function derivative array

X(*) s Y{*) Nodal cartesian coordinate array

Z Current element number

U Determinant of Jacobian ¢

N(*) Nodal connection array

Be Angle between normal to a bcundary with

the +ve x-axis direction
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Ds Defined according to equation (6.4<5)

Jo Integer indicating which operaticns tc
be carried:

1 - step (d) on Side 1 of the element (-= -1)

2 - step (d) on Side 2 of the element (5= -1)

3 - step (d) on Side 3 of the element (rn= -1)

4 - step (d) on Side 4 of the element (= -1)

5 - steps (a) and (b)

6 - steps (a), (b) and (c)

The variables are passed to and from the subprogram via the para-

meter 1ist.Fig (7.2) shows the flow diagram for subprogram Qaux.



G

L1,L2.X(2),Y(s)
N(e),ZJo

Dn1=25(1-12)(2L1+L2)
Dn2m.25(1—L1)(2L2+L1)

Dn16m—L2(1-L1)

SH(1)m=25(1-L1)(1=L2)}(L14+L2+1)
SH(2)=.25(1+L1)(1-L2)(L1~L2+1)

.Sf(a)-..'.’t(1 =L1)(1-12~2)

Utmy(1,1) U3=J(2,1)

U2=J(1,2) Udmi(2,2)

UsDetl J] =U12U4—U2¢U3

Jo=5 Tes SuUB EXIT

‘ No

J(1,1)=J(2,2)/V
J(1,2)=—4(1,2)/V
J(2,1)=—J(2,1)/V

J(2.2)=U1/U

0

Fig 7.2 Flow dlagram for SUB Qoux(L1,L2,X(+),Y(*),U,Pm(s),Sf(e),
Be.Ds,INTEGER Z,N(*).Jo)
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{ FOR =1 TO 2 >

Pm(l, 1)=Dn1sJ(1,1)+Dn2eJ(1,2)
Pm(1,2)=Dn3aJ(l,1)+Dn4ad(l,2)
Pm(,3)=0n5«J(], 1) +Dn6ei(1,2)
Pm(l,4)=Dn7J(1,1)+Dn8«J(1,2)
Pm(,5)=DngeJ(l,1)+Dn10=J(1,2)
Pm(1,8)=Dn11aJ(1,1)+Dn12eJ(1,2)
Pm(,7)=Dn13aJ(1,1)+0n14=4(1,2)
Pm(1,8)=Dn15aJ(1,1)+Dn16aJ(1,2)

NEXT |

SuB B4t

Be=ATN(ABS(U1/U2))

Ds=SQR(U142+U2~2)

Be=ATN(ABS(U3/U4))

De=SQR(U3~2+U4~2)
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7.8  ALGORITHMS FOR THE GENERATION OF ELEMENT MATRICES AND LCAD VECTZR

The coefficients of the element matrices [ h], [g], [m] and the
equivalent nodal force vector {r} due to a distributed load are

evaluated numerically using the Gauss quadrature rule, see sec*ion

(6.5.7).

The subprogram Qaux, described by the flow diagram of Fig. (7.2)
is called up in the element loop of the program to evaluate the varia-
bles required in the numerical integration process. For the inte-
gration of the partitioning matrix [ g7] equation (6.49), we only need
to integrate 36 different coefficients, related by the array Sfm(*),
see figure (7.7). The coefficients are later multiplied by the constant
values of the compliance matrix, array Cons(*), and located in [g]
in accordance with equation (6.50) by tne subprogram Geform. The
contributions of the double integral in equation (6.52) to the mixed
matrix [ h] are evaluated by calling up subprogram Heform.  The line
integral contributions are calculated in the subprogram Mnsws and
added to construct the complete [h ]Jmatrix. Subprograms Meform

and Loadap are called up to calculate the element mass matrix and

load vector respectively.

7.8.1  Subprogram Mnsws

This subprogram evaluates the contributions of the line inte-

] : 3
gral f [ Ln{lt [ Y }ds, to element mixed matrix [h] (ecquation 6.52).

=
Variables list:

In(*) Gauss points & weights array

1cA



C(*) L . array in Eqn. (6.42)

ns
D(*) Y array in Eqn. (6.38)
He(*) Element mixed array [h]
X(*)s Y(*) Cartesian coordinates arrays
Bm(*) Shape function derivative array
N(*) Nodal connection array
ST(*) Shape function array
Z Element counter
K Element Side number (1,2,3 or 4)
Be Angle
Ds (52 d&) or (32 dn)

Figure (7.3) shows the flow diagram for subprogram Mnsws.

7.8.2 Subprogram Heform

This subprogram calculates the coefficients of the mixed array

[h] due to double integral in equation (6.52).

Variable list:

Ti, T2 weight coefficients

He(*) Element mixed array[ h]

Other variables are as defined in section 7.8.1.

Figure (7.4) shows the flow diagram for subprogram Heform.
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7.8.3  Subprogram Geform

The coefficients of the submatrix [91‘] are multioliec oy tne
constant values of the compliance matrix, array C(*) anc locazzc in

[9] in accordance with Equation (6.50).

Variables list:

Ge(*) Element mixed array [9]

A(*) Array of shape function products
C{*) Array of material constants
Matno Number of material

Fig. (7.5) shows the flow diagram for this subprogram.

7.8.4  Subprogram Transf.

Description: This subprogram modifies the element mixed
matrices [g] and[ h] for those nodes on the boundary which require a
coordinate transformation from the global x,y to a local n,s axss.
Thus the boundary conditions for the bending and twisting moments ~ay
be applied directly in terms of normal and tangential components.

The modification is carried out at element level. If for instance

node 6 of element e requires modification then we have: (see section

6.7)
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, _ i=1,2,3,4,5
g1‘]} = [g1J:| [ 1 ! fOY‘J. B
1 - _'t ¥ c 1=6
- 7 - -
g:zs5 = [ 1 t[gss ['I]
andh i )
[ ! ] - 1t i for i = 6
| "] T [1 [hii i=1,...,8

[1 }15 the direction cosine matrix given by equation (3.26), evaluated
from the value of the angle which the normal n makes with the x axis.

The matrices g.. and h.. are the partitioning matrices of element
1] 1]

mixed matrices[ g ]and[ h ]

Figure (7.6) shows the flow diagram for this subprogram. Sub-
routine Cosd is called to calculate the direction cosine matrix[ 1 ].
The four subprograms Matmult, Matmultl, Matmult2 and Matmult3 are

t t
called up to evaluate the products[ I] [gij][1]’ [1] [gij]’ [gij]
£ .
[1] and[1] [hy3] respectively.

Variables list:

Ge(*) Element array [g ]

He(*) Element mixed array[ h]

Be Angle (DEGREE)

W Node number (1,2,3,4,5,6,7 or 8)

7.8.8 Subprogram Meform

The element consistent mass matrix equation (6.53), is

formed by calling up subprogram Meform.
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Variables Tist:

D(*) Array of material densities

Th(*) Material thicknesses

X(*) s Y{*) Nodal coordinates array

N(*) Nodal connection array

z Element counter

Me(*) Element mass matrix

U Counter for numerical integration

Figure (7.8) shows the flow diagram for subprogram ¥eform.

7.8.6  Subprogram Loadap

Description: This subprogram evaluates the element load
vector and adds contributions to global load vector from element load
vector. Two types of loading may be accomodated. Firstly at each
node a load in the z direction may be input. Secondly, a distributed
load acting normal to the plate (i.e. in the z direction) may be
applied. Such a loading is converted into equivalent nodal forces

by use of the expression (6.55). Data is input at the keyboard.

Variables 1list:

Type Specifies type of loading: 1 - for concentrated loads
2 - for uniformly distri-
buted
3 - for general cistri-

buted loading

N(*) Nodal connection array
Ndc(*) Nodal constraint array - specifies free & cons-rairec
nodes
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Nelemt

SF(*)

W(*)
Re(*)

lumber of elements

Shape function array

Counter round the integraticn peints
Gauss points & weight factors

Element load vector

Global load vector

Number of nodes with concentrated lcading
Node number

Value of the concentrated loads

Number of elements with distributed loads
Load per unit area

Array of element numbers with distributed loading

Nodal pressure intensities array

Figure (7.9) shows the flow diagram for subprogram Loadap.



G

/ Zn(a) X(8)Y(e)
N(e).ZHo(e)

L1=—COS(Be)eSIN(Be)
L2=COS(Be)SIN(Be)
L3=COS(Be)r 2—SIN(Be)r 2
L4=—SIN(Be),L5=COS(Be)

< FOR S=1 TO 8

< FOR S=1 TO 8

N\

/ |
C(395~2,1)mL1eSK(S)
C(3eS—1,1)mL20SH(S)
C(30S, 1)=L3eS1(S)

L NEXT S

N

/

D(1.,S)mL4eBm(1.5)+L5+8m(2.)
|
NEXT S

K1

Neo

Yes

OR De=—Da
K3

©

Fig 7.3 Flow dlagrom for SUB Mnews(He(e).X(s),Y(¢),Bm(s)SY(e).Be

De,INTEGER N(¢),Z.K)
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MAT De=(Ds)eD

<FOR J=1T0 8 _/\/—

He(S,J)=He(SJ)+C(S,1)+0(1.4)

( suB END)
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( START )

/ Dct}.n.rz.am(.)/

< N
FOR I=1 T0 8 )

< FOR J=1 TO 4 >

He(31-2,2J—1)=He(31-2,2J~1)+Bm(1,!)eBm(1,24=1)
He(31—2,2J)=He(31-2,2J)+8m(1,))s8m(1,2))
He(31—1,2J—1)mHe(3I—1,2J—1)+8m(2.))+8m(2,2J~1)
He(31—1,2J)=He(31-1,2J)+8m(2.1)s8m(2,2J)
He(31,2J—1)mHe(31,24—1)+8m(2,))s8m(1,2J—1)+8m(1,)e8m(2,2J—1)

He(31,2J)=He(31,2J)+Bm(2,1)#Bm(1,2J)+8m(1,])eBm(2,2J)

r

MAT He=(DetjeT1eT2)eHe

( SuB END )

Fig 7.4 Flow dlagram for SUB Heform(He(s),Bm(s),Det],T1,T2)
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A=A(L.S)

Yes

\

\No

I$S

Ge(31—2,35—~2)=AsC(Matno, 1)
Ge(31~2,35—1)mAsC(Matno,2)
Ge(31—1,35—-2)mAsC(Matno,2)
Ge(31—1,35—~1)=AesC(Matno,4)
Ge(31,35—2)=AeC(Matno,3)
Ge(31,35—1)=AeC(Matno,5)
Ge(31,3S)mAeC(Matno,8)

Ge(31~2,35—2)mAsC{Matno, 1)
Go(31~2,35—1)mAeC(Matno,2)
Ge(31—1,35—1)=AeC(Matno,4)
Ge(31,3S)mAsC(Matno, 8)

( SUB END )

Fig 7.5 Flow dlagram for SUB Geform(Ge(s)A(#),C{s),INTEGERMatno)
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START

GOSUB Coed

<FOR Twm1

R

CALL Matmutt2

< FOR V=W+1 TO 8>_—"‘"—""

NEXT T

CALL MatmuRt1

CALL Matmulit

CALL M

atmult3

( SuB END )

Fig 7.6 Flow dlagram for SUB Transf(Ge(s),He(s).Be,W)

- 16< -

NEXT V




&>

QFOR Z=1 TO Ndornt>
]

MAT He=ZER
MAT Stmm=ZER

Fomy—

Stm(l,J)=Sfm(1,J)+S1(1)eSf(J)eDut]
W(U,3)eW(U,4)

CALL Geform

CALL Mnsws

Fig 7.7 Flow diogram for the construction of element matrices:

{g] and (h]
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<FDRJ-1T08

CALL Tronsf
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START

<F‘ORU—1T08/

=)

&)

Me(l,J)=Me(l,J)+ST(1)eST(J)sDetjoW(U,3)aW(U, 4) |

|

f
|
|

MAT Me=(D(Matno)sTh(Matno))eMe

< FOR I=1 TO 8
<FDRJ-ITDB

S N

Me(J,1)=e(1.J)
|

( SuB END )

Fig 7.8 Flow dlagram for SUB Meform(D(s),Th(s).Me(¢).X(#).Y(¢)
W(#),Det],Sf(¢),Bm(s),INTEGER N(¢).Matno,Z)
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R(Nde(S1,4))=R(Ndc(S1,4))+Val
T

NS

<FORI-1TOB

PO)=P

e

O,

Fig7.9 SUB Loadap(R(s),W(#),X(s).Y(e).Det],Bm(+) Sf(¢)..NTEGER
N(s).Ndc(s),Nelemt,Nnode)
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TON.I/

E=e(2)

<FDRZ-1TONd

P

N

(=557

T08>—

f INPUT P(I);

<Fonu-1mi/—

%
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i N
< FOR Jm1T0 8
Re(1)=Ra(1)+St(1)eSf(J)sP(J)eDet)
oW(U,3)eW(U,4)
]
-
<FOR =1 TO 8 )
S1m=Nde(N(E,1),4)
I No

Yea

R(S1)=R(S1)+Re(l)

(«)

( suB END )
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7.9  ALGORITHMS FOR THE ASSEMBLY OF THE OVERALL MATRICES

The overall matrices [G], [H] and [M] are assembled in full
matrices by calling up the subprograms Ghasemb and Masemt respectively.
Due to symmetry of coefficient matrices [M:]and[ G], only the lower

half is used in the assembly process.

The variables involved in these subprograms are defined as

follows:
K(*) overall mixed matrix [ G ]
Ke(*) element mixed matrix [ g ]
H(*) overall mixed matrix [ H ]
He(*) element mixed matrix [h ]
Fm number of stress degrees of freedom
A element counter
N(*) nodal connection array
Ndc(*) nodal constraint array
M(*) element consistent mass matrix
Fw number of displacement degrees of freedom

Figures (7.10) and (7.11) show the flow diagrams for subprograms

Ghasemb and Masemb respectively.



Fig 7.10 Al

e\ xe(N®2

FOR I=1 TO B

ilbiie o

<FORJ-1 T0 8/

<FORV-2T00>—

Sim N(Z.I).1;
S3=Nde(N(Z,1),2
SS5m= )e3)

L

[Y
S2=Nde(N(Z.J),1)

! N

[ ¥
S2=Ndc(N(Z4),2)

?N

S2=Ndc({N(Z.),3)

-

K(S1,52)=K(S1,52)+Ke(31-2,30-V)

K(S3,52) =K(S3,52)+Ke(3I—1,3J-V)
Y
SS=0
OR
N

for SUB Gh b(K(s).Ke(s),H(*),He(s)
ow dlagrom for “ﬂ}n(mcm .Fm.Z.N(').NdC(‘))
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N

K(S5,52)=K(S5,52)+Ke(31,3J-V)

vl e N
{ FOR J=1TO 8

S4=Ndc(N(ZJ),4)

Y

<S>

<FOR}—1TDG>

(FOR Ve TO 2_>—

S1mNdc(N(Z.1),V+1)

S1=0
-t

N

H(S1,54)=H(S1,54)+He(3I-2+V.J)

( SuUB END )
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G
/sty souinry”

FOR |-1F\
GCLELY,

l S1=Ndc(N(Z,1),4) —I

S2=Ndc(N(ZJ).4)

S?N Y
OR

S1

M(S1,52)=M(S1,52)+Me(i)
|

‘ suB END )

Fig 7.11 Flow dlagram for SUB Masemb(M(s),Me(s),INTEGER Fw,Z,N(*)
Ndc(e))
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7.10 ELIMINATION OF THE NODAL MOMENT DEGREES OF FREEDOM

The fully populated symmetric positive definite stiffness
matrix K* , ([K*f] = [H]t [Gjl[H] ) is obtained prior to the solution
process. The product [Gjl[H]is calculated by calling up subprcgram
Egsolv. This procedure was developed by Wilkinson (68) fcor the solu-
tion of symmetric positive definite equations by Choleski factorization
method. The algorithm solves the system of equations [A]J[Xx]=[8]
where[A ]is a symmetric positive definite matrix of order N x N, and
[B]is a N x R matrix of R right end sides.  The solution [X] over-
writes [B].  The stiffness matrix [ K*] is then obtained by executing
the product[ H]t[ X7 i.e.

[k*] = [H][x]



7.11  SUBPROGRAM Damomat

This subprogram computes an orthogonal damping matrix fcr the
structure based on known modal damping ratios. Subprograms Trans
and Eigen are called by Dampmat to evaluate the structure's normal
modes and frequencies. The construction of the damping matrix is

then carried out using a procedure described in Appendix A.

Variables list:

C{*) Damping matrix

M(*) Mass matrix

K(*) Stiffness matrix

Vec(*) Array of eigenvectors
Eval(*) Array of eigenvalues
Zeta(*) Array of damping ratios
P Number of damped modes

Subprogram Dampmat is called by Program RFPLT3. Flow chart for this

subprogram is shown in Fig. (7.12).

1412 SUBPROGRAM Initil

This subprogram computes the initial acceleration vector from a

knowledge of initial velocities and displacements. The initial

acceleration vector is required when numerical integration is performed

by Wilson & method.

~ li6 =



7.13  SUBPROGRAM Wilsnsol

This subprogram uses the Wilson method for numericai integratior,
described in section (4.6.1), to calculate the displacements at equa!l
time intervals. Matrix inversion is carried out by Choleski factor-
jzation method (68). The subprogram Egsolvl] is called before the
solution procedure to triangularize the stiffness matrix according to
[K]=[L]D ][:L_']t . The subprogram Eqsolv2 performs the back substi-

tution process to calculate displacements at each time interval.

The variables in this subprogram are:

K(%)is B{%)s CLF) Structural stiffness, mass and damping
matrices

F@ (*) Load vector

Ndc(*) Nodal constraint array

N Number of displacement degrees of
freedom.

Npts Number of time steps

=

H(*) Mixed array [G] [H]

P(*) Vector of bending moments calculated from
equation (6.68)

AR (*) Integration constants

D(*), D1(*), D2(*) Vector of initial displacements velocities

and accelerations

Fig. (7.13) shows the flow diagram for subprogram Wilsnsol.



7.14  SUBPROGRAM Duhammel

This subprogram is called by Program RFPLT2 to perform the
numerical integration of the Duhammel integral (Egn. ¢.46). The
order of the integration approximation being used is 2 (Trapezoidal

rule). This procedure is explained in reference (42).

Listings of programs RFPLT1, RFPLT2 and RFPLT3 including

the subprograms presented in this section are given in Appendix C.
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START

M1=1
M2=P
Sol=m2

HCALLTm”

CALL Egen

{_FoR R=1 TO P >

Mr=0
]
Bre2sZeta(R)s«SQR(Evai(R))

[

MAT Theto=ZER

< FOR =1 TO N >-

<FORJ-1TON>_—.

Theta(l)=M(1.J)sVec(J,R)+ Theta(1)

<7mt-1mﬂ>—

|

CILT) S

CO)-Bre ol Theta(+() |

C(J)=CQ.J)

e

( SUB END )

Fig 7.12 Flow diagram for SUB Dampmat(C(e),Vec(e),Evai(s).M(*).
K(e).Zeta(e),D(s),0ffd(s),0ffd2(s),Di(e),INTEGER P.N,Type,Sol)

-~
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< - Ny
FORI1TON_/_

FOR J=m| TO N

e ¢
K(1w)=K(1,J)+AO(1)eM(1,J)+A0(2)*C(1.J)
| K@D=K(J) |
|
CALL Egsoiv1

Crite=1
T=0
Npta=INT(Tm /De)+1

< FOR Count=1 TO Npta—1>

CALL Eqn

[ cnt=cnt+1 |

N

(FOR l=1 TO N

|
Apto(l,1)=FeFO()
-

T=T+De

CALL Egn

<FOR lm1 TO N > l

Apfo(l,1)=(1—Th)sApfo(l,1 )+ ThefeFO(1)
®

Fig 7.13 Flow dlogram for SUB Wilansol(K(s),M(#).C{*) Apfo(s),
Fg(-),D(-).D‘! (+),02(+),DI(*),A0(s), "M, 26, Th,K1 .P(-),H(-),wcnt(-)
Mcnt(s),INTEGER Ndc(e),Mp,Wp,N,R..2)
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2

< FOR I=1 TO N>

[

< FOR Jm1 TO?>

Apfo(l, 1)=(A0(1)eM(1,J)+A0(2)#C(1.J))#D(J)+(AD(3)eM(1.J)
+20C(1,))*01(J)+(20M(1.J)+A0(4)*C(1,4))2D2(d, 1 )+Apfo(l, 1)

CALL Eqsoiv2

QF‘OR =1 TO N >

Apfo(l,1)=A0(1)e(Apfo(l,1)—D(I))+A0(6)=D1 m

+A0(7)#02(1.1)

<FOR l=1 TO N

Mt

D(1)=D(1)+De*D1(1)+A0(9)*(Apfo(l,1)+2#02(1, 1))

4 FOR |=1 TO N

N

D1(1)=D1(1)+A0(8)e(Apfo(l, 1)+D2(1, 1))
|

MAT D2mApfo
Pl=0

i ™
<FORJ1TON/

P(Ndc(Mp,J2))=Pl+H(Ndc(Mp,J2),u)s0(J)

Went(Cnt)=D(Nde(Wp,4))

Mcnt(Cnt)mP(Ndc(Mp,J2))

Pl=P(Ndc(Mpa2))

SuB END
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CHAPTER 8

APPLICATIONS OF MIXED BEAM & PLATE
FINITE ELEMENTS IN

FREE AND FORCED VIBRATION PROBLEMS




8.1  INTRODUCTION

In order to determine the convergence and accuracy o7 the
developed finite element models, the numerical solutions so derivec
are compared with the available analytical and, other accepted,
finite element model solutions. This comparison has been made with

reference to displacement type finite element models <cr the following

groups of problems:

1. Free vibration of beams.
2. Forced vibration of beams.
3. Free vibration of thin plates.

4. Forced vibration of thin plates.

Beam elements were shown in Table (6.1). Figure (8.1) shows
the types of elements used in the solution of plate problems. QR4
and QR8 elements, represent the linear and quadratic mixed plate
elements. QD4 and QD8 are the non-conforming displacement type
element, using 12 and 24 term polynomials as the assumed displacement

functions, (Ref (9).
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“Q “mi

13
5
-+ 2 wo !
“ﬂ
My
My
(a) QR4 element (b) QRS element
3
2 x
8,
(c) QD4 element (d) QD8 element

Fig 8.1 Types of piate bending elements.(a,b)—mixed elements
(c,d)—non conforming displacement elements.
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8.2 NUMERICAL EXAMPLES ON FREE VIBRATION OF BEAMS

Several mixed beam elements were presented in Section 6.2 with
various combinations of interpolations for the deflection w and
bending moment Mx. In applying the elements to free vibration
problems, it was found that the two elements MB7 and MB8 (defined in
Section 6.2) produce erroneous results, and failed the convergercy
test. For these elements, the element mixed matrix [h]in equation

(6.10b) is found to be of the form

.y e
T 0 I
[h]ng = (a)
-1 1
T ° 1
and (8.1)
- 5 o -
1 I
b
(hlwgs - | © ¢ (b)
-1 l
i 1

The zero column and the zero row in the element matrices [h ]MB7
and[h ]M88 reduce the rank of these matrices. Thus the element
stiffness matrix derived from equation (8.2) will become deficient

in rank.

