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ABSTRACT

With the recent technological advancement, the Dynamic Vehicle Routing Problem is becoming more applicable. However, almost all of 
the researches in this field limited the source of dynamism from the order side instead of the vehicle and the adoption of inflexible tools 
that are mainly designed for the static problem, considering multiple random vehicle breakdowns complicate how to adapt and distribute 
the workload to other functioning vehicles. In this ongoing PhD research, a proposed multilayered agent-based model (ABM) and a 
modeling framework on dealing with such disruptive events in a continuous reactive manner. The model is partially constructed and 
experimented, with a developed clustering rule, on two randomly generated scenarios for validation. The rule achieved reasonable order 
allocation to vehicles and reacted to different problem sizes by rejecting orders over the model capacity. This allocation shows a promising 
path in fully adopting the ABM model in this dynamic problem.
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INTRODUCTION

Technological advancements in computing and 
communication are believed to influence how businesses 
are operated significantly. The Internet of Things 

concept is one of the main drivers in revolutionizing business 
processes by supplying physical objects with electronic 
devices that will allow for real-time control and monitoring 
of such objects.[1] The “Industrie 4.0” concept further supports 
such a revolution by providing more customized services 
efficiently.[2] The transportation and logistics fields are far 
from these transformational concepts as they are one of the 
main themes for potential integration.[3]

Vehicle Routing Problem (VRP) is one of the well-known 
logistical problems extended from the Travelling Salesman 
Problem (TSP) to accommodate additional constraints. The 
problem was first seen in 1959 by Dantzig and Ramser,[4] 
concerned about providing vehicles to visit customers’ locations 
starting and ending at a depot. Other variants of the problem 
were later introduced: Capacitated vehicles, time window 
constraint, multiple depots, and pick-up before delivery.[5] 
VRP is proven to be NP hard,[6] and solutions adopted are 
mainly (meta)-heuristics that provide near-optimal routes; for 
example, Solomon[7] adopted an insertion heuristic for VRP 
with time window and Schneider[8] adopted Tabu search (TS).

Although VRP problems have been well-explored, it is 
only the static type of the problem that has been researched 

and recent research interested in shifting toward the online 
and dynamic problem.[9] Several pieces of research have 
been done on the Dynamic Vehicle Routing Problem (DVRP); 
however, it only focused on updates to customer orders, new 
orders, or cancellation, rather than disruptions in vehicle 
operations. Furthermore, solutions adopted in such dynamic 
problems are still inspired by the classical and static VRP, 
making them inflexible in adopting changes. Therefore, the 
agent-based modeling (ABM) approach is proposed to DVRP 
under breakdown due to the responsive and flexible approach 
in producing solutions in such a dynamic context.

This paper addresses this dynamic breakdown problem 
due to its applicability to recover optimal schedule and routes 
of a logistical operation where vehicle failures occur or when 
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drivers have problems.[10] The main contribution of this paper is 
to introduce a novel multilayered agent-based heuristic system 
for the breakdown VRP problem that solves the breakdown 
instant by first clustering customers then generating vehicle 
routes.

The rest of the paper is organized as follows: Section II 
states the problem under study. Section III provides a selection 
of literature papers relevant to this work in the area of DVRP. 
Section IV justifies using the ABM approach in DVRP and 
presents related work. Section V presents the two-layered 
ABM approach, and the modeling framework specifically 
adapted to the dynamic vehicle breakdowns in the routing 
problem. Section VI provides preliminary results for the 
partially developed ABM model under two problem scenarios. 
Finally, Section VII draws the conclusion and future research 
recommendation.

PROBLEM STATEMENT

In a classical VRP with both delivery and parcel collections, 
vehicles are routed to specific customer locations starting and 
ending at their representative depots. However, one vehicle 
or more of the operating fleet might face random disruptions 
at any time and location while in service. As a result, an issue 
would arise of sharing the disrupted vehicle workload with the 
remaining in-service vehicles. This workload is represented 
by parcels initially supposed to be delivered to/collected from 
customers by the disrupted vehicle. Figure 1 presents this type 
of vehicle disruption problem.

