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Abstract 

Agent-based simulation approach in production and inventory environment is capable of 

responding and adapting to disruptions caused by customers’ changing requirements. The 

impacts of disruptions in production and inventory systems can be measured through learning 

and decision-making ability of system agents. In this paper, agent-based modelling integrated 

with heuristic optimisation approach is presented as embedded within a scheduling and 

rescheduling framework. The proposed approach is implemented in a disrupted OEMs parts 

manufacturing system. The integration of the framework modules in connection with inventory 

control helped production planners to manage disruptions by tracking order processing times 

and quantities and for performance measurement. The proposed approach is compared with the 

few existing related methods like the sequential method. The proposed approach not only 

revealed the impact of disruptions in terms of process times and order quantities but offered 

'available times' which were applied for production support and inventory replenishment. This 

demonstrates a valuable and viable resolution strategy responding and adapting to disruptions 

caused by customers. 
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1. Introduction  

In today’s production environment, the influence of customers has a strong impact not only on 

production schedules but also on inventory control. From the production point of view, 

customers have the power to alter demands and requirement at any possible time. This power 

makes it possible for customers to change demand details such as quantity, time of delivery 

and sequence of delivery. These kinds of changes made by customers have a direct impact on 

production schedules, especially when production has already been scheduled based on initial 

customer demands. The negative impacts on production result in high idle times, order 

shortages, low utilisation of both operators and machines, late or unsatisfied delivery. This 

subsequently affects inventory holding quantities as they are relied on for support when there 

are production disruptions.  

In an Original Equipment Manufacturing (OEM) environment, where demands need to be 

satisfied irrespective of customer changes, production schedules become extremely 

challenging to manage. When production is disrupted due to customer changes, the inventory 

can also be affected (Adediran and Al-Bazi 2017). Production and inventory are controlled by 

customer behaviour, while measuring the impact of customer disruption increases the 

awareness of the level of damage on production and inventory as well as quantifying the 

consequences of disruption. Therefore, the ability to measure these impacts to understand 

production and inventory behaviour in terms of time, units and cost is a welcome development. 

Knowing the amount of time and quantity impacted because of disruption is crucial in dealing 

with the problem. 

The framework of an agent-based model and heuristic algorithm adopted in this paper is an 

extension of the one proposed by Adediran and Al-Bazi (2018), which was applied for adapting 

and accommodating disruptions in OEMs flow shop. However, the focus in this paper is to 

apply the extended version to measure and quantify the impact of disruptions on production 

and the consequences in terms of process time and quantity, through the advantages of agent-

based modelling (ABM). The idea of measuring and quantifying the impact of disruptions on 

production has received little or no attention through any technique in literature.  

This study proposes an integrated framework which includes an agent-based simulation model, 

the proposed heuristic optimisation algorithm and an inventory replenishment plan. The 

developed framework aims at adapting and accommodating inevitable disruptions in order to 

minimise the number of production shortages, increase the number of order deliveries and 

sustainably maintain safe inventory levels. 
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The novelty of this paper lies in the development of an innovative and adaptive heuristic 

algorithm, embedded within agent-based simulation to measure and quantify the impact of 

disruptions caused by demand requirements which are changed by customers on OEMs 

production flow-shop. This model will assist production planners and managers of various 

manufacturing systems-based inventory control practices including OEMs to produce efficient 

production schedules that guarantee gradual replenishment of inventory despite customer 

disruptions rather than focusing on specific orders to reduce unnecessary inventory while other 

order inventory levels are at risk. 

The rest of this paper is organised as follow. In section 2, the related literature on agent-based 

modelling in manufacturing environments are analysed from different perspectives. Section 3 

describes the problem statement. Section 4 introduces the developed Production Disruption- 

Inventory Replenishment (PDIR) Framework. In section 5, the design of the experiments and 

the results are discussed. The paper concludes in section 6 by summarising the key findings as 

well as suggestions for future research. 

2. Literature Review on Impact of Disruption in Manufacturing Industry  

In the literature, some studies have been conducted in a quest for identifying disruption in the 

manufacturing industry and modelling its impacts. The study by Darmoul, Pierreval, and Hajri–

Gabouj (2013) identified unexpected disruptions like resource failures, material unavailability, 

and rush orders’ operators unavailability in manufacturing systems. It also investigated this 

potential for the monitoring and control of the manufacturing systems at the occurrence of these 

disruptions. The study proposed a framework, developed using a multi-agent approach, to help 

design software tools with the ability to assist with decision-making in dealing with various 

types of disruptions happening in manufacturing system. The work of Omega et al. (2016) 

proposed a supply-driven Inoperability Input-Output Model to analyse the impact of supply 

disruptions caused by natural and man-made disasters, economic shifts and government 

policies in a manufacturing system. The manufacturing supply chain such as facility 

breakdowns, transportation mishaps, intentional attack and natural disasters was the focus in 

Schmitt et al. (2017). To respond and recover from these disruptions, the study investigated 

adjustments in order activity across four echelons including assembly. Simulation experiments 

of the study show that the impact of a disruption depends on its location, with costlier and 

longer lasting impacts occurring from disruptions at echelons close to ultimate consumption. 

The manufacturing supply chain study of Lam and Yip (2012) identified that any disruptions 

at a port can have direct impact on the port’s ability to continue operations, therefore affecting 

the supply chains and the parties served by the port. The study proposed the application of a 
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Petri Net approach to analyse the impact of port disruptions. Ocampo et al. (2016) proposed a 

methodological approach to quantify the impact of supply disruptions in a manufacturing 

system in terms of increased cost-price of production output as a result of high price of value-

added input. The study of Bhat and Yadav (2017) tend towards identifying substantial 

indicators for performance measurement of factors causing disruptions in manufacturing 

industry. In Li, Barker, and Sansavini (2017) a multi-industry interdependence model is 

developed to quantify the short-term economic impacts of electric power disruption due to 

cascading failures within power system. In Adediran and Al-Bazi (2017), disruption problems 

caused by customers’ changing requirements were considered. A simulation heuristic model 

was proposed using an inventory replenishment strategy to mitigate impact of disruptions. The 

limitation of this proposed approach is that it does not measure the consequence of disruptions 

on production schedules and inventory plans. Contrary to Adediran and Al-Bazi (2018), this 

study measures the impact of disruptions in production times and demand quantities 

consequences in addition to generating production schedules and inventory replenishment 

plans.  

