
m+m: A novel Middleware for Distributed, Movement
based Interactive Multimedia Systems

Ulysses Bernardet

Simon Fraser University

Vancouver, Canada

ubernard@sfu.ca

Dhruv Adhia

H Plus Technologies

Vancouver, Canada

dhruv@hplustech.com

Norman Jaffe

Vecima Networks

Vancouver, Canada

turing@shaw.ca

Johnty Wang

McGill University

Montreal, Canada

johnty.wang@mail.mcgill.ca

Michael Nixon

Simon Fraser University

Vancouver, Canada

mna32@sfu.ca,

Omid Alemi

Simon Fraser University

Vancouver, Canada

oalemi@sfu.ca

Jordon Phillips

Simon Fraser University

Vancouver, Canada

jjp14@sfu.ca

Steve DiPaola

Simon Fraser University

Vancouver, Canada

sdipaola@sfu.ca

Philippe Pasquier

Simon Fraser University

Vancouver, Canada

pasquier@sfu.ca

 Thecla Schiphorst

Simon Fraser University

Vancouver, Canada

thecla@sfu.ca

ABSTRACT

Embodied interaction has the potential to provide users with

uniquely engaging and meaningful experiences. m+m:

Movement + Meaning middleware is an open source

software framework that enables users to construct real-time,

interactive systems that are based on movement data. The

acquisition, processing, and rendering of movement data can

be local or distributed, real-time or off-line. Key features of

the m+m middleware are a small footprint in terms of

computational resources, portability between different

platforms, and high performance in terms of reduced latency

and increased bandwidth. Examples of systems that can be

built with m+m as the internal communication middleware

include those for the semantic interpretation of human

movement data, machine-learning models for movement

recognition, and the mapping of movement data as a

controller for online navigation, collaboration, and

distributed performance.

Author Keywords

Real-time interaction; middleware; movement;

ACM Classification Keywords

C.3. SPECIAL-PURPOSE AND APPLICATION-BASED

SYSTEMS]: Real-time and embedded system, D.2.11.

Software Architectures: Domain-specific architectures

INTRODUCTION

We can observe converging trends in human-computer

interaction, cognitive science, and the consumer market:

firstly, affective computing, the research and development of

software systems that can recognize, interpret, process, and

ultimately harness affective responses [16], has become a

mainstream topic. Secondly, cognitive science has shown an

increasing interest in embodied cognition, i.e. the proposition

that the mind “is not only connected to the body but that the

body influences the mind” [26]. Thirdly, in the consumer

market we can observe a trend towards the engagement of

individual non-experts in the self-monitoring and -analysis

of biological, physical, behavioral, or environmental

information referred to as “quantified self” [24]. What these

trends share is the notion that to better understand humans,

and/or to build better technology, we need to take into

account the body, and with it, movement.

This motivation is met at the technological level by recent

developments in the hardware and software domains. In the

former we observe a proliferation and democratization of

real-world behavior and movement sensors – on the one hand

in the form of affordable sensors such as Microsoft Kinect,

Structure Sensor, Wii Balance Board and Remote, and Leap

Motion, and on the other hand through wearable technology

[25]. In the latter, the software domain, systems for making

inferences based on movement such as gesture recognizer

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

MOCO'16, July 05-06, 2016, Thessaloniki, GA, Greece

© 2016 ACM. ISBN 978-1-4503-4307-7/16/07…$15.00

DOI: http://dx.doi.org/10.1145/2948910.2948942

[6], or through the application of the Laban Movement

Analysis [11], a well-established system for describing

movement, have gained traction.

If our goal is to build real-time, distributed interactive

systems that deploy heterogeneous sensors and effectors, we

need the means for recording and sensing, storing and

retrieving, analyzing and understanding, and displaying,

sonifying, and visualizing movement data. And, crucially,

we need a way to connect these elements together, and have

them communicate with each other. In this manuscript we

describe the “m+m: Movement + Meaning” software

framework that, broadly speaking, enables users of different

domains and levels of expertise to construct real-time,

interactive systems that are based on movement. m+m caters

to users from a range of backgrounds including, but not

limited to, performance art, computer engineering, science,

and health technology. At the software engineering level

m+m is based on the well-established Yet Another Robot

Platform (YARP) [15]). The acquisition, processing, and

rendering of movement data can be local or distributed, real-

time or off-line, and m+m provides a range of ready-made

interfaces to devices, and existing software frameworks. A

graphical user interface (GUI) provides a tool for managing

and monitoring nodes in the network.