Figure 1 shows a set of in-service vehicles scheduled routes, 
represented by the solid arrows. These scheduled routes have 
been determined by considering vehicle capacity constraint, 
customer time window availability, demand quantity of either 
delivery or collection, and the required servicing time. In terms 
of distance and time, these original routes’ costs depend on the 
sequence of customers in the routes.

However, a major vehicle breakdown might occur 
randomly during the scheduled routes and result in some 
unserved customers. To mitigate the problem, the other 
in-service vehicles’ routes could be rescheduled to visit the 
location of the disrupted vehicle that is considered here as a 
collection point to collect only the delivery load and consider 

the new reschedule route aiming to minimize these unserved 
customers. The dotted arrows indicate the rescheduled route 
by considering the visit to the disrupted vehicle, taking its 
workload, fully or partially, as well as serving its remaining 
customers.

Considering a case with more than 2 vehicles complicates 
the problem even more, especially when this unpredicted 
disruption of more than 1 vehicle happens continuously 
overtime, deciding which and how many of the operating 
vehicles to perform the visit to the disrupted vehicle(s) as well 
as how many of the load to burden given the original problem 
constraints. Further complications will arise if the breakdown 
event occurs again after producing the new rearranged routes.

PREVIOUS WORK ON DVRP

Since the evolvement of DVRP from the static and traditional 
problem, it has focused mainly on the source of dynamism 
from the customer’s side, meaning orders that are revealed 
dynamically and require immediate replanning. An example of 
such a problem can be seen in Gendreau et al.,[11] where they 
adopted an insertion heuristic to accommodate newly revealed 
customers, and TS would improve the overall solution. 
A good review of dynamic order VRP has been provided 
by Pillac et al.[9] and their adopted solution strategies. This 
section, however, will provide studies of VRPs or similar that 
encountered vehicle disruptions.

A few studies have been conducted on VRP under 
breakdown; however, they are still limited in terms of how 
these disruption events are introduced and modeled. Vehicle 
breakdown was first seen in a scheduling context in studies 
done by Li et al.[12] and Mirchandani and Borenstein[13] as 
vehicle rescheduling problem (VRSP). They considered that 
the disrupted vehicle has to be visited by another vehicle to 
collect its load. They proposed a decision support system (DSS) 
for human schedulers to follow when a disruption occurs. The 
DSS generates possible feasible networks then selects the most 
suitable ones, in terms of delay minimization, using an auction 
algorithm. In their later work,[14] they adopted a Lagrangian 
relaxation approach along with column generation (CG) 
that resulted in better solutions compared to the previously 
developed DSS. The same Lagrangian approach was also 
applied to a simple routing problem (VRP).[15] However, 
their latest proposed approach faced performance limitation 
when applied to large-scale problems. Furthermore, they only 
introduced a vehicle disruption once during the model run and 
were predetermined earlier, making it not dynamic.

Pandi et al.[15] introduced a breakdown problem to a Dial-
a-Ride problem, where people are transported from pickup to 
delivery locations, and proposed a graphics processing unit 
computed extensive neighborhood search that is triggered 
every time a breakdown occurs to minimize the fleet size. The 
approach resulted in improved vehicle utilization and reduced 
operational costs under disruption with efficient computing 
compared to CPU-based approaches.

Mu et al.[16] based their work on Li et al.;[15] however, it 
deals with delivering a single commodity that does not require 
a visit to the disrupted vehicle. They adopted a method of 
heuristic insertion of the disrupted customers, resulted from Figure 1: Problem visualization
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the disrupted vehicle, and then improved the solution using 
TS. Compared to the exact method, the approach provided a 
slight cost increase to minimize the number of vehicles, and 
total distance traveled from the optimal solution. However, the 
problem understudy was also limited to 1 time pre-specified 
vehicle disruption.

