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Abstract

Transformations for enhancing sparsity in the approximation of color images by 2D atomic

decomposition are discussed. The sparsity is firstly considered with respect to the most sig-

nificant coefficients in the wavelet decomposition of the color image. The discrete cosine

transform is singled out as an effective 3 point transformation for this purpose. The

enhanced feature is further exploited by approximating the transformed arrays using an

effective greedy strategy with a separable highly redundant dictionary. The relevance of the

achieved sparsity is illustrated by a simple encoding procedure. On typical test images the

compression at high quality recovery is shown to significantly improve upon JPEG and

WebP formats.

1 Introduction

In the signal processing field sparse representation usually refers to the approximation of a sig-

nal as superposition of elementary components, called atoms, which are members of a large

redundant set, called a dictionary [1]. The superposition, termed atomic decomposition, aims

at approximating the signal involving as few atoms as possible [1–4]. Sparsity is also relevant

to data collection. Within the emerging theory of sampling known as compressive sensing (CS)

this property is key for reconstructing signals from a reduced number of measures [5–7]. In

particular, distributed compressive sensing (DCS) algorithms exploit inter signal correlation

structure for multiple signal recovery [8].

Sparse image representation using redundant dictionaries has been considered in numer-

ous works e.g. [9–11] and in the context of applications such as image restoration [12–14], fea-

ture extraction [15–18] and super resolution [19–22].

The sparsity property of some types of 3D images benefits from 3D processing [23–26]. In

particular most RGB (Red-Green-Blue) images admit a sparser atomic decomposition if

approximated by 3D atoms [27]. Within the 3D framework the gain in sparsity comes at

expenses of computational cost though.

The purpose of this work is to show that the application of a transformation across the

direction of the colors improves sparsity in the wavelet domain representation of the 2D

color channels. The relevance of this feature is demonstrated by a simple encoding procedure
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rendering good compression results in comparison to commonly used image compression

standards.

The work is organized as follows: Sec. 2 introduces the mathematical notation. Sec. 3 com-

pares several cross color transformations enhancing sparsity. A numerical example on a large

data set is used to illustrate the suitability of the dct for that purpose. Sec. 4 demonstrates the

gain in sparsity obtained by the atomic decomposition of color images when the dct is applied

across the RGB channels. Sec. 5 illustrates the relevance of the approach to image compression

with high quality recovery. The conclusions are summarized in Sec. 6.

2 Mathematical notation

Throughout the paper we use the following notational convention. R represents the set of real

numbers. Boldface letters indicate Euclidean vectors, 2D and 3D arrays. Standard mathemati-

cal fonts indicate components, e.g., d 2 RN is a vector of components dðiÞ 2 R; i ¼ 1; . . . ;N.

The elements of a 2D array I 2 RLx�Ly are indicated as I(i, j), i = 1, . . ., Lx, j = 1, . . ., Ly and the

color channels of I 2 RLx�Ly�3
as I(:, :, z), z = 1, 2, 3. The transpose of a matrix, G say, is indi-

cated as G>. A set of, say M, color images is represented by the arrays

Ifmg 2 RLx�Ly�3;m ¼ 1; . . . ;M:

The inner product between arrays in RLx�Ly is given by the Frobenius inner product h�, �iF

as

hG; IiF ¼
XLx

i¼1

XLy

j¼1

Gði; jÞIði; jÞ:

Consequently, the Frobenius norm k�kF is calculated as

k G kF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XLx

i¼1

XLy

j¼1

Gði; jÞ2
v
u
u
t :

The inner produce between arrays in RN
is given by the Euclidean inner product h�, �i as

hd; gi ¼
PN

i¼1
dðiÞgðiÞ:

