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1. Introduction

The physics of (quasi-) 1D systems is extremely rich and exhibits
itself in a variety of phenomena, from edge states in quantum
Hall effects[1] and topological insulators[2] to the most recent
experimental results of the enhancement of superconductivity
by disorder in quasi-1D materials[3] and zero-magnetic field frac-
tional conductance in GaAs/AlGaAs heterostructures.[4] Strongly
interacting electrons in 1D systems are described by Luttinger
liquid (LL) theory.[5–8] Seminal renormalization group (RG) anal-
ysis[9] allowed to study the effect of a single impurity on the con-
ductance of a one-channel LL based only on the Luttinger
parameter K. It was later used for various two-channel LL

systems[10–14] and was finally generalized
for an arbitrary number of channels in
LL by the introduction of the effective
Luttinger matrix K̂ .[15] Generalized RG
approach was used to study the effect of
local impurity in a multichannel LL,[16]

metal-insulator transition in sliding
LL[17,18] and its instability,[19] and stability
of edge states in topological insulators.[20,21]

Recently two-terminal conductance with
fractional values[22] and fractional short
noise[23] were described theoretically in
clean 1D systems with broken time-reversal
symmetry. Experiments showed fractional
transport in split-gate 1D constrictions
made in germanium.[24]

The standard RG analysis studies possi-
ble perturbations evaluates the scaling
dimension for each perturbation and

defines perturbation as relevant when its scaling dimension
becomes less than a physical dimension of the system. The initial
phase is stable when all perturbations are irrelevant. The relevant
perturbation opens a gap and transfers the system into a particu-
lar gapped phase. Relevant backscattering perturbations localize
corresponding channels. The channel orthogonal to the localized
one remains conducting.[25] Usually, the system analysis stops
with the calculation of the remaining conductance.

In this letter, we go one step further. We start with a multichan-
nel LL and suggest a mathematical procedure to separate gapped
and conducting channels. Then, we solve the problem exactly for a
two-channel system with particular relevant perturbation and
study the properties of the remaining conducting channel.

2. Multichannel LL Model

The Lagrangian of the multichannel LL is

L0 ¼
1
4π

∂tθT ∂xϕ� 1
8π

½ ∂xϕTV̂ϕ ∂xϕþ ∂xθTV̂θ ∂xθ� (1)

where vectors ϕ and θ are bosonic density and current fields cor-
respondingly assigned to each channel. Matrices V̂ϕ and V̂θ

describe intra- and interchannel density–density and current–
current interactions. The most general perturbation can be writ-
ten as[20]

Lpert ¼ h j, qð Þei jϕþqθð Þ (2)

Luttinger matrix K̂ can be obtained from the following equa-
tion[15]
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free field are found. The parameters of the free field are independent of the
interactions between right- and left-moving electrons in the same channel and
between electrons moving in the same direction in different channels. Finally, if
the interchannel interactions are weak, the free field becomes noninteracting
(effective Luttinger parameter Keff ¼ 1) independently of how strong intra-
channel interactions are.
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K̂V̂ϕK̂ ¼ V̂θ (3)

Its solution[26]

K̂ ¼ V̂�1
ϕ V̂ϕV̂θ
� �1

2 (4)

leads to the following scaling dimension of the perturbation

Δ j, qð Þ ¼ jK̂ j þ qK̂�1q (5)

If particular relevant perturbations freeze some combinations
of the fields, it is natural to define a new basis containing these
frozen combinations

ϕ
θ

� �
¼ M̂

ϕnew
θnew

� �
(6)

The orthogonal matrix M̂ has to preserve the form of the first
term in Equation (1) (commutation relation)—we write it without
derivatives for simplicity

θTϕ¼ 1
2
ϕT,θTð Þ 0 I

I 0

� �
ϕ
θ

� �

¼ 1
2
ϕT
new,θTnewð ÞM̂T 0 I

I 0

� �
M̂

ϕnew

θnew

� �

¼ 1
2
ϕT
new,θTnewð Þ 0 I

I 0

� �
ϕnew

θnew

� �
¼ θTnewϕnew

(7)

Therefore the additional condition for the orthogonal matrix
M̂ is

M̂T 0 I
I 0

� �
M̂ ¼ 0 I

I 0

� �
(8)

3. Relevant Perturbation in a Two-Channel
System

Below we consider a two-channel system and solve the problem
exactly following the guidelines described above. Interaction
matrices for two channels can be presented as

V̂ϕ ¼
�
1þ g4 þ g2 g 04 þ g 02
g 04 þ g 02 1þ g4 þ g2

�

V̂θ ¼
�
1þ g4 � g2 g 04 � g 02
g 04 � g 02 1þ g4 � g2

� (9)

where g4 2ð Þ is an interaction strength between electrons moving
in the same (opposite) direction within the same channel,
whereas couplings with prime have the corresponding meaning
for the interchannel interactions. The solution for the Luttinger
matrix K̂ can be presented in the following form

K̂ ¼ 1
2

Kk þ K⊥ Kk � K⊥
Kk � K⊥ Kk þ K⊥

� �
(10)

where we use notations introduced in ref. [20]

Kk ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g 04 � g 02ð Þ= 1þ g4 � g2ð Þ
1þ g 04 þ g 02ð Þ= 1þ g4 þ g2ð Þ

s
(11)

K⊥ ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g 04 � g 02ð Þ= 1þ g4 � g2ð Þ
1� g 04 þ g 02ð Þ= 1þ g4 þ g2ð Þ

s
(12)