Having discussed related studies focusing on modelling and analysing disruption and its impact 

within the manufacturing environment, the limitations in the existing studies are very clear. 

Quantifiable measures of the consequences and the resulting impact of disruptions are lacking 

in literature. As a result, this study aims to fill this gap in knowledge by proposing an agent-

based heuristic algorithm to measure the impact on process times, setup time, etc. and order 

quantities in the event of concurrent and unanticipated disruptions caused by customers’ 

changing demand behaviours. The impact measurement helps obtaining ‘Available Time’ 

(ACtime) that is significant in resolving disruption problems. This specific valuable information 

has been overlooked in previous studies. In the next section, the problem description for which 

the proposed method is developed is presented.   

 

3. Production Schedule Disruptions in the OEM Environment (Problem Statement)  

In a typical OEM environment, customer disruption could be in form of cancellation of orders, 

change in order sequence or change in delivery time. These three types of disruptions can occur 

in different variations, as individual or combined. Any type of disruption, irrespective of their 

combination, affects production schedule and inventory control. Likewise, the resources (such 

as machines and operators) utilisation rates are affected. The change in sequence and delivery 

time can cause production shortages and late orders, whereas, order cancellation can create idle 

time for the resources. As a result, the first two disruptions have drastic impact of reducing the 
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inventory in a quest to satisfy demand through ‘borrowing’ from inventory. On the other hand, 

cancellation disruption can be used to minimise the impact and replenish the inventory while 

satisfying demand. This is possible by utilising the idle time (available time) to resolve order 

shortages and replenish the inventory as much as possible. Therefore, to improve the 

productivity of both machines and operators in OEMs and maintain an optimum inventory 

level, the consequence of such disruptions made by customers should be eliminated if the 

impact of disruption can be identified in advance, it is expected to help production planners to 

generate contingency plans for rescheduling and inventory control whenever disruptions occur. 

The described problem statement is tackled through the developed method in this study as 

discussed in the next section. 

 

4. Production Disruption- Inventory Replenishment (PDIR) Framework 

As discussed in section 1, the framework proposed in Adediran and Al-Bazi (2017) which 

integrates the agent-based simulation, heuristic algorithm and replenishment strategy, is 

extended further and applied in this paper. This is because the previously proposed heuristic 

algorithm within the framework was too basic in terms of inventory replenishment and not 

sustainable for the current problem specification, which is complex in nature.  Also, the 

collective capability of the previous framework is unable to measure the impacts of disruption, 

which is the focus of this paper. The previous framework is dubbed Production Disruption-

Inventory Replenishment (PDIR) (Figure 1). The three modules of the PDIR framework are 

strategically linked in collaboration to solve the problem described in the previous section and 

to help measure the impact of disruption in terms of production times and order quantities. 
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Figure 1 Production Disruption-Inventory Replenishment framework Adediran and Al-

Bazi (2017) 

In this study, the most significant working mechanism of the PDIR framework is the ability of 

the embedded ABM module to identify disruption types and measure their impact in terms of 

time and quantity. The discussion of the three main components of the PDIR framework is 

presented in turn in the next sections. 

The heuristic algorithm adopted in this paper is an extension of the one proposed by Adediran 

and Al-Bazi (2018), which was applied for adapting and accommodating disruption in OEMs 

flow-shop. However, the extended algorithm in this paper focuses on measuring the effect of 

disruption through ABM detective mechanism and the impact of disruption on production and 

its consequences in terms of time and quantity. The description of the extended version is 

discussed in the next section. 

 

4.1. Agent-Based Module 

This section presents the development and implementation of the Agent-Based Modelling 

(ABM) method as incorporated in the PDIR framework. The choice of ABM method in this 

study was inspired by the investigation of the related studies. In the transportation industry, 

Rolon and Martınez (2012) applied the use of agent-based modelling in disruption problems. 

Specifically, the investigation conducted in the manufacturing industry revealed the 

implementation of agent-based simulation modelling approach in the work of Li, Shan, and 

Lui (2011) and Pan et al. (2009) amongst others related studies.  
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In the past, production and inventory scheduling problems have been tackled using various 

well-known simulation modelling methodologies but recently, the ABM method has gained 

popularity as another useful technique to deal with problems in several disciplines. The ABM 

method has been selected to investigate its viability to handle this type of problem. Based on 

the current trends in simulation methodology, it is important to select a method that provides 

advanced opportunities that are beneficial to finding a solution to the research problem and 

evolves with the current technology. This is a quality which has been found useful in the ABM 

method. 

The manufacturing systems are comprised of agents that exist within this system environment. 

ABM is a suitable approach to model the behaviours of these individual agents within the ABM 

environment. It is an environment where agents engage in strategic behaviour and anticipate 

other agents’ reactions when making decisions. ABM is also applicable in this problem because 

the past (previous customer order) is not a predictor of the future (next customer order) 

requirements. 

In this study, the ABM model enhances the goal of this study by scheduling and allocating 

orders and rescheduling orders under disruption, and ultimately measures the impact of 

customer disruptions. The ABM development process is carried out through negotiation, 

collaboration and communication among different agent types identified in the system. In the 

agent environment, there are three agent types identified; they are: order agent, machine agent, 

and operator agent.  

 

 

Based on the problem requirements in this study, the ABM model is developed to achieve the 

following functions: 

• To improve the utilisation of each of the manufacturing system resources. 

• To identify disruption and create support for shortages. This is possible with ABM 

through learning production behaviour as disruption occurs. 

• To identify available processing gaps created by disruption 

• To share information within the integrated system units 

• To accept input parameters such as the order information (type, sequence, quantity, due 

date), machine information (number, process, setup time, process time), operator 

information (skills, number, availability) that are required for processing orders in the 

flow shop manufacturing system setting with minimal idle or waiting time, high 
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utilisation and which satisfies all constraints including the delivery due times of product 

orders. 