Minis also adopted another heuristic/meta-heuristic 
approach, Mamasis and Zeimpekis,[17] for a VRP under 
breakdown with an objective adopted from the team 
orienteering problem that aims at maximizing customers 
served. Disrupted customers are sought to be routed by an 
insertion heuristic then compared to an extensive genetic 
algorithm (GA) approach that allows more time to generate 
feasible solutions. In a later work,[18] the authors consider a 
single commodity delivery with a possibility of visiting the 
disrupted customers for load replenishment. In both papers, 
the only heuristic approach has slightly costly deviation 
compared to develop GA making the heuristic approach more 
responsive. However, an assumption has been made that only 
one breakdown occurs and is pre-specified, and accordingly, 
the optimization is done once per problem.

Van der Merwe et al.[19] studied the problem of wildfire 
responses in the form of VRP under a vehicle breakdown to 
maximize coverage and minimize deviations from the original 
plan. They proposed a biobjective Mixed Integer Programming 
(MIP) adapted to the problem after the breakdown and 
limited the solution time for 30 min. Experimental problems 
with 30, 40, 50, and 60 nodes were considered, each with 10 
vehicles. Solution for problem sizes of 40 and above could 
not be produced as MIP need more time to search for the 
optimal solution. The MIP approach is limited, and, in the case 
of multiple random breakdowns, the method would not be 
applicable.

Seyyedhasani and Dvorak[20] tackled a VRP problem in an 
agricultural context where land is needed to be harvested using 
vehicles, and the aim is to minimize the time needed. They 
considered a problem with three vehicles with a breakdown 
introduced in one of them at 25%, 50%, or 75% completion 
of the land. TS is considered an initial solution provided by a 
saving heuristic.[21] Although the approach provided an optimal 
solution, the problem considered is small, and an assumption 
of pre-specifying when the breakdown would occur limits the 
problem. Moreover, the solution adopted is restricted to such 
1 time optimization per problem.

It is necessary to differentiate between vehicle routing 
and scheduling problems. Scheduling explicitly specifies when 
a vehicle should arrive at a node while routing does not.[22] 
This specification makes the routing problem much complex as 
it searches for a more extensive solution space. All the papers 
mentioned previously are routing problems (VRP), except for 
Borenstein and Mirchandani,[12] Li et al.,[13] and Li et al.,[14] as 
they are rescheduling problems (VRSP).

Van Lieshout et al.[23] extended the work in Li et al.[14] for 
VRSP by “softening” the time window constraint to maximize 
the served customers. They proposed iterative neighborhood 
exploration, resulting in 60% reduction in orders cancellation. 
However, the problem under study is still limited to one 
predetermined breakdown.

Guedes and Borenstein[24] also considered VRSP, however, 
with multiple depots and heterogeneous vehicles aiming to 
minimize travel costs and the deviations from the original 
plan due to driver’s familiarity with the routes. A heuristic 
framework approach has been proposed with truncated CG 
that does not repeatedly generate columns when the solution 
is not improving. The approach was tested on large-sized 
problems (up to 2500 nodes) then applied on a real-life bus 
transit case study and produced a good quality solution for 
such a large-sized problem in <3 min. On the other hand, the 
event of disruption is explicitly specified at a time of the day. 
The disruption affects up to three vehicles simultaneously.

Dávid and Krész[25] were the only authors to consider 
the vehicles’ disruption events to be fully randomized across 
the whole period of the modeling, making the problem fully 
dynamic. The problem considered is a scheduling problem 
(DVRSP) routing aiming to minimize the deviation from the 
original plan. They studied two heuristic approaches, recursive 
search and local search, and they both resulted in solutions less 
than 15% in plan deviations. Although the problem considered 
random vehicles’ breakdown over the operating time horizon, 
it is a scheduling problem and not routing.

