
Multi-period model for disaster management in simultaneous disasters 

Abstract: Relief activities are complicated when multiple disasters take place at different locations 

simultaneously. Designing effective relief networks for these instances involves managing the priorities 

among regions and products, developing the capacity to share limited resources and facilities, and 

engaging with multiple suppliers over several periods. Unfortunately, even after recent experiences in 

different countries, the management of simultaneous disasters is still understudied. This article introduces 

a two-stage dynamic formulation for logistics decisions in instances caused by simultaneous disasters. It 

guides supplier selection, facility location, stock pre-positioning, and resource allocation at the first stage, 

whereas relief distribution, post-disaster procurement, and inventory management are addressed at the 

second stage. The model minimizes cost and the maximum shortage. Results of numerical experiments 

show the way the model considers the characteristics of each situation to dispatch limited shared 

resources. The experiments show that planning for single disasters has a negative impact on 

performance when faced with situations caused by simultaneous disasters. That is confirmed by findings 

from the case study in Mexico, which also highlights the preference for prepositioning stock using a mix 

of different kind of suppliers, and the importance of developing a reliable network of facilities and suppliers 

to handle simultaneous disasters effectively.  

Keywords: Humanitarian logistics; multi-objective programming; procurement; simultaneous disasters; 

disaster response. 

Managerial relevance statement: The practical implications of the study include: 

• Simultaneous disasters affect the quality of the response. Reacting to one disaster influences the 

resources and stakeholders available to respond to another disaster. Disregarding that can lead to 

sub-optimal solutions affecting the support given to victims. 

• The nature and interconnectedness of the different disasters affects decision-making. As 

simultaneous disasters involve sharing resources available, the model enables authorities to allocate 

resources fairly among disasters based on their characteristics and impact. 



• The model is valuable to test the real capabilities of the response system. The model can be used at 

the pre-disaster stage to test different scenarios to produce robust response plans using historical 

information, forecasts, or instances of interest. That includes the design of the relief network and 

potential strategies to handle different post-disaster conditions. 

• The model can help develop plans for different seasons considering the potential damage over several 

time periods of recurrent disasters. 

• The model allows evaluating suppliers. It investigates their participation in different scenarios, their 

contribution to response, and the performance of the supply network. 

1. INTRODUCTION 

The increasing frequency and impact of disasters over the last decades is alarming [1]. There is a sharp 

increase in the number of disasters, people affected and economic damage globally [2, 3]. The record of 

432 catastrophes in 2021 is significantly higher than the average between 2000 and 2020 [4]. Those 

disasters caused over USD $252 billion in damages and affected around 101.8 million people [5]. The 

link between procurement and resource management affects the support given during disasters, as 

procurement represents up to 65% of the total expenses in disaster operations [6]. A reliable supply 

network prevents supply shortages, especially in simultaneous disasters. Unfortunately, examples of 

inefficient disaster procurement [7] show the limitations of the strategies used in research and in practice. 

The term compound disasters refers to disasters caused by different hazards occurring at the same time 

in the same community [8], whereas the term simultaneous disasters describes instances where natural 

hazards occur concurrently at different geographical locations [9]. Both involve handling multiple 

disasters, but this research is motivated by the extra complexity of supporting different communities in 

simultaneous disasters. These disasters involve supporting different regions with varying vulnerability levels 

that are affected by (potentially) different hazards. Hence, these events require modifying current response 

systems to facilitate the participation of different local, regional, or national organizations to overcome limitations 

of resources and geographical challenges [10]. These situations require balancing the needs of different 



areas [11] requiring swift and effective delivery of relief items. The current approach to manage 

simultaneous disasters involves adapting mechanisms designed for independent disasters [12] which 

only account for individual risks [11]. However, the cascading effects of one disaster on another, their 

varying magnitude, and the different level of vulnerability of the affected regions affect response [10, 13].  

Planning is key in relief operations [14] as it promotes developing strategies to handle different conditions. 

Governments and NGOs need to plan for simultaneous disasters [15] given the expected increase of 

these hazards in the future [13]. This study targets two questions: (i) how can a plan for disaster response 

over multiple periods incorporate the occurrence of simultaneous disasters? (ii) what is the effect on 

performance of only planning for independent disasters when facing simultaneous disasters? 

Following the call for multi-hazard rather than single-hazard management systems for disasters [16], this 

research uses optimization to support disaster management for multiple periods in instances caused by 

simultaneous disasters. The contribution of this study is threefold: i) it proposes a mathematical 

formulation for humanitarian logistics over multiple periods in situations caused by simultaneous 

disasters, ii) it provides an analysis about the importance of considering the different levels of priority of 

products across disasters, and iii) it provides evidence about the challenges of handling simultaneous 

disasters in systems designed for single independent disasters. The two-stage bi-objective dynamic 

stochastic formulation incorporates decisions about supplier selection, procurement, facility location, and 

resource allocation at the first stage, whereas the second stage supports procurement, inventory 

management, and relief distribution. It distinguishes between distinct areas with different levels of urgency 

for multiple products. The model is applied to numerical examples and to a case based on Mexico in 

2013, where Hurricanes Ingrid, Manuel and major storms occurred at the same time in different regions.  

The article is structured as follows. Section 2 presents related literature; Section 3 introduces the 

development of the model and Section 4 elaborates on the numerical experiments. Section 5 describes 

the case study and the results from the implementation of the model, whereas Section 6 discusses the 

main findings and implications, and Section 7 provides the summary and conclusions of the article. 



2. LITERATURE REVIEW 

2.1. Procurement in humanitarian logistics 

Supplier selection has been tackled using approaches such as action-based [17], multi-criteria decision-

making [18], non-linear optimization [19], optimization based on focus groups [20], among others. These 

articles rely on the characteristics of the supplier, combining multiple stakeholders and multiple criteria. 

Uncertainty in demand and the situation have been explored in the literature as well using game 

formulations and auction models. Shamsi, Torabi and Shakouri [21] propose a game formulation for 

vaccine procurement with option contracts considering a backup supplier. The aim of the buyer is to 

minimize cost and the objective of the supplier is to maximize profit. Considering the links between 

organizations and sustainability, Boostani, Jolai and Bozorgi-Amiri [22] propose a formulation minimizing 

cost, maximizing minimum satisfaction rate and minimizing environmental impact. The dimension of 

collaboration between different humanitarian organizations is taken forward by Nagurney and Qiang [23]. 

The article introduces a model based on the mean-variance approach to explore the impact of horizontal 

coordination in disaster scenarios. These articles provide valuable solutions for procurement for single 

stages, especially looking at response. However, it is important to consider the links between stages.   

Two-stage or multi-stage approaches have been a common way to deal with uncertainty considering 

more than one stage in disaster management. Falasca and Zobel [6] develop a model to determine order 

quantities for immediate response at the first stage, whereas decisions are made at the second stage 

once there is more information. The model minimizes costs across all possible scenarios considering 

uncertainty in donations as well. Aghajani and Torabi [24] introduce a two-round decision model with 

information updates. The first-round model minimizes total cost, delivery time and the score of the 

suppliers selected. The second-round model minimizes cost and the total score of the suppliers selected. 

There is a stream of procurement articles exploring contractual agreements using two-stage formulations. 

Considering the value added by quantity flexibility contracts (QFC), Balcik and Ak [25] propose a model 

to select suppliers based on cost minimization with uncertain demand. The model minimizes costs and 



includes in the constraints the need to satisfy quantity and lead time. Torabi, Shokr, Tofighi and Heydari 

[26] propose a fuzzy-stochastic model for prepositioning and procurement using QFC. The formulation 

minimizes cost, including penalty cost for unmet demand. First-stage decisions are focused on facility 

location and prepositioning, whereas second-stage decisions include post-disaster procurement and the 

distribution plan. Olanrewaju, Dong and Hu [27] consider the commitment quantity of the agency, the 

reserve capacity of the suppliers, and the quantity discount rate in their formulation exploring the impact 

of supplier agreements in supplier selection minimizing cost across stages. Although these articles 

account for two different stages and agreements with suppliers during disasters, the variation of the 

behavior of demand at different periods is not considered. The link between procurement, inventory, and 

relief distribution needs to consider the evolution of events to achieve efficient use of resources. 