• To assign and schedule required order operations to specified system resources i.e. 

machine and operator based on the pre-defined assignment plans. 

The main advantage of using ABM is that it’s function of keeping track of time and sharing it 

with other agents and the use of the messaging sequence within the ABM environment. This 

idea was implemented by 12 in their paper where supply chain entities were represented to be 

interactive among themselves. The messaging sequence diagram in Figure 2 represents 

message interaction involving the customer, production floor, order, machine, operator and 

process. This type of inter-relationship and message exchange among the system agents allows 

accountability of events and actions within the process. It also enables order processing through 

messages such as: order request, resources allocation, order production and dispatch 

information that are being sent within the system. 

 

 

Figure 2 The System Message Sequence diagram (Adediran and Al-Bazi 2017) 

 

The customer sends an order request, which is updated on the production floor. Upon receipt 

of the customer order request, the production floor schedules machines based on the order 

information. The order and machine schedule are used to assign operators to jobs. As a result, 

the machine that has been allocated to an operator engages the order for production processes. 

The production processes occur in a loop of operation until all assigned orders have been 

completed, in which case, the completed order information is passed on to production floor for 
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order dispatch to the customer according to request. This activity is crucial for measuring the 

time and quantity of an order. Within the ABM module, an occurrence of disruption is detected 

when there is a change in the original production schedules affecting both production times 

and order quantities. These changes in terms of production times and order quantities are 

communicated to quantify the impact of disruption within the ABM interactive entities for 

collective decision-making within the framework. 

 
 

4.2. Inventory Replenishment Module 

The inventory replenishment of six possible cases (Figure 3) in a flow-shop manufacturing 

system is discussed. The occurrence of disruptions means production shortages, hereby 

requiring support from the inventory. When the inventory gives support to satisfy production 

demand, inventory control level becomes low or critical without a swift replenishment plan.  
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Figure 3 Inventory Replenishment Cases 

In each of the cases, for each inventory level, maximum and minimum inventory levels are 

shown and the corresponding charts for ‘Current Available Time’ (ACtime) alongside the 

process and setup times. The ACtime is identified through ABM time tracking and it is 

determined through the total busy and idle times within a given production cycle. The ACtime 

presents the time created by the cancellation disruption described in section 3 above. This 

means the ACtime is the consequence of disruption measured in time. The ACtime is utilised 
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through production rescheduling of replenishment orders. Each case shows different inventory 

levels and how the inventory replenishment is carried out. 

In case (a), all order inventory levels are full. This means there is no order borrow or/and no 

replenishment is required even when there is available time. In this case, the available time is 

considered idle resulting in low utilisation of production resources. Case (b) shows a situation 

where all order inventory levels are at critical levels and at high risk of customer order demand 

shortages. Using the arrows to represent the levels of each replenishment attempt through the 

current available time, it shows the gradual replenishment of each level based on the proposed 

strategy. The strategy used is called the Min-Max strategy whereby the minimum order 

production quantity is selected from all maximum production quantities that can fit within the 

current available time for processing. This means the selected inventory is replenished to the 

level where others can level up within any given available time. The process continues to select 

minimum quantities from maximum where two or more order inventory levels are the same. 

The current available time in case (b) can be utilised for any of the order inventory levels that 

is selected through min-max strategy. The same situation occurs in case (c) where all order 

inventory levels are equal but at safe levels. The current available time can be utilised for any 

of the order inventory levels to hit its maximum level. Also a situation can occur where the 

same available time can be shared for more than one order replenishment. This is dependent 

on the order quantity decided through the min-max strategy. In case (d), one of the order 

inventory levels is the least. In this situation, the least order inventory level is selected for the 

given available time for replenishment to be less or equal to the next order inventory level, as 

indicated by the arrow. After the first replenishment attempt, the situation becomes the case of 

two orders having the same inventory levels. This is the case where the min-max strategy is 

applied to select the minimum quantity of the maximum possible to replenish with the next 

available time, as it is the case in case (b) and (c).  In case (e), two orders are on the same 

inventory levels. Using the min-max strategy, it can be decided either one or the other order 

inventory level will utilise the ACtime.  

The situation in case (f) is where one order is least and below the level with the next least 

inventory level. Considering a limited current available time for the least inventory level 

replenishment, the available time is exhausted and not enough for the selected least inventory 

to level up to the next inventory level, and so, part of the next available time is utilised to bring 

the same order inventory to level up with the next order inventory. At the same levels, the 

remaining shared current available time can be utilised by any of the two-order inventory as 
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decided using the min-max strategy. The min-max strategy and the time-sharing ability is made 

possible through the agent-based capability of making decision and information sharing. 

The proposed strategy attempts to utilise all current available times resulting from disruptions 

to remedy the disruptions. In so doing, it helps to maximise the number of order quantities, and 

maximise resource utilisation while inventory levels are gradually replenished to avoid 

unnecessary order inventory. Order inventory replenishment continues using the time-sharing 

and the min-max strategy until all inventory levels are full or all available time is exhausted, 

whichever comes first.  

The timing relationship in the production process in the event of disruptions is crucial to 

measuring the impact of time and quantities. For this reason, the production time analysis is 

developed as discussed in the next sub-section. 

Production time analysis diagram 
 

The Figure 4 below presents the production time analysis which demonstrates how times are 

measured, tracked and calculated within the production processes, especially when disruption 

happens to order number or type. It reveals the entire flow of process time, setup time, start 

and end time of individual order numbers within the production.   
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Figure 4 Production times analysis flow diagram. 

 

The total process and setup times are calculated based on original and disrupted order start and 

end time to derive the available time, which is used for replenishment purpose, after inventory 

borrow, in case of disruption.  The job manager in Figure 4 searches for order number and type 

through the flow shop database system. The details are sent to view to obtain the start and end 

date of orders from the retrieved order data. From the retrieved details, the total process time 

for each order is calculated as well as the setup times during the defined production days and 

the entire period. When disruption occurs by matching the disruption total process times with 

the originally expected process time and setup times, the available time is obtained. The system 

creates a visual representation of the process, setup and available times in the form of a Gantt 

chart. The Gantt chart is stored and can be view for production time analysis purpose. The 
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analysis of time is made possible through the application of the extended heuristic algorithm. 