Based on this review, all the previous studies only 
consider 1 time rescheduling or rerouting per problem and 
do not consider continuous time optimization for any random 
breakdown instant introduced to the problem this paper 
addresses.

AGENT-BASED IN DVRP

Most of the tools and techniques used in VRP are adopted from 
the traditional OR techniques: Exact, heuristics, and meta-
heuristics.[26] On the other hand, Fischer et al.[27] argued that 
such static methods are not suitable to the dynamic problem 
and not flexibility adapted due to the need to react to system 
events while running; they propose the ABM to DVRP.

Mes et al.[28] further supported the use of ABM in DVRP, 
arguing that the traditional OR techniques are sensitive to 
newly emerged information and time consuming. ABM is a 
powerful tool because it models the entities of the system as 
agents that have rational sense and autonomy for making rule-
based decisions.[29]

ABM has been applied previously in DVRP. Kuhn et al.[30] 
were the first to adopt such an approach in this problem 
context with agents of orders and trucks governed by a 
bidding rule. Their work has been taken further by different 
authors. Fischer et al.[27] introduced cooperation rule across 
companies (depots) for order and capacity sharing. Kohout 
and Erol[31] added a verifier agent and adopted Solomon’s 
insertion heuristic and bidding rule. Zeddini et al.[32] adopted 
a continuous optimization strategy in which the model reacts 
instantly when a dynamic event occurs. Mes et al.[28] adopted 
a more decentralized approach by involving companies 
(depots) less in the bidding process or rule. Barbucha and 
Jȩdrzejowicz[33,34] developed an agent architecture that has a 
solution manager as an agent and adopted a heuristic approach 
for optimization, moreover, in their later work Barbucha[35] 
and Barbucha,[36] they adopted meta-heuristics along with 
ABM. Barbucha[37] proposed a multiagent system for DVRP 
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with a meta-heuristic improvement approach of guided local 
search. Vokřínek et al.[38] applied prioritizing rules on the 
arrived customer orders considering the capacity constraint, 
while in a later work,[39] rule based on time window has been 
applied. Maciejewski and Nagel[40] adopted a more centralized 
ABM approach where routing is optimized centrally by an 
optimizer agent. Gath et al.[41] involved depth-first branch-
and-bound method within each vehicle agent as a TSP for 
bid calculation. Finally, Nambiar and Indicula[42] proposed a 
different architecture of agents; data agent that deals with 
information update in the system, control agent who deals 
with the optimization using both k-means clustering and ant 
colony optimization, in addition to the vehicle agents that 
execute routes.

All of the ABM approaches proposed for DVRP previously 
are limited to orders as the only source of dynamism in the 
system. No one has adopted the approach in a dynamic vehicle 
disruption context.

MULTILAYERED AGENT-BASED HEURISTIC 
SYSTEM

This section explains the proposed methodology to solve the 
DVRP under vehicle disruption. The main challenge here is how 
to deal with such disruptions and is addressed by developing a 
modeling framework that is flexible enough to accommodate 
the resource changes.

Input-Process-Output (IPO)

Before developing the framework, an IPO model has been 
adopted to define the scope of the model first. The IPO is 
mainly concerned about the given problem inputs and the type 
of process performance indicators represented in the output. 
Figure 2 provides a general overview of such IPO considering 
the two-layered ABM that will be explained in the following 
subsection.

Agent input data will be provided from the inputs to 
determine each agent’s unique attributes. First, order agents 
will have a demanded quantity, location, time window, and 
servicing time and type (collection/delivery). Second, vehicle 
agents will have a specific type, constrained capacity, home 
depot location, and availability from the operating shifts. 
Finally, drivers have a specific skill that dictates which type 
of vehicle to drive, home location, availability, and previous 
experience. Each agent has a unique ID. The inputs will be fed 
first to the first agent-based layer where a representative agent 
instance of each order, vehicle and driver will be initiated, then 
a set of rules will govern how drivers will be assigned to the 
vehicle, and another set of rules will dictate how orders will 
be allocated to the previously assigned vehicles and drivers. 
Such rules will be explained later in this paper. This layer will 
result in clusters; each consists of orders with one driver and 
one vehicle.