Tackling procurement using multiple periods, there are formulations looking at the procurement of relief 

materials and vehicles. Hu, Han and Meng [28] propose a two-stage stochastic model to determine the 

number of suppliers, pre-disaster inventory levels, locations, and post-disaster procurement quantities. 

The formulation minimizes cost and includes lead time discount, return price and equity. Yan, Di and 

Zhang [29] present a multi-modal formulation for the distribution of relief materials minimizing response 

time and cost. The model allows for the expedite production of materials when there are disruptions in 

the supply chain. Alem, Bonilla-Londono, Barbosa-Povoa, Relvas, Ferreira and Moreno [30] adopt a 

social vulnerability index to prioritize victims and needs for procurement, facility location, prepositioning, 

and distribution at the pre-disaster stage. The model maximizes coverage using macro and micro time 

periods. Leveraging the idea of macro and micro periods but focused on vehicles, Moreno, Alem, Ferreira 

and Clark [31] propose a formulation for location and transportation minimizing logistics and deprivation 

costs. The first stage looks at facility location and fleet sizing, whilst the second stage is focused on relief 

distribution and inventory management. Alem, Clark and Moreno [32] introduce a model minimizing a 

weighted sum of cost and unmet demand. The first stage is focused on prepositioning and vehicle 

contracting, whereas the second stage looks at relief distribution and inventory management. Keshvari 



Fard, Eftekhar and Papier [33] consider fleet sizing as well. They provide a stochastic dynamic 

programming model minimizing deprivation cost. The model considers mission criticality, budget-

uncertainty, time-restricted budgets, and uncertainty in asset replacement. The inclusion of multiple 

periods in these models introduces the possibility of having pre-disaster and post-disaster procurement, 

the latter affected by the variations in demand. However, these models assume the occurrence of a single 

disaster affecting different areas in a region. The nature of any other disruptions is not considered, which 

would complicate the efficient use and the fair allocation of resources for regions with varying needs.  In 

current models, the supply network is looking at a specific event of a single nature, which faced with more 

than one disaster can lead to insufficient capacity, supply delays, and shortages of critical items.  

2.2. Humanitarian logistics in instances with multiple disasters 

Some governments include simultaneous disasters in planning because of their potential damage [15]. 

Although the procurement literature is lagging in this area, there are some models to allocate resources.  

Zhang, Li and Liu [34] propose a resource assignment method minimizing travel time from supply points 

to the primary affected area and from the supply points to the secondary affected area considering the 

possibility of secondary disasters. Su, Zhang, Liu, Yue and Jiang [35] introduce a model to allocate rescue 

resources to multiple concurrent incidents happening simultaneously. It minimizes a weighted sum of 

travel time and total cost. Li, Zhao, Fan, Cao and Qu [36] propose a rescuer allocation model considering 

multiple rescue tasks and different departure places. The model maximizes the matching degrees 

between the rescuers and the rescue tasks to account for the preferences from the rescuers. Klibi, Ichoua 

and Martel [37] introduce a two-stage model focused on facility location and stock prepositioning. The 

article considers the possibility of multiple hazards affecting an area within the time horizon. Decisions in 

the first stage look at distribution center location and pre-disaster procurement, and second stage 

decisions focus on relief distribution. The model includes the inter-arrival time between two hazards and 

the objective is to maximize coverage and minimize cost using a weighted sum of both functions. Yu, 

Zhang, Yang and Miao [38] propose a model minimizing accessibility costs, deprivation costs, and penalty 



costs stemming from the allocation of critical relief. Wang, Bier and Sun [39] present a model for equitable 

allocation of emergency materials to multiple affected locations. The model minimizes the combination of 

the total disutility of shortfalls of materials, total transportation costs, and total allocation costs. Recently, 

Doan and Shaw [15] address resource allocation for simultaneous disasters with three optimization 

models: the first looking at risk of not reaching the desired level of service with resource constraints, the 

second one suggesting the resources needed to satisfy the emergencies and the third one combining 

both. Wang [40] addresses equitable allocation of resources to multiple disaster-stricken sites. The multi-

objective formulation minimizes total delivery time, costs, and maximum coverage. 

Although the formulations presented in this section show the importance of managing resources in 

instances with several concurrent disasters, the link to procurement is missing. There are a few articles 

exploring subsequent disasters accounting for procurement. Nezhadroshan, Fathollahi-Fard and 

Hajiaghaei-Keshteli [41] design a possibilistic-stochastic model minimizing logistics costs, maximum 

travel time, and maximizing resilience level. It considers the potential effects of subsequent disasters in 

demand and delivery time. Foroughi, Moghaddam, Behzadi and Sobhani [42] design a bi-objective 

formulation minimizing total cost and maximizes the resilience level of facilities including the effect of 

subsequent disasters on demand. These articles are a step forward to react to multiple disasters. 

However, subsequent disasters assume disasters are linked and affect a similar area. That facilitates 

preparing the supply network sharing basic needs and focusing on that region. Simultaneous disasters, 

however, require splitting resources across different regions with different needs. Current models would 

struggle to consider the varying needs of different regions and hazards. 

2.3. Research gap 

Table 1 shows a summary of the literature reviewed. There are different findings from this survey. 

Procurement is commonly associated with different logistics activities, but it is rarely linked to resource 

allocation. Only Boostani, Jolai and Bozorgi-Amiri [22] incorporate their link, but their model focuses on 

the allocation of relief rather than other resources such as vehicles or staff. Considering the 



interconnectedness between relief items and the resources needed to handle and deliver them, there is 

a need to design models integrating both with other humanitarian logistics activities. 

None of the procurement articles consider simultaneous disasters. There are attempts from 

Nezhadroshan, Fathollahi-Fard and Hajiaghaei-Keshteli [41] and Foroughi, Moghaddam, Behzadi and 

Sobhani [42] with parameters to modify demand based on subsequent disasters, but looking at the impact 

on the same community. Having multiple events at similar times in different places stretches resources 

from authorities to the limit [15]. The expected increase of these situations [13] underscore the need to 

develop procurement strategies ensuring the continuous flow of relief to avoid sub-optimal policies. 

The review shows that two-stage stochastic models are useful to integrate uncertainty to reflect the nature 

of disaster management. These models use possible occurrences of uncertain parameters to identify 

“good” strategies against any outcome with flexible decisions related to each outcome [43]. The user can 

define first stage pre-disaster decisions because these assume there is no precise value of the random 

variables, and second-stage post-disaster decisions once more information is available. These models 

are suitable to include multiple periods, which is promising for simultaneous disasters [See 15, 34]. 

The model considers the trade-off between reducing the maximum unmet demand and the operational 

cost given the importance of introducing more than one criterion in humanitarian operations [18, 44]. The 

first objective function reduces the maximum number of people without relief to reduce shortages and 

add fairness in the formulation by supporting equity per each region. 

Overall, the review has shown an absence of articles considering the interconnectedness of procurement 

with resource allocation over multiple periods in instances caused by simultaneous disasters. That is 

problematic because the different requirements and priorities from each disaster affect their response 

and their attention to the other disasters. Using current models for independent disasters can lead to 

overestimation of the capacity of the response system or to a sub-optimal response network, as 

simultaneous disasters can make facilities or suppliers unsuitable or alter their preference [45]. In a 

context with multiple periods, that can affect the feasibility of the plan. This research is tackling that gap. 