The function and application of the heuristic algorithm is discussed in the next section. 

 

4.3. Heuristic Algorithm Module 
 

The heuristic obtains the customer demand information such as the Demand quantities (D), 

types in Sequence (S), and Due Time (DT) as input, where full Inventory (I) levels are assumed 

initially for order types. The demand type is sorted in Sequence (S) for processing based on  

predefined order modelling rules of the system such as the earliest due time. The demand is 

then scheduled daily (N) in sequence of due times. Disruption can occur in terms of 

cancellation, which is Disrupted Demand quantities (∆D), Sequence change (∆S) or/and change 

in the Delivery Due Time (∆DT). Customer demand satisfaction is determined under either 

disruption or no disruption. If the Production quantities (P) are equal to demand or disrupted 

demand quantities, then customer demand is satisfied (SD). However, in case the production 

quantities are less, then there are Shortages (SO). When shortages occur due to disruption, 

orders are Borrowed (B) from Inventory (I) to support production, where borrowed order 

quantities are production shortages from Demand or Disrupted Demand quantities (B = (D or 

∆D) - P). Customer demand becomes fully satisfied if the addition of the borrow quantities 

with the production quantities are equal to the demand or disruption demand quantities. In this 

case, shortage is nullified to zero. Meanwhile, if the addition of production and borrowed 

quantities are still less than the demand or disrupted demand quantities, there would be 

unsatisfied customer demand (U). This case would occur when inventory is less or equal to 

zero and insufficient to cover the shortages.  When order quantities are borrowed from 

inventory, replenishment quantities (R) are needed to manage all order inventory levels to 

avoid any future shortages. The inventory replenishment quantities are based on current 

inventory levels (I-B) of all orders. If the inventory level of any order is full or less than 100% 

where there is no available time, then no replenishment is done. However, when inventory level 

is less than 100% and there is available time, the system searches for and utilises available 

process time, if the total available time (ATtime,), which is a consequence of disruption, is at 

least one. For each replenishment operation, the system uses the Min-Max strategy by 

scheduling the minimum of the maximum possible replenishment quantity (Rmin (max)) within 

the given or current available time (ACtime) until they are all exhausted, where total available 

time is the addition of all possible current available time. For schedule replenishment quantities 

(Rmin (max)), current available time is allocated, where replenishment is less or equal to inventory 

borrowed quantities.  
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However, replenishing inventory borrowed quantities are considered for three different 

conditions for either critical or safe inventory levels; if inventory levels are different, the least 

inventory level is considered for replenishment using the current available time until it is zero 

or inventory is full, whichever comes first. When inventory levels are same, the least with the 

same levels are considered based on (Rmin (max)) strategy, where (Rmin (max)) order inventory is 

selected. When the current available time is exhausted and not enough for the (Rmin (max)) 

quantity to level to the next order inventory, part of the next available time is utilised through 

ABM time sharing ability. The replenishment quantities are scheduled at random when similar 

inventory levels have the same (Rmin (max)) quantities. In all cases, the inventory is updated with 

replenishment quantities, giving the inventory new quantities values of (I-B+R). 

To utilise all available total times at each replenishment attempt, the system searches for the 

next current available time and repeats all replenishments steps until all order inventory levels 

are full (100%), available total time is exhausted or the daily production cycle (N) is completed 

(whichever comes first). The system generates and displays output in terms of numbers of 

Production (P), Unsatisfied orders (U), Shortages (SO), Satisfied Demand (SD), Borrowed 

orders (B), Due Time (DT), Sequence (S), Replenishment quantities (R), and Inventory levels 

(I). Each time disruption occurs, the heuristic is activated to identify shortages, determine 

borrowed orders from inventory and re-schedule borrowed orders to replenish the inventory. 

 

5. System Verification and Validation    

This study was conducted in the Unipart Eberspächer Exhaust Systems Ltd (UEES), one of the 

biggest Original Equipment Manufacturers of automotive products in the UK. This work is part 

of a collaborative research project between Coventry University and the UEES. For verification 

of the developed system, the experts, production and operation managers at UEES, reviewed 

and confirmed the appropriateness of the presented designs and specifications for the proposed 

system. Also, different operational time calculations were checked for acceptability with the 

existing real system. As part of the validation process, the simulation results were checked with 

the real-life system under the same parameters. The validation procedure was used to follow 

through a specific order production of an order with order quantity of 45 with 100% inventory 

level on a single shift. The order production flows through all 5 process stations until 

completion using 9 operators. The average total process time is 432 mins with the average 

resource performance rate at 90.1% for machines, 80.6% for operators and the total idle time 

45 mins. The production time, setup time, process time, resource utilisation, idleness and 

waiting time were all checked for their closeness to reality. In some cases, time variations 
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occurred which was as result of simulation time randomness. However, as this does not deviate 

significantly from the real-life results, they were accepted by the company experts as valid 

results. 

 

6. Computational Results and Discussions   

Three possible types of customer disruptions along with their random combinations and 

quantifying their impacts in terms of time and quantity on production schedules were 

investigated to understand their impacts on production schedule. For each disruption 

combination, different demand volumes and critical inventory status were considered for 

experimentation based on the following scenarios; 

• High order volume vs Critical inventory level (HC) 

• Average order volume vs Critical inventory level (AC) 

• Low order volume vs Critical inventory level (LC) 

 

These are real life scenarios being conducted in the Unipart Eberspächer Exhaust Systems Ltd 

(UEES). The High, Average and Low order volumes scenarios of order type ranges of (100-

120), (40-60), and (10-20) orders respectively. The order quantity ranges (80-100) for High, 

(40-50) for Average and (20-25) for Low order volumes and the Critical inventory level is (10). 

For High order volume scenarios, three shifts pattern were set, two shifts pattern for Average 

order volume while a single shift for Low order volume as follows: 

 

➢ Shift 1: 00:01 - 08:00 

➢ Shift 2: 08:01 - 16:00 

➢ Shift 3: 16:01 - 23:58  
 

The range of order volume has been selected to replicate the real-life production order range. 