(k] - [h1[adn] (8.2)

The cause of failure can be attributed to the existence of the

zero energy modes which do not correspond to the expected r<gid body
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motion. The characteristics of such unwanted modes may be cezerminec

by carrying out an eigenvalue-eigenvector analysis on an indivicual

unconstrained element.

The incorrect zero eigenvalue modes for element MB7 is shcwr
in Figure (8.2a). For this mode the bending moment is constant

throughout the element, whereas the displacement is varying.

Figure (8.2b) shows that a constant displacement and variable
moment distributions are obtained for the zero eigenvalue mode of
element MB8. It is anticipated that these modes can not be removed
by applying the kinematic boundary conditions and therefore contribute
to the misbehaviour of the aforementioned elements. The correct
zero eigenvalues for the expected rigid body modes were obtained for
other displacement-stress combinations. The zero energy mode for

the element MB5 is shown in Figure (8.2c).

The results for elements other than MB7 and MB8 compare favour-
ably with displacement type element. Figures (8.4) to (8.9) com-
pare the accuracy of the mixed elements with the displacement element
in predicting the fundamental natural frequency of the cantilever
beam shown in Figure (8.3). The convergence curves correspond to
degrees of freedom of the final eigenvalue problem and the total
number of degrees of freedom of the models. It can be concluded
that the natural frequencies predicted by the mixed element models
are converging t the exact values. Also from talbes (8.1) and (8.2),
it is observed that better accuracy in predicting the first 3 natural
frequencies of the cantilever beam can be achieved by using fewer

higher order elements than lower order elements.
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w : W 3 "} 2
(MB7) (a) Incorrect rigid body mode
B, \
u 1 M 3 Mg

\ /
% /
a L
w w ~
1 z o \L. a
~ i T

(MB8) (b) Incorrect rigid body mode.

P~ L
T |

(MBS5) (¢) Correct rigid body mode.

Fig 8.2 Zero energy modes In elements MB7(a)MB8(b) and MBS5(c)
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x VY

N

R s

I,w

Beam properties:

L=80 Cm
p=7.8x10~-3 Kg/Cm~3
E=2.07x10~7 N/Cmr2
Am1 Cm~2

1-1/12 Cm~4

Y

Exact naturcl frequencies(Rad/Sec):

“1=8.1689

W, =51.1979
Wi=143.37

Fig B.3 Cantllever beam used In free vibration tests.
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Mixed/Displacement F.E Models

D.EBement MB1 Element MB1(T.D.0.F)
X ERROR
\\ %
——————— - / |
- T /
f e
’I
b ;’ /
I} 7
J'
L y /
o,
o,
8 e ’
o,
‘
F [
1 100

10
DEGREES OF FREEDOM
Fig 8.4 Prediction of 1st nat. freq. of CF beam :Elements D & MB1

Mixed/Displacement F.E Models

D.Element MB2 Element MB2(T.D.0.F)

% ERROR

s -

1 10 100
DEGREES OF FREEDOM
Fh&sPr-dIcﬂonaf1dncLMdCFb¢nm:Elm0hH82
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Mixed/Displacement F.E Models

D.Element MB3 Element MB3(T.D.0.F)
X ERROR
..
4 F
-
2
RIS
0.0 -
=1k
-2 F
=3k
=V i =
-5
1 10 100
DEGREES OF FREEDOM
Fig8.6 Prediction of 1st nat. freq. of CF beam:Elements D & MB3
Mixed/Displacement F.E Models
D.Bement MB4 Blement MB4(T.D.O.F)
X ERROR
]
4 =
3
2F
1k
5 """-—-________ 5
o= —— -__'__.---'--
-1 F ‘/" ’/
~2 i "‘J‘ ’/
!
-3 F :' /
'
] !
—4 b '
I
: /
-8 10 100

DEGREES OF FREEDOM
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-5

-4

-5

% ERROR

Mixed/Displacement F.E Models

D.Element MBS.Element MB5(T.D.0.F)

10 100
DEGREES OF FREEDOM

Fig8.8 Prediction of 1st nat.freq. of CF beam:Elements D & MBS

Mixed/Displacement F.E Models

D.Element MB6.Element MBS&(T.D.O.F)

- -

X ERROR
5

10 100
DEGREES OF FREEDOM
Fig8.9 Prediction of 1st nat.frequ. of CF beam:Elements D & MB6
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% Error in the first 3 noturol frquencies of

Table 8.1

cantllever beam.

C1 slements
Number Total Degrees
Type of Element p- of Mode 1 Mode2 | Mode3
Blements Freedom
1 <3 ) 18 -241 .70 3.291
ol r
Ms§ M Ms6
3 7y
2 4 18 .01 0828 -.079
wl I
M0
/’\
A B 3 13 -.011 0589 .08
nt: T
Table 8.2
% Error In the first 3 natural frequencles of cantllever beam.
CO eslements
Number Total Degress
Mode1 Mode2 Mode3
Type of Element of of
Elements Freedom
M .
K ‘2 8 16 -.1037 1.880 5.78
Wl I
M
Ny Ny —
"M v 3 ro 4 18 0177 285 2.012
f ) I
Y
M
LA g 2 12 0107 0328 2.1
)
"EERE




8.3  NUMERICAL EXAMPLES ON FORCED VIBRATION OF BEAMS

In this section several examples of beam bending problems are
solved using the developed finite element computer programs. These
tests are aimed at illustrating the behaviour of mixed type beam

elements in thesolution of forced vibration problems.

The results are compared with the analytical and displacement
element solutions. Table (8.3) shows the types of problems which
have been tackled. Unless otherwise specified, the constants used

in these solutions are:

n
™~
o
~
>
—
o

~]
S~

. . 3
Beam: E v = 0.3, o= 7.8x10 "9/ 4

>
"
—
o
o
(9]
3
(&1
—
I
O
3
£
—
n
[0.0]
o
(8]
3

The numerical integration of the equations of motion is performed

by Wilson & method using a time step size of at = .001 sec.

8.3.1 Response of a cantilever to a transient force (half-sine

pulse input)

The tip deflection and maximum bending moment at the root
section of a uniform cantilever beam subjected, at the tip, to the
transient force, shown in Table (8.3), are calculated. (T is the
period of the fundamental mode of vibration of the cantilever).
Figures (8.10) and (8.11) show the tip delfection and the root bending
moment responses for models with two degrees of freedom. A two
element idealisation is used for element MB4 and cne element idea:-

isation for the rest of the elements (D, MBS, MB2 anc ¥B3). The
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results show that the displacements are predicted with good accuracy
and the bending moments predicted by mixed elements are generally
superior to those obtained from the displacement element (for the
same number of degrees of freedom). However, for one mixed
element, MB3, the displacement and moment predictions are similar

to the displacement element, D, predictions.

The convergence of the results is studied by increasing the number
of degrees of freedom. Figures (8.12) and (8.13) show the deflection
and bending moment responses for the same cantilever with 4 degrees of
freedom idealisations (only displacement d.o.f.). It is seen that
the predictions from mixed elements (MB2) and MB3, converge more
rapidly than those from MB4 and MB5. In this case, the total number
of degrees of freedom (displacements and moments) used in the

idealisations with mixed elements is 8.

8.3.2 Response of a cantilever to a ramp force input at the tip

The cantilever beam of the previous example is tested for a
ramp force input at the tip. Bending moment response at the root
of the beam and the tip deflection response are calculated for various
finite element models with 2, 4 and 6 degrees of freedom. The
results are shown in Figures (8.14) to (8.18). It is observed that
the displacement solutions converge very rapidly towards the exact
solution, for all types of finite element models (D, MB4, MBS, ¥B2
and MB3). In particular, Figure (8.14) shows that the displacement
response prediction obtained by using element MES is much mere accur-

ate than those obtained by using other models including the displace-

ment type element.
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Figures 8.15, 8.17 and 8.18 show the bending moment response
for finite element models with 2, 4 and 6 degrees of freedom respect-
ively. It is interesting to notice that, for idealisations with 2
degrees of freedom, the predictions from mixed elements MB4 and MBS
(from CO continuity class) are superior to solutions from other

types of elements (Figure 8.15).

8.3.3 Response of a clamped-clamped beam to a step force input

Figures (8.19) to (8.21) show the deflection and bending
moment responses of a clamped-clamped beam to a step force input
applied at the middle of the beam. It is observed that the models
exhibit good accuracy even with the lowest number of degrees of
freedom. Besides, elements MB2 and MB3 of the C1 continuous class

show similar accuracy to the displacement type element .

8.3.4 Response of a clamped-simply supported beam to half sine

pulse input

Mid point deflection and bending moment responses for a CS
beam subjected to half sine pulse input are shown in Figures (8.22)
to (8.25). The convergence characteristics of various finite
elements are studied by increasing the number of degrees of freedom
from 3 in Figures (8.22), (8.23) to 7 in Figures (8.24) and (8.25).
The results for the displacements show that for the same number of
unknowns, the accuracy of the mixed elements matches that of the
displacement type element. Bending moments, however, are calcul-
ated more accurately using the C1 continuous mixed elements (B2,
MB3). In addition, C@ continuous mixed elements are found to perform

just as well, with the parabolic, MBS element being superior to the
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linear MB4 element.

8.3.5 Response of a clamped-simply supported beam to a raro “crce
input.  (Damping included)

Figures (8.26) and (8.27) show the mid point ceflection and
bending moment responses, respectively, for a damped CS beam of length,
L =40 cm. The results are obtained for idealisations with 3

degrees of freedom. Damping is introduced in mede 1 with - = .05,

modes 2 and 3 with ¢z = .02.

Both displacement and bending moment results show that very

good accuracy has been obtained.

8.3.6 Response of a cantilever to a step moment input at the tip

Figures (8.28) to (8.33) show the deflection and bending
moment responses of a cantilever subjected to a step moment input.
The tests are performed in order to demonstrate the convergence of
the results as the beam sub-divisions increases. The elements used
in this example are from C1 continuous class (D, MB1, MB2, MB3).
With these elements, the slope continuity between elements' joints

is satisfied.

It can be seen that the mixed element MB1 has a weaker

convergence rate than the rest of the elements used in this test.

From these applicaticrs, it is concluded that, in generai,
the elements developed for dynamic analysis of beams are capat’e o*

predicting the structure response to various fcrce inputs witn 3CCG

"
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accuracy. The rate of convergence in C@ continuous elements (MB4,
MBS) is lower than C1 elements (MB2, MB3). Nevertheless, in view
of the simplicity in formulation and programming, these elements

offer some advantages over the more complex C1 continuous elements.
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Table 8.3 Beam forced vibration problems.

Type of force Type of figure
Bearn fype inputs. aslements numbers
f(t)=0,t>T D.MB2 (8.10)
MB3,MB4 to
uBS (8.13)
t
1(t)=20t,t<.05
PI(t) f(t)=1,t>=.08 O.mB2 (8.14)
..._—..-_....._[/ MB3,MB4 to
MBS (8.18)
t
PICY) ()1 D.MB2 (8.19)
MB3,MB4 to
MBS (8.21)
t
f(t)=Sin(xt/T) t<=T
4 P‘l(li) fEt; _o.l:,(,T 2 D,MB2 (8:22)
l to
7 MB3,MB4
4 % =5 — (825)
- t
f(t)=20t.t<.05
P fE:)-1 S>=.05 DMB2 (8.28)
MB3,MB4 to
o3 s (8.27)
t
e f(t)=1 DM (828)
to
MB2,MB3 (8.33)




Addendum

Type of Type of Number of Number of Number of
boundary cond'n element ol i deg.of.freedom| deg.of.freedom
(displacement) | (moments)
D 1 2
CLAMPED,
FREE MB2 1 2 2
Flgs 8.10,8.11, MB3 1 2 2
8.14,8.15, 3
8.28,8.29 M 2 2 2
MB5 1 2 2
CLAMPED, 0 2 2
CLAMPED MB2 2 2 P
MB3 2 2 6
Figs 8.16,8.20
MB4 4 3 5
MBS 2 3 5
CLAMPED, D 2 3
SIMPLY SUPP'TD
MB2 2 3 4
Figs 8.22,8.23,
e MB4 4 3 4
MBS 2 3 4

BEAM ELEMENT CONFIGURATIONS IN FORCED VIBRATION PROBLEMS.
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8.4 NUMERICAL EXAMPLES ON FREE VIBRATICM OF PLATES

A number of free vibration problems of square plates wi%h varicus
boundary conditions are solved using the mixed quadratic element of
Figure (8.1b). The predicted results are compared with the analyti-
cal solutions and those obtained from other finite element models

(Figs. 8.1a, 8.1c, 8.1d). Frequencies are computed for the

following three cases:

(i) Simply supported square plate.

(ii) Square plate simply supported on two opposite

edges and clamped on the other two edges.

(ii1)  Cantilevered square plate.
The constants used in these solutions are:

o= 083, =18 «10 Nz 4

N
Plate: E = 2.07 x 107 fogit 0

h = 1 cm, a = b = 120 cm.

8.4.1 Simply-supported plate

The natural frequencies of the simply supported square plate
shown in Figure (8.34) were predicted by the mixed quadratic element
QR8, using (2 x 2), (3 x 3) and (6 x 6) finite element meshes. The
results for the (6 x 6) mesh are obtained by solving a (3 x 3) mesh
representation of one quarter of the plate, taking advantage of the

symmetry of the problem. In this case only the symmetric modes are

obtained.
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Table (8.4) contains computed frecuencies for various meshes .
The accuracy of the fundamental frequency predicted by (2' % 2),
(3 x 3) and (6 x 6) meshes are within 1.47, 0.15 and .005% of the
analytical value. It should be noted that for the (2 x 2), (2 x 3)
and (6 x 6) meshes, the final eigenvalue problem has 5, 16 and 85
degrees of freedom respectively. Figures (8.35) and (8.36) compare
the accuracy of the developed mixed element, QR8, with the linear, QR4,
element when predicting the first and second natural frequencies of
the SS plate. It is seen that the mixed quadratic element is more
efficient than the corresponding linear one. Also Figures (8.37)
and (8.38) show the convergence curves for different types of elements
when predicting the first and fifth natural frequencies. It is
observed that the mixed 4 node and 8 node elements provide better

results than the corresponding displacement type elements.

8.4.2 Clamped-simply supported square plate

The natural frequencies for a clamped simply supported square
plate are obtained by using the mixed quadratic element with various
meshes. These results are presented in table (8.5). It shows that a
(4 x 6) mesh is capable of predicting the first natural frequency
within 0.138%. The coarsest mesh used in this example is (2 x 2)

and is capable of predicting this frequency to within 1.56%.

Figures (8.39) to (8.42) compare the performance of mixed
quadratic element with the linear one in predicting the lowest four
natural frequencies. The comparison with other types of elements
are presented in Figures (8.43) and (8.44), corresponding to the
second and third natural frequencies of the CSCS plate. It is

seen that QR8 element has a much better performance than the 4-

120 -



noded QR4, and QD4 elements and is comparable with the 8-ncded bl

element.

8.4.3 Cantilevered square plate

Natural frequencies for a cantilever square plate are computed
by using different types of elements presented in section 8.1.
No exact solution exists for this problem and therefore the results
are compared with the experimental (69) and other types of numerical

solutions. These are shown in Table (8.6).

It can be seen that the mixed models using element QR8,
have computed the first 5 natural frequencies with good accuracy,
but the convergence to the experimental values is not necessarily
monotonic. For a (2 x 2) mesh of QR8 element which leads to the final
eigen problem of 16 degrees of freedom, the discrepancies of the values
of the first five frequencies with reference to the Ritz solution (10)

are 0.621, 5.86, - 2.9, 0.962 and 5.924%.

The equivalent discrepancies of a (2 x 2) mesh of displace-
ment element QD8 with 48 degrees of freedom are 1,795, - 1.717,
1.068, - .54 and -1.7%. IN this case, the mixed model discrepancies
are larger than the displacement models. It should however be
noted that these are obtained using a much smaller eigenvalue problem

than the displacement problem.

In application to eigenvalue problems, mixed models possess
an important advantage over the conventional displacement models.
This is because the reduction of degrees of freedom from total (dis-
placements plus stresses) to the final having either displacements

- 224 -



or stresses alone, is an exact operation. In the displacement
models, the eigenvalue problem can be reduced by means of the so-called
"eigenvalue economizer" method. In this operation, however, the

accuracy of the computed eigenvalues decreases.

- 225 -



~

- a e -

T = X

y
i\
>
x
(b)

()

x VY

(c)

Fig 8.34 Finite element idealisations for a simply supported

square pigate.

= 226 ~

x V¥



25
20

15

10

Mixed Finite Ziement ‘lodels

QR4 Element QR8 Element

% ERROR
P H
___________ . i
4 St cem 4
f
1 10 100
DEGREES OF FREEDOM
Flg 835 Prediction of lowest notural frequency of SSSS picte
Mixed Finite Element Models
QR4 Element QR8 Element
X ERROR
-
I
2 |
- I
_J
1 10 100

DEGREES OF FREEDOM
Flg 8-36Predictlon of second naturol frequency of SSSS piate

]
ro
r
~J

]



Mixed/Displacement Finite Element Mccels

QR4 Element QR8 Element QD4 Element QD8 Hement

%X ERROR

-10

-15 |-

1 10 100
DEGREES OF FREEDOM

Flg8:37 Prediction of lowest notural frequency of SSSS piate

Mixed/Displacement Finite Element Models

QR4 Element QR8 Element QD4 Element QD8 Element

X ERROR

50

10 \

p 10
DEGREES OF FREEDOM

Fig 8-38 Prediction of fifth naturcl frequency of SSSS plate.m=3,n=1

- 228 -



Mixed Finite Element Models

QR4 Element QR8 Element

1 10
DEGREES OF FREEDOM

Fig 8-39 Prediction of lowest notural frequency of CSCS piate

QR4 Element QR8 Element

%X ERROR

100

20

10 p

1 10
DEGREES OF FREEDOM
Flg 8:40 Prediction of second notural frequency of CSCS plate

- 229 -

100



Mixed Finite Element Models

QR4 Element QR8 Element

%X ERROR

20

-10 b

—-15 |

1 10 100
DEGREES OF FREEDOM

Fig 8-41 Prediction of third notural frequency of CSCS piate

QR4 Blement QRS Element

X ERROR

8

e ———————

-10 }

-20 F

1 10
DEGREES OF FREEDOM

Fig 8-42Prediction of fourth naturcl frequency of CSCS plate

s 4 1 L.



Mixed/Displacement Finite Element Models

QR4 Element QR8 Element QD8 Eement QD4 Bement

15

10

20

135

10

% ERROR
0

10
DEGREES OF FREEDOM

Fig 8-43Prediction of second natural frequency of CSCS piats

QR4 Bement QR8 Element QD4 Element QD8 Element

X ERROR

100

1 10
DEGREES COf FREEDOM

Fig 8-44 Prediction of third naturcl frequency of CSCS plate

- 23i -

100



Table 8.4 Eigenvalues of o simply supported piate.
Square
2
Plate A=w ayfpn
D
Number of half Exact Mesh(QR8)
waves in x & y
Ref(1
directions ef(10) 2x2 3x3 8x6
m=1,n=1 19.74 20.03 19.77 19.741
m=2,n=1 49.35 52.63 50.383
m=2 n=2 78.96 135.53 B3.122
m=3,n=1 98.70 137.74 101.06 99.36
Table 8.5 Eigenvolues of a clamped—simply supported piate.
Square 2
— P h
Plate A=w A 'D_" E
Mode Exact Mesh(QR8)
Number Ref(10)
2%2 4x4 4x6
i 28.95 29.397 29.07 28.99
2 54.74 55.333
3 69.32 73.803 73.163 70.36
|
4 94.59 137.78
5 102.2 169.372 105.966 102.877
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Table 8.6 Vibration eigenvalues of square cantilever pigte

Square s az oh

Plate o

Number of Vibration Mode :

degrees of

freedom

Source 1 2 3 4 5
6 3.364 7.087 22.047 24.853 25.947
12 QR4 3.426 7.575 22.607 27.37 28.254
30 3.454 7.988 21.856 27.152 29.681
5 3.545 8.993 20.53 26.055 26.388
18 QR8 3.470 8.025 22.049 27.068 29.268
33 3.467 8.205 21.36 26.8 29.87
8 3.329 9.256 30.632 35.934 47.452
12 3.296 8.865 17.137 31.267 31.939
QD4

18 3.458 8.849 21.796 26.686 30.951
38 3.468 8.825 21.709 27.185 31.5
15 3.442 8.782 21.60 28.192 31.397
48 QD8 3.458 8.785 21.28 27.47 31.795
99 3.429 8.671 21.20 27.48 31.84
Experi— Ref(69) 3.37 8.26 20.55 27.15 29.75
mental
Energy Ref(70) | 3.494 8.547 21.44 27.48 31.17
solution

Ritz Ref(10) | 3.4917 8.5246 | 21.429 27.331 31,111
Method
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8.5 NUMERICAL EXAMPLES ON FORCED VIBRATION OF PLATES

In this section some numerical tests for the solution of
problems concerned with the forced vibraticn of plates are presented.
The tests are aimed at illustrating the performance of mixed quad-
rilateral elements (QR4, QR8) in the solution of dynamic transient
problems. The results are compared with the solutions from analytical
and from displacement type formulations. The convergence and
accuracy of the results are determined as the element sub-division of
the plate is refined. In these examples, the solution of the dynamic
equilibrium equations are obtained using the unconditionally stable

direct integration of Wilson 8 with a time step size of st = .001 sec.

Some numerical tests are given at the end of this section to
show the effect of time-step size on the stability and accuracy of
the solution. It is also possible to use the mode superposition
approach to solve the equilibrium equations. Two further examples are
given to show the effect of number of modes, included in a mode

superposition analysis, on the accuracy of the solution.

8.5.1 Simply-supported square plate under uniform loading,
varying sinusoidally with time

This example is chosen to show the accuracy and convergence
rate of the present finite element models by comparing the results
with the exact solution given in Ref. (32). The finite elemert
meshes used for this example are shown in Figure (8.45) together with
the loading condition. Using symmetry, only a quarter of the piate
is analysed. From equation (3.81), it can be easily checked tha“

under these conditions, assymetric modes can not be excited and



therefore need not be included in the response calculazions. The
convergence of the centre deflection of the plate with mesh refine-
ment is presented in Figures (8.46) and (8.47). The moment respense
Mx is plotted in Figures (8.48) and (8.49) for the (1 x 1) and (2 x 2)

meshes respectively.

The results show that they converge rapidly towards the correct
solution as the mesh is refined. It is also observed that mixed
models have predicted more accurate results than the displacement
models. This is despite the fact that mixed models involve fewer

number of degrees of freedom than the displacement models.

Figure (8.50) shows the bending moment response Mx obtained by
using the 8-noded quadrilateral elements of QR8 and QD8. The
finite element idealisation using the QD8 element is (2 x 2) and has
44 degrees of freedom whereas the same mesh with QR8 element has only
12 degrees of freedom. It is seen that the results predicted with

use of QR8 element are more accurate than those from QD8 element.

8.5.2 Simply supported square plate under point load, step force
input

The purpose of this example is once again to show the
accuracy and convergence of the predicted results when the structure
is under the severe condition of point loading. The finite element
grids used in this test together with the forcing function are shown

in Figure (8.51). Due to symmetry only i of the plate is analyzed.