Table 1. Summary of the literature review 

Authors 

Decisions Characteristics 

Procurement 

Facility 

location 

Resource 

allocation Modelling approach 

Multiple 

disasters 

Multi-

commodity 

Multiple 

suppliers 

Multi-

period 

Falasca and Zobel (2012)    Two-stage stochastic  
 

  

Balcik and Ak (2013)    Two-stage stochastic   
  

Alem et al. (2016)    Two-stage stochastic 

 
 

 
 

Hu et al. (2017)    Two-stage stochastic   
  

Moreno et al. (2018)    Two-stage stochastic 

 
 

 
 

Shamsi et al. (2018)    Stochastic model   
 

 

Torabi et al. (2018)    Two-stage stochastic  
  

 

Keshvari et al. (2019)    Dynamic    
 

Nagurney and Qiang (2020)    Multiproduct network  
  

 

Aghajani and Torabi (2020)    Stochastic model  
  

 

Boostani et al. (2020)    Stochastic model  
  

 

Olanrewaju et al. (2020)    Multi-stage stochastic   
 

 



Nezhadroshan et al. (2021)    Possibilistic-stochastic    

 

Yan et al. (2021)    Deterministic    
 

Alem et al. (2021)    Deterministic  
 

 
 

Foroughi et al. (2022)    Stochastic model    

 

Klibi et al. (2018)    Deterministic     

Zhang et al. (2012)    Two-stage stochastic 
  

  

Su et al. (2016)    Deterministic 
  

  

Yu et al. (2018)    Dynamic 

   
 

Wang et al. (2019)    Deterministic 

 
 

 
 

Li et al. (2019)    Deterministic 
 

   

Doan and Shaw (2019)    Two-stage stochastic 
  

 
 

Wang (2021)    Deterministic  
 

 
 

This article    Two-stage stochastic     



3. MODEL 

3.1. Context of the situation 

The relief network is prepared ahead of the disaster (first stage) to allow the system to react quickly and 

efficiently. Decisions at this stage include the selection of suppliers, location of critical facilities, and 

allocation of personnel to relief delivery activities. Critical facilities are managed by staff and are selected 

based on their distance to the affected regions, their capacity, opening cost, and number of employees 

required. A set of suppliers is selected to deliver relief to be prepositioned in regional distribution centers. 

Relief items are procured based on the price, the availability of stock, and their distance to the affected 

regions. Because of donation uncertainty, only items procured by the decision-maker are considered.  

A set of scenarios are used in the second stage of the model to manage the uncertainty of demand. 

These scenarios must be based on reliable forecasts or historical information about the different events 

to leverage the formulation. Having that information in advance allows the model to explore the different 

combinations of variables to provide meaningful results. Prepositioned items from the first stage are 

supplemented by post-disaster procurement to deliver swift support [46]. Post-disaster procurement is 

undertaken every period to balance available stock and the demand from affected regions. Delivery trips 

are defined based on the distribution vehicles, staff available, and stock inventory at facilities per period. 

The scarcity of resources is reflected in the second objective function, which minimizes facility, 

procurement, staff, and delivery costs. Evidence about limitations in the resources available for immediate 

disaster response highlights the need to incorporate this dimension to support victims. This objective 

function shows the impact of different levels of investment, the type of resources required, and the extra 

level of investment needed for added resources beyond their current plan to decision-makers.  

The inclusion of simultaneous disasters is a prominent feature of the model. Although resource allocation 

has been studied in these instances, there is an absence of research connecting procurement decisions 

with resource allocation, which affects the management of simultaneous disasters because of the 

existence of resource-dependent decisions [15]. The model proposed supports procurement, facility 



location, and distribution in the context of simultaneous disasters. Its impact is twofold; it incorporates 

equity among areas affected by the same disaster, and it prioritizes products among regions based on 

the nature of the disaster. The formulation can be easily modified to support compound or subsequent 

disasters by defining the quantity and type of demand at different periods in the same region. Hence, the 

model introduces a degree of flexibility to ensure every region is served appropriately. The priority level 

reflects the urgency of an affected area to allow optimal resource allocation [47]. Sabbaghtorkan, Batta 

and He [48] identify the priority of relief as a major gap in current studies in humanitarian logistics using 

the example of earthquakes and draughts, where medical supplies are crucial for the first whereas food 

and water are of the foremost importance in the second. Hence, the priorities stemming from the type of 

disaster come into play here, which are a distinctive characteristic of the model proposed as opposed to 

other contributions in the literature. The model tackles the need to consider the resources required based 

on the type of disasters [See 15]. That affects supplier selection, which relies on their characteristics and 

supply capacity, along with the capacity of the facilities selected, to ensure a quick and efficient response. 

The formulation proposed works in instances where disasters of the same type occur in different regions 

as well. Although the disasters would require the same products, the magnitude of the disasters can be 

considered to adjust the priorities to guide allocation. For instance, when there are two simultaneous 

earthquakes occurring in different parts of a country, the magnitude of the earthquake and the 

vulnerability of the affected areas can be used to define the priorities of delivery of relief. Simultaneous 

disasters occur at the same time or at similar times, so depending on the length of the time periods, this 

model can handle multiple disasters overlapping. Because of these reasons, the model adds flexibility to 

disaster management. Having a reliable forecast about the different events and their evolution over time, 

it can consider single disasters, multiple simultaneous disasters with different characteristics, disasters 

separated by one or more time periods, and hazards of different nature (e.g., sudden onset and slow 

onset). The reason is that the supply network defined by the model based on the probability profile can 

support all the different regions potentially affected, either individually or in conjunction. 



3.2. Model notation 

The model notation and definitions are presented in Table 2. 

Table 2. Model notation and definitions 

Sets  Sets 

i Distribution center, i = [1, 2, …, |I|] l Regions affected by disasters, l = [1, 2, …, |L|] 

j Demand areas, j = [1, 2, …, |J|] s Scenario, s = [1, 2, …, |S|] 

k Potential suppliers, k = [1, 2, …, |K|] t Time periods, t = [1, 2, …, |T|] 

n Type of products, n = [1, 2, …, |N|]   

Parameters  

𝛼𝑘,𝑛 Cost of product n from supplier k at stage the second stage 

𝛽𝑘,𝑛 Supply capacity of product n from supplier k 

𝛾𝑖 Cost of opening supply facility i 

𝛿𝑗,𝑛,𝑙,𝑠 Demand of product n in area j at region l on scenario s 

ε Employees available 

휁𝑖,𝑗,𝑙 Cost of each trip from supply facility i to demand point j at region l   

η Weight capacity of each vehicle 

휃𝑛,𝑙 Priority of product n at region l 

𝜅𝑘 Cost of the partnership with supplier k 

𝜆𝑖 Personnel required per facility i 

µ Wage per employee 

𝜉𝑖,𝑗,𝑙 Coverage from facility i to area j in region l 

𝜋𝑠 Probability of scenario s 

σ Personnel required for distribution 

ς Number of periods for prepositioning 



𝜏𝑖 Volumetric capacity of the distribution center i 

𝛷𝑛 Volume of product n 

ѱ Number of periods 

Ω𝑘,𝑛 Cost of buying product type n from supplier k at stage 1 

First-stage decision variables 

𝐴𝑘 Selection of supplier k; 1 if the supplier is chosen, 0 otherwise 

𝑋𝑖 Activation of distribution center i; 1 if the facility is opened, 0 otherwise 

𝑌𝑖,𝑘,𝑛 Products type n bought from supplier k for distribution center i at stage 1 

𝐷 Number of warehouse employees allocated at the first stage 

𝐸𝑙  Number of employees allocated to distribution at the first stage in region l 

Second-stage decision variables 

𝐼𝑁𝑉𝑖,𝑛,𝑡,𝑠 Number of products n stored on facility i at period t at scenario s    

𝑇𝑇𝑖,𝑘,𝑛,𝑡,𝑠 Product type n bought from supplier k for DC i at stage 2 at period t at scenario s  

𝐺𝑖,𝑗,𝑙,𝑡,𝑠 Trips from facility i to zone j at region l at period t at scenario s  

𝑈𝑗,𝑛,𝑙,𝑡,𝑠 Unmet demand of product n at area j in region l at period t at scenario s 

𝑃 𝑛,𝑙,𝑡,𝑠 Maximum unmet demand of product n in region l at period t at scenario s 

𝑄𝑖,𝑗,𝑛,𝑙,𝑡,𝑠 Products type n sent from i to j in region l at period t at scenario s 

3.3. Model formulation 

The model uses a single shared network of suppliers and facilities to avoid competition for resources 

among jurisdictions and achieving the optimal assignment of human and material resources [49].  