3 Cross color transformations

Given a color image I(i, j, z), i = 1, . . ., Lx, j = 1, . . ., Ly, z = 1, 2, 3 the processing of the 3 chan-

nels can be realized either in the pixel/intensity or in the wavelet domain. Since the representa-

tion of most images is sparser in the wavelet domain [27–30] we approximate in that domain

and reconstruct the approximated image by the inverse wavelet transform. Thus, using a 3 × 3

matrix T, we construct the transformed arrays U 2 RLx�Ly�3
and W 2 RLx�Ly�3

as follows

Uð:; :; zÞ ¼
X3

l¼1

Ið:; :; lÞTðl; zÞ; z ¼ 1; 2; 3: ð1Þ

Wð:; :; zÞ ¼ dwtðUð:; :; zÞÞ; z ¼ 1; 2; 3; ð2Þ

where dwt indicates the 2D wavelet transform. For the transformation T we consider the fol-

lowing cases

(i). The dct.

(ii). The reversible YCbCr color space transform.
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(iii). The principal components (PC) transform.

(iv). A transformation learned from an independent set of images.

The dct is given by the matrix

1
ffiffiffi
3
p

ffiffiffi
2
p

ffiffiffi
3
p cos

p

6

� � ffiffiffi
2
p

ffiffiffi
3
p cos

p

3

� �

1
ffiffiffi
3
p 0

ffiffiffi
2
p

ffiffiffi
3
p cosðpÞ

1
ffiffiffi
3
p

ffiffiffi
2
p

ffiffiffi
3
p cos

5p

6

� � ffiffiffi
2
p

ffiffiffi
3
p cos

5p

3

� �

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

;

whereas the YCbCr color space transform is given by the matrix below [31]

0:299 � 0:169 0:5

0:587 � 0:331 � 0:419

0:114 0:5 � 0:0813

0

B
@

1

C
A:

The columns of the principal components transform are the normalized eigenvectors of

covariance matrix of the RGB pixels. Thus, the transformation is image dependent and optimal

with respect to decorrelating the color channels.

As a first test, the approximation of the transformed channels is realized by keeping a fixed

number of the largest absolute value entries, and setting the others equal to zero. In relation to

this, for an image of size Lx × Ly × 3 we define the Sparsity Ratio (SR) as follows

SR ¼
Lx � Ly � 3

Number of nonzero entries in the three channels
: ð3Þ

The quality of a reconstructed image ~I, with respect to the original 8-bit image I, is com-

pared using the Peak Signal-to-Noise Ratio (PSNR)

PSNR ¼ 10log
10

2552

MSE

� �

; with MSE ¼
1

Lx � Ly � 3

XLx ;Ly ;3

i;j;z¼1

ðIði; j; zÞ � ~Iði; j; zÞÞ2:

For the numerical examples below the transformation corresponding to case (iv) is learned

from a set of images I{m}, m = 1, . . ., M all of the same size. Starting from an invertible 3 × 3

matrix Tk, with k = 1, the learning algorithm proceeds through the following instructions.

1. Use Tk to transform the arrays I{m}!Uk{m}!Wk{m} as in (1) and (2).

2. Approximate each transformed array Wk{m} to obtain ~Wkfmg by keeping the largest K
absolute value entries.

3. Apply the inverse 2D wavelet transform idwt to reconstruct the approximated arrays

~Ukfmg; m ¼ 1; . . . ;M as

~Ukfmgð:; :; zÞ ¼ idwtð ~Wkfmgð:; :; zÞÞ; z ¼ 1; 2; 3:
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4. Use the original images I{m}, m = 1, …, M to find G = T1 by least squares fitting, i.e

G ¼ arg min
Gðz; lÞ

z; l ¼ 1; 2; 3

EðGÞ;

where

EðGÞ ¼
XM

m¼1

XLx ;Ly ;3

i;j;l¼1

ðIfmgði; j; lÞ � ~Ifmgði; j; lÞÞ2

with

~Ifmgði; j; lÞÞ ¼
X3

z¼1

~Ukfmgði; j; zÞGðz; lÞ:

5. While E decreases, or the maximum number of allowed iterations has not been reached, set

k! k + 1, Tk = (G�)−1 and repeat steps 1)–5).