Clusters data resulting from the first layer will be used 
to initiate cluster agents in the second. This layer will be 
concerned about routing orders and optimizing the allocation 
across other cluster agents based on a predetermined set of 
rules. This layer will calculate the time advancement in the 
model by marking which orders have been served. Provided AQ2

the nature of the problem, the ABM layer 2 is assigned to 
model the random and continuous disruptions of vehicles 
during their run. The framework in the following subsection 
will deal with such a disruption event.

The output of the second layer and the process output 
will be the clustering solutions and key performance indicators 
(KPI) to evaluate the developed approach. The output would 
be customers grouping and sequencing, the allocation of 
drivers and vehicles, in addition to KPIs: Number of vehicles 
utilized, each vehicle utilization, each driver idle time, and the 
unsatisfied customers.

ABM Framework Under Vehicle 
Breakdown

When a vehicle faces a breakdown, it has to be withdrawn 
from the model for the breakdown period. As a result, its 
previous cluster allocation will be invalid and requires 
modification. Figure 3 illustrates a proposed modeling 
framework specializing in dealing with breakdown and its 
required modeling changes.

It has been mentioned in the previous section that 
breakdowns are faced in the second layer during the model 
time progression. This breakdown needs to be dealt with by 
updating the corresponding vehicle agent in the first layer, 
represented by the red arrow, to update the cluster agent that 
utilizes the disrupted vehicles seen by the blue dotted arrow 
between the first layer and the cluster agent. This latest update 
will be concerned about changing the cluster’s optimization 
strategy from a two-way exchange strategy, which allows 
it to give and take orders to/from other clusters before the 
breakdown to only one way allows it to give its orders to other 
clusters. This strategy change will be put into action once 
reported to the second layer of the ABM, represented by the 
blue dotted arrow from the cluster agent. Figure 4 illustrates 
how the implementation is done for the two strategies.

Both exchange policies are governed by a set of optimizing 
and predefined rules. If the cluster is emptied from orders, the 
second layer will report to the cluster agent to be deactivated, 
represented by the blue dotted arrow on the right in Figure 3. 
If the cluster was not emptied, it would remain in the second 
layer with a one-way exchange policy for possible future 
consideration of its orders by other clusters, and in case, these 
remaining orders are not allocated, they noted at unserved. 
After considering the reallocations, the model is ready to be 
rerun and serve the new allocation form. The model will also 
be flexible enough to accommodate another random vehicle 
breakdown event.

Sequence Messaging

To implement the ABM model, sequencing of agents’ 
collaboration is needed, and its logic can be illustrated using 
a UML sequence diagram, also known as agent messaging.[43] 
The messaging diagram for the developed model is shown in 
Figure 5.

The super-agent initiates the sequence by allowing 
vehicles to seek drivers and then receiving driver assignment. 
Accordingly, possible orders allocations are sought then the 
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On forming the cluster agents, each will perform the two-
way exchange for optimization purposes and determine its 
next order to serve. Once the next node has been approved, 
the driver agents are notified to drive the vehicle to the 
order location then perform the order service to be then 
marked as complete. In case of a random breakdown, a 
reporting message from the cluster agent to the super-agent 
to dismiss the vehicle and driver agents affected by the 
disruption, in addition to cluster policy change to one-way 
exchange.

Agent Collaboration Rules

It has been previously stated that a set of rules will be governing 
the decisions in this ABM framework. This section will explicitly 
state the proposed rules categorized based on the stage of its 
use. Table 1 shows the proposed ABM rules in each of their 
categories. This work is still ongoing research; therefore, ABM 
rules are still not fully developed to comprehend the logic of 
solving the dynamic vehicle VRP.