The model is formulated using a two-stage stochastic approach. The pre-disaster phase is addressed at 

the first-stage and the second-stage is focused on the post-disaster phase [See 26]. Parameter 𝜉𝑖,𝑗,𝑙 

represents the difficulty to reach the demand areas from facilities and it is determined based on road 

connectivity, maximum response distance, and path vulnerability. The model is structured as follows: 



 min 𝑈𝐷 = ∑ ∑ ∑ ∑ 𝑃𝑛,𝑙,𝑡,𝑠 ∗ 𝜋𝑠𝑠𝑡𝑙𝑛  (1) 

 min 𝑐𝑜𝑠𝑡 = ∑ 𝑋𝑖 ∗ 𝛾𝑖𝑖 + (∑ 𝐸𝑙 + 𝐷) ∗ µ ∗ ѱ𝑙 + ∑ ∑ ∑ 𝑌𝑖,𝑘,𝑛 ∗ 𝜔𝑘,𝑛𝑛𝑘𝑖 +

∑ 𝜅𝑘 ∗ 𝐴𝑘𝑘 + ∑ 𝜋𝑠𝑠 ∗ (∑ ∑ ∑ ∑ 𝑇𝑇𝑖,𝑘,𝑛,𝑠,𝑡 ∗ 𝛼𝑘,𝑛𝑡𝑛𝑘𝑖 + ∑ ∑ ∑ ∑ 𝐺𝑖,𝑗,𝑙,𝑡,𝑠 ∗ 휁𝑖,𝑗,𝑙𝑡𝑙𝑗𝑖  

(2) 

Subject to: 

 𝑈𝑗,𝑛,𝑙,𝑡,𝑠 = 𝛿𝑗,𝑛,𝑙,𝑡,𝑠 − ∑ 𝑄𝑖,𝑗,𝑛,𝑙,𝑡,𝑠 ∗ 𝜉𝑖,𝑗,𝑙𝑖  ∀ 𝑗, 𝑛, 𝑙, 𝑡, 𝑠 (3) 

 𝑃𝑛,𝑙,𝑡,𝑠 ≥ 𝑈𝑗,𝑛,𝑙,𝑡,𝑠 ∗ 휃𝑛,𝑙 ∀ 𝑗, 𝑛, 𝑙, 𝑡, 𝑠 (4) 

 𝐼𝑁𝑉𝑖,𝑛,𝑡+1,𝑠 = 𝐼𝑁𝑉𝑖,𝑛,𝑡,𝑠 + ∑ 𝑇𝑇𝑖,𝑘,𝑛,𝑡,𝑠𝑘 − ∑ ∑ 𝑄𝑖,𝑗,𝑛,𝑙,𝑡,𝑠𝑙𝑗  ∀ 𝑖, 𝑛, 𝑡, 𝑠 (5) 

 𝐼𝑁𝑉𝑖,𝑛,0,𝑠 = ∑ 𝑌𝑖,𝑘,𝑛𝑘  ∀ 𝑖, 𝑛, 𝑠 (6) 

 ∑ 𝐼𝑁𝑉𝑖,𝑛,𝑡,𝑠 ∗ 𝑉𝑂𝐿𝑛𝑛 + ∑ ∑ 𝑇𝑇𝑖,𝑘,𝑛,𝑡,𝑠 ∗ 𝛷𝑛𝑘𝑛 ≤ 𝑋𝑖 ∗ 𝜏𝑖 ∀ 𝑖, 𝑡, 𝑠 (7) 

 ∑ 𝑌𝑖,𝑘,𝑛𝑖 ≤ 𝐴𝑘 ∗ 𝛽𝑘,𝑛 ∗ 𝜍 ∀ 𝑘, 𝑛 (8) 

 ∑ 𝑇𝑇𝑖,𝑘,𝑛,𝑡,𝑠𝑖 ≤ 𝐴𝑘 ∗ 𝛽𝑘,𝑛 ∀ 𝑘, 𝑛, 𝑡, 𝑠 (9) 

 𝐺𝑖,𝑗,𝑙,𝑡,𝑠 ∗ 휂 ≥ ∑ 𝑄𝑖,𝑗,𝑛,𝑙,𝑡,𝑠 ∗ 𝛷𝑛𝑛  ∀ 𝑖, 𝑗, 𝑙, 𝑡, 𝑠 (10) 

 𝐸𝑙 ≥ 𝜎 ∗ ∑ ∑ ∑ 𝐺𝑖,𝑗,𝑙,𝑡,𝑠𝑙𝑗𝑖  ∀ 𝑙, 𝑡, 𝑠 (11) 

 𝐷 = ∑ 𝑋𝑖 ∗ 𝜆𝑖𝑖   (12) 

 ∑ 𝐸𝑙𝑙 + 𝐷 ≤ 휀  (13) 

𝑋𝑖, 𝐴𝑘 ∈ [0,1];       𝐷, 𝐸𝑙 , 𝑌𝑖,𝑘,𝑛, 𝑇𝑇𝑖,𝑘,𝑛,𝑡,𝑠, 𝐺𝑖,𝑗,𝑙,𝑡,𝑠, 𝑈𝑗,𝑛,𝑙,𝑡,𝑠, 𝑃𝑗,𝑙,𝑡,𝑠, 𝑄𝑖,𝑗,𝑛,𝑙,𝑡,𝑠, 𝐼𝑁𝑉𝑖,𝑛,𝑡,𝑠 ∈ Z 

Objective function (1) minimizes the sum of the maximum number of unmet demand per disaster. 

Objective function (2) minimizes the total cost of first stage and second stage activities. Equation (3) 

calculates the number of people not served by the relief delivered at each demand area per disaster, 

whereas expression (4) determines the maximum unsatisfied demand considering the priority of each 

product per disaster. Equation (5) determines the inventory held per facility per period based on the items 

procured and delivered, whereas expression (6) determines the prepositioned stock of relief and 

constraint (7) ensures inventory is held in open facilities only. Expressions (8) and (9) constrain the 

maximum number of products that can be bought using the maximum capacity of selected suppliers at 



the first and second stage, respectively. Constraint (10) calculates the number of trips required and 

expression (11) determines the number of distribution employees needed. Equation (12) determines the 

number of warehouse employees required and expression (13) ensures the number of employees 

needed does not exceed the number of staff available. Finally, the declaration of variables is presented. 