RELATED WORK

The requirements flagged above are met to varying degrees

by existing software solutions. Here we will give a brief

overview of existing middleware services, frameworks,

communication libraries, and integrated packages. A

middleware service is as a general-purpose service that sits

between platforms and applications, and that is defined by

the Application Programming Interfaces (APIs) and

protocols it supports [5]. A number of classification schemas

for middleware exist, e.g. [17] distinguishes between

Transactional middleware for distributed synchronous

transactions, Procedural middleware to execute Remote

Procedure Calls (RPC), Message-oriented middleware that

provide communication through messages (e.g. IBM

WebSphere MQ1, Apache ActiveMQ2) and object-oriented

middleware that extends RPC with concepts from object-

orientation (e.g. Java Remote Method Invocation (RMI3),

and Common Object Request Broker Architecture

(CORBA4). The advantages of most of these middleware

frameworks are that they are well supported, facilitate

development, and provide a solid basis for setting up and

managing communication between nodes. The downside is

that many of them are closed source, and have a notoriously

1 http://ibm.com/software/products/en/ibm-mq
2 http://activemq.apache.org
3 http://goo.gl/SqNX33
4 http://omg.org/spec/CORBA/
5 http://openframeworks.cc
6 http://cycling74.com/products/max/
7 http://opensoundcontrol.org

large overhead and steep learning curve. Frameworks such

as Processing [20], openFrameworks5, MAX6, and Pure Data

[18] are widely used in the artistic and human-computer

interaction community. These frameworks put the emphasis

on output and rendering, and, while some of them provide

built-in networking capabilities, they are generally confined

to point-to-point networking and limited in capacity and

parallelism. Last but not least, there exists a number of open

source and commercial communication libraries that differ

in the supported protocols, platforms, and level of abstraction

at which they are implemented. Examples of open source

libraries include Open Sound Control (OSC7), Torque

Network Library (OpenTNL8), POCO C++9, ADAPTIVE

Communication Environment (ACE10), and ENet11, while

examples of commercial libraries are RakNet12, and

Zoidcom network13. Most of these libraries are agnostic as to

what content they transport, in the sense that they do not

provide protocol definitions and do not provide built-in

means to setup, manage, and monitor connections between

nodes. Integrated solutions closest to the approach presented

in this manuscript include the StreamInput advanced sensor

processing and user interaction application programming

interface (API) developed by the Khronos working group14.

In the domains of pervasive and ubiquitous computing a

number of comprehensive middleware systems have been

developed. Some of these systems are specialized e.g. for

ubiquitous tracking, where data from spatially distributed

and heterogeneous tracking sensors need to be integrated,

such as the CORBA based Ubitrack framework [19] and its

predecessor DWARF [13]. Other systems have wider

application domains such the Proximity Toolkit that supports

proxemics based interactions [14], frameworks for building

distributed tangible and multi-modal interfaces such as

Ensemble [7] and DynaMo [2], respectively, and the

Stanford Interactive Room Operating System (iROS), a

general purpose software framework which allows

applications to communicate with each other and with user

interface devices in a dynamically configurable way [9].

Possibly closest to m+m in terms of scope and design

philosophy is the real-time Java-based middleware OSA+

[22], supports the construction of distributed, heterogeneous,

and highly scalable systems.