Given the arrays ~Ukfmg; m ¼ 1; . . . ;M the least squares problem for determining the

transformation Tk has a unique solution. However, the joint optimization with respect to the

arrays ~Ukfmg;m ¼ 1; . . . ;M and the transformation Tk is not convex. Hence, the algorithm’s

outcome depends on the initial value.

The transformation (iv) used in the numerical examples of Secs. 3.1 and 4.1 has been

learned from M = 100 images, all of size 384 × 512 × 3, from the UCID data set [32], which

contains images of buildings, places and cars. The learning curves for two random orthonor-

mal initializations is shown in Fig 1.

It is worth mentioning that, as shown in Fig 1, learning is richer when starting compara-

tively distant from a local minimum (left graph in Fig 1). However, since the convergence is to

a local minimum other random initializations, even if generating less learning, may produce

better results (right graph in Fig 1).

Fig 1. Learning curves for the transformation (iv) corresponding to two different random orthogonal transforms initializing the process. The

mean value PSNR with respect to the 100 images in the training set corresponds to SR = 15 for all the images.

https://doi.org/10.1371/journal.pone.0279917.g001
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The aim of the next numerical test is to demonstrate the effect on the SR (c.f. (3)) produced

by the above (i)–(iv) transformations across the color channels.

3.1 Numerical test I

Using the whole Berkeley data set [33], consisting of 300 images all of size 321 × 481 × 3 we

proceed with each image as in (1) and (2). The dwt corresponds to the Cohen-Daubechies-

Feauveau 9/7 (CDF97) wavelet family. Fig 2 shows the transformed channels of the image in

Fig 3, including the dct transformation across channels (right graph) and without T transfor-

mation (left graph). As noticeable in the figure, the effect of the dct is to re-distribute the inten-

sity in the color channels by transferring values between channels.

For the numerical test the approximations are realized fixing SR = 20 and SR = 10. The

reconstructed images are obtained for the approximated arrays ~W as

~Uð:; :; zÞ ¼ idwtð ~Wð:; :; zÞÞ; z ¼ 1; 2; 3 ð4Þ

~Ið:; :; zÞ ¼
X3

l¼1

~Uð:; :; lÞðT � 1ðz; lÞÞ; z ¼ 1; 2; 3 ð5Þ

where T−1 is the inverse of T. When no transformation T is considered the image is recon-

structed directly from (4).

Fig 2. Magnitude of the entries in the array W constructed as in (2) from the image of Fig 3, with T the dct (right graph) and without T (left

graph).

https://doi.org/10.1371/journal.pone.0279917.g002
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The 2nd and 4th columns of Table 1 show the mean value PSNR (PSNR), with respect to

the whole data set, for SR = 20 and SR = 10 respectively, corresponding to the transformations

T listed in the 1st column of the table. The 3rd and 5th columns give the standard deviations

(std).

While Table 1 shows that all (i)–(iv) transformations render equivalent superior results,

with respect to not applying a transformation (case (v)), the dct slightly exceeds the others.

Case (iv) refers to the best result achieved when initializing the learning algorithm with 500

different random orthonormal transformations. When initializing the algorithm with transfor-

mations (i) and (ii) it appears that each of these transformations is close to a local minimizer of

the method. This stems from the fact that such initializations do not generate significant

learning.

The common feature of most of the 300 images in the data set used in this numerical exam-

ple is the correlation property of the three color channels. This property is assessed by the cor-

relation coefficients

rðzÞ ¼
PLx

i¼1

PLy
j¼1 Gði; j; zÞGði; j; z þ 1Þ

sðzÞsðz þ 1Þ
; z ¼ 1; 2; rð3Þ ¼

PLx
i¼1

PLy
j¼1 Gði; j; 1ÞGði; j; 3Þ
sð1Þsð3Þ

;

Fig 3. One of the RGB images in the Berkeley’s data set.

https://doi.org/10.1371/journal.pone.0279917.g003

Table 1. Mean value PSNR, with respect to the 300 images in the Berkeley data set. The approximation of each

image is realized by setting the least significant entries in the arrays W{m} = 1, . . ., 300 equal zero, in order to obtain

SR = 20 for all the images (2nd column) and SR = 10 for all the images (4th column).