The order quantity range has been set to maintain a controlled variation with the three levels 

of inventory status considered in the experiments. The number of shifts is assigned 

corresponding to the order volumes. The High, Safe and Critical inventory levels are set to 

understand production behaviour under the three inventory categories. The selected shift 

patterns mimic the real-life system operation and correspond to the demand volume.  

The impact of customer disruption on production and inventory replenishment as well as a 

number of relevant key performance indicators are discussed as follows. 

 

 

 



17 

 

6.1 Impact of Customer Disruption on Production and Inventory Replenishment  

 

The impact that customer disruptions have made on production and inventory replenishment 

plans is determined by the consequences of time and quantity. Tables 1, 2, and 3 present the 

results for these impacts for High Order, Average Order and Low Order demand under Critical 

Inventory levels respectively. The critical inventory status is considered here as the most 

sensitive situation where the most measurable impact of disruptions can be obtained. The Order 

number are the orders that were affected by disruptions. 

 

Table 1 Disruption Impact Measurement for High Order vs Critical Inventory Scenario 
Order 

No 

Disruption Type Time Consequences 

(Mins) 

Quantity Consequences 

(Units) 

Impact on Production 

1 All Disruptions +1124-240(+884) 1248 of 1754 Available time & Borrow 

2 All Disruptions +1248-240(+1008) 1261 of 1785 Available time & Borrow 

12 Cancellation +1248 900 of 17400 Available time 

15 Sequence and Due date change -240 - Borrow 

16 Sequence and Due date change +560-300(+260) - Available time & Borrow 

17 Cancellation & Sequence change +858 1210 of 1784 Available time & Borrow 

24 All Disruptions +1005-300(+705) 1245 of 1744 Available time & Borrow 

26 Cancellation +900 1200 of 1754 Available time 

41 Cancellation & Due date change +1142-300(+842) 1348 of 1785 Available time & Borrow 

56 Cancellation +788 1225 of 1770 Available time 

59 Cancellation & Due date change +1268-420(+848) 1250 of 1750 Available time & Borrow 

60 Cancellation & Sequence change +1240 1120 of 1774 Available time 

75 All Disruptions +1200-300(+900) 850 of 1725 Available time & Borrow 

89 Cancellation & Due date change +905-240(+665) 1241 of 1780 Available time & Borrow 

90 Cancellation +217 1452 of 1710 Available time 

91 Cancellation & Due date change +448-360(+88) 1348 of 1749 Available time & Borrow 

92 All Disruptions +1248-240(+1008) 1245 of 1741 Available time & Borrow 

99 Sequence and Due date change -300 - Available time & Borrow 

 
 

Table 2 Disruption Impact Measurement for Average Order vs Critical Inventory Scenario 
Order 

No 

Disruption Type Time Consequences 

(Mins) 

Quantity Consequences 

(Units) 

Impact on Production 

4 Sequence and Due date change -560 - Borrow 

6 Cancellation +562-120(+442) 451 of 750 Available time 

10 All Disruptions +541-240(+301) 520 of 748 Available time & Borrow 

11 Sequence and Due date change -240 - Available time & Borrow 

12 Cancellation & Due date change +520-240(+280) 480 of 712 Available time & Borrow 

16 Sequence and Due date change -240 - Borrow 

19 Sequence and Due date change -120 - Borrow 

38 Cancellation & Due date change +540-120(+420) 523 of 740 Available time & Borrow 

55 Cancellation & Sequence change +560 621 of 784 Available time 

64 Due date change -120 - Borrow 

75 Sequence and Due date change -120 - Borrow 

95 Due date change -420 - Borrow 

99 Sequence and Due date change -120 - Borrow 

100 Cancellation +485-120(+365) 710 of 785 Available time 
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Table 3 Disruption Impact Measurement for Low Order vs Critical Inventory Scenario 
Order 

No 

Disruption Type Time Consequences 

(Mins) 

Quantity Consequences 

(Units) 

Impact on Production 

12 Cancellation +480 420 of 450 Available time 

13 Sequence and Due date change -120 - Borrow 

36 Sequence and Due date change 0 - Borrow 

40 Cancellation & Sequence change +240 356 of 459 Available time  

41 Cancellation +480 405 of 450 Available time 

62 Cancellation & Due date change +560-120 (+440) 400 of 480 Available time & Borrow 

78 All Disruptions +480-120(+360) 129 of 408 Available time & Borrow 

88 All Disruptions +480-120(+360) 120 of 448 Available time & Borrow 

89 Cancellation +480 255 of 438 Available time 

91 Cancellation +256 251 of 450 Available time 

 

The results presented in the above tables show the order numbers that have been affected and 

the type of disruptions they are affected by. It is noticeable from all three tables that not all 

orders are affected by all disruption types and some orders are affected by two or just one type 

of disruption.  

In Table 1, cancellation disruption on order 12 added +1248 minutes as available time to the 

process, likewise order 26 with +900 minutes of available time. This would give an opportunity 

for investing this time to produce items in case replenishment is required. In Table 2, in many 

occasions there are many borrows due to lack of time (-) and no improvement in the quantity 

of orders. For example, orders 64 and 95 are affected by change in due date delayed production 

by -120 minutes and -420 minutes respectively, and therefore replenishment is not possible 

after borrowing as there was no cancellation. When there is more time gained (+), the number 

of possible inventory replenishment opportunities is increased. This is the case in Table 3, 

where 420 units were replenished out of 450 units borrowed using available +480 minutes 

gained from cancellation. 

In general, it is important to note that while cancellation is the only cause or among the causes 

of disruption, the impact on production is the available time which represents the added time 

(+) consequence. 

 

 

6.2 Impact of Customer Disruption on Inventory Level and Replenishment Plan  

 

In each of the presented scenarios, three order samples were selected randomly for analysis and 

discussion. This is to present a representative, clearer and better understanding of the inventory 

replenishment concept explained in Sections 4.2. and 4.3, through discussion. Most 

importantly, it is essential to prevent inconsistency in explanation which might create confusion 

while bringing the theoretical perception to life through real experimentation.   
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For the high order, critical inventory scenario, Tables 4.a, 4.b and 4.c display results of three 

selected orders to present the impact of disruption on the inventory behaviour including the 

best possible replenishment plan. 