The lateral deflection under the point of application of tre
load and bending moment Mx are plotted in Figures (8.52) tc (8.57)

together with the exact results.
- 235 -



From these figures, it is obvious that mixed models Jasec on
elements QR4 and QR8 have predicted the transient deflection and
bending moment with good accuracy and that the solutions improve as
the mesh is refined. Figures (8.54) and (8.57) show the results
for deflection and bending moment respectively, obtaired by using
the displacement type elements of QD4 and QD8. Considering the fact
that the number of degrees of freedom used in these models is almost
three times that of corresponding mixed models, we can conclude that
mixed type elements can be much more efficient than the corresponding
displacement elements. For example, the results obtained from a
(2 x 2) mesh of QR8 elements with 12 degrees of freedom are coﬁparab1e
with those obtained using the (2 x 2) mesh of QD8 elements having 44

degrees of freedom.

8.5.3 Clamped square plate under point load, step force input

In this example the performance of the mixed linear and quad-
ratic elements (QR4 and QR8) are assessed by comparing with the results
obtained from a (2 x 2) finite element idealisation based on the 8-
noded displacement element with 28 degrees of freedom.; The plate
structure and the forcing function are shown in Figure (8.51 ). In
figures (8.58) and (8.59) the central deflection and bending moment,
Mx obtained from various meshes of QD4 element are presented. It
is seen that results converge to those predicted from QD8 element,
as the element sub-division increases. The same test has been
carried out with finite element models using the mixed element QR4
and QR8.  Figures (8.60) and (8.61) show the convergence of the mic-

point deflection and bending moment for models using QR4 element.

! The accuracy of the solution obtained using this element nas been
demonstrated in sections (8.5.1) and (8.5.2) for the solution of

simply supported plate.
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The corresponding solutions based on QR8 element are presented in
Figures (8.62) and (8.63). It is seen that mixed models can

favourably predict the plate response and the solutions are comparable

with those from displacement models.

In the numerical tests reported in this section, several convergence
plots were obtained indicating that in general, the appropriate order
of convergence is obtained with mesh refinement. One important point
should however be noted which is related to the computational time for
the response calculations. Using the displacement type formulation,
the bending moment response at a specific node is to be calculated
at each increment of time through differentiating the pre-determined

nodal displacements.

This procedure is repeated for all the elements sharing the
specific node and the bending mcment is determined by averaging the
values from each element. This is a time-consuming process and
consequently requires much more computational time than in the mixed
models where nodal bending moments are calculated through a simple
matrix transformation procedure. In table (8.7) the computational
time spent at the response stage for various finite element models

is indicated.

8.5.4 The effect of time step size, At on the numerical stability
and accuracy of the solution

In the numerical tests presented in sections 8.5.1 to 8.5.3,
integration of the equations of motion of the finite element assem-
blage was carried out using the Wilson & method which is an uncond-

itionally stable integration scheme. To test the stability and
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Table 8.7 Computer execution time at the response analysis

process by Wilson theto method. *

Finite Element Element Number Of Time for response
Model Type Degrees calculations(sec)
Of Freedom

QD4 1 240

QRSB 3 18 !

QD4 8 300

QR4 4 20

Qo8 28 840 !
!

QRS 12 80 !
|
5.
|

QD4 21 420 |
|

QR4 9 30 !

QD4 40 660

QR4 16 50

* Processed with HP 9845B desk top

with enhanced processor.
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accuracy of the solution as the time step size increases, “wo cases
are studied. Figure (8.64) shows a square simply supported plate
which is discretized by a (2 x 2) mesh of QR8 elements. The -la‘e
is subjected to either one 0f the two types of loading snown in
Figure (8.64). The time step sizes used in the solutions are

at = .0001, at = .001, at = .005 and At = .0].

Figures (8.65) to (8.68) show the deflection and bending
moment responses of the SS plate under the two conditions of loading.
It is interesting to notice that the accuracy of the solution is
significantly reduced only for the largest time step size, that is for
At = .01. For the other three time-step sizes, the solutions remain
bounded and the accuracy of the results is acceptable. In
particular, Figure (8.65) shows that the displacement response
predicted by a time step size of at = .001 is more accurate than the
one from At = .0001. This can be attributed to the fact that
with ot = .0001, the response will be affected by the contributions

from higher, inaccurate modes of the finite element assemblage.

8.5.5 The effect of number of modes on the accuracy of the solution
from mode-superposition method

The mode superposition procedure can in some practical
problems be more efficient than a direct step by step integration methoc.
To demonstrate this, the simply supported plate of the previous
example under the impulsive load (f(t) =1 .0l st < .015) is analy-
zed. The finite element model being used is once again a (2 x 2)

mesh of QR8 elements.

Figures (8.69) to (8.71) show the deflection and bending
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moment responses at the middle of the plate for different number of

modes. The total number of modes present in the finite element

assemblage is 12.

It is observed that the displacement obtained by using only 1
mode (Fig. 8.69a) is calculated with reasonable accuracy whereas
the bending moment is not as good (Fig. 8.70a). On the other sand,
the analysis with 3 modes has predicted excellent results for Soth
displacement and bending moment (Figs. (8.69b), (8.70b)). Figures
(8.71a) and (8.71b) show the displacement and bending moment responses,
respectively, obtained by using the total number of modes in the
analysis. It is observed that the solution obtained by using 3-
modes compares favourably with the 12-mode solution and no particular
accuracy has been gained by increasing the number of modes in the

analysis.
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Fig 8.45 Finite element meshes used for the analysis of o thin
simply supported piate under steady state loading.
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Fig 8.89 Displacement response by mode superposition method.
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9. DISCUSSION AND CONCLUSION

The application of Reissner's variational principle in the ‘inite
element analysis of structures has seen rapid progress during the past
decade. This principle can be derived by the generalization of the
mimimum potential energy principle and is characterized by the use of
both displacements and stresses as field variables. The so-called
"mixed finite element" models by Reissner's principle have the

following advantages:

(i) The possibility of relaxing the continuity conditions along
the interelement boundaries. Thus allowing the use of
simple and low order shape functions for displacements and
stresses. This property has been shown to be of particular

advantage in the analysis of plate and shell type structures.

(ii) Stresses, which are often of primary importance and interest,
are calculated directly. Thus, the accuracy of the solution

is comparable with that for displacements.

The earliest mixed finite element models were introduced by
Herrmann (3, 61) in the static analysis of plate structures. He
used a modified version of Reissner's principle which only imposes
CO continuity on the field of displacement and stresses. As a result
of the successful application of Herrmann's mixed models, a number of
mixed finite element models for plate problems have appeared to date.
Only a few of these investigations have dealt with dynamic (‘ree

vibration) problems, however.

The main objective of this project was to study the performarce
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in discretizing the bending moment M and displacement #. The
elements are, in general, capable of predicting the natural frequen-
cies with good accuracy and the results are in good agreement with tre
displacement type of solution. However, the solutions frecm two
elements of CO continuous class, namely MB7 with constant-parabolic
shape functions and MB8 with parabolic-constant shape functions were
wrong.  The misbehaviour of those elements was attributed to the
existence of untrue rigid body modes. These elements were excluded
from the forced vibration analysis. The accuracy and convergency
properties of mixed elements were also studied in the solution of
beam response problems. It was observed that with a very few number
of degrees of freedom, the elements are capable of predicting the
transient response (deflection and moments) with very good accuracy.
And in most cases, it was seen that the accuracy of the moments
predicted by mixed elements is superior to that of displacement

models, for the same number of degrees of freedom.

Determination of suitable shape functions of C1 continuity, in
the formulation of plate elements is much more complex. If complete
slope continuity is required on the interfaces between various
elements, the mathematical and computational difficulties rise dis-
proportionately fast. For this reason, the modified Reissner's
principle introduced by Herrmann was employed in the development of
mixed plate elements. The first element is a linear quadrilateral
element with 16 degrees of freedom. This element has been tested
in the solution of static, free vibration and buckling plate problems
by Mota Soares (7), and good results were reported. The second
element, developed in this work, is a parabolic quadrilateral element
with 8 nodes, and 32 degrees of freedom. This element is suitable
for representing plates of arbitrary shape. In addition tc these,
the two non-conforming displacement type elements of Re<. (Z) were
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of the mixed finite element models based on Reissner's variatioral

principle in the solution of dynamic structural probiems. These
problems include both free and forced vibration analysis. In desijsn
work, a knowledge of the system natural frequencies and mode shapes,
obtained from the free vibration analysis, is helpful in avoiding

the peak response which occur in the vicinity of the natural
frequencies. In the forced vibration analysis, the effects of
dynamic loads on the behaviour of the structure are investigated.

In Targe and complex structures, these effects can become dominant.

The work presented in this thesis deals with the free and forced
vibration of beam and plate type structures. As a prerequisite for
this work, it was necessary to derive a dynamic version of Reissner's
principle. In Chapter 2, it was shown that this principle can be
obtained from the minimum potential energy principle by introducing
the strain-displacement equations as conditions of constraint and the
corresponding Lagrange multipliers, which are the stresses, as
additional variables, and then by eliminating the strains as varia-
bles using the stress-strain relations. The extension to dynamic
problem, which also includes velocity dependent damping forces, was
performed in a similar manner using Hamilton's generalized principle.
A convenient version of Reissner's principle, for application to beam
and plate problems can be derived by single integration by parts of
the terms with second order derivatives of displacement. This
version of Reissner's principle allows the use of CO continuous
shape functions and was derived in section 3.3 for beam and in
section 4.3.2 for plate analysis. The inclusion of C, continuous
shape functions in the beam element formulation does not raise any
difficulty. Thus both versions ot Reissner's principle were
employed in the derivation of beam elements characteristics. Eight
elements were developed, with various sets of shape functions used
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extended to the forced vibration case. The input data creparation

was performed by means of an automatic mesh generation program.

In applications to free vibraticn plate problems, it was seen
that the mixed models are capable of predicting the lower natural
frequencies with good accuracy. The results from the linear mixed
element are reasonable and the parabolic element results are
significantly better than the linear ones. An advantage of the
mixed models in the solution of eigenvalue problems is that the size
of the eigen problem can be considerably reduced without affecting
the solution accuracy. In this work, the eigenvalue problem was

reduced to one having only nodal deflections asthe unknowns.

In the forced vibration problems, the mixed equations were
formulated in terms of the nodal deflections. Having determined
the transient displacements, the bending or twisting moments could
then be calculated by a simple matrix transformation procedure.
Some numerical tests were performed and the results were compared with
the available analytical and the non-ccenforming displacement type
solutions. In all these applications relatively coarse meshes of
mixed elements were capable of predicting the transient displacements
and moments with comparable (in some cases with better) accuracy
than the displacement models. In particular, it was observed that
the computational time spent in the process of calculating the dynamic
moments is considerably less than that in the displacement type

formulation.
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9.1 Further improvements

In this work, mixed isoparametric quadrilateral elements
were used in the solution of dynamic plate problems. The discret-
ization of plate structures was performed by an auto-mesh generation
program.  This program is also capable of generating meshes of 6-node
triangular elements. The suite of programs can, with little
modification, be made to accomodate this type of element. An advan-
tage of the triangular element is that it is more versatile in
representing the general shape of the boundary and contains fewer
number of degrees of freedom than the 8-node quadrilateral element.
(Moments and displacement may be assumed to vary parabolically

within the element).

The modifications of the existing programs for the solutinn of
static plate bending problems can be an objective of a further
extention of the work of this thesis. For the solution of static
problems, the mixed equations can be rearranged to yield a single
matrix equation with nodal deflections and nodal bending moments
as unknowns to be determined in a single operation. The
corresponding mixed matrix is sparsely populated and the non-zero
elements are located near the leading diagonal in a band form.

In this way, it is only necessary to store the complete band form
of the mixed matrix. This has the advantage of reducing the
computer storage requirements. However, the overall mixed matrix
is non-positive definite and the Gauss elimination method with row

interchanges must be used in the solution of static equations.
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APPENDIX A - DIRECT METHOD FOR THE EVALUATION OF CAMPING MATRIX

The undamped free vibration mode shapes and frequencies for an
N degree of freedom system are determined by solving the eigenvalue

equation (A.1),

KI[ul = [MJI[Ul[w?] (A.1)

in which[ﬁ]is the full (NxN) mode shape matrix and[ .27 is an N x N
diagonal frequency matrix containing the N squared natural frequencies.
The undamped normal modes are then used to uncouple the equation of
motion (A.2),

[MJWr + [Ck0y +[K]w} = (R} (A.2)

Thus, introducing normal-coordinate transformation,

wy = [ 0] @ (A.3)

into equation (A.2), we obtain:

m.q. *+¢. 4, + kr' 9. = Rr (A.4)
r= 152s5::N
where
~ t -~
m. = {U}r[bﬂ]{U}r (a)
ot A <
¢, = W [CJwy, =2mw. (0)
(A.5)
-~ t ~ _ 2
k. = W [kJwy, =m." (<)
R = (Ut (R (d)
r r



and . 1s the damping ratio of the rth mode of vibraticn.

After simple matrix manipulation, the following elation is

obtained:

[c]=C0T% [c 1007 (A.6)

Using the first part of equation (A.5), it can be shown that

[MIL01mT ()
[n T[0T MIe)

[uy*
and [ﬁ]-l

(A.7)

substituting from (A.7) into (A.6) yields:

[¢J = [e][8][e] (A.8)

where [¢] 1is the mass normalized mode shape matrix defined by:

[¢] =[M][u] (A.9)

and [8]is a diagonal matrix in which the terms are given by

g = —r - (A.10)

Equation (A.8) can be written in an alternate form as a summation

of modal damping matrices i.e.
N
e

where [c.] produces damping in mode r only and may be calculatec

directly from the mass normalized shape vector {:}r thus:
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- t
C, =8, {¢}r {¢}r

" (A.11)

The damping matrix [ C]is particularly useful in the evaluation
of the dynamic response of structures when the direct step-by-step

integration method is preferred to the normal mode superposition method.
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APPENDIX B -  INPUT DATA FOR MESH GENERATICN PRCGRAM

B.1 Introductton

The mesh generation scheme is based on using "isoparametric"
curvilinear mapping of quadrilaterals, which allows a unique coordinate

mapping of curvilinear and cartesian coordinates (20).

In this program, a structure is divided into a "chequer
board" pattern of quadrilateral zones. Each of these may define a
material with a single property - and if such property is specified
as zero - a void is achieved, allowing multiply connected zones to

be mapped.

In this section, the input data required by the mesh gener-
ation program are described. Two data files are created. Data
input by the operator is output onto the first file, and the data
obtained from the mesh generééion program onto the second data file.
The second data file is accessed by the programs described in Chapter
7 to provide the necessary input data. At the end of this section
an example is given to provide a guide to data preparation. For

details on mesh generation program consult Reference (67).

B.1.] Input data

Data is input in the following order:

(a) Program Code

Code - Program classificaticn number

Qort - Type of element used (1 - Quadrilaterz:,
@ - Triangular)
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Njob
Nelemt
Nnode
Cw

Cx

Cy
ny
Nmat

Nskew

Number of jobs to run

Number of eliements

Number of nodes

Number of nodes with prescribed «

Number of nodes with prescribed 1
Number of nodes with prescribed M

Number of nodes with prescribed M

Number of materials

Number of nodes with coordinate transformation

Control variables

Tnspds

Pzone

Vzone
Hzone

Gh

Standard

Ntip

Ngm

Nstart
Zns

N1

]

Number of specified super nodes, i.e. not
including standard generated nodes. If
straight sided zone, only corner nodes are
considered. If curve, mid-side nodes should
also be included. Also if 2 super-nodes
coincide only one is considered.

Number of zones being used, ie. not including
voids or generated zones

Number of vertical zones (row of zones)
Number of horizontal zones (column of zones)

Graphical output required? (1/Yes, @/No)

geometries

Number of crack tips (it should be specitiec
as @ here)

Number of generated sections. If>0 then
input the following parameters:

Super-node number starting the rore
Zone number starting the core

Number of super-nodes on the ccre Tace
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(e)

X1,Y1
R1,R2,R3

A =
Al -

Dx,Dy

Coordinates o the tip

Radii for the inner core, grading node arc
outer node respectively

Starting angle
Incremental angle

Zone's sub-divisions

X and Y coordinates of specified super-nodes

Data sequence entered for each node

Q -

Xcod, Ycod

W ”

Defining zones

Zone -

Mn -

Divx,Divy

p -

Number of super-nodes occupying the
position

X and Y coordinates

String of super-node numbers

Number of like zones
Material number
Zone sub-divisions in x and y directions

string of like zone numbers

Identifying closing sides

Nd -

Side -

Coin -

Nd -

Number of closing faces. [f > O then
input the following parameters for each
face:

Zone number
Side of face to be joined (1,2,3 or {)

Number of coinciding nodes. If > O then
input the following parameters for each
pair of nodes:

Node number retained
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Cnd - Corresponding node number

Boundary conditions - material properties
Sequence of nodes with prescribed W
Sequence of nodes with prescribed Mx

Sequence of nodes with prescribed M

Sequence of nodes with prescribed M

Data sequence for each material ..

Thick, Density, E, v, G, E, v..

Data sequence for each skewed node ..

Nosk - Node number

Angsk - Angle of skew ..........
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B.1.2 Data input example.

Simply supported circular pigte.

Material properties:
E=2.07x10~7 N/Cmr2
v=3

P=7.8x10~=3 Kg/Cm~3
h=1cm

The discretized plate

Due to symmetry only a quarter of the plate is required.

13,19

18

L) 1 []

(b) Specifled super nodes

(a) "“Chequer board"pattern

€,
©)

©
©
©

(c) Element array with nodal numbering.
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The input data

(a) 8 15 1 55 28, 54 8, 3,13, 1; 5

(b) 9, 3, 2, 2, 1

(c) 0, 0

(d) 1, 0, 0, 1 1, 0, 20, 3 1, 0, 60, 5 1, 20, 0, 9
1, 10v2, 10v2, 11 1, 60, 22.961, 55.4327, 8
2, 42.426, 42.426, 13, 19 1, 55.4327, 22.961, 18
1, 60, 0, 17

(e) T Te Lo T 1
1 1075 2, 2
1,1, 2,1, 3

(f) T 28 0

(g9) Cy’ 7, 11, 18, 24, 23

c, (M ): 11,18, 24

Cxy: 1,2,3,4,5,6,7, 8,12, 19, 20, 22, 23

Material properties: 1, 7.8E=3
2.07E7, .3, 3:%1%1 . 2.07€7, .3

Nosk, Angsk: i 67.5°

18, 45°
24, 22.5°
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APPENDIX C

Listing of computer programs:

MBRSP5
RFPLT1
RFPLT2

RFPLT3

(Mixed beam response analysis)
(Plate free vibration)

(Plate forced vibration by mode
superposition)

(Plate forced vibration by Direct
integration)
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e
.PROGRAMME STORED IN FILE

190
28
30
40
=15
50
ve

90
100
110
120
130
140
150
169
170
180
190
200
210
220
230
240
250
260
279
280
299
300
310
320
330
340
350
360
370
380
330
400
410
420
438
440
450
450
479
489
499
509
510
520
530
540
550
560
S70
580
590
600
619
620
530
540
650

BEAML Page 1
176,33

LISTED ON

REM #%%%%%5%%%%%%%x5%#%%%PROGRAM MERESPOS#% %% %% %% %% %X h%%%%%

REM #* Based on *
REM + Reissner principle *
REM = VQP’IOH#I Thiz program calculates the dynamic *
‘REM = dizplacements and stresses of a beam by means of #
REM # mixed finite element method.A dirsct integration #
REM # method known as Hilzon thta is ussed.The method is #
REM # unconditionally ztable.Damping iz assumed to be *
REM * vizcous and proportional. *
REM # R complete damping matrix is thus derived ,based +#
REM # on the orthogonality relations.A 3 node deflection#*
REM # and a 3 node moment mixed =lement is used,. *
REM # Verzion#2iMode superposition method is used to *
REM # 30lve the equations.Modal dampings can be directly#
REM # employed in each uncoupled equation. *

REM ®EFXEX XX F R XXX XSS S X LS LR L LS LRSS N E SRR LRSS LR R LR LR AR RERSES
OPTIOH BRSE 1

FRIMTER I3 16

FRIMT "Dynamic analysiz of beams bp mixed formulation®
PRINT

DIM Xcod(128),Leg(SB>,E(58), Rn(ua) A(S0,2),Mi(58,2)

DIM Th(50,2)>, P(45> Vg4, Kode(lBB 2) Ge(B 3) He(&,86)

DIN NQ(S,G),U(S),H(EB,EB),N(EB,29),5(43,43),K(43,43>

DIM VYec(43,43),Evaldd43),RApfol38,1),FOC28>,D(43),0fd(43)
DIM Offd2<¢33,1>,D1<¢(43>,F0(43),C<20,202,A0¢(9>,Dratioc30>
DIM I3(1601,T$IS0],A3[20]1,E3<(20),Hcnt(3001),Mcnt(3801)
INTEGER H,S01,Type,R,Pw,Pmny,Neq,Nmod,Hpos,Mpos,Hplt,Mplt
MAT K=ZER

MAT M=ZER

MAT G=ZER

" DISP "Before running the program for response analysis the"

DISP

DISP "following data files should be created on the current"
DISP '

DISP "mass storage uniti"

DISP

DISP "i-Data file (Initil) to be. used for recording the "
DISP

DISP "initial conditions. . "
DISP )

DISP "2-Data file (Eqn) to be used for sxcitation "

DISP

DISP "functions.The program is halted.Cresate the"

DISP

DISP “"files and press CONT"

PARUSE

INPUT “Choose the printer,0 for paper 16 for CRT “,Printer
PRIMTER IS Printer

INPUT "What is your mass storage unit for data files?",Datas
DISP "Structural datalGeomstric and materiall"

INPUT “Type of the probleml5-S,etcl",Tupes

IHPUT "MHumber of slemsnts",Hslent

DISP "Humber of slements=",Nzlemt

Nnode=2#%Nelemt+1

REM ==-=-MHodal coordinates

Z2=~1

FOR M=1 TO Helemt+1

2=2+2

DISP "K-coordinate of node";2;""

INPUT Xcod(2)

IF M>1 THEN Leg(M-1)=Xcod(2)-Kcod(2-2)

HEXT M

FOR M=1 TO Helemt
Keod(2#MI=(Kcod(2#M+1d=-Reod(2%M=-1))/2+KXcod(2%M=1)

MEXT M
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LISTING OF FILE : EEARM1L Page 2

560
E7H
&34
530
789
710
720
fgcs
r49
=1
-1
LS
=17
799
280
310
320
338
540
3358
250
27
328
390
986
918
928
338
948
958
958
7o
930
334
19u8
1810
1829
1838
1848
18509
1868
1978
198n
189
11848
1118
1126
1138
1148
1158
110
1170
1188
1198
1200
1218
122
1238
1248
1250
1260
1270
1230
1299
1304
1218

FOR M=1 TO Hnhode

DISP "d=coordinats of node"iM)}"="1Xcod My
MEXT M

DISP "press CLEAR then CONT®

PRUSE

FEDIM HcodiMnoded,LegiNelemt iy, ECHNelemt s RovNelemt
REDIM HAiMelemt , 20

FEDIM MidHelegmt, 2%, ThuiMelemt 2, KodedHnode, 29, FolMnods)
DISF "Element detzxr iz

IMPUT "How manw groupz of 1ibke =)
FOR S=1 TO G111k

DIZSP "Humber of 1itke 2lementz 1n group"iGi"",
IMFUT kK

IMPUT "Elasticity modulus?",E

INPUT "Mass density?",Ro

DISP "String of like =lementz in group";G;""
FOR M=1 T0O K

IMPUT H

E(M.=E

RoiMi=Ra

HENT
DISF "Materyal propsrtiss for group” G
DIZF "Elaszticity modulus="1E

DISP "Mass densitu=" Ro

MEWT 13

IMPUT "Iz the problem one of damped or undamped?l-9", Damp
IF MOT Damp THEN GOTO 2398

INPUT "MHumber of modes with proportional damping?",Mmod
REDIM DratiolMmod)

FOR I=1 TO HMHmod

DISP "Damping ratioc 1n mode"i Iy ™"

IMPUT Dratiofly

MEWT 1

DISFP "Uraform crozzs zection™1f wes tnput the area,d to
DISP " indicates nonunmiform"

INPUT T

IF T=8 THEM 5G0TO 1188

INPUT "Mament of insrtia?",Tl,"Extreme fiber location?",T2
FOR I=1 TO HMelemt

ACI,10=ACT,20=T

MicI,1o=M4I,20=T1

Thely13=Thel,2)=T2

MEAT 1

GOTO 117@

FOR M=1 TO Helezmt

DISP “Input the following for slement"iMi""

DISP "Area?,Moment of inertia?,Extreme fiber location™ Atl"
IMPUT ARiM, 13, MicM, 13, ThdM, 1.