Transf. PSNR std PSNR std

(i) dct 33.9 5.0 38.9 5.1

(ii) YCbCr 33.7 5.0 38.7 5.1

(iii) PC 33.7 4.9 38.4 5.0

(iv) Learned 33.7 4.9 38.7 5.0

(v) No transf. 29.7 4.8 32.9 5.2

https://doi.org/10.1371/journal.pone.0279917.t001
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where

Gði; j; zÞ ¼ ðIði; j; zÞ � Ið:; :; zÞÞ; sðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XLx

i¼1

XLy

j¼1

ðIði; j; zÞ � Ið:; :; zÞÞ2
v
u
u
t ;

and Ið:; :; zÞ indicates the mean value of channel z.

The range of the correlation coefficient r(z), z = 1, 2, 3 for the images in the data set can be

better estimated using the Fisher transform [34, 35] which is defined as follows

zðzÞ ¼
1

2
ln

rðzÞ þ 1

rðzÞ � 1

� �

; z ¼ 1; 2; 3:

As seen in the graphs of Fig 4, the histograms of the transformed coefficients z(z), z = 1, 2, 3

resemble normal distributions. Hence, the confidence intervals can be well estimated in this

domain. Once that is done, the intervals for the correlation coefficients are retrieved through

the inverse transformation

rðzÞ ¼
e2zðzÞ � 1

e2zðzÞ þ 1
; z ¼ 1; 2; 3:

Table 2 gives the range of the correlation coefficients concerning approximately 68% and

95% of the images in the data set.

In view of the high correlation between the color channels for most images in the data

set it is surprising than the PC transformation (iii), which completely decorrelates the

channels, does not overperform the other transformations, on the contrary. This feature

has also been noticed in the context of bit allocation for subband color image compression

[36].

4 Approximations by atomic decomposition

We have seen (c.f. Table 1) that by transformation of channels it is possible to gain quality

when reducing nonzero entries in the channels. Now we discuss how to improve quality fur-

ther by approximating the 2D arrays (2) by an atomic decomposition, other than just by

neglecting their less significant entries. For the approximation to be successful it is important

to use an appropriate dictionary. To this end, one possibility could be to learn the dictionary

from training data [37–40]. However as demonstrated in previous works [27, 29, 30] a separa-

ble dictionary, which is easy to construct, is well suited for the purposes of achieving sparsity

and delivers a fast implementation of the approach. Since we use that dictionary in the numeri-

cal examples, below we describe the method for constructing the atomic decomposition of the

array W considering specifically a separable dictionary.

Firstly we concatenate the 3 planes W(:, :, z), z = 1, 2, 3 into an extended 2D array W0 2

R3Lx�Ly and divide this array in small blocks W0

q; q ¼ 1; . . . ;Q. Without loss of generality the

blocks are assumed to be square of size Nb × Nb say, and are approximated using separable dic-

tionaries Dx
¼ fdx

n 2 R
Nb ; k dx

nk2 ¼ 1g
Mb
n¼1

and Dy
¼ fdy

m 2 R
Nb ; k dy

nk2 ¼ 1g
Mb
m¼1

.