 

Table 4.a First selected order results (high order volume vs critical inventory level) 

 

Table 4.b Second selected order results (high order volume vs critical inventory level)

 

Table 4.c Third selected order results (high order volume vs critical inventory level) 

 

 

As shown in Tables 4.a-4.c, the level of inventories for the three order types were zero for most 

of the production period. This is because there are more demands after disruptions than the 

system can produce and for inventory to support. Although there are two instances of 

replenishment, the inventory level limit is critical and makes little difference considering the 

high demand volumes. 

The consequences of disruption under the high order critical inventory reveals a remarkable 

number of unsatisfied orders. This is due to lack of support for the production shortages. Even 

in the instances of replenishment of the inventory, the wider margin of quantity between the 

order volumes and the inventory level implies that support is not sustainable for disruptions to 

be managed as expected. It is however not realistic to hold critical inventory levels when higher 

order volumes are involved. 

The variation of inventory levels with high order volumes demonstrate the impact of each with 

disruptions combining on the flow-shop. Based on high order volume simulation results of the 

three inventory levels, full inventory level demonstrates a much more sustainable selection to 

achieve the goal of accommodating disruptions while customer orders are being satisfied. 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20

Demand 80 89 100 81 90 81 96 90 82 87 91 90 98 86 80 95 93 95 83 80

Demand After Disruption 80 89 100 81 90 81 28 90 82 77 91 90 98 86 75 95 93 95 83 80

Actual Production 80 80 80 81 75 70 28 78 60 77 80 78 85 60 68 60 74 68 0 61

Production PLUS Replenishment 80 80 80 81 75 70 28 78 60 82 80 78 85 60 68 60 74 68 0 61

Borrow 0 9 1 0 0 0 0 0 0 0 5 12 0 0 0 0 0 0 0 0

Replenishment 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0

Inventory 10 10 1 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0

Cancellation 0 0 0 0 0 0 0 0 0 10 0 0 0 0 5 0 0 0 0 0

Production with Inventory Support 80 89 81 81 75 70 28 78 60 77 85 78 85 60 68 60 74 68 0 61

Late/Unsatisfied orders 0 0 19 0 15 11 0 12 22 0 6 12 13 26 7 35 19 27 83 19

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20

Demand 94 97 81 88 85 86 84 87 95 96 92 84 80 100 81 95 93 100 98 92

Demand After Disruption 94 97 60 88 85 86 84 87 95 96 92 84 80 100 81 95 93 0 18 0

Actual Production 94 97 60 60 81 65 74 87 82 95 80 80 68 95 40 85 64 0 18 0

Production PLUS Replenishment 94 97 60 60 81 65 74 87 82 95 80 80 68 95 40 85 64 10 18 0

Borrow 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Replenishment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0

Inventory 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 10

Cancellation 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 80 92

Production with Inventory Support 94 97 60 70 81 65 74 87 82 95 80 80 68 95 40 85 64 0 18 0

Late/Unsatisfied orders 0 0 0 18 4 21 10 0 13 1 12 4 12 5 41 10 29 0 0 0

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20

Demand 95 89 87 96 84 91 100 85 80 94 87 96 100 98 95 83 80 80 92 97

Demand After Disruption 95 69 87 96 0 91 100 85 80 10 87 96 100 98 95 83 80 80 92 97

Actual Production 95 69 87 90 0 78 84 82 80 10 87 87 80 80 82 69 47 75 70 79

Production PLUS Replenishment 95 69 87 90 6 78 84 82 80 15 87 87 80 80 82 69 47 75 70 79

Borrow 0 0 0 6 0 10 0 0 0 0 0 5 0 0 0 0 0 0 0 0

Replenishment 0 0 0 0 6 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0

Inventory 10 10 10 10 4 10 0 0 0 0 5 5 0 0 0 0 0 0 0 0 0

Cancellation 0 20 0 0 84 0 0 0 0 84 0 0 0 0 0 0 0 0 0 0

Production with Inventory Support 95 69 87 96 0 88 84 82 80 10 87 92 80 80 82 69 47 75 70 79

Late/Unsatisfied orders 0 0 0 0 0 3 16 3 0 0 0 4 20 18 13 14 33 5 22 18
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For the average order, critical inventory scenario, Tables 5.a, 5.b and 5.c display results of three 

selected orders to present the impact of disruption on the inventory behaviour including the 

best possible replenishment plan. 

Table 5.a First selected order results (average order volume vs critical inventory level)

 
 

Table 5.b Second selected order results (average order volume vs critical inventory level) 

 

 

Table 5.c Third selected order results (average order volume vs critical inventory level) 

 

The effect of disruptions on the three order examples show many instances of late or unsatisfied 

customer orders. This is because the inventory limits were not sufficient to support production 

shortages caused by disruptions. The critical levels of inventory here mean that inventories are 

exhausted quickly. It appears more damaging when there are fewer replenishment 

opportunities. In Table 5.b, where inventory replenishment occurred on 3 occasions, they were 

not enough to accommodate disruptions. Over 10 days of the production period, the actual 

production is less than the demand after disruptions. Apart from the critical inventory 

condition, the inability of the production flow-shop to match production of demand after 

disruption can be further understood from the resource utilisation point of view. 

Order inventory in Table 5.c tend toward zero level within first half of the production period. 

This is because the orders experienced more and quicker borrow due to disruption causing 

more unsatisfied customer orders. The impact of the disruption is felt with high number of 

unsatisfied orders during the constant zero level of inventory. This continues for a longer period 

as there were no instances of inventory replenishment, especially in Table 5.a. When there are 

replenishments, as the case in Table 5.b and one instance (day 18) in Table 5.c, they were not 

enough to support the declining production levels.  