The development of m+m is motivated by the set of specific

requirements for the development of the types of systems

outlined initially. The middleware should be a largely self-

sufficient system, enabling users with little technical

background to build interactive systems. Hence, m+m needs

8 http://opentnl.org
9 http://pocoproject.org
10 http://cs.wustl.edu/~schmidt/ACE.html
11 http://enet.bespin.org
12 http://jenkinssoftware.com
13 http://zoidcom.com
14 http://khronos.org/streaminput/

http://ibm.com/software/products/en/ibm-mq
http://activemq.apache.org/
http://goo.gl/SqNX33
http://omg.org/spec/CORBA/
http://openframeworks.cc/
http://cycling74.com/products/max/
http://opensoundcontrol.org/
http://opentnl.org/
http://pocoproject.org/
http://cs.wustl.edu/~schmidt/ACE.html
http://enet.bespin.org/
http://jenkinssoftware.com/
http://zoidcom.com/
http://khronos.org/streaminput/

to be able to provide turnkey solutions, i.e. not merely an

API. Hand in hand with this requirement goes the need to

provide a library of interfaces to established, predominantly

movement data acquisition sensors, ranging from Kinect to

professional motion capture systems. To facilitate

interoperability, a standardized protocol, specifically tailored

to movement-based data has to be an integral part of the

middleware. This is a key feature, that is – basic network

libraries are missing. The middleware needs to provide high

bandwidth data transmission that allows data to be streamed

raw, or minimally processes sensor information via

processing components in real time. In a fluid, exploration-

and development-oriented deployment scenario, decoupling

of components is essential, allowing users to connect and

disconnect nodes at run time. Last but not least, the

development of the middleware was motivated by the desire

to provide users with an easy to install, and open source

system.

M+M ARCHITECTURE

Conceptual framework

m+m is endorses a component-based architecture of

logically independent entities, and is based on the well-

established open source middleware “YARP” [15]. Key

features of the m+m middleware are portability between

different platforms, a small footprint in terms of

computational resources, and high performance regarding

latency and bandwidth. The first two properties are achieved

by m+m being cross-platform, with support for all major

operating systems (Windows, MacOS, and Linux), the core

binary distribution being portable (for convenience, binary

installers are provided), and m+m having a small footprint

(the windows distribution requires less than 100.0MB disk

space). The high performance in terms of latency and

15 http://activemq.apache.org
16 http://ros.org

bandwidth is achieved by two main mechanisms: the

middleware itself does not handle any communication, but

rather establishes direct point-to-point communication

between end-nodes. Secondly, all communication is based

directly on native protocols with as little overhead as is

possible. Depending on the specific needs and system

topology, communication can be done via TCP/IP, UDP, or

shared memory. The properties listed above are key

advantages over other middleware platforms such as Apache

ActiveMQ15, or ROS16. Additionally, m+m, by virtual of

being based on YARP, provides bindings for multiple

languages (C++, Perl, Python, Java), and comes with a

number of basic interfaces to hardware devices such as

microphones and cameras.

m+m middleware

All m+m programs utilize YARP to facilitate

communication – it provides one-to-many output and many-

to-one input mechanisms, as well as a network-based name

server (Figure 1). These input and output mechanisms are

implemented via “mini-server” code that is a fundamental

component of YARP. The “YARP network” represents the

aggregated TCP/IP, UDP and shared memory connections

that exist when YARP is active – YARP itself does not use

any special protocols and can operate over a variety of

physical networks. What m+m provides is a standardized

client-service mechanism, a set of naming conventions for

YARP ports and a centralized database that is used to locate

services within the YARP network. The YARP Name Server

is used to obtain the physical network address of each m+m

channel, given the name of the channel. Once the network

address is known, all communication between entities in

m+m is via either TCP/IP or UDP packets, using YARP low-

level mechanisms to manage the connections. Services

perform a sequence of requests and responses with the

Registry Service when they start, in order to be accessible

from other m+m entities. Once started, they can receive

requests from client applications, data streamed via their

input channels, external sensors or generated

algorithmically, and transmit data via their output channels,

external transducers or files. Additionally, they will receive

periodic requests from the Registry Service, inquiring as to

their “health” and availability.

m+m Components

Sensors The term "Sensor" refers to a wide range of

components providing input to the middleware. Technically

a “sensor” ranges from a hardware device (e.g. camera) to

high-level processing entities that extract semantically

meaningful information from a physical sensing device.