DISP "Ar=a?™,Moment of inertia?,Extreme fiber location AL2"
INPUT A M, 20,Mi M, 20, ThiM, 20

MEXT M

DISP "pressz CLEAR then CONT"

PRUZE

MAT kode=ZER

ISP "Introduction of prescribed freedomalm,wl

IHFOT "Humbsr of nades with prezoribed momentz?",Pm

FOR [=1 TO Fm,

IHPUT "HMode numbsr ", M

KodetM, 12=1

MEXT 1

IMPUT "MHumber of nodes with prescribed deflection?",Pw

FOR I=1 TO Puw

IMNPUT "Mode number®",M

KodeiM,21=1

HE®T 1

Fm=HR=Mrnode-Pm

o

mentsiMat " G511k

=1
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LISTIHG OF FILE : EBEAML Page 3

1328
1338
1340
1350
1358
1370
1320
1390
1400

1410
1420
1438
1440
1458
14€0
1476
1430
1438

1560
1518
1520
13538
1540
1558
1560

1570
1580

1598

1600.

1610
1628
1630
1548
186506
1560
1670
1680
1890
1768
1718
1720
1730

17408
1738
17¢8
1770
1728
1798

1889
1810
1820
1838
18480
1856
18¢e0
1870

Pw=B=Hnode-Pu

REDIM G(A,R>,H(A,B),M(B,B),Apfo(B,1),FBC¢(EY,C(B,B)

A=B

REDIM KC(A,RA),Vec(A,AY,Eval (A),DC(AY,DI1<AY,0ffd2C(A, 1D
REDIM PC(Pm),0f fdCR>

A=E=0

DISP "preszss CLEAR then CONT"

PAUSE

FRINT SPAC14),"Results of finite 2lement by Reizsner pri
nciple"

FRINT USING "K";"Reszponse analysis by MWilzon Theta Method"
PRINT USIHNG "K,16X,K";"Type of problem",Types

PRINT

PRINT USIHG "K,12X,2D";"Mumber of slementsz",Nelemt

PRINT :

PRINT USIHG "K,15%,2D";"MNumber of nodes",Nnode

PRINT '

FRIMT "Elsment properties:"

FRINT LIHCZ),"Elemt";SPRAC2); "Modulus"; SPAHC3);; "Area 1";SP
ACS); "Area 2";SPAC3) ) "Moment "3 SPAR(S); "Moment "} SPR(S); "Le
ngth";SPARAC(4); "Density"

PRINT “"number";SPRC(1);"elastic";3PAC22);"Insrtial";SPA(3
Y3 "Inertia2”

PRINT

FOR M=1 TO Melemt

PRINT USING "2D,2X,7C(MD.3DE,R)";M,ECMI,AC(M, 1),A(M,2)>,Mi(
My1d,Mid(M,2),Leg(Md),Ro(M)

NEXT M

PRINT

PRINT "Boundary conditions",LINC(2),"Node";3SPA(4); "Kcoord
"ISPAGE)  "Moment " SPACS); "Defiection"

FOR M=1 TO Hnode

FRIMNT USIMG "3D,3%,MD.4DE,S¥,2¢(D,9X)"; M, Xcod(M),KodedlM, 1
dyKoded(M, 2>

MEXKT M

INPUT "What is the loading type?l-for concentrated,2-for
distributed,3-for both",Lcon

IF (Lcon=1)> OR (Lcon=3> THEN GOSUE Conf

IF (Lcon=2> OR (Lecon=3) THEM GOSUE Disf

5=0

FOR I=1 TO Mnode

IF Kode(I,2>=1 THEH 1£36

G=G+1

FOCGOY=FoCIY+FO(G>

NEKT 1

PRINT "Total nodal forces®

PRINT "Node~-coords";SPR(10);"Force”

FOR I=1 TO Mnode

IF Kode(I,2) THEN PRINT USING "MD.4DE,10X,K";KXcod<I),"Fixed"
IF HOT Kode(I,2) THEM PRINT USING "2(MD.4DE,18X)";Xcod(l
Y,Folly

HEXT 1

FRINT “Responss analusziz data "

REM Input excitation as a function of time.

LINK "EXCITE",S580

CALL Excitnd(Neq>

CALL Wtiptdlent(*),Ment(*)>,Kode(#*>,Time,Delta,A0C¢*), Thet
a, #l,Hnode, Puw)

REM RAssembly of [G],[HI1,Cmazs],[C] matrices.

MAT Me=ZER

MAT M=ZER

FOR Z2=1 TO Helemt!Mass matrix assembly

GOSUER Matme

GOSUE Mazemb

MHEKT 2

MAT U=ZER




LISTIHMG OF FILE : EEAMIL Page b

1230
1394
13288
1314
1320
1338
1348
1358
1268
13741
1336
1998
2886
20819
28209
2839
2840
2958
2958
28748

=829
28949
2188
2119

21328
2146
2158
2188
2179
2138
21394
2208
2219
2229
2238
2240
2258
2264
22749
22348
2298
2384
2318
2328
23309
23449
2359
23619
2378
2328
2398
2404
2418
2420
24328
2449
2458
24508
2479
2430
2499

FOR Z=1 TO Melemt!Azzenbly of (G] matrix
GCOSUE Matge

G0SUE Gasemb

MEXT 2

FOR Z2=1 TO Melemt!RAssembly of [H] matrix
C=1-Legily
Hetl,2s=He 2,1 0=He 05, 8D
Herl,42=He 3,1 =He. 2,3
Herd,S0=He S ,3:==3.
Het l,81=Hz: 6,1 v=He
HevI,43=Hs '3, 30=18~-
MAT He=i{C i +He

GOSUB Hazeub

NEAT 2

REM Fesponse analusis starts here.

LINK "FDAMP",5589

CALL EgsalwiHu#) ,Gu*) Ki#®),P#),Pu,Pml

REM Damping matrix svaluation

IF MOT Damp THEM GOTOD 2939

CALL DampmatoCo*s Ve 2 Evald+) MOo#2,KC€2, Dratio(*s, D
Ay0Ffdosr 0ffdE2y w0, D1 Mmod, Pu, Tups,Sall

MAT Yec=M

LIME "FIMITL",S5589

CALL Egsolul M%), Dlu$d,1,Puwl

FEM Iritial acceleration iz calculatsd and printed on
Te#l,

CALL ImitialdDOx) Apfod*d FACX) , KO&), CO#d , 0FFd2C+40,0fFd(
#1, M%), D17%),Delta,l,Pw,MNeq,#12

FOR K1=1 TO HMeg!'Loop round the numbsr of forces,

FRIMT “"Force zet"iki;""

ASSIGH #1 TO "Imitil®

MAT RERD #1;D

MAT FRERD #1i0f+fd

FOR I=1 TO K1

MAT RERD #1;0ffd2

MEXT 1

MAT P=H=#*D

INPUT "Hode number to plot the displacemsnts for?",Wplt
FOR I=1 TO Nnode

IF Koded(I,22=1 THEM 2298

G=G+1

IF Wplt<>1 THEH 2298

Mpos=i

GOTO 2384

HENT I

Wermtdly=0 Wpaosh

INPUT "Hode number to plot the moments faor 7", Mplt

IF KodewMplt,13=3 THEM 2359

BEEP

DISP "MNode"ijMplt;" 12 free .Tru again"

GOTD 2314

P Determines positiyon of Mplt

G=9

FOR I=1 TO Hnode

IF kodedl, 11=1 THEH 2444

5=5+1

IF Mplts »I THEH 2449

Mpos=3

GOTO =498

NEXT I

Mcnt (1'=P{Mpos)

REM Calculation of rezponze bw Wilzon theta method,

LIMK "WILSH1",S55498

LIMK "Egn",7T250

CALL Wilansl Ok dws Weci s Cieo (Apfor <0, Fl e Duxs (OFFdCsD
OFFdE2e e D ARCFE  Time, Delta, Theta,kl,Pusd, HC$Y, Hont
cE MEnt e  Mpaz, Hpos , Pu, P

LU G




LISTIMG OF FILE : BEAMI Page 3

25049
2518
2529
2538
2540
2558
2560
2570
2588
2598
2508
2618
2620
2630
2640
2630
2660
26780
2688
2690
2700
27106
2rzae
2739
2740
2756
2760
2770
27380
27909
2880
2810
2320
2838
23408

2356
2850
2870
2880
2890
2980
2910
29209
29308
2940
2930
2960
2970
29¢0
2999
20800
2010
3020
3030
3048
2856
2858
3078
3080
3890

3168
3118
3128
3138

A$="DEFLECTION RESFONSE ™

EFf="MOMEHT RESPONSE"

REM Response plots,

LINK "FPLOT",S130

CALL Plotdlcnt(*),A%$,Time,Delta,lplt)

CALL Plot<{Mcnt(#*),B$,Timne,Delta,Mple)

LINPUT "File name for dizplacemsnts?",Y$

LINPUT “File name for momentz?",Ms$

RSSIGN #2 TO v¥3$

ASSIGH #3 TO M$

MAT PRINT #2;MWent

MAT PRINT #3;Mcnt

ASSIGM #2 TO =

ASSIGH #3 TO =

NEXT K1

ASSIGH * TO #1

BEEP

PRINT "Execution terminated”

END!OF PROGRAM
Matge! ! SUBROUTIHE TO EVYALURATE [GelMATRIX
Z2eta(l)=.774596869241

2eta(2)==Zetadl)

Zeta(3r»=0

MAT Ge=ZER(Z2, 3>

Y(13=Y(2)=,55555555555%

¥Y(3)=,8888533838&:38

R=C(Mi(Z,12+Mi(2,2))72

B=(Mi(2,2)-Mi(2,1)>,2

C=Leg(2)/C(2*EC2))

FOR I=1 TO 3

Gedl,10=Ge (1, 10+Y(I)%(1/4%2etal)r2%(=1+22ta(l))~2)
Ge(l,1>=Ge(l,1>/¢A+BxZctacl)>

Ge(l,a) Ge(1,30- ?(I)*(-1/4*Eeta(I)ﬂ2*(22ta<1)*2 1))
Ge(l,3)=6(3,12=Ge(1,3)/¢A+E#Zetalld>

Ge(l,2)= Ge(i,g) Y(I)*( =-1/72%#2cta(ld)=e(Zetally=- 1)*(1-geta(1
)""’))

Gedl,2)=0e(2,10=02(1,2)/(A+B*22tadlld)
Ge(3,3)=G2(3,3>+Y(I #1442t ald) 2% (1+2ctadlldr~2)
Ge(3,3)=Ge(3,3)/(A+B*Zetall)
Ged2,35=Ga(2,3)+¥Y(l)*{1lr2%2ctadld)*(Zetalld+1)%(i-2Zetadlr~2d)
Ged2,3)=G2(3,2>=Ge(2,3)/(A+B*Zetalll)
Ge(2,2)=Ge(2,2)+Y(I)*(1- Zeta(IdA2)~2/(A+B#Zetalld)
NEXT I

MAT Ge=(Cl#*Ge

RETURH
Matmel! Subroutine to esvalyate [Mel matrix
2etalld=,774596669241

cetal(2)==Zetadl)

2eta(2)=0

MAT Me=ZER(3,3)>

HCLly=Y(2)=,55555555555

¥(3)=,8858333385338

R=C(RC(Z2, 10+AC2,23),2

B=CRC(Z,2)-ACZ,1))/2

C=Leg(23/2%Ro(2)

FOR I={ TO =3
MeCl,10=Medl,10+¥CI)#C1/9%22taCId 2% (=1+22talld)A2)
Medl, 1)=MaCl, 1>%CA+E*2etalld)
MeCl,3)=Me(1,32=-Y(I)%(=1,4%22taCld) 2%(2ztallrn2=-1))
Me(1,3>=Me<3,1>=Me(1,3)*(H+B*Zeta(I>)
TE§§;2)=”?(1.23-?(1)*(—1/2*Zeta(I)*(Zeta(l)~l)*<i—ZetaCI
Mell,2)=M2(2,1)=Me(1,2)%C(A+B*2etacld)
Med3,3)=Med3,3)+Y(Id)*(1 442t a(ld~2%(1+22valld)~2)
Med3,3)=Me(3,3>*¢A+B%Zetac]d)
Me(2,3)=Med2,3)+Y(1)#(1 /252t alId*C1+2etadl))*C1=2etalld~2))
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3148 Mel2,30=Mes(2,
2158 Mer2, 2osMer 2
31ed HENT I

2178 MAT Me=LCo+He

3139 FRETURH

31389 Gazemb: I Canstruct
3288 [F Z2:=2 THEHM GOTO 3=
3218 MAT U=ZEFR

32286 Gp=9

3239 IF KoderZ,12<>8 THEM 3268

32489 Udl1a=1

3238 Gp=Gp+l

3268 Uui2i=gp+l

3278 Gp=ide2o

32380 IF Fade» 2+Z2+1,12° @ THEH 3334

3298 W Ia=Gp+l

2388 Gpsd 3

3319 GOTO 3399

3320 Uiola=Uo30

3338 Ui2i=Gp+l

33489 Gp=UC2)

3350 U(3)=8

3368 IF Koder2+Z2+1,12<>83 THEMW GOTOD 2394
3378 Ui3hv=Gp+1l

33380 GpsUo 3o

339G GOSIUE G

3488 RETUFHN

2i=Med 2, 2% (A+E+*Zet a2
L2 +|rI\,.1--etaUI)M2l*Eﬁ(H+E*:etaf1?3

an of [G]

-
=

= =

2418 Masemb: I Canztructiron of [G] matrices an reduced square
3428 ofarm.

3438 IF Z2'=2 THEH GO0TOD 2558

34483 MAT UU=ZER

24358 Gp=6
3468 IF KodedZ,22{>8 THEN 3499
3470 Udlo=1
34868 GCp=Gp+1
3498 Uo2i=CGp+l
3588 Gp=Uc2o
3518  IF kodew2<ZI+1,2:.5:8 THEM
3528 Ulza=Gp+l
3338 Gp=le 3
3548 GOTO Zeza
3338 UClor=Uv3o
3568 U(2r=Gp+1
3578 Gp=udzZ:
3588 U(3:=
3599  IF kode.2+I+1,2>8 THEH GOTO 382
3888 Uo3v=Gp+l
3618 Gp=Uo3:
3628 GOSUE M=
?b 8 RETUFPH
48 Hazemb: I Conztructiaon af [H) matrrs on reduced rectangular
3555 boform.
3668 IF Z:=2 THEMW GOTO 3914
3678 UdlrsUC2a=1
3688 U(3r=Uidr=:
3630 U(Si=Uinr=3
3788  IF Kode«Z,1>=8 THEN 3758
3718 Ud{1h=9

[
oy
Iy
=

3728 v 2u=Ur30-1
2738 HeSv=0.S1=1
3748 Velh=Wilo+d
37S@ W Ie=ve 3oy

378l IF kKodeoZl,20=8 THEM GOTO 3529
3rve Uczi=9

3730 UC4d=0040-1

3798 Udsi=U{sy~1
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3888 V2=V Oi20+1

3318 Mido=Widoi+l

3320 IF Koded2#Z+1,13=0 THEN GOTD 3269
3838 UdlSi=9g

3848 WalasMO1x+1

38338 W3 a=VO3r+1l

232868 IF kKode 2+I+1,2 =3 THEN 3349
2878 Ueoos=8

3388 M=o+l

3898 Mrda=Wid4r+1

3388 GCOTO 4874

3918 Ud1a=UCSs

3920 UdC2r=U05d

39389 BC3 =221

3948 Ui =2#Z2-v0(2)

3395@ IF Koded2#Z+1,1)=8 THEM 48491
3988 UJoSh=8

3379 Vaolasioio+l

3988 MoZo=WOoZa+l

3998 COTO 4818

4908 1 Sy=2=J+1-ML 30

4018 IF kKodev2*I+1,23=8 THEM 4854
4828 Uosr=a

4838 WY(2r=Vi20+1

4840 WV(d)=¥(4r+1

4858 GOTD 4878

4068 Uigr=2%Z+1-Yid4]

48780 GOSUR Hs

4988 RETUPFH

4899 Gz: FOR I=1 TO 3

4198 FOR J=1 T 3

4116 G=UCI0

4128 L=uUctd

4138 IF <«G=8) DR (L=8> THEH 4158
4148 G(G,La=G{5,Lr+GeCI, T2

4158 MNEXT J

4188 NEXKT I

41786 RETURHN IMs

4188 Ms3: FOR I=t1 TO 3

4198 FOR J=1 TO =

4208 G=UqID

4218 L=uUoTn

4229 IF o=@ OF (L=0) THEHM 4249
42389 MOG,Li=MiG,Lo+MecI, T

4248 MEXT J

4298 HEXT I

4268 RETURN IAs1

4279 Hs: FOR I=1 TO 5 STEF 2

4288 FOR J=2 TO 5 STEP 2

4298 G=UCI

438 L=UJ2

4318 IF G=@: 0OF +L=9" THEHW 4338
43260 H.G,L =H G Ls+He I ,J)

4338 HEXMT T

4349 HENT I

4358 PRETURN !Hs

4368 Conf: ! Subroutine for concentrated loads
4378 DISP "Detarlz of loading"”
4388 IMPUT "Humber of nodes with concentrated loads?",HW
4398 FOR I=1 TO W

4488 IHPUT “HMNode numbsr?" .M, "Load wvalus®",Fo
4418 FoiM =Fao

4428 HEXT 1

4428  INPUT "Humber of nodes with concentrated moments™", W
4448 FOR I=1 TO W

4454  IHFPUT "Hodsz numbse ™" M, "Cancenteatsd momsnt ", Mo
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4450 IF (M=1) OR (M=Nnode) THEH 4518

44780 FolM=-1)=Fo(M=-1>-1sLegiM=-1)%Mo

4488 FodM+1)=Fo(M+1)+1/LeglM) %Mo

4490 FodM)=Fo(Mi+MosLeg(M-1)-Mo Leg(M)

4508 GOTO 4578

4518 IF M=1 THEM 4558

4528 Fo(M=1)=Fo(M=-1)=1/Leg(M-1)%Mo

4538 Fod(Mi)=Fo(M)+MorsLeg(M=-12)

4540 GOTO 4578

4558 FodM+ld=Fod(M+1)+MosLeg(l)

4568 Fodi)=Fod(MdI-MosLeg(l)

4578 HEWKT I

4536 RETURHM

4398 Disf: ! Subroutine to svaluate for distributed loadings

4600 | Load is assumed to vary linsarly

4616 DISP "Details of distributed loading"

4620 PRINT

4630 DISP "Element number subjected to loading?"

4648 IHPUT M

4658 INPUT "Load intensity at position {",P1l,"Load at 2?",P2

4660 Fo(2#M-1)=Fo(2%M=1)+(2%P1+P2)%(Legl(M> 6

46768 FolZ#M+1)0=Fol2¢M+1)+(2sP2+P1)%(L2g(M) B>

4688 INPUT "More loaded elements?if yes input the number ,else
8"y M

4690 IF M THEH GOTO 48509

4798 DISP "Press CLEAR then CONT"

4710 PRUSE

4728 PRINT "Distributed loading information®

4738 PRINT

4740 PRINT "Node-coords";SPA(18);"Equivalent force"

4758 FOR NH=1 TO HNnode

4768 PRINT USING "2{(MD.4DE,16%¥>";Xcod(H),FodN>

47780 HEKXT H

4786 RETURHN

47980 SUP Wtiptdlcnt(#),Mcnt (%) ,Kode(*),Time,Delta,AOC*), T, #1,
Mnode, INTEGER FPuw)

4888 OPTIOH BRSE 1 .

4818 REM Integration constants!Milson method input subprogram

48286 DIM DC(43)>,0ffd(43)

4838 REDIM DC(Pw),0ffd(Puw)

4848 DISP "Integration constants"

4858 INPUT "What is the time duration?",Time

4868 INPUT "What is the time interval?",Delta

4378 PRINT

4880 PRINT USIHG "K,6X,MD.4DE";"Response duration",Time

4898 PRINT

4908 PRINT USING "K,7X,MD.4DE";"Time increm=ntal",Deslta

4918 REDIM Went(INT(TimesDeltad+1)>,Mcnt(INT(TimesDeltar+1)

4928 INPUT "Select Thestalusually 1.41?",T

4930 RABC1)=6/(T*#Dsl1tar~2

4940 ROC2)=3/(T#*#Delta)

4956 ROC3II=2*A0C2)

4960 RB(4>=T*Deltar2

4978 ARABC(S>=ROC1HX/T

4988 ABCEI==ROC3>,T

4998 RAV(YI=1-3-T

SP00 AD(3>=DeltarZ

5018 ROC(3I=Delta~2/6

5028 REM Initial displacement-vslocity input

5030 DISP “Initial conditions"

5040 IN?UT "If zero initial conditions press 0 otherwise 1
n’n . . !

5858 IF In<>8 THEN 5090

5868 MAT D=2ER

5878 MAT Offd=2ER

S088 GOTO S238
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S833 R=9

5188 FOFP I=1 TO HMnode

5118  IF bode 1,29 THEH COTO 51958

3129 HA=A+1

S13@ DISF "Imirtial drzplacement of node"yIs™”
9140 INFUT DueR:

5158 HEWT 1

5169 R=4

5179 FOR I=1 TO Mnode

5138 IF kode'I1,2) THEHWH 9228

5198 A=A+1

5268 DISP "Imiti1al welocity of node"iIi""
S218  IMPUT 0ffd AN

5228 HMEST 1

5238 HASSIGH #1 TO “"Imitil:F"

§248 MAT FRIMT #1:D

298 MAT FPRINT #1;0¢fd

5268 SUBEMND
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PROGRAMME STORED IN FILE : RFPLT1 Fage 1
LISTED OM : 1?7767,33
18 REM #5335 %%¥ 3430t isaseNii it rsarnesyassses
20 REM # Free vibration analysis of thin plates by #
38 REM # Reissner’s method. *
40 REM = ' *
ag FEM *® Program name:"RFPLTL:F3" *
&8 FEM = [R=izzner’s Plats Yibrationl =
78 REM =+ *
88 REM % Version#!l Free vibration analvsis, *
98 REM ¥4 # %% F ¥Rt R AR AR R F AR RS TR LR AR R R E R FRSHER SRS

168 OPTION EBRSE 1

118 PRINTER IS 18

120 PRINT PRGE,SPAC10),"PROGRAM INTRODUCTIOH#1",LIHNC(2)

139 PRINT "Thin plate vibration by mixed fornulation:"

148  PRINT “The program is based on a mixed wvariational™

158 FRIHT "principle known as Hellingsr-Reiszsner’s "

160 PRINT "principle.An 8 node gquadrilateral finite "

178 FRIMNT "elemsnt iz used for dizcretization of the "

138 FRIHNT "plate.Lateral deflection is assumed to vary"

196 FRINT “parabolically - -inside the element.Bending and"

280 FRINT "twizting moments are also assumed to vary

210 PRINT "parabolically.Latch PRT ALL press CONT"

228 PRAUSE

230 DIM JC2,2),G2(24,245,He(24,8),A$(301,Vec(27,27)

248 DIM Evald27),D(27),8x(65),Yy<(857,0ffd<a?>

258 DIM Offd2(27,15,M2(8,8),C(10,63,Th{8),H(95,27>,G(95,95>

268 DIM Dens<(8)>,M(43,43>,D1(43),Cr(27,27),Ar(27,27)>,Bm(2,8)

278 DIM SFC33,5fm(3,3),H(3,4),Ang=zk (28),K(27,79)

230 IMTEGER Modc(ES5,4),ModeC16,9),Nosk(28>

290 INTEGER Hmat,Matno,I,K,J0,Z,501,H,0p,Cw,Cx,R,Type,Cy

300 INTEGER Cxy,Mskew,Fuw,Fm,Hnode,Nelemt

318 REM Gause points and weights for numerical.integration,

326 A=.774596669241

330 BE=8

340 C=.55555555555S

350 D=.8888388888388

268 WC1, 15=Wd1,20=l(2,2>=NC3,2)=W(4,1)=W(7,1)=-R

370 WC2, 10=WC4,2)=W(S, 1>=H(S,2)=l(6,2)=N(3,1>=0

388 WC3, 1)=HCE, 12=HC7,2>=H(8,2)=N(9,1)=H(P,2)=R

298 WC1,30=HCL,40=HC(6,40=HC2,3=N(7?,30=N(7,4)=C

488 W9, 30=HC(9,40=lC3,3=H(3,4>=H(2,3)=H(4,3=C

410 MCE,3)=UC2,4)=H(2, 4)=H(4,4>=k(5,3)=H(S,$4)=D

428 A=B=C=D=0

430 PRIMT

448 DISP "Type in name of the input data file?,press CONT"

450 INPUT Datas

460 ASSIGH #1 TO Datas,C

470- IF NOT C THEN GOTO 529

480 BEEP

490  DISP "File not found.Try again"

508 WRIT 2098 :

5106 GO0TO 440

52e@ INPUT "What is the printer 16/8?",Printer

i) PRIHNTER IS Printer

540 IHNPUT "Tupe of the solution?! for deflection,2 for n
oment eigenvectors",Type

550 . PRINT ,SPAC1);"Vibration analysis of thin plates”

368 PRINT ,SPRAC1) ) Ve e e e ece e "

570 PRINT
589 LINPUT "Type in name of the job.Hot more than 38 charact
ers",A¥

596  FRINT “Job Name........"3Ass""
508 READ #1iHMjob,Helemt,Nnode

610 PRIMT LIHC(2>

5620 PRIHT “Element zelected:®

630 PRINT "8-node guadrilateral”
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]

LTS ] PRIMNT LIH.3

53568 FPIMT "Humber of slements..c.es..."tHelemt ,LINCZ)

S60 FRINT "Mumber of nodes essesses "iHnode

a7 e READ #1iCuw,C«,Cw,Cxru, Hmat,Nzskew

530 Fr=3+Mrode—="Cxu+Cu+Crnuwd

694 FusHrnoade-Cw

vag FEDIM ¥viMnode ', ¥YwiNnode?, 2 Mmat (5, ThuMmar

718 FEDIM Denz Muar v G7Fm, Fma,HoFm, Fud yMOFw, Fulr Angsk "Hskew+1)

geds) FEDIM Hode Helemt, 3 MHodciNnaode (47 (Hozk (Hakew+1

738 IF Trpe=2 THEMW SoOTO 774

7 FEDIM Yec FuyFuw Eval v Fu ', DiFws OffFdiFus

Toa FEDIM Offd2 Fu, 120,01 Fu  KoFuw,Fu:

7EE ROTD 736

°va REDIM “ec Fm,Fm>»,EvaldFm),DCFm, 0FfFdCFmo

=1’ REDIM Dffd2CFmy,10,D1cFmr,KCFm,Fmas

739 LINK "INPPLT",1740

s0a CALL Feinptixi€s,Yudie), #1,Nnode,Helamt Cw, Cuy Dy, Cxw, Nod
gl%) Nodoo<,)

819 FOR Matno=1 TO Hmat

220 CALL Cmatp=d Cr+i  Tho+d, Dens (%), #1 ,Matno?

2358 HEXT Matrno

sS4 IF HMzhew=0 THEW GOTO 226

=gl FOR I=1 T Hzikew

3680 READ #1iHoskoIs, Angsk (I

878 NEKT I

EE=] FEM Gensration of mixed matrices (Ge) AMD [Hel

398@ LINK "HEPLT",1748

285 IF Nskew=8B THEHW G0OTO 1898

314 FRINT

228 LINE “TEMPLT", 3288

338 FFRIMNT "MHodal transformation.”

345 FFRIMT

A5a FFRINT "Hode number",SFR.SY, "H=-¥ angle=cDEGH"

9E8 FRINT

s FOF I=1 T Hzkew

330 PRINT USING "¢3D,22K,MD.4DE " sHozks I, Angsk 1

EET NEXT 1

1888 FOR Z=1 TO Helemt

lgle MART He=ZER

1828 MAT Sfm=ZER

1839 FOR U=1 TO 9

1848 CALL Rauwolr U, 10, oL, 2%  Mad£y  Yui+o , Det j,Bui#2, 350+, Be,
D=, 2 Hodewvs B

1858 FOFR I=1 TO =2

196 FOP I=1 To &

1878 Sfm Iy T =3fme Dy Jo+Sf ol 2 f0To+Det g+l 20+l U, 42

18588 HEXT I

1899 HMERT I

1188 CALL HeformiHe #  Bmi£x,Det 3, WU, 3, Wil $2

1118 HEXT U

1128 CALL Geform.Ge(sl,Sfm(*2,C0lx2,Node 2,

1139 CHALL MhzusdHe 3, Ha0®0, Yo% Bme+Y, 5S¢0«

1148 IF Hskew=@ THEN COTO 1210

1158 FOR I=1 TO MHsksw

11e@ FOR J=1 TO 3

1178 IF Hoszk oI  HModerZ, T THEH GOTO 1134

118g  CALL TransfrGe: = Hed<o Angab [, T

1138 HEST J

1298 HEST 1

1218 CHRLL GhazembdGi%, Gev+d HO+ Her = F, I, Made #3 ,Hodo % 10

1228 HEKT £

1238 FOR I=1 TO Fm

1248 FOR J=1 TO Fm

1298 G(I,Jv=GuJ, I

1268 HERT J

278 NE-T I

o)
m
Lo
L[]
z
C
(78
m
*
o
I
r o
AV
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=

—_ - =

[OUREURVE I (% (]

fl o= X 00D
(]

[ I )

1334
1348
1358
1380
1378
1328
1396
14m@
1413
1420

1438
1448
1458
1468
1478
1438
1439
1384
1518
152g

1538
1540
1338

1560
1574

1588
159
1epg
lel@
1629
le3e
1648

1658
lecl
167a

1634
1538

17848

FEM Sermzsration of maszz matri-[M].
LIHE "MELIPLT",17483
FOF Z=1 TO Helemt
MAT Me=CEFR
CALL MeformuDenzs o), Thoss Meded ol Yodes Woxy Det j, S
LV, Bmi¥)  Hoded# ), Hoder 2,30,2)
CALL MasembiMIi*y Meix),Fuw,2,Hode(* ", Nodc (<0
MEXT I
FOR I=1 TO Fuw
FOF I=1 TQ Fuw
MCT, Jy=MeT, I
HEXT I
HE!'T I

LIHF "EgQzole",1748 Cholezki decampositon

LIHE "Gauz:z",1743 Simple Gauzziran 2zlimination
LIME "FRausz:z",17481 Triangular decomposition with partial
pivoting.

IF Twpe=1 THEH GOSUE Wei1gen

IF Twpe=2 THEM GO0SUB Meigen
ASSIGH #1 TO #*
EMD!IOf thes program main routine,
Megigen: ! Sub program for s=i1genvectors of (W),

CALL EqazoludGi#®ax HOox2,Ki#dY , Fu,Fm, Tupe

LIHKY "EGHIPT",1744

CALL EigrmimpteMi M2, LB UB,Fu, 2531

LIMF "TFAHZ", 1744

CALL Tramz: Mo, b %y Moo+ Eual 2 ML, M2, Lb,Ub, DC*2,0FF
dr 3, 0FFd2e % Dl vea  ArCx),Crred , Tupe Fuu, 301

IF o133 THEN 1588

LINK "EIGEM", 1748

CALL ErgeniMi#) ,Ki#i,%Yec(*),Evali*d, M1 ,M2,Lb,Ub,DC*),0ff
de#y,AFFdaC*#), D1 *¥),Arcsd , Cri*d, Tupe,Fuw, S0l

LIME "EWLM",1740

CALL Ewlwi Mo, Ko#®) Mecrs , Evalc+d, ML M2, Lb,Ub,DC#2,0ffd
Cey Dffd2 =2, D1 C*) ,Ard® Cr'+), Tupe,Fuw, S0l

FETURH TEnd of sub W
Mei1gen: | Sub program for gigenvectors of {Mi.

CALL EqsaciwrHo+r Moo koxd FmgFuw, Tuped

LIML "EGHIFT", 1548

CALL EignimptdmMl,M2,Lb,Ub,Fm,Sal?

LIMK "TRANS", 1648

CALL TranzoGi#),Ki£) ,Yecd*) ,Eval (+ Y, M1 M2, Lb,Ub,DC#2,0fF
dC*) , DFffd2C*3, Dl 0%, Arcsd, Cri), Tupe,Fm, S0l

IF Sal>»3 THEWN GOTO 1638

LINK "EIGEM",1744

CALL EigemneGu#d Koy Veo(*d,Euali*y, M1, M2,Lb,Ub,DC<2,08F
dr s Offdad <, D17x)  Ari*  Crusd , Tupe,Fm, 30l

LIMF "EWLY", 1744

CARLL Evlin G+ ko+r Weco =y BEuald« o ML M2, Lb,UbB, D +2,0fFd
Cer OFFdZue  Dluss AP E, Croed Tupe,Fu 30l

FRETURM End of sub M.
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LISTED 0N : 17.76,33
14 FPEM #F5tFf et bt bt bttt h A A b e S 4 E R FEEL L CX A EEE
24 FEM +Forcsd wibration analwsis of thin plates by #
38 FEM «Fei1zzner 2z method. *
48 FENM +Frogram nams 13 "RFFLT2:F" *
Sa FEM =+ +
n] FEM <Verzion#lifFres vibration analusis, *
T FEM *Verston#liForced vwibration responzs analvsizs#
39 FEM *by mode zuperpozition methad. *
349 REM #Mersion#3iForced wibration responzs analwsiz#
188 REM *bw dirsct intsgration method., ®
118 RFEM #3444 r X344 45 F42 2L RFREFLAXF RS b SRR HF0s

128 OPTION BHSE 1
128 PRIHNTER I35 18
148 FPIMT FRAGE,SPAR.24,“PROGRAM INTRODUCTION #2",LIMut!
158 FFRIMT "Thin plate wibration by mived formulationt®
1@ FRIMT “"The arogram 13 bazed on a mised cariatiaonal
174 PFRIMT "primcipls bhnown az Hellinger-Reizsner s principle.”
138 FRINT "An 2 node gquadrilateral finite slzment iz "
138 PRINT "wused for dizcrestisation of the plate.”
2aa PRIMT "Lateral deflection is assumed to wvary parabolicaly"
210 PRINT "inside the element:"
220 PRINT SPRM13); "H=al+a2K+a3¥+adkY+aSxy~Z+agyL"2+arv~2+ad¥
A2y LINCL)
230 FRINT “"Bending and twiszting moments also vary parabolicaly"
248 PRINMT "1nz1de the slementi",LINCLD
258 FRINT ZPA 1803 "M My Meu=bl+b2H+bIYV+b4HV+bBTEY~2+4BEYX~2+b
T EFbEN 2 LI L
Z5a FRIMT "Changss 1n input include:

[

278 PRINT "1-Hzodal connections,2-Matesrial number,"
280 PRINT "3-Element properties and 4-Element thickness.,"
299 FRINT "Orthotrpic & 130tropic materials maw be used,"

388 FRINT "In wersion#2 of this program,mode supsrposition "

319 FRINT "method iz wsed in order to calcuylats time "

328 FRINT "rezponze history of the plate dizplacemsnts and"

334 FPRIMT "momsnts under the action of external loads,Press
COMT "

349 FAUSE

356 PRINT FHRGE,
354 FEINT

370 FRINT “Before running the program the following data "
338 FRIMT

398 PRINT "f¥iles zhould be createdi"

480 PRINT

418 PRINT "i1-Data filelInitiliFlto be ussd for recording "
420 FRIMT

430 FRIMT "the initial conditions."

440 FRIHNT

[

FAL1S2,"Data files reguired are",LINCLD?

456 PRINT "2-Dara filelEgqniFl to be wzsed in ordsr to "

488 FRINT

478 FRIMT "prant the =«wcitation forczs on.”

438 FRINT "Create the data fi1lez,Latch PRT ALL and press
COMT,. "

4390 FAUSE

Sew  DIM Ji2,27,Ge(24,24),He(24,3),A$(20],Yec (25, 25)

S18  DIM Eual(263, D26, Xx(55), 7y (6S),0FFdi26), Tha)

520 DIM OFfd2i26,1),Me 3,8 . Cans: 10,5 ,H(35, 267, G(3S, 35)
S30  DIM Denz:8,Mi26,260, 011265 Bmis, 30, K27, 36, He$¢ 17020

5S4 nDIn Vec'kib.lu' FP1od4S  Angsk 20  Mentola@tlo, Initilad)
554 DIM Praes  Mr e S0028Y, Went 71888, 1501801, T$020]

358 DIM 2f S0 Sfa 3,3 We3, 4 Apfod 30, FRCZI Y, Irat10028)
ST INTEGEF Hadc-65.4'.HGdEWLS.QW.HGELL;BJ Tups, R, Cu

584 INTEGER I,k, Jo,2,30),H,0p, 0w, Cx

390 INTEGEF Fuw,Fm,Mnode,Helemt,Hmat ,Matno

&0a INTEGER Cwy,Nzkew, JZ,Nmode,Wplt,Mplt,Neq,Njob,Ndmode
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614 REM Gauze points and we=ights for numerical intsgration.

528 RA=.774595563241

530 BE=8

549 C=,3555555555%

5508 I=,235323232338333

BEEd Wl to=lol 2islr2, 2y=102,20=H0d, L o=WiT, 10=-H

BT WeZ,lo=lid 2o=liS, 10=W0S, 2 0=l(s, 2 0=WLE, 1 =3

=S MeZoteslog, LosHe T, 2=l g, 2osllo 3, L oa=lod, 2v=h

590 Muly2o=lrl,doslog, 4 =la, 3o=Wr 7, 2o=loT, 30=0

TEe R N L e B R e e O E  EE= B A T S R S N T

vig Mg, 3r=pe2, 4=l da=l04 40 =]¢ S,EH=NES 41=]

ve A=E=C=D=a

F30 FRINWT

748 DISP "Tups 1n name of the input data f11e?,press CONMT®

7Se INFUT Datas$

764 ASSIGN #1 TO Dataf,C

vve IF MOT © THEMW GOTO 329

=15 EEEF

7Ia DIZF “File not found.Trw again®

244 WAIT 48400

210 GOTD 745 .

820 DISF "Whart iz the printing device”1&6-8"

839 IMPUT F

840 FRIMTER IS P

250 P=4

8660 FRIMNT ,SPR<L»;"Vibration analvyzsiz of thin plates”

370 PRIHNT SPRAC1) ‘= e e cc e e cccc e e ccca e = "

288 FRINT

334 LINPUT "Tupe in nams of the job. Mot mors than 20 charact

JAF

@A FFIMT "Jab rname....... LAY

318 LIWE "IHFFLT", 2224

28 CALL Feinpt tmavxs, Yurss #1 ,Hrnode, Helemt (Hjob,Cw, Cx, Cu, Cx
vy Mmat ,Hehsw, Node o #3 ,Hodo (%3 0

339 Fn=2#MHnode-(Ca+Cu+Cxy?

S48 Fw=Nrnode-Cuw

50 REDIM MuxuMnode),Yu(Nnoded,Cons(Mmat 52, ThiNmat),Hode (MNel
emt , 30

968 FEDIM Dens<Mmat ,GC(Fm,Fmdy,HFm,Fu) , M(Fu,Fu), ApforFu),FB{Fu3

78 REDIM Mec/Fu,Ful,Eval vFud, DiFuws ,0ffdCFul ,0ffd2CFuw, 12,D1¢
Fus, b oFu, Ful

224 FEDIM P Fu,Hodc Hnode, 42, PLOFwl Moot i Fw,Ful, Angsk (Hakew
+1 0, Hozhk " Hzbew+ll

938 FOR Marma=1 TO Mmat

1089  CALL CmatrsiCons =, Thi*),Denz i #1,Matna)

1818 HEXT Matna

1929 IF Mzkew=8 THEHM GOTO 1869

18628 FOR I=1 TO Hskew

1948 RERD #1;Hosk I>,Angskcl?

1858 HEXT I

1888 REM Loading conditions,

1878 LINKF "FLORD",22&Q

18238 CALL Loadap i FOG= (WU +s  Wune s Wores et ), Bmi=0,3f (%), Hode
ces Hodo Cx s (Mrode , He Yemt

18958 PFINT

1199 FPIMT "Fezponmze analusiz datad"

11189 REM Input swcatation 3z a Func*1on of time.

1129 LIMK "EWCITE", 2559

1138 CRHLL Exc1tn(ﬂeq}

1148 REM Input information concerming the forced vibration of
plate.,

1158 LINK "RFINPT",2250

1158 CALL Rzpaptodont =3, Mont o) 0ffduss , Duss, Time,Delta, Inmit
VIGe M ECe W E e Trat 1o HeguHrnade , Fu, T2, Hmode, Wplt
JHMplt  Hodo s =0 Hdmede

1178 FPEM Generation of mived matrices [(Gel AND [He )l
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LISTING OF FILE : RFFLTZ Fage

1138  LIMF "HEFLT",Z2SE4

11948 IF Mzbh=w=3 THEHW GOTOD 1298

1268 PRINT :

1218 LIHE "TRHFLT",=33d

12289 PRINWMT "Modal transformation.,”

123 FRINT

1248 PRINT "Hode number";SPR¢TY;"N=-¥ anglecDEG "

1258 FPRINT

1268 FOFR I=1 T0O Hskew

1278 PRINT USIHG “"(2D0,220,MD.4DE " tHozk ID ,ARgSE O I

1228 HENT I

1228 FOFR 2=1 T HMelewmt

1363 MAT He=ZEFR

1318 MAT Ztm=ZEF

1328 FOR U=1 TO 9

1338 CALL QauxdWdU, 1o, Wb, 20, i), Ywli£), Det j,Emi4),5f %2, Be,
Dz,2,Model+1,8)

1348 FOR I=1 TO 3

1358 FOR J=I TO =8

1368 Sfmcl, Jr=5fmCl, Jo+3fCI0#SFCId#Det J=W U, 3oV, 40

1378  HEHT I

1328 HEXKT I

1398  CALL HeformiHe %  Brni*,Det J, WO, 30 Wl 4000

148 HEXT U

1418 CHLL GeformiGeu+r,Sfm =1, Canzusr, Hoder 2,300

1420 CALL MrswzsCHei£d Hurxs Yl B+ 5§ C(+  Be,Ds,Hoded*),2,K)

1428 IF HMHzksw=8 THEHW GCOTO 1580

1448 FOR I=1 TO HMNskew

1458 FOR J=1 TO 8

1458 IF HMoskoIlr»{>HodecZ,J> THEN GOTD 1438

1478 CALL Transf:Gev*),Hed(*),Angsk(I>», J

14238 HEKT J

1438 HEXT I

1588  CALL GhazembuGo#,Gers v H{# Heds Fmy,JyHodeC#d, Hodo (22

1518 HEXT Z

1528 FOR I=1 TO Fm

1338 FOR J=1 TO Fm

1548 GCI,Jr=GcJ, I

1558 HEKT J

1568 HNERT I

1570 REM Generation of mass matrix<(MI.

1588 LINE "MELIPLT",2868

1538 FOR Z2=1 TO Helemt

1688 MRAT Me=ZER

1618 CALL MeformeDenzr s, Thrso , Meie) uC®), Yocs) WOEY,
t# o Bui#  Hodeo+ yHode 2,90, 20

1828 CALL MasemborMesd Meisr , Fu, 2, Hadesy *7  Hodo (%00

1538 HERT 2

1648 FOR I=1 T Fuw

1829 FOR J=1 T Fu

1668 MCI,Jr=MuT, 12

1878 HEKXT J

1688 HEXT I

16298 ASSIGN #1 TO +!1To closs the finite slemsnt 1nput

1780 REM Responze znalusiz ztarts hers

1718  LIHWE "MODAL", 2220

1728 CALL EqzalodcH =, Gesi,bi%y Frd ,Fu,Fm)

1738 CALL Modalowecos  Evalis i, M Ko+, Drat1ac+Y,Dusr 0Ffdu
“r,0f¢da + 0 D1+ oy Huode ,Fu, 1, Sal Hdmode ™

1748  MAT YWect=TRH(Yec

1758 REM Load uvsctor tranzformation.

1768 MAT Fl=Yect+FO

1778 MAT F@=pP1

1788 REM Loop raound the number of svcitation forcss.

17968 ASSIGHN #1 TO "Imit11:F"I1Te read non zero 1hRiti1al

18889 LINK "DUHAML", 2580
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1818 LIMK "Egqn",3258

1229 FOR KFil=! TO Megl!Loop round the number of forces

1828 PRINT "Faorce zst"jkig"

15489 IF Ieatal-kils -3 THEM GOTO 1386

1838 MAT +=JEF ' The 1=t two columnz: of (K1 ars used as 1nitial
Ccomditionz

1358 | in transformed coordinatessz.