For q = 1, . . ., Q every element W0
q 2 R

Nb�Nb is approximated by an atomic decomposition
as below:

W0kq
q ¼

Xkq

n¼1

ckq ;qðnÞdx
‘
x;q
n
ðdy

‘
y;q
n
Þ

T
; ð6Þ
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Fig 4. Histograms of the transformed correlation coefficients between the RGB channels: z(1) (top graph), z(2)

(middle graph), and z(3) (bottom graph).

https://doi.org/10.1371/journal.pone.0279917.g004
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where ‘
y;q
n is the index in the set {1, 2, . . ., Mb} corresponding to the label of the atom in the dic-

tionary Dy contributing to the n-th term in the approximation of the q-th block. The index ‘
x;q
n

has the equivalent description. The assembling of the approximated blocks gives rise to the

approximated array W0a ¼ ĴQ
q¼1W0kq

q , where Ĵ represents the assembling operation, i.e. the oper-

ation that retrieves the approximation W0a 2 R3Lx�Ly of the array W0 2 R3Lx�Ly from the

approximation of the blocks in the partition. The approximated array W0a 2 R3Lx�Ly is

reshaped back into 3 planes, Wað:; :; zÞ 2 RLx�Ly ; z ¼ 1; 2; 3, to be converted back to the

approximated RGB intensity image as in (4) and (5).

The approximation of the partition W0
q 2 R

Nb�Nb ; q ¼ 1; . . . ;Q is carried out iteratively as

a two step process which selects i) the atoms in the atomic decomposition (6) and ii) the

sequence in which the blocks in the partition are approximated. The procedure is called Hier-

archized Block Wise (HBW) implementation of greedy pursuit strategies [28, 41]. For the

selection of the atoms we apply the Orthogonal Matching Pursuit (OMP) approach [42] dedi-

cated to 2D with separable dictionaries (OMP2D) [43]. Thus, the whole algorithm is termed

HBW-OMP2D [28]. The method iterates as described below.

On setting kq = 0 and R0

q ¼W0
q 2 R

Nb�Nb at iteration kq + 1 the algorithm selects the indices

‘
x;q
kqþ1

and ‘
y;q
kqþ1

, as follows:

‘
x;q
kqþ1

; ‘
y;q
kqþ1
¼ arg max

n ¼ 1; . . . ;Mb
m ¼ 1; . . . ;Mb

�
�
�hdx

n;R
kq
q dy

miF

�
�
�; q ¼ 1; . . . ;Q;

ð7Þ

where Rkq
q ¼W0

q � W0kq
q . The calculation of W0kq

q is realized in order to minimize k Rkq
q kF ,

which is equivalent to finding the orthogonal projection onto the subspace spanned by the

selected atoms fAn ¼ dx
‘
x;q
n
ðdy

‘
y;q
n
Þ

T
2 RNb�Nbg

kq
n¼1. In our implementation, the calculation of the

coefficients cq(n), n = 1, . . ., kq in (6) is realized as

ckq ;qðnÞ ¼ hBk
n;W

0kq
q iF; n ¼ 1; . . . ; kq; ð8Þ

where the set fBkq
n 2 RNb�Nbg

kq
n¼1 is biorthogonal to the set fAn 2 R

Nb�Nbg
kq
n¼1 and needs to be

upgraded and updated to account for each newly selected atom. Starting from B1

1
¼ Q1 ¼

A1 ¼ dx
‘x
1
ðdy

‘
y
1

Þ
>

the updating and upgrading is realized through the recursive equations [43, 44]:

Bkqþ1

n ¼ Bkq
n � Bkqþ1

kqþ1hAkqþ1;B
k
niF; n ¼ 1; . . . ; kq

Bkqþ1

kqþ1 ¼ Qkqþ1= k Qkqþ1 k
2
F; where

Qkqþ1 ¼ Akqþ1 �
Xkq

n¼1

Qn

k Qn k
2
F

hQn;Akqþ1iF;

ð9Þ

Table 2. Intervals for the correlation coefficients between R and G channels, r(1), G and B channels, r(2), and R

and B channels, r(3), involving approximately 68% and 95% of the images in the data set.