Currently, the following sensors are supported: all native

YARP devices (serial, video, audio, etc.), Microsoft Kinect

(version 1 and 2), Leap Motion17, AnTS Overheard tracking

[3], several motion capture systems (organic motion

17 http://leapmotion.com

Figure 1: Logical organization of an m+m system. Installation.

Brown lines represent client-service communication, the blue

lines represent communication with the Registry Service and

the black lines represent YARP communication paths.

http://activemq.apache.org/
http://ros.org/
http://leapmotion.com/

OpenStage, OptiTrack NatNet, Vicon DataStream),

biosignals acquisition hardware (BITalino, Thought

Technology ProComp2), and sensor data from iOS devices.

Effectors An effector is a component that produces output

perceivable by users. As with the sensors, the effectors are

interfaced at different semantic levels and are equipped with

different levels of autonomy. Currently the following

effectors are supported: iDanceForms18, game engines Unity

3D (unity3d.com) and Unreal Engine19, and SmartBody (via

an ActiveMQ adaptor).

Processing Components The role of a processing

component is to mediate between inputs into the system and

output generated by the system. Examples of functionality

implemented in processing components include feedforward

and feedback controllers, psychological models, cognitive

architectures, artificial neural networks, machine learning

modules, and gesture classifiers. Feature extraction modules

are a type of processing component that play a central role in

the interpretation of meaning from movement information

and can be used e.g. for on-line semantic inferences based on

the Laban Movement Analysis [12] that has been

successfully used to train dancers, animate characters and

automatically segment motion capture input. Currently

supported processing components include modules

implemented directly in C++, perl or python (via SWIG

based language bindings to YARP), MathWorks Matlab and

Simulink20, Processing21, MAX

(cycling74.com/products/max/), large-scale neuronal system

simulator iqr22 [4], and openFrameworks.

18 http://credo-interactive.com
19 http://unrealengine.com
20 http://mathworks.com

m+m GUI (Manager Utility)

The strong separation of components into individual

executables in m+m can lead to a usability penalty. To

mitigate this issue, m+m provides a graphical tool for

managing the system components and the connections

between them. The m+m Manager Utility application

provides a GUI-based view of the state of connections,

services and clients within the installation (Figure 2). The

m+m manager Utility application displays a single window

view of the connections within a YARP network, with

features designed to make management of an m+m

installation easier. In the diagram of the network topology,

standard YARP components, m+m simple clients, m+m

services, and m+m adapters are identified by their type (input

or output), IP address, and the number and name of their port.

Tags e.g. “S” and “C” are used to identify the type of

component in the diagram. Connections between ports are

shown as lines with one of three thicknesses and one of three

colors. From thinnest to thickest lines, the representations

indicate: simple YARP network connections; connections

between input/output services; and connections between

clients and services. Complementary to the thickness of the

edges, the colors indicate whether the connection is TCP/IP

(teal), UDP (purple), or shared memory (orange). Next to

creating and deleting connections, the m+m GUI provides

users with numerous ways to manage their m+m system.

Using the tool, users can restart and stop running m+m

services and adapters, start and restart the Registry services,

and launch registered m+m components. Key managerial

features are the ability to display information about a service

or adapter, enabling and disabling the collection of service

21 http://processing.org
22 http://iqr.sf.net

Figure 2: The m+m graphical user interface (GUI) is used to create and manage connections between nodes connected to the m+m

middleware, to start and stop m+m services, and to display information about static and dynamic properties of nodes.

http://credo-interactive.com/
http://unrealengine.com/
http://mathworks.com/
http://processing.org/
http://iqr.sf.net/

metrics about the activity on each port of the service (e.g. the

number of bytes and number of messages sent to and from

the port).

Registry Service

The Registry Service application is a background service that

is used to manage other services and their connections. Its

primary purpose is to serve as a repository of information on

the active services in an m+m system. The Registry Service

provides this feature by maintaining searchable descriptions

of the active input/output services, hence allowing

application to find and connect to those services. Within the

m+m system, the central Registry Service plays a key role in

enhancing the manageability of complex distributed systems

with potentially large numbers of components. Without such

a system, the user has to manually keep track of what system

is running where, and what services are provided on which

port.

m+m Utilities

The utility programs that are part of m+m provide access to

the processes that are running in the m+m installation.