 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20

Demand 43 41 42 46 47 42 45 49 44 48 43 41 47 42 44 43 42 41 40 49

Demand After Disruption 43 41 42 0 47 42 45 49 44 48 43 41 47 42 44 43 42 41 40 49

Actual Production 43 41 42 0 40 42 40 40 44 40 40 40 40 42 41 40 42 40 40 42

Production PLUS Replenishment 43 41 42 0 40 42 40 40 44 40 40 40 40 42 41 40 42 40 40 42

Borrow 0 0 0 0 7 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

Replenishment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Inventory 10 10 10 10 10 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cancellation 0 0 0 46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Production with Inventory Support 43 41 42 0 47 42 43 40 44 40 40 40 40 42 41 40 42 40 40 42

Late/Unsatisfied orders 0 0 0 0 0 0 2 9 0 8 3 1 7 0 3 3 0 1 0 7

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20

Demand 44 50 42 45 43 47 43 45 41 50 48 45 47 42 43 44 48 45 46 47

Demand After Disruption 44 50 42 45 43 47 43 45 5 50 48 0 47 42 43 44 48 29 46 47

Actual Production 40 40 42 40 41 40 40 40 5 40 42 0 40 42 43 40 40 29 40 43

Production PLUS Replenishment 40 40 42 40 41 40 40 40 10 40 42 6 40 42 43 40 40 34 40 43

Borrow 4 6 0 0 0 0 0 0 0 5 0 0 6 0 0 0 0 0 5 0

Replenishment 0 0 0 0 0 0 0 0 5 0 0 6 0 0 0 0 0 5 0 0

Inventory 10 6 0 0 0 0 0 0 0 5 0 0 6 0 0 0 0 0 5 0 0

Cancellation 0 0 0 0 0 0 0 0 36 0 0 45 0 0 0 0 0 16 0 0

Production with Inventory Support 44 46 42 40 41 40 40 40 5 45 42 0 46 42 43 40 40 29 45 43

Late/Unsatisfied orders 0 4 0 5 2 7 3 5 0 5 6 0 1 0 0 4 8 0 1 4

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20

Demand 45 44 42 48 45 50 47 46 43 49 45 50 44 41 40 40 49 41 49 48

Demand After Disruption 45 44 42 48 45 50 47 46 43 49 45 50 44 41 40 40 49 41 49 48

Actual Production 45 44 42 48 40 40 40 46 43 40 45 40 42 41 40 40 40 41 40 40

Production PLUS Replenishment 45 44 42 48 40 40 40 46 43 40 45 40 42 41 40 40 40 46 40 40

Borrow 0 0 0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 5 0

Replenishment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0

Inventory 10 10 10 10 10 5 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0

Cancellation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Production with Inventory Support 45 44 42 48 45 45 40 46 43 40 45 40 42 41 40 40 40 41 40 40

Late/Unsatisfied orders 0 0 0 0 0 5 7 0 0 9 0 10 2 0 0 0 9 0 4 8
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For the low order, critical inventory scenario, Tables 6.a, 6.b and 6.c display results of three 

selected orders to present the impact of disruption on the inventory behaviour including the 

best possible replenishment plan. 

Table Error! No text of specified style in document..a First selected order results (low order 

volume vs critical inventory level) 

 

Table Error! No text of specified style in document..b Second selected order results (low order 

volume vs critical inventory level) 

 
Table Error! No text of specified style in document..c Third selected order results (low order 

volume vs critical inventory level) 

 

Even at critical level of inventory, production appears not affected by disruptions. In Tables 

6.a-6.c, the inventory level remains unchanged throughout the entire production period. In 

every instance of the low order volumes, the impact of disruptions has no threat on production 

levels and hence inventories were kept at considerable high level.  

For all the above scenarios, it can be established that the effects of disruptions can be managed 

when inventory support is sufficient.  

 

7. Sensitivity Analysis  

In order to validate and establish the effectiveness of the proposed heuristic approach in this 

study, comparison with approaches is essential. However, other approaches mentioned in the 

literature, which have no direct factors and variables as in the experimental setting for the 

proposed approach, are inadequate for comparison. The irregularities would rather be biased 

and could give unreliable judgment. Therefore, a sensitivity analysis study is conducted to 

study the performance based on dependent variables such as the demand volumes and inventory 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20

Demand 21 22 21 20 24 20 22 25 20 25 23 22 24 24 20 25 20 22 24 23

Demand After Disruption 21 22 21 0 24 20 0 25 20 0 23 22 24 24 20 25 20 22 24 23

Actual Production 21 22 21 0 24 20 0 25 20 0 23 22 24 24 20 25 20 22 24 23

Production PLUS Replenishment 21 22 21 0 24 20 0 25 20 0 23 22 24 24 20 25 20 22 24 23

Borrow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Replenishment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Inventory 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Cancellation 0 0 0 20 0 0 22 0 0 25 0 0 0 0 0 0 0 0 0 0

Production with Inventory Support 21 22 21 0 24 20 0 25 20 0 23 22 24 24 20 25 20 22 24 23

Late/Unsatisfied orders 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20

Demand 24 20 20 21 23 25 21 23 22 21 24 21 23 20 23 21 25 23 21 20

Demand After Disruption 24 20 20 21 23 25 21 23 22 21 24 21 23 20 23 21 25 23 21 20

Actual Production 24 18 16 21 20 20 21 23 22 21 20 21 23 20 20 18 20 20 21 20

Production PLUS Replenishment 24 18 16 27 20 20 29 23 22 21 20 21 23 20 20 18 20 20 21 20

Borrow 0 2 4 0 3 5 0 0 0 0 4 0 0 0 3 3 0 0 0 0

Replenishment 0 0 0 6 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0

Inventory 10 10 8 4 10 7 2 10 10 10 10 6 6 6 6 3 0 0 0 0 0

Cancellation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Production with Inventory Support 24 20 20 21 23 25 21 23 22 21 24 21 23 20 23 21 20 20 21 20

Late/Unsatisfied orders 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 3 0 0

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20

Demand 24 21 20 25 21 24 20 20 24 21 22 22 20 21 21 25 25 20 20 23

Demand After Disruption 24 21 20 25 21 24 20 20 24 21 22 22 20 21 21 25 25 20 20 23