The first category of rules is the allocation rules that 
deal with allocating drivers to vehicles. Five rules have been 
proposed: The first rule looks into the driver with the most 
availability and is allocated first to a vehicle. The second rule 
seeks vehicles with the most availability to be selected first. 
The third rule may prioritize experienced high drivers in the 
allocation due to their route and order servicing familiarity. 

vehicle agent reports the vehicle-driver-orders grouping to 
the super-agent to initiate the second layer’s cluster agents. 

Figure 2: The proposed input-process-output model

Figure 3: Agent-based model modeling framework under vehicle 
breakdown

Figure 4: Cluster strategy change before and after a breakdown
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The last two rules in allocation are trying to utilize the earliest 
operating drivers and vehicles first.

Clustering rules, on the contrary, deal with orders 
assignment to the vehicle-driver allocations. Such assignment 
may be based on prioritizing orders with their earliest early 
time window, location to the vehicle-driver, or both. Adopting 
both rules can be seen in the pseudocode represented 
in Figure 6. From this pseudo-code, it can be seen that it 
prioritizes the order with the earliest early time window to 
be allocated first to a near vehicle, considering the vehicle’s 
time and capacity constraints. This process will be repeated 
until either the orders are assigned or the vehicles are fully 
utilized.

Notations:
•	 oi:	ith	order
•	 qi:	ith	order	demanded	quantity
•	 (ei,	li):	ith	order	time	window
•	 O:	orders	list

•	 vi:	ith	vehicle-driver
•	 ci:	ith	vehicle	constraint	capacity
•	 cai:	ith	vehicle	allocated	capacity
•	 (ai,	bi):	ith	vehicle-driver	operating	shift
•	 V:	vehicle-driver	entities	list

Routing rules are concerned with making decisions with 
the cluster agent to serve next. A decision could be based on 
the earliest early time window, nearest to the current driver-
vehicle location, or with the earliest possible arrival time. The 
latest rule is represented by a pseudocode shown in Figure 7, 
where it performs calculations of possible arrival time for each 
order in the cluster list then sorting them based on the earliest 
arrival time. The rule then allocates the earliest order arrival if 
it satisfies the time window constraint.

Notations:
•	 oi:	ith	order
•	 (ei,	li):	ith	order	time	window
•	 Oc:	remaining	orders	in	the	cluster	list
•	 to:	time	needed	to	reach	the	ith	order
•	 ct:	current	time
•	 arri:	arrival	time	at	the	ith	order

As this is still ongoing research, more work has to be 
done to develop rules in each category. Another category will 
be added concerned with the exchange rules among cluster 
agents.

Figure 5: Agents messaging sequence

Table 1: Rules categories

Allocation rules 1. Driver with longest operating shift 

2. Vehicle with longest operating shift 

3. Driver with the most experience

4. Driver with the earliest operating shift

5. Vehicle with the earliest operating shift

Clustering rules 1. Earliest early time window

2. Nearest vehicle-driver

3. Both with early time window priority

Routing rules 1. Earliest early time window

2. Nearest order

3. Earliest arrival time

Figure 6: Clustering rule based on earliest time window and distance
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EXPERIMENTATION AND RESULTS 
ANALYSIS

The ABM system has been partially developed, without vehicle 
breakdown, representing only order and vehicle agents using 
Python to represent these agents. Only one rule has been 
tested: The pseudocode shown in Figure 6 represents orders 
allocation with early time window and location priorities.

Two scenarios have been randomly generated; the first is 
with 200 customers while the other is 500. Both problems have 
25 vehicles. Performing experiments with many customers is 
to validate the developed rule. The problem map of both of the 
problems is represented in Figures 8 and 9, respectively. For 
each problem, an allocation solution is provided by generating 
a color-coded allocation map where each color represents a 
group of orders and one vehicle, number of customers allocated 
to vehicles chart and vehicle capacity utilization chart.