3.4. Model solution approach 

Optimizing the two objective functions do not produce a unique solution, but a set of efficient solutions 

reflecting the trade-off between objectives and forming the Pareto front [50]. The problem has the form:  

𝑀𝑖𝑛 F(x) = (𝑓1(𝑥), 𝑓2(𝑥))  s.t.   𝑔𝑖(𝑥) ≤ 0 ; (𝑖 = 1,2, … , 𝑞);     ℎ𝑗(𝑥) = 0     (𝑗 = 1,2, … , 𝑝) 

In this kind of problem, one dimension can only be further improved by worsening the value of the other 

variable. This article uses the traditional ε-constraint method for solution [See 43]. The payoff table of 

both objective functions is obtained to create discrete ranges. One of the objective functions becomes a 

constraint and its range is used to solve a discrete number of experiments, turning the problem into: 

𝑀𝑖𝑛 F(x) = 𝑓1(𝑥)            s.t.  𝑔𝑖(𝑥) ≤ 0     (𝑖 = 1,2, … , 𝑞);          ℎ𝑗(𝑥) = 0     (𝑗 = 1,2, … , 𝑝) 

with the additional constraint: 𝑓2(𝑥) ≤ 휀𝑛 

The epsilon values are obtained from the payoff table depending on the number of iterations. The 

objective function is optimized for a number of iterations to create the Pareto front. 

4. EXPERIMENTATION  

Different disasters may require different products at different levels of priority. Even similar disasters 

requiring similar products respond based on the magnitude of the event and the vulnerability of the region. 

That makes the adjustment of priorities a crucial part of the model to guide decision-making. Sections 4.1 

and 4.2 examine the performance of the model using disasters with different impact and needs.  

The availability of different resources over time affects operations as well. Section 4.3 investigates the 

impact of facing multiple disasters over several time periods on prepositioning and post-procurement 

strategies. The randomly generated network for analysis is exemplified in Figure 1.  



 

Fig. 1. Test case 

It includes six candidate supply facilities serving 20 affected areas over 5 periods across four disasters 

(5 areas per region). Disasters are assumed to occur at the same time. Food, medicine, and cleaning kits 

are the products purchased from ten candidate suppliers. The demand of these items has been randomly 

generated using the standardized relief products defined by the Ministry of Interior [51]. These units 

simplify procuring, handling, and delivering disaster relief. The experiments have 9 potential scenarios 

with varying demand. The system has lower supply than immediate demand to reflect real conditions.  

4.1. Analysis of disasters 

The level of urgency per region depends on the damage caused by the disaster, the level of vulnerability 

of the area, the impact on economic activities, and media attention. The first set of experiments assume 

the same priority of products, but disasters of different magnitude. Four disasters with low priority (0.25) 

and high priority (0.75) produced 16 experiments (24). The UD was used as objective function and the 

COST objective function as constraint in the e-constraint method for 100 iterations using GAMS 33.  

Table 3 shows the maximum unmet demand of each one of the areas in the non-dominated solutions. 

Results suggest that disasters with higher priorities (green) are consistently delivered a higher percentage 

of the total number of items shipped based on the relative priorities of other disasters. Consequently, the 

average number of unsatisfied people per region is considerably lower in disasters with higher priorities.  

Table 3. Maximum unmet demand of each disaster region per scenario 

Exp R1 R2 R3 R4 Exp R1 R2 R3 R4 

E1 12,390 14,314 12,687 13,280 E9 4,137 17,648 15,730 17,335 



E2 16,736 19,313 15,707 4,147 E10 7,206 20,756 20,422 6,144 

E3 15,466 17,719 3,529 15,177 E11 6,491 21,172 5,766 20,285 

E4 19,271 21,632 5,677 6,313 E12 9,844 24,693 8,634 10,046 

E5 15,579 4,879 16,637 16,983 E13 6,106 8,163 19,548 20,787 

E6 19,668 7,627 21,381 6,497 E14 8,359 10,071 24,179 9,490 

E7 19,763 7,798 6,512 20,185 E15 9,100 10,412 8,298 23,140 

E8 23,162 10,963 8,743 8,873 E16 11,358 13,366 11,810 12,899 

4.2. Analysis of products 

Simultaneous disasters can face different needs across areas, as the importance of certain products can 

be different depending on the type of hazard. That means disaster victims can require different products 

with distinct levels of urgency [52]. This section investigates the importance of these variations. A set of 

experiments has been prepared using the same network but with three types of hazards with the following 

priorities: (i) D1 – High priority of medicines and cleaning kits, low priority of food, (ii) D2 – High priority 

of food and medicines, low priority of cleaning kits, (iii) D3 – High priority of food and cleaning kits, low 

priority of medicine. The experiments include nine combinations of these occurring at different regions. 

The e-constraint method was programmed in GAMS 33 with 100 iterations per experiment. Table 4 shows 

the maximum unsatisfied demand across all scenarios. Instances with low priority of food, medicine, or 

cleaning kits (yellow) showed higher levels of unmet demand, whereas instances where any of the 

products was critical (green) showed a smaller portion of people without the products. The result suggests 

the model can dispatch the most important products where these are more critically needed, splitting 

them fairly, at the same time as human and material resources are used efficiently and effectively.  

Table 4. Average maximum unmet demand 

Exp Product R1 R2 R3 R4 Exp Product R1 R2 R3 R4 

E1 

FOOD 6,765 2,902 1,002 6,755 

E6 

FOOD 6,006 2,116 6,495 6,026 

MEDI 5,089 5,651 9,471 5,531 MEDI 6,018 6,458 6,317 6,244 



CLEA 1,666 5,372 856 1,973 CLEA 1,299 5,256 1,171 1,896 

E2 

FOOD 2,630 2,989 1,038 7,726 

E7 

FOOD 6,711 2,259 1,359 6,763 

MEDI 5,562 6,097 9,501 5,962 MEDI 6,007 6,551 6,259 6,184 

CLEA 4,786 5,072 863 1,524 CLEA 910 4,421 4,347 1,512 

E3 

FOOD 1,526 3,476 1,523 7,287 

E8 

FOOD 7,815 2,816 1,144 2,533 

MEDI 8,411 5,274 8,922 5,253 MEDI 5,455 6,023 9,499 5,928 

CLEA 1,291 5,780 1,233 2,396 CLEA 1,557 5,060 1,051 4,531 

E4 

FOOD 6,425 2,007 1,415 6,150 

E9 

FOOD 7,258 3,078 1,488 1,322 

MEDI 4,359 8,568 8,700 4,703 MEDI 4,648 5,180 8,889 8,541 

CLEA 2,448 2,087 1,327 3,026 CLEA 1,906 5,526 1,148 1,092 

E5 

FOOD 6,220 6,702 1,049 6,257       

MEDI 5,168 5,788 9,615 5,687       

CLEA 2,358 2,835 1,178 2,684       

4.3. Analysis of resources 

This part provides insights about the impact on resources of having multiple disasters and multiple 

periods. The experiments include 25 instances varying from 1 to 5 simultaneous disasters with the need 

to support victims from 1 to 5 periods. Table 5 shows the solutions with the lowest level of unmet demand 

of the experiments. Situations with a single disaster or short duration (i.e., one or two periods) are 

completely served with the resources available. However, increasing the number of periods or the number 

of disasters adds significant pressure on the system. Neglecting any of those aspects can lead to 

overestimating the capacity of the response system. Disaster management plans need to consider the 

possibility of simultaneous disasters occurring over multiple periods to support victims effectively.   

Table 5. Level of shortage of the different experiments 

 

One period  Two periods Three periods Four periods Five periods 

One disaster 0 0 0 0 0 



Two disasters 0 0 0 0 0 

Three disasters 0 0 10.01 25.21 38.14 

Four disasters 0 71.83 461.28 717.01 847.21 

Five disasters 0 587.33 1,715.80 2,223.17 2,533.15 

Delivering relief requires buying products before and after the disaster. Figure 2 shows the percentage 

of capacity of prepositioned products and of the maximum number of products purchased at the second 

stage. These suggest that prepositioning inventory is an efficient way to react to disasters, even in 

instances with multiple periods. The complete prepositioning capacity was depleted in several instances, 

whereas the percentage of items purchased after the event was more sensible to the number of periods.  

 

Fig. 2. Percentage use of prepositioning and post-disaster procurement 

Thus, a good prepositioning strategy can be key to deal with simultaneous disasters over multiple periods. 