Actual Production 24 21 20 25 21 24 20 20 24 21 22 22 20 21 21 25 25 20 20 23

Production PLUS Replenishment 24 21 20 25 21 24 20 20 24 21 22 22 20 21 21 25 25 20 20 23

Borrow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Replenishment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Inventory 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Cancellation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Production with Inventory Support 24 21 20 25 21 24 20 20 24 21 22 22 20 21 21 25 25 20 20 23

Late/Unsatisfied orders 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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limits. The sensitivity analysis is used to explore the robustness and accuracy of the developed 

model outcomes under uncertain demand conditions (Rahman and Mohamad-Saleh 2018). The 

number of late order is selected as the Key Performance Indicator (KPI) or the target variable 

against the changing demand volumes and altering different level of inventory limits. Table 7 

presents a comparison between the ‘As-Is’ scenario and three other method of inventory 

replenishment including sequential, Instantaneous replenishment and the proposed methods. 

 

Table 7 Comparison for Late Order KPI 

Data Set- Parameters “As-Is” Sequential Instantaneous 

Replenishment 

Method 

Proposed 

Heuristic 

 

High Order  

High Demand  

(In Vol.) 

Full Inventory  785 521 455 383 

Safe Inventory  710 408 311 209 

Critical 

Inventory  

1152 1005 856 675 

Average Order  

Average 

Demand 

(In Vol.)  

Full Inventory  164 125 37 0 

Safe Inventory  205 384 178 33 

Critical 

Inventory 

248 254 190 153 

Low Order  

Low Demand  

(In Vol.) 

Full Inventory  0 0 0 0 

Safe Inventory  0 0 0 0 

Critical 

Inventory 

15 0 0 0 

Total 3279 2697 2027 1453 

 

As indicated in Table 1 under the proposed heuristic column, it is clear that the order demand 

volume as well as the inventory limits significantly impact the number of late orders, most 

especially for High and Average order and demands.  

For the purpose of justification, the proposed heuristic approach for inventory replenishment 

of this study is compared with the selected closely related approaches; a sequential and 

instantaneous replenishment approaches by Adediran and Al-Bazi (2018) against the current 

state “As-Is”. The idea of non-instantaneous and gradual inventory replenishment strategy of 

this study makes both the sequential and instantaneous methods comparable. This is related to 

the variable levels of inventory at the time of replenishment. The proposed heuristic algorithm 

is developed to logically replenish inventory based on each level of inventory, order volume 

and process time availability. In the sequential approach, the inventory replenishment is done 

in order sequence by considering the required order number or each order inventory per time. 

For the instantaneous approach, order replenishment to inventory is done instantly.  



23 

 

From Table 7, a small change in high order and demand at full inventory level results in a 

significant change in the number of late orders. The highest number of late orders are recorded 

for high order demand. However, the lowest number of late orders at 383 reveals the better 

performing proposed approach compared to others. The average level of order demand 

variation has a corresponding level of effect on late orders. Under the average order and 

demand, the performance of the proposed approach shows superiority with 0, 33 and 153 late 

orders at full, safe and critical inventory levels respectively compared to other approaches. On 

all variable circumstances, except for “As-Is” critical inventory, the effect of low order and 

demand is insignificant as no late order is recorded for all approaches. This is an indication that 

high demand variation has no significant effect on late orders when high, safe or critical 

inventory levels are maintained. And the proposed approach is more sensitive to high order 

demand at full or safe inventory levels, and the impact is insignificant for low order demand 

under the same inventory level parameters. However, based on the outcomes of the 

comparison, the proposed approach of this study is most effective with the least total number 

of late orders of 1453 under all variable conditions. 

 

8. Conclusion and Recommendation 

Measuring the impact of disruption on production and inventory replenishment is an essential 

requirement to find ways of resolving disruption problems. This study has focused on 

identifying and measuring the impact of disruptions in terms of process times and order 

quantities. This paper earlier noted that disruptions affect production causing shortages, and 

resources’ idleness and also causes inventory levels to become low or critical in some cases, 

creating further problem of large backlogs, higher number of unsatisfied orders and even 

production shutdown. The study helped production planners working at the UEES to minimise 

the consequences of the damages on production schedules and inventory control by presenting 

the framework in which the ABM module was used to identify and measure these consequences 

in terms of process times and order quantities. In addition, the improved framework was 

developed with the aim of assisting production planners in flow-shop system to manage 

disruptions, which is crucial to customer satisfaction. However, the work is limited to the 

strategy of an organisation to produce products based on anticipated demand rather than other 

strategies such as make to stock, etc.  

To demonstrate the effectiveness of the proposed framework, computational real life 

experiments were conducted for low, average and high order volumes against critical inventory 

levels, where disruptions occur on production in random combination. 
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The outcome of the experiments clearly reveals the actual times saved or lost, and the actual 

order quantities that were short or borrowed (Tables 1, 2 and 3). This knowledge allows 

appropriate types of orders to borrow, and the rescheduling and replenishment of borrowed 

orders. This is essential for production planners to make decisions when disruptions occur.  

The impact of disruption on the level of inventory and the replenishment plan for these 

experiments were identified in terms of how to efficiently utilise the idle time resulting from 

customer disruption and use it for replenishing the inventory (Tables 4a-c, 5a-c, and 6a-c). 

Also, the proposed approach for inventory replenishment was compared with other methods 

(Table 7) in terms of the number of late orders. The results of the comparison show that the 

proposed approach outperformed the others under the same inventory level condition. The 

scalability of the heuristic algorithm is evident as it works well for the varying production 

scenario experiments such as low, average and high demands under critical inventory levels 

(discussed in section 6).   

The findings of this study can be explored further by implementing more sophisticated meta-

heuristic and optimisation algorithms. This can be incorporated into the ABM module of the 

framework with the aim of further neutralising the effect of disruption. This can be achieved 

through production process re-orientation and production behavioural pattern learning through 

historical data when disruptions occur. The messaging model could be developed further by 

embedding the heuristics optimisation rules as additional protocols within the agents’ 

interactions in messaging model for better and faster computations.  
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