For Problem 1, the system has generated an allocation 
solution shown in the color-coded map (Figure 10). It can be 
seen that this rule works successfully in providing reasonable 
allocation of orders concerning their location, although the 
rule prioritizes the early time window first. All customers have 
been allocated for this particular problem, and there are no 
missing customers.

Figure 11 illustrates how many orders have been 
allocated to each vehicle. This allocation indicates the amount 
of workload needed from each vehicle, given that the vehicle 
has to travel across all its allocated customers. For example, 
Vehicle 1 has been allocated five customers meaning it might 
be obliged to travel 6 times given that it should end at the 
depot.

Figure 12 shows the capacity utilization of each vehicle. 
Since each customer has a specific demand to be either 
collected or delivered; hence, it is vital to consider the vehicle’s 
capacity in the allocation process. It can be seen that most of 
the vehicles are highly utilized, above 60%, while only three 
vehicles have utilization below 60%. This utilization can be 
judged to be a higher quantity loaded problem.

Contrary to the previous problem, the number of 
customers generated is increased to 500 to test the validity 
of the proposed clustering rule. Figure 9 shows the problem 

Figure 10: Problem 1 allocated map

Figure 7: Routing rule based on earliest arrival time

Figure 8: Problem 1 map

Figure 9: Problem 2 map Figure 11: Problem 1: Number of customers allocated to each vehicle
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2 map, which is highly dense due to the over generation of 
customers within this limited map setting.

Figure 13 illustrates the allocation of each order to 
which vehicle. It can be noticed that there are 99 unallocated 
customers, represented in black, this is explained because of 
the massive customers’ increase, and the number of vehicles is 
the same compared to the previous problem.

The number of allocated customers per vehicle has 
increased, as shown in Figure 14, as the increased demand 
pushed the clustering rule for more allocations to vehicles.

For each vehicle capacity, the vehicles in this problem have 
been pushed to nearly 100% capacity utilization. Figure 15 
shows the utilization of each vehicle in this problem. Only four 
vehicles did not reach a full 100% utilization.

It can be noted that the proposed clustering rule is 
functioning as indented within the partially developed ABM 
model with the only customer and vehicle agents. It provides 
simple allocation considering the capacity and time constraints 
of the vehicles and their possible adoption to different problem 
sizes by rejecting the customers over the overall capacity.

CONCLUSION AND FUTURE WORK

This paper adopted the ABM approach to propose a framework 
that deals with VRP under dynamic vehicle breakdowns 

in continuous time. Modeling this problem is a promising 
opportunity to be more agile and responsive to dynamic, 
disruptive events in transportation and logistics.

The proposed ABM model consists of two layers: The 
first is to generate clusters consisting of group of order agents 
allocated to vehicle and driver agents, the second deal with 
running the model, routing, and optimization by representing 
the clusters using clusters agents. A set of rules has also been 
proposed to govern the agents’ interaction in the model. 
As this work is still ongoing research, the model proposed 
here is partially developed that represent only vehicle and 
customers agents without breakdowns, and only one rule, 
a clustering rule, has been programmed and tested on two 
different problem scenarios of different numbers of customers, 
200 and 500. The rule has produced good order allocation 
results by utilizing the vehicles time availability and capacity 
and neglecting customers who are considered over the overall 
capacity. The resulted average customer allocation is 3.2 for 
the small problem compared to 4.04 for the bigger problem. 
On the other hand, vehicle utilization is less the small problem, 
with only 8 out of 25 are fully utilized compared to 21 in the 
bigger problem.

Future work aims to develop the ABM model by further 
programming the agents with random breakdowns and further 

Figure 12: Problem 1: Each vehicle capacity utilization Figure 14: Problem 2: Number of customers allocated to each vehicle

Figure 13: Problem 2 allocated map

Figure 15: Problem 2: Each vehicle capacity utilization
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rules development to provide routes that are adaptive to the 
breakdown event optimally.
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