5. CASE STUDY 

5.1. Region of study 

Mexico has been the second worst affected country by disasters in the Americas since 1950, behind the 

United States [53]. Hurricanes represent a large portion of those disasters [54]. These situations are even 

more problematic when different threats affect the country at the same time. As Mexico is vulnerable to 

the occurrence of multiple hazards [55], several disasters in the country have occurred simultaneously 

before [54]. The most notable example is recent years has been Hurricane Ingrid and Hurricane Manuel 

in September 2013, affecting the Gulf of Mexico and the Pacific coast at the same time. Around 155,000 

people were affected by these disasters [54]. This research uses that case study for analysis.  
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5.2. Data collection 

Official emergency declarations between September 16th and September 30th of 2013 issued by the 

Ministry of Interior (SEGOB) have been used to create the different regions as shown in Table 6.  

Table 6. Groups of regions affected by each hurricane and rainfall 

States (S / C) Affected  States (E) Affected  States (NW) Affected  

Guerrero 238,028 San Luis P. 46,926 Colima 15,523 

Oaxaca 13,618 Nuevo León 3,663 Jalisco 31,598 

Chiapas 15,746 Quintana Roo 14,263 Zacatecas 11,001 

Morelos 4,014 Tamaulipas 29,958 Chihuahua 60,250 

Michoacán 49,368 Veracruz 7,555 Nayarit 9,762 

Sinaloa 18,497 

Source: Compiled by authors with information from SEGOB 

Human and material resources available for disaster response were collected using freedom of 

information requests, transparency websites and reports. Human resources were aggregated from the 

different agencies involved, whereas the vehicles included were assumed to have a capacity of 4 tons, 

according to governmental reports about small trucks with capacities between 3.5 and 5 tons [56-58]. 

The capacity was set considering the use of small trucks accessible for relief agencies. A total of 22 

suppliers involved in previous disasters were considered. Records from those purchases were used to 

identify pre-disaster procurement cost, supplier capacity, minimum order size (assumed at 1% of 

capacity), cost at the post-disaster stage (assumed to be 20% more expensive) and partnering cost. The 

Mexican food kit delivered to victims including coffee, chocolate, canned beans, fluor, powdered milk, 

rice, instant soup, chilies, tuna can, chilorio package, and oatmeal cookies was adopted. These items 

and their consumption have been standardized to satisfy the dietary requirements of victims for their 

survival according to Mexican regulations [51]. Kits are used to facilitate the process of delivery and 

ensure the different needs from the victims are satisfied [50]. The supply facilities used were obtained 



from Diconsa, which handles the distribution of products for social programs and disaster management 

[59]. These were geo-referenced using Google Earth® and located using ArcGIS®. The geographical 

layers for network analysis are publicly available from the Mexican Institute of Statistics and Geography 

(INEGI) [60]. These layers were imported into TransCAD® for multiple path analysis. The results were 

used to determine road connectivity and cost calculations. The network can be seen in Figure 3. 

 

Fig. 3. Case study network 

Information about the impact of Hurricanes Ingrid, Manuel, and heavy rainfall was found in the emergency 

declarations. Two situations were considered for scenario development: the real conditions (R), and an 

increase of 50% of the affected population (I). That led to 8 scenarios (23). As there was no information 

about decision-maker priorities, the priorities were considered similar. However, that can be easily 

adjusted by the user. Demand was obtained from authorities based on the real events from the Mexican 

Disaster Prevention Centre (CENAPRED), which led to the probability profiles presented in Table 7. 

Table 7. Scenarios used 

Scenario R1 R2 R3 Prob Scenario R1 R2 R3 Prob 

S1 I I I 0.04 S5 R I I 0.07 

S2 I I R 0.07 S6 R I R 0.15 

S3 I R I 0.07 S7 R R I 0.15 

S4 I R R 0.15 S8 R R R 0.30 

Source: Compiled by authors with information from CENAPRED [61] 



5.3. Results of the case study 

The e-constraint method was programmed in GAMS using the solver CPLEX to obtain the non-dominated 

solutions. Each one of them represents a non-dominated point, which is not improved in both, cost, and 

shortage, by any other point. The summary results can be seen in Table 8. Each result contains a set of 

decisions for first and second stage variables which are made based on the information from all the 

scenarios. The first stage variables are scenario independent, meaning that their value does not change 

depending on the scenario. Second stage variables are scenario dependent, and each decision has a 

value per scenario. The table shows the maximum value per scenario per period for the second stage 

variables (trips and post-disaster procurement). The trade-off between both objective functions is evident 

with variations in cost/benefit. For instance, the cost of ND13 is more than twice of the cost of ND12, but 

that affects less than 10% of the maximum shortage. More steep investments are required to ensure that 

all the people affected receive relief. Solutions ND15 and ND16 are interesting for service-oriented users. 

To move from ND15 to ND16 there is a need to access considerably more resources, which makes a 

significant difference in demand met. Given the priorities and constraints from authorities, the results can 

be the basis to explore the most acceptable trade-offs for them and identify a suitable solution.  

Table 8. Summary of the results of the case study 

ID Cost Shortage Sup Fac Staff Max trips Pre-positioned Max procured 2nd 

ND1 0 2,605,981 0 0 0 0 0 0 

ND2 800,000 2,421,180 2 1 60 19 171,547 39,182 

ND3 1,600,000 2,276,763 2 1 144 40 327,556 74,479 

ND4 2,400,000 2,163,042 3 1 166 44 444,993 71,534 

ND5 3,199,999 2,047,740 3 1 177 63 571,690 74,480 

ND6 4,000,000 1,937,711 4 1 210 67 679,903 123,123 

ND7 4,799,996 1,837,654 4 1 265 83 767,148 147,336 

ND8 5,599,996 1,750,616 5 1 309 100 855,584 174,261 



ND9 6,400,000 1,668,476 5 1 375 150 928,606 235,119 

ND10 8,000,000 1,645,178 5 3 749 166 629,731 566,261 

ND11 8,799,999 1,520,708 5 2 677 206 889,396 461,448 

ND12 16,800,000 1,319,758 6 9 2,391 312 711,425 1,174,592 

ND13 34,400,000 1,208,073 14 14 4,389 606 161,634 2,925,030 

ND14 36,800,000 965,004 14 14 4,621 634 1,057,474 2,289,522 

ND15 40,000,000 363,735 9 7 2,966 743 1,924,683 1,749,956 

ND16 76,799,999 3,251 10 5 5,706 2,000 3,157,735 1,527,558 

ND17 78,398,271 3,108 10 9 6,387 1,579 3,127,818 1,549,301 

ND18 79,199,993 2,471 10 9 6,563 1,411 3,147,209 1,568,778 

ND19 80,799,998 2,467 10 9 6,942 1,385 3,136,679 1,560,048 

ND20 81,600,000 333 14 9 6,606 1,526 2,724,866 2,032,422 

ND21 82,400,000 0 17 6 6,423 1,472 2,844,972 1,912,318 

According to the results, current agreements with suppliers provide enough capacity to support disaster 

management. All the areas affected can be served by tapping into the current pool of suppliers from 

authorities. However, three of them have not been selected by any of the non-dominated solutions.  

The number of facilities, employees, relief items and trips increase in solutions focused on reducing 

shortage of relief. However, using more suppliers or more facilities does not necessarily reduce shortage. 

In solutions ND13 and ND14 for instance, the model activates more facilities and suppliers than several 

solutions, but the shortage is not the lowest. That is because in those points second-stage procurement 

is preferred over stock prepositioning, making more facilities and suppliers necessary to outweigh 

second-stage uncertainty. This balance between pre-positioned stock and procurement is seen across 

all solutions, with victim-oriented solutions slightly preferring stock prepositioning to reduce uncertainty.   