Although native YARP commands can be used to manage

the network connections, it is recommended that the more

specialized m+m tools be used to avoid inconsistencies.

These m+m utilities include tools for the inspection of

activities and components of the m+m system, and to provide

displays for: the active services in the m+m installation; the

clients for services that have YARP network connections

with persistent state; the primary channels belonging to a

service matching a given criterion; information on requests

for one or more active services; and measurements for the

channels of one or more active services. Additionally, m+m

provides applications that allow recording streams of YARP

values to an external file. These applications respond to the

standard Output service requests and can be also be used as

standalone data generators.

Integration of the movement database “MoDa"

The Movement Database (MoDa) is used to store motion

capture data associated with video, and qualitative

annotations at different semantic levels. Database

information can be queried by, and streamed to, any node

attached to the m+m middleware. Conversely, nodes in the

m+m network can request data to be stored in the database.

MoDa is built around a Ruby on Rails application that stores

info in a MySQL database (mysql.com). Through the web

front-end, researchers can both access and upload movement

data. Each file or group of files can also be viewed in the

accompanying “MoVa” movement visualizer [1]. MoDa

provides programmatic access through the use of a

standardized RESTful API that allows communication using

HTTP message passing. As the middleware server has all the

appropriate API requests programmed into it, a middleware

client can make requests to the server in an abstract manner.

Once a user authenticates through the client, they are able to

communicate with MoDa.

Standard protocols

Lacking standard protocols for representing messages

requires users to define custom data structures. This

potentially impairs interoperability and ease of use because

the protocols can vary between users and between

applications. As mentioned above, the m+m Registry Service

allows users to query the syntax and semantics of messages.

Complementary to this service, m+m uses a set of standard,

interoperable sensor protocols. The basic message packaging

in YARP is in the form of “Bottles” that can be containers

for primitive types, lists, and “Properties” i.e. associations

between tags and values. Bottles are recursive in that they

can contain Bottles themselves. Based on the mechanisms

provided by YARP, m+m specifies structures of sensor

protocols for Kinect, Leap, Vicon, and AnTS tracking. The

Extended Backus–Naur Form of these protocols is as

follows:

x = float; y = float; z = float; w = float; id =

string; tag = string;
quaternion = w, x, y, z;
position3D = x, y, z;
position2D = x, y;
joint = tag, position3D , quaternion;
skeleton = id, joint, {joint};
palm = joint, {joint};
user = id, position2D;
Kinect = skeleton;
Leap = palm;
Vicon = skeleton, {skeleton};

AnTS = user, {user};

Prototypical system

One of the main advantages of building systems based on

m+m is its "multipath" feature, i.e. the ability to build

systems where the information from the same source is

concurrently processed by multiple instances without the

processing instances interfering with each other or altering

the information source (within the constraints of the overall

network bandwidth). Figure 3 illustrates such a multipath

Figure 3: Illustration of the "multipath" capability of an m+m

based system.

system. Using a Microsoft Kinect, a microphone, and a

camera, information from the environment is acquired. The

information from the first two sensors is then passed through

processing components, e.g. for posture and gesture analysis.

Unprocessed, in the case of the microphone, and processed

information is then fed to the effectors, such as a monitor and

a speaker respectively. It is important to note that all

information is acquired, transmitted, processed, and

displayed in parallel, without mutual dependencies between

the components.

EVALUATION

The subsequent sections give an overview of a number of

distributed, real-time interactive systems that have been built

using the m+m middleware. Real-time in the current context

means that the data is processed and transmitted within the

limits of what is perceivable as a delay by an observer.

Generally, this ability depends on the processing speed of the

nodes (e.g. the motion capture system) combined with the

transportation bandwidth and lag. Each of these systems

serves to illustrate specific aspects of the m+m middleware.