1378 MWontr1l)=4

1889 Mcntilr=89

1398 GCOTO 2148

1388 MAT READ #1;D

1918 MAT READ #1;0ffd

1928 REM Initizal bending momesnts are calculatsed,

1938 F1=4

19483 FOFP I=1 T9 Fu

1958 PuModc Mplt T2 r=Pi+H Mode cMple, T2y, Jr=D0 I3

1988 Fi1=FrHodcocMplt, T2

1978 HEXT 7T

1388 MWenmtils=DiNodeo(lplt, 40

1998 MocntolossPdModcocdMplt,J2))

2888 MRAT Pl=M=D

2918 MAT D=Vect<+Pl

2828 MAT PLl=M=*=0f+d

2830 MAT Offd=Yect*P1

2948 FOR I=1 TO Fuw

2858 KrI,1=D0:1:

2058 kI, 2 =0fFd I

ZBTEe HENT I

2988 MAT D=ZEFR

2898 MAT Offd=ZEFR

2188  REM Loop round the intagration points

2118 cCnt=1

2120 T=0

2138 HNHpts=INT.Time~sDeltar+l

2148 FOR Count=1 TO Hpts-1

2158 T=T+Lelta

2168 Cht=Cnt+1

2178  CALL Egqnv T,F,k1l2

2188 FOF Deg=1 T0O MHmode

2198  FO=F+F@ Degs

2209 HMHf=SQEC(EwvaliDeg

2218 IF Deg>Mdmade THEH GOTD 2244

2220 Ze=Drati1oiDeg’

2238 GOTO z22%©

2248 Ze=9

2258 Dnf=Nf<SORC1=2e~2)

2268 CALL Duhamnms! rT,Mf,Dnf,22,De1ta,F8,D1¢Deg,0ffd Deg>,DCD
g, fd2y Deg, 13, Y kiellea, 10 kcDeg, 2, Imitaluel, K1D

2279 ApforDeg =1 "Onf=+Y

228D HMEWT Dsg

2290 REM EBack ftranzformation to zustem coordinates.

2398 FOR I=1 TO Fu

2318 H=09

2328 FOR T=1 T0O Hmode

2338 PL1(Iv=A+Yeccl, Jr*ApfocTD

2348 AR=P1.ID

2358 HEXT J

2368 HMEWT I

2378 Pi1=4

2339 FOR I=1 TO Fu

2398 FoHodo iMplt (J20va=FPisH NodadMplt T2y, Trsplol

2408 Pr=P Hodo o Mplt, T2

2418  HEXT I

2428 MWeontiCntl)=PlrHodeulplt, 4,0

2438 MeontoCnt =P HodoiMplt, J230

2449 MRAT Fl=ZEER
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2458 HEAT Count

2468 REM Fesponze plots,

2478 CALL Plot i WentC#d Wt#(1), Time,Delta,lplt:

2438 CALL PlaotMcentied Mt s T2, Time,Delta,Mplty
2498 LIHFUT "File name to print displacementz on™" ,Fdisp$
258E  LINFUT "File name to print moments on™" Fatrss
&£919  ASZIGH #Z TO Fdr:zps

=528 A2 IGH #2 TO Fatrz=s$

2538 MAT FPRIHT #2:iMWHcnt

2548 MAT FRINT #3;Mcnt

2558 ASSIGCH #2 ToO =

2568 HASSIGH #3 TO #

2578 HNEXT k1

2588 ASSIGH +# TO #1!'To close file Inmital

2598 BEEP

2688 FRINT "Eescution terminated"”

2618  EHDIOFf program
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PROGRAMME STORED IMN FILE : RFPLTS Page 1
LISTED ON & 17,6783

19 REM 43 rd s e R R S AR PSR RN R PRSI E RS SRR LR L PLRRERREEH
20 REM #Forced vibration analysis of thin plates by *
20 REM # , %
40 REM *Reizzner’z method Program name is!"RFPLT3:F" =*
15| REM = *
€0 REM #Version#l:Free vibration analysis. *
78 REM #Yerszion#2iForced vibration responses analysis, #
38 REM #by mode superposition method. #
99 REM #¥ersion#3!Forced vibration response analysis, #
189 REM #by direct integration method. *
118 REM #4555 % ¥ 3 iid s b b et iR A S E SRR AR X FAXXEFHAFHERS

120 OPTIOW ERSE 1

130 FRINTER 12 18

148 FRIMT PRAGE,3SPAC24), "PROGRAM INTRODUCTION #3",LIHNC1)

150 FRIMT “Thin plate vibration by mixed formulation:The"

160 PRINT "program iz based on a mixed variational principle"

170 PRINT "known as Hellinger-Reiszner’s principle.”

188 PRINMNT "An 2 node quadrilateral finite element is used"

198 PRINT "for dizcretisation of the plate.Lateral deflection"

289 FPRINT "is assumed to vary parabolicaly inside the element"

218 PRINT SPRAC18); "H=al+a2R+a3¥+adXY+aSKYA2+abYRA2+a7Y~2+a8¥
A2W S LINHCL)

220 PRINT "Bending and twisting mome2nts alszo vary parabolicaly"

239 FRINT "inzide the elementi®,LINC1)

240 PRIMT SPRC18); "Mx, My, Mxy=bl1+4b2K+b3Y+bdXY+bSKY 2+bEYK 2+b
TY~2+b3X~2",LINCLY

250 FRINT "Changes in input include! "

260 FPRINT "1=-Hodal connections,2=-Material number,"

270 PRINT "3-Element ‘properties and 4-Element thickness.,"

2880 PRIMT "Orthotrpic & isotropic materials may be used."

290 PRINT "In version#3 of this program,an unconditionally"

309 FRINT "stable direct integration method known as "

310 FPRINT "Wilson theta is used in order to calculate time "

328 FPRINT "response history of the plate displacement and

338 PRIMT "moments under external loads.Prsss CONT.

349 PRUSE ;
350 PRINT PAGE,SPAC15),"Data files required bu the programs
"yLINCL)

360 PRINT

i PRINT "Before running the program the following data "

3809 PRINT )

399  PRINT "files zhould be creatsd: ' "

400 FRINT

410 FRINT "1-Data filellnitil:Flto be uszed for recording *

420 FRIWMT

430 FRIHNT “the initial conditions. "

440 PRINT

450 PRINT "2-Data filelEgn:F] to be used in order to print "

460 PRINT _

4709 PRINT "the excitation forces on."

480 EEINT “Create the data files,Latch PRT ALL and press
MT."

4912 PRUSE

S88  DIM J(2,2),Ge(24,24),He(24,8),A$020],Yec(27,27)

510 DIM Eval (27),DC27),%x(65),Yy(E5),0ffd(27),0ffd2¢27,1)

S20 DIM Me2(8,3),Cons(18,86),Th(38),H(96,27),G(26,96),Dens(8>

538 DIM M(27,275,D1¢27),Bm(2,3),K(27,96),0(27,27)

S48 DIM P(96),Mt$(5>[28],Necnt (1000),Angsk(20)>, Nt $¢1>[20]

550 DIM S£(83,5fm(8,8>,HU(3,4>,Apfo(38,1),FOC27)

560 DIM Dratiod20)>,Mcnt(1000),R0¢)

578 INTEGER Hodc(83,4>,Node(16,9),Nosk(20),Fw,Fm,Nnode, Cy

580 INTEGER Helemt,HNmat,Matno,I1,K,J0,2,801,N,0p,Cu,Cx,R, Typ=

S99 INTEGER ny,Nskeu,Ja,Hmode,Nplt,ﬁplt,Neq,NJOb
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&8
616
529
538
548
558
ol
g7

530
590
TE8
718
T2
T30
748
g1
vea
TTa
734
734
589
318
828
3349
240
358
350
870
320

338
209
914

320
339
240
350
980
274g
224
930
19138
lg18
1828
1834
1849
1858
1864
1874
192
13943
1189
1118
1128
1128

1148
1150
1168
1178
1138
113a

1209
1219

REM Gauze points and weights for rnumerical integration.
A=.774595669241

E=0

C=.55555555555

=, 333335555858

Welolv=bel 2o=Wi 2, 2203, 2 =Wcd,11=WcT7, 1 ==R
W o2eli=ked, 2ol S, o=l 5,2 =)0, 20=WL,10=8
W3, Lo=les, 1o=sWeT, 2v=lCE, 20=Mi9, 1=, 29=H

J

Wil,3r=Hil, 4=l 4=l 3 v=ld7, 3= T, 41=C
W, Zo=WC3,40=Wl03,20=H(3,4=Wi3,30=Nid,20=C

Wis, 20=Wi2,40=W3,4)=Wcd,40=WT,30=N(5,42=D

R=B=C=D=9

PRINT

DISP "Twpe 1n name of the 1nput data file?,press COWNT®
IMPUT Data%

ASSIGH #1 TO Data#,C

IF HOT C THEHW G0TO 314

EEEF

DISF “File not found.Truw again"

HWAIT 4800

GOTOD 738

DISP "MWhat is the printing dewice?lss D"

IMPUT P

PRINTER IS5 P

F=g

FRINT ,SPACL2;"Vibration analysiz of than plates”
PRINT . SEROl) Mo rSssdrsmesssnenasaidabanmma me mens "
FRINT

LIHFUT "Tups in rname of the job.Hot mores than 28 charact
srz",A%

BRINT “Job DaANE an s mne we 5 AETAOMN

LINE "INPFLT",23809

CALL Feinpt iXAx(®),Y¥Yyl%),#1,Nnode,Helemt ,Mjab,Cuw,Cx,Cw,Cx
v,Nmat ,Nzkew, Node (£ ,Nadc (#))

FRINT LIML2D

FRIMT "Element selected:”

FRIMT "2-node guadrilateral®

PRINT LIH:3) :

FRIMT "Humber of 2lements....oa."sHelent ,LINCZ)

FRINT "Humbsr of nodes R PP = [ o 1=

Fr=2+Hrode—  Ce+lu+llonh

Fu=Hnode-Cuw

REDIM DenscMmat ), GFm,Fm) ,HOFm,Fus MiFw Ful , C{(Fw,Fud
REDIM MectFuw,Fw?r,Eval (Fws,DiFuwr,0ffd Fu,0frfd2cFuw, 1
REDIM P(Fm>,Angsk Nskew+l),Nosk (Hskew+1),Cons{MNmat ,E>
REDIM ApfolFuw,1},FBCFw),DICFuw),KiFw,Fwl, ThiHmat>

FOR Matno=1 TO Mmat

CALL Cmatr«(Cans(*),The*),Dens(=2,#1,Matno>

MEXT Matra

IF Hzbew=3 THEM GOTO 1119

FOR I=1 TO HMskew

FERD #1iMozko I, Angsk: I

MENT I

REM Loading conditions.

LIMK "FLORD", 2308

CALL Loadap(FAC*#d) ,Wu+) ,Xx(*) ,¥Yui=2,Det 1, BEmu+d,3¢F(*),Mode
(#¥),MHodcc#s,Nnode,Nelemt }

PRINT

PRINT "Responszz analwsi1s data:"

REM Input sicitation as a function of time.

LIMK "EXCITE",2Z200

CALL E:citrniHeg:

FEM Input ynformation concerning the forced vibration of
plate,

LINK "FIMPUT",2289

CALL RspiptilWcnt  #3 Mentisd Deer OFFd(+s, ML) Wt E(&0, T
ime,lelta,Drat107%),AB =+, Thet a, #2,Neq,Nnode,Fuw,J2,Nmode
sHplTt ,Mplt,Hodc (%5
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1229
12308
1248
1250
1260
1270
1220
1299
1389
1318
1320
1330
13248
1350
1360
1378
1380

1339
1489
1419
1428
1438
1440
14509
1480
1470
1480
1938
1508
1318
1520
1530
1549
1559
1568
1570
158.
1598
lege
1e1g
1620
1634
1640
1658
1668

1670

1680
1698
1786
1710
1720
1738
1749
1758
1760
1778
1780
17206
1889

1810
1820
13320
1240

REM Generation of mixed matrices [Gel AMD [Hes]
LIMK "HEPLT",2300

IF Hzskew=8 THEN GOTO 1340

PRINT"

LIMK “TRHFLT",8299

PRIMT "Hodal transformation.”

PRINT

FRINT "Hode number";SPACTY;"M=-¥ angls(DEG)>"
FRINT

FOR I=1 TO HNskew

FRIHT USING “<(3D,22X,MD.4DE)";Nosk(I),Angsk(I)

NEXT 1
FOR Z2=1 TO Helemt
MAT He=2ER

MAT Sfm=2ER

FOR U=1 TO 9

CALL QauxCMCU, 13, HCU, 20, B2 ,Yul=),Det j,Emd*),5¢f (%> y Be,
Ds,2,Hode(%), G)

FOR I=1 TO &

FOR J=I TO 2

Sfml,J>=5fmCI, J)+SF(I)*S{(J)+DutJ*N(U 3)#WNU, 40

NEXKT J

NEXT I

CcALL Hefnrm(He(*) Bm(#)>,Det j,HCU,3), N(U 430

HEXT U

CALL Geformn(Ged#),Sfm(#),Cons(*),NodecZ,22)

CALL Mnsws(He(#),¥x(%),Yy(%),Bm(#*),5¢f(#),Be,Ds,Node(%),2,K)
IF Mszkew=80 THEM GOTO 1558

FOR I=1 TO Hskew

FOR J=1 TO 8 -

IF Mosk(I»{>*Hode(2,J> THEN GOTO 1538

CALL Transf(Ge(#),He(*),Angsk(l),J)

HEXT J

HEXT I <

CALL Ghasemb(G(*),Ga(*),H(#*), He(*) Fm,Z,Nods(*>,Nodc (%))
NEXT 2

FOR I=1 TO Fm i

FOR J=I TO Fm

GCI,J)=G¢J, D

HEXT J

HEXT I

REM Generation of mas:s matrix[MI.

LIMK “"MEL1PLT",2200

FOR Z2=1 TO HMelsmt

MAT Me=Z2ER

CALL Meform(Dens(#*),This), Me(ib Wx(#) , Yud*)  W(*)>,Det j,Sf
C*),Bm(%) che(*),Node(Z 9),5)

CHLL Masemb(ﬁ(*),ﬁe(*),Fw,Z,Node(*),ﬂodc(*))

HEXT 2

FOR I=1 TO Fu

FOR J=1 TO Fuw

MCDy Ja=MCT, ID

HEXT J

HEXT I

RSSIGN #1 TO #!To close the finite glement input data file.
REM Reszpohze analyszis starts here

LINK “FDAMP", 2300

CRLL Eqsulu(H(*) GC#d,K(#),PC#), Fw Fm)

REM Damping mqtrix eualuatiﬂn

IF Nmode=0 THEN GOTO 1318

CALL Dampmat(C(#),Yec(*),Eval(#>,M(*),K(*),Dratfol*),D(#
d,0ffdC=> thdE(*) D1<¢*) Nmade,Fw Type,So])

LIHF “FINITL“ 2388

MAT Yec=M

CALL Egsolul (M%), DIcC#),1,Fuw

REM Initia) acce?eratlon is calculated and printed on file
#u‘.l
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1858

1360
1870
1338
13306
1908
1318
1920
1938
1248

13350
1960
1970
" 19806
1998
2008
2010
2029
2039
2049
2058

2060
2870
2080
2890
2160
2110
2128
2130
21449
2158
2160
2170
2180
2199
2200
2210
2228

CALL Initiald(D(#),Apfol*#),FBC*),K{(%),C{%),0ffd2(=*),0ffd(
¥),M(%>,D1(%>,Delta,1,Fu,Heq, #2)

FOR K1=1 TO HeqllLoop round the number of forces

PRINT "Force sst"jK1:"" :

RSSIGH #1 TO "Initil"

MAT READ #1;D

MAT READ #1;0+fd

FOR I=1 TO Ki

MAT RERD #1;0ffd2

HEKT I

REM Calculation of displacensznt & bending moment at time
5]

Pi=0

FOR J=1 TO Fuw
PC(Nodc(Mplt,J2)>=Pi+H(Nodec(Mplt,J2),T)%D(JI)
Pi=P{(Nodc(Mplt,J2)3)

MEXT J

Went (12=DC(Hodc{lplt, 4

Ment C(1)=P(Hodc(Mplt,J2)) .

REM Calculation of response by Wilson theta method.

LIHK “"WILSHT",2Z68

LINK "Egn",4459

CALL Milsnsol (K> ,Vec(#),CC¢*),Apfol*),FOC*),D(*),0ffd(=
2,0ffdeC*>,DI(*)>,AB(#>,Time,Delta, Theta,K1,PC(*),H(*¥),lcn
t(#d),Mcnt (%), NodcC(#),Mplt Uplt,Fu,Fm,J2)

REM Response plots.,

LINK "FPLOT",2300

CALL PlotcCHent(*) ,Wt$C1)>,Time,Delta,Hpltd

CALL Plotd{Mcht(#)> ,Mt$<(J2),Time,Delta,Mplt)

LINFUT "File name to print displacements on?",Fdisp$
LINFUT "File name to print stresses on?",Fstrs$

ASSIGH #2 TO Fdizp$

RSSIGH #3 TO Fstrs$

MAT PRINT #2;MHcnt

MAT PRINT #3;Mcnt

ASSIGN #2 TO = \
ASSIGHN #3 TO =*

NEXT K1

‘ASSIGH * TO #1!To close file Initil

BEEP
PRINT “Execution terminated"
EMDIOf program
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i8

28
30
40
S0
50
70
=15]
38
100
118
128
130
148
158
160
17a
1ea
198
200
2186
220
230
240

256
268

279
280
290
380
318
320
3z8
340
350
368
378
3380
390
400
410
4206
430
449
4586
460
470
430
490
Se90
518
520
530
S40
S50
S0
S7o
S80
S9@
508
618
620

INPPLT Page 1

- LISTED OH 178,33

SUE Fzinpt(XR(%),%(%),#1, INTEGER H,HN1,Hjb,Cuw,Cx,Cy,Cxy,HNn
at ,Mekw,H(<€),MdcC*)>

OFTIOM ERSE 1

! Nodal connection matrix iz svaluated,

DIM K(32,4)>

REARD #1;Mjb,M1,H,Cw,Cx,Cy,Cxu,Nnat,Nskuw
REDIM KC(MHY,YC(HI,NCH1,9),Ndc(N,4)

Big=Cx

IF Cy>=Big THEN Big=Cy

IF Cxy2>=Big THEN Big=Cxy

IF Cw>=Eig THEM Big=Cw

IF Big<>0 THEM REDIM K<(Big,4)>

FOR I=1 TO H

RERD #1;R8CI>,¥YC(Id

HEKT 1

RERD #1j;M{x)

PRIMT LIMNC4)

PRINT "Hodal point data:",LINC2D

PRINT "Mode";SPA(4);"¥=coord";SPA(S);"Y-coord"
FOR I=1 TO H

PRIMT USING "3D,23X,2<¢MD.4DE,2K>";1,¥CI3,Y<CDD
NEXT 1

FRIMT LIHC4)

PRIHT "Element Datal"jLINC2)

FRIHT "Elemesnt";5PAC18); "Hodal connections";SPACI3); "Mat
erial"

FOR W=1 TO M1

PRINT USING "3D,7X,8(3D,2X),13X,2D"jH,HCU, 1) ,HCU,2),NCU,
"3y NCH, 4> JHCH, S)  NCH, 8D, NCH, PD, HEM, 3, HEW, 3
HEXT W

MAT Hdec=ZER

FOR J=1 TO Cw

READ #1;K<J,1)

MEXT J

FOR J=1 TO Cx

REARD #1;K(J,2)

HEXT J

FOR J=1 TO Cy

READ #13K<J,3)

NEXT J

FOR J=1 TO Cxy

READ #1;K<¢J,4)

NEXT J

H=08

FOR I=1 TO WM

FOR J=1 TO Cx

IF KCJ,2)=1 THEH My

HEXT J

Hde<I,1>=R+1

A=Ndc (I, 1)

My: FOR J=1 TO Cy

IF KCJ,3)=1 THEN Mxy
HEXT J

NdcCT,2)=R+1
A=Nde(I,2)

Mxy: FOR J={ TO Cxy

IF K<J,4>=1I THEH GOTO S20

HEXT J
Hdc(1,3)=R+1
A=Hdc (I, 3)
HEXT I

FOR I=1 TO H
Ndc(I,4)=8
NEXT I

A=9
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)

538 FOR I=1 TO H

540 FOR JT=1 TO Cw

858 [F KiI, 1= THEN GOTO &£39

558 HEST T

57 E Hdcv I, 4 =/+1

oyt A=Hdcr 1,4

534 HE=T 1

Ral] DISP "Hodal conmection matri e 1s2[for peducing (K1 and [MIY
via DISF Mdci=xl,

r2e SUBEND'End of fe=input

738 SUB Cmatr . (Z2(%3, Th(+),Di*),41, INTEGER Mat)

748 FEM Calcoculation of =lastic constants for plate element
Fg=1"! ' when sewveral matsrizls are present,

7eQ OPTIOH BARSE 1

7va DIM HOSH

738 FEAD #1:Th' Maty, Dr/Math

Bl FEAD #1iR =2

=gl IF Mar. 1 THEM GOTO 48

318 FRIMT LIMC3.

328 FRINT "Materi1al and slastic propertiss" LIHCLD

23g PREINT "Mat.no";SPALZY:"Mat . . Dens" s SPACI . "Elemt o thick " SP
AC32 ) "Eux Eyuy any Gaw" ,LIHCL)

340 PRIMT USIMG "2D,4x,5CMD,4DE, A" ;Mat, DMzt ThiMat?», A1)
JyACEY AC2Y,RI3D

esn CO=12sThiMat 23

350 ci1i1=Cca. AL

320 ZiMatr,12=0C11
930 ZiMat,2=0C12
248 2¢Mat ,31=C13

958 2Mat,4r=C22
968 ZiMat, =023
3ra 2fMat,8)=033

350 SUEEMD 'End of Cmatr -,

310
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LISTED OH : 177633
16 SUE Dz LI L2, 000 ) e U Pmi=),5f %, Be,Dz, INTEGER Z.HN
v T
29 OFTIOH EBASE 1
34 DEFAULT 0OH
44 DM Ju2,20
o4 FEM This zub program svaluates the jacobian J,
=] itz determinant U ,and zhape function
s P deriwatiuwes of W oand M,
349 ODni=1 3+ 1=L2)+ 2L 1+L 2D
Lt Dn2=1 -4+ 1-L1 %22+l 1Y

188 Ikhi=1 4+ 1-L2y# 2+L1~-L2

118 Ord==1. 3+ 1+L1ls=cL1-2%L22

128 OrS=1 = L+L2 w0 2L 1+L 20

138 Dre=1-d4# 1+l 1% 2%L2+L 10

148 Dnd=-1l 34+ {1 +L20%(-2%L1+L2>

15@ DnS=1. 4«0l -Lir+r2xL2~L1

158 Dn3=-L1*: 1=L2"

1va Dnig=-1-2%C1-L1~2>

158 Dnil=1.-2%01=-L2~2)

126 Drl2=-L2=7"1+L1>

288 Dml3==L1+14L22

218 Drnid4=-Dnle

228 DniS==-Inll

228 Inle=-La* 1-L1.

240 FEM Shaps functiaons

258 Stula=1.- 3+ 1=-Lide 1=-L20%{=-L1~-L2-1"
258 Sfo2i=14%01+L 101 =L30%cLl=-L2=1
278 SFC2r=1 301 +L 10201 +L2 0% (L1+L2=12
280 Sfedi=1-d4+01-L1221+L20%¢~-L1+L2-12
298 SfLSr=1 2% 01-L1~20%01-L2D

3808 Sfigi=l 2% 1+4L10%C1=L2~2)

318 SPLT=1s2%01=L1~22%(1+L22

329 Sfeg =120 1-L10s(1-L22D

338 ITot,to=lnt=He 2, 100+ DR3+diH 2, 2 0+ DS+ 1o NP2, 330+ DnP XN
1'2’4 1
344 Tl Lo=Irl 1o+ Dn3xiHOZ, S0 +Dnl 1« v NCZ, 50 i+Dnl1 3K (N2, 7

J4DN1S#RINCZ, 800

3358 Ui=JC1,10

368 Ji1,22=Dnl#Y NCZ, 12 0+DNn3#Y (N2, 22 2+DnS*YINCZ, 30 2 +DnT#Y (N
(2,40

37e Jol,2y=J01,20+4DNn3*Y (N2, 32 2+Dnl 1Y NC(Z, 80 4+4DNn1 3#Y(HCZ, 7Y
P+DMIS#EY O NCZ, 300

328 H2=Ji1,2

334 T2 13=Dn2 MO S, 100 +4Dnd xR (MO, 2 0 +DINB+ACHEZ, 32 1+ DN3%K (N

49a JrE =T 2 10+ Dnl 3% HOZ S+ DNl 2N 2,80 i +Dnl14#XiHUZ, T
rr+lntesd  HeZ, 300

414 H3=Ju2, 1

428 T, 2i=lna Y HIZ, 10 0+DndeY cHO S, 20 v+ Dnd«V My 2, 322 +DNS=Y (N
(g B

438 JC2,20=T02,20+Dn10#Y (NCZ,500+Dn12+ViNCZ,820+Dn14%Y (N(2,7
22+Dnlg+Y (NCZ,83)

448 Hg=Jr2, 2%

459 FEM U replaces DETJ

460 U=Ul=ld-12+U3

478 IF To=5 THEM SUEBEXIT

428 Telyl =Je2, 20l

434 Tvi,2v==T01,20. U

1515 Judyta==Tr2, 10U

518 Jla, 2r=01"1

520 ' Determination of pl2,2),derivatives of W zhapes functions,

530 FOR I=1 TO 2

S48 PiCI,13=Dnl*JCl,1+4Dn2%J¢1,2)

5568 FmcI,22=Dn3#JC1, 1)+Dnd*JCI,2)

568 Pmel,32=Dn3%#JCT,1>+Dns>Jcl,2

311
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579 Pm£I,4?=Dn?*IEI,13+Dn3§JﬁI,2
5349 Frntl S =Dn3+Jel,10+0n1@%J0 T,
538 Fmil 8a=Dn11#JCl, 1 +Dn12%Jcl, 20
584 Frt Iy 7 =In134J(I,1+Dn1dsJ¢1,2
618 Frdr To3 1 =0n1S*T¢ 1,1 +Dntd«Tc]l, 2

520 HE!:T 1

E38 IF Jo-3 THEH SUEBENIT

546 ON Jo GOSUE Sidel,51ds2,51de3,S1d:4
659 DEFAULT OFF

660 SUBEXIT

678 Sidel: Be=ATHC(ABS(UL~U23

5306 Dz=SERIUL~2+U2~2>

634 IF U209 THEM Be=PI+Bs

roa IF 2= THEH Be=-Be

718 FETLFH

3
20

28 Side3; Be=ATH' AES 11 -2
730 De=50FrUl 2402 2.
74 Il==1=+U1

758 dE=-1+z

7&a IF U249 THEHW Ee=Pl-Ee

7’7’8 RETUFH

788 3ide2: Ee=ATHCABS(U3~U43)

798 Ds=SERCUZ~Z+U4~2)

380 IF tUJ4,:8) AND ¢lJ3:8) THEMW Be=-Ee
318 FETUFM

=20 ded: BEe=RATHRBS (U3~ U4 1)

838 E=TOFCLI 24020

348 UZ==il3

256 dd=-114

388 IF 7uU4.89" AMD JU3>30 THEM Ee=FI+Es
37a IF rldd4:>=0+ OR (U37=8> THEM E==PI-Ee
850 RETURHN

390 SUBEHDIEnd of Raux.

il
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1

18

=4 5]

e

48

58

&4

v

=]

L)

188
118
128
138
148
158
1668
178
18
1ag
284
218
220
230
244
2598
268
i
239
299
288
318
228
338
248
3359
3608
378
389
398
4ga
419
426
438
440
450

He

Ed:

LISTED OH

SUE E«citnCIHTEGER Meg?

DPTIOHM BRSE 1

DIM I$[168],T$0301]

DISP "E<citation as a function of tims"
FEM File "EqmiF" 13 opsned to 1nput the forces,
THFUT 2 th13s a re-run lsues, 8. no?",Rs
IF HOT Fe THEH GOTO 116

EEEF

IMPUT "Haou many equations?",Hsq

GOTO 458

RSSIGH #2 TO "Egn:F"

T$="35UB EXIT"

J=0

FOR M=2818 TO 2188 STEP 19

I=7+1

[£[1,S1=YALFEMD

I$le, 181="L"&YALF Jog" 1"

LIMFUT "Eguation 1:27[e.g tuwpe F=SIHC1G=T 1", I$0111]
FRINT "E crtation functiond";J3"" j2:1" I1%011]
FPRIMT #2:1%

BEEF

DISF "AnyY mors statenents concerning",I§0111]
IHPUT "1 or 8",HA

IF NOT A THEM 318

N=H+1

I$C1,S5S1=YALFCND

LINFUT "Tupe in the ztatement",I[$[5]
FRINT #2;1%

FRINT SPR' 233, 18[8]

GOTO 218

I$01,SI=WALE H+ 1

[$[=5]1=T%

FRINT #2;1%

INPUT "Any more eguations?1.-8",Mors

IF More THEN G0TO Nextn

Heg=1J

I$01,5]1=YAL$C(2118>

I$(51="5UB END"

FRINT #2;1%

GOTO Ed

“te FRINT

HERT H

FREIMT #2,EHD

ASSIGH #2 TO =

SUBEND

|II
F

313
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LISTED QM : 17-86 33

19 SUB Fzpaptddoesn Moo e o D00 0F 0% (Mt Sce Wt Fis0, Time, Dol
ta,Drr+  AB+3 T, #1, INTEGER Hegq,MHrode,Fu, J2,Hmod, Wp, Mp,N
P L

28 OPTIOM BRSE 1

38 REM Input information regarding Wilson theta

4 ' direct integration method for forced

5@ I wibration analusis of plates.

64 DISP "Integration constants"

78 IHFUT "Hhzat 12 the time duration™,Time

=1 IMFUT "What 12 the time 1ntertuwal ", Delta

E] PRIMNT

1684 FRIMT USIfE "K,1,MD.4DE"; "Fezponze duration”,Time
118 FEINT

129 FPREINT USING "K,2X,MD.4DE";“Time 1ncremental”,Delta
138 REDIM McoIMTCTime -Deltad+t Mo INT(Time Deltar+ld
148 IHPUT "Zelect thetalusually 1,43, 7

158 ABCL =g/ T#Delta)~2

160 ABLZ2 =3 CT+Deltad

17a ABC3 =202

138 ABC4s=T+Delt a2

138 AOcS =Aac1y T

2989 AB e i==HEL 35T

219 AB T v=1-3T

229 ABCE =Delta-2

230 AR 32=Delta~2-5

z249 FEM Initial displacement-velocity 1nput

258 DISP "In1t1al conditions"

Z68 INPUT "If initial conds are zero press 8 othsruise 1Y, 1In
2ra IF In<>3d THEMN GOTO 3189

288 MAT D=2ER

290 MAT 0Of=ZEF

380 COTO 418

319 FOFR I=1 TO Hrode

324 IF HMdcwI,40=0 THEN SOTO 359

338 DISF "Imytaral drzpl.of nods"iIg"™"

248 IMPUT DiMdooI, 40

358 MEXT I

3608 FOR I=1 TO HNnode

370 IF Ndc(I,4>=8 THEN GOTD 489

380 DISP "Initial veloc.of node";I;"?"

398 INFUT Of<HdeCI, 422

469 NEXT 1

410 ASSIGH #1 TO "Initil:ifF"

4208 MAT FRIHT #1;0D

439 MAT FRINT #1;0f

4448 DISP "Imformation regarding damping”

454 IMFUT "Iz the damping si1gnificant?1 8", Damnp
4e8 IF HOT Damp THEH S0TO S38

4748 IMFUT "Mumber of modes with damping?",Hmod
438 REDIM Dr{Mmod)

430 FOR I=1 TO HNmod

508 DIZP "Damping ratio 1n mode";I;"?"

518 IMFUT Dr<I>

228 ME=®T I

338 EEEF

S4i DIZF "Displacement ~moment time kistory plat
554 IHPUT "MHode rnumbser to plot the dizplacemsnt s for?, lp
S5a INFUT "Hode number to plot momsnt for ", Mp
S79 IMPUT "Code®C1l for M<=2 for Mu-3 for Moywl" T2
528 -Me3O1V="BEMDIMG MOMEMT-X"

590 MLFEC2HI="BENDING MOMENT-Y"

689 MLEi3)="TNISTING MOMENT=-XY"

510 Wt$C(1 ) ="DEFLECTION-2"

620 SUBEMD

314




PROGRAMME =TCOFED IM FILE : LOAD Fage 1

LISTED OM @ Teme 3l

19 SUE LoadaprRrsd Wo#d), @oxd) (%), Det j,Bme+2>,3¢¢%%, INTEGER
NC*),Hdcu* ' Hrode, Helemt 2

28 OPTIOM BRSE 1

309 DIM PCB),Rec2y,E1029)

44 INTEGER E1

549 FEM Equruwzalent modzl forces dus to concentrated or

5 drz+*ributed loading conditians are determined

T4 DISF "Lazad ynformation®

54 DIZF "The followimg 1oad cazes can be accomodated:™

3 ODISFP "1 Conmcentrated nodal forces conszisting of

188 DIzp " loads acting 1n 2 directn.”

118 DISP "2) Constantly distributed load acting normal to pl
-atve-"

129 DISP "2y Yarwving distributed load acting normal to plate,”

138 DISP "Such loading iz conwerted inta 2gquivalent nodal fo
r':EE-“

142 [HPLIT "Leozad tvpe?l for conc.d for constant disterd. 3

for carying distrd", Tups
154 IF Tope=1 THEH GOSUE Conc
168 IF Tupe=2 THEH GOSUE Cda
178 IF Trope=3 THEM GOSUE Yd
1208 EEEP
134 DISP "Press 1 1f more loading and 9 to stop loading”
209 INPUT M
219 IF NOT M THEN FPrintout
228 GOTO 1449
238 Conc: IMPUT "MHumber of nodes with concentrated loads",HM
240 FOR I=1 TO H
=258 IMFUT "Hade number®",S1,"VYalue of load?™",%al
258 IF Hdcs1,40¢:8 THEM GOTO 3894
279 BEEF
228 DISF "Made 2 mistaks.Tru agzin”
298 GOTD 254
288 RoMdeo oS, 40 ' =RONdc (ST, 400+ al
310 HEWT I
3220 RETURH
338 Cdis: IMFUT "Mumber of elements with loading",M=]
349 IF Mel<=Helemtr THEN G0OTO 378

W

358 BEEP

350 GOTO 230

37 FEDIM El Hel)

329 [HFUT “"Load per unit area?™,F

3378 FOR I=1 TaO 3

480 Fr.lv=p

418 HEKT I

420 IF Hel=Melsmt THEN 458

430 DISP "Input =lsments under prezsurs ong by one.Each time
press CONT!

440 FOR Z2=1 TO Hel

458 INPUT "Element number?",E1022

450 HELT 2

478 GOTO Sta

430 FOR Z2=1 TO Hzlemt

433 E1¢Z=C

508  MEXT 2

518 FOR Z=1

528 E1=E1.2>

538 G05UB Calc

548 MRT P==ZIER

350 MEXT 2

560 RETURN

378 Vdizl IMPUT "Humber of elementz with loading" . Hel

s34 FOR Z=1 TQ Hel

570 INFUT "Elzment rnuwmber ?",E1

509 FOR I=1 TO =

T Hel
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&1d
e
538
648
650
568
678
538
&3

Tag
7vig
Tad
gl
748
F=15]
7608
770
789
798
s8e
218
320
228
249
859
368
=g
388
398
988
218
928
238
2948

DIZF "Lozd intenzsity at station";I;"=»"
IHPUT P+ 1
HE®T I
GOSUB Calc
MAT Re=ZER
HEXT 2
RETURN
Calc: FOR U=1 TO 9
CALL Qauws WOl 10, Weld, 20,8+, YU# , Det j, Emr+" 5%, Be,Ds
yET M1, 5N
FOR I=1 TO 2
FORP JI=1 TO =2
Pt Ti=FRer I+
MEWT J
HEXT I
HEXT U
FOR I=1 T0O 3
S1=NdctHLET , 12,40
IF S1=8 THEHM GOTO 809§
RCS1I=R(S1)+ReC )
HE®T I
RETUFH
Fromtout: FRINT
FPRIMT "Equiwalenmt modal forcsesz"
FRIMT
FPRINT "Hode number";SPRACT. "Applisd loads"
FOR I=1 TO Hnode
IF Hdc<I,40=0 THEM GOTOD =88
PRIMT USING "3D,15x,MD.4DE"; I ,RCNdc I, 4200
GOTO 214
PRINT USING "3D,15X,MD.4DE";I,0
NEXT I
SUBEXIT
FRETURM
SUEBEHND

SFeLas3FvTa#P T oxDat jelul, 3oeWU, 40

316
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1a
28
et
44
58
&3

LISTED ON : 17-86-83

SUE HetormiHed+d  Bmv+),Det j, T1,T22

U [He]l matry conztruction,

OFTIOH BRZE 1

FoOF I=1 7O =

FOR I=1 TO 4

Hevzxl-2,2+T-1 1=Hei3+1~-2,2+7-1 +Bm(1, I *Bmv1,2%J-12+Det j
#T1+T2

He(3+I-2, 241 '=He(3%I-2,2%T2+BmC1,I2*Bm 1,2 T0%Det j*T1*T2
He(2+I-1,24J-1"=He(3+I-1,2%#J-1)+Bm" 2, I 1 #Bm(2,2%J-11%Det j
«T1=T2
He(Z+£I-1,2%J)=He032[-1,2%J2+Bn 2, 17#Bn . 2,24J0%Det j*T1%T2
He@2¢l 2% T-19=He03+], 21"+ Bm' 2,1 *%Bmil,2%J-12+Bmd 1,1
#Bm' 2,2*xJ-121<Det j£T1*T2

HerZ+1 ,2«J =Hei 3¢, 24T+ Bn "2, [ 14Bm 1, 2%T2+Bm¢1,I2+Bm(2,
2eJirelet ) 1+T1xT2

HELT T

HEXT I

SUBEHMD!End of Heform,

SUB GeformiGed®),Al*),C(+), INTEGER Matno.

MAT Ge=ZER

FOR I=1 TO 8

FOR 5=1 TD 8

A=ACI,32

IF I=35 THEH E0TO 2989

Genld+l-2,3%5-2 =A<Cr/Matno, 1
Geid+1-2, 3«31 =A% Matnrno, 2

GeEnZ+I-1, 3x3-2r=A+CiMatno, 2
Get3+I~-1,2+«5=-1=A+C(Matno, 4

Ge.dx],3+5=-2)=A<C(Matno, 3>

Get3+],3%3-12=AR+*C(Matno, 5>

GecC3*I,3%5)=A*C{Matnc,8

GOTO 238

Ge(241-2,3%#5-2)=A*C(Matno, 1>
Geili+l-2,3%5-12=A#C(Matno, 2’

Gey3+[=1, 3#5-12=A*C(Matno, 4’

Gel3+1, 3+ =A+*CCMatno, 52

HEXT 35

HEXT 1

FOR I=1 To 24

FOR I=1 TO 24

GedJ,Ii=Ge1,J2

HEXT J

MEXT 1

SUEBEMD!End of Geform.

SUEB MnswsiHe(*) (%), Y(*) ,Bme*d,5f 1+ Be,Ds, INTECER N(x%)
ol

OPTION EBRZE 1

DI Cr 24,12, D01,80,Zn' 2,32

A=.57735351289

FOF I=1 Tn
FOR J=2 T0
Znil, Jo==1
NEXT I

FOR J=3 TO
2ncl, Jo=1
NERT J
MEXT 1
Znil,1=2nr |
22,1 1=2nr 2
FOP.- t=1 T 4
Foar I=1 Ta 2
CHLL Qau<fZnr I, 24Kk=-17,ZnC],2+K2, =2, Y +3,Detj,Emted,5f¢
#3,Be, Dz, 2,MHi%0 K.

Be=Be*3I5B., (24FI

DEG

=d s

STEP 5

STEP 3

o

,4Y=2n¢1,53=2n1 1,31=-R
y 41220 2,5v=2n2,3=A

317



LISTIWG OF FILE : MINMAT FPage

]

500 L1=-COS(Ez2+3IN(Be
618 L2=CO05C(Ez)*3[H(Be>

6208 L3=CO0ZrBe~2-SIH{Be)"2
538 L4==5IH Bz

648 L5=COS¢Be-

550 FOR ==1 TO 2

560  Cu3+3i-2,1 ' =L1%SFr3)
57 0 3¢5-1,1 =L3*SFr35,
530 [ 345,1 ' =LI+3fu5.

530  MEXT 3
708 FOR 3=1 TO &

718  Di1,5=L4%Bm{1,3)+LS+Bmi2, 5.
720  HNEXT 3

738  IF (K=1) OR (K=3) THEN Ds=-Ds
748  MAT D=(D=z)%D

758  FOR 3S=1 To 24

750 FOR I=1 TO 3

7PO  HeiS,Ji=He 3, J0+Cr3,134Df1, I

vsa ME!T T
1) HEXT S
3689 ME!T I
218 NEAT K

228 SUEBEHDI'End of Mnzws

339 SUB Ghazemb/Ki®i,Kel{+) H(*) ,Hei*), INTEGER Fm,Z, NC(*),Hdci=%>)
549 | Assembly of coefficient matrices [G] anmdlHI].

358 FOR I=1 TO 3

2808 FOR J=1 TO &

378 FOR %=2 T3 © STEP =1

284 Sl=Hdc My 2, 10,102

398 Sa=MdocHe 2, I, 2
ET5]s] $S=Hdc vHL 2, 1D
918 IF “=2 THEH S2=MdciH.Z,J0,1.

920 IF %=1 THEH S2=MdciH. I, J0,2)

930 IF Y=8 THEH 3S2=Mdc(NiZ,J>,3)

943 IF S2=8 THEHMW L1

950 IF ¢S1=8» DR ¢51<S2> THEN L2

Q968 K(S1,52)=K(S1,32)+Ke(3€]-2,3%]J=-V2
3978 L2: IF 33=0 THEN GOTO L3

936 IF 3432 THEHM L3

994 KO32,32)»=KuS3,52+Ke(3%]-1,3%J-%2

= 4

]
a4

1888 L3: IF 55=@ THEN L1

191@ [F 29:32 THEM L1

1928 k55,520 =k035, 5204k 381, 3 T4
T

1833 L1: HE-
1840 NE=T J

1858 HNELT I

1868 FOR J=1 TO 3! [H]1 Assembly

1978 S4=Ndc(NiZ,J2,42

18890 IF S4=0 THEM Hex)

1898 FOR I=1 TO 3

1188 FOR Y=a TO 2

1118 Si=sHdoyHL 2, T, W+l

1128 IF 51=8 THEM He=ww

1138 HiZl,S4 =H 31,330 +He (Sl -2+%, O
1148 Me..wiHEST W

1158 HMENT I

1188 Mex)1iHEXT J

1178 SUBEMD'End ofGhasemb

118



FROGRAMME STOPED IM FILE : TRHPLT Page

1@

29

38

48

58

58

e

38

28

184
118
129
1389
148
158
158
179
180
138
294
21
228
228
249
258
268
278
288
290
388
318
329
334
348
358
360
370
380
398
480
410
428
439
449
438
468
47a
439
430
509
518
528
330
548
5358
Sea
57
338
590
5848
619
628
538
848
5658

LISTED OH : 17 '5-83

SUE TransfrGed<  Hei <3, Bz, WY
DFTION EBARSE 1

DIM E.3,3.

GOSUB Cosd

FOR I=1 TO 24

FOR J=1 TO 24
GetJ,[r=GecI, I

HEAT J

HELT I

GOTO 294

Cosd: ! Tranzformation of coordinates,

LEG

Evli,1:=Br2,2)=3IN(Be. "2
Bil,2)=BiLZ,1=C05'Be~2
Bll,3)=-2%5IM(B22*C05¢Be)
Bi2,3>=-Bi1, 3
Bu3,13=BC1,3)-2
Bi3,20=-F.3,1>
Be3,3)=C05CE2)~2-5IH(Bg "2
MAT E=IHY B

FOR T=1 TO W-1 STEF 1

CALL Matmult 2T, W, Ge %1, Bu*
HEWT T

FOR “=W+1 TO 3 STEF 1

CALL Matmultl(W,V,Gersd Bi#))
MEXT W

CALL Matmultil,W,Get*®),BC*)
CALL Matmult3(W,1,HeC#£),B(%0)
RETURM

SUBEMD

SUB Matmult 1 T,%,Ge %) ,Bi%10
OFTIOW BRZE 1

DIM Cr3, 37

FREM L[EIt+[C]

Cll,10=Ge. 3xT=-2, 3+xV-20
Cil,20=Ge(3+T-2,2%V=1)
Cil,3)=0e(23%T-2, 34
Ce2,10=G2(3%T-1,3%¥-2)
C(2,2>=Gel3#T-1,3%¥Y-1)
CC2,3)=Gei3%T=1,3%V)
CC3,10=0e03+T,2xY=2D
Cr3,21=0er3+T,3+V-1)

CO3, 20=Ge 3T, 3+4D

FOFR I=1 ToO 3

FOR T=1 TO 3

A=

FOR R=1 TO 3 ¢
Gev3«T-3+1,3¢¢-3+J1=R+BR, I '#CR, J.
A=Ge ¢ 2#T-3+1,3%%-3+J>

NEXT R

HEXT J

HE®WT 1

SUBEHMD!END DF Matmultl

SUB Matmult 20T, Y, Gecss, Bixin
OPTIOH BRSE 1

DIM Cv2,20

FEM CCI1+CE]
Cvlyl0=Ge: 3+T=-2, 3%4=-2"
Cll,20=Gei3%T-2,3%Y=1
Cil,32=Ge(3%T-2, 3%V)
CC2,12=Gei3%#T~-1,3%Vy=-2)
C(2,21=G2(3%T=1, 3<V=1)
Ce2,30=Ge/3%T-1,3%\"
Ci3,11=Ger34T,34¥-2)
Ci3,2'=Ger23+T,3+Y=-1"

319
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568
578
€88
598
Tag
via
728
738
748
750
ra-15]
77e
780
738
308
518
829
330
340
8350
360
878
838
890
288
918
920
938
948
958
260
are
929
994
le0a
1619
1828
1838
19489
19306
18968
1a7a
18880
1998
1199
1110
11208
1138
11489
1154
1164
1178
1158
1199
1260
1219
1229
1228
1244
1298

COZ,32=0e 32T, 3V
FOR I=1 TO
Fop I=1 T
A=0

FOR R=1 TO 3

Ly £

Gei2*#T-3+1, 3+Y=-2+T=R+C' [ ,R"+B(R, IO

A=Get 3%T=3+1,3%Y=3+I"
HEXT R

HEXT J

MEXT 1

SUBEHMD!End of Matmults
SUB Matmult T, W, Gel(#},Brx3)
OFTIOW ERSE 1

DIM C 3,30

FEM [BI1t«[C1%[B1]
Col,10=0Ge: 3+T-2,3V=-2"
Cul,20=Ger 3+T-2,3€¢Y-1
Cil,3)=Ge"3+T=-2, 3+
Cl2,80=Ge0 3%T-1,3%%-1)
CC2,32=Ge1.3%¥T-1,3=Y
CC3,32=Ge03%T,3%)

FOrR I=1 TO 3

FOR J=1 TO 3
CeJ,Ta=Crl, J2

HE=T I

HEUT I

FOR #=1 TO 32
FOR =2=1 TO 3
A=0

FOR I=1 TO 3
FOR J=1 TD 3

Ge(3%T-3+R, 3#Y-3+5)=R+BC(I,RY<C¢ I, JY*B(J,5)

A=Ge (3%#T-3+R,3%Y-3+5)
NE®T J
NEXT I

HEXT 3

HE®T F

SUBEMDIEnd of Matmult
SUB Matmult 30T, ,Hev =, Br® .
OPTIOHW BASE 1

DIM Ce3,80,%u3n

REM [Blt#[Hs1l

Vilar=2

Vi2r=1

Y(3v=0

FOR I=1 TO 2

FOR J=1 T0 8
Col,Ji=He 2T=%(In,J3

HEXT T

MEST 1

FOR I=1 TO 3
FOR J=1 TO 3
A=

FOR R=1 TO 3
He(2#T-3+1,J)=R+BrR, 1 %C.R, I
A=He/3#T-3+1, 1>

NEXT R

HEXT J

ME®T 1

SUBEMD TEnd of Matmult 3

320
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18

24
24
44
S

5
58
£l
189
119
29
131
148
150
1ed
17a
138
138
200
218
229
239
248
258
264
g
220
239
2848

LISTED ON 17

SUE MeforniDid, This ' Med®) W2, Yot W< Det j,5fC%2,Bm
t#3, INTEGER H<{%),Matno,Z2

REM Determination of consiztant mass matric for
! plate =lement,

FOF W=1 T 4

CALL Dau-r ol L WMo, 2y b= ¥i%y Tet 3, Bar 3 ,Sf7+2,Be, D=
.:,H"‘-".SJ

FoOrR I=1 TO =

FOFr JI=1 ToO 3

Medl, JosMe i I, I +S5¢ 0 To+S3F 0 Tv+Dat J#W iU, 30+lcld, 37
HE=®T J

HEXT I

NEXT U

MAT Me=(DiMatnot*ThiMatnod )+Me

FOrR I=1 ToO 3

FOR I=I TO 3

MevJ, T =MerI,7J0

HEAT I

MEXT 1

SUBEMDIEnd of Meform.

SUB MasembeMu+d ,Mei%), INTEGER Fuw,Z,H{+),HdcC®)2
I Mazs matrix aszemblu

FOR I=1 TD 8

S1=HdciNCZ, 10,4

IF S1=8 THEHN GOQTO 234

FOR I=1 TO 3

IF +22=0. 0OR 2% THEN GOTO 258
M 51,52 =M(31,32 +Mer I, J

MEHT I

NEXT 1

SUBEMD !'End of Masenmb.

321



PROGRAMME STORED IM FILE : FDAMP ) Page 1
LISTED 0N : 17,85/33

190 SUB Dampmat (CC#),Vec(#),Eval ¢+, MC*) ,K(*), 2etal*),D(*),0
ffd(#),0ffd2¢*),D1¢*), INTEGER P,H,Type,Sol)

20 REM Evaluation of a full damping matrix with

38 ! known damping ratios.

40 DPTION BRSE 1

S50 DIM Thetad2@)

€0 REDIM ThetadHN) :

7o PRINT "Evaluation of normal modes of vibration *
20 S L e "
90 M1=1

188 Ma2=pP

116 S01=2

120 LIHK "TRAHW3:F",9200

139 CALL Trans(M(#),KC#),Vec(*),EvalC*),Zeta(*),M1,M2,Lb,Ub,
DC#),0ffdC*),0ffd2¢*>,D1¢*)>, Type,N,Sol,P)>

140 LIMNK "EIGEN:F",3200

159 CALL EigeniM(#),K(*),Yec(#),Eval(*),Zeta(*),M1,M2,Lb,Ub,
DC*),0fFd(*),0ffd2¢*),D1¢(%*)>, Type,N,S01,F>

160 FOR R=1 TO P

178 Mr=0

130 ' Finds Masz:z of mode r
190 Er=2#Zet a(R)*SQRCEvVal(R))
2080 Vec=8

210 MAT Theta=2ER

220 FOR I=1 TO H

238 FOR J=1 TO N

240 ThetaCId=M(I,J)*VecC(J,R)+Thetadl)
250 MEXT J

260 MEXT I

278 FOR I=1 TO M

230 FOR J=I TO H

298 CCI,I)=Er*Theta(Id#Theta(J)+C<CI,J)
300 CCI, 12)=CCI, )

310 HEXT J

320 NEXT I

330 NEXT R

340 MAT Offd=ZER

350 MAT Offd2=2ER

360 MAT D=2ER

3706 MART VYec=Z2ER

380 MAT D1=2ER

390 SUEBEND

400 SUE EQsoluCHC(#),RAC%),K(%),P(%), INTEGER R,H)
410 OPTION BRSE 1

420 DIM BCS9,10)

420 REDIM BCH,R)

440 MAT B=H

450 Di=1

460 D2=0

470 FOR I=f TO N

430 FOR J=1 TO N !
490 K=ACI, )

500 FOR K=I-1 TO { STEP -1

510 K=H=ACT,K)*RCI, K>

520 NEXT K

530 IF J<>1 THEH &30

540 D1=D1+¥

550 IF ®<>0 THEN L1

560 D2=0

570 GOTO Fail

$80 L1: IF ABS(D1><! THEM L2

590 Di=D1#.0625

600 D2=D2+4

610 GOTO L1 ‘

620 L2: IF ABS(D1>»=.0625 THEM 668

322
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LIZTING OF FILE : FDAMF Fage 2

638  Di=Di+~1s

648  D2=Di-4

558 GOTO L2

§69  IF .8 THEM GOTO Farl
678  Polui=1 S0P

530 IF Jo:1 THEM AcT, [)=R<Pu D)
539 MEHT J

TEE  HEXT I

718 FOR J=1 TO R

720 REM SOLUTIOM OF LY=B
730 FOR I=1 TO N

749  I=BCI,J .

TS@  FOF b=I-1 TO 1 STEP -1
7E@  I=I-ACIkiwBoh, T

TT HEXT b

736  BOI,Ji=IsPill

799 HEAT I

08 REM SOLUTION OF uxsy
218  FOR I=N TO 1 STEP -t
82¢  2=BcI, D)

330 FOR K=I+1 TO N

348  2=2-ACK,I1)%B¢K, )

350  NEXT K

364Q BiIl, Ta=Z«PCID
a7 HEMT I

228 HE..T J

534 FOR I=1 TO R
308 FOR J=1 T0O R
2108 A=8

320 FOR 5=1 TO M

934 KeI, Jo=A+HC(S, I)#B(5,JT>

940 A=K.1, T2

998 NEAXT %

968 HEXT J

378 HE®T I

2938 MAT H=E

330 GOTO 1924

18909 Fa11: DISF "FPPOGRAM FAILED IH EQ=OLY SUBPROGRAM. COMPUTATION
STOFED"

1819  STOP

1828 SUEBEHD
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LISTED OMW 176,33
19 SUE EqQzolul(AC%) P(%), INTEGER R,H)
20 OPTION BRSE 1
3B MAT P=ZER
48 FEM  CRI=CLI<CU] Triangulsrization of [A]
=15 hi=1
=35 2=a
7 FOF I=1 T H
38 FOF T=1 TO H
L) A=HOL, T3

180 FOR K=I-1 TO 1 STEP -1

118 AER-ACT K2R, KD

128 HMEXT K

1328 IF J<*1I THEHN 289

149 D1=D1#¥

158 IF ¥ 8 THEH L1

1548 D2=a

1va GOTO Fard

188 L1:2 IF ARES+ D12 .1 THEM L2

138 Di=D1%,0525

288 D2=D2+4

218 COTO Lt

226 L2: IF AB5:D1)>=.H8625 THEN 258

239 D1=D1+#16

248 D2=nz-4

259 GOTO L2

268 IF <78 THEH GOTO Fail

278 Feli=1.SaF.

2a8 IF T° .1 THEH Ac¢J,1i=<+FPiI

299 HE=T J

388 MEXT I

319 GOTO 348

328 Fail: DISP "PROGREAM FAILED IH EQSOLY SUBFROGRAM. COMPUTATION
STOFED"

338 STOP

340 SUBEND

350 SUE Eqzoluw2cBi*) ,AC«) ,P(*), IMTEGER R,H

368 OPTION EBRZE 1

3vae FOR I=1 TO R

330 FEM SOLUTIOW OF LY=F

398 FOR I=1 TO H

499 Z=E0IL T

418 FOR k=I-1 TO 1 STEP -1

128 Z=Z-RACI,K +*BCK,J>

436 NEXT K

440 BCI, Ji=Z%#Pu ]

450 NEXT I

469 FEM Solution of UxXsYy

474 FOR I=H T2 1 STEP -1

438 Z=Brl, I

430 FOR RK=1I+1 TO M

508 S=I-AK T <BOK, T

518 HET |

S28 Bvl,Jo=2%pPc]o

538 NEXT 1

5480 MEXT J

550 SIUBEMD

J68 SUB Init1a1CDC#)  Apfoc®) , FAo+a, Krs=), Cos),0ffd2Cs),0ffd*

TyMi*), Pied Delta, INTEGER R,MN,H=q, #1)

S7e OPTION BR:=E 1

380 ' Thizs zubprogram evaluyates the accelsration wector

394 Uofor different foarcing functions.

e80 FEAD #1,1

618 MAT FERD #1:;D

828 MAT FEARD #1;0++d

538 LIMK "Egn",?288,5408

324
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648
538
660
670
680
&350
voe
710
728
730
740
750
760
77a
730
796
808
81e
820
830

FOR Kil=1 TO Hegq
T=08

"CALL Egnd(T,F,K1)>

FOR I=1 TO N
ApfoCl,1Y=F*FOCI)
NEXT I

FOR I=1 TO M

FOR J=1 TO N

Page

DFPdZ(I,1)=-K(i,J)*D(J)-C(I,J)*DF?d(J)+HpF0(I,l)

HEKT J

Apfodl,1>=0ffd2¢I,1)

NEXT I

CALL EqQsolu2{0ffd2¢#),MC*),PC#),1,N)

MAT PRINT #1;0ffd2
NEXT K1

ASSIGN % TO #1
SUBEMD

SUE Egqn<(T,F,K1)>
OFPTION EASE 1

ON Kt GOTO L1,L2,L3,L4,LS

325
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19

20

c1s)

40

=15

69

70

389

90

108
119
128
130
140
159
160
179
180
190
200
219
229
230
240
250
260
270
230
299
360
31e
328

338
340
350
360
378
350
390
408
410
428
- 438
4408
4350
450
470
4880
499
Seo
518
520
530
540
550

LISTED OH 17,6733

SUE Hilsnsol(KC#) ,M(#),CC%),Apfol*),FOC%),D¢*>,D1(*>,Da(
#),D1C#),ABC#3, Tm, De, Th, K1 ,P(#),H(%),Hent (#),Mcnt (%), INT
EGER Hdc<(+)>,Mp,Hp,N,R,J2)

! Direct numerical integration by Wilson thesta.
OPTIOH BRSE 1

REM Effective K,M,C matrices

! [K1I=[K]+RO*[MI+A1=[C]

FOR I=1 TO N

FOR J=I TO H

KCI, J)=K<CI, J)+ABCL1I*MCTI, J)+ROC2)#CCI, >

K(J, I)=K<(I, D

HEXT J

MEXT 1

REM Matrix K the effective stiffnesz matrix is
I triangularized.

CALL Eqsoluil(K(*)>,D1¢%)>,R, N>

REM Loop round the integration points

Chnt=1

T=06 :

Npts=IHNT{TmsDel+1

FOR Count=1 TO Npts-1i

CALL Egn<(T,F,K1?

Cnt=Cnt+1

FOR I=1 TO H

Apfodll, 1X=F*FBCI)

MEKT I

T=T+De

CALL Egn(T,F,K1>

FOR I=1 TO N
Apfodl,1)=C1=Th)#Apfoll,1)+Th*F*Fa(I)

NEXT I

FOR I=1 TO H

FOR J=1 TO H .

ApPfoCI, 1>=CABCID*MCI, J)+ARBC2Y#CCI, I I*DCII+CABCII*#MCI, TD
+24CC1, Jo0#D1CI D+ (2%MCI, J)+ADBC4I*CCI,T23#D2¢J, 1 >+RApfo(l,
1>

HEKXKT J

NEXT 1

CALL Eqzolv2(Apfol#),K(%),D1(*),1,N)

FOR I=1 TO H

Apfoll, 1)=R0(S)#(Apfoll,1)=DCI>)+ABCEI*D1CI>+AB(7I*D2(1, 1>
MEXT I . '

FOR I=1 TO N
DCID=DCId+De#D1CID+ROCII*(Apfoll, 12+2%#D2C(T, 1))
HEXT 1

FOR I=1 TQ H°
DICI>=D1CI>+RBCEI*ApfoCl,1)+D2¢I, 1))

HEXT I

MAT D2=Apfo

FPi=g

! Calculation of bending moment for time T.

FOR J=1 TO H
P(Ndc(ﬁp,J2))=Pi+H<Hdc<ﬂp,J2>,J)*D<J)
Pi=P{(Ndc(Mp,J2>)>

HEXT J

Ncnt(Cnt)=D(Ndc(Np,4))

Ncnt(tnt)=P(Hdc(Mp,J2))

HEXT Count

SUEEHND
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PROGRAMME STORED IN FILE
N 17,6-83

LISTED O

18 SUE Duhammel(T,Nf,Dnf,22,Delta,Fd,Abar,Bbar,Abarl,Bbarl,
Ys¥Ynlt,Dyunlt, InC#>,K1)
208 OPTIOH BRSE 1

1) REM Evaluates Duhammsl integral by trapezoidal_rule.
40 IF (T<>B> AND (T<>Deltay THEN GOTO 129

=15 IF T<>0 THEH GOTO 9@

68 Abar=8

78 Abarl=Fa

88 GOTO 148

-1%) ARbar=(Abar+Abar1)*EXP(-2e#Nf*Del1ta)+FO*CO0S(Dnf*Deltad

16a Abar1=F@*CO0SC(Dnf*Delta)

110 GOTO 140 )

128a Abar=(Abar+RAbar 1 )*EXP(-2c*Nf*Deltal)+FO#COS{DINnFf*T

128 - Abarl1=Fa8*COS<Dnf=*=T)

140 IF (T<>8> AND (T<>Delta) THEN GOTO 210

158 IF T<>8 THEN GOTOQ 150

168 Bbar=8

170 GOTO 238

180 Ebar=(Bbar+Bbarl )#EXP(=Ze*Hf*Delta)+FO*SIN(Dnf«Deltad

196 Bbarl=FO0#SIH{Dnf+Delta)

288 GOTO 238

210 Bbar=(Bbar+Bbarl )*EXP(-2e*Nf*#Delta)+FO*SINCINf+T)

220 Ebarl=Fo0*SINCDnf*T>

238 ¥Y2Deltas2*(ARbar*SIN(DNF*T)-Ebar*C0S¢Dnf*T))

240 IF IndK1>=a THEM SUEBEXIT

2508 YB=(Dyn1t+?nlt*ZE*HF)/DHF*SIH(DnF*T>+YnIt*CDS(DnP*T)

260 YOSYO*EXF(=2e#%Nf*T)

2708 Y=YO0+Y

286 SUBEND

298 SUB Modal(Vec(#),Eval (%), MC(*),KC#),Zetal#),D(*),0ffd(*),
Offd2¢*>,D1¢*>, INTEGER P,N, Type,Sol,Ndn) '

300 REM Evaluation of szystem modal characteristics.
31 OPTION BRSE 1

320 DIM Ar<16,16),Crc16,16)
330 REDIM Ar(H,MNY;Cr(N,N)

340 PRINT Mmoo e e e e e "
356  Sol=1
360 Mi=1
376 M2=P

380 LINK "TRAMSIF",15570

390 CARLL Trans(MC#),K(%),Vec(#),Eval (#),Zeta(#*),M1,M2,Lb,Ub,
DC#>,0ffdC*>,0ffd2¢*>,D1¢*>,Ar %), Cri*), Type,N,So01, Hdm)

4008 LINK "EIGEN:F",15570

418 CALL EigendM(#),K(#),Vec(#),Eval(#),2etal%),M1,M2,Lb,Ub,
DC#2,0ffdC*),0ffd2¢#)>, D1 (%), Ar(*),Cr(*>, Type,N,Sol,Ndm>

428 MAT Offd=ZER '

4308 MAT Offd2=2ZER

4409 MAT D=ZER

458 MAT DI1=ZER

468 SUBEND

327
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18

a4
44

58
54

73
=15}
28
188
118
128
138
140

160
170
186
190
299
210
220
230
248
259
260
270
280
290
309
318
320
339
340
359
360
330
396
486
418
420
439
440
453
450
470
424
430
560
519
520
539
549
550
560
579
S39
CET
5849
510
629

LISTED OHN : 17683

SUB Plot ¢Drwis),C$,Time,Delta, INTEGER Md1l)
OFTION BASE 1

FEM Thiz zub program plots the graphs for
I dizplacement s and s3tresses against time.

BEEF

BISP "Chooszs the plotter.S for tnocremental, 12 for CR

TV for Q227A"

INFUT Fl1tr

' Finds Max & Min of Druwdi+:
Max=Min=Drw.l

FOR I=2 TO Time-Delta

IF Drwiclx*Max THEN Max=Drwd(l)
IF Drwidls<Min THEN Min=Drwil’
HEST 1

IF AEZ ' Ma. s “AES Mind THEM PRINT USING "K,4:3,MD.4DE"; "Max

Tmum rezponse 130" ,Ma:

IF RES Min® AES Maxy THEM PFIMT USING "h,45,MD.4DE"; "Max

1mun response 130",Min
IF Pltr=13 THEM GOSUBR PIt2
IF Pltr=5 THEM GOSUB F1t1
IF Pltr=F THEM GOSUB P1t3
GOTD 349
P1t1: DISP "S&t the plotter then pr
PRUSE
PLOTTEF IS S,"IMCREMENTAL"
LIMIT 2B,9248,18,588
FETURHN
P1t2: PLOTTEF I3 13,"GRAPHICS"
DISF "Do wou need a hard o
IMFUT Dump
GRAFHICS
RETLURH
F1t3: DISP "Set the plotter then press CONTY
PAUSE
PLOTTER IS 7,5,"3872R"
RETURN '
FRAME
LOCATE 11,185,%5,35
MOWE 4,23
CSIZE 2,1

COMT"

n
w
L

LDIR PI 2
LABEL “"“;C$;" AT NODE";Nd1;""
LDIR ©

“max=Time

CALL RAxes (8, ¥max,Min,Max, 1)
MOYE B, Drwill

FOR I=2 TO IMT<{Time~ Delta)
DFAWM Delta+=dI=-1", Drwcl)
HEST 1

IF Dump THEH DUMF GRAPHICS
GCLEAR

EMIT GRAFHICS

SUBEMD

SUB AxezcXmingamax, fmin,Ymax, Scaw
OFTIODN BASE 1
X3=C(max=Xmin)~ 8
Y3=Cmax=%Ymin»~8
IJx=S#10~CINT(LGT(H322-1>
Ju=S+18~CINTLGT Y32 2=1>
A3I=] +IMT Y H23T<+.5)
WI=TueIHT Y 3 Jus, S
Samin=HI+INT Sman 83

Swmin=YIeINT O Y mins Y3
“,

Samax=—HI#INTC-Xmax, ¥3>
Symax==¥Y2+INT(="Ymax-"¥3>
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38
5408
638
554
674
=15}
533
rgsl=
718
rZa
738
740
7Sa
-1
7re
730
738
g0
219
324
238
248
358
260
878
888
398
998
218
929
2938
44
25
760
70
988
938
1000
1818
1929
1838
1848
1854
18e4
1ava
19898
1828
1100
1118
1128
1139
1148
1158

dd=0Sumar-Suminy 17
T4=iSumax-Suminy 17

Page

SCALE Sumin-¥4,Samax+Xd, Symin-Y4, Sumax+Y4

Xint=Yint=9

IF SGH' Sormax2#3GHCSyminy 8 THEM Xint=S~<xm1in
IF SGHOSumasx»*SGH Sumin>8 THEN Yint=3Sumin

AAES W3,93,8int  ¥int,2,2,5cay
CSIZE Z.5+3cCaw

LDIF ATHw G

LORG &

IF Z.ma<<=8 THEH 754
P=IMTULGT . Scman )

GOTOD 776

P=INT.(LGT(-Sxmins)

J=8

IF ¢P<-1» OR <P>»2) THEN J=1
FOR Lw=Sxmin TO Sxmax STEP X3
IF La=kint THEN Hext

MOVE Lw,"ihnt="Y3%,1

LABEL USIHG “K"j" "GWAL$ Las 1850 T#P)og"

gt l HENT L.
IF J=8 THEH 3k
MOYE Sxmax+xi-2
LORG 3
LABEL USING "K";" = {@~",p

P
srint=%Y3%,1

Skipx: LDIR ®©

LORG B
IF Sumax<=0 THEHM 9386
P=INTILGT(Sumnaxi)

GOTO 3448
F=IHT LGT . =Syming s
I=a

IF ¢P7=13 OR +F.23 THEM J=1
LORS 2

MOME Sxmax,Yint-,3+%3

LABEL "TIME(S=co"

LORG $

FOR Ly=Sumin TO Swmax STEP V3
IF Lu=Y¥int THEN 1849

MOME Xaint,Lwy

LABEL USIHG "K"iYALECLu- 18~ TxP)a"
MEXT Lu

IF I=8 THEH Skaip

LORG 2

MOYE Maint  Sumas

LAEEL USIHG "k"3;" x 18~",P
Skip: PEMUP

CSIZE 3.3%Scaw

“min=Sumin

Ymin=Sumin

AMmax=5xmax

THax=Su0max

SILUEBEHD
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