Percentage r(1)-interval r(2)-interval r(3)-interval

68% (0.8821, 0.9882) (0.8559, 0.9854) (0.6881, 0.9854)

95% (0.6612, 0.9964) (0.5968, 0.9955) (0.2617, 0.9884)

https://doi.org/10.1371/journal.pone.0279917.t002
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with the additional re-orthogonalization step

Qkqþ1  Qkqþ1 �
Xkq

n¼1

Qn

k Qn k
2
F

:hQn;Qkqþ1iF: ð10Þ

As discussed in [28, 41], for ‘
x;q
kqþ1

and ‘
y;q
kqþ1

; q ¼ 1; . . . ;Q the indices resulting from (7), the

block to be approximated in the next iteration corresponds to the value q? such that

q? ¼ arg max
q¼1;...;Q

jhdx
‘
x;q
kqþ1

;Rkq
q dy

‘
y;q
kqþ1

ij:

The algorithm stops when the required total number of K ¼
PQ

q¼1
kq atoms has been

selected. This number can be fixed using the SR, which is now calculated as

SR ¼
Lx � Ly � 3

K
: ð11Þ

Remark 1. The above described implementation of HBW-OMP2D is very effective in terms of
speed, but demanding in terms of memory (the partial outputs corresponding to all the blocks in
the partition need to be stored at every iteration). An alternative implementation, termed HBW
Self Projected Matching Pursuit (HBW-SPMP) [29, 45], would enable the application of the iden-
tical strategy to much larger images than the ones considered in this work.

4.1 Numerical example II

For this and the next numerical example, we use a mixed dictionary consisting of two classes

of sub-dictionaries of different nature:

I). The trigonometric dictionaries Dx
C and Dx

S, defined below, for i = 1. . ., Nb

Dx
C ¼ fwcðnÞcos

pð2i � 1Þðn � 1Þ

2M
g

Mx
n¼1
; Dx

S ¼ fwsðnÞsin
pð2i � 1ÞðnÞ

2M
qgMx

n¼1
:

wc(n) and ws(n), n = 1, . . ., Mx are normalization factors.

II). The dictionary Dx
L, which is constructed by translation of the prototype atoms in Fig 5.

The mixed dictionary Dx is built as Dx ¼ Dx
C [Dx

S [Dx
L and Dy ¼ Dx.

Table 3 shows the improvement in PSNR achieved by atomic decompositions using the

mixed dictionary for SR = 20 and SR = 10.

Notice that while case (v), which does not include any T transformation, gives superior

results than by disregarding entries (c.f. Table 1) when applying any of the transformations

(i)–(iv) the results improve further. The PC transform, however, appears significantly less

effective than the others. In addition to rendering the best results, the dct brings along the

additional advantage of being orthonormal. Consequently, it does not magnify errors at the

inversion step. Because of this, we single out the dct as the most convenient cross color trans-

formation out of the four considered here.

5 Application to image compression

In order achieve compression by filing an atomic decomposition we need to address two

issues. Namely, the quantization of the coefficients cq(n)n = 1, . . ., kq, q = 1, . . ., Q in (6) and
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the storage of the indices ð‘
x;q
n ; ‘

y;q
n Þ; n ¼ 1; . . . ; kq; q ¼ 1; . . . ;Q. We tackle the matters by sim-

ple but effective procedures [30].

For q = 1, . . ., Q the absolute value coefficients |cq(n)|, n = 1, . . ., kq are converted to integers

through uniform quantization as follows

cDq ðnÞ ¼
d
jcqðnÞj � y

D
e; if jcqðnÞj � y

0 otherwise:

8
><

>:
ð12Þ

The signs of the coefficient are encoded separately as a vector, sq, using a binary alphabet.