Distributed real-time mixed-reality dance performance

This example highlights the use of m+m in a performance

artistic context where e.g. several dancers co-perform across

spatially distributed locations, or a choreographer interacts

with performers in real-time over large distances. The

concrete system we describe here connects motion

acquisition systems at two locations: firstly, in Montreal, at

the Computer Research Institute of Montréal (CRIM), hand

and finger movement is recorded using a Leap Motion

controller. Secondly, motion capture data from a Vicon

motion capture system located in Vancouver at the Emily

Carr University provides the movements of two dancers: one

dancer with a full motion capture suit and a second dancer

with wands. Data from the first dancer is mapped onto a

humanoid character in the virtual space and the second

dancer's movements drive ribbons in the same space.

Concurrently information from the Montreal site determines

Figure 4: m+m based system for real-time interaction between human and a virtual character

Figure 5: Architecture of the system for a real-time mixed-reality dance performance.

the locations of spotlights in the virtual space. A cluster of

computers located in Vancouver provides the logical

backbone for the performance: one system acts as the m+m

Registry server, one acts as the YARP name registry, another

is the motion capture source, one is the m+m system monitor

and the last system generates the visual representation of the

virtual space. The computer-based communication is via a

secure software-based VPN system, that creates a single

subnet between the participating computers. The application

that generates the virtual space receives its input via a high-

speed connection from the local motion capture system and

a “bridged” connection from CRIM which is provided by an

m+m application that interfaces to the Leap Motion

controller. The use of the m+m backbone allows network-

address-independent references to the sources and

destinations of the messages as well as real-time monitoring

and control of the communication paths; the m+m

applications dynamically establish their identity and

locations, register themselves with the globally-visible m+m

Registry server and then are connected at the time of the

performance via the m+m system monitor. By using m+m

the participants in the performance are able to quickly setup

and execute the performance.

System for real-time, real-world interaction between
humans and virtual characters

This example illustrates the use of m+m in the construction

of a distributed system in which a human is interacting with

a virtual character – a realistic 3D representation of a human

– in real-time. Such systems can be used e.g. in education

and training in performing arts, psychological training and

counseling, sports training etc. [8]. In the concrete case

elaborated here, the system is used to develop a biologically

and psychologically grounded cognitive architecture for the

control of nonverbal behavior of a virtual humanoid

character during dynamic interactions with human users

[21]. Figure 4 illustrates how the scenario integrates

heterogeneous sensing and data processing with state-of-the

23 http://mathworks.com/products/simulink/
24 http://mathworks.com/products/stateflow

art virtual human technology, and psychology and cognitive

science grounded control models. The position of the user is

sensed with an overhead tracking camera, and computed

using the tracking software AnTS [3]. During the simulation,

an m+m plugin for MathWorks Simulink23 continuously

reads the users’ location. The hybrid discrete-continuous

control system is implemented using MathWorks Simulink

and Stateflow24, and controls the behavior of the 3D

character, by sending Behaviour Markup Language (BML)

[10] commands to the character animation system

SmartBody [23] via the m+m middleware. The interface

between m+m and the SmartBody system is realized via a bi-

directional adaptor to the ActiveMQ middleware. To

accommodate for the high resource needs of components

such as the tracking system, and the SmartBody 3D

rendering, the system is distributed over three PCs running

the Windows operating system. In the future, additional

inputs to the system are planned to be integrated such as

gesture recognition based on data from a custom-built “data

glove”, and posture as classified based on information from

the Microsoft Kinect sensor25.

Multi-user interactive video installation “Longing and
Forgetting”

The “Longing and Forgetting” installation, deployed at the

Surrey UrbanScreen venue in British Columbia, Canada,

demonstrates the usage of the m+m middleware in

constructing an interactive system involving 10 mobile

devices and a central server application. The server

application models and renders intelligent video agents that

respond to user input from the mobile applications, and the

result is projected onto an outdoor screen (Figure 6).

In the installation, participants use mobile devices (Apple

iPod touch) to select and control agents that are projected

onto a wall by pointing the devices at the agents and then

moving in the desired direction. The accelerometer and

gyroscope sensor data is filtered and combined on the mobile

device, and sent to the server via the middleware. The server

then performs further processing on the input data to

determine the selection of a virtual agent (done via hovering

over an agent) and then movement (fast jerking motion of the

pointer along a certain direction). Once a movement

command is issued to an agent, the internal transition of the

agent is computed and an output video is selected from the

movement database to execute the movement. In this

example, the middleware facilitates the discovery,

connection and communication of sensor data between the

mobile devices and the server. Sensor processing can be done

both on the mobile device, as well as the server application,

depending on the computational requirements and desired

features. Software bindings for the middleware interface are

implemented for both the mobile and desktop platforms, and

can be used by any application on supported platforms.