The capacity of the model to handle simultaneous disasters is reflected in this part. Table 9 shows the 

details about the minimum, maximum, and average values of the maximum unmet demand in each 



region. The focus on balancing product dispatch among regions is noticeable. Based on the needs and 

resources available, the requirements of disasters 1 and 2 are completely covered since ND20, whereas 

disaster 3 requires an extra investment of MXN $800,000 to be completely served. This information can 

help inform decision-makers about the different investments needed to satisfy vulnerable regions. 

Table 9. Maximum unmet demand 

Sol Dis Min Max Average Sol Dis Min Max Average 

ND

1 

R1 2,024,154 3,036,242 2,530,198 

ND

12 

R1 1,022,786 1,692,517 1,362,063 

R2 315,876 473,836 394,856 R2 198,550 353,019 263,501 

R3 817,916 1,226,885 1,022,401 R3 589,549 942,685 771,680 

ND

2 

R1 1,851,706 2,827,011 2,339,102 

ND

13 

R1 928,834 1,268,026 1,085,885 

R2 315,876 473,836 394,856 R2 91,760 256,678 181,896 

R3 817,916 1,226,885 1,022,401 R3 315,662 647,039 500,300 

ND

3 

R1 1,762,783 2,724,592 2,244,273 

ND

14 

R1 655,514 1,181,196 837,625 

R2 300,408 457,305 378,483 R2 99,650 241,735 168,471 

R3 764,714 1,158,239 961,062 R3 312,685 603,986 469,410 

ND

4 

R1 1,661,962 2,613,896 2,138,392  

ND

15 

R1 251,586 563,453 396,275 

R2 295,878 457,864 377,663 R2 50,716 123,345 87,797 

R3 747,966 1,157,972 951,465 R3 176,428 387,758 287,543 

ND

5 

R1 1,556,495 2,523,673 2,033,269 

ND

16 

R1 1 2,743 722 

R2 294,217 446,614 370,479 R2 16 6,155 1,090 

R3 730,374 1,135,683 932,418 R3 183 50,731 24,982 

ND

6 

R1 1,477,758 2,438,216 1,948,749 

ND

17 

R1 0 11,081 1,823 

R2 261,041 416,341 339,198 R2 0 5,955 1,878 

R3 728,844 1,138,075 929,902 R3 0 50,553 23,253 



ND

7 

R1 1,408,499 2,291,696 1,847,684 

ND

18 

R1 0 238 36 

R2 261,045 418,303 340,580 R2 0 2,184 508 

R3 715,712 1,112,749 913,839 R3 1,896 28,562 13,909 

ND

8 

R1 1,337,432 2,202,147 1,771,086 

ND

19 

R1 0 1,410 199 

R2 259,975 418,473 339,695 R2 0 2,400 309 

R3 694,581 1,090,371 892,139 R3 0 48,190 21,212 

ND

9 

R1 1,286,306 2,098,957 1,691,660 

ND

20 

R1 0 0 0 

R2 256,245 418,153 338,766 R2 0 0 0 

R3 674,088 1,063,655 872,408 R3 0 12,696 1,587 

ND

10 

R1 1,214,548 2,034,663 1,647,279 

ND

21 

R1 0 0 0 

R2 258,497 417,201 338,370 R2 0 0 0 

R3 715,036 1,106,112 906,320 R3 0 0 0 

 

ND

11 

R1 1,145,512 1,964,897 1,551,250      

R2 241,042 403,033 320,572      

R3 663,153 1,076,621 867,590      

5.4. Analysis of independent disasters 

This section contrasts the results of considering and disregarding simultaneous disasters using the case 

study. A set of experiments has been prepared assuming each disaster is tackled independently. The ε-

constraint method was used to run 25 iterations of each model. The results of each region were combined 

to identify the non-dominated solutions. The comparison between these results and Table 8 can be seen 

in Figure 4. There is an important effect on cost and shortage, as the aggregated results are dominated 

by the solutions of the model. That means similar investment incurs higher levels of unmet demand.  

Considering isolated disasters delivers solutions that work well for the local disaster, but not necessarily 

for the whole system. The number of facilities and the network of suppliers required for handling the three 

disasters as independent events is usually higher than the number required by the model. The three most 



service-oriented solutions require 22 suppliers and 15 facilities, which is higher than the ones used in 

ND21. The reason is that some facilities and suppliers beneficial for one region are not necessarily used 

by others. That is also reflected in an increasing number of employees (over 1,916 more staff required) 

and higher cost. The major drawback is feasibility. The two most service-oriented solutions exceeded the 

capacity of suppliers. Although disasters are assumed to be independent, they share the same network 

of suppliers and their constraints. Neglecting the effect of other disasters leads to overestimating supplier 

capacity, which means activating/looking for new suppliers, which delay delivery and increase cost. 

 

Fig. 4. Comparison between the results of the model and the Pareto front of independent disasters 

Clearly, it is very complicated to assume every disaster will be completely independent. Therefore, 

another comparison assumed that each situation was allocated a third of the resources available at the 

beginning (based on the same priorities). The problem found with this approach is that deciding on the 

split of resources can disadvantage some instances. Table 10 shows the comparison of the most service-

oriented solutions obtained by the model, the experiments assuming independent response, and the 

experiments splitting resources equally. The solution splitting resources is the only one where all demand 

cannot be covered. The reason is because two areas were given more resources than needed to tackle 

the situation, whilst one instance had insufficient resources to satisfy the needs of the community. 

Interestingly, the model favors a pre-positioning strategy, whereas the experiments assuming 

independent disasters focused on post-disaster procurement. That can be linked to the balance between 

uncertainty of the situation and supplier capacity. For instances with independent disasters, uncertainty 
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is associated with a single region, whereas with simultaneous disasters there is demand uncertainty in 

several regions. The constraint of capacity of suppliers requires a reliable amount of stock prepositioned. 

Table 10. Comparison of results between the experiments and the model 

Solution Cost Shortage Sup Fac Staff 

Max 

trips 

Pre-

positioned 

Max post- 

procured 

Model 82,400,000 0 6 17 6,423 1,472 2,844,972 1,912,318 

Independent 104,748,866 0 15 22 8,339 1,557 1,360,496 3,453,700 

Split 102,609,337 2,752 22 14 10,627 1,560 2,013,963 2,698,085 

The analysis in this part has shown the problems of using standard models for independent decision-

making in situations with simultaneous disasters. The results suggest that overestimation of resources, 

more expensive solutions, the use of more complex networks of facilities and suppliers, and increased 

level of shortage are drawbacks of neglecting simultaneous disasters in humanitarian logistics models. 

6. DISCUSSION 

6.1. Discussion of the numerical experiments 

Simultaneous disasters share a common set of resources needed to provide support in the different areas 

[15]. The results show the capacity of the model to support procurement, facility location, resource 

allocation, relief distribution, and inventory management over several periods in simultaneous disasters.  

As disasters vary in magnitude and affect communities with different levels of vulnerability, authorities 

tend to allocate more resources to the most affected communities [62]. The model introduces this logic 

using a weighting factor. In the first set of experiments, the results showed negligible variation in the 

overall number of people served but a significant variation in the number of items distributed per disaster. 

The model achieved the highest level of overall support at the same time as most urgent areas were 

given priority. Current formulations neglecting multiple disasters fail to consider these priorities.  

As each disaster can be different, the products required can also be different [52]. The relief used for an 

earthquake can be different from the relief needed for a nuclear incident or a flood. When a single disaster 



occurs, it is possible to adjust the level of demand of each product and even their priority to guide 

decision-making. In the case of simultaneous disasters, however, that is complicated if the disasters are 

not disaggregated. Even if the demand is adjusted to only include the products required by the disaster, 

it will have common resources used in different disasters with different priorities [15]. For instance, first 

aid kits can be used in earthquakes and floods. These are crucial in the former to save lives, whereas in 

the latter these are used to treat less urgent victims. As most resources are finite, it is necessary to reflect 

their relative importance to manage simultaneous disasters successfully. The second set of experiments 

showed the capability of the system to increase the flow of the products accounting for their importance 

to each one of the different disasters. That result suggests that the model can help regulate the allocation 

of resources in different disasters considering their relative importance and different community needs. 