Each pair of indices ð‘
x;q
n ; ‘

y;q
n Þ corresponding to the atoms in the decompositions of the block

W0

q is mapped into a single index oq(n). The set oq(1), . . ., oq(kq) is sorted in ascending

order oqðnÞ ! ~oqðnÞ; n ¼ 1; . . . ; kq to take the differences dqðnÞ ¼ ~oqðnÞ � ~oqðn � 1Þ; n ¼
2; . . . ; kq and construct the string of non-negative numbers ~oqð1Þ; dqð2Þ; . . . ; dqðkqÞ. The order

Fig 5. Prototypes (each in different color) that generate the dictionaries Dx
L by sequential translations of one

point.

https://doi.org/10.1371/journal.pone.0279917.g005

Table 3. Mean value PSNR, with respect to 300 images in the Berkeley data set, produced by 2D atomic decomposition of the arrays W{m} = 1, . . ., 300 in order to

obtain SR = 20 (2nd and 6th column) and SR = 10 (4th and 8th column).

Block size 8 × 8 16 × 16

Transf. PSNR std PSNR std PSNR std PSNR std

(i) dct 40.5 5.0 48.1 4.4 40.8 4.9 48.6 4.2

(ii) YCbCr 40.3 5.0 47.8 4.4 40.6 4.9 48.3 4.2

(iii) PC 39.6 4.8 46.3 4.5 39.9 4.8 46.7 4.5

(iv) Learned 40.3 4.9 47.4 4.3 40.5 4.9 47.8 4.2

(v) No transf. 34.0 5.2 39.1 5.6 34.1 5.2 39.3 5.5

https://doi.org/10.1371/journal.pone.0279917.t003
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of the set ~oqðnÞ; n ¼ 1; . . . ; kq induces order in the unsigned coefficients, cDq ðnÞ ! ~cDq ðnÞ, and

in the corresponding signs sqðnÞ ! ~sqðnÞ.
For each q the number 0 is added at the end of the indices ~oqðnÞ; n ¼ 1; . . . ; kq before con-

catenation, to be able to separate strings corresponding to different blocks. Each sequence of

strings corresponding to q = 1, . . ., Q is concatenated and encoded using the off-the-shelf

MATLAB function Huff06 [46], which implements Huffman coding.

The compression rate is given in bits-per-pixel (bpp) which is defined as

bpp ¼
Size of the file in bits

Number of intensity pixels in a single channel
:

At the reconstruction stage the indices ð~‘x;q
n ;

~‘y;q
n Þ; n ¼ 1 . . . kq are recovered from the string

of differences δq(n), n = 2, . . ., kq. The signs of the coefficients are read from the binary string.

The quantized unsigned coefficients are read and transformed into real numbers as:

j~crqðnÞj ¼ D � ~cDq ðnÞ þ ðy � D=2Þ; n ¼ 1 . . . kq:

The codec for reproducing the examples in the next sections has been made available on

[47].

5.1 Numerical example III

The relevance to image compression of the achieved sparsity by dct cross color transformation

is illustrated in this section by comparison with results yielded by the compression standards

JPEG, and WebP, on the 15 images in Table 4. These are typical images, used for compression

tests, available in ppm or png format. The first 9 images are classic test images taken from [48].

The last six images are portions of 1024 × 1024 × 3 pixels shown in Fig 6 from very large high

resolution images available on [49].

All the results have been obtained in the MATLAB environment (version R2019a), using a

machine with CPU Intel(R) Core(TM) i7–3520M RAM 8GB CPU @ 2.90GHz. For the image

approximation the HBW-OMP2D method was implemented with a C++ MEX file. All the

Table 4. Test images. The last column gives the approximation times to produce the results in Table 5.

No Image Size time (secs)

1 Lenna 512 × 512 × 3 1.8

2 Goldhill 576 × 720 × 3 3.8

3 Barbara 576 × 720 × 3 3.2

4 Baboon 512 × 512 × 3 2.7

5 Zelda 576 × 784 × 3 2.5

6 Sailboat 512 × 512 × 3 1.8

7 Boy 512 × 768 × 3 3.8

8 Jupiter 1072 × 1376 × 3 2.9

9 Saturn 1200 × 1488 × 3 2.6

10 Building 1024 × 1024 × 3 9.5

11 Cathedral 1024 × 1024 × 3 7.6

12 Flower 1024 × 1024 × 3 3.6

13 Spider-web 1024 × 1024 × 3 3.8

14 Bridge 1024 × 1024 × 3 8.5

15 Deer 1024 × 1024 × 3 5.8

https://doi.org/10.1371/journal.pone.0279917.t004
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Fig 6. Illustration of the 1024 × 1024 × 3 panels from the six high resolution test images (No 10–15) listed in Table 4.

https://doi.org/10.1371/journal.pone.0279917.g006
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channels and all the images were partitioned into blocks of size 16 × 16. The approximation

times to produce the results in Table 5 are displayed in the last column of Table 4.