K is a standard Luttinger parameter defined in the absence of
interchannel interactions

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g4 � g2
1þ g4 þ g2

s
(13)

Next, we consider the following basic perturbation

Lrel � exp
1
2
i ϕ1 þ ϕ2 þ θ1 � θ2ð Þ

� �
(14)

describing interchannel counter-clockwise backscattering (see
Figure 1). Its scaling dimension, according to Equation (5), is

Δ ¼ 1
2

Kk þ
1
K⊥

� �
(15)

When, such disorder-induced perturbation is relevant (Δ < 3=2),
the corresponding channel ϕg ¼ 1=2ð Þ ϕ1 þ ϕ2 þ θ1 � θ2ð Þ
becomes frozen (gapped). We want to stress that interchannel
clockwise backscattering has the same scaling dimension, so
for the system to remain nontrivial (not completely localized),
we need to suppose that counter-clockwise backscattering is dom-
inant over clockwise backscattering. This, for example, can be the
case of a topological insulator in a magnetic field with backscatter-
ing caused by a particular harmonic of a disorder potential
(suppressing clockwise backscattering[27]). In Figure 2, we present
phase diagrams of the gapped channel ϕg for equal intrachannel
parameters g4 ¼ g2, and two possible combinations of interchan-
nel parameters: a) g 02 ¼ 0, g 04 ≡ g

0
; b) g 04 ¼ g 02 ≡ g

0
.

Now, we define a new basis including a gapped field ϕg. A field
conjugate to ϕg is

θg ¼
1
2

ϕ1 � ϕ2 þ θ1 þ θ2ð Þ (16)

The field orthogonal to the gapped field remains free and
together with its conjugate completes a new basis. In our case,
these two fields are easily found

†

1 2L R †

2 1R L

Figure 1. Relevant perturbation is a counter-clockwise interchannel
backscattering.
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ϕf ¼
1
2

ϕ1 þ ϕ2 � θ1 þ θ2ð Þ (17)

θf ¼
1
2

�ϕ1 þ ϕ2 þ θ1 þ θ2ð Þ (18)

The orthogonal matrix M̂ from Equation (6) is therefore

M̂ ¼ 1
2

1 1 1 �1
1 1 �1 1
1 �1 1 1
�1 1 1 1

0
BB@

1
CCA (19)

It is easy to check that it satisfies the commutation condition of
Equation (8) to preserve the form of the kinetic term in the
Lagrangian. For the particular relevant perturbation which we
study in this Letter, the matrix M̂ is also equal to its inverse
M̂ ¼ M̂�1 ¼ M̂T .

Now, we can write the Lagrangian of the system (see
Equation (1)) in the new basis

L0 ¼
1
4π

∂tθg ∂xϕgþ ∂tθf ∂xϕf
� �

� 1
8π

∂xψTM̂T V̂ϕ 0
0 0

� �
M̂ ∂xψþ ∂xψTM̂T 0 0

0 V̂θ

� �
M̂ ∂xψ

� �

(20)

where we introduced vector field ψT ≡ ϕg,ϕf , θg, θf
� �

. We can
now drop all the terms containing the gapped field ϕg and its
oscillating conjugate θg (which self-averages to zero). Simple
arithmetics provides the following Lagrangian for the single
remaining conducting channel

Lf ¼
1
4π

∂tθf ∂xϕf

� 1
8π

½ 1þ g4 þ g 02ð Þ ∂xϕfð Þ2 þ 1þ g4 � g 02ð Þ ∂xθð Þ2�
(21)

We immediately observe that the remaining conducting chan-
nel depends only on two (out of four) original Luttinger param-
eters. Its effective Luttinger parameter is then

K f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g4 � g 02
1þ g4 þ g 02

s
(22)

The effective velocity is correspondingly vf ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g4ð Þ2 � g 02ð Þ2

p
.

4. Conclusions

We have considered the effect of relevant perturbations on the
quasi-1D system. When some channels become gapped, we sug-
gest a mathematical procedure to describe the remaining con-
ducting channels. For the case of relevant counter-clockwise
backscattering in a two-channel system, we have shown that
the remaining conducting channel depends only on two original
Luttinger parameters, which is an unexpected result. Even more
exciting result is that if there are no original interactions between
particles moving in the different channels in opposite directions
(g 02 ¼ 0), then the remaining free channel becomes noninteract-
ing (Keff ¼ 1) independently on the arbitrary intrachannel inter-
actions (g4 and g2) as well as interactions between particles
moving in the different channels in the same direction (g 04).
We speculate that the gapped channel screens effective interac-
tions in the remaining conducting channel. We believe that the
results we predict can be observed experimentally. More, the
existing seminal experimental results (see our ref. [4]) present
a variety of fractional conductances (indicating that the system
is strongly interacting) but also the unit conductance, which
can signal a noninteracting channel. To prove the absence of
interactions conclusively, it will be essential to measure local con-
ductivity inside the constriction and not two-terminal conduc-
tance, as is done in ref. [4].
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Figure 2. The blue regions represent regime with a gapped channel ϕg ¼ ð1=2Þðϕ1 þ ϕ2 þ θ1 � θ2Þ for the intrachannel parameters g4 ¼ g2, and inter-
channel parameters: a) g02 ¼ 0, g04 ≡ g

0
; b) g04 ¼ g02 ≡ g

0
.
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