The third set of experiments showed the importance of considering multiple disasters and multiple periods 

in planning. Even if the disaster response system can handle situations for few periods or single disasters, 

there is a significant pressure added by multiple periods and disasters. When information is available 

about the potential impact of disasters and the evolution of the events, the model provides guidance to 

maximize the service for victims. These factors are essential to design useful strategies in practice. 

Aligned to the comments from Sabbaghtorkan, Batta and He [48], the model incorporates priorities among 

disasters and products. Current models struggle to disaggregate the different types of disasters and 

needs through time, which is one of the contributions of the model. As shown by the results, systems 

tackling single independent disasters, or considering a short time horizon, would be overwhelmed by the 

occurrence of multiple disasters of long duration. This article is filling the need to combine interconnected 

logistics decisions (i.e., facility location, procurement, resource allocation, and relief distribution) 

considering the occurrence of different disasters and maintaining fairness among the different events.  

6.2. Discussion of the case study results 

The case study showed the performance of the model in a real-world instance. The findings show the 

way the number of suppliers, facilities, employees, relief procured, and number of trips adapts to decision-



maker preferences considering the trade-off between both objective functions. The model uses different 

strategies to support logistics decisions, which shows the relevance of having an integrated formulation. 

The analysis shows that the supplier base and the number of facilities available have enough capacity to 

handle all the scenarios tested. In fact, it is possible to identify the key strategic suppliers that represent 

the basis for most of the solutions. Over 95% of the solutions included suppliers 1 and 23, which are the 

largest suppliers (4 and 3 different types of products supplied, respectively). These two suppliers were 

the cornerstone of the non-dominated solutions and were just complemented by smaller suppliers for 

specific products. That suggests the need to have very clear agreements with them and the possibility to 

strengthen those links for future planning. Conversely, the analysis shows that three suppliers were not 

included in any of the non-dominated solutions, which suggests a need to reflect on the agreements with 

them. The results show that the model looks for a mix of different types of suppliers that can help satisfy 

the requirements from the different areas considering the peak in demand whilst reducing cost. 

The findings suggest the value of considering the evolution of the event [50]. The results provide a 

detailed account of when and how many products need to be procured, the number of trips and deliveries 

per period, when and where to allocate human resources for transportation, and the levels of inventory 

per period. The solutions suggest that the model can adjust to varying demand profiles across periods.  

The comparison with models for independent decision-making shows the value of the proposed 

formulation. The unfeasible solutions reached when the interconnectedness of the disasters is neglected, 

and the sub-optimal solutions obtained from splitting resources beforehand show the need to have a 

formulation that can consider multiple concurrent disasters. Particularly, the overestimation of supply, the 

difficulty sharing overlapping resources, and the localized supply networks worsen performance.  

Commonly, authorities use a common set of finite resources [10], both human and material, to handle 

simultaneous disasters. The model can consider the impact of one disaster on the availability of resources 

for other disasters of using shared resources in each contingency, unlike current formulations. That 

provides a more concrete and realistic view of the situation and the limitations of the response system. 



Overall, the results presented provide evidence of the value of the formulation. Although simultaneous 

disasters are increasing and there are several benefits for decision-makers of considering this dimension, 

it is a understudied area currently [15]. This article contributes to the literature by formulating a novel bi-

objective stochastic multi-period model to support decision-making about procurement, facility location, 

inventory management, relief distribution, and resource allocation over time in instances caused by 

simultaneous disasters. The model can deal with different types and magnitudes of disasters. It balances 

resources considering the urgency of the different areas and the relative importance of the products 

required. It can help decision-makers to have more clarity about their capabilities to handle these 

situations and to identify critical infrastructure and suppliers required to strengthen the response system. 

6.3. Limitations 

The model has several benefits for decision-makers, but it is important to be mindful of its limitations. A 

two-stage approach is based on average values, but the uncertainty of disaster situations is always 

challenging. The model requires reliable information about all disasters from forecasts, historical data or 

expected impact to account for the impact and evolution of the event, as it cannot adapt to new conditions 

or account for unforeseen disasters without having to run the model again. That must be supported by 

reliable probability profiles, which can include the occurrence of single and multiple disasters to have a 

realistic view of potential situations. In that sense, the damage to the road network, evacuee behavior, 

and the behavior of first responders depend on the context and conditions of the disaster, which require 

an analysis at the granular level. Those limitations of the model open opportunities for further work to 

adapt its ideas to more specific conditions based on historical information (recurrent disasters) and the 

priorities of the civil protection system. Additionally, there is an opportunity to introduce a heterogeneous 

fleet of vehicles to provide more alternatives for distribution and to adapt to the participant organizations.  

The model considers consistent supply before and after the disaster. The reason is because suppliers 

are assumed to be located outside of vulnerable regions. However, it is possible that suppliers can be 

affected by the disaster, which would require new models including uncertainty of supply or variations in 



the supply capacity from suppliers. This study tackles the effect of those aspects by using information 

about the capacity of suppliers at the time of disaster, which would be lower than in normal conditions.  

One of the complex features of simultaneous disasters is the possibility of having local authorities in 

different regions that need to cooperate under the constraints of jurisdictions. The model assumes that 

all organizations have the attributions to help on the different regions because it assumes that is a 

sensible approach in large-scale disasters, but smaller instances would have to be very mindful of the 

response system and governance. Finally, the model does not include the impact of donations on the 

operations. Although donations make a significant difference, even experienced NGOs struggle to know 

how much relief they will receive [63]. This study focuses on the use of resources obtained by the 

decision-maker directly, but further studies can investigate the inclusion of donations to support response. 

7. CONCLUSION 

Simultaneous disasters are a global threat. This paper introduces a novel bi-objective dynamic two-stage 

stochastic model for humanitarian logistics to deal with situations caused by them. The novel formulation 

supports decisions about procurement, facility location, inventory management, relief distribution, and 

resource allocation for multiple periods. It considers multiple distinct regions affected by concurrent 

hazards with different magnitude and needs. The model includes the differences in priorities and 

requirements between disasters and it promotes fairness in the areas affected. The performance of the 

model has been shown with numerical experiments and a case study in Mexico in 2013. 

The numerical examples presented show the importance of accounting for the level of urgency in different 

regions and the priority of products required based on the nature of the crisis. Models focused on 

supporting a single crisis can struggle to balance the allocation of scarce resources among distinct areas 

effected by different hazards. As different disasters can require the same resources with a different 

degree of urgency, models need to consider different requirements to support informed decision-making 

about the use of resources. The ability to consider the requirements and priorities of different disasters 

over different periods is a distinctive feature of the model, as these can affect the performance of the 



response system. The results consistently showed how the model can split resources based on the 

characteristics of the different areas and disasters without worsening the global response.  

The results of the case confirmed the capacity of the relief supply chain in Mexico to cope with 

simultaneous disasters. The model handled the large instance effectively and highlighted key suppliers 

using scenarios. It showed the importance of considering simultaneous disasters to avoid overestimating 

the response capacity of civil protection systems, as the comparison with models focused on independent 

disasters showed the potential for unfeasible solutions and sub-optimal global performance.  

The study also opens different opportunities for future research. The design of a heuristic algorithm to 

solve the formulation and select the best solution from the Pareto front based on the priorities of decision-

makers would expedite response. The development of a multi-agency formulation for simultaneous 

disasters would prevent the convergence of human resources. Finally, considering uncertainty in supply 

and a heterogeneous fleet would give decision-makers more confidence to foster implementation. 
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