25 http://microsoft.com/en-us/kinectforwindows/

Figure 6 Architecture of the “Longing and Forgetting” multi-

user interactive video installation.

http://mathworks.com/products/simulink/
http://mathworks.com/products/stateflow
http://microsoft.com/en-us/kinectforwindows/

Another feature of the system afforded by the middleware is

that the sensor data, if desired for testing, deployment of new

features, etc., can be dynamically plugged into other systems

on the network, without any modifications either to the code

or the operational mode of the application running on the

existing devices.

SUMMARY AND CONCLUSION
In this paper we present the m+m middleware, the

development of which is motivated by the unprecedented

confluence of trends in embodied cognition, affective

computing, and quantified self with a surge in the

proliferation of affordable sensing devices. With its unique

combination of ease of setup and configuration, high

performance, and flexibility, m+m facilitates the

development and deployment of distributed, real-time

interactive systems in artistic, research, and commercial

domains. Current limitations of m+m are that not all

operations can be done via the graphical user interface, and

the lack of a generic data visualization module. Future steps

in the development of m+m include built-in support for

generic multisensory data fusion and cross-modal mapping,

a tighter integration of feature extraction methods, and the

addition of further capabilities to the graphical user interface.

ACKNOWLEDGMENTS

This work was partially supported by "Moving Stories" and

"m+m: Moving and Meaning" Canadian SSHRC and

CANARIE grants respectively.

REFERENCES

1. Omid Alemi, Philippe Pasquier, and Chris Shaw. 2014.

Mova: Interactive Movement Analytics Platform.

Proceedings of the 2014 International Workshop on

Movement and Computing - MOCO ’14, ACM Press, 37–

42. http://doi.org/10.1145/2617995.2618002

2. Pierre-Alain Avouac, Philippe Lalanda, and Laurence

Nigay. 2012. Autonomic management of multimodal

interaction. Proceedings of the 4th ACM SIGCHI

symposium on Engineering interactive computing

systems - EICS ’12, ACM Press, 35.

http://doi.org/10.1145/2305484.2305493

3. Sergi Bermúdez i Badia, Ulysses Bernardet, Mario

Negrello, Markus Knaden, and Paul F.M.J. Verschure.

2005. AnTS: A 3-Dimensional Tracking System for

Behavioral Analysis of Flying Insects and Robots.

http://doi.org/10.13140/RG.2.1.5008.0806

4. Ulysses Bernardet and Paul F M J Verschure. 2010. iqr:

A Tool for the Construction of Multi-level Simulations

of Brain and Behaviour. Neuroinformatics 8, 2: 113–34.

http://doi.org/10.1007/s12021-010-9069-7

5. Philip A. Bernstein. 1996. Middleware: a model for

distributed system services. Communications of the ACM

39, 2: 86–98. http://doi.org/10.1145/230798.230809

6. Frédéric Bevilacqua, Bruno Zamborlin, Anthony

Sypniewski, Norbert Schnell, Fabrice Guédy, and

Nicolas Rasamimanana. 2009. Continuous Realtime

Gesture Following and Recognition. In Lecture Notes in

Computer Science, Stefan Kopp and Ipke Wachsmuth

(eds.). Springer, Berlin, Heidelberg, 73–84.

http://doi.org/10.1007/978-3-642-12553-9_7

7. Chris Branton, Brygg Ullmer, Andre Wiggins, et al.

2013. Toward rapid and iterative development of

tangible, collaborative, distributed user interfaces.