For realizing the comparison we proceed as follows: we set the required value of PSNR as

that produced by JPEG at quality = 95 and tune compression with the other methods to pro-

duce the same PSNR. In our codec the tuning is realized by approximating the image up to

PSNRo = 1.025 � PSNR (where PSNR is the targeted quality) and setting the quantization

parameter Δ so as to reproduce the targeted value of PSNR.

For compression with JPEG we use the MATLAB imwrite command. The compression

with WebP was realized using the software for Ubuntu distributed on [50]. All the approaches

were tuned for producing the same value of PSNR as JPEG for quality 95. The Mean Structural

SIMilarity (MSSIM) index [51] was then calculated with the approximation corresponding to

those values of PSNR.

6 Conclusions

The application of a cross color transformation for enhancing sparsity in the atomic decompo-

sition of RGB images has been proposed. It was demonstrated that the effect of the transforma-

tion is to re-distribute the most significant values in the dwt of the 2D channels. As a result,

when approximating the arrays by disregarding the less significant entries, the quality of the

reconstructed image improves with respect to disabling the cross color transformation. Four

transformations have been considered: (i) a 3 point dct, (ii) the reversible YCbCr color space

transform, (iii) the PC transform, (iv) a transformation learned from an independent set of

images.

The quality of the image approximation was improved further by approximating the trans-

formed arrays by an atomic decomposition using a separable dictionary and the greedy pursuit

strategy HBW-OMP2D. The dct was singled out as the most convenient cross color transfor-

mation for approximating RGB color images in the wavelet domain.

The approximation approach has been shown to be relevant for image compression.

By means of a simple coding strategy the achieved compression for typical test images

Table 5. Compression rate (bpp) corresponding to JPEG (bjp), WebP (bwb) and the proposed sparse representation (bsr), for the values of PSNR given in the 2nd

column. The corresponding values of MSSIM are given in the 3rd to 5th columns. ssjp, sswb, and sssr indicate the MSSIM produced by JPEG, WebP and the sparse repre-

sentation codec respectively.

I dB ssjp sswb sssr bjp bwb bsr

1 35.9 0.98 0.98 0.97 3.28 2.21 1.37

2 36.6 0.98 0.98 0.98 3.63 2.47 2.01

3 37.2 0.98 0.99 0.99 3.67 2.80 1.77

4 28.8 0.97 0.97 0.96 5.80 4.66 2.48

5 39.3 0.98 0.98 0.95 2.61 1.81 1.07

6 30.9 0.98 0.98 0.95 4.49 3.21 1.51

7 32.6 0.97 0.98 0.97 4.34 3.07 2.22

8 48.2 0.99 0.99 0.99 0.60 0.51 0.20

9 49.0 0.99 0.99 0.99 0.34 0.36 0.12

10 37.4 0.99 0.99 0.99 3.41 2.35 1.75

11 38.5 0.99 0.99 0.99 2.84 1.83 1.20

12 41.5 0.99 0.99 0.99 1.78 1.08 0.53

13 45.0 0.99 0.99 0.99 1.55 1.10 0.57

14 34.5 0.99 0.99 0.99 3.57 2.48 1.48

15 30.9 0.97 0.97 0.96 3.76 2.59 0.90

https://doi.org/10.1371/journal.pone.0279917.t005
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considerably improves upon the most commonly used compression standards, namely JPEG

and WebP.
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