Proceedings of the 5th ACM SIGCHI symposium on

Engineering interactive computing systems - EICS ’13,

JUNE: 239. http://doi.org/10.1145/2494603.2480312

8. Steve DiPaola and Caitlin Akai. 2006. Designing an

adaptive multimedia interactive to support shared

learning experiences. ACM SIGGRAPH 2006 Educators

program on - SIGGRAPH ’06: 14.

http://doi.org/10.1145/1179295.1179310

9. Brad Johanson, Armande Fox, and Terry Winograd.

2002. The interactive workspaces project: Experiences

with ubiquitous computing rooms. IEEE Pervasive

Computing 1, 67–74.

http://doi.org/10.1109/MPRV.2002.1012339

10. Stefan Kopp, Brigitte Krenn, Stacy Marsella, et al.

Towards a Common Framework for Multimodal

Generation : The Behavior Markup Language. 205–217.

11. R. Laban and F. C. Lawrence. 1974. Effort: Economy of

Human Movement. Macdonald and Evans.

12. R. Laban and L. Ullmann. 1971. Mastery of Movement.

Macdonald & Evans Ltd.

13. Asa Macwilliams, Christian Sandor, Martin Wagner,

Martin Bauer, Gudrun Klinker, and Bernd Bruegge.

2003. Herding Sheep: Live System Development for

Distributed Augmented Reality. The Second IEEE and

ACM International Symposium on Mixed and Augmented

Reality, 123 – 132.

14. Nicolai Marquardt, Robert Diaz-Marino, Sebastian

Boring, and Saul Greenberg. 2011. The Proximity

Toolkit: Prototyping Proxemic Interactions in Ubiquitous

Computing Ecologies. Proceedings of the 24th Annual

Symposium on User Interface Software and Technology

(UIST’11), 315–325.

http://doi.org/10.1145/1979742.1979691

15. Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale.

2006. YARP: Yet Another Robot Platform. International

Journal of Advanced Robotic Systems, 1.

http://doi.org/10.5772/5761

16. R. W. Picard. 2003. Affective computing: challenges.

International Journal of Human-Computer Studies 59, 1-

2: 55–64.

17. Hennadiy Pinus. 2004. Middleware: Past and present a

comparison. 1–5. Retrieved February 6, 2014 from

http://userpages.umbc.edu/~dgorin1/451/middleware/mi

ddleware.pdf

18. Miller Puckette. 1996. Pure Data: another integrated

computer music environment. International Computer

Music Conference, 37–41. Retrieved February 22, 2014

from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.

1.41.3903

19. Daniel Pustka, Manuel Huber, Christian Waechter, et al.

2011. Automatic configuration of pervasive sensor

networks for augmented reality. IEEE Pervasive

Computing 10, 3: 68–79.

http://doi.org/10.1109/MPRV.2010.50

20. Casey Reas and Ben Fry. 2007. Processing: A

Programming Handbook for Visual Designers and

Artists. The MIT Press.

21. Maryam Saberi, Ulysses Bernardet, and Steve DiPaola.

2014. An Architecture for Personality-based, Nonverbal

Behavior in Affective Virtual Humanoid Character.

Procedia Computer Science 41: 204–211.

http://doi.org/10.1016/j.procs.2014.11.104

22. Etienne Schneider and F Picioroagǎ. 2004. Dynamic

reconfiguration through OSA+, a real-time middleware.

International Middleware Doctoral Symposium: 319–

323. http://doi.org/10.1145/1028480.1030196

23. Ari Shapiro. 2011. Building a character animation

system. Motion in Games, 98–109. Retrieved from

http://www.springerlink.com/index/L24P125448583571

.pdf

24. Emily Singer. 2011. The Measured Life. MIT Technology

Review July/Augus. Retrieved March 11, 2015 from

http://www.technologyreview.com/featuredstory/42439

0/the-measured-life/

25. Dean Takahashi. 2015. The top 11 tech trends of the

Consumer Electronics Show. Retrieved March 11, 2015

from http://venturebeat.com/2015/01/12/the-top-11-

tech-trends-of-the-consumer-electronics-show/

26. Andrew D Wilson and Sabrina Golonka. 2013.

Embodied Cognition is Not What you Think it is.

Frontiers in psychology 4, February: 58.

http://doi.org/10.3389/fpsyg.